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Abstract

Statistical Methods to Adjust for Misclassified Repeated Exposures in

Modeling Disease-Exposure Associations

By Chengxing Lu

In public health studies, it is common for exposure status to be misclassified. In
this dissertation, statistical models to adjust for misclassification will be proposed to
address four related questions of interest.

The first question focuses on exploring the association between a disease and the
unobservable probability of true exposure given error-prone exposure replicates, in a
case-control setting when the exposure is a binary variable. Assuming a beta distribu-
tion for the exposure probability, we obtain the estimated association by maximizing
the marginal likelihood of the observed replicates and the disease status.

The second question is motivated by the same study, but our interest shifts to
assessing the relationship between a disease and the true unknown binary exposure
status. We generalize a regular latent class model and a latent class model with a
random effect to incorporate a true disease model, for situations of both conditionally
independent and dependent exposure replicates. A real data example from the Balti-
more Washington Infant Study will be presented to demonstrate methods addressing
the first two questions.

In general ANOVA settings, when the samples are misclassified in the study lead-
ing to an incorrect attribution of group membership, appropriate adjustments are
necessary to obtain valid estimates and inferences. As a methodological transition
into our next motivating example, we address this general misclassification problem
as our third question, with focus on adapting both the classic regression calibration
method and the likelihood method to correct for misclassification in this setting uti-
lizing external or internal validation data.

Our fourth question aims to identify whether a subject’s true mean and/or vari-
ability in exposure exceeding certain thresholds bears any association with a disease
outcome. Misclassifications arise in the categorization of whether the continuous
mean exposure or variance exceeds a relevant threshold, where the true mean or vari-
ance itself is unobserved. Methods to be discussed include derivations based on the
matrix method, regression calibration, a full likelihood approach, and a two-stage
empirical Bayes method incorporating categorizations based on both exposure means
and variances. Simulation results and analysis of exposure and outcome data from
the Mount Sinai Study of Women Office Workers will be presented.
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INTRODUCTION
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1.1 OVERVIEW OF THE MOTIVATING EXAM-

PLES

In measurement error and misclassification adjustments, Carroll et al. (2006) suggest

that we pay careful attention to the types and nature of the errors, and the source

study based on which the errors arise and are modeled. The research background and

source of misclassification for two motivating studies for this proposal are introduced

in the following sections.

1.1.1 The Baltimore-Washington Infant Study (BWIS)

The core focus of modern epidemiologic studies is to identify associations between

disease outcomes and potential exposures. In some situations challenges arise from

the assessment of potential exposure, particularly in occupational or environmental

epidemiologic studies. The common approaches of assessing potential exposures in

case-control studies are either based on reported job histories linked to a job-exposure

matrix, or based on industrial hygienists’ expert opinions on potential exposures in

the reported jobs. The latter approach is often considered to be less subject to

differential recall than might occur when asking study participants themselves to

recall past exposures incurred in the workplace (Bouyer & Hemon (1993), Stewart &

Stewart (1994), Stewart et al. (1996)).

Assessments of potential on-the-job exposures by industrial hygienists can never-

theless be subject to error or exposure misclassification (Stewart (1999)). Because

of this concern, some case-control studies of occupational exposures have attempted

to quantify the error in industrial hygienists’ exposure assessments by conducting

various types of multiple assessments, including replicate assessments by the same

industrial hygienist, by different industrial hygienists, or both. One of the analytical

issues raised by such multiple assessments is how to take into account quantifiable
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uncertainty in the exposure assessment (i.e., misclassification) in the disease-exposure

association study. Therefore, the analytical problem might be framed as how to ex-

plore the association between a disease and exposure given such replicates, in the

absence of a gold standard for exposure, controlling for appropriate covariates.

This dissertation proposal is motivated in part by an occupational epidemio-

logic research study that poses such challenges. As a sub-study of the Baltimore-

Washington infant study (BWIS) (Ferencz et al. (1993)), this initiative is aimed at

identifying the association between parental occupational lead exposure and the total

anomalous pulmonary venous return (TAPVR), a congenital cardiovascular malfor-

mation. Parental job histories were obtained by home interviews. Information includ-

ing the type of employer, dates of employment, work areas (e.g., plant/section), and

job activities were collected for each job held during the period 6 months before preg-

nancy to the end of pregnancy. These jobs were first screened by 2 epidemiologists,

1 toxicologist, and 1 industrial hygienist to determine jobs involving possible lead

exposure. If any one of the screeners believed there was lead exposure in a job, the

job was referred to the industrial hygienists for further evaluation. Jobs deemed to

involve no lead exposure by all screeners were categorized as having no lead exposure

in the analysis.

Three industrial hygienists, blinded to case-control status, were asked to assess the

remaining jobs with potential lead exposure. One of the industrial hygienists (referred

to as IH1) was selected a priori to be the primary industrial hygienist for the study

based upon previous exposure assessment experience (Correa et al. (2006)). Details of

the study are described elsewhere (Jackson (2003), Min (1995), Ferencz et al. (1993)).

However, disagreements among the industrial hygienists were detected (Correa et al.

(2006)), which implied misclassifications from some of the industrial hygienists, if not

all of them. Then the primary problem falls into the general framework described

above.
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Statistical models motivated by this study are presented in chapter 2 and 3.

1.1.2 The Mount Sinai Study of Women Office Workers (MSS-

WOW)

Reproductive health is defined by the World Health Organization as a state of phys-

ical, mental, and social well-being, not merely the absence of disease or infirmity, in

all matters relating to the reproductive system and to its functions and processes

(Sadana (2002)). Reproductive health is a crucial issue of public health and a central

feature of human development. It is a reflection of health in childhood, adolescence,

adulthood and beyond reproductive years. Reproductive health status also influences

the health of future generations. In the recent centuries, along with the process of

industrialization, a greater challenge has been placed upon efforts to maintain and

improve reproductive health.

The second motivating example for this dissertation proposal is provided by the

reproductive health study MSSWOW. The prospective cohort study was conducted

between 1991 and 1994 and designed to explore the effects of Video Display Terminal

(VDT) use on rates of spontaneous abortion. 524 of 895 eligible females participated

in the study and were interviewed to assess possible confounding factors such as recent

medications, illicit drug use, caffeinated and alcoholic beverage consumption, smok-

ing history, medical, gynecological, and reproductive history, partner characteristics

and demographics. Other information such as hours of VDT use, exercise performed,

stress level, whether sexual intercourse occurred, whether birth control was used, and

when menstrual bleeding occurred were obtained from women’s diaries. We are specif-

ically interested in the repeated menstrual cycle length data, which can be derived

from the women’s diaries. However, when the subject-specific mean and variance

describing each woman’s cycle history are ‘true’ predictors of interest in models for

reproductive health outcomes, the sample mean and variance researchers usually uti-
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lize as surrogates will introduce measurement errors to the study. A previous paper

by Small et al. (2006) conducted careful analysis on this data and suggested that

compared with 30- to 31-day cycles, women with shorter and longer cycles were more

likely to experience spontaneously abortion. However, this paper did not address

the misclassification issue as the sample means and variances were “plugged in” to

the health outcome models in the analysis. However, in the concern of measurement

error/misclassification, the errors may not be ignorable in some cases, especially for

those women with small numbers of cycles observed in the study. Therefore, the clas-

sification, based on the surrogate of sample mean and variance, of women into “high”

or “low” groups with regard to the subject-specific mean cycle length and variabil-

ity can introduce misclassification bias, when the research question is to assess the

association between this group membership status and some health outcome.

Statistical models motivated by this study are presented in chapter 5. Before

we begin to describe the proposal research, however, some statistical background

knowledge will be reviewed in the following sections.
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1.2 BACKGROUND

1.2.1 General measurement error/misclassification modeling

framework

Following Clayton (1992), three main statistical models are commonly considered in

a traditional measurement error/misclassification problem: a “true disease model”

(TDM), which models the relationship between the outcome and the true error-free

exposure of interest; a “measurement error model” (MEM), which models the variable

prone-to-error and its correspondent error-free variable; and an “exposure distribution

model” (EDM), which is a model characterizing the distribution of the error-free

exposure in the population under study (e.g., Lyles & Kupper (2000)). Note that

among the three models, the TDM is usually the one of ultimate interest. The MEM

is named and defined in terms of measurement error but could also be applied in the

misclassification environment. An example of measurement error adjustment under

a normal-normal paradigm will demonstrate how the three models can be specified.

Suppose we are interested in an epidemiologic study that measures exposure re-

peatedly for each subject. The essential goal of interest will be to determine the

association between a continuous disease outcome and the true unobserved subject-

specific mean exposure. Assume a one-way random effect ANOVA structure that

defines the relation between the observed exposure and the true mean exposure, as

follows:

Xij = µ + bi + εij (i = 1, 2, . . . , k; j = 1, 2, . . . , n)

where Xij is the j-th (out of n) observed exposure measurement for the i-th subject

(out of k). bi and εij are assumed to follow normal distributions, i.e., bi
iid∼ N(0, σ2

b )

and εij
iid∼ N(0, σ2

w), where the random variables bi and εij are mutually independent.
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This model defines µi = µ + bi as the true unknown mean exposure for subject i,

which is of primary interest.

To fit in the framework discussed above, assume a simple linear regression of a

continuous outcome variable Yi on µi is ultimately of interest. Further, assume the

logical surrogate X̄i = 1
n

∑
Xij would replace µi in a “naive” analysis. Then

TDM: Yi = α + βµi + ei

MEM: X̄i = µi + ε̄i

EDM: µi ∼ N(µ, σ2
b )

A generalization to the above model (Lyles & Kupper (1997)) was altered to de-

fine mean exposure on a lognormal scale for several groups of workers. Specifically,

they proposed a model with multiplicative-lognormal MEM structure after grouping

the workers sharing the same job characteristics in the context of occupational epi-

demiology. Therefore, a log-transformed exposure measurement could be modeled as

the following:

Ygij = ln(Xgij) = µyg + δgi + εgij (g = 1, . . . , G; i = 1, . . . , kg; j = 1, . . . , ngi)

where Xgij is the j-th (out of ngi) exposure measurement on the i-th (out of kg)

worker in the g-th (out of G) group. Similar to the former example, δgi and εgij

are assumed to be normally distributed and mutually independent: δgi
iid∼ N(0, σ2

bg);

εgij
iid∼ N(0, σ2

wg)

Suppose we are interested in the unobservable mean exposure µxgi = E(Xgij) =

E(exp(µyg + δgi + εgij)) = exp(µyg + δgi + σ2
wg/2) as the independent variable. Since

µxgi is unobservable, we might take exp(Ȳgi) = exp(ngi
−1

∑ngi

j=1 Ygij) as the surrogate.
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Therefore, the TDM-MEM-EDM settings might become:

TDM: Rgi = α + βµxgi +
T∑

t=1

γtCgit + egi

MEM: exp(Ȳgi) = µxgi(Ugi)

EDM: µxgi ∼ lognormal[(µyg + σ2
wg/2), σ2

bg]

where Rgi is the health outcome variable, Cgit represents the t-th out of T individual-

specific covariates that may need to be controlled, and Ugi is the random disturbance

relating the surrogate and the unobservable mean exposure. More details on the

latter model examples are given by Lyles & Kupper (2000).

1.2.2 Beta-binomial regression model

In beta-binomial regression models, outcomes are usually grouped. Suppose there are

k groups, and that within group i (i= 1,2,. . . ,k) there are ni subjects with observa-

tions denoted as Xij (j=1,2,. . . ,ni). The binary responses from each member of a

group are assumed to be mutually correlated. However, conditioned on the probabil-

ity pi, assumptions are made that the responses within the group are independently

Bernoulli distributed, i.e., Xij|pi ∼ Bin(1, pi). The pi’s are assumed to follow a beta

distribution, i.e., pi ∼ Beta(α, β), where α > 0 and β > 0. The probability density

function of the beta distribution is

pα−1
i (1− pi)

β−1

B(α, β)
, α > 0, β > 0

where B(α, β) is the beta function, i.e.,

B(α, β) =

∫ 1

0

tα−1(1− t)β−1dt =
Γ(α)Γ(β)

Γ(α + β)
,
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and Γ(.) is the gamma function, defined by

Γ(x) =

∫ ∞

0

tx−1e−tdt

The mean and variance of pi are α/(α+β) and αβ/(α+β)2(α+β +1). The marginal

distribution for Xi =
∑ni

j=1 Xij is a beta-binomial distribution BB(nij,α,β) with

density

P (xi; ni, α, β) =

B(xi + α, ni − xi + β)

 ni

xi


B(α, β)

, xi = 0, 1, . . . , ni

The beta-binomial distribution has proven useful in many settings involving clus-

tered data, including toxicology studies (e.g., Williams (1975)). Under a different

parameterization, let the parameter µ represent the mean of the beta distribution,

i.e., µ = α/(α+β), and define the parameter θ = µ/α. Since α and β are greater than

zero, µ and θ have to be greater than zero as well. Then to incorporate covariates, the

beta-binomial regresson model can be set up with a parameterization that dictates

µi =
exp(ZT

i γ)

1 + exp(ZT
i γ)

where ηi = ZT
i γ is referred to as the linear predictor (e.g., Gange et al. (1996)). Then

correspondingly,

αi =
µi

θ
=

exp(ZT
i γ)

θ(1 + exp(ZT
i γ))

(1.1)

and

βi =
1

θ
− αi =

1

θ
− µi

θ
=

1

θ(1 + exp(ZT
i γ))

(1.2)
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1.2.3 Latent class modeling

In epidemiologic or medical studies, researchers constantly struggle with the problem

that the primary study variables are not always directly observable. For example,

in diagnostic settings, certain diseases have no absolute gold standard test available

or definable in real life, i.e., no current available test is believed to provide perfect

sensitivity or specificity. Therefore, the true disease status is unknown to the re-

searchers, and we will refer to this as a case of “unobservable outcome”. Another

example, to be discussed in detail later, is the case where the true exposure status in

an epidemiological study is not directly observable or assessable. In such cases, mul-

tiple measurements or assessments may be conducted to bolster accuracy. Statistical

analysis might show disagreement among the measurements, which suggests that mis-

classifications are present within individual measurements. Therefore, the questions

include, whether there is one measurement/assessment that is more reliable than the

others, and whether we can make inference on the unobservable exposure in a valid

way. In contrast to the previous example, we refer to this as a case of “unobservable

exposure”. In both situations, biased estimates and potentially invalid inferences

could result if the true outcome or exposure were not assessed properly.

Latent class analysis (LCA) was initially applied in the social sciences, such as psy-

chology, education, and market research. Subsequently, researchers have applied LCA

models in the medical world to deal with problems like those described above (Good-

man (1974), Hui & Walter (1980), Walter (1984), Formann & Kohlmann (1996)).

LCA models generally presume a parametric model associating multiple diagnoses or

measurements with an the unobserved latent variable, and often assume conditional

independence among the observed multiple diagnoses or measurements.

The conditional independence assumption presumes that within each latent class,

replicate measurements are mutually independent. For example, within a class of

unobserved medical status (“yes” or “no”), the presence/absence of symptoms based
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on one diagnosis is considered unrelated to the presence/absence decisions based on

all others. Or in the “unobserved exposure” example, the conditional independence

assumption implies that given the true unobserved exposure status is “exposed” or

“unexposed”, all the assessments are independent of each other.

In practice, the conditional independence assumption may or may not hold. In

the case of diagnostic tests, a patient may exhibit clear characteristics such that the

present/absent decision of multiple assessors are conditionally dependent. Or in the

exposure assessment example, if one professional misclassifies the exposure status due

to a worker’s unrecorded hours of overtime, then very likely the other professionals

could make the same mistake. Therefore, extensions of the traditional LCA with

allowance for conditional dependency were proposed, e.g., by Qu et al. (1996). These

authors introduced a common random effect for all the observed measurements when

modeling the relationship between those measurements and the unobserved true vari-

able, to take care of the correlations. Both LCA with and without the conditional

independence assumption will be reviewed in the following sections.

Latent class model with conditional independence assumption

Let Wi= (wi1, wi2, . . . , win)′ be the n observed error-prone binary variables for subject

i, representing multiple diagnoses or measurements as indicated above. Suppose the

true unobserved error-free binary exposure is Xi for subject i. Define

πjx = P (wij = 1|Xi = x) (j = 1, 2, . . . , n; x = 0, 1),

which is assumed to be identical across all k subjects for the same (jth) observation.

Then the sensitivity and specificity for the jth observation are

πj1 = P (wij = 1|Xi = 1) (1.3)
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and

1− πj0 = 1− P (wij = 1|Xi = 0) (1.4)

respectively.

Therefore the probability of observing wij as the ith subject’s jth measurement,

given the true underlying exposure x, is

P (wij|Xi = x) = P (wij = 1|Xi = x)wij(1− P (wij = 1|Xi = x))1−wij (1.5)

= π
wij

jx (1− πjx)
1−wij (1.6)

Under the conditional independence assumption, i.e., all the n observations are mu-

tually independent within the ith subject, the probability of observing Wi given the

true unobserved status of Xi is

P (Wi|Xi = x) =
n∏

j=1

π
wij

jx (1− πjx)
1−wij

Then by summing over the possible values that the unobserved Xi could possibly

take, the probability of observing Wi= (wi1, wi2, . . . , win)′ is

P (Wi) =
1∑

x=0

[τx

n∏
j=1

π
wij

jx (1− πjx)
1−wij ]

where τx = P (X = x).

Finally, the likelihood up to a proportionality constant for observing all the Wis

is given by

L (W1,W2, . . . ,Wn; πjx, τx) =
k∏

i=1

{
1∑

x=0

τx[
n∏

j=1

π
wij

jx (1− πjx)
1−wij ]} (1.7)

The parameters can be estimated by maximizing the likelihood (1.7). Computa-

tional complications will be discussed in detail in later chapters.
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Latent class model with random effect

To relax the conditional independence assumption, Qu et al. (1996) model the com-

mon characteristics among the multiple observed diagnoses or measurements in a

given class of the latent variable by a latent random variable T, which is assumed to

follow a standard normal distribution. Specifically,

P (wij = 1|Xi = x, T = t) = F (ajx + bjxt) (1.8)

where t ∼ N(0, 1). Qu et al. select the probit function for F, but one could also use

the logit or any other function appropriate for categorical outcomes.

Then the sensitivity and specificity for the jth measurement will be

P (wij = 1|Xi = 1) =

∫ ∞

−∞
F (aj1 + bj1t)f(t)dt (1.9)

and

1− P (wij = 1|Xi = 0) = 1−
∫ ∞

−∞
F (aj0 + bj0t)f(t)dt (1.10)

where f(t) is the probability density function of the standard normal distribution. If F

is the probit function, explicit forms for sensitivity and specificity in (1.9) and (1.10)

can be obtained as Φ(aj1/
√

1 + b2
j1) and Φ(−aj0/

√
1 + b2

j0), j = 1, 2, . . . , n, where

Φ(.) is the cumulative probability function for the standard normal distribution (Qu

et al. (1996)).

Therefore the probability of observing Wi|Xi = x in the ith subject is

P (Wi|Xi = x) =

∫ ∞

−∞

n∏
j=1

F (ajx + bjxt)
wij(1− F (ajx + bjxt))

1−wijf(t)dt (1.11)
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Then, up to a constant, the likelihood becomes

L (W1,W2, . . . ,Wk; ajx, bjx, τx) =
k∏

i=1

(
1∑

x=0

τxP (Wi|Xi = x)) (1.12)

where P (Wi|Xi = x) is defined in (1.11).

Integrations in the likelihood can be approximated by Gaussian-Hermite quadra-

ture. Computational complications will again be discussed later.

In the research to date, most of the LCA applications are focused on dealing with

the complications in the scenario of “unobserved outcome”. Relatively less research

applies LCA with extension to the scenario of “unobserved exposure”.

Identifiability for latent class models

In this dissertation proposal, we will be building and discussing parametric models

all throughout. A parametric model is one which specifies the main structure of the

probability distribution but leaves some of the parameters to be estimated (Tsiatis

(2006)). Bickel & Doksum (2001) defined identifiability in a parameterization in the

following way:

Definition A parameterization is called identifiable if it is one-to-one. That is, let

ξ1 and ξ2 be two parameter values with their corresponding distributions Pξ1 and Pξ2 ,

then ξ1 6= ξ2 implies Pξ1 6= Pξ2 .

Wieringen (2005) studied the regular latent class model with the conditional in-

dependence assumption, and pointed out that the model was generally not identi-

fiable without any restriction. To demonstrate this, choose one set of parameters

Ψ = (τ1, π11, π21, . . . , πk1, π10, π20, . . . , πk0) for the regular latent class model with con-

ditional independence assumption. And then define

Ψ∗ = (1− τ1, π10, π20, . . . , πk0, π11, π21, . . . , πk1)
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We will find P(Ψ) = P(Ψ∗) with the likelihood in (1.7), which violates the definition

of identifiability above.

Wieringen (2005) proposed and proved the criteria for global identifiability for the

regular latent class model, quoted as the following:

Theorem 1. For global identifiability of model (1.7) it is sufficient to require

0 < τ1 < 1 and 1 ≥ πj1 > πj0 ≥ 0 for j=1,. . . ,n, AND

−1 +
∏n

j=1(lj + 1) ≥ 2n + 1

The lj in the theorem is the maximum categorical level that the observed variable

could take, counting from zero. In our situation, the observed assessments wij could

take values 0 and 1. So all the ljs will be equal to 1 for every j, i.e., l1 = l2 = . . . =

ln = 1.

Here, πj1 is the sensitivity and πj0 is one minus specificity by definition, which take

expressions (1.3) and (1.4) in the latent class model under conditional independence

and (1.9) and (1.10) in latent class models with the conditional dependence assump-

tion. Therefore, following Theorem 1, the second sufficient condition in the theorem

is equivalent to the restriction that the summation of sensitivity and specificity has

to be greater than one.

The third sufficient condition in the theorem could be intuitively interpreted by

the criteria discussed by McHugh (1956) and Goodman (1974) that to make one

model identifiable, the number of parameters has to be less than or equal to the

number of degrees of freedom of the model. For example, Wieringen (2005) assumes

different sensitivity and specificity across observations within a subject. Therefore,

there would be 2n πjx parameters, plus one parameter τ1, which equals the number

in the right hand side of the third condition in Theorem 1, 2n + 1. On the other

hand, each observation takes values of 0 through lj and there are n observations in

total for each subject, so the total number of possible combinations of these n cells

is
∏n

j=1 (lj + 1). However, the total number of the combinations we could see in the
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data has to be the total number of subjects k. Henceforth, the number of degrees

of freedom is
∏n

j=1 (lj + 1) − 1, which is the left hand side of the third condition in

Theorem 1.

1.2.4 Misclassification corrections in case-control studies with

validation sets

The common complication in exposure misclassification problems is that the categor-

ical exposures are collected with error. People would naturally think of evaluating

the sensitivities and specificities of the collected exposure surrogates, when dealing

with such problems. Simple sensitivity and specificity estimates are usually obtained

from validation sets, where the true exposures could be observed for a small group

of subjects, from internal or external sources. However, when no validation sets are

available, estimating sensitivity and specificity usually involves some complications.

In the early years of studies, researchers developed intuitively and computation-

ally straightfoward methods to correct misclassification based on situations when

estimated sensitivity and specificity were available. Barron (1977) proposed the “ma-

trix method”, by which the expectations of the unobserved cells (a, b, c and d from

Table 1.1) are obtained by pre-multiplying the expectations of the observed cells (A,

B, C and D from Table 1.1) by a matrix, including functions of the sensitivities and

specificities estimated from a validation study, i.e.,



E(a)

E(b)

E(c)

E(d)


=



ˆsen 1− ˆspc 0 0

1− ˆsen ˆspc 0 0

0 0 ˆsen 1− ˆspc

0 0 1− ˆsen ˆspc



−1

×



E(A)

E(B)

E(C)

E(D)


(1.13)

Here, ˆsen and ˆspc are the estimated sensitivity and the specificity, respectively, which
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are defined by sen = P(W = 1|E = 1) and spc = P(W = 0|E = 1), if W is the binary

surrogate and E is the true binary exposure.

Table 1.1: Data layout for the matrix method

Observed Unobserved
D W=1 W=0 E=1 E=0
1 A B a b
0 C D c d

An alternative representation of (1.13) would be in terms of probabilities, instead

of expectations. Although they are equivalent, we find the probability representation

easier to interpret in applications in section 5.2.



P(E = 1|D = 1)

P(E = 0|D = 1)

P(E = 1|D = 0)

P(E = 0|D = 0)


=



ˆsen 1− ˆspc 0 0

1− ˆsen ˆspc 0 0

0 0 ˆsen 1− ˆspc

0 0 1− ˆsen ˆspc



−1

×



P(W = 1|D = 1)

P(W = 0|D = 1)

P(W = 1|D = 0)

P(W = 0|D = 0)


(1.14)

After some reparameterizing and further developments stemming from Barron

(1977), Marshall (1990) presented an alternative approach termed the “inverse ma-

trix” method. The two methods were compared and extended by Morrissey & Spiegel-

man (1999) in situations of both differential and non-differential misclassification.

Some clarifications regarding how these methods relate to maximum likelihood were

later conducted by Lyles (2002).
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1.2.5 Gaussian-Hermite quadrature

Gaussian-Hermite quadrature is a special kind of Gaussian quadrature, over the in-

terval of (−∞,∞). The fundamental theorem of Gaussian quadrature states that the

optimal abscissas of the m point Gaussian quadrature formulas are precisely the roots

of the orthogonal polynomial for the same interval and weighting function. Gaussian

quadrature is optimal because it fits all polynomials up to degree 2m − 1 exactly.

Particularly, the abscissas for the Gaussian-Hermite quadrature of order n are given

by the roots xi of the Hermite polynomials Hn(x)

Hn(x) =
n!

2πi

∮
e−t2+2txt−n−1dt (1.15)

and the weight is e−x2
(Hildebrand (1956)). Therefore, if we want to integrate a

function f(x),

∫ ∞

−∞
f(x)dx =

∫ ∞

−∞
e−x2

[ex2

f(x)dx] ≈
n∑

k=1

w(xk)e
x2

kf(xk)

where w(xk) is the weight e−x2
and xk is the kth root of (1.15) and it remains the

same regardless of what specific function is being integrated.

1.2.6 Profile-likelihood-based confidence intervals

The classical Wald confidence intervals are mainly based on the asymptotic normal-

ity of the maximum likelihood estimate θ̂ ∈ Rk. However, the properties of θ̂ in

small samples can be quite different from its asymptotic properties, and estimates

of the asymptotic variances can be significantly biased (Evans & Kim (1996)). In

these situations, profile-likelihood-based confidence intervals may be a more robust

alternative.

Following Venzon & Moolgavkar (1988), let θ ∈ Rk denote the parameter vector
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to be estimated, and l(θ) the log-likelihood for values of θ in the parameter space

Θ ⊆ Rk. Suppose the MLE of θ is θ̂, i.e.,

l(θ̂) = max
θ∈Θ

l(θ)

Denote the parameter of interest as θj. The profile likelihood approach considers

the other k-1 parameters as nuisance parameters. Then consider a (k-1)-dimensional

restricted parameter space Θj(β), where the parameter of interest is fixed at some

value β. The profile likelihood for β is defined as

l̃j(β) = max
θ∈Θj(β)

l(θ)

where the above likelihood needs to be maximized with θj constrained to equal β,

in accordance to the definition of profile likelihood. Therefore, an approximate 1-α

profile-likelihood-based confidence interval for θj is given by

β : 2[l(θ̂)− l̃j(β)] ≤ q1(1− α/2)

where q1(1− α/2) is the (1− α/2) quantile of the chi-square distribution based on 1

degree of freedom.

Numerous researchers have studied the pros and cons of the likelihood-based con-

fidence intervals and the Wald ones (Donaldson & Schnabel (1987); Meeker (1987);

Ostrouchov & Meeker (1988); Evans & Kim (1996) etc.). A common consensus is

that the likelihood-based confidence intervals are more advanced in terms of accu-

racy, however, computationally more challenging. Venzon & Moolgavkar (1988) and

Cook & Weisberg (1990) introduced some algorithms that simplify the process of

obtaining the profile-likelihood-based confidence intervals in certain situations.
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1.3 OUTLINE

In this dissertation, we will focus on identifying associations between disease out-

comes and potential exposures, when the observed exposure assessments are prone

to misclassifications. Although the true binary exposure status is what the industrial

hygienists seek to assess in one motivating study and is most relevant to individual

workers, sometimes researchers may be interested in identifying the properties of the

probability of exposure among individuals or within a subpopulation, and also the

association between the disease outcome and the probability of exposure.

To address the research interest and also better understand the potential exposure

distributions, the first chapter of this dissertation will discuss approaches to deter-

mine the disease-probability of exposure relationship based on certain assumptions.

The second chapter will discuss approaches to examine disease-exposure associations

with or without presuming the assumption of conditional independence among the

industrial hygienists, when the true unobserved exposure status is of interest.

Prior to addressing a specific research question in epidemiology in the fourth chap-

ter, we will discuss a more generic problem of misclassification in Chapter three: Two

sample t-test and ANOVA have been widely applied and well developed statistical

techniques. However, when the samples are misclassified to the groups that they

do not belong to, appropriate adjustments are necessary to obtain valid inferences.

We will focus on adapting the regression calibration method to correct the effect of

misclassification in the two sample t-test or ANOVA setting when the group indica-

tor is prone to misclassification. We discuss under the situations when external or

internal validation data are available, the appropriate approaches of adjusting the

misclassification and their respective advantages and disadvantages.

Back to epidemiology studies, a particular concern for the exposure measurements

in the circumstance of evaluating a disease-exposure relationship is that the exposure

itself is often highly variable in time, which makes it hard to measure the relevant
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subject-specific exposures directly (e.g., Brunekreef et al. (1987)). Therefore, the

studies are usually designed to measure the exposures repeatedly over time at fixed

sites to approximate the “true” subject-specific exposures. Under those study designs,

the mean exposure during a certain time period is usually of interest because it is a

reasonable measurement that smoothes the variability and also we may believe it is

the chronic exposure, reflected by the mean, that makes people unhealthy more than

any extreme one-time exposure.

Taking the mean continuous exposure as the independent variable of interest,

the fourth chapter will discuss the potential misclassification problems within the

threshold model structure. A threshold is defined by Wilson (1973) as a dose below

which an outcome seen in excess of that is not produced. More specifically, a threshold

is a cut-off point beyond which the exposures are believed to cause adverse impact

on workers’ health, while no significant adverse health impacts are believed to be

brought on if the exposures are kept below the cut-off point (Hatch (1971), Wilson

(1973), Haseman & Kupper (1979), Schwartz et al. (1995)). In our case, we would

categorize the continuous mean exposure into two levels: above or below the threshold.

The question of interest is, whether exposure to a certain toxic agent exceeding the

threshold will cause an adverse health outcome.

Since the “true” mean of the exposure for a specific subject is unknown to the re-

searchers, we would take a natural surrogate of that as the average of the exposures we

observed. By this means, measurement errors will be introduced into the continuous

mean exposures. As indicated by Flegal et al. (1991), misclassification in exposure

categories stemming from a continuous variable arises because of the measurement

errors in the continuous variable. In our case, misclassifications of whether mean ex-

posure exceeds the threshold would occur when taking the surrogate for the unknown

“true” mean exposure. Therefore, the analytical question in the fourth chapter goes

to how to adjust the misclassifications and correct the exposure-outcome relationship
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based on a proper model.

In this dissertation, descriptions of the methodology, simulation results, and real

data analysis results will be presented in each chapter. The last chapter will provide

some brief summaries and future work plans.
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Chapter 2

ASSESSING THE ASSOCIATION

BETWEEN A HEALTH

OUTCOME AND THE

PROBABILITY OF EXPOSURE
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2.1 INTRODUCTION

The common approaches of assessing the potential exposures in case-control studies

are either based on reported job histories linked to a job-exposure matrix, or based on

expert opinions on potential exposures in the reported jobs by industrial hygienists.

In either approach, researchers often show interest in the categorical exposure status

as well as the probability of exposure (Satten & Kupper (1993), Wijngaarden et al.

(2003), Correa et al. (2006)). The probability of exposure is usually understood as

the probability that a specific worker in a particular industry was exposed to some

chemical or toxicant, but often defined as the percentage of workers in a particular

industry or job category that were exposed.

In ecologic studies, people are sometimes interested in whether larger percentages

of workers exposed coincide with larger proportions developing a disease. However,

most of the studies base the exposure probability information directly on either the

job-exposure matrix or the experts’ assessments, which might be subjective. In a

paper by Wijngaarden et al. (2003) for example, the probability of exposure informa-

tion was obtained from either a job-exposure matrix or experts’ assessments, based

on availability. The continuous exposure probabilities were categorized into four lev-

els to examine the association between the categorized probability of exposure and

the outcome. In the interest of being more objective and adjusting possible mis-

classifications incurred from different experts’ assessments, we would like to propose

model-based probability estimates to assess the relationship between disease outcome

and the probability of exposure.

When each job is assessed by different industrial hygienists repeatedly, the as-

sessments on the same job are usually assumed to be correlated with each other.

However, when conditioning on the same job, the assessments from different indus-

trial hygeniests could be considered independent. If the predictor of interest in the

health outcome model is the probability of exposure, which is a continous variable
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lying between 0 and 1, a beta distribution makes an appealling model for it. However,

once the true probability of exposure is considered fixed, the binary observed expo-

sure status would follow a Bernoulli distribution with the probability of success as the

‘fixed’ true probability of exposure. In this chapter, we work under these conditions

and we assume the industrial hygienists are exchangeable so that their assessments

on the same subject follow the same distribution. An underlying implication of the

above statement is that on average, the estimated probability of exposure by the

industrial hygienists equals the true probability of exposure. In other words, we as-

sume the industrial hygienists have an unbiased probability of exposure in mind when

they assess the individual binary exposure status. This is a reasonable assumption

if we believe the industrial hygienists’ assessments are not biased on the population

level. As a hypothetical example, assume the industrial hygienists each assess 10,000

workers from the same working environment (assume the same exposure probability

across those workers). Then, the proportion exposed from every industrial hygien-

ist’s assessment should be close to the true proportion exposed. Last, we make the

non-differential measurement error assumption, which postulates that the surrogate

is independent of the outcome, given the true unobserved exposure.

The other sections in the chapter will be organized as follows. A model for re-

peated exposure assessments based on beta-binomial assumptions and linked to a

health outcome via logistic regression will be proposed in section 2.2. Then the

BWIS example will be analyzed to demonstrate the proposed model in section 2.3.

Interesting results with covariates in the model will also be presented. Simulation

results will be shown in the next section, followed by some brief discussions.
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2.2 MODEL

2.2.1 Model structure

Following the general structure introduced by Clayton (1992) (details were reviewed

in 1.2.1), the modeling of the relation between a disease outcome and the exposure

probability is divided into three parts: TDM, MEM and EDM.

TDM: logit[P(Yi = 1|Pi = pi)] = θ0 + θ1pi (i = 1, 2, . . . , k)

MEM: wij
iid∼ Bernoulli(pi) (j = 1, 2, . . . , ni)

EDM: Pi follows a Beta(α, β) distribution

This model is analogous to the normal-normal model introduced in 1.2.1, in terms

of data characteristics and corresponding model assumptions. For both models, the

independent variable in the TDM is not observable directly, while its distribution is

assumed to be given by the EDM. The repeatedly observed exposure surrogates or

assessments from different experts (referred to as raters later), i.e., the Xijs in the

model in 1.2.1 and the wijs in the current model, are correlated. However, under

the model assumptions, the observed exposure surrogates are no longer correlated,

conditional on the independent variables in the TDM.

2.2.2 Marginal Likelihood

Following the notations in the first chapter, let Wi = (wi1, wi2, . . . , win) be the n

observed exposure assessments from n raters for subject i. Suppose the true unob-

served probability of exposure is Pi for subject i and Yi is the binary disease outcome

status. As introduced in 1.2.2, the mean of the beta-binomial distribution µ could be

modeled as

µi =
exp(ZT

i γ)

1 + exp(ZT
i γ)
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Under this new reparameterization of µi, the EDM, which is a beta distribution, takes

a density in the form

fPi
(pi) =

pα−1
i (1− pi)

β−1

B(α, β)
(2.1)

=
p

exp(ZT
i γ)

θ(1+exp(ZT
i

γ))
−1

i (1− pi)
1

θ(1+exp(ZT
i

γ))
−1

B(
exp(ZT

i γ)

θ(1+exp(ZT
i γ))

, 1
θ(1+exp(ZT

i γ))
)

(2.2)

where α and β have been replaced by the expressions in (1.1) and (1.2).

We assume the observed exposure surrogates are independent and follow identical

Bernoulli distributions given the true underlying exposure probability. Hence the

probability of observing Wi = (wi1, wi2, . . . , win), given the exposure probability, is

p(Wi|Pi = pi) = p
∑n

j=1 wij

i (1− pi)
n−

∑n
j=1 wij (2.3)

When the TDM takes a logistic regression model as in 2.2.1, the likelihood of

observing the disease outcome Yi given the exposure probability Pi is

P(Yi|Pi = pi) = (
exp(θ0 + θ1pi)

1 + exp(θ0 + θ1pi)
)Yi(

1

1 + exp(θ0 + θ1pi)
)1−Yi (2.4)

Note that like other logistic models, covariates can be controlled for in the TDM.

When the true exposure probability is unknown, an intuitive approach is to take a

surrogate of the exposure probability, based on the average of the industrial hygienists’

assessments within a subject, i.e., 1
n

∑n
j=1 wij (wij = 0 or 1). A logistic model with

the surrogate as the predictor and the disease status as the outcome is later refered to

as the “naive” model. The estimate can be obtained by simply plugging 1
n

∑n
j=1 wij

in for pi in (2.4). However, taking the surrogate of the exposure probability as the

explanatory variable would be a source of measurement error, especially when the

number of repeated measurements is relatively small.



28

For a more appropriate analysis, note that the likelihood of observing both the

disease outcome and the exposure surrogate for subject i will be

P(Yi,Wi) =

∫ 1

0

P(Yi|Pi = pi,Wi)P(Wi|Pi = pi)fPi
(pi)dpi

=

∫ 1

0

P(Yi|Pi = pi)P(Wi|Pi = pi)fPi
(pi)dpi (2.5)

Note that fPi
(pi) is the distribution of the true unobserved exposure probability

and P(Wi|Pi = p) should be the probability of observing the exposure surrogates,

given the exposure probability of the surrogate. As discussed in 2.2.1, we assume these

two probability concepts to be equivalent when we believe the industrial hygienists’

assessments to be unbiased.

The 2nd equation in (2.5) holds under the non-differential measurement error as-

sumption mentioned in the last section, which is implied here by (2.3). This commonly

applied assumption in measurement error/misclassification problems, supposes that

the surrogate is independent of the outcome, given the true unobserved exposure. It

usually takes the form as

P(Yi|Xi,Wi) = P(Yi|Xi),

where Xi is the true exposure status. However, in the current modelling context, the

analogous equation

P(Yi|Pi,Wi) = P(Yi|Pi)

applies.

By taking the likelihood expressions in (2.2), (2.3) and (2.4) into (2.5), the joint

marginal likelihood of observing the disease outcome status and the exposure surro-
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gates is

L (Y1, Y2, . . . , Yk,W1,W2, . . . ,Wk; θ0, θ1, θ, γ)

=
k∏

i=1

P(Yi,Wi)

=
k∏

i=1

∫ 1

0

[(
exp(θ0 + θ1pi)

1 + exp(θ0 + θ1pi)
)Yi(

1

1 + exp(θ0 + θ1pi)
)1−Yi ]

[p
∑n

j=i wij

i (1− pi)
n−

∑n
j=i wij ][

p

exp(ZT
i γ)

θ(1+exp(ZT
i

γ))
−1

i (1− pi)
1

θ(1+exp(ZT
i

γ))
−1

B(
exp(ZT

i γ)

θ(1+exp(ZT
i γ))

, 1
θ(1+exp(ZT

i γ))
)

]dpi (2.6)

The integration in the likelihood (2.6) can be numerically calculated, e.g., via

the SAS QUAD function. The maximum likelihood estimates may be obtained by

maximizing the likelihood in (2.6), using a Newton-Raphson approach. We carry out

the optimization routine using SAS/IML (SAS Institute Inc (2001), SAS Institute

Inc (2008)).

Further considering covariates in the model, let Ui be a covariate that needs to be

controlled in the TDM. Hence, the likelihood of observing disease outcome Yi given

the exposure probability becomes

P(Yi|Pi = pi) = (
exp(θ0 + θ1pi + θ2Ui)

1 + exp(θ0 + θ1pi + θ2Ui)
)Yi(

1

1 + exp(θ0 + θ1pi + θ2Ui))
)1−Yi (2.7)

Note that Ui could as easily be a vector of covariates, and all as a subset of the

Ui’s might be included among the Zi’s accounted for in the EDM, depending on the

research interests.
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2.3 REAL-LIFE EXAMPLE

Returning to the BWIS example introduced in 1.1.1, recall that the outcome was

whether or not a worker’s child developed a congenital cardiovascular TAPVR. The

exposure to lead was assessed by three industrial hygeniests. A total of 560 (53 cases

and 507 controls) infants’ paternal exposure assessments and corresponding disease

status indicators were available. Among all the subjects, 391 (70%) were evaluated

as not exposed by all three industrial hygeniests; 23 (4%) were assessed as exposed

by one industrial hygienist but determined unexposed by the others; 75 (13%) were

evaluated as exposed by two industrial hygienists but considered as unexposed by the

other; and 71 (13%) cases were assessed as exposed by all.

To demonstrate incorporation of covariates, race of infants in two categories (black,

white/other) was considered both in the TDM and EDM, indicating that different

race could have different probabilities of developing disease and of exposure to lead.

Since low birth weight is usually highly correlated with birth defects, researchers

also take low birth weight as a secondary research outcome in the BWIS (Min et al.

(1996)). Min et al. (1996) selected research subjects among the eligible controls of

the study, after excluding twins, infants with chromosomal abnormalities, syndromes,

or organ abnormalities, and infants of race other than black or white. A total of 157

subjects each with three industrial hygeniests (1,2, and 3) assessing exposure status,

were included in our analysis to demonstrate the proposed methods. Among all the

subjects included in the study, 45 (29%) of them had low birth weight. In terms of

the exposure assessment, both industrial hygienist 1 and 2 assessed 78 (50%) subjects

as exposed and 79 (50%) as unexposed, but they did not agree on an individual by

individual basis. The third industrial hygienist assessed 119 (76%) as exposed and

38 (24%) as unexposed.

Both models with and without covariates will be presented. For the outcome of

TAPVR, we controlled for infants’ race (white/other and black) as a covariate in the
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TDM part. However, race of infants is not included in the BB part in the results

to be presented, due to its insignificance based on model comparisons. Infants’ race,

maternal smoking (packs per day) and maternal weight gain were controlled for when

modeling the outcome of low birth weight. The covariates are included in the TDM

part, but since the they are all non-significant in the BB part, the results to be

presented are the ones without incorporating the covariates in the BB part. Analysis

results based on a naive method taking the probability of exposure of each subject

as the observed proportion of exposures among the assessments within a subject (see

section 2.2.2) were studied and comparied to the proposed method based on the

beta-binomial model (BB).

Estimated odds ratios and 95% CIs for the effect of probability of exposure upon

each disease outcome, with and without controlling for covariates, are presented in

table 2.1.

Note that the naive method dramatically attenuated the effect of exposure prob-

ability upon the outcome of both TAPVR and low birth weight, no matter whether

controlling for the racial effect or not. According to the results from the beta-binomial

model without covariates, a higher probability of parental exposure to lead would co-

incide with a statistically significantly higher probability of both delivering a low

birth weight infant and one with possible TAPVR. However, the naive method failed

to capture this significance.

Controlling for the exposure probability, the two methods estimated the racial

effect similarly with the beta-binomial model providing a narrower confidence interval,

for both the TAPVR and the low birth weight outcome. Taking TAPVR as the

outcome alone, both methods suggested that infants with race of white/other had a

higher probability of developing TAPVR than those with race of black with the same

extent of parental exposure to lead. Considering low birth weight as the outcome

alone, the effects of maternal weight gain were also similar by the two methods, while
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Table 2.1: Estimated Odds Ratios with 95% CIs

Factors
Results based on Results based on

BB model naive model
OR 95% CI OR 95% CI

Results without controlling covariates
TAPVR as the outcome

Probability of Lead Exposure 2.03 1.07, 3.87 1.70 0.89, 3.16

Low birth weight as the outcome
Probability of Lead Exposure 4.66 1.13, 19.40 2.34 0.74, 7.40

Results based on controlling covariates
TAPVR as the outcome

Probability of Lead Exposure 2.04 0.90, 4.59 1.05 0.58, 1.92
Race (white/other vs. black) 1.98 1.30, 3.02 1.98 1.11, 3.52

Low birth weight as the outcome
Probability of Lead Exposure 4.18 0.41, 43.05 2.19 0.06, 76.89

Race (black vs. white) 3.60 0.63, 20.58 3.55 0.56, 22.66
Maternal smoking 1.72 0.72, 4.06 1.70 0.67, 4.36

Maternal weight gain 0.96 0.87, 1.06 0.96 0.87, 1.07
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the beta-binomial model provided slightly narrower confidence intervals.
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2.4 SIMULATION STUDY

Simulation experiments were conducted to compare the perfomance of the estimates

based on the proposed method and the naive method, where the latter substitutes

the proportion of ‘exposure’ ratings among all the assessments for a subject in place

of the true probability of exposure. Since the number of replicates (here, the number

of industrial hygienists) is critical for the analysis as well as for model convergence,

we conducted the simulation experiments based on three sets of simulations where

the number of replicates was taken to equal 3, 7 and 25. The results are shown in

table 2.2.

As we can see, the proposed method performed uniformly better than the naive

method, in terms of smaller bias in the estimates. The empirical standard deviations

and the mean of the estimated standard errors were reasonably close to one another

for the proposed method and the 95% coverages were reasonably close to 95 %. As the

number of replicates increased from 3 to 25, the performance of the estimates was also

enhanced correspondingly: the bias decreased, the empirical standard errors and the

mean of the estimated standard errors got closer, and the coverage became closer to

95%. We can also see that when the number of replicates was 25, the performance of

the naive method was quite close to the true parameter values, although not as close as

the proposed method. This is reasonable because the more industrial hygienists there

are, the more information we obtain via the observed proportion making ‘exposed’

assessments.
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Chapter 3

ASSESSING THE ASSOCIATION

BETWEEN A HEALTH

OUTCOME AND

MISCLASSIFIED EXPOSURE
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3.1 INTRODUCTION

The previous chapter proposed methods identifiying the association between a dis-

ease outcome and the probability of exposure. When possible, however, researchers

would generally be more interested in determining the relationship between the dis-

ease outcome and the true unobserved exposure, instead of the probability. This is

also a question more reasonable to address in the sense that a high probability of

exposure does not necessarily imply that an individual was actually exposed. There-

fore, this chapter will focus on considering the true underlying exposure status as the

primary interest, in linking to the disease outcome. The intent is to make a natural

step forward from the measurement error considerations of chapter 2, to consider

misclassification issues related to the lack of a reliable true exposure indication.

As the study design and data have been introduced briefly in section 1.1.1, we

re-emphasize the main characteristics of the data in the following:

� Binary outcome and binary exposure. The extension of the method to handle

error-prone categorical exposure data with multiple levels would be straight-

forward, but for demonstration purposes we focus upon binary exposures and

outcomes. Nevertheless, situations with continuous health outcomes will also

be discussed briefly.

� Repeated exposure information available with possible within-subject correla-

tion given the true exposure. More than one industrial hygenist assessed the

exposure status. Given the true exposure status, the industrial hygienists’ as-

sessments might remain correlated due to their blindness to the actual working

environment. For example, we might expect a residual connection, if one of

the workers worked overtime unrecorded in an exposed environment. Then the

industrial hygienists’ assessments might all be biased due to their blindness to

this fact.
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� Exposure misclassified without a gold standard. The moderate agreement

(kappa=0.5-0.6) in the industrial hygienists’ assessments implies misclassifica-

tions of some of the exposure assessments, if not all of them (Correa et al.

(2006)).

The following section 3.2 will propose a model in which the industrial hygienists’

assessments are assumed to be independent, analogous to Liu & Liang (1991), and

then extend the method to the situation where the industrial hygienists’ assessments

remain correlated given the true exposure status of a subject. A method for modelling

continuous outcomes will also be proposed. Identifiability issues will be discussed in

the model section, followed by some computational details. In section 3.3, we will

get back to the BWIS example again, and apply the proposed models. Interesting

results with covariates in the model will be presented. Finally, simulation results will

be shown in section 3.4, followed by some brief discussions.
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3.2 MODEL

3.2.1 Model structure

Following the general structure introduced by Clayton (1992) (details were reviewed

in 1.2.1), the modelling of the association between the disease outcome and the true

unobserved exposure status can be formulated into the three-model TDM, MEM and

EDM paradigm:

TDM: logit[P(Yi = 1|Xi)] = θ0 + θ1Xi for binary TDM

or E[Yi|Xi] = θ0 + θ1Xi for linear TDM

MEM: P(Wi|Xi = x) relates observed surrogate (Wi) to true exposure status (Xi)

EDM: P(Xi = x) = τx (x = 0, 1)

As pointed out in section 2.2.2 for modeling the exposure probability, additional

covariates can be added to both TDM and MEM when the true exposure status is

the independent variable. Details on the modeling strategies will be introduced in

the following sections.

3.2.2 Marginal Likelihood

Binary TDM

Conditional independence Analogous to the notations in section 1.2.3, let Wi =

(wi1, wi2, . . . , win) be the observed exposure assessments from n industrial hygienists

for subject i. Suppose the true unobserved error-free binary exposure status is Xi for

subject i and Yi is the disease outcome status. Define

πjx = P(wij = 1|Xi = x) (j = 1, 2, . . . , n, x = 0 or 1)
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which is assumed to be identical across all k subjects for the same (jth) observation.

Assumptions could be relaxed to allow heterogeneous πjx’s for different subjects.

However, to make the model identifiable, we would tend to need an unnecessarily

large number of replicates to enable the heterogeneity assumption.

The sensitivity and specificity for the jth assessment are

πj1 = P(wij = 1|Xi = 1)

and

1− πj0 = 1− P(wij = 1|Xi = 0)

respectively.

Therefore the probability of observing wij for the ith subject’s jth measurement,

given the true underlying exposure x, is

P(wij|Xi = x) = P(wij = 1|Xi = x)wij(1− P(wij = 1|Xi = x))1−wij

= π
wij

jx (1− πjx)
1−wij

Under the conditional independence assumption, i.e., all the n observations are mu-

tually independent within the ith subject given his or hers true exposure status, the

probability of observing Wi given the true unobserved value of Xi is

P(Wi|Xi = x) =
n∏

j=1

π
wij

jx (1− πjx)
1−wij (3.1)

Let the relationship between disease outcome and true exposure status follow a

logistic model, i.e.,

logit[P(Yi = 1|Xi)] = log[
P(Yi|Xi)

1− P(Yi|Xi)
] = θ0 + θ1Xi
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or equivalently

P(Yi = 1|Xi) =
exp(θ0 + θ1Xi)

1 + exp(θ0 + θ1Xi)
,

where θ0 and θ1 are the primary parameter of interest.

Summing over the values that the unobserved Xi could possibly take, the joint

likelihood of observing both the disease outcome and the observed exposure assess-

ments for subject i will be

P(Yi,Wi) =
1∑

x=0

P(Yi|Xi = x,Wi)P(Wi|Xi = x)P (Xi = x) (3.2)

=
1∑

x=0

P(Yi|Xi = x)P(Wi|Xi = x)P(Xi = x) (3.3)

Equation (3.3) holds under the non-differential measurement error assumption

that the surrogate is independent of the outcome, given the true unobserved exposure,

i.e.,

P(Yi|Xi,Wi) = P (Yi|Xi)

This is an intuitively reasonable assumption applied here in the sense that the in-

dustrial hygienists’ assessments should be independent of the disease outcome, if the

true exposure is known. In other words, the industrial hygienists know nothing better

than the truth.

By expanding the assumed model in (3.3), the probability of observing Yi and

Wi = (wi1, wi2, . . . , win) is

P(Yi,Wi) =
1∑

x=0

τxP(Wi|Xi = x)[
exp(θ0 + θ1x)

1 + exp(θ0 + θ1x)
]Yi [

1

1 + exp(θ0 + θ1x)
]1−Yi

where P(Wi|Xi = x) is derived in (3.1) and τx = P (X = x).

Finally the joint marginal likelihood of observing the disease and exposure over
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all subjects will be

L (Y1, Y2, . . . , Yn, W1, W2, . . . ,Wn; θ0, θ1, πjx, τx) (3.4)

=
k∏

i=1

{
1∑

x=0

τxP(Wi|Xi = x)[
exp(θ0 + θ1x)

1 + exp(θ0 + θ1x)
]Yi [

1

1 + exp(θ0 + θ1x)
]1−Yi}

(3.5)

again defining P(Wi|Xi = x) as in (3.1).

The parameters are estimated by numerically maximizing the likelihood (3.5).

Computational complications will be discussed in detail in section 3.2.4. This analysis

represents a fully likelihood-based analogous to the quasi-likelihood-based proposed

by Liu & Liang (1991).

Conditional dependence As we discussed before, in some cases the assessments

from different industrial hygienists may remain correlated, given the real exposure

status. Following a model proposed by Qu et al. (1996) , the common characteristics

among the industrial hygienists’ evaluations given the true unobserved exposure sta-

tus can be captured by a latent random variable T. As reviewed in section 1.2.3, Qu

et al. (1996)’s model specifies

P(wij|Xi = x, T = t) = F (ajx + bjxt) (3.6)

where T ∼ N(0, 1), and F could be the probit, logit or any other function appropriate

for categorical outcomes.

General expressions for sensitivity and specificity were given in equations (1.9)

and (1.10). In particular and as previously noted, if F is the probit function, ex-

plicit forms for sensitivity and specificity can be obtained as Φ(aj1/
√

1 + b2
j1) and

Φ(−aj0/
√

1 + b2
j0), j = 1, 2, . . . , n, where Φ(.) is the cumulative probability function

for the standard normal distribution. However, if F takes a logit function form, one
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would have to evaluate the integrals in (1.9) and (1.10) numerically to obtain the

sensitivity and specificity. In our real life example, as well as in simulation studies,

we elect to use the probit link to stay consistent with Qu et al. (1996), and because we

have found it equally stable in performance as the logit link in terms of convergence

of the likelihood.

To review, Qu’s model stipulates that the probability of observing Wi, given the

true unobserved exposure as x for the ith subject, is

P(Wi|Xi = x) =

∫ ∞

−∞

n∏
j=1

F (ajx + bjxt)
wij(1− F (ajx + bjxt))

1−wijf(t)dt (3.7)

Our extension is to link Qu’s model for repeated error-prone binary exposure as-

sessments to a model that relates a health outcome to true binary exposure status.

Taking a logistic model to describe the relation between disease and true exposure,

the likelihood of observing both the disease outcome and the observed exposure as-

sessments for subject i will be

P(Yi,Wi) =
1∑

x=0

τxP(Wi|Xi = x)[
exp(θ0 + θ1x)

1 + exp(θ0 + θ1x)
]Yi [

1

1 + exp(θ0 + θ1x)
]1−Yi

with P(Wi|Xi = x) defined in (3.7).

Finally the joint marginal likelihood for observing the disease and exposure as-

sessments for all subjects in the study will be

L (Y1, Y2, . . . , Yk,W1,W2, . . . ,Wk; θ0, θ1, ajx, bjx, τx)

=
k∏

i=1

{
1∑

x=0

τxP(Wi|Xi = x)[
exp(θ0 + θ1x)

1 + exp(θ0 + θ1x)
]Yi [

1

1 + exp(θ0 + θ1x)
]1−Yi}

(3.8)

Integrations in (3.7) can be approximated by Gaussian-Hermite quadrature, which

was reviewed in detail in 1.2.5. Estimates can be obtained by numerically maximizing
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the log-likelihood corresponding to (3.8). Computational issues and complications will

be discussed in the following sections.

Linear TDM

For continuous outcomes, a linear TDM should be attached to the latent class model

instead of a logit one. For example, assume the continuous outcome Yi for subject i

follows a normal distribution with conditional mean θ0 +θ1Xi and standard deviation

σ, i.e.,

Yi = θ0 + θ1Xi + εi

where εi
iid∼ N(0, σ2). Therefore, the probability density function corresponding to of

Yi|Xi would be

P(Yi|Xi) =
1

σ
√

2π
exp(−(Yi − θ0 − θ1Xi)

2/(2σ2)) (3.9)

Hence, replacing [
exp(θ0+θ1x)

1+exp(θ0+θ1x)
]Yi [ 1

1+exp(θ0+θ1x)
]1−Yi in likelihood functions (3.5) and

(3.8) with (3.9), we obtain the likelihood for the model with linear TDM under both

the conditional independence and conditional dependence assumptions. To obtain the

full likelihood, the other components, such as P(Wi|Xi = x) and P(Xi = x) remain

the same as previously defined.

3.2.3 Identifiability issues

The basic identifiability ideas for latent class models were reviewed in section 1.2.3.

In our model, we need to ensure that the sum of sensitivity and specificity is greater

than 1, according to Theorem 1 from 1.2.3. Furthermore, to match the corresponding

second criteria in Theorem 1, we need to be cautious as the number of parameters

and the degrees of freedom change in our models. Since we have the outcome variable

attached to the regular latent class model, we have two more cells to be taken into
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account either 0 or 1. Therefore, the degrees of freedom will be 2
∏n

j=1 (lj + 1)− 1 =

2n+1−1 where lj can only take the value 0 or 1 in our model. So the second condition

in the theorem needs to be

2n+1 − 1 ≥ 2n + 1 (3.10)

in our model with the conditional independence assumption and

2n+1 − 1 ≥ 4n + 1 (3.11)

in the model with the conditional dependence assumption.

3.2.4 Estimation

We maximizing the likelihood functions with restrictions via trust region optimization

(Conn et al. (1987)) with nonadaptive quadrature, where the quadrature points are

centered at zero for each of the random effects and the current random-effects variance

matrix is used as the scale matrix. Although many authors suggest the superiority of

the adaptive quadrature (Liu & Pierce (1994), Pinheiro & Bates (1995), Lesaffre &

Spiessens (2001)), empirical results suggest that the nonadaptive quadrature works

better in our particular situation.

To enhance the model stability and speed up the convergence for the purpose

of simulations, we assume the variances of the random effects are equal for all the

assessments and regardless of the true exposure status, i.e., b11 = b21 = . . . = bj1 =

b12 = b22 = . . . = bj2 = b; where j = 1,2,. . . ,n. Note that this confers needed stability

in the implementation of Qu et al. (1996)’s model when it is linked to a TDM such

as in (3.8), but that differential misclassification can still be accomodated because

the ajx parameters are allowed to vary across true disease status and possibly across

different raters or assessment methods.

The algorithm was implemented via the SAS procedure NLMIXED, which allows



46

specification of a general log-likelihood computed via numerically integrating out

normal random effects. An alternative program in SAS/IML was utilized as a second

check (SAS Institute Inc (2001), SAS Institute Inc (2008)).

To test whether the repeated measurements are conditionally dependent, a likeli-

hood ratio test is conducted taking a mixture chi-square distribution as the reference

distribution for testing the variance components of the random effects, which are the

bjx’s in our case (Self & Liang (1987), Stram & Lee (1994), Stram & Lee (1995)).

For an example, to test the hypothesis of q random effects vs. q + 1 random effects,

the asymptotic null distribution of the -2 times log likelihood ratio is a mixture with

equal weights 0.5 for χ2
q+1 and χ2

q (Verbeke & Molenberghs (2000)).
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3.3 REAL-LIFE EXAMPLE

To demonstrate the methodology proposed in this chapter, we also utilize the BWIS

example introduced in 1.1.1 and 2.3. Similar to the example in chapter 2, the

outcomes of interest are whether the infant developed a congenital cardiovascular

TAPVR, and whether or not the birth weight was low. Both models, assuming con-

ditional independence and conditional dependence, were fitted and compared.

In our case, the estimated random effect variance components b are quite close to

zero with other estimates fairly similar for models with and without random effects,

for both outcomes TAPVR and low birth weight (results not shown). Taking a 50:50

mixture of χ2
0 and χ2

1 as the reference distribution, a likelihood ratio test reveals no

siginificance between the reduced model without random effect and the one with,

for both outcomes. Therefore, we believe in this particular example the industrial

hygienists’ assessments are conditional independent. In the following tables reporting

either the estimated sensitivity and specificity, or the estimated effects between the

exposure, covariates and the adverse health outcomes, we focus on models with the

conditional independence assumption.

Table 3.1 presents estimated sensitivities (SEN) and specificities (SPC) for indi-

vidual IHs, assuming five possible situations: (1) the SEN and SPC for all three IHs

are the same; (2) IH2 and IH3 share the same SEN and SPC and IH1 differs from

them; (3) IH1 and IH3 share the same SEN and SPC and IH2 differs from them; (4)

IH1 and IH2 share the same SEN and SPC and IH3 differs from them; (5) All three

IHs have different SENs and SPCs.

Table 3.1 suggests that all the industrial hygenists have specificity close to 1, which

implies that they are accurate in catching the truely unexposed. In another word,

one was libely to be exposed when he was assessed as exposed by the IHs. In terms

of catching the truely exposed, IH1 and IH2 are more accurate than IH3, who would

approximately assess 50% exposed as unexposed but is quite accurate in assessing
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true unexposure. IH1 and IH2 are similar and both accurate in catching both truely

exposed and unexposed. Table 3.1 also suggests that if discrepancies occured among

the IH’s assessments, we may consider IH2’s opinion more seriously than the others,

since IH2 had the highest estimated sensitivity and specificity among all. Based on

Chi-square tests, model with the assumption that IH1 and IH2 are the same but

differ from IH3 is in favor of the others. Therefore, this assumption is postulated

throughout the rest of the modelling procedure.

Both models with adverse health outcome as TAPVR and low birth weight will

be presented in 3.2. For the outcome of TAPVR, controlled for race (white/other

or black). We controlled for race, maternal smoking (packs per day) and maternal

weight gain for the outcome of low birth weight. Covariates are initally controlled

in TDM as well as in sensitivity and specificity, i.e., assume different sensitivity and

specificity for different race of infants etc. However, the estimates are similar to each

other for different race of infants (results not shown), so the estimates reported in the

tables are the ones controlling for covariates only in the TDM part. Naive models,

assuming the subject to be exposed if two or more of the three industrial hygienists

thought he was exposed, and unexposed if one or less than one hygienist assessed

exposure, will also be fitted and compared. The odds ratio and the 95% CI for the

effect of true unobserved binary exposure on the adverse outcome, with and without

controlling for covariates, are presented in Table 3.2.

As seen in the table, the lead exposure effect is attenuated in the naive model

for both outcomes, with or without controlling for covariates. Lead exposure plays

no significant effect on both TAPVR and low birth weight, with or without con-

trolling for covariates. As to the covariates, race of infants is not a significant risk

factor for developing TAPVR. However, the proposed model suggests that infants of

white/other tend to have a significantly higher odds of born low birth weight than

infants of black, given the same lead exposure status, mother’s smoking and mater-
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nal weight gain. The naive model implies significance in infants’ race but suggests

an opposite trend. Moreover, the proposed model suggested that the more packs a

mother smokes a day, the higher the odds of her delievering an infant with low birth

weight, given the same lead exposure status, infant race and maternal weight gain.

Also suggested by the proposed model, that with the increase of maternal weight

gain, the odds of developing a low birth weight infant decreases significantly given

the same lead exposure status, infant race and maternal smoking. However, opposite

trends suggested by the naive model for the association between delievering a low

birth weight infant and maternal smoking, maternal weight gain seem contradicting

to expectations.
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Table 3.2: Estimated Odds Ratio with 95% CI

Factors
Results based on Results based on
proposed model naive model

OR 95% Wald CI OR 95% Wald CI
Results for not controlling for covariates

TAPVR as the outcome
Lead Exposure 1.22 0.65, 2.29 0.72 0.39, 1.33

Low birth weight as the outcome
Lead Exposure 2.05 0.93, 4.53 0.74 0.37, 1.50

Results based on controlling for covariates
TAPVR as the outcome

Lead Exposure 1.49 0.79, 2.82 0.73 0.39, 1.34
Race (white/other vs. black) 1.82 0.86, 3.84 0.51 0.24, 1.07

Low birth weight as the outcome
Lead Exposure 2.05 0.86, 4.86 0.76 0.36, 1.63

Race (black vs. white) 3.63 1.65, 7.98 0.28 0.13, 0.61
Maternal smoking 1.57 1.08, 2.26 0.65 0.46, 0.93

Maternal weight gain 0.97 0.94, 0.99 1.03 1.01, 1.06
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3.4 SIMULATION STUDY

In this section, we present simulation results for both the linear TDM when the

outcome is continuous, and the binary TDM with a logit link when the outcome

is binary, based on the joint likelihood including random effects as in model (3.5).

For stable simulation results, we increased the number of replicates to 7 and added

reasonable assumptions that (1) the variances of the random effects are equal for

both truely exposed and unexposed cases; (2) the sensitivities and specificities are

equal across different IHs (the first situation shown in Table 3.1), or equivalently,

a11 = a21 = . . . = aj1 = a1; a12 = a22 = . . . = aj2 = a2; b11 = b21 = . . . = bj1 = b12 =

b22 = . . . = bj1 = b; where j = 1,2,. . . ,n

Simulation results for continuous outcomes with the conditional dependence as-

sumption, based on the model described in 3.2.2, are presented in Table 3.3. Since

the empirical standard deviations are larger than the mean of the estimated standard

errors, we believe the estimated standard errors are not accurate. Therefore, profile-

likelihood-based confidence intervals are calculated for θ1 to provide more accuracy.

The mean widths for the confidence intervals is 0.65 and the 95% coverage from

profile-likelihood-based confidence intervals for θ1 is presented in the table. Naive

model results are also presented to show the extent of attenuation.

Simulation results for a binary outcome with logit link are shown in Table 3.4 with

naive model results as comparison. Some of the 500 simulations produce unreasonably

large estimated standard errors for θ̂1. For example, 28 (5.6%) of the estimated

standard errors were greater than 10. For demonstrative purposes, we refer to those

simulated data with unreasonable estimated standard error for θ̂1 as ‘uninformative’

data and those with reasonable estimated standard errors as ‘informative’ data. The

reason that some estimated standard errors are large appears due to the flat profile

likelihood over various possible θ1 values, which suggests the likelihood function itself

is not informative in these cases. A comparison of the profile likelihood functions
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Table 3.3: Simulation results based on 500 simulated datasets, linear TDM, sample
size = 600, number of replicates = 7, and (θ0, θ1, SEN, SPC, b, τ1, σ) = (0.00, 1.00,
0.76, 0.86, 1.00, 0.30, 1.00)

Parameters True values Mean Est. Emp.SD Mean Est. SE
θ0 0.00 0.004 0.11 0.06
θ1† 1.00 1.05 0.23 0.16
θ∗1‡ 1.00 0.73 0.10 0.10

SEN 0.76 0.75 0.07 0.05
SPC 0.86 0.85 0.04 0.02

b 1.00 1.03 0.18 0.14
τ1 0.30 0.29 0.06 0.04
σ 1.00 0.99 0.05 0.04

† The profile-likelihood-based CI coverage for θ1 is 95.8%
‡ Estimates based on naive model

between the ‘uninformative’ data and ‘informative’ data is presented in Figure 3.1,

where the true θ1 is 1.00. Summary statistics for the parameters under estimation are

also shown in Table 3.4 when the ‘uninformative’ simulated datasets were left out.
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Table 3.4: Simulation results based on 500 simulated datasets,binary TDM, sample
size = 600, number of replicates = 7, and (θ0, θ1, SEN, SPC, b, τ1) = (0.00, 1.00,
0.76, 0.86, 1.00, 0.30)

Parameters True values Mean Est. Emp.SD Mean Est. SE

Results from all the 500 simulations
θ0 0.00 -0.05 0.75 1.67
θ1 1.00 1.61 2.26 14.82

SEN 0.76 0.77 0.07 0.06
SPC 0.86 0.84 0.04 0.03

b 1.00 1.04 0.22 0.18
τ1 0.30 0.29 0.08 0.06

Results from 472 simulations without the ‘uninformative’ cases
θ0 0.00 0.005 0.12 0.12
θ1† 1.00 1.08 0.43 0.48
θ∗1‡ 1.00 0.71 0.19 0.19

SEN 0.76 0.77 0.06 0.06
SPC 0.86 0.85 0.04 0.03

b 1.00 1.01 0.19 0.18
τ1 0.30 0.29 0.07 0.05

† The Wald CI coverage for θ1 is 95.61%
‡ Estimates based on naive model from 500 simulations
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3.5 DISCUSSION

In this section, we briefly comment on the connection between our work and prior work

on exploring the exposure-disease association using the probability-of-exposure (POE)

information by Satten & Kupper (1993). Both are focused on the examination of

exposure-disease relationships and consider the POE as helpful information. We take

a parametric approach, in which a subject’s true unknown probability of exposure is a

latent random variable defined via a beta-binomial model. We then extend the interest

from POE-disease relationship to the exposure-disease association by extending latent

class models to link with a disease outcome. We include the examination of POE and

disease association as an initial aspect of the work with focus on exposure-disease

association. In our case, the POE is not required information, or not directly related

to the stage modeling of exposure-disease relationship. On the other hand, Satten &

Kupper (1993) view the problem from a different aspect and incorporate the POE

information directly into the exposure-disease modeling, assuming the POE can be

obtained via measurement of a surrogate exposure variable. To meaningfully combine

the two methods, one might consider estimating POE via posterior mean estimates

from the beta-binomial model, which can be considered as future work.
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Chapter 4

CORRECTING FOR

MISCLASSIFICATION IN

TESTING DIFFERENCES IN

GROUP MEANS USING

INTERNAL OR EXTERNAL

VALIDATION DATA
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4.1 INTRODUCTION

The two sample t-test to assess whether the means from two populations are signifi-

cantly different is clearly among the most fundamental of all statistical methods. The

corresponding approach for testing the differences in means from more than two popu-

lations is the method of analysis of variance (ANOVA) (D’Agostino et al. (2005)). For

almost a century, these methods have been enriched in various ways and adapted to

different practical problems (e.g., Welch (1938), Roy & Gnanadesikan (1959), Hasler

et al. (2008), Miao & Chiou (2008), Dutilleul et al. (2008) ). However, when obser-

vations are potentially misclassified in the study leading to an incorrect attribution

of group memberships, appropriate adjustments would be required to the traditional

two sample t-test or ANOVA setting for valid inferences. Despite a vast literature on

misclassification problems, the discussion of the two group continuous outcome case

and its extensions to the one-way ANOVA setting with the use of validation data has

been limited.

When a “gold standard” measure of exposure is available but costly, a typical

approach of adjusting for misclassification in exposure is to obtain a validation sample,

in which the true sample population attributions are available. Based on the data

sources, the validation data can be categorized into two main types, i.e., internal

and external. In our setting, internal validation requires a random subsample of the

main study, where the continuous response values and both the true and misclassified

sample population attributions are available. External validation instead suggest an

independent sample seperate from the main study, where typically the continuous

response values would be unavailable (Carroll et al. (2006)). Although less costly,

external validation data is generally less preferable to internal validation data because

the misclassification structure and underlying assumptions in external validation data

may not be “transportable” to the main study. More discussions on “transportability”

can be found in Lyles et al. (2007) and Carroll et al. (2006). In addition to using
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internal or external validation data alone, recent researches also promotes designs

combining both external and internal validation data. Detailed discussion relevant

to the combined study designs can be found in (Greenland (1988), Thurston et al.

(2003), Lyles et al. (2007).

In this paper, we will first focus on introducing a method to correct for two sample

t-test results for misclassification of group membership situations where either internal

or external validation data are available. For the internal validation data case, we

examine and compare the performances of likelihood-based estimators and closed-

form weighted average estimators. In both cases, the generalizations to correct the

misclassifications of membership in multiple groups in ANOVA are also discussed.

Simulation results will be provided to demonstrate the methods. These methods also

serve as a methodological transition into chapter 5, in which a more complex but

related misclassification problem is motivated by studies of menstrual cycle length.
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4.2 MODEL

Notation and Assumptions

Testing mean differences across two groups

To compare the differences in means for two groups, let x denote the population group

indicator so that x = 1 if the sample is from the first group, and x = 0 if the sample

is from the other. Suppose x∗ is the group indicator prone to misclassification. We let

Y represent the continuous random variable of interest, and let SE = P(x∗ = 1|x =

1) and SP = P(x∗ = 0|x = 0) represent the sensitivity and the specificity of the

misclassified group indicator, respectively. Define π = P(x = 1) and π∗ = P(x∗ = 1).

Note here that π can be represented equivalently as π = π∗+SP−1
SE+SP−1

, where π∗ can be

estimated from the main study by
n∗1

n∗1+n∗0
(n∗j is the number of subjects with x∗ = j

(j = 0 or 1)). As with the two sample t-test, we assume the conditional mean of the

response given the true group indicator follows the model

E[Y |x] = δ0 + δ1x (x = 0 or 1)

In addition to testing whether the two sample means are equal, i.e., whether δ1 = 0,

we also aim in this paper to provide valid and efficient point and confidence interval

estimators for the differences in group mean δ1 after adjusting for misclassification.

The data observable in real study is (y, x∗). So ignoring misclassification the naive

model will be E[Y |x∗] = δ∗0 + δ∗1x
∗ (x∗ = 0 or 1). We will discuss and compare the

two models in later presentations.

If the misclassification structures are the same in the external validation data as

the main study, i.e., they are “transportable”, we can use external validation data

to adjust for misclassification in exposure. Table 4.1 displays the typical data layout
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from an external validation study.

Table 4.1: External Validation Study for two groups Data Layout

x x∗ = 1 x∗ = 0 Total
1 n11 n10 n1.

0 n01 n00 n0.

Total n.1 n.0 n..

We impose the assumption of nondifferential misclassification (Thomas et al.

(1993)) throughout the paper, which implies constant sensitivity and specificity for

various outcomes y, i.e., SEy = SE and SPy = SP for all y, where SEy = P(x∗ =

1|x = 1, Y = y) and SPy = P(x∗ = 0|x = 0, Y = y).

Testing the differences in means across more than two groups

Suppose there are k + 1 groups in the one-way ANOVA setting. Let x1, x2, . . . , xk

be the group indicators that if the sample is from population i (i 6= k + 1), then

xi=1 and xr = 0 (r 6= i); if the sample is from population k + 1, then x1 = x2 =

. . . = xk = 0. Again, x∗1, x∗2, . . . , x∗k will be the corresponding group indicators prone

to misclassification. Also define SEij = P(x∗i = 1|xj = 1), πi = P(xi = 1) and

π∗i = P(x∗i = 1), where (i = 1, . . . , k, and j = 1, . . . , k + 1). Similar to the case of

two groups, we assume the mean of the sample values and the group indicators follow

such a model that

E[Y |x1, x2, . . . , xk] = δ0 + δ1x1 + δ2x2 + . . . + δkxk

ANOVA is testing wether all the groups means are equal, i.e., δ0 = δ1 = . . . =

δk = 0. By providing valid point estimates and confidence intervals of δ0, δ1, . . . , δk,

we will see if any mean from group 0, . . . , k is significantly different from the mean in

group k + 1, and also the estimated differences.
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Take three groups as an example, Table 4.2 shows the notation for external vali-

dation data that we will mention as an example in later sections.

Table 4.2: External Validation Study for three groups Data Layout

x x∗ = 1 x∗ = 2 x∗ = 3 Total
1 n11 n12 n13 n1.

2 n21 n22 n23 n2.

3 n31 n32 n33 n3.

Total n.1 n.2 n.3 n..

Regression Calibration Adaptation

In the regression calibration method, the regression coefficient δ1 is adjusted for the

misclassification by multiplying a correction coefficient (Carroll et al. (2006)). In our

case, when there are only two groups, the mean of true group indicator given the

misclassified group indicator can be written as

E(x|x∗) =
(SE − π∗)(π∗ + SP − 1)

π∗(1− π∗)(SE + SP − 1)
x∗ +

(1− SE)(π∗ + SP − 1)

(1− π∗)(SE + SP − 1)

where x and x∗ can be taken as 0 or 1.

The correction for δ0 and δ1 would be

δ0 = δ∗0 − [
(1− SE)(π∗ + SP − 1)

(1− π∗)(SE + SP − 1)
]δ1 (4.1)

δ1 =
π∗(1− π∗)(SE + SP − 1)

(SE − π∗)(π∗ + SP − 1)
δ∗1 ≡ γδ∗1 (4.2)

where δ∗0 and δ∗1 are the intercept and slope of the regression from the naive model

taking the misclassified group indicator as the predictor variable. In later discussions

of this paper, we will refer to γ = π∗(1−π∗)(SE+SP−1)
(SE−π∗)(π∗+SP−1)

as the “correction coefficient”.

Details of the derivation are presented in the Appendix.
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Both the correction for regression intercept and slope require the knowledge of

π∗, SE and SP , or reasonable estimates. In the following sections, we will demon-

strate the estimation of those parameters and also the coefficient corrections by using

external and internal validation data.

When the research interest is to compare the differences in group mean for three

groups, similar derivations can be conducted. The correction for regression intercept

and slopes would be

δ0 = δ∗0 − a01δ1 − a02δ2 (4.3)

δ1 =
a22δ

∗
1 − a12δ

∗
2

a11a22 − a12a21

(4.4)

δ2 =
a21δ

∗
1 − a11δ

∗
2

a12a21 − a11a22

(4.5)

where

a11 =
SE11P(x1 = 1)

P(x∗1 = 1)
− (1− SE11 − SE21)P(x1 = 1)

P(x∗1 = 0, x∗2 = 0)

a21 =
SE21P(x1 = 1)

P(x∗2 = 1)
− (1− SE11 − SE21)P(x1 = 1)

P(x∗1 = 0, x∗2 = 0)

a01 =
(1− SE11 − SE21)P(x1 = 1)

P(x∗1 = 0, x∗2 = 0)

a12 =
SE12P(x2 = 1)

P(x∗1 = 1)
− (1− SE12 − SE22)P(x2 = 1)

P(x∗1 = 0, x∗2 = 0)

a22 =
SE22P(x2 = 1)

P(x∗2 = 1)
− (1− SE12 − SE22)P(x2 = 1)

P(x∗1 = 0, x∗2 = 0)

a02 =
(1− SE12 − SE22)P(x2 = 1)

P(x∗1 = 0, x∗2 = 0)

and πi = P(xi = 1) (i = 1 or 2) can be calculated by

 π1

π2

 =

 SE11 − SE13 SE12 − SE13

SE21 − SE23 SE22 − SE23


−1

×

 π∗1 − SE13

π∗2 − SE23

 (4.6)

Details on the derivation can be found in the Appendix.

Likewise, when there are more than three groups to compare the differences in
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group means, the correction for the regression coefficients would be



δ1

δ2

...

δk


=



a11 a12 ... a1k

a21 a22 ... a2k

... ... ... ...

ak1 ak2 ... akk



−1

×



δ∗1

δ∗2

...

δ∗k


where

a0i =
(1− SE1i − SE2i − . . .− SEki)P(xi = 1)

P(x∗1 = 0, x∗2 = 0, . . . , x∗k = 0)
(i = 1, . . . , k)

ari =
SEriP(xi = 1)

P(x∗r = 1)
− (1− SE1i − SE2i − . . .− SEki)P(xi = 1)

P(x∗1 = 0, x∗2 = 0, . . . , x∗k = 0)
(0 < r ≤ k)

where πi = P(xi = 1) (i = 1, . . . , k) can be calculated by



π1

π2

. . .

πk


=



SE11 − SE1,k+1 SE12 − SE1,k+1 . . . SE1,k − SE1,k+1

SE21 − SE2,k+1 SE22 − SE2,k+1 . . . SE2,k − SE2,k+1

. . . . . . . . . . . .

SEk1 − SEk,k+1 SEk2 − SEk,k+1 . . . SEk,k − SEk,k+1



−1

×



π∗1 − SE1,k+1

π∗2 − SE2,k+1

. . .

π∗k − SEk,k+1


Hypothesis Testing

As stated earlier, the focus of this paper is examining the effect of misclassification

on both hypothesis testing and estimation of the differences in group means. In this

section, we discuss intuitively the validity of the hypothesis testing results based on

naive models.
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Taking the case of two group misclassification as an example under the non-

differential measurement error assumption, the conditional likelihood of the continu-

ous Y given the misclassified group indicator for one subject (the subject indicator i

is suppressed) is

f(Y |x∗) = f(Y, x = 1|x∗) + f(Y, x = 0|x∗)

= f(Y |x = 1, x∗)P(x = 1|x∗) + f(Y |x = 0, x∗)P(x = 0|x∗)

= f(Y |x = 1)P(x = 1|x∗) + f(Y |x = 0)P(x = 0|x∗)

= w1
1√

2πσe

e−(Y−δ0−δ1)2/(2σ2
e) + w2

1√
2πσe

e−(Y−δ0)2/(2σ2
e)

where the first line is written heuristically.

Therefore, the conditional distribution of y|x∗ is a mixture of two normal dis-

tributions with the weights w1 and w2 involving SE, SP and π∗ . In general, the

variance of y|x∗ depends on the misclassified group indicator x∗. So when δ1 6= 0,

the two sample t-test assumptions are not met for the naive model when taking x∗

as the predictor variable. However, under the null hypothesis H0 : δ1 = 0, the two

normal distributions shrink to the same one, i.e., f(Y |x∗) ∼ N(δ0, σ
2) both for x∗ = 1

and x∗ = 0. Therefore, under the null, the hypothesis testing results based on the

naive model remain valid. The simulation results in later sections will empirically

demonstrate this point in more detail.

Misclassification Adjustment Using External Vali-

dation Data

When external validation data (Table 4.1) are available and “transportable”, we can

estimate SE and SP solely based on the external validation data, and obtain the

estimate of π∗ separately based on the “main study” data. When there are only
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two groups to compare the means, as mentioned in the last section, the π∗ can be

estimated by π̂∗ = n∗1/(n
∗
1 + n∗0) and the variance can be calculated by ˆV ar(π̂∗) =

π̂∗(1− π̂∗)/(N1 +N0), where N1 and N1 are the number of observations from the two

groups in the main study. In terms of the estimates and variances of SE and SP ,

taking the notations in Table 4.1, they can be obtained by

ŜE =
n11

n1.

ŜP =
n00

n0.

ˆV ar(ŜE) = ŜE(1− ŜE)/(n1.)

ˆV ar(ŜP ) = ŜP (1− ŜP )/(n0.)

When π∗, SE and SP are estimated by the main study/external validation data,

we can obtain the corrected coefficients for both δ0 and δ1 by plugging the point

estimates into (4.1) and (4.2). The variance of the slope coefficient is also derived in

the Appendix by the delta method.

For the cases of more than two groups, take three groups as an example, the

estimated π∗i and its variance can be obtained from the main study by π∗i = Ni/(N1 +

N2 + N3) and ˆV ar(π̂∗i ) = π̂∗i (1− π̂∗i )/(N1 + N2 + N3), respectively. The estimates of

SEij with their variances can be calculated from the external validation data taking

the notations presented in Table 4.2

ˆSEij =
n.i

nj.

ˆV ar(ŜE) = ˆSEij(1− ˆSEij)/(nj.)

Similar to the two-group case, plug in the above estimates of SEij into (4.4) and

(4.5), we will obtain the corrected coefficients for all the regression parameters δ0, δ1

and δ2.
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Misclassification Adjustment Using Internal Valida-

tion Data

When internal validation data are available, we consider two approaches to correct the

estimated coefficients for misclassification: the likelihood method and an alternative

closed-form method.

Likelihood Method

Here, we seek to define and maximize the log-likelihood of the data observed in the

main/internal validation study. For this purpose, we assume the continuous sample

values from all groups follow normal distributions with the same variance σ2
e . We

also impose the non-differential measurement error assumption, i.e., P(Y |X, X∗) =

P(Y |X), implying that given the true group attribution information, the misclassified

group indicator provides no additional information about the distribution of the con-

tinuous outcome Y . Under those assumptions, the likelihood for a single observation

in the case of two groups with misclassification can be written as follows, with the

subject indicator i suppressed

L (Y |x, x∗; δ0, δ1, θ)

= P(Y = y, X = x, X∗ = x∗)

= f(y|X = x)P(X∗ = x∗)P(X = x)

= R{[ 1√
2πσe

e−(y−δ0−δ1x)2/(2σ2
e)]SExx∗(1− SE)x(1−x∗)(

π∗ + SP − 1

SE + SP − 1
)x

(1− SP )(1−x)x∗SP (1−x)(1−x∗)(
SE − π∗

SE + SP − 1
)1−x}+

(1−R){SEx∗(1− SE)1−x∗(
π∗ + SP − 1

SE + SP − 1
)

1√
2πσe

e−(y−δ0−δ1)2/(2σ2
e)

+(1− SP )x∗SP 1−x∗(
SE − π∗

SE + SP − 1
)

1√
2πσe

e−(y−δ0)2/(2σ2
e)} (4.7)
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where the first equation is written heuristically. θ is the vector including all the

nuisance parameters (π∗, SE, SP, σe), and R is the validation selection indicator such

that R = 1 if the sample is in the validation data, and R = 0 if not. The likelihood

for all observations is the product of the likelihood from every single observation, i.e.,

L =
∏n

i=1 Li, where Li is defined in (4.7) with subscripts i added to the terms y, R,

x∗ and x.

Likewise, in the case of three groups with misclassification, the likelihood for a

single observation can be written as

L (Y |x1, x2, x
∗
1, x

∗
2; δ0, δ1, δ2, θ)

= R{[ 1√
2πσe

e−(y−δ0−δ1x1−δ2x2)2/(2σ2
e)]SE

x1x∗1
11 SE

x1x∗2
21 (1− SE11 − SE21)

x1(1−x∗1−x∗2)πx1
1

SE
x2x∗1
12 SE

x2x∗2
22 (1− SE12 − SE22)

x2(1−x∗1−x∗2)πx2
2 SE

(1−x1−x2)x∗1
13 SE

(1−x1−x2)x∗2
23

(1− SE13 − SE23)
(1−x1−x2)(1−x∗1−x∗2)(1− π1 − π2)

1−x1−x2}

+(1−R){SE
x∗1
11 SE

x∗2
21 (1− SE11 − SE21)

(1−x∗1−x∗2) π1√
2πσe

e−(y−δ0−δ1)2/(2σ2
e)

+SE
x∗1
12 SE

x∗2
22 (1− SE12 − SE22)

(1−x∗1−x∗2) π2√
2πσe

e−(y−δ0−δ2)2/(2σ2
e)

+SE
x∗1
13 SE

x∗2
23 (1− SE13 − SE23)

1−x∗1−x∗2
1− π1 − π2√

2πσe

e−(Y−δ0)2/(2σ2
e)} (4.8)

where πj = P(xj = 1) (j = 1 or 2) can be obtained by (4.6).

The joint log-likelihoods in (4.7) and (4.8) can be maximized numerically to obtain

the MLE of the δ parameters and δ1 and their standard errors by applying the Newton-

Raphson optimization routine. The implementation is conducted by SAS procedure

NLMIXED (SAS Institute Inc (2001)) and the program is available from the authors.

Closed-Form Method

Greenland (1988) proposed a weighted-average estimator δG as a closed-form log odds

ratio estimator in the 2× 2 table setting with exposure misclassification and internal
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validation data. This estimate is defined as

δ̂G = ŵGδ̂I + (1− ŵG)δ̂E

where ŵG =
ˆV ar(δ̂I)−1

ˆV ar(δ̂I)−1+ ˆV ar(δ̂E)−1
and δ̂E is the corrected coefficient for δ1 using the

main study/internal validation data, treating the internal validation data as if they

were external. δ̂I is the corresponding corrected coefficient for δ1 using only the

internal validation data by regressing the outcome on the true group indicator without

misclassification. The variance of the estimate δG can be obtained by

ˆV ar(δ̂G) =
1

ˆV ar(δ̂I)−1 + ˆV ar(δ̂E)−1

where ˆV ar(δ̂I) can be obtained by the regression procedure itself and ˆV ar(δ̂E) can be

obtained by the delta method presented in the Appendix. Lyles et al. (2007) briefly

discuss the rational for treating the weight ŵG as fixed in this variance calculation.

The closed-form estimator δ̂G is obviously computational less demanding than

the MLE with internal validation data. The simulation study in the next section

will evaluate the performance of those two estimators in terms of bias and efficiency

using the two-group main study/internal validation design. The performance of the

estimator based solely on the external validation data will also be examined.
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4.3 SIMULATION STUDY

Testing mean differences across two groups

We assume “transportability” in the sense that the sensitivity and specificity oper-

ating in the external validation study are the same as the main study, which are

SE = 0.8, SP = 0.7 in our simulation. We also assume the exposure prevalence

π = 0.6 and the variance of the continuous sample values σe = 1 for both groups.

The sample size for the external validation data is 200, as oppose to 600 for the main

study. For the simulation study with main/internal validation data, we assume the

sampling rate = 25% and the other parameters remain the same. Table 4.3 displays

the mean estimates, empirical standard deviation, mean estimated standard error,

the 95% coverage for the estimates, the power of effect size 0.7 for sample size 600

and 1.0 for sample size 200 and the ‘pseudo-power’ by sticking into the true values

of the nuisance parameter when calculating the power, for δ0 and δ1. Estimations

based on external validation data, and main/internal validation data via both like-

lihood method and Greenland’s method are presented and compared. In presenting

Greenland’s method, we provide only the estimates of the key parameter of interest

(δ1) and skip the details of the estimation of δ0. The estimates based only on the

misclassified group indicator will also be reported in the table as ‘naive’ estimates.

The simulation results show that the estimates based on a study with external

validation data perform well, with reasonably small bias and similar empirical stan-

dard deviation and mean estimated standard error. The power of δ1 is low from the

external validation data with moderate sample size of 200 when the true δ1 is away

from the null. However, it is improved in the ‘pseudo-power’ calculation, mainly due

to the fact that the variations from the nuisance parameters are eliminated. As ex-

pected, the performance of the estimates from external validation data is surpassed

by the results from main/internal validation designs with the same sample size. The
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estimates from the two methods using main/internal validation data have smaller

bias and smaller variability. Consistent with the results from Lyles et al. (2007) for

2× 2 table analysis, Greenland’s estimator performs as well as if not better than the

corresponding MLE in terms of bias and variability. The naive method, on the other

hand, provides reliable estimates and hypothesis testing results only in the cases when

the true parameters are zero.

When the research question goes to testing the differences in means across more

than two groups, we conduct simulation in similar settings as there are two groups,

with the same sample size (600 or 200) and true parameter values for δ0, δ1 and δ2

and variance σe. However, we increse the validation sampling rate to 50% for more

reliable performances in the estimates, and the true parameter values for the SEij

(i = 1, . . . , 2 and j = 1, . . . , 3) are given as SE11 = 0.8, SE21 = 0.1, SE12 = 0.2, SE22

= 0.7, SE13 = 0.1, SE23 = 0.2. Bonferroni corrections are applied in calculating

the 95% coverages and powers. For demonstration purpose, we only presented and

compared the performances of the naive method and likelihood method in Table 4.4,

although the simulation of other methods can be conducted in a similar manner as

in the previous table.

Table 4.4 shows the likelihood method performs quite well under moderate sample

size (n=200), with reasonably small bias and similar empirical standard deviation

and mean estimated standard error. On the other hand, the naive method without

any misclassification adjustment performs bad with large bias in estimating the mean

differences across the groups, when the true parameters are away from zero. However,

when the true parameters are zero, the naive method performs fairly good, in terms

of estimates in the mean differences and hypothesis testing results.
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4.4 DISCUSSION

In this chapter, we discuss the misclassification adjustment approaches in the fun-

dermental statistical ANOVA setting, when external or internal validation data are

available. In terms of the study design, the methods are applicable in observational

studies, such as cross-sectional studies and retrospective studies. The discussions

in this chapter represent researches on correcting misclassification in a generic case

when the outcome is continuous and the categorical exposures are misclassified. The

availability of the validation data serves a critical part of the correction strategy. The

following chapter will present another specific case when the binary exposure variable

is misclassified and the correction strategy is mainly based on information from re-

peated measurements of the exposure data, motivated by a real-world example study

of menstrual function.
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APPENDIX

Derivations of the Regression Calibration Adapta-

tion

Two-group case

Analogous to the regression calibration approach for measurement error correction,

we first derive the mean of the unknown variable given its observed surrogate:

E(x|X∗ = x∗) = P[(X = 1)|x∗]

=


SE×P(x=1)

P(x∗=1)
, if x∗ = 1

(1−SE)×P(x=1)
P(x∗=0)

, if x∗ = 0

=
SE × P(x = 1)

P(x∗ = 1)
× x∗

+
(1− SE)× P(x = 1)

P(x∗ = 0)
× (1− x∗)

= (
SE × P(x = 1)

P(x∗ = 1)
− (1− SE)× P(x = 1)

P(x∗ = 0)
)× x∗

+
(1− SE)× P(x = 1)

P(x∗ = 0)

=
SE × P(x = 1)− P(x = 1)× P(x∗ = 1)

P(x∗ = 1)× P(x∗ = 0)
× x∗

+
(1− SE)× P(x = 1)

P(x∗ = 0)

Since P(x = 1) can be estimated by

P(x = 1) =
P(x∗ = 1) + SP − 1

SE + SP − 1
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and also let P(x∗ = 1) = π∗, the above representation can be written as

E(x|x∗) =
(SE − π∗)(π∗ + SP − 1)

π∗(1− π∗)(SE + SP − 1)
x∗ +

(1− SE)(π∗ + SP − 1)

(1− π∗)(SE + SP − 1)

Then returning to the outcome model, we have

E(yi|x∗) = δ0 + δ1P (x|x∗)

= δ0 + δ1[
(SE − π∗)(π∗ + SP − 1)

π∗(1− π∗)(SE + SP − 1)
x∗] + δ1[

(1− SE)(π∗ + SP − 1)

(1− π∗)(SE + SP − 1)
]

= δ∗0 + δ∗1x
∗

where δ∗0 and δ∗1 are the regression coefficients from the naive model.

Therefore the correction coefficients would be:

δ0 = δ∗0 − [
(1− SE)(π∗ + SP − 1)

(1− π∗)(SE + SP − 1)
]δ1

δ1 =
π∗(1− π∗)(SE + SP − 1)

(SE − π∗)(π∗ + SP − 1)
δ∗1
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Three-group case

Similar to the derivation in two-group case, we first look at a conditional probability

P[(x1 = 1)|x∗1 = 1, x∗2 = 0] =
P(x1 = 1, x∗1 = 1 and x∗2 = 0)

P(x∗1 = 1 and x∗2 = 0)

Since x∗1 = 1 implies x∗2 = 0, the above conditional probability is equivalent to

P[(x1 = 1)|x∗1 = 1, x∗2 = 0]

=
P(x1 = 1 and x∗1 = 1)

P(x∗1 = 1)

=
SE11 × P(x1 = 1)

P(x∗1 = 1)

Therefore,

P[(x1 = 1)|x∗1, x∗2]

=


SE11×P(x1=1)

P(x∗1=1)
, if x∗1 = 1; x∗2 = 0

SE21×P(x1=1)
P(x∗2=1)

, if x∗1 = 0; x∗2 = 1

(1−SE11−SE21)×P(x1=1)
P(x∗1=0,x∗2=0)

, if x∗1 = 0; x∗2 = 0

=
SE11 × P(x1 = 1)

P(x∗1 = 1)
× x∗1

+
SE21 × P(x1 = 1)

P(x∗2 = 1)
× x∗2

+
(1− SE11 − SE21)× P(x1 = 1)

P(x∗1 = 0, x∗2 = 0)
× (1− x∗1 − x∗2)

= (
SE11 × P(x1 = 1)

P(x∗1 = 1)
− (1− SE11 − SE21)× P(x1 = 1)

P(x∗1 = 0, x∗2 = 0)
)× x∗1

+(
SE21 × P(x1 = 1)

P(x∗2 = 1)
− (1− SE11 − SE21)× P(x1 = 1)

P(x∗1 = 0, x∗2 = 0)
)× x∗2

+
(1− SE11 − SE21)× P(x1 = 1)

P(x∗1 = 0, x∗2 = 0)

= a11x
∗
1 + a21x

∗
2 + a01
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where

a11 =
SE11 × P(x1 = 1)

P(x∗1 = 1)
− (1− SE11 − SE21)× P(x1 = 1)

P(x∗1 = 0, x∗2 = 0)

a21 =
SE21 × P(x1 = 1)

P(x∗2 = 1)
− (1− SE11 − SE21)× P(x1 = 1)

P(x∗1 = 0, x∗2 = 0)

a01 =
(1− SE11 − SE21)× P(x1 = 1)

P(x∗1 = 0, x∗2 = 0)

Similarly,

P[(x2 = 1)|x∗1, x∗2]

=


SE12×P(x2=1)

P(x∗1=1)
, if x∗1 = 1; x∗2 = 0

SE22×P(x2=1)
P(x∗2=1)

, if x∗1 = 0; x∗2 = 1

(1−SE12−SE22)×P(x2=1)
P(x∗1=0,x∗2=0)

, if x∗1 = 0; x∗2 = 0

=
SE12 × P(x2 = 1)

P(x∗1 = 1)
× x∗1

+
SE22 × P(x2 = 1)

P(x∗2 = 1)
× x∗2

+
(1− SE12 − SE22)× P(x2 = 1)

P(x∗1 = 0, x∗2 = 0)
× (1− x∗1 − x∗2)

= (
SE12 × P(x2 = 1)

P(x∗1 = 1)
− (1− SE12 − SE22)× P(x2 = 1)

P(x∗1 = 0, x∗2 = 0)
)× x∗1

+(
SE22 × P(x2 = 1)

P(x∗2 = 1)
− (1− SE12 − SE22)× P(x2 = 1)

P(x∗1 = 0, x∗2 = 0)
)× x∗2

+
(1− SE12 − SE22)× P(x2 = 1)

P(x∗1 = 0, x∗2 = 0)

= a12x
∗
1 + a22x

∗
2 + a02

where

a12 =
SE12 × P(x2 = 1)

P(x∗1 = 1)
− (1− SE12 − SE22)× P(x2 = 1)

P(x∗1 = 0, x∗2 = 0)

a22 =
SE22 × P(x2 = 1)

P(x∗2 = 1)
− (1− SE12 − SE22)× P(x2 = 1)

P(x∗1 = 0, x∗2 = 0)

a02 =
(1− SE12 − SE22)× P(x2 = 1)

P(x∗1 = 0, x∗2 = 0)
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and πi = P(xi = 1) can be calculated by

 π1

π2

 =

 SE11 − SE13 SE12 − SE13

SE21 − SE23 SE22 − SE23


−1

×

 π∗1 − SE13

π∗2 − SE23


Then returning to the outcome model, we have:

E(y|x∗1, x∗2) = δ0 + δ1P (x1 = 1|x∗1, x∗2) + δ2P (x2 = 1|x∗1, x∗2)

= δ0 + a01δ1 + a02δ2 + δ1[a11 × x∗1 + a21 × x∗2]

+δ2[a12 × x∗1 + a22 × x∗2]

= δ0 + a01δ1 + a02δ2 + (a11δ1 + a12δ2)x
∗
1 + (a21δ1 + a22δ2)x

∗
2

= δ∗0 + δ∗1x
∗
1 + δ∗2x

∗
2

Therefore,

δ0 = δ∗0 − a01δ1 − a02δ2

δ1 =
a22δ

∗
1 − a12δ

∗
2

a11a22 − a12a21

δ2 =
a21δ

∗
1 − a11δ

∗
2

a12a21 − a11a22
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Delta Method-Based Variance Estimation for the

Slope Coefficient

The delta method-based variance of the corrected δ1 is

ˆV ar(δ̂1) = D̂Σ̂D̂′

where Σ̂ is the 4 × 4 diagonal matrix Diag[ ˆV ar(δ̂∗1), ˆV ar(π̂∗), ˆV ar(ŜE), ˆV ar(ŜP )],

D̂ = (d̂1, d̂2, d̂3, d̂4), where

d̂1 = π̂∗ × (1− π̂∗)(
π̂∗ + ŜP − 1

ŜE + ŜP − 1
(ŜE − π̂∗))−1

d̂2 = δ̂∗1(ŜE + ŜP − 1)((1− 2π̂∗)(π̂∗ + ŜP − 1)(ŜE − π̂∗)−

π̂∗(1− π̂∗)(ŜE − 2π̂∗ − ŜP + 1))(π̂∗ + ŜP − 1)−2(ŜE − π̂∗)−2

d̂3 = δ̂∗1π̂
∗(1− π̂∗)((π̂∗ + ŜP − 1)(ŜE − π̂∗)−

(ŜE + ŜP − 1)(π̂∗ + ŜP − 1))(π̂∗ + ŜP − 1)−2(ŜE − π̂∗)−2

d̂4 = δ̂∗1π̂
∗(1− π̂∗)((π̂∗ + ŜP − 1)(ŜE − π̂∗)−

(ŜE + ŜP − 1)(ŜE − π̂∗))(π̂∗ + ŜP − 1)−2(ŜE − π̂∗)−2
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Chapter 5

THRESHOLD MODELS FOR

SUBJECT-SPECIFIC

EXPOSURE MEANS AND

VARIANCES
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5.1 INTRODUCTION

In environmental epidemiology, the existence of exposure thresholds to some toxic

reproductive and developmental agents is sometimes assumed by researchers (Hatch

(1971), Wilson (1973), Haseman & Kupper (1979), Schwartz et al. (1995)). More

specifically, Wilson (1973) pointed out that a threshold is a dose below which an out-

come seen in excess of that is not produced, which can invalidate the non-threshold

models. Therefore, instead of assuming a linear association between exposure and

a health outcome, researchers sometimes assume a step-like relationship between

them: the outcome takes on one distribution when the exposure is less than a certain

dose, and takes on another when the exposure exceeds that. Usually the latter indi-

cates a tighter exposure-disease association. The figures in 5.1 illustrate two types of

threshold models in such a relationship, with the one on the left showing a constant

exposure-outcome relationship below and above the threshold and the one on the right

presenting a constant relationship below the threshold and a nonlinear relationship

above the threshold.

For a long time, people have been developing appropriate methods to find an ex-

act threshold dosage. The classical approach is to use the no observed adverse effect

level (NOAEL) (Barnes & Dourson (1988)). A more general concept is termed the

no observed effect level (NOEL), which is estimated by the largest experimental dose

where the increase in response over the response in a control group is not statisti-

cally significant. For the advantages and disadvantages of NOEL in estimating the

threshold, please see Gaylor (1983), Rodricks et al. (1987) and Chen & Kodell (1989).

Crump (1984) later defined the benchmark dose (BD) as the lower confidence bound

for the dose that causes a 1% to 10% increase in response over the baseline. Ulm

(1989), Ulm (1990), Ulm (1991), Kodell et al. (1991), Silvapulle (1991) and Schwartz

(1992) also proposed approaches for estimating the threshold dose as a parameter in

single-agent dose-response models. A major advantage of estimating the threshold
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dose in this way is that it does not have to be a dose level conducted in the exper-

iment, unlike NOEL or BD. In related work, researchers have also been interested

in finding the threshold dose for subjects exposed to several agents in combination

(Kavlock & Perreault (1993), Narotsky et al. (1995), Schwartz et al. (1995)).

Instead of making contributions to the topic of estimating the threshold dose

itself, this dissertation aims to take a different view of the threshold problem and

propose methods for solving misclassification problems in threshold settings. In this

regard, suppose exposures to a toxic agent are measured repeatedly over time, and

the research question of interest involves the relationship between an adverse health

outcome and an individual’s true mean exposure over time. This is a reasonable

hypothesis in cases where chronic exposure is deemed to make people unhealthy,

rather than an acute one-time exposure. However, since the true mean exposure for

a specific subject is unknown to researchers in most studies, a natural surrogate for

it is the arithmatic average of the exposures observed. Therefore, measurement error

or misclassification would occur when taking this surrogate to define the explanatory

variable instead of the true mean exposure itself. The analytical problem becomes

how to adjust for the misclassification and correct the exposure-outcome relationship

with a proper model.

As a nature extension of the generic exposure misclassification problem discussed

in Chapter 4.2, this chapter presents models and implementations of a related misclas-

sification problem when the repeated measurements serve as the key information for

the correction strategy. Model assumptions and details of parameter estimation for

both continuous health outcomes and categorical health outcomes will be presented

in section 5.2. Special situations where all subjects have the same number of expo-

sure measurements will be treated in detail and related to classical methodology for

exposure misclassification, followed by generalizations to accommodate unbalanced

data. Simulation results are shown in section 5.3, followed by a brief discussion.
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5.2 MODEL

5.2.1 Homogeneous Within-Subject Variances

Binary Adverse Health Outcome

Matrix Method Suppose we are interested in the association between whether the

individual mean exposure to a certain toxic agent exceeds a certain threshold, and a

binary adverse health outcome. An example of such an outcome in the MSSWOW

study (Section 1.1.2) is spontaneous abortion and the exposure is the mean and/or

variability of menstrual cycle length. Then since the mean exposure of a subject

is unknown, we impose a reasonable assumption on a single measurement of the

exposure for a single subject, that the measurement fluctuates around the individual

mean exposure µi via a random normal disturbance εij. Also the mean exposure

(µi) for subject i varies around the overall mean from the population µ via another

random normal disturbance bi, i.e.,

xij = µi + εij i = 1, . . . , k; j = 1, . . . , ni (5.1)

and

µi = µ + bi i = 1, . . . , k (5.2)

where we assume bi
iid∼ N(0, σ2

b ), εij
iid∼ N(0, σ2

ε ), and bi and εij are mutually inde-

pendent of each other. In this section 5.2.1, we assume homogeneous within-subject

variance σε; this assumption will be relaxed in 5.2.2.

To simplify the model, we combine (5.1) and (5.2) into a single familiar linear

mixed model as follows:

xij = µ + bi + εij i = 1, . . . , k; j = 1, . . . , ni (5.3)
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To model the relationship between the adverse health outcome and whether the

mean exposure exceeds the threshold, we apply a simple logistic regression model,

i.e.,

logit[P(Yi = 1)] = δ0 + δ1I(µi > t) (5.4)

where t is the exposure mean threshold level, and I(.) is an indicator function, which

takes value one if the criteria in the parentheses is satisfied and zero if not. Since the

true individual mean exposure µi is not available directly, a natural surrogate of that,

denoted as µ̃i, would be the average of the repeated exposure measurements taken

on subject i, i.e., µ̃i = 1
ni

∑ni

j=1 xij. Hence, a ‘naive’ approach would take I(µ̃i > t) as

the explanatory variable in (5.4) in stead of I(µi > t).

A special case in this setting is when we have balanced data so that every subject

has the same number of exposure measurements, i.e., n1 = n2 = . . . = nk = n. In this

case, we develop an approach as a special application of the matrix method proposed

by Barron (1977) to correct for misclassification in binary exposure data.

Basic ideas of the matrix method were reviewed in 1.2.4, where in the current

setting the events ‘E=1’ and ‘W=1’ correspond to ‘µi > t’ and ‘µ̃i > t’. Although

in our case, no validation study is available, we could still estimate the sensitivity

and specificity based on the normal distribution assumptions in (5.1) and (5.2), as

suggested by Lyles & Xu (1999). More specifically,

sen = P(µ̃i > t|µi > t) =
P(µ̃i > t and µi > t)

P(µi > t)

=
P(ε̄i > t− µ− bi and bi > t− µ)

P(bi > t− µ)

=

∫∞
t−µ

Φ[
√

n(bi − (t− µ))/σε]exp[−bi
2/(2σ2

b )]dbi
√

2πσbΦ[(µ− t)/σb]
(5.5)

where ε̄i = 1
n

∑n
j=1 εij. Equation (5.5) holds because bi

iid∼ N(0, σ2
b ) and ε̄i

iid∼ N(0, σ2
ε /n).
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Similarly,

sp = [
√

2πσb(1− p)]−1

∫ t−µ

−∞
Φ[
√

n((t− µ)− bi)/σε]exp[−b2
i /(2σ

2
b )]dbi (5.6)

where p = Φ[(µ− t)/σb].

If we insert estimates of sen and sp in (5.5) and (5.6) into (1.14), and replace

P(W = 1|D = 1), P(W = 0|D = 1), P(W = 1|D = 0), P(W = 0|D = 0) with the

corresponding observed count proportions, (e.g., P̂ (W = 1|D = 1) = P̂ (µ̃i > t|D =

1)), we will get the estimated probabilities of P(E = 1|D = 1), P(E = 0|D = 1),

P(E = 1|D = 0), P(E = 0|D = 0) in (1.14). The true odds ratio for the unobserved

cells takes representation

P(µi > t, yi = 1)× P(µi < t, yi = 0)

P(µi < t, yi = 1)× P(µi > t, yi = 0)
=

P(E = 1|D = 1)× P(E = 0|D = 0)

P(E = 0|D = 1)× P(E = 1|D = 0)

Thus an adaptation of the matrix method provides a viable approach to the mean

threshold problem in the special case where exposure data are balanced, the outcome

is binary, and there are no covariates.

Likelihood Method Given that the matrix method could only be adapted to es-

timate the odds ratio for balanced data, we seek to derive a maximum likelihood

method to handle this misclassification problem with unbalanced data.

Given the random effect bi under (5.4), the binary outcome Yi takes value one

with probability pi, where

pi = P[Yi = 1|bi] =


exp(δ0+δ1)

1+exp(δ0+δ1)
, bi > t− µ

exp(δ0)
1+exp(δ0)

, bi < t− µ

Therefore, with the TDM specified in (5.4), and the MEM dictated in (5.3), and
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along with the non-differential measurement error assumption introduced in (3.2.2),

we are able to write down the likelihood as

L(θ;Y,X)

=
k∏

i=1

(

∫ ∞

−∞
[f(yi|(bi, xij))× (

ni∏
j=1

f(xij|bi))× f(bi)]dbi)

=
k∏

i=1

(

∫ ∞

−∞
[f(yi|bi)× (

ni∏
j=1

f(xij|bi))× f(bi)]dbi) (5.7)

=
k∏

i=1

(

∫ ∞

t−µ

[(

ni∏
j=1

exp(− (xij−µ−bi)
2

2σ2
ε

)
√

2πσε

)× [
exp(δ0 + δ1)

1 + exp(δ0 + δ1)
]yi [

1

1 + exp(δ0 + δ1)
](1−yi)

×
exp(− b2i

2σ2
b
)

√
2πσb

]dbi

+

∫ t−µ

−∞
[(

ni∏
j=1

exp(− (xij−µ−bi)
2

2σ2
ε

)
√

2πσε

)× [
exp(δ0)

1 + exp(δ0)
]yi [

1

1 + exp(δ0)
](1−yi) ×

exp(− b2i
2σ2

b
)

√
2πσb

]dbi)

(5.7) holds under the non-differential measurement error assumption, that the

observed measurements give no more information about the outcome once the true

mean exposure is known. This follows from the definition of the TDM in (5.4). We

are able to estimate θ = (µ, σb, σε, δ0, δ1) by maximizing the integrated likelihood

above using a Newton-Raphson algorithm. The SAS NLPQN function in PROC

IML can conduct this optimization. The SAS procedure NLMIXED also allows user

specification of the observation-specific likelihoods and optimizes the full likelihood

via various optimization algorithms (SAS Institute Inc (2001), SAS Institute Inc

(2008)). We conducted the analysis in both PROC IML and PROC NLMIXED to

assess numerical reliability.

For balanced data, the matrix method assuming MLEs are inserted into (5.5)

and (5.6) is equivalent to the likelihood method but computationally less demanding.

However, for unbalanced data, the matrix method is no longer available because the

sensitivity and specificity calculated in (5.5) and (5.6) vary when ni varies. Hence
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a constant expectation across different subjects is not available, which is required

in the matrix method. On the other hand, the likelihood method is not subject to

the restriction that the number of exposure measurements has to be equal across

the subjects and it can also handle other covariates in the TDM and/or MEM. In

other words, the likelihood method can be more generally applied than the matrix

method. Another difference between the two methods is that the the matrix method

can only obtain an estimated crude odds ratio, i.e., the crude association between the

outcome and whether the individual mean exposure exceeds the threshold. Yet for

other parameters, such as possible covariate effects in the TDM, only the likelihood

method can provide appropriate estimates.

Continuous Adverse Health Outcome

Regression Calibration Approach Now we assume the adverse health outcome

is continuous, while presuming the same mixed random effect model on exposures as

in the case of the binary adverse health outcome (i.e, model (5.3)). Therefore, the

TDM becomes

E(Yi) = δ0 + δ1I(µi > t)

Taking the situation of balanced data as a special case again, an illustrative mis-

classification correction approach that derives from the idea of regression calibration

(see Carroll et al. (2006)) is proposed here.

Regression calibration is a classic approach widely applied by resarchers to correct

for measurement error in continuous exposures. However, in our case, the unknown

latent variable is the categorical variable indicating whether the mean of exposure ex-

ceeds the threshold or not, i.e., I(µi > t). As we discussed in the previous section, the

surrogate for the latent variable is whether the average of the exposure measurements

taken for every subject exceeds the threshold or not, i.e., I(µ̃i > t) = I(x̄i > t). Anal-

ogous to the regression calibration approach for misclassification correction derived
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in Chapter 4.2, we find

δ0 = δ∗0 − δ1[
(1− sen)× P(µi > t)

P(µ̃i < t)
] (5.8)

δ1 = δ∗1
P(µ̃i > t)× P(µ̃i < t)

[sen− P(µ̃i > t)]P(µi > t)
(5.9)

where δ0 and δ1 are the intercept and slope for the desired model with the explanatory

variable being the indicator for whether the true mean exposure exceeds the threshold

or not, while δ∗0 and δ∗1 are the intercept and slope for the model with the surrogate

as the explanatory variable.

Therefore, the procedure for conducting the analogue to regression calibration for

this misclassification problem with balanced exposure data is as follows:

1. Estimate (µ, σb, σε) by fitting the mixed linear model (5.3) to exposure data xij

2. Calculate the estimated sensitivity, specificity and P(µ̃i > t), P(µi > t) based

on the estimated parameters (µ, σb, σε), with sen and sp defined as in (5.5) and

(5.6)

3. Estimate the coefficients δ∗0 and δ∗1 by modelling the outcome yi on the surrogate

µ̃i = x̄i, the average of the xijs. That is, replace µi by µ̃i in the TDM (5.2.1)

4. Obtain the estimate of δ0 and δ1 from (5.8) and (5.9), inserting the appropriate

estimates in those expressions.

Likelihood Method As was mentioned in the case of the binary health outcome,

the likelihood method is in particular demand when the data are unbalanced. In this

case, unlike the binary health outcome, we assume a simple linear regression model

to capture the relationship between the indicator variable for whether mean exposure

µi exceeds the threshold t, and the adverse health outcome yi:
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yi = δ0 + δ1I(µi > t) + ei

where ei
iid∼ N(0, σ2

e)

Therefore, the mean and variance of the outcome, given the random effect bi, are:

E[yi|bi] =

 δ0 + δ1, bi > t− µ

δ0, bi < t− µ

V ar[yi|bi] = σ2
e

In that case, the likelihood becomes

L(Θ;Y,X) =
k∏

i=1

(

∫ ∞

−∞
[f(yi|bi)× (

ni∏
j=1

f(xij|bi))× f(bi)dbi])

=
k∏

i=1

(

∫ ∞

t−µ

[
exp(− (yi−δ0−δ1)2

2σ2
e

)
√

2πσe

× (

ni∏
j=1

exp(− (xij−µ−bi)
2

2σ2
ε

)
√

2πσε

)×
exp(− b2i

2σ2
b
)

√
2πσb

]dbi

+

∫ t−µ

−∞
[
exp(− (yi−δ0)2

2σ2
e

)
√

2πσe

× (

ni∏
j=1

exp(− (xij−µ−bi)
2

2σ2
ε

)
√

2πσε

)×
exp(− b2i

2σ2
b
)

√
2πσb

]dbi)

(5.10)

Again, we can estimate Θ = (µ, σb, σε, σe, δ0, δ1) by maximizing the likelihood above

using Newton-Raphson iteration or similar optimization strategies.

Like the matrix method adaptation presented for binary outcome data, the re-

gression calibration approach proposed here is only appropriate when the data are

balanced. The corrections for both intercept and slope have an explicit form, which

makes numerical iterations unnecessary. Therefore, the method is computationally

superior. Also note that the normality assumption of the errors in the linear TDM

is not necessary for the “regression calibration” approach. However, the likelihood

method can provide the estimated standard errors for the parameters more conve-
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niently than the matrix method adaptation, and more importantly, may be used for

correcting misclassification for unbalanced data and for handling other covariates in

the TDM or MEM.

5.2.2 Heterogeneous Within-Subject Variances

Likelihood Method

As our motivating example (1.1.2) requires modeling the variance of the menstrual

cycle length, in this section we generalize the homogeneous within-subject variance

assumption proposed in (5.3) in section 5.2.1. Instead of assuming a constant within-

subject variance σε for the error term ε, we postulate the within-subject variance vi

follows a lognormal distribution, as proposed by Lyles et al. (1999), i.e.,

Xij = µ + bi + εij i = 1, . . . , k; j = 1, . . . , ni

where

εij|vi
iid∼ N(0, vi), log(vi)

iid∼ N(α, φ2) (5.11)

Therefore, the log-normally distributed vi accounts for randomness in variability of

women’s cycle lengths (Xij) in the same way that bi accounts for randomness in

the mean. The advantage of this extension is that it allows the true within-subject

variances in cycle length (vi), as well as the mean cycle lengths (µi = µ + bi), to vary

randomly across subjects. In the likelihood representation, vi can be integrated out

in the same way that bi is in (5.8) and (5.10). For example, if we look at the exposure

data only, the likelihood of observing the repeated exposures xij in all the subjects

will need a double integration as in the following:

L (θ;X) =
k∏

i=1

{
∫ ∞

0

∫ ∞

−∞
f(xij|bi, vi)f(bi|vi)f(vi)dbidvi}
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If bi and vi are correlated, we presume bi and log(vi) are bivariate normally distributed,

as suggested by Lyles et al. (1999), i.e.,

 bi

log(vi)

 ∼ N


 0

α

 ,

 σ2
b σbv

σbv φ2


 (5.12)

where σbv is the covariance between bi and log(vi). After algebra (Searle (1982)), we

will find

(bi|log(vi) = lv) ∼ N(µ̄, Σ̄)

where

µ̄ = σbv(lv − α)/φ2

Σ̄ = σ2
b − σ2

bv/φ
2

In order to incorporate both subject-specific mean and variance in a disease-

exposure relationship, we consider generalized linear models of the following type:

g[E(Yi)] = δ0 + δ1I(µi > µ) + δ2I(vi > eα) + δ3I(µi > µ)I(vi > eα)

where the threshold for mean cycle length is set at the overall mean µ, and the

threshold for cycle length variance is set at its population median, eα. Here, g is the

link function accommodating different types of outcomes (e.g., continuous, binary,

count etc.)

The structure of the threshold indicator could vary according to different research

questions. For example, in the MSSWOW study, where the exposure pertains to

women’s menstrual cycles, researchers believe the risk of developing an adverse repro-

ductive outcome is associated with abnormally long or short menstrual cycle length,

and/or anomalously large variation in the cycle length (Small et al. (2006)). To be
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consistent with this hypothesis, the above generalized linear model can be adjusted

to take the form:

g(E(yi)) = δ0 + δ1I(t1 < µi < t2) + δ2I(vi < ω) + δ3I(t1 < µi < t2)I(vi < ω) (5.13)

where t1, t2 are the lower and upper bound of the normal lengths of menstrual cycles,

and ω is the threshold of the normal variation in the lengths. All of those may be

set as fixed known constants prior to the analysis, e.g., based on the prior results of

Small et al. (2006).

Although Small et al. (2006) conducted an epidemiologically sophisticated study

that involved careful statistical modelling, from a measurement error/misclassification

perspective their approach is consistent with what might be termed a ‘naive’ method.

That is, the models used were analogous to model 5.13, except with the sample mean

(x̄i) and sample variance (s2
i ) of cycle lengths replacing the true quantities (µi and

vi).

The likelihood considering both disease outcome and the exposure measurements

will be as follows:

L (Θ;Y,X) =
k∏

i=1

{
∫ ∞

0

[

∫ ∞

−∞
f(yi|xij, bi, vi; θ)f(xij|bi, vi; θ)f(bi|vi; θ)f(vi; θ)dbi]dvi}

where Θ here includes all the parameters to be estimated, i.e., (δ0, δ1, δ3, σe, µ, σb, α, φ).

As with our previous work to adjust for misclassification, the advantage of this

likelihood representation is that it allows direct estimates of and inference about

the association between true cycle length means and variances and the outcome of

interest.
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Empirical Bayes (EB) Method

As an alternative to the naive method, where the subjects are grouped based on the

raw sample quantities (x̄i and s2
i ), the EB method will utilize the empirical Bayes

predictors for µi and log(vi) as surrogates for the true classifications. These EB

predictions are estimates of the corresponding posterior means, i.e.,

µ̃i,B = E(µi|Xi) and η̃i,B = E[ln(vi)|Xi]

where ηi = ln(vi), and subscript B indicates the EB estimates. We obtain the EB

predictions by utilizing the standard software, e.g., NLMIXED in SAS (SAS Institute

Inc (2001), SAS Institute Inc (2008)).

Lyles et al. (1999) pointed out the tremendous amount of shrinkage by the EB

estimates in comparison with the sample quantities. Therefore, sensitivity would

generally be lower but specificity would be higher when taking EB predictions as the

surrogates, rather than relying on the sample quantities. The details on comparing

the two surrogates will be discussed in the simulation section.
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5.3 SIMULATION STUDY

5.3.1 Homogeneous Within-Subject Variances

Binary Adverse Health Outcome

Matrix Method To demonstrate the performance of the matrix method adapta-

tion, we simulated 500 datasets, each with a sample size of 300. The true parameter

values are (δ0, δ1, µ, σb, σε) = (1, 1.5, 2.5, 1, 1.5) with the threshold t as 2.5. The

number of repeated exposure measurements is 5 for each subject in the simulation.

Since we are interested in the association between the health outcome and whether

the true mean exposure (µi) exceeds the threshold, and the matrix method can only

provide direct estimates of the odds ratio, the simulation results in Table 5.1 will

present estimates for δ1 only based on 500 simulated data. Also in Table 5.1, five sit-

uations of different combinations of the overall mean and between- and within-subject

variance components are listed to show how those parameters affect the sensitivity

and specificity and the limiting value (δ∗1) of the naive estimators. The threshold t

remains constant at 2.5 throughout all situations. Figure 5.2 visually demonstrates

how the sensitivity and specificity change as the mean and the between- and within-

subject variance change. Each two-dimensional plot is generated when the other two

parameters are fixed to the values of (µ, σb, σε)= (2.5, 1, 1.5).

Table 5.1: Simulation results and hypothetical situations illustrating the matrix
method for binary outcome: simulation results based on 500 simulated datasets,
sample size = 300, t=2.5, number of replicates = 5, and (δ0, δ1, µ, σb, σε) = (0, 1)

µ σb σε SEN SPC δ∗1 δ1(SD)
2.5 1 1.5 0.81 0.81 0.61 1.01 (0.41)
2.5 1 2.5 0.74 0.74 0.47 1.02 (0.53)
2.5 2 1.5 0.90 0.90 0.79 1.01 (0.32)
1.5 1 1.5 0.75 0.90 0.48 1.03 (0.75)
3.5 1 1.5 0.90 0.75 0.54 0.99 (0.57)
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Figure 5.2: Sensitivity and Specificity versus µ, σb and σε. When plotting sensitivity
and specificity versus any one of the parameters µ, σb and σε, the other parameters
are fixed according to: (µ, σb, σε)= (2.5, 1, 1.5). The threshold (t) = 2.5
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From Table 5.1 we could see that the matrix method performs well, in the sense

that the bias and the empirical standard deviation of the parameter δ1 are reasonably

small. The means of the estimated sensitivity and specificity were close to the ones

calculated from the known parameters in the hypothetical situations. The listed

hypothetical situations and also Figure 5.2 demonstrate that sensitivity and specificity

are equal here given that the threshold equals the overall mean µ, which can also be

easily detected from the representation of the sensitivity and specificity in (5.5) and

(5.6). Sensitivity and specificity increase as the between-subject variance σb increases.

The intuition behind this is that when the between-subject variance is large, the mean

exposures of each subject are quite different from the threshold so that it would

be easier to catch whether the mean exceeds the threshold or not. However, the

sensitivity and specificity decrease when the within-subject variance increases. It is

also reasonable because when the within-subject variance is relatively larger, the true

mean exposure would be harder to approximate by the surrogate, the average of the

measurements, which makes the sensitivity and specificity relatively lower. Again,

the trends could also be perceived in formulas given in (5.5) and (5.6).

Likelihood Method For demonstrative and comparison purposes, we also assume

balanced data in this section with the same simulation settings applied for the matrix

method. The simulation results are shown in Table 5.2.

Table 5.2: Simulation illustrating the likelihood approach for binary outcome: results
based on 500 simulated datasets, sample size = 300, t=2.5, number of replicates = 5,
and (δ0, δ1, µ, σb, σε) = (0, 1, 2.5, 1, 1, 1.5)

Parameters True values Mean Est. Emp.SD Mean Est. SE 95% coverage
δ0 0.00 0.000 0.23 0.20 0.92
δ1 1.00 1.000 0.38 0.36 0.95
µ 2.50 2.505 0.07 0.07 0.94
σb 1.00 1.001 0.06 0.05 0.96
σε 1.50 1.506 0.03 0.03 0.94
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As we can see from Table 5.2, the bias associated with each MLE is quite small,

indicating that the estimates are close to the true parameter values on average. The

empirical standard deviations are not far off from the means of the estimated standard

errors. The 95% coverages of the parameters δ0, δ1 and µ are close to 95%.

Continuous Adverse Health Outcome

Regression Calibration Approach For a continuous outcome, we utilize similar

parameter settings as for the binary outcome but add one more variance component

parameter, σe. The true parameter values in the simulation are (δ0, δ1, µ, σb, σe, σε) =

(0, 1, 2.5, 1, 1, 1.5). As mentioned in the method comparison section, the regression

calibration method corrects the estimates of the parameters δ0 and δ1, but provides

no direct information on other parameters. Results are shown in Table 5.3. The

hypothetical situations following the simulation results are a list of five possible nu-

merical combinations of the overall mean and between- and within-subject variance

components, demonstrating how those parameters affect the correction coefficient. In

the hypothetical situations, we assume the true parameter δ1 takes value 1, so the

column for δ∗1 shows how the estimated parameters based on the naive method would

attenuate the effect. Therefore, for demonstrative purpose, the estimates of δ∗1 from

hypothetical situations are obtained directly from equation (5.9) assuming δ1 is 1,

without simulating data.

Figure 5.3 illustrates how the correction coefficient changes as the mean, between-

and within-subject variance change. Again, the other parameters are set to constant

as the values of (µ, σb, σε)= (2.5, 1, 1.5), when one of the three parameters is plotted

against the correction coefficient at one time.

The simulation results suggest the regression calibration approach performs rea-

sonably well in the special case when the data are balanced, in that the mean esti-

mated δ0 and δ1 are close to the true values and the empirical standard deviations
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Figure 5.3: Regression calibration coefficient versus µ, σb and σε. When plotting the
regression calibration coefficient versus any one of the parameters µ, σb and σε, the
other parameters are fixed according to: (µ, σb, σε)= (2.5, 1, 1.5)
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are reasonably small. The hypothetical situations as well as the plots in Figure 5.3

illustrate that the correction coefficient gets to the lowest point when the overall

mean of the exposures equals the threshold. The correction coefficient decreases as

the between-subject variance σb increases, which is expected as Figure 5.2 suggests

the sensitivity and specificity increase as σb increases. Also the correction coefficient

increases while the within-subject variance σε increases. The intuition is also that

the larger the within-subject variance is, the less accurate the average of the repeated

measurements could be, therefore the more correction would be needed.

Likelihood Method Simulation results based on the same simulation settings as

demonstrated for the regression calibration method are displayed in Table 5.4.

The simulation results suggest that the performance of the likelihood method is

quite good, in that the bias of the estimates is very small in each case. The means

of the estimated standard errors are close to the empirical standard errors. And the

95% coverages are close to 95 for most of the parameters, including δ1, which we are

most interested in.

Table 5.3: Simulation results and hypothetical situations illustrating the regression
calibration approach for continuous outcome: simulation results were based on 500
datasets, sample size = 300, t=2.5, number of replicates = 5, and (δ0, δ1, µ, σb, σe, σε)
= (0, 1, 2.5, 1, 1, 1.5). The simulated results provide the mean estimates of the
correction coefficients, δ∗1 and δ1.

µ σb σε cor. coeff. δ∗1 δ1(SD)
Simulation results 2.5 1 1.5 1.72 0.62 1.04 (1.23)

2.5 1 1.5 1.55 0.65 1
2.5 1 2.5 2.06 0.49 1

Hypothetical situations 2.5 2 1.5 1.23 0.81 1
1.5 1 1.5 1.84 0.54 1
3.5 1 1.5 1.84 0.54 1
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Table 5.4: Simulation illustrating the likelihood approach for continuous outcome:
results based on 500 simulated datasets, sample size = 300, t=2.5, number of replicates
= 5, and (δ0, δ1, µ, σb, σe, σε) = (0, 1, 2.5, 1, 1, 1.5)

Parameters True values Mean Est. Emp.SE Mean Est. SE 95% coverage
δ0 0.00 0.000 0.10 0.10 0.96
δ1 1.00 1.001 0.16 0.16 0.93
µ 2.50 2.502 0.07 0.07 0.96
σb 1.00 1.002 0.12 0.12 0.94
σe 1.00 1.002 0.05 0.05 0.96
σε 1.50 1.500 0.03 0.03 0.96

5.3.2 Heterogeneous Within-Subject Variances

Analogous to the real data example situation (details will be presented in the next

section), and based on the model described in section 5.2.2, we conducted simulation

where the outcome is binary, the variances of the exposure for each subject are con-

sidered to be different, and the mean and the variance of the exposures are assumed

to be correlated. Simulation results are shown in Table 5.5

The simulation results show that the estimates of the parameters from the likeli-

hood are reasonably close to the true parameter values, and the empirical standard

deviations are close to the mean estimated standard errors. The 95% Wald confidence

interval coverages for the model coefficients are near nominal, all of which suggest

the favorable performance of the likelihood method in modeling both correlated mean

and variance with the heterogeneous subject-specific variation assumption. Compar-

ing to the likelihood estimates, those from both the EB method and the naive method

tend to attenuate the effect to the null, which is consistent with the findings from

much of the measurement error literature. We Observe from the simulation that the

method of “plugging in” the EB predictors still introduces misclassification and does

not guarantee smaller bias than the naive method, which makes sense given that sen-

sitivity is generally decreased and specificity increased via this approach. Although
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Table 5.5: Simulation illustrating the likelihood approach for Modeling Correlated
Mean and Variance: results based on 500 simulated datasets, sample size = 800,
threshold is [26.90, 30.65], number of replicates = 8, and (δ0, δ1, δ2, µ, σb, α, φ, σbv) =
(-0.8, -0.4, 0.3, 28, 2.8, 1.8, 1.0, 2.0)

δ0 δ1 δ2 µ σb α φ σbv

Results Based on Likelihood Method
True Values -0.8 -0.4 0.3 28 2.8 1.8 1.0 2.0
Mean Est. -0.812 -0.371 0.302 27.982 2.742 1.803 0.970 1.902
Emp.SD 0.191 0.230 0.230 0.180 0.140 0.060 0.034 0.211

Mean Est. SE 0.190 0.215 0.221 0.093 0.053 0.038 0.031 0.151
95% coverage 95.4% 93.9% 95.8% – – – – –

Results Based on EB Method
True Values -0.8 -0.4 0.3 – – – – –
Mean Est. -0.801 -0.298 0.208 – – – – –
Emp.SD 0.147 0.167 0.161 – – – – –

Mean Est. SE 0.151 0.157 0.160 – – – – –
95% coverage 96.6% 89.0% 90.6%

Results Based on Naive Method
True Values -0.8 -0.4 0.3 – – – – –
Mean Est. -0.814 -0.286 0.140 – – – – –
Emp.SD 0.274 0.170 0.279 – – – – –

Mean Est. SE 0.263 0.156 0.270 – – – – –
95% coverage 95.6% 89.3% 84.4% – – – – –
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Wannemuehler & Lyles (2007) found for continuous exposures that the use of the sur-

rogate of EB predictors performs similarly to the likelihood method, our simulation

confirms the expected result that the estimates from dichotomizing the independent

variable based on the EB predictors does not provide a consistent estimator.
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5.4 REAL-LIFE EXAMPLE

To demonstrate the proposed method, we get back to the second motivating example

of the MSSWOW study introduced in Section 1.1.2. The research objective here

is to examine whether women with menstrual cycle lengths within a normal range,

and/or with cycle length variation less than a certain threshold, are at lower risk of

experiencing spontaneous abortion. Among a total number of 470 with menstrual

cycle length information in the study (see Small et al. (2006) for details), 162 women

are included in this analysis with pregnancy outcome of either live birth (118 women

[73%]) or spontaneous abortion (44 women [27%]), including subclinical spontaneous

abortion, blighted ovum and clinical spontaneous abortion. For those women with

more than one pregnancy outcome, only the first outcome and cycles up to the first

outcome are included in the analysis. We begin with a preliminary look into the

exposure of menstrual cycle data with heterogeneous within-subject variance model

structure when the mean and variance are correlated, as in (5.3), (5.11) and (5.12).

Table 5.6 presents the estimated nuisance parameters µ, σb, α, φ and σbv based on

the exposure data only.

Table 5.6: Estimated Nuisance Parameters µ, σb, α, φ and γ Based on Preliminary
Analysis of the Exposure Data with Heterogeneous Within-Subject Variance Model
Structure When the Mean and Variance Are Correlated

Parameters Estimate Standard Error
µ 28.78 0.24
σb 2.78 0.23
α 1.83 0.13
φ 1.03 0.12

σbv† 2.13 0.44
�The estimated correlation coefficient corr(µi, log(vi)) is 0.74

With the estimated nuisance parameters from the exposure model, we dichotomize

the subjects’ mean and variation of menstrual cycle lengths based on whether their
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mean cycle length in days is within the normal range of [26.90, 30.65] (corresponding

to 25% and 75% percentile of the normal distribution with mean and variance from

the estimated parameters) and the variance exceeds the threshold of 4.8 (mean of the

lognormal distribution from the estimated parameters) or not. The threshold cut-offs

for the mean are different from Small et al. (2006), due to taking advantage of the

estimates from the exposure model with random effects. We apply the same thresholds

across the three methods (likelihood method, EB method and naive method) for

comparison purposes, although in the absence of a random effects exposure model,

people often utilize the sample quantiles as the cut-off points.

Regarding the outcome model, the interaction between the mean and variance

is perceived to be insignificant in our data example, and herefore is left out of the

model. In addition to the dichotomized mean and variance of the cycle lengths as the

independent variable, we control in the model for dichotomized maternal age by the

cutoff of 35 years of age. In the analysis, we built models with cycle mean only, cycle

variance only and both mean and variance in the model. Tables 5.7 - 5.9 present the

estimates for those models from the likelihood method, empirical Bayes method and

the naive method.

Tables 5.7 and 5.9 show that those women with cycle mean within the middle

two quantitles [26.90, 30.65] bear lower probability of experiencing spontaneous abor-

tion than those with cycle mean shorter or longer than the normal range, suggested

consistently by the likelihood method, EB method and naive method. In terms of

the magnitude of the estimated effects, the naive method and the EB method both

appear to attenuate the effect, comparing to the likelihood method. On the other

hand, Table 5.8 and 5.9 reveal that the dichotomized cycle variability appears to be

an insignificant risk factor for spontaneous abortion as implied by all methods. The

estimated variance effect from the models with only dichotomized cycle variance and

maternal age from Table 5.8 is slightly further from the null by the naive method
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Table 5.7: Estimated Odds Ratio for The Association Between Spontaneous Abortion
and Whether the Menstrual Cycle Mean Exceed The Threshold Based on MSSWOW
Data

Results based on Results based on Results based on
likelihood model Emp. Bayes method naive model

Risk Factors OR 95% Wald CI OR 95%Wald CI OR 95% Wald CI
Mean of the cyles 0.23 0.05, 0.97 0.49 0.24, 0.99 0.44 0.19, 1.05([29,33] vs. (<29 or >33))

Maternal Age (<35 vs. ≥35) 0.58 0.22, 1.49 0.65 0.27, 1.56 0.59 0.24, 1.42

Table 5.8: Estimated Odds Ratio for The Association Between Spontaneous Abortion
and Whether the Variance Exceed The Threshold Based on MSSWOW Data

Results based on Results based on Results based on
likelihood model Emp. Bayes method naive model

Risk Factors OR 95% Wald CI OR 95%Wald CI OR 95% Wald CI
Variance of the cycles 0.72 0.22, 2.37 0.91 0.44, 1.89 0.65 0.30, 1.37(<23 vs. ≥23)

Maternal Age (<35 vs. ≥35) 0.64 0.27, 1.52 0.64 0.27, 1.53 0.68 0.28, 1.61

Table 5.9: Estimated Odds Ratio for The Association Between Spontaneous Abor-
tion and Whether the Menstrual Cycle Mean and Variance Exceed Their Respective
Thresholds Based on MSSWOW Data

Results based on Results based on Results based on
likelihood model Emp. Bayes method naive model

Risk Factors OR 95% Wald CI OR 95%Wald CI OR 95% Wald CI
Mean of the cyles 0.22 0.05, 0.97 0.42 0.20, 0.92 0.41 0.17, 0.99([29,33] vs. (<29 or >33))

Variance of the cycles 0.69 0.20, 2.39 0.68 0.31, 1.50 0.57 0.26, 1.24(<23 vs. ≥23)
Maternal Age (<35 vs. ≥35) 0.56 0.22, 1.47 0.61 0.25, 1.47 0.62 0.25, 1.49
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as compared to the likelihood method, while the EB has the estimated effect closest

to the null. However, with mean cycle length and maternal age controlled for in

the model, the magnitute of the estimated variance effects are all similar across the

three methods. The same occurs for maternal age, i.e., it is an insignificant covariate

with very similar estimated effects from all the methods after adjusting for the cycle

means and variations. The confidence intervals stemming from the EB method are

narrower than those from the likelihood method, likely due to the fact that the vari-

ations of the EB predictions are not incorporated into the second stage model, where

the predictions are “plugged in” as surrogates.

Figure 5.4, plotting the estimated probability of spontaneous abortion from like-

lihood method acorss different subject groups, shows the highest risk for those with

cycle mean outside of the normal range and large cycle variation. The lowest risk is

associated with cycle means within the normal range and smaller cycle variations. As

the adjusted dichotomized maternal age effects are estimated to be similar across the

three methods, the figure in the upper panel looks quite similar to that in the lower

panel but on a different scale of probability.



109

Figure 5.4: Estimated Probability of Experiencing Spontaneous Abortion for Various
Subject Groups with Young and Old Maternal Ages
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Chapter 6

SUMMARY AND FUTURE

WORK
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6.1 Summary

This dissertation discusses statistical models in three scenarios, all of which focus

on correcting for misclassification of exposures with repeated measurements. For all

three scenarios, the true exposures are unknown to the researchers, and measurable

only by means of an error-prone surrogate method, which explains why the misclas-

sification of the exposures occurs. Although for each of the three study scenarios,

the research question of interest is identifying the association between a disease out-

come and exposure-related explanatory variables, the details on the exposure-related

explanatory variables are different. One focuses on the probability of exposure, an-

other on the exact binary exposure status, and the last on the whether the true mean

and/or variance of exposures taken repeatedly over time exceeds a threshold. In the

first two scenarios the unknown exposure is binary, and for the last one continuous

exposures are converted to categories in a manner that is common in epidemiology.

The first two scenarios are motivated by the same data, from a sub-study of

the Baltimore-Washington Infant Study (BWIS). The research question in the first

scenario is whether those infants with higher parental probability of exposure to lead

tend to have higher probability of developing TAPVR, a congenital cardiovascular

malformation. By presuming a beta distribution on the true exposure probability,

we obtain the estimated association by maximizing the marginal likelihood of the

observed exposure replicates and the disease outcome status. The results suggest a

significant association between developing TAPVR and the parental probability of

exposure to lead without controlling for covariates, while after controlling for race as

a covariate, the significance goes away. Simulation results suggest the naive model

based on an obvious surrogate for the probability of exposure attenuates the extent

of association.

The second research question is whether true parental binary exposure status to

lead has any relation with the infant’s probability of developing TAPVR. We apply
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the regular latent class model with a TDM in the situation that the replicated expo-

sure assessments are independent. We also extend a previously proposed latent class

model with random effects by attaching an additional TDM layer to the model, when

we believe the replicated exposure assessments are correlated conditional on true

exposure status. The estimated association obtained by maximizing the marginal

likelihood suggested that those infants with parental lead exposure tend to have sig-

nificantly higher probability of developing TAPVR without controlling for covariates.

Again, this relationship became insignificant when covariates were controlled. Sim-

ulation results show noteworthy attenuation of the exposure-disease relationship by

means of the naive model based on surrogates.

Unlike the first two scenarios, the third scenario is dealing with continuous ex-

posures. Motivated by a reproductive health study, the research question is whether

women’s mean menstrual cycle length being abnormally long or short, and/or unusual

cycle length variability, has any association with a reproductive outcome (e.g., a spon-

taneous abortion). By imposing a mixed random effects model on the exposure, the

estimated associations between the disease outcome and the mean and variability of

exposure are obtained by a maximum likelihood approach. The matrix and regression

calibration methods are also derived to address special cases of the this scenario when

all the subjects have the same numbers of repeated measurements. Simulation studies

are conducted, and real-life examples based on the MSSWOW study are provided.

As a prelude to the third scenario discussed above, we also deliberate a generic ex-

posure misclassification problem when the outcome is continuous, which is essentially

a misclassification issue in a typical ANOVA setting. To adjust for the misclassifica-

tion in this generic setting, we gain information from validation data to estimate the

sensitivity and specificity. Details on estimation methods from different study designs

with internal or external validation data are discussed. Two approaches, including

regression calibration and a full likelihood method, are deliberated with simulation
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support.

6.2 Future Research

Potential future research topics will include:

� Generalizing the methods of Chapter 3 to situations involving both categorical

explanatory variables and outcomes with more than two levels.

Chapter 3 demonstrates methodologies to adjust for misclassification when both

explanatory variables and outcomes and binary. The methods can be general-

ized to cases when predictors and outcomes are categorical variables with more

than two levels. When the outcomes are categorical with more than two levels,

one could substitute proportional logit model to the logistic regression model

in Chapter 3. When the predictors are categorical with more than two levels,

say high exposure, moderate exposure, low exposure etc., one could consider

the predictor as ordinal in the proportional logit model.

� Exploring semiparametric models for the topic in Chapter 5, allowing for flexi-

ble model assumptions.

Tsiatis and Ma (2006) proposed a local efficient estimate approach based on

generalized estimating equations to allow for more flexible and robust models.

The local efficient estimator is efficient when the underlying distribution as-

sumption is correct, but the estimator remains consistent when the underlying

distribution is misspecified. Possible future work includes applying the local

efficient estimates to our topic in Chapter 5 to allow for flexible distributions

(e.g., other than normal).

� Modeling the discrete time hazard of pregnancy as the outcome in the MSS-

WOW data.
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Small et al. (2006) considered the association between menstrual cycle char-

acteristics and both the risk of spontaneous abortion and fecundity (time to

pregnancy). They modeled the quantity of discrete time hazard, e.g., defined

as the conditional probability that a woman became pregnant in a given men-

strual cycle conditional on not being pregnant in the prior cycles. The reason

for taking the conditional probability as the outcome was mainly due to the

concern of the informative number of cycles. For example, if there is strong as-

sociation between the mean cycle length and the fecundity, those women with

shorter cycles contribute fewer cycles to the analysis because it takes less cycles

for them to get pregnant. In contrast, by taking the advantage of the fact that

the outcome of spontaneous abortion happened after the exposure window, uti-

lizing it as the outcome avoids the complexity of the outcome model in order

to keep the focus on demonstrating our misclassification adjustment methods.

For further research, study of both outcomes would undoubtedly enrich our

perspectives and insights into the misclassification adjustment method under

various research questions.

� Analytically seeking the optimized threshold in association between menstrual

cycle lengths and the reproductive outcome from the MSSWOW data.

In the demonstrative example, we derived the threshold boundaries as esti-

mated percentiles based on our random effects model for exposure. However,

there may be optimized thresholds that best reveal the association between the

cycle lengths and the reproductive outcome. Prior literature discusses para-

metric and semiparametric/nonparametric ways of detecting such thresholds.

In future work, we will consider incorporating our misclassification framework

into a reasonable threshold-exploring procedure to better reveal the underlying

associations.
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