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Abstract

A Flask Framework for Visual Attention-Prompted Prediction
By James Song

Deep Neural Networks (DNN) have demonstrated remarkable performances in the field
of Computer Vision (CV), showing promising potentials in various areas. However, the
’black box’ nature of the DNNs introduces challenges on ensuring the interpretability
of such models, making it difficult to trust DNN models on fields with high stakes. In
response, visual explanation-guided learning utilizes human annotated explanations
in training to guide DNN model’s reasoning process, making it more reasonable and
trustworthy. However, this process requires a large number of explanation annotations,
which takes a lot of resource to prepare, resulting in the emergence of visual attention-
prompted prediction. This approach involves utilizing visual attention guidance during
the application stage instead of in the learning phase, and thus eliminates the need
of large amount of visual explanations and enables the direct guidance from the
end user. To help facilitate this process, we propose a visual attention-prompted
prediction framework that provides a user friendly application for real-time visual
attention annotation and comparison between predictions with and without explanation
guidance. Though the proposed framework can work with any convolutional neural
networks (CNN) provided by the user, we still provide an already trained CNN model
for out-of-box experience. The provided model incorporates a novel co-training process
for prompted and non-prompted models, making the non-prompted model to have
similar reasoning process as the prompted model. Extensive experiments on four real
world datasets demonstrate the effectiveness of our provided model in situation where
visual prompt is scarce. A detailed instruction of how to use our framework is also
provided.
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Chapter 1

Introduction

Deep Neural Networks (DNN) have demonstrated remarkable performances in the field

of Computer Vision (CV), showing promising potentials in various areas including

transportation, healthcare, finance, etc. However, the ’black box’ nature of the

DNNs introduces challenges on ensuring the interpretability and explainability of

such models, making it difficult to apply DNN models on fields with high stakes

[1]. In response, the concept of Explainable AI (XAI) has emerged with the aim

of interpreting and understanding the rationales behind DNN models’ predictions

[26]. With the development of techniques such as CAM, Grad-CAM, and integrated

gradients, researchers are able to generate saliency maps, which highlight the areas on

the input data that contribute most to the models’ predictions [29, 24, 21], making

DNN models more transparent and trustworthy.

Besides the effectiveness of XAI in interpreting DNN models’ rationales, XAI also

aims to enhance DNN models’ predictive performances by improving their reasoning

process. One of the approaches is to incorporate human expert’s knowledge into the

model’s reasoning process and thus ensures the correctness and reasonableness of the

prediction results, which is called explanation-guided learning [28]. Explanation-guided

learning in CV has been explored through recent years and has been proven to be

1
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effective in improving accuracy of DNN model’s predictions and reducing the disparity

between the model’s reasoning and the human expert’s true reasoning [4, 25, 7, 8].

However, explanation-guided learning requires a large amount of training data with

human-annotated attention maps, which is costly in labor, money, and time [28].

In contrast, in many practical applications, it is relatively easy for users to provide

high-level guidance (visual attention prompts) for DNN model’s predictions. For

instance, in cancer imaging, clinicians can quickly identify areas that would potentially

indicate whether the patient has cancer or not. This approach introduces the human

guidance to the DNN model during the application stage instead of training stage,

and thus is called attention-prompted prediction. As a result, an efficient framework

that enables users to incorporate their guidance into the model’s decision-making

process is in need. To tackle this challenge, Zhang et al. [28] proposed the Visual

Attention-Prompted Prediction and Learning framework that aims to integrate visual

attention prompts into the model’s decision-making process, distills knowledge of

human guidance from prompted model to non-prompted model, and refine incomplete

visual attention prompts.

This study focuses on implementing Zhang et al.’s previous work into a user friendly

application to facilitate the real-time visual attention-prompted and non-prompted

predictions. The main contributions of this paper are as follows:

• A user-friendly application based on Zhang et al.’s work, developed to enable

users to incorporate human annotated visual attention prompts into their DNN

model’s decision-making process in real time.

• A pipeline that provides direct comparison between performances of visual

attention-prompted and non-prompted models under the same setting.

• Implementation of a state-of-the-art visual attention-prompted learning model

[28] as the default model for the application.
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• Comprehensive analysis on experiments on real-world datasets to demonstrate

the effectiveness of the framework and detailed instructions for how to use the

application.



Chapter 2

Background

This section introduces previous studies related to XAI in CV, aiming to provide

comprehensive background knowledge in the field.

2.1 Attention-guided Learning

The integration of human’s insights into interpretable DNN models, also known as

attention-guided learning, has been extensively studied in natural language processing

(NLP) and CV domains. Narang et al., Hsieh et al., Raffel et al. [18, 11, 22] have trained

language models using extracted rationales and labeled supervision. Meanwhile in CV,

attention maps that highlight essential areas on the image, such as those generated by

Grad-CAM [24], or intrinsic attention mechanism [27] have been utilized as attention

guidance in model training. Combined with the prediction loss, these guidance can

further improve models’ performances [3, 25, 9]. Besides using attention guidance

to directly improve model’s performance, frameworks that help reduce the dispartiy

between model’s reasoning and human’s true reasoning have also been proposed. Shen

et al. [25] proposed a conceptual framework called HAICS that allows direct display of

attention maps from convolutional neural network (CNN) and enables users to evaluate

the attention maps using scribble annotations. And Gao et al. [7] developed a novel

4
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and robust model objective to handle inaccuracy, incompleteness, and inconsistency

in human annotations.

2.2 Attention Prompt

Prompting originates from NLP as a method to guide language model with instructions

to desired outputs [16]. Later it is adapted by Dosovitskiy et al. [5] for CV tasks.

Jia et al. [12] proposed Visual Prompt Tuning (VPT), which introduces a small

number of learnable parameters into the input space of Vision Transformer (ViT)

model during the finetune stage. Paiss et al. [19] adopted an explainability-based

approach to improve one-shot classification for images with text prompts. Li et al. [14]

proposed saliency prompts generated from saliency masks to accelerate and enhance

the pre-train process of instance segmentation model. Though these works all involved

utilizing prompts along with original image as inputs, our work is different from them

as we are using human-labeled attention map directly as the prompt.



Chapter 3

Approach

This chapter aims to provide a comprehensive demonstration of our proposed method.

The chapter would start with the problem formulation to establish the concepts related

to the problem and our approach. Then, the section of implementation would introduce

the platforms and libraries used to develop our framework. Overall framework would

provide a walk through of how to use our framework. Finally, the model section would

explain the architecture of the default model in details.

3.1 Problem Formulation

In the context of visual attention-prompted learning and prediction, each sample from

a dataset S would be in the form of (X,P, y) ∈ S, where X ∈ RC×H×W represents the

original input image, with C, H, and W denotes the input image’s channels, heights,

and width, respectively, y is the class label corresponding to the input image, and

P ∈ RH×W , with identical heights and width as the input image but only one channel,

denotes the visual attention prompt for the input image corresponding to its class

label. The visual attention prompt P , in the form of a binary matrix, marks the areas

on the input image that are particularly relevant to the prediction. Thus, the visual

attention-prompted prediction process of model f can be defined as f(X,P ) → y.

6
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3.2 Implementation

Based on the challenges stated earlier, we present Visual Attention-Prompted Pre-

diction (VAPP) framework. It is a browser-based user interface that allows users to

annotate their own datasets and test the annotated images with their own model. It

is implemented with a lightweight back end built with Python Flask, compatible with

PyTorch [20], a widely used Machine Learning (ML) and visualization libraries in

Python. The front end was developed using HTML, CSS, and JavaScript, enabling

dynamic user interaction including uploading models, setting tasks, and labeling

images. More detailed technical settings can be found in our GitHub repository.

3.3 Overall Framework

3.3.1 Loading Model and Data

The Visual Attention-Prompted Prediction framework allows users to upload their

CNN models and datasets. Currently, the framework is compatible with one of the

most widely used Python libraries for building CNN, PyTorch [20]. Before starting

the framework, users need to first put their models and datasets in the specified

folders. Then, upon starting the framework, it would automatically scan the ’model’

and ’images’ files respectively for available models and images. On the initial web

page, users would be asked to select the specific models for both visual prompted

and non-visual prompted predictions, and set the class labels for the task they want

to test. The dataset, if correctly saved in the corresponding folder, will be loaded

automatically. In the case that the users do not have a specific model to test, the

framework also provides a Visual Attention Prompted Learning (VAPL) [28] model

with ResNet18 as the backbone as default for testing and demonstration. Similarly,

if users do not specify the class label, the framework would provide the index of the
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class with the highest probabilities predicted by the model. Otherwise, the framework

would convert the model output into corresponding class. After setting up the model

and label classes, users can click the ’submit’ button and move on to the next phase

for annotation.

3.3.2 Annotation

If the previous stage is set up correctly, The Visual Attention-Prompted Prediction

framework would continue to the next stage where it would ask users to start annotating

the images from the uploaded dataset. For each image, the framework would display

the original image on the left as a reference and also provide the same image as

a canvas on the right. Users can annotate the image by circling what they would

consider as important areas for prediction with the mouse on the image. If users

are not satisfied with what they have drawn, they can use the right click to erase

the strokes or click the ’Remove All’ button to erase all of their drawings on the

current image. Once they are done with the labeling, they can click ’Submit’ button

to send both the image and the user-labeled visual attention-prompt as the input to

the models and check the prediction results.

3.3.3 Result & Evaluation

After users submit their customized attention-prompt, the framework would convert

users’ drawings into binary matrix and perform a element-wise multiplication with

the preprocessed original input image, in the back end. Then, both the original image

and their product would be sent into the models for prediction, respectively. Once the

models generate the corresponding predicted class probabilities, the framework would

convert each of them into the classes with the highest probabilities, and present them

to the users. Along with the prediction results, the framework would also present

the original input image and the user-labeled image, the inputs of the two models
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respectively, on the side for users’ comparisons and evaluations.

3.4 Model

The default model provided by our framework uses ResNet18 [10] as the backbone.

This section will introduce both the structures of ResNet18 and our selected model.

3.4.1 ResNet

ResNet [10] is a convolutional neural network (CNN) specifically engineered for image

recognition tasks. The defining feature of ResNet is its use of residual blocks (Fig.

3.1), facilitating the training of very deep networks.

Figure 3.1: Residual Block of ResNet

As shown in Fig. 3.1, each residual block contains two 3× 3 convolutional layers

connected by a rectified linear unit (ReLU) activation. Each of the convolutional layers

is followed by a batch normalization. Besides going through the two convolutional

layers, the input of the residual block would also go through a shortcut connection

to be added to the output of the second convolutional layer, allowing the network
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to learn residual mappings effectively. The number of filters in each block would

remain constant within a stage but may vary across stages to enable hierarchical

feature learning. The existence of the shortcut connection helps mitigate issues such

as vanishing gradients, enabling the training of very deep networks with efficiency and

accuracy.

Besides the residual blocks, ResNet also contains other components. Typically,

ResNet would begin with an initial convolutional layer with a 7× 7 kernel, 64 filters,

and a stride of 2. This initial layer provides feature extraction from the original

input image. It is then followed by batch normalization and ReLU activation for

stable and efficient training. A max pooling with a 3× 3 kernel and a stride of 2 is

applied to down-sample spatial dimensions while preserving essential features. After

the initial convolutional layer, several residual blocks are connected to the network.

The first convolutional layer in some residual blocks would adopt a stride of 2 to

further down-sample the input by half. In such cases, the corresponding shortcut

connection applies either padding with zero entries or linear projection on the input

matrix to match the dimensions (shown in Fig. 3.2 as the shortcut connection with

dotted arrow). After the initial convolutional layer and all the residual blocks, ResNet

incorporates global average pooling for spatial aggregation and feature summarization.

Finally, a fully connected layer with softmax activation is appended to ResNet to

generates class probabilities. The number of neurons in the layer corresponds to the

number of classes in the classification task. Therefore in general, a ResNet would

contain an initial convolutional layer, several residual blocks, and a fully connected

layer.

The exact number of residual blocks in ResNet can vary, yielding various complex-

ities and capabilities of models. In ResNet18, ’18’ refers to the total number of the

weight layers in the network. Therefore, ResNet18 would have 1 initial convolutional

layer, 8 residual blocks (2 convolutional layers for each), and 1 fully connected layer,



11

Figure 3.2: Structure of ResNet18

resulting in a total of 18 layers (see Fig. 3.2). Similarly, ResNet34, ResNet50, etc

would have 34 layers, 50 layers, and more, respectively.

3.4.2 Visual Attention-Prompted Learning

The visual attention-prompted learning model (VAPL) [28] utilizes ResNet18 structure

as the backbone of the model and adopts a parameter-sharing and co-activation

framework [28] (Fig. 3.3). This framework mainly consists of two paralleled ResNet18

models denoted as fm and fo. Specifically, fm is responsible for attention-prompted
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Figure 3.3: Structure of Visual Attention-Prompted Learning

prediction while fo is responsible for prediction based solely on original input image.

The novelty of VAPL is that instead of training fm and fo independently, VAPL

aims to leverage the interrelation of the two functions and to train both functions

together, resulting in similar activation patterns within the two functions. The similar

activation patterns would then enable the transfer of knowledge learned through visual

prompt from fm to fo. This is achieved through the integration of two regularization

terms: parameter-sharing regularization and co-activation regularization:

Lparam(θfm , θfo) =∥ Wfo −Wfm ∥2F (3.1)

LActiv(θfm , θfo) =∥ S(fo(X))− S(fm(X ⊙ P )) ∥2F (3.2)

where ∥ · ∥2F is the squared Frobenius norm [17], Wfo and Wfm represent the convo-

lutional layer parameters of the two models, and S(fo(X)) and S(fm(X ⊙ P )) are

the outputs of the two models before their fully connected layers. In addition, the

cross-entropy loss between the ground truth label and the predictions made by the

two models can be formulated as:

LPred = −
K∑
i=1

C∑
a=1

ŷia(log(p
ia
m) + log(piao )) (3.3)
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where ŷia is the ground truth label for class a of the i-th sample in one-hot encoding,

and piam and piao are the predicted probabilities for class a of i-th sample made by fm

with visual prompt and by fo without visual prompt respectively. Thus, the learning

objective of VAPL can be formulated as:

minimize LPred + λ1LParam + λ2LActiv (3.4)

where λ1 and λ2 are the weighting hyperparameters for parameter-sharing and co-

activation.



Chapter 4

Experiments

This chapter demonstrates the design of the experiments, including the introduction

of the datasets and explanation of the experimental setup. The design of experiments

follows the same guideline as that of Zhang et al. [28].

4.1 Dataset

To test the effectiveness of the default model (VAPL) provided by the framework,

experiments were conducted on four datasets: two sourced from MS COCO [15] and

Places365 [30], respectively, and formulated into real-world scenarios, and two from

the medical field - LIDC-IDRI (LIDC) [2] and the Pancreas dataset [23].

The dataset extracted from MS COCO was formulated into Gender classification

[7]. 1, 600 images with ’men’ or ’women’ included in the captions were extracted

from MS COCO. Images with both genders, multiple people, or unclear figures were

excluded in the extraction process. Similarly, balanced ’nature’ and ’urban’ categories

of images were extracted from Places365 for Scene Recognition task [7]. Each image

from the both datasets were manually labeled for human-explanation annotation.

From each dataset, only 100 images were randomly chosen for training to simulate

the limited access to explanations.

14
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As for the datasets in medical field, the LIDC dataset [28] contains lung com-

puted tomography (CT) scans of nodules with annotated lesions. These scans were

preprocessed into 2D images with size of 224 × 224 and augmented with noise to

simulate incomplete prompts. Furthermore, negative samples were created by cropping

surrounding areas without nodule from the original CT scans. The final extracted

dataset contained 2625 positive samples with nodules and 65505 negative samples

with no nodule and were randomly split into 100/1200/1200 for training, validation,

and testing with the aim of simulating limited access to human explanations. Last

but not least, the Pancreas dataset [28], with normal abdominal CT scans from

Cancer Imaging Archive and abnormal CT scans from MSD, was preprocessed in

a way similar to that of LIDC, resulting in 281 positive samples (with tumor) and

80 negative samples (without tumor). The samples were split into 30/30/rest while

maintaining class balance for training, validation, and testing.

4.2 Experimental Setup

4.2.1 Comparison Methods

To evaluate the effectiveness of the default model (VAPL) provided by our framework,

comparative studies were conducted with four top attention-guided learning methods

- GRAIDA [6], HAICS [25], RES-G, and RES-L [7]. These comparison methods were

implemented and trained while following the implementation guidelines presented in

their papers. Furthermore, a ResNet18 [10], taking original images as input without

any visual attention prompt, was adopted as the baseline model.

4.2.2 Implementation Details

To ensure the performances of all tested models were comparable and informative,

the settings and hyperparameters for the training phase were set to be consistent
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among all models [28]. All tested models incorporated the ResNet18 architecture as

the backbone. During the training, a batch size of 16 was uniformly adopted. The

number of perturbed masks was set to be 5000 with a pixel conversion probability of

0.1. The training phase of each model contained a total of 10 epochs, and each epoch

included 5 iterations, resulting in 50 training epochs in total. The Adam optimization

[13] was applied to all the models with a learning rate of 0.0001. Finally, to evaluate

the performances of each model, conventional classification metrics including accuracy,

precision, recall, and the F1 score were applied.



Chapter 5

Analysis

This chapter offers a comprehensive analysis of the experiment results [28], as well

as a detailed instruction on how to use our Visual Attention-Prompted Prediction

Framework.

5.1 Results

Table 5.1 shows the performances of each tested methods in terms of the evaluation

metrics on the LIDC and Pancreas datasets [28]. In general, our proposed method

(VAPL) outperforms other attention-guided learning methods on both LIDC and

Pancreas datasets. Specifically, our model achieves the best accuracy and F1 and the

second best precision and recall in pulmonary nodule classification of LIDC, and the

best accuracy, precision, recall, and F1 in pancreatic tumor classification of Pancreas.

Furthermore, our method demonstrates significant improvements from the baseline

ResNet18 method. With an accuracy of 69.45% and 92.31% and an F1 score of

71.13% and 95.30% on the two datasets respectively, our method shows respective

enhancements of 3.05% and 7.22% on accuracy, and of 7.66% and 5.08% on F1 over

the baseline ResNet18 approach. The significant improvements over the baseline

represents the effectiveness of incorporating explanations into the prediction phase.

17
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Table 5.1: Performances of tested models on LIDC and Pancreas datasets. The best
result of each metric is in bold, and the second best result is underlined [28].

Model
LIDC Pancreas

Accuracy Precision Recall F1 Accuracy Precision Recall F1

Baseline 66.40 59.29 69.02 63.47 85.09 98.82 83.69 90.22
GRADIA 67.44 65.65 73.19 68.99 83.13 99.04 81.12 89.10
HAICS 66.86 64.71 74.60 69.14 86.44 98.99 85.10 91.24
RES-G 68.56 67.93 71.46 69.27 89.89 98.94 89.17 93.79
RES-L 68.35 65.97 76.28 70.55 89.79 98.07 89.88 93.78
VAPL 69.45 67.43 75.25 71.13 92.31 99.84 91.03 95.30

Meanwhile, the fact that our method achieves the highest F1 scores in both LIDC

and Pancreas datasets proves that the overall performances of our method exceeds

that of all other attention-guided learning methods.

On the other hand, table 5.2 exhibits the performances of all tested models on

gender classification and scene recognition tasks in Gender and Scene datasets [28].

Similar to the results in LIDC and Pancreas (table 5.1), VAPL also demonstrates

superior performances over other attention-guided learning models on both tasks by

achieving the best accuracy, precision, and F1 scores in both datasets. VAPL also

shows siginificant improvements from the baseline ResNet18 method. These results in

Gender and Scene match with the results in LIDC and Pancreas, and thus further

fortify the conclusions that our proposed way of utilizing attention prompt in prediction

is effective and that our method outperforms other prominent attention-guided learning

methods.

5.2 Instruction for the Visual Attention-Prompted

Prediction Framework

This section provides a detailed step-by-step instruction on how to use our Visual

Attention-Prompted Prediction Framework.
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Table 5.2: Performances of tested models on Gender and Scene datasets. The best
result of each metric is in bold, and the second best result is underlined [28].

Model
Gender Scene

Accuracy Precision Recall F1 Accuracy Precision Recall F1

Baseline 68.35 67.45 69.98 68.69 93.42 94.87 91.68 93.25
GRADIA 70.01 67.83 74.35 70.94 95.03 96.21 92.55 94.34
HAICS 69.29 66.42 73.61 69.83 94.89 95.73 92.94 94.31
RES-G 71.33 69.98 78.53 74.01 95.91 96.22 95.35 95.78
RES-L 70.39 68.41 73.29 70.77 95.53 96.98 94.56 95.75
VAPL 73.36 71.43 76.88 74.05 96.39 97.43 94.48 95.93

After obtaining the framework from GitHub repository and configuring the envi-

ronment with ’requirements.txt ’, the user needs to put the model and dataset into the

corresponding directories. The model provided by the user should be a PyTorch model

file with a ’.pt ’ or ’.pth’ file extension, and it should go into the ’./model/ ’ directory.

Meanwhile, the folder that contains images for labeling and prediction should go into

the ’./static/images/ ’ directory.

Then, the user needs to open a terminal, initiate the corresponding virtual envi-

ronment, and navigate to the directory containing the framework. Before running the

framework, the user would need to run the ’init code.py ’ script first. This process

scans all the images uploaded by the user and prepare them for the annotation task.

This process also enables the framework’s ability to resume from where the user left

out last time.

Now, the user can start labeling images for visual attention-prompted prediction

by running ’app.py ’ and going to http://127.0.0.1:5000 with any web browser.

The first page that the user would see is the page for model selection (Fig. 5.1. The

framework requires two models in total: a model to predict with visual prompt and a

model to predict without visual prompt. However, the same model can be used, and is

encouraged to be used, for both tasks, since this enables the direct comparison between

the two tasks and reflects the effectiveness of visual prompt. The user can click down

http://127.0.0.1:5000
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the drop-down menu and select a model from there (Fig. 5.2). The framework would

automatically filter out files in the ’./model/ ’ directory with extensions other than

’.pt ’ or ’.pth’. After a desired model is selected for both tracks, the user can move on

to the next stage by clicking ’load’.

Figure 5.1: Framework Page for Model Selection

Figure 5.2: Drop-down menu of Model Selection

This new stage features one of the images provided by the user on the side of

the page as a reference and a canvas for the user to draw their explanations on the
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Figure 5.3: Framework Page for Human Explanation Annotation

original image (Fig. 5.3). The user can use left click to draw circles on the canvas,

highlighting areas deemed to be important for prediction (Fig. 5.4). If the user is

not satisfied with the drawing, he/she can use the right click to erase the drawing

stroke by stroke or click ’Remove All’ to erase all existing drawing. Once the user has

a drawing that he/she thinks reasonable, he/she can click ’Submit’ to send the image

and the annotation into the models for prediction.

Once the two models have generated outputs based on the input image and human

labeled explanation, the framework would convert models’ output from probabilities

of each class to the class label with the highest probability (Fig. 5.5). Along with

the prediction results, the original input image and highlighted areas would also

be presented for examination and comparison. User can click ’next’ to continue

annotating other images. This would take the user back to the page similar to Fig.

5.3.
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When all the images provided by the user have been annotated, an ending page is

presented to the user (Fig. 5.6). The framework would direct the user to a specific

folder where all the user’s annotations are stored. The user can choose to extract

them for future analysis.

Figure 5.4: Ongoing Annotation
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Figure 5.5: Framework Page for Prediction Result

Figure 5.6: Framework Ending Page



Chapter 6

Conclusion

This research presents a novel visual attention-prompted prediction framework, which

incorporates visual attention prompts into the CNN model’s decision-making process.

The framework effectively addresses challenges in visual attention-prompted prediction,

particularly the issue of insufficient prompts for learning, by enabling real time

visual prompts annotation for prompted prediction. The framework also provides

a state of the art visual attention-prompted learning model that enables knowledge

transfer from prompted model to non-prompted model. Meanwhile, comprehensive

experiments have been done over the default model for the framework and other

visual attention-guided learning methods using four distinct real-world datasets,

demonstrating the effectiveness of visual explanations in improving model’s predictive

power and showcasing the outstanding performances of the adopted model.
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