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Abstract

Characteristic Properties of Möbius Transformations and Quasiconformal Mappings

By Daniel James Orner

Möbius transformations make up a very special class of conformal mappings. They are

differentiable, continuous, and bijective in the entirety of their domain and make up the

group of homeomorphisms of the extended complex plane. And with their conformal and

homeomorphic properties they preserve the essence of a shape or space, and thus have

many applications in physics, engineering, and complex analysis. But while Möbius trans-

formations are very beautiful mathematical objects, their rigidity can cause problems when

attempting to apply them to more complicated domains and structures. Thus the concept

of a quasiconformal or “almost conformal” map was developed. Quasiconformal maps are

generalizations of conformal maps and Möbius transformations that are both flexible enough

to be applied to more difficult problems and yet have enough structure to be useful and

interesting. The purpose of this paper is to gather and prove the key characterizations of

Möbius transformations in a clear and succinct manner as well as to generalize some of them

to properties for quasiconformal mappings.
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1 Introduction

1.1 Conformal Mappings

The study of conformal mappings has a long mathematical history which goes back as early

as the sixteenth century. One example of their use during this time is the stereographic

projection, which was widely popular in cartography and had been used at least since the

time of Ptolemy for astronomy [7]. Another is the Mercator projection, which Flemish

mapmaker Gerard Mercator devised in 1541 to draw loxodromes on a globe and to transfer

them to lines on a sheet of paper. Loxodromes are logarithmic spirals toward the north and

south poles which result from following a constant compass bearing and the fact that the

earth is spherical and not flat like a map. The Mercator projection was used to plot these

spirals and aided greatly in naval navigation [7].

Now before we get to the definition of a conformal map I wish to explain a few terms

for the sake of the reader. First, a complex-valued function w = f(z) is said to be analytic

in a given domain if it is differentiable at every point in the domain. A function is injective

if it assigns to every point in the domain exactly one point in the codomain. A function is

surjective if for every point in the codomain there exists a point in the domain that is mapped

to it. A function is bijective if it is both injective and surjective. A Jordan curve is the image

of a circle under an injective continuous map. A function is said to be sense preserving if

it is continuous and preserves the orientation of a Jordan curve. If a function is analytic

then it must be sense preserving or else there will exist a point for which the derivative does

not exist [3]. For example f(z) = z̄ is not sense preserving and its derivative does not exist

except at the origin, thus it is not analytic. A function is said to be homeomorphic (or a

homeomorphism) if it is a continuous bijection whose inverse is also continuous.

Lastly, a brief note on the notation used. Throughout the paper we denote the complex

plane by C, Euclidean n-space by Rn, the extended complex plane by C∞ ≡ C ∪ {∞} (also

known as the one-point compactification of the complex plane), extended Euclidean space

by Rn
∞ ≡ R ∪ {∞}, and the restriction of a map f to a set D by f |D. Note that C∞ and
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R2
∞ are both homeomorphic to the Riemann sphere. Thus the real number line (or x-axis) is

equivalent to a circle and the upper half plane is equivalent to a disk in these two topologies.

Definition 1.1. A mapping w = f(z) is conformal if it preserves the angle between two

differentiable arcs. Equivalently, a mapping is conformal if and only if it is analytic and

homeomorphic in some domain D ⊆ C∞ [3].

Conformal maps are helpful because they can be used to transform complicated shapes

and spaces into simpler ones while preserving some of the defining properties of the shape

or space. Thus they are extremely important in complex analysis and many areas of physics

and engineering. One example often studied in physics is a type of problem known as a

boundary value problem. Because conformal maps are analytic and homeomorphic, they

preserve certain values along the boundary of a given domain. Specifically we have the

following theorem from [3].

Theorem 1.2. Suppose that there is a domain C whose boundary, ∂C, is a smooth arc on

which the transformation w = f(z) = u(x, y)+ i(v(x, y)) is conformal and let Γ be the image

of C under the transformation. If a function h(u, v) satisfies either of the conditions h = h0

or dh
dn

= 0 along ∂Γ, where h0 is a real constant and dh
dn

denotes derivatives normal to ∂Γ,

then the function H(x, y) = h[u(x, y), v(x, y)] satisfies the corresponding condition H = ho

or dH
dN

= 0 along ∂C, where dH
dN

denotes derivatives normal to ∂C.

The following example illustrates one such boundary value problem and comes from [3].

Suppose we want to find an expression for the steady temperatures T (x, y) in a thin, semi-

infinite plate y ≥ 0 whose faces are insulated and whose edge y = 0 is kept at temperature

T = 0 except for the segment −1 < x < 1, where it is kept at temperature T = 1. We will

call this domain C. This problem can be written as: find a function T (x, y) such that

Txx(x, y) + Tyy(x, y) = 0 (−∞ < x <∞, y > 0), (1.1)

and

T (x, 0) =


1 when |x| < 1,

0 when |x| > 1.

(1.2)
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Figure 1.1: The domain C representing a thin, semi-infinite plate.

This problem does not have an obvious answer because of the singular points and restric-

tions on the domain. But we could make it easier if we were able to use a conformal map

to transform this problem into a related problem in a simpler domain. For this example we

will use the conformal map

f = ln
z − 1

z + 1
= ln

r1

r2

+ i(θ1 − θ2)

to map our domain C in the x-y plane into a new domain Γ the u-v plane, where z =

u(x, y) + i(v(x, y)) = u(r, θ) + i(v(r, θ)).

Figure 1.2: The codomain Γ = f(C).

In the above figures the transformation can be visualized by taking point A to A
′
, B to

B
′
, C to C

′
, and D to D

′
. With this new domain condition (1.2) is transformed to

T (u, v) =


0 when v = 0,

1 when v = π.
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Clearly if we let T = ( 1
π
)v then this condition is satisfied, and when we write T in terms of x

and y it will satisfy the boundary conditions in our original problem thanks to Theorem 1.2.

Thus,

T (x, y) =
1

π
arctan

(
2y

x2 + y2 − 1

)
is the solution to our problem. Theorem 1.2 also guarantees that this function accurately

models the temperature on the inside of our plate even though we only used the boundary

values in order to construct it. This result has even more significance when attempting to

model the temperature of a three dimensional object of which the inside temperature is not

directly measurable.

The implications of the above example are even more important if we take the Riemann

Mapping Theorem into account. This theorem states that if U ⊂ C is a nonempty, simply

connected open set which is not all of C then there exists a conformal map f from U to the

open unit disk D. This f may be hard to find, but the fact that it always exists implies

that any boundary value problem in a domain satisfying these conditions can be greatly

simplified.

1.2 Möbius Transformations

Möbius transformations are a special class of conformal mappings. They are more rigidly

defined but also have many useful properties that conformal maps do not necessarily have.

They arise naturally in relation to conformal mappings because, as we shall see in Sec-

tion 2, a conformal map defined in the entire extended complex plane can only be a Möbius

transformation. Thus Möbius transformations make up the group of automorphisms of C∞.

Furthermore they are the only conformal mappings in higher dimensions by application of

Liouville’s Theorem [11].

Definition 1.3. Let a, b, c, d ∈ C. A map f : C∞ → C∞ of the form

f(z) =
az + b

cz + d
(1.3)
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such that ad − bc 6= 0 is called a Möbius transformation (also known as a linear fractional

transformation). Furthermore we define f(−d
c

) = ∞ and f(∞) = a
c

in order to prevent a

possible zero in the denominator.

Möbius transformations are conformal because they are analytic and homeomorphic

(which we will prove later). The fact that they are homeomorphisms is a particularly nice

property because they preserve the topological properties of the complex plane. In the study

of topology homeomorphisms are used to compare different spaces and give us a concrete

definition of what it means for two spaces to be topologically “the same,” as well as giving

a method of determining what properties two spaces may share. For example, R2
∞ is home-

omorphic to C∞ and as such mathematicians are able to apply many properties from one

plane to the other with only slight modifications (if any are needed at all). Another result

of this property is that the inverse of a Möbius transformation always exists and is itself a

Möbius transformation. Specifically, given some Möbius transformation f(z) = w, we can

always define its inverse to be

f−1(z) =
dw − b
−cw + a

.

Note that if we multiply the coefficients a, b, c, d of a Möbius transformation by a nonzero

constant λ ∈ C we see that

az + b

cz + d
=
λaz + λb

λcz + λd
.

Furthermore if two sets of coefficients a, b, c, d and a
′
, b

′
, c

′
, d

′
give the same Möbius trans-

formation then there exists a λ such that [9]

a
′
= λa, b

′
= λb, c

′
= λc, d

′
= λd.

We will explore more properties of Möbius transformations in Section 2.

1.3 Quasiconformal Mappings

Although conformal maps and Möbius transformations are wonderful mathematical tools,

they are not always helpful when applied to more difficult problems. Just as a freshman
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physics class begins by assuming ideal conditions and later adds the forces of friction and

drag so we too must modify conformal maps in order to apply them to problems with more

complex domains. This brings us to the concept of a quasiconformal or “almost conformal”

map. While conformal maps preserve angles, quasiconformal maps may deform them, but

only within a limited, finite amount. But to be rigorous we need to specify exactly what this

means. First, a few preliminary definitions. Suppose that D and D
′

are domains in C∞ and

that f : D → D
′

is a homeomorphism. For z ∈ D\{∞, f−1(∞)} and 0 < r < dist(z, ∂D),

we define

lf (z, r) = min
|z−w|=r

|f(z)− f(w)| , Lf (z, r) = max
|z−w|=r

|f(z)− f(w)| ,

and

Hf (z) = lim sup
r→0

Lf (z, r)

lf (z, r)
(1.4)

and call Hf the linear dilation of f at z. This Hf gives us a tool to measure the extent

of the deformation of f caused at a point z and brings us to the metric definition of a

quasiconformal map.

Figure 1.3: Example of computing Lf , lf , and the linear dilation.

Definition 1.4 (Metric Definition). A sense preserving homeomorphism f : D → D
′

is a

K-quasiconformal mapping where 1 ≤ K <∞ if both

1. Hf is bounded in D\{∞, f−1(∞)},

2. Hf ≤ K for almost every point in D.
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Notice that this definition of a quasiconformal map is a natural extension of a conformal

map, or in other words a given map is conformal if and only if it is 1-quasiconformal [5].

Thus the K value gives us a concrete method of measuring the deformation caused by a given

quasiconformal mapping. For example, the map f(z = x+yi) = 2x+yi is a 2-quasiconformal

map. Thus the distortion caused by f is limited by a factor of 2. This can be seen visually

since f turns the unit circle into an oval whose width is twice the height.

Quasiconformal mappings have only been studied since the 1930’s, a relatively short time

compared with the study of conformal mappings. Surely they were known and experimented

with before then, but it was in 1935 that Lars Ahlfors coined the term “quasi-conformal” in

his work on Überlagerungsflächen that earned him a Fields Medal [8]. Oswald Teichmüller

also used quasiconformal mappings during this time to measure a distance between two

conformally inequivalent compact Riemann surfaces, starting what is now called Teichmüller

theory [8]. Today quasiconformal maps are an important study in complex analysis and have

ties to studies of elliptic partial differential equations and geometric group theory, to name

just a few examples. They also have important applications in medical image analysis and

computer vision and graphics [8]. Thus we wish to study them further and will examine

more characterizations in Section 3.

1.4 Quasicircles

One characterization of Möbius transformations which we will prove in the next section is

that they preserve circles in the complex plane, or in other words the image of a circle is

again a circle. Thus, as one might expect, we are interested in studying the image of the

unit circle under a quasiconformal map in order to provide more tools for classifying such

maps. We call such an image a quasicircle, and similarly we call the image of the unit disk

under a quasiconformal map a quasidisk. All quasicircles are Jordan curves but as we shall

see later not every Jordan curve is a quasicircle. We will explore this further in Section 3.
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2 Characterizations of Möbius Transformations

2.1 Known Characterizations

Recall from Section 1.2 that a Möbius Transformation is a map f : C∞ → C∞ of the form

f(z) =
az + b

cz + d

such that ad− bc 6= 0. The following are some important properties of Möbius transforma-

tions, some of which can be found in a good textbook on complex analysis such as [4]. These

properties present some of the beauty and usefulness of Möbius transformations in various

scientific fields. They are also the building blocks to further theorems and characterizations,

and as such I will call upon them on occasion in later sections.

Proposition 2.1. If f is a Möbius transformation then f is a composition of translations,

dilations, and/or an inversion.

Proof. Case I: c = 0. Then d 6= 0 and f(z) = (a
d
)z + b

d
. If f1 = (a

d
)z (a dilation) and

f2 = z + b
d

(a translation) then f = f2 ◦ f1.

Case II: c 6= 0. Then let f1(z) = z + d
c
, f2(z) = 1

z
, f3(z) = (bc−ad)

c2
z, and f4(z) = z + a

c
.

Then f = f4 ◦ f3 ◦ f2 ◦ f1.

Proposition 2.2. If f is a Möbius transformation then f is analytic.

Proof. From Proposition 2.1 we know f is the composition of translations, dilations, and/or

an inversion. All of these can easily be shown to be analytic, and thanks to the chain rule we

know that compositions of analytic functions are also analytic. The only possible exception

is 1
z

which is normally not analytic in C because the limit approaching 0 from the right

and left is ∞ and −∞ respectively. However, with the additional topology that comes from

adding the point at infinity these limits are now equal and so 1
z

is analytic in C∞. Thus f

is analytic.

Proposition 2.3. If f is a Möbius transformation then f is a homeomorphism of the ex-

tended complex plane, that is f is a continuous bijection whose inverse is also continuous.
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Proof. Part I (Injectivity): Suppose f(z) = f(w) for some z, w ∈ C∞. Then

az + b

cz + d
=
aw + b

cw + d

(az + b)(cw + d) = (aw + b)(cz + d)

aczw + adz + bcw + bd = aczw + adw + bcz + bd

adz − bcz = adw − bcw

z(ad− bc) = w(ad− bc)

and this last line implies that z = w since ad− bc 6= 0. Therefore f is injective.

Part II (Surjectivity): Suppose w ∈ C∞. If w = a
c

then let z = ∞, else let z = dw−b
−cw+a

.

Then f(z) = w. Therefore f is surjective.

Part III (Continuity): From Proposition 2.2 we know f is analytic and thus differentiable

everywhere in its domain. This then implies that f is continuous and since f−1 is also a

Möbius transformation then it is also continuous.

Proposition 2.4. The composition of two Möbius transformations is itself a Möbius trans-

formation.

Proof. Let f, g be Möbius transformations such that

f(z) =
az + b

cz + d
, (ad− bc 6= 0) and g(z) =

αz + β

γz + δ
, (αδ − βγ 6= 0).

Then

(f ◦ g)(z) =
a(αz+β

γz+δ
) + b

c(αz+β
γz+δ

) + d
=

(aαz + aβ + bγz + bδ

γz + δ

)
(cαz + cβ + dγz + dδ

γz + δ

) =
(aα + bγ)z + (aβ + bδ)

(cα + dγ)z + (cβ + dδ)

since αδ − βγ 6= 0⇒ γz + δ 6= 0. And

(aα + bγ)(cβ + dδ)− (aβ + bδ)(cα + dγ)

= aαcβ + aαdδ + bγcβ + bγdδ − aβcα− aβdγ − bδcα− bδdγ
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= ad(αδ − βγ)− bc(αδ − βγ) = (αδ − βγ)(ad− bc) 6= 0.

Therefore f ◦ g is a Möbius transformation.

Theorem 2.5. If f is a conformal map defined in all of C∞ then f can only be a Möbius

transformation.

Proof. Suppose f is a conformal map defined in all of C∞.

Case I: Assume f(∞) =∞. First, notice that f 6= 1
z

else f(0) =∞ and f is not injective,

contradicting our assumption that f is conformal and thus homeomorphic. Next, consider

h(z) = f(1
z
). Since h(0) =∞ then 0 is a pole of h, and thus ∞ is a pole of f [4]. Next, we

can apply Taylor’s Theorem to f because f is analytic in C∞. Then

f(z) =
∞∑
n=0

f (n)(z0)

n!
(z − z0)n.

But a contradiction arises if the power of this series is greater than 1. This is because f is

defined in C∞ and by the Fundamental Theorem of Algebra a polynomial of degree n in C∞

has exactly n zeros. Thus if n > 1 then f is not injective. Therefore the order of the pole at

∞ is 1 and f must be a polynomial of degree 1, or in other words f has the form cz + d for

some c, d ∈ C, c 6= 0. Thus f is Möbius.

Case II: Assume f(∞) 6=∞. Then define

g(z) =
1

f(z)− f(∞)

and notice that g is also a conformal map defined in all of C∞ with g(∞) = ∞. Then by

Case I there exist c, d ∈ C, c 6= 0 such that

cz + d = g(z) =
1

f(z)− f(∞)
.

Rewriting this equation we get that

f(z) =
f(∞)cz + df(∞) + 1

cz + d
.

If we let a = f(∞)c and b = df(∞) + 1 then it is clear that f is Möbius since ad − bc 6= 0

because ad 6= bc and c 6= 0.
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Theorem 2.6. For any distinct z2, z3, z4 ∈ C∞ the function

f(z) =
(z − z3)(z2 − z4)

(z − z4)(z2 − z3)

is the unique Möbius function such that f(z2) = 1, f(z3) = 0, and f(z4) = ∞. In addition

if f(z) = w is a Möbius transformation such that f(zi) = wi for i = 2, 3, 4 then w and z are

related by the formula

(w − w3)(w2 − w4)

(w − w4)(w2 − w3)
=

(z − z3)(z2 − z4)

(z − z4)(z2 − z3)

which can be used to find f explicitly in special cases. Thus Möbius transformations are

uniquely determined by their action on three points [9].

Corollary 2.7. Let f be a Möbius transformation. If f has three fixed points then f is the

identity map.

Definition 2.8. If z1, z2, z3, z4 ∈ C∞ then [z1, z2, z3, z4] (the cross-ratio of z1, z2, z3, and z4)

is the image of z1 under the unique Möbius transformation which takes z2 to 1, z3 to 0, and

z4 to ∞. Equivalently,

[z1, z2, z3, z4] =
(z1 − z3)(z2 − z4)

(z1 − z4)(z2 − z3)
. (2.1)

This definition is extended by continuity to include the case when one of the zi is∞ [2]. For

example,

[z1, z2, z3,∞] =
(z1 − z3)

(z2 − z3)
.

We also define the absolute cross-ratio to be the value obtained by taking the absolute value

of each of the differences in the cross-ratio.

Theorem 2.9. Let z1, z2, z3, z4 be four distinct points in C∞. Then [z1, z2, z3, z4] ∈ R if and

only if all four points lie on a circle [4].

2.2 Key Results

Two of the most important characterizations of Möbius transformations is that they are

both cross-ratio and circle preserving. But what is not always stated is that the converse
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is also true: if a function preserves either cross-ratios or circles then it must be a Möbius

transformation. Thus if we have a function which does either then we can apply to it all

the properties of Möbius transformations. In the two following theorems f is assumed to be

sense preserving, a necessary condition in order for f to be analytic.

Theorem 2.10. Let f : C∞ → C∞ be a homeomorphism. f is Möbius if and only if f

preserves cross-ratios.

Proof. Part I: Assume f is Möbius. Pick z1, z2, z3, z4 ∈ C∞. Define g(z) = [z, z2, z3, z4], i.e.

the value of the cross-ratio of z, z2, z3, z4 as z varies. Then g is Möbius by the definition of a

cross-ratio. Let h = g ◦ f−1, then h is Möbius by Proposition 2.4. Notice that h(f(z2)) = 1,

h(f(z3)) = 0, and h(f(z4)) = ∞. Thus h(z) = [z, f(z2), f(z3), f(z4)] by the definition of

a cross-ratio and because a Möbius transformation is uniquely determined by three points

using Theorem 2.6. Therefore

[z1, z2, z3, z4] = g(z1) = (g ◦ f−1)(f(z1)) = h(f(z1)) = [f(z1), f(z2), f(z3), f(z4)].

Part II: Assume f preserves cross-ratios.

Case I: Assume f(∞) =∞. Pick distinct z1, z2, z3, z4 ∈ C∞ all not equal to ∞. Now:

z1 − z4

z2 − z3

=
(z2 − z4)/(z2 − z3)

(z2 − z4)/(z1 − z4)
=

[∞, z2, z3, z4]

[z1, z2,∞, z4]
=

[∞, f(z2), f(z3), f(z4)]

[f(z1), f(z2),∞, f(z4)]

=
(f(z2)− f(z4))/(f(z2)− f(z3))

(f(z2)− f(z4))/(f(z1)− f(z4))
=
f(z1)− f(z4)

f(z2)− f(z3)

because f preserves cross-ratios. Thus

f(z1)− f(z4)

z1 − z4

=
f(z2)− f(z3)

z2 − z3

.

Notice that this ratio is independent of the points chosen. So if we take the absolute value

of both sides of this equation then there exists a positive nonzero constant K ∈ R such that

|f(z1)− f(z4)|
|z1 − z4|

= K.

Then if we rewrite z = z1 and z0 = z4 we get that |f(z)−f(z0)| = K|(z−z0)|. If K = 1 then

f can only be a rotation and/or a translation since this equality holds for any two points in

the domain. If K 6= 1 then f is also a dilation. Thus f = az + b and is Möbius.
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Case II: Suppose f(∞) 6=∞. Compose f with a Möbius map g such that g(f(∞)) =∞

by using Theorem 2.6. Using the results from Case I we then know that g ◦ f is Möbius, g−1

exists and is Möbius, and g−1 ◦ g ◦ f = f . Thus f is Möbius by Proposition 2.4.

Theorem 2.11. Let f : C∞ → C∞ be a homeomorphism. f is Möbius if and only if f is

circle-preserving.

Proof. Part I: Assume f is Möbius. Pick some circle Γ ∈ C∞, produce distinct z2, z3, z4 ∈ Γ.

Then f(z2), f(z3), f(z4) determine a circle Γ′ ∈ C∞. And for any z ∈ Γ, [z, z2, z3, z4] =

[f(z), f(z2), f(z3), f(z4)] by Theorem 2.10 and also [z, z2, z3, z4] ∈ R by Theorem 2.9. There-

fore if z ∈ Γ then the above cross-ratios are equal and are both real numbers, hence f(z) ∈ Γ′,

again using Theorem 2.9.

Part II: Assume f is circle-preserving. Pick a domain D ⊆ C∞ and pick a ∈ D, produce

an open ball Ba 3 a a subset of D such that f |Ba is circle-preserving and injective. Then

produce γ1 Möbius such that γ1(E) = Ba, where E is the area outside the unit circle with

center (0, 1). Such a γ1 exists because of the Riemann Mapping Theorem and Theorem 2.6,

we simply need to invert E and then move it using three points in Ba. γ1 Möbius implies that

γ1(R) is a circle in Ba, call this C. Thus f ◦γ1 maps E into C∞ and (f ◦γ1)(R) = f(C) is also

a circle in C∞ because of our hypothesis. Furthermore, by Lemma 2.3 from [11], f ◦γ1 maps

the upper half plane in E into the inside of f(C). Also, can produce γ2 Möbius such that

γ2(f(C)) = R and the inside of f(C) maps to the upper half plane in C∞. Let F = γ2◦f ◦γ1,

which leaves R invariant and maps the upper half plane to itself. R is invariant, but if we

need to we can also compose F with another Möbius map that fixes 0, 1, and ∞. Then

F = IdE by Theorem 2.2 from [11]. Therefore γ2 ◦ f ◦ γ1 = IdE ⇒ f = γ−1
2 ◦ γ−1

1 and f is

the restriction of a Möbius map to Ba using Proposition 2.4. By Lemma 1.7 from [11], f is

the restriction of this Möbius map to the plane domain D.
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3 Characterizations of Quasiconformal Mappings and

Quasicircles

3.1 Characterizations of Quasiconformal Mappings

In Section 1.3 we gave the metric definition of a quasiconformal map. However, by now

the reader has probably realized that the defined computation of the linear dilation can

be difficult to use because of the limits and supremums involved. Fortunately, we can use

Wirtinger derivatives to simplify the linear dilation when the map is differentiable and acting

on the extended complex plane. For a complex function where z = x+yi we normally define

derivatives in terms of z and partial derivatives in terms of x and y. But we can also rewrite

the function to be in terms of z and z̄, where z̄ = x − yi is the complex conjugate of z, in

which case we get the Wirtinger (partial) derivatives

∂

∂z
=

1

2

( ∂
∂x
− i ∂

∂y

)
and

∂

∂z̄
=

1

2

( ∂
∂x

+ i
∂

∂y

)
.

Thus if f is differentiable in a domain D ⊆ C∞ then Hf can be rewritten as

Hf (z) =
|fz|+ |fz̄|
|fz| − |fz̄|

, (3.1)

where f is assumed to be orientation preserving and fz is the partial derivative of f with

respect to z using Wirtinger derivatives [11]. And if f is conformal then fz̄ = 0 which implies

that Hf (z) = 1 for any z, a fact that agrees with our previous statement that a conformal

map is 1-quasiconformal.

There exist two other definitions of a quasiconformal map besides the metric definition:

the modulus (or geometric) definition and the analytic definition. I will not state the analytic

definition here because I do not use it in this paper but the reader will be able to find it in

[5] if so desired. The modulus definition is stated as follows.

Definition 3.1 (Modulus Definition). A sense preserving homeomorphism f : D → D
′

is

K-quasiconformal if and only if

1

K
mod(Γ) ≤ mod(f(Γ)) ≤ Kmod(Γ) (3.2)
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for each family Γ of curves in D, where f(Γ) is the image of Γ under f and mod(Γ) is the

modulus of Γ, the definition of which we omit here but can be found in [5].

Fortunately, all three definitions are proven to be equivalent in [5] and so they may be

used interchangeably when proving theorems about quasiconformal maps. This is extremely

helpful because it gives more tools with which to solve a problem and formulate conjectures.

For example, the following Proposition would be difficult to prove with the metric definition,

but is quite easy when the modulus definition is used.

Proposition 3.2. If f : D → D
′
is K-quasiconformal and g : D

′ → D
′′

is K
′
-quasiconformal

then g ◦f is KK
′
-quasiconformal and f−1 is K-quasiconformal (note that the inverse always

exists because f is a homeomorphism).

Proof. Let f and g be as defined and let Γ be a family of curves in D. Then

mod(g ◦ f)(Γ) = mod(g(f(Γ)) ≤ K
′
mod(f(Γ)) ≤ KK

′
mod(Γ)

since f(Γ) is a family of curves in D
′
. Similarly we can show that

mod(g ◦ f)(Γ) ≥ 1

KK ′mod(Γ)

thus g ◦ f is KK
′
-quasiconformal. Second,

mod(Γ) = mod((f ◦ f−1)(Γ)) ≤ Kmod(f−1)(Γ)

which implies that

1

K
mod(Γ) ≤ mod(f−1(Γ))

and similarly we can show that

mod(f−1(Γ)) ≤ Kmod(Γ)

Therefore g ◦ f is KK
′
-quasiconformal and f−1 is K-quasiconformal by the modulus defini-

tion.
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In Section 2.2 we proved that a Möbius transformation preserves cross-ratios and we

have shown that quasiconformal maps develop naturally from conformal maps. Thus a

natural question which arose in my research was if quasiconformal maps had a natural

extension of the cross-ratio preserving property as well. This lead me to the definition of

what is known as a quasimöbius map. For ease of notation whenever we are dealing with an

absolute cross-ratio τ = |[z1, z2, z3, z4]| we will denote the absolute cross-ratio of the image

as τ
′
= |[f(z1), f(z2), f(z3), f(z4)]|.

Definition 3.3. Suppose that D and D
′

are domains in C∞ and that f : D → D
′

is a sense

preserving homeomorphism. We say that f is θ-quasimöbius if there is a homeomorphism

θ : [0,∞)→ [0,∞) such that τ
′ ≤ θ(τ) for any τ .

Notice that if θ(τ) = τ for any quadruple of points then f is Möbius by Theorem 2.10.

It turns out that every quasimöbius map is also a quasiconformal map. However, not every

quasiconformal map is necessarily quasimöbius, but there are certain conditions we can add

to make it quasimöbius. First, if a quasiconformal map f is defined in the entire extended

complex plane then it is quasimöbius [10]. If f : D → D
′

is K-quasiconformal and if D is

λ − QED and D
′

is c − LLC then f is θ-quasimöbius with θ depending only on K,λ, and

c [10]. However, the proof of this and the characterization of what it means for D to be

λ−QED and D
′
to be c−LLC is a paper unto itself, but if the reader wishes they can learn

more in [10]. Thus we have the following theorem which directly parallels Theorem 2.10 in

Section 2.2.

Theorem 3.4. Suppose that f : C∞ → C∞ is a sense preserving homeomorphism. Then f

is quasiconformal if and only if f is quasimöbius [10].

Proof. Part I: Assume f is quasiconformal in the extended complex plane. Then f is

quasimöbius via the discussion in the previous paragraph.

Part II: Assume f is quasimöbius. Pick a point z ∈ C∞\{∞, f−1(∞)}. Fix another point

y 6= z and let 0 < r < min{1, |z − y|} such that Lf (z, r) < ∞. Next, choose points a and b
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such that |a− z| ≤ r, |b− z| ≥ r,

|f(a)− f(z)| ≥ (1− r)Lf (z, r), and |f(b)− f(z)| ≤ (1 + r)lf (z, r).

Now let us investigate what happens to a and b as r → 0. First, a → z since |a − z| ≤ r.

Also, b→ z since |f(b)− f(z)| ≤ (1 + r)lf (z, r) and because f is continuous. Hence, keeping

y fixed,

τ = |[a, b, z, y]| = |a− z||b− y|
|a− y||b− z|

→ |z − z||z − y|
|z − z||z − y|

= 1

and

|f(b)− f(y)|
|f(a)− f(y)|

→ 1

as r → 0. On the other hand,

τ
′ ≥ (1− r)Lf (z, r)|f(b)− f(y)|

(1 + r)lf (z, r)|f(a)− f(y)|
.

But f is quasimöbius, so can produce a θ such that τ
′ ≤ θ(τ) for any τ . Thus, as r → 0 we

get that Hf (z) ≤ θ(1). Therefore f is quasiconformal by the metric definition since this is

true for any z.

In summary, while a homeomorphism of C∞ is a Möbius transformation if and only if it

preserves cross-ratios, a homeomorphism of C∞ is quasiconformal if and only if it does not

distort cross-ratios by more than a functional factor θ.

3.2 Characterizations of Quasicircles

As mentioned at the end of Section 1 the study of quasicircles is also a very useful tool for

classifying quasiconformal maps. Recall that a quasicircle is the image of the unit circle

under a quasiconformal map. In the study of quasicircles two important characterizations

arise: the two point inequality and the reversed triangle inequality. For both inequalities we

suppose that Γ is a Jordan curve in the complex plane.

Definition 3.5. Γ satisfies the two point inequality if there exists a constant a ≥ 1 such

that for each pair of points z1, z2 ∈ Γ

min
j=1,2

dia(γj) ≤ a |z1 − z2| (3.3)
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where dia denotes the euclidean diameter and γ1, γ2 are the components of Γ formed from

deleting z1 and z2 from the curve.

Theorem 3.6. Γ is a quasicircle if and only if it satisfies the two point inequality [5].

Proof. Part I: The first part of this proof deals with a specific type of quasiconformal map

called a quasiconformal reflection, and was originally postulated by Lars Ahlfors in [1].

Suppose Γ is a Jordan curve which divides the extended complex plane into two components,

Ω and Ω∗. A quasiconformal reflection is a quasiconformal map f which maps Ω to Ω∗ such

that f(Γ) = Γ and whose restriction to Γ is sense reversing. Ahlfors proved that such an f

exists if and only if there exists a C such that

|P1 − P3| ≤ C|P1 − P2| (3.4)

for any three ordered points P1, P2, P3 in Γ. Ahlfors called this the three point property, a

name which the two point inequality is often called because of their similarity.

Part II: On the other hand, Frederick Gehring proved in [6] that a Jordan curve Γ is a

quasicircle if and only if it admits a quasiconformal reflection. Thus, Γ is a quasicircle if and

only if it satisfies (3.4). But Gehring also took this one step further. He picked two of the

three points from (3.4) and let the third be variable. Thus (3.3) must also hold with a = C

because the C value in (3.4) must hold for any P3 chosen. Conversely, (3.3) implies (3.4) as

long as the third point chosen is within the component of minimum diameter.

Definition 3.7. Γ satisfies the reversed triangle inequality if there exists a constant b ≥ 1

such that

|z1 − z2||z3 − z4|+ |z2 − z3||z4 − z1| ≤ b|z1 − z3||z2 − z4| (3.5)

for each ordered quadruple of points z1, z2, z3, z4 ∈ Γ\{∞}. Note that (3.5) can be rewritten

in terms of absolute cross-ratios:

|[z2, z3, z1, z4]|+ |[z2, z1, z3, z4]| ≤ b

Theorem 3.8. Γ satisfies the reversed triangle inequality if and only if it satisfies the two

point inequality [5].
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Proof. Part I: Suppose Γ satisfies the two point inequality with constant a ≥ 1 and choose

z1, z2, z3, z4 ∈ Γ\{∞}. By relabeling if necessary we may assume that

|z1 − z3| ≤ |z2 − z4|.

Let γ2 and γ4 be the components of Γ\{z1, z3} which contain z2 and z4 respectively. Again

by relabeling we may assume that

dia(γ2) ≤ dia(γ4).

Then

|z1 − z2| ≤ dia(γ2) ≤ a|z1 − z3|, |z2 − z3| ≤ dia(γ2) ≤ a|z1 − z3|,

|z3 − z4| ≤ |z2 − z3|+ |z2 − z4| ≤ (a+ 1)|z2 − z4|,

and

|z4 − z1| ≤ |z1 − z2|+ |z2 − z4| ≤ (a+ 1)|z2 − z4|.

Thus if we let b = 2a(a+ 1) ≥ 1 then

|z1 − z2||z3 − z4|+ |z2 − z3||z4 − z1| ≤ b|z1 − z3||z2 − z4|.

Part II: Suppose Γ satisfies the reversed triangle inequality with constant b ≥ 1. Pick

z1, z3 ∈ Γ\{∞} and let γ2 and γ4 be the components of Γ\{z1, z3}. Suppose that

min
j=2,4

dia(γj) > 2b |z1 − z3| ,

then we can choose z2 ∈ γ2 and z4 ∈ γ4 such that

b|z1 − z3| <
1

2
dia(γ2) ≤ |z1 − z2| and b|z1 − z3| <

1

2
dia(γ4) ≤ |z1 − z4|,

in which case

b|z1 − z3||z2 − z4| ≤ b|z1 − z3|(|z2 − z3|+ |z3 − z4|)

= b|z1 − z3||z3 − z4|+ b|z1 − z3||z2 − z3|

< |z1 − z2||z3 − z4|+ |z2 − z3||z4 − z1|

which is a contradiction to our hypothesis. Therefore Γ satisfies the two point inequality

with a = 2b ≥ 1
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Corollary 3.9. Γ is a quasicircle if and only if it satisfies the reversed triangle inequality.

An interesting point to note is that these inequalities are natural extensions of similar

properties for circles in the same way that the definition of a quasiconformal map is an

extension of that of a conformal map. In other words Γ is a circle if and only if it satisfies

the two point inequality with a = 1 and if and only if it satisfies the reversed triangle

inequality with b = 1 [5]. Thus the constants a and b give us a measure of how close a given

Jordan curve is to being a true circle. The closer the value is to 1 the more circular the curve

and the larger the value the more deformed or elongated it may be.

3.3 Examples

Thanks to the above theorems we can use the two inequalities to decide if a given Jordan

curve is a quasicircle or not. For example, we can use the two point inequality to show

that the Jordan curves in Figure 3.1 are all quasicircles. Similarly, the two Jordan curves in

Figure 3.2 are not quasicircles.

Figure 3.1: Examples of quasicircles.

Figure 3.2: Examples of non-quasicircles.

The geometric reason why the examples from Figure 3.2 fail the two point inequality is

the cusp at the top of the raindrop and in the center of the heart-shaped curve. It is possible

to produce a value for a that satisfies the inequality for two specific points on opposite sides
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of the cusp. But as you travel along the cusp towards the tip the points get closer together

much quicker than the diameter of the component cusp shrinks. For example, in Figure 3.3

we can approximate that |z1− z2| ≈ 2|z′
1− z

′
2| and dia(γ) ≈ 4

3
dia(γ

′
). Then given an a value

that satisfies the two point inequality for z1 and z2 we see that we would need a
′ ≈ 3

2
a in

order to satisfy the inequality for z
′
1 and z

′
2. This effect continues as the points travel towards

the cusp and thus the a value needed continues to grow and no one finite a value works for

any two points. Therefore the two point inequality fails and these are not quasicircles.

Figure 3.3: Example of a cusp failing the two point inequality.

Next, let us consider the rectangle for an example on quantifying the a value of the two

point inequality. We call h the height and l the length of the rectangle and assume that

l ≥ h by relabeling as necessary.

Proposition 3.10. If Γ is a rectangle then it is a quasicircle.

Proof. First, note that in order to satisfy the two point inequality we need a finite a value

such that

a ≥ minj=1,2 dia(γj)

|z1 − z2|
(3.6)

for any two points on the rectangle. So pick z1 and z2 on the rectangle, and let γ be the

component of minimum diameter when those points are removed.

Case I: z1 and z2 are on the same side of the rectangle. Then |z1 − z2| = dia(γ).

Case II: z1 and z2 are on adjacent sides of the rectangle. Then |z1 − z2| = dia(γ) since γ

is two sides of a right triangle of which |z1 − z2| is the hypotenuse.



22

Case III: z1 and z2 are on opposite sides of the rectangle. In order to find z1 and z2

such that the right-hand side of (3.6) is the greatest let us set up the following equation.

First, without a loss in generality let us assume that z1 and z2 are on opposite sides of the

height of the rectangle and are symmetrically spaced from the perpendicular bisector that

cuts the rectangle in half. Notice that if z1 and z2 are not symmetrically spaced from the

perpendicular bisector then we can always modify the positions of the points in order to

create a case with a larger a value. This is done by shifting both of the points the same

amount to a case where they are symmetrically spaced such that |z1 − z2| stays the same

but dia(γ) increases, resulting in a larger a value for (3.6). So let x/2 be the distance from

each point to the previously mentioned bisector (Figure 3.4). Then (3.6) becomes

a2 ≥ f(x) =
x2 + 2lx+ 4h2 + l2

4x2 + 4h2
. (3.7)

Figure 3.4: Finding the point of maximum value for (3.6) in a rectangle.

Notice that f(x) is a fraction of two real polynomials, and thus it is differentiable using

the quotient rule from calculus. Thus

f
′
(x) =

−lx2 − (l2 + 3h2)x+ lh2

2(x2 + h2)2
.
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f
′
(x) will equal 0 when its numerator equals 0, thus we are able to use the quadratic equation

to determine the values of x for which f
′
(x) = 0 and thus (3.7) has a maximum. Thus

x =
l2 + 3h2 ±

√
(l2 + 3h2)2 + 4l2h2

−2l

and since we are only interested in positive x values we can rewrite this to be

x =

√
(l2 + 3h2)2 + 4l2h2 − (l2 + 3h2)

2l
(3.8)

which is always positive since

√
(l2 + 3h2)2 + 4l2h2 ≥ l2 + 3h2.

Note that in order to confirm that this x value is a local maximum we need to find the

second derivative of f and ensure that its value at x is negative, but this is easy to show.

Note also that when x = l then the value of (3.7) is 1 and thus we see that our calculated x

value lies between 0 and l and is realistic with the parameters of Figure 3.4 since the value of

(3.7) is always greater than or equal to 1 when x is positive. We can now use this x value to

calculate the position of z1 and z2 of maximum value for (3.6) and the a value that satisfies

it by plugging x into (3.7). Lastly, if z1 and z2 are not on opposite sides of the height of the

rectangle as we assumed but rather on opposite sides of the length then we can follow the

same process and produce a new function f2 and maximal x value simply by switching the

values for h and l in (3.7) and (3.8). This does not affect our derivatives or other calculations

because h and l are real constants. Then we simply need to compare the maximal values for

f and f2 and set a2 to be the larger of the two. This will then satisfy (3.6) and thus Γ is a

quasicircle.

Notice that if Γ is the unit square then l = h = 1 and using (3.8) x =
√

5− 2. Plugging

this into (3.7) we calculate a ≈ 1.14 which is very close to 1, and thus we see that a square is

relatively close to being a circle. But the greater the difference between l and h the greater

that a becomes and thus the more deformed the rectangle is compared to a circle.
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4 Open Questions

In this paper we have explored many characterizations of conformal mappings and Möbius

transformations and we have seen that quasiconformal maps and quasicircles are natural

extensions of conformal maps and circles. Furthermore, many of the properties of Möbius

transformations and circles also extend naturally to quasiconformal maps and quasicircles

simply by multiplying by a finite constant greater than or equal to 1. This led me to question

whether the same was true with our two key results about Möbius transformations from

Section 2.2. We answered the first of these with the introduction of quasimöbius maps, and

although not every quasiconformal map is necessarily quasimöbius there do exist sufficient

conditions under which this is true. However, whether or not Theorem 2.11 can be extended

to quasiconformal maps is still unknown.

Question 1. Suppose that f : C∞ → C∞ is a sense preserving homeomorphism. Is f

quasiconformal if and only if f takes circles to quasicircles?

We do know that one direction of this question is true: if f is quasiconformal then it

takes circles to quasicircles by the definition of a quasicircle. However, the converse of this

is unknown. I would hypothesize that the converse is true globally because of the similar

result with quasimöbius maps, but a rigorous proof still needs to be written. But if this is

not true then like the quasimöbius maps there are probably conditions we could place upon

f to make it true, and this results in the following question.

Question 2. If a quasicircle preserving map is not quasiconformal in general, then what

conditions can we place upon either f or the domain to make it quasiconformal?
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