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Abstract 

Linear Programming Approach for Q-Learning 

By Xindi Gong 

Reinforcement learning has made into the headlines for its success in games such as Alpha Go 

and in scientific applications such as protein folding and automation. These successful stories 

have inspired a better mathematical understanding of reinforcement learning, which has become 

a very important and active area of research.  

In a reinforcement learning system, the agent's goal is to learn an optimal policy that minimizes 

the total running costs of actions over all successive steps. Given enough time and training trials, 

the agent will eventually learn the optimal policy. But within a complex system, tracking the 

action sequence and the feedback of each action from the environment may be difficult and time-

consuming. In order to learn the optimal policy without observing numerous training trials, we 

consider the reinforcement learning technique Q-Learning and investigate a convex formulation 

of a training problem.  

In this thesis, we apply Q-Learning to a deterministic and discrete-time reinforcement learning 

problem with discrete state and action space. To obtain an algorithm that solves the problem 

numerically, we formulate the learning problem as a linear program based on the Bellman 

equation. Although, linear programming approach solves our problem successfully, we believe 

that linear programming approach has limitations in systems with large state and action space 

and randomness. Our approach will become infeasible very quickly when the number of states 

and actions grows. Despite the limitations, linear programming approach provides insights in 

solving reinforcement learning problems, and further studies on testing limitations and 

improving the approach for complex systems will be included in the future. 
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Chapter 1

Introduction

Reinforcement learning is a type of machine learning training that captures

the learning agent’s optimal behaviors in an uncertain and possibly complex

environment to achieve the goal, obtaining either maximum rewards or mini-

mum costs. This optimal behavior is learned through the agent’s interactions

over time with the environment and the sequence of decisions made based on

its observations, which are very similar to children exploring the world and

learning behaviors that help them to accomplish their goals.

In this game-like environment, the agent gets either rewards or penalties

for the decisions of actions it makes. And with the aim of achieving maximum

cumulative rewards or minimum costs in an uncertain environment, the agent

learns from the trials based on the feedback of its previous experiences and

actions [2]. Although the game designer, the algorithm, sets the reward or

cost policy, which can be considered as the game rule, and gives the agent
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some hints on how to maximize the total rewards or minimize the costs, the

decision making depends on how the agents perform the task, starting from

random trials and finishing with specific sequences of actions. This reward

and cost policy programs the agent to seek a long-term and overall goal,

allowing the agent to learn to avoid the negative-reward actions and to seek

the positive-reward actions.

Other types of machine learning includes supervised learning and un-

supervised learning [2]. While both supervised learning and reinforcement

learning map inputs and outputs, reinforcement learning uses rewards and

penalties as signals for actions, rather than having the agent receive the cor-

rect set of actions when performing a task. Also, reinforcement learning and

unsupervised learning have different goals. Unlike unsupervised learning,

which aims to determine the patterns in data sets, reinforcement learning

intends to find the optimized action model.

A common example of reinforcement learning is dog training. In the

training, dogs learn by rewards for desired responses [3]. In this case, the

dog is the learning agent that is exposed to the environment, the house. The

action states could be the dog sitting, fetching, or shaking hands. Based on

the dog’s action, it may get a reward or penalty in return.

Reinforcement learning algorithms offer tremendous capabilities in sys-

tems that require decision making based on thousands of parallel game

rounds. By leveraging the power of trying and searching on many trials, re-

inforcement learning becomes the most effective way in fields like engineering
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design and artificial captivities. As reinforcement learning helps to find the

suitable actions under certain situation and attain largest rewards, in more

complex situations, it has been used in robotics for industrial automation,

business strategic investment, and personalized recommendations.

1.1 Background of Q-learning

As the ultimate goal of reinforcement learning is for the agent to learn an

optimal policy that accomplishes the maximum rewards or minimum cost,

one may wonder if it is possible to calculate the optimal policy and determine

the best action to take at a given state. In order to study the optimal policy,

the concept of Q-learning was firstly introduced in 1989 by Chris Watkins

in his thesis Learning from Delayed Rewards [5]. Different but similar to

the memory matrix introduced in Watkins’s thesis, the present Q-learning

studies the state-action-value function Q to find the expected rewards for an

agent’s action in a specific state. Thus, the Q-learning has always been an

important algorithm in reinforcement learning, and many approaches have

been proposed.

1.2 Contributions and Outline

The linear programming approach for a deterministic dynamic system has

an ancient history. Mehta and Meyn have proposed a new type of convex
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Q-learning algorithms, the dynamic programming linear program (DPLP),

for deterministic system and then generalized it to Markov decision process

in their pre-print Convex Q-Learning, Part 1: Deterministic Optimal Control

[1].

Built upon Mehta and Meyn’s formulations for their proposition, we uti-

lize simpler notations in this thesis and aim to examine the linear program-

ming approach in depth using an intuitive training example. As the linear

programming approach quickly becomes infeasible as the number of states

and actions increases, we intent to discuss this algorithm’s limitations and

hopefully provide some insights on connecting linear programming to rein-

forcement learning problems.

This thesis begins with an introduction to the finite dynamic system and

the framework of reinforcement learning in Chapter 2. Fundamental con-

cepts such as state-value function, state-action-value function, and Bellman

equation are also introduced with notations. In Chapter 3, we formulate

Q-learning as a linear program in a deterministic, discrete-time RL system

with discrete state and action space. In Chapter 4, in order to obtain an

algorithm that solves the problem exactly, we formulate the learning prob-

lem as a linear program and solve it numerically. Since the LP approach

quickly becomes infeasible when the number of states and actions grows, in

Chapter 5, we survey recently proposed approximation schemes and discuss

the limitations of the linear program-based solution.



5

Chapter 2

Background

In order to formulate problems in the reinforcement learning problems and to

study the optimal reward policy, the basic reinforcement learning system is

modeled based on the Markov decision process. To simplify the system and

problem, we will only deal with a discreet and finite system. In this chapter

we introduce the basic framework of reinforcement learning with a training

example to illustrate key components within the environment. In the second

half of this chapter, we also introduce the Bellman equation, which solves for

the value functions.
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2.1 The Basic Reinforcement Learning Frame-

work

The formal framework of reinforcement learning is driven by finding the op-

timal control of finite Markov decision process (finite MDP), which provides

us a way to formulate sequential decision making [4].

In a finite MDP, we have an agent, the decision maker that interacts with

the environment. At each time step, the agent will choose an action to take.

The environment is then transitioned into a new state, and the agent is given

a reward or a cost as a consequence of the previous action.

The main elements of a MDP Systems includes:

• Agent

• Environment − the physical world in which the agent operates

• State − current situation of the agent

• Action

• Reward or Punishment − the feedback of the agent’s action

This process of selecting an action from a give state, transitioning to a

new state, and receiving a reward happens sequentially over and over again.

Throughout this process, it is the agent’s goal to maximize the cumulative

amount of rewards (or minimizes the cumulative costs) that are received from
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taking a series of actions. Although the agent can both receive reward or pun-

ishment based on its action, for numerical simplification, we now assume the

agents only receive punishment, cost, as its feedback from the environment,

and thus its ultimate goal is to minimizes the cumulative costs.

Suppose in a MDP, we have a discreet set of states X, a discreet set of

actions U , and a set of rewards C. With the assumption that all of these

sets are finite and discrete.

At each time step t, the agent receives some representation of the en-

vironment’s state xt ∈ X. Based on this state, the agent selects an action

ut ∈ U . This gives us the state-action pair (xt, ut). Time is then incremented

to the next time step t + 1, and the environment is transitioned to a new

state xt+1 ∈ X. At this time, the agent receives a numerical cost ct+1 ∈ C

for the action ut taken from state xt. Thus we can think of the process of

receiving a cost as an running cost function c(xt, ut) that maps state-action

pairs to costs. At time t, we have the cost function as

c(xt, ut) = ct+1. (2.1)

What drives a reinforcement learning agent in a MDP is the expected

return. The expected return can be think of as the sum of future cost. Thus

mathematically, we can define the return G at time t as

Gt = ct+1 + ct+2 + · · ·+ cT , (2.2)
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where T is the final time step. Thus, it is the agent’s goal to minimize the

expected return of costs Gt.

For all possible actions an agent might take in all possible states of the

environment, one might wonder what is the probability that an agent will

choose an action in a particular state? In order to answer the question, the

notion of Policy is introduced. A Policy, ψ, is a function that defines how

an agent will act from a certain state.

For a stochastic policy, ψ : X × U → [0, 1] maps a given state to a

probability of selecting possible action at that state. Thus, if an agent follows

policy ψ at time t, then

ψ(ut|xt) = Pro(ut = u|xt = x), (2.3)

indicating the probability of taking action u at state x at time t.

However, in a deterministic setting, which is our focus, the policy ψ :

X → U is a sequence of actions u taken starting at state x for each time step

t

ψ(xt) = ut, (2.4)

meaning that at state xt, the agent can only take the action ut under policy

ψ(x), unless the policy changes.

Thus, our goal to find the optimal policy becomes to find the best action

for the agent to take at a certain state in order to minimize the total expected
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cost G,

min
ψ

E(G). (2.5)

In the finite MDP, the space of states, actions, and costs all have finite

number of elements. Therefore, we have a well defined transition probability

distribution. If the agent start in state xt ∈ X, and after taking action

ut ∈ U , the agent ends up in new state xt+1 ∈ X with an action cost ct ∈ C,

the transition probability distribution is then given by

p(xt+1, ct|xt, ut). (2.6)

Also, probability distribution of each choice of x and u should add up to 1.

Thus, ∑
xt+1∈X

∑
c∈C

p(xt+1, ct|xt, ut) = 1. (2.7)

2.2 Example

To better illustrate the basic reinforcement learning framework, a determin-

istic, discrete-time reinforcement learning training problem is provided. Sup-

pose there is a reinforcement learning agent in the environment, with given

state space X = {0, 1, 2, 3, 4, 5, 6} and action space U = {−1, 0, 1} and the

model is

f(x, u) = x+ u. (2.8)
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The running cost is also given by:

c(x, u) =


0 x = 0 or x = 6

1 else.
(2.9)

At time t0, suppose the agent is at initial state x0 = 0. If the agent’s

desire is to move to state x = 1, what series of actions, or policies, can the

agent follow?

To better understand the system, we can think of the state space as a line

segment, and action space x = 0 as "staying", x = 1 as "going right", and

x = −1 as "going left". One possible action state sequence is shown below

using the diagram 2.1. In the diagram, we picture the agent pictured as a

blue circle, and list out action, state, and cost at each time step based on the

training problem above. The agent takes a series of actions u0 = 1, u1 = 1,

and u2 = −1 to reach the desired state with a total cost G = 2.

There are many other policies the agent can follow to reach state x = 1,

but note that the agent will not be able to stay at x = 1 after it reaches

the state because the agent does not have the option to act u = 0, which is

equivalent to "staying", at x = 1.

Although the agent can move along the line following different policies,

its total cost of actions increases as it takes more action. Remember that

the goal of reinforcement learning is to find the action sequence that allow

the agent to receive the minimum total expected cost, we then introduce the
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Figure 2.1: Example diagram of the agent’s action sequence
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concepts of value function and state-value function to discuss how to find the

optimal action sequence, or we call it the optimal policy.

2.3 Value Function and State-value Function

In terms of cost, selecting one action over another in a given state may

increase or decrease the agent’s cumulative costs. Therefor in addition to

understanding how to select an action, questions like how good a given action

or a given state is for the agent need to be answered. The notion of "how

good" is defined in terms of future expected cost. To determine the value

of certain state and/or action, value function and action-value function are

introduced. With these two functions, we are then able to study the agent’s

best decision on which actions to take at certain states.

• Value Function vψ(x) : X → R

The value function vψ(x), also known as state-value function, indicates

the total costs that an agent can receive from state x to the end of the

sequence following policy ψ. By averaging overall costs, value function

allows us to determine the quality of the policy.

• Action-value Function Qψ(x, u) : X × U → R

The action-value function qψ(x, u), also known as state-action-value

function, indicates the total expected costs that an agent can receive

by taking an action u from state x to the end of the sequence under
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policy ψ. By definition, Q(x, u) function take in state-action pairs and

estimate how good it is for an agent to perform a given action at a

given state. Conventionally, the state-action-value function Qψ(x, u) is

refereed as the Q-function.

As we mentioned before, a policy specifies the agent’s decision of actions

in the environment. Our goal in reinforcement learning system is to find the

optimal policy that gives the agent the least costs. Since we are considering

discrete states, one policy may perform better than other policies. We denote

the optimal policy ψ∗(x) as

ψ∗(x) ≥ ψi(x). (2.10)

By the definition of value function, one policy ψ1(x)is considered better

than ψ2(x) if and only if the value under ψ1(x) is greater than the value

under ψ2(x):

ψ1(x) > ψ2(x) ⇔ vψ1(x) > vψ1(x) for all x ∈ X. (2.11)

Thus the optimal value function Φ(x) has the lowest cost in every state:

Φ(x) = min
ψ
vψ(x) for all x ∈ X. (2.12)

Similarly, the optimal action-value function Q is the minimum for every
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state action pair:

Q∗(x, u) = min
ψ
Qψ(x, u) for all x ∈ X, u ∈ U. (2.13)

The definition of the optimal value function Φ(x) and optimal action-value

function minQ(x, u) is introduced with more detail in section 3.1. With the

optimal value function and optimal action-value function, we can connect

the current and future values of the states and actions, without waiting the

agent to receive all future costs.

2.4 Relevant Work

The calculation and approximation of value function and action-value func-

tion has been an essential approach to understand the agent’s decisions in

a reinforcement learning system. As the value functions and action-value

functions summarize total costs of all actions in the future under the pol-

icy, we are then able to judge the quality or how good different policies are.

If we are able to calculate or approximate the optimal value function Φ(x)

and action-value function minQ(x, u), we can not only estimate the mini-

mum total costs but more importantly determine the best policy that are

not immediately available before long-term observations.

The formulation of optimal value functions are introduced in Chapter 3.7

and 3.8 in book [2]. By pointing out the recursive relationships, Sutton et
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al. decomposed the value function into immediate reward and the future

values. Instead of computing the summation over multiple time steps, such

simplification allows us to find the optimal solution in each sub-problem.

However Sutton et al. also points out that under stochastic policies, the

probability of taking action u at state x and landing in state x′ is uncertain.

Thus, it’s not possible to apply bellman equation directly. Therefore, Sutton

et al. proposed value function vψ(x) and Qψ(x, u) can be estimated through

Monte Carlo methods, which averages over random samples of actual returns.
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Chapter 3

Q-learning Algorithm

In this chapter, the design of reinforcement learning algorithms is for non-

linear, deterministic state space models. The setting is in discrete time and

action space. The problem setup follows the recent work of [1] and the

book [2], but with a simpler and easier notation.

Consider a reinforcement learning problem with discrete state space X

and action space U , and the action and state are related based on the dy-

namical system

xt+1 = f(xt, ut), t ≥ 0, x0 ∼ ρ, (3.1)

where f : X × U denotes the model of the environment and t denotes the

discrete definite time step. In practical situations, f is more likely to be

unknown, and only observations (xt, ut, xt+1) are given. For simplicity, we

will deal with a training problem that f is known to us. The initial state

x0 ∼ ρ and the running cost function c : X × U → R are also given in the
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system.

It is also assumed that an equilibrium (xe, ue) is achieved

xe = f(xe, ue). (3.2)

3.1 Bellman Equation

Based on Chapter 3.7 in book [2] we define v(x) as the value function v :

X → R under the policy ψ:

vψ(x) = Eψ[Gt|xt ∈ X]. (3.3)

Based on the Bellman equation of vale function, we have

vψ(x) =
∑
x

ψ(u|x)
∑
x′,c

p(x′, c|x, u)[c+ vψ(x
′)], (3.4)

where x′ is the next state from x, and p(x′, c|x, u) shows the weight or prob-

ability of landing on state x′ with cost c after taking action u at state x.

But under deterministic policy ψ, we don’t need to take expected value

of the total costs as there is no uncertainty. Also, as the deterministic policy

matches the state to a specific action with no uncertainty,

p(x′, c|x, u) = 1. (3.5)
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Thus, the Bellman equation of value faction becomes

vψ(x) = c(x, ψ(x), x′) + vψ(x
′). (3.6)

We also define Q(x, u) as the action-value function Q : X×U → R under

the deterministic policy ψ:

Qψ(x) = Eψ[Gt|xt ∈ X, ut ∈ U ]. (3.7)

After simplify the expectation operator, we we derive the Q-value Bellman

equation

Qψ(x) = c(x, u, x′) + vψ(x
′), (3.8)

where x′ is the next state from x, and c(x, u, x′) shows the cost of landing on

state x′ with after taking action u at state x.

Detailed derivation for Bellman equation of value function and action-

value function following a deterministic policy can be found in ??.

3.2 Q-Learning: an Introduction

Given the initial state x0 ∼ ρ, and the running cost function c : X ×U → R,

our goal is to find a control sequence u∗(x0) = {ut}∞t=0 that minimizes a given
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cost functional of the form

J(x0,u) =
∞∑
t=0

c(xt, ut), (3.9)

where c : X × U → R is a running cost. When a mathematical description

of the model f and the running cost c are known, solving (3.9) is a dynamic

programming (DP) problem.

We define Φ(x) as the optimal value function Φ : X → R that assigns

the optimal cost-to-go to every state. The dynamic programming equations

associate with the control sequence u∗(x) is then:

Φ(x) = J(x,u∗(x)) = min
u
J(x,u). (3.10)

We then define the optimal state-action-value function, also known as the

Q-function, Q : X × U → R as

Q(x, u) = c(x, u) + Φ(f(x, u)). (3.11)

Thus the Bellman equation is equivalent to:

Φ(x) = min
u
Q(x, u), (3.12)

which can be used for finding the value function Φ and/or Q. Q is very

important to us as the Q-function allows us to extract the optimal action at
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every given state via policy function ψ : X → U

ψ(x) = argmin
u∈U

Q(x, u). (3.13)

3.3 Q-Learning as a Linear Program

Suppose Φ is continuous and vanishes only at equilibrium xe, then we can

find the pair of (Φ, Q) that solves the following linear program:

min
Φ,Q

Ex∼µ [Φ(x)] (3.14a)

subject to Q(x, u) = c(x, u) + Φ(f(x, u)) (3.14b)

Q(x, u) ≥ Φ(x), ∀(x, u) ∈ X × U (3.14c)

Φ(xe) = 0, (3.14d)

where µ is some probability distribution.

Since we assumed that the state and action space are finite, this problem

is indeed a finite-dimensional linear program. Its size grows very rapidly

though as the number of state and actions grow.

A few remarks and explanation about this formulation:

1. The first constraint (3.14b) is exactly the same as the definition of Q

in (3.11).

2. The second constraint (3.14c) is the optimality condition in (3.11).This



3.3 Q-Learning as a Linear Program 21

relaxation is very essential for the algorithms because the minimization

operator in the constraint will make the linear program hard to solve.

3. Similar to equation (23) in [1], we can also relax (3.14b) to inequality

constraints.

4. In the above formulation, although Q can be eliminated, we choose not

to because Q is the main thing we want to learn in Q-learning.
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Chapter 4

Training Problem

In Chapter 2, we introduce a training problem in a deterministic, discrete-

timed, and finite reinforcement learning system. In this chapter, we intend to

numerically solve the previous problem and compare the results we attained

by applying the linear program approach (3.14) formulated in Chapter 3.

4.1 Training Problem

Just as the problem stated in Chapter 2, suppose we have a determinis-

tic and finite reinforcement learning problem. Let the state space be X =

{0, 1, 2, 3, 4, 5, 6} and at each state we have the actions U = {−1, 0, 1} and

the model is

f(x, u) = x+ u. (4.1)
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The running cost is given by

c(x, u) =


0 x = 0 or x = 6

1 else.
(4.2)

Let the distribution of initial states, ρ, be defined by

ρ(x) =


1
5
, x ∈ {1, 2, 3, 4, 5}

0 else.
(4.3)

4.1.1 Numerical Solution

Intuitively, no matter which action the agent decides to choose, the key to

solve this problem is to find the converging state. In other words, we need

to define when the cost of action vanishes at a specific action. Observing the

cost function, we find that at state x = 0 and x = 6, the cost of taking any

action u ∈ U will be 0. Also, if the agent takes action c = 0 at state x = 0

and x = 6, the next state x′ remains the same based on the model f(x, u).

Thus we find the equilibrium state-action pair (xe1, ue1) = (0, 0) and (xe2, u
e
2) =

(6, 0) such that

f(xe1, u
e
2) = 0

f(xe2, u
e
2) = 6,

Based on the definition of Φ(x), finding Φ(x) are equivalent to finding
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minimum cost the agent receives for it to move from the initial state x0 to

the equilibrium state xe.

Suppose the initial state x0 = 2. There are two choices of xe for the

agent to move toward. As x0 is closer to xe1 = 0, the agent will receive less

cost if it decide to move toward xe1. After deciding the destination, there

are also many choices of actions for the agent to take. It can either move

further from the destination at some time step and then move toward the

destination at other time step. But as the cost of action is always greater or

equal to zero, with more actions, the agent will receive more cost along the

way to the equilibrium state.

Thus, with the desire to gain least cost, the agent’s best choice is to move

directly toward xe1 = 0. By taking action u0 = −1, moving to x1 = 1, taking

action u1 = −1, the agent finally arrives at x2 = xe1 = 0. With each of the

action, the agent receive a cost of 1, then the minimum total cost for the

agent starting at x0 = 2 is 2. Therefore we have manually calculated the

Φ(2) = 2.

Suppose the initial state x0 = 5, which is closer to xe2 = 6. Thus, the agent

will receive less cost if it decide to move toward xe2. Similarly, with the desire

to gain least cost, the agent’s best choice is to move directly toward xe2 = 6.

By taking action u0 = 1, the agent finally arrives at x1 = xe2 = 6. With

action u0, the agent receive a cost c(5, 1) = 1, then the minimum total cost

for the agent starting at x0 = 5 is 1. Therefore we have manually calculated

the Φ(5) = 1.
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The calculation of other cases of initial states are similar to the previous

examples, which provides us a result table shown below.

Φ(x)

State(x) 0 1 2 3 4 5 6

Φ(x) 0 1 2 3 2 1 0

Also, based on the definition of Q(x, u), finding Q(x, u) are equivalent to

finding minimum cost the agent receives for it to move from the initial state

x0 with an initial action u0 to the equilibrium state xe. Note that Q(0,−1)

and Q(6, 1) do not exist as the subsequent state x′ is out of bound.

With the Φ(x) in mind, we can also manually calculate the Q(x, u). The

only difference between calculating Q(x, u) and Φ(x) is that the initial action

u0 is given.

For example, suppose we want to calculate Q(1, 1). With initial state

x0 = 1 and initial action u0 = 1, x1 = f(1, 1) = 2. As x1 is closer to x1e,

the agent will receive the least cost if it moves directly toward x1e. Thus by

taking actions x1 = −1, x2 = −1, the agent finally lands on x3 = x1e = 0,

with total cost G = 3. Therefore, minQ(1, 1) = 3.

The calculation of other minQ(x, u) are similar to the previous examples,

and we have the following summary minQ(x, u) table.
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minQ(x, u)

State(x) x = 0 x = 1 x = 2 x = 3 x = 4 x = 5 x = 6

Action(u = 1) 0 3 4 3 2 1 N/A

Action(u = 0) 0 2 3 4 3 2 1

Action(u = −1) N/A 1 2 3 4 3 2

4.1.2 Linear Programming Approach

In order to formulate the problem as linear programming, we follow (3.14),

which we derived based on [1].

We first start by finding the equilibrium xe. Since the running cost is 0

at x = 0 or x = 6, based on the model f(x, u) = x+ u, when the action is 0

or 6, it reaches the optimal state. Thus following (3.14d) we explicitly write

out the equilibrium conditions as

Φ(0) = 0, Φ(6) = 0. (4.4)

The objective function Ex∼µ [Φ(x)] can be written as

∑
p∼µ

(p0 × Φ(x0) + · · ·+ p6 × Φ(x6)). (4.5)

For simplicity, we set each p = 1
7

assuming that the probability of selection

the initial 7 states are the same.

Also as we discussed in section 4.1.1, Q(0,−1) and Q(6, 1) do not exist,

thus the relating constraints also do not exist.
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Following (3.14b) (3.14c) and we can explicitly write out the equality and

inequality constraints in a matrix form in MATLAB.

In MATLAB, we specified linear inequalities as

Ax ≤ b,

where A is a k-by-n inequality matrix,k is the number of inequalities, n is the

number of variables (size of x), and b is a inequality vector of length k.

And we specified linear equalities as

Aeqx = beq,

where Aeq is an m-by-n equality matrix, m is the number of equalities n is

the number of variables (size of x), and beq is a equality vector of length m.

Then we can use MATLAB to create variables for indexing and solve the

linear programming problem with the built-in MATLAB function linprog

following Algorithm 1.

4.1.3 Results

Solving the previous training problem, we have attained the results for Φ(x), Q(x, u)

in the following tables.
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Algorithm 1 Linear Programming Approach for Q-learning
Input Unknown variables: 7 Φ(x) and 19 Q(x, u)
Output Exact value of each Φ(x) and Q(x)

1: Combine 26 variables into one vector variables
2: for v = 1, . . . , 26 do
3: eval([variables\{v\},’ = ’, num2str(v),’;’])

{create variables for indexing}
4: end for
5: Specify Linear Equality Constraints Aeq and beq
6: Write Linear Inequality Constraints A and b
7: Write the objective
8: options = optimoptions(’linprog’,’Algorithm’,’dual-simplex’)
9: [x fval] = linprog(-f,A,b,Aeq,beq,[],[],options)

{Call the solver}
10: for d = 1, · · · 26 do
11: fprintf(’%12.2f \t%s\n’,x(d),variables{d})

{Print the output}
12: end for
13: return Q and Φ
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Φ(x)

State(x) 0 1 2 3 4 5 6

Φ(x) 0 1 2 3 2 1 0

minQ(x, u)

State(x) x = 0 x = 1 x = 2 x = 3 x = 4 x = 5 x = 6

Action(u = 1) 0 3 4 3 2 1 N/A

Action(u = 0) 0 2 3 4 3 2 1

Action(u = −1) N/A 1 2 3 4 3 2

Based on the solution we gained using linear program approach (3.14),

we attained the same solution with numerical method and the LP-based

approach.
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Chapter 5

Discussion

From the previous chapter, we can see that the numerical results and ana-

lytical results are the same, which adds to the credibility of the linear pro-

gramming approach.

Although the approach proposed in (3.14) provides insights on how to

use linear programming in Q-learning, the algorithm has several limitations

that deserve further discussion and research on.

Large or Infinite State Space X and Action Space U

Although based on our result, the linear programming approach are very

successful, our training problem has a finite and very small discreet state

space and action space. What if we want to train the agent to play checkers

game, can we still use the linear programming approach to numerically solve

for the optimal action sequence? With more states and actions, it is very diffi-

cult to capture the agent’s action-reward pairs using the linear programming
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approach. We believe that the linear program will become infeasible as the

number of objective functions and constraints increases, and future research

can be focused on finding the maximum finite state space and action for the

linear programming approach to be still feasible. Also, in more realistic sce-

nario, reinforcement learning systems has infinite action and states sequence,

and thus the future costs become uncertain. In [1], Mehta and Meyn have

some heuristic algorithm to address this limitation and more investigation

should be included in the future.

Discount Factor

In the infinite-time system, the total costs keep growing, leading to an

unbounded problem that are very hard to find the maximum or minimum

value. To mathematically formulate this scenario, we can introduce discount

factors when calculating the total costs and scale down each cost to reach a

convergence.

Thus, let γ ∈ [0, 1] be the discount factor, the total cost Gt becomes

Gt = γ0ct+1 + γ1ct+2 + γ2ct+3 + · · ·+ γT−t−1cT . (5.1)

As T → ∞,

Gt =
∞∑
k=0

γkct+k+1, (5.2)

and the Bellman equation for value function and action-value function will

thus change accordingly.

By introducing a discount factor bounded to be smaller than 1, we are
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able to use the infinite geometric series summation formula to generalize the

formulation. When γ ∈ [0, 1) we give greater weight to sooner costs and less

weight to further costs in future. When γ = 1, we treat all costs equally, and

this is the same case we discussed in (3.14).

Stochastic Policy ψ

As stated in the beginning of this thesis, we only focus on deterministic

policies as there always exists at least one deterministic policy that is optimal.

Also, under a deterministic policy, at every state, the agent has clear-defined

actions to take and thus determine the outcomes. But in more practical

cases, the agent may follow stochastic policies. Under stochastic policies,

instead of having a clear-defined action sequence at every state, the agent

has a probability distribution for actions to take. Thus, instead of being

certain of taking an action, the agent has a probability of taking another

action. Thus, in a stochastic environment, there is an uncertainty about the

action’s rewards or costs. When the agent repeats doing the same action in

a given state, the new state and received reward may not be the same each

time. In this circumstance, can we apply the linear programming approach

in stochastic system and extract the optimal value function and optimal Q-

function?

Although empirical experiments are not conducted because of the limited

time of honors thesis, we believe that the linear programming approach is

not applicable. As we discussed in section 3.1, under a stochastic policy, the

Bellman equation for value function and state-value function all includes the
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probability of taking action u at state x and landing in state x′. As such

probability is uncertain, we could not solve MDP by applying the Bellman

equation directly.

Even though with the help of other estimation methods to calculate value

function and action-value function, the constraints grow even faster than the

deterministic policies with the same amount of action and state space as

we need to consider each action’s probability and its action effect. Thus,

the constraints in (3.14) will become intractable very fast under a stochastic

policy.
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Chapter 6

Conclusion

The linear programming approach for Q-learning we proposed is very success-

ful in dealing with small action and state space under deterministic policies.

With the advantages like small time-cost and memory-cost, linear program-

ming can be used in solving deterministic and finite MDP problems. Our

approach also connects the optimal value function and Q-function. By calcu-

lating either value, we are able to attain the optimal policy without numerous

observations on the agent’s choices of decisions. However, our approach has

limitations in dealing with RL problems, whose state and action space are

large or infinite, because the constraints in the linear program will grow very

fast and thus become intractable. Further research on testing the limitations

of the action and state space under deterministic and stochastic process will

be included in future.
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