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    Abstract 
 

 
 
Genomics studies of population structure and evolution in Neisseria gonorrhoeae 
 
 
 
     By 
 
       Matthew Ezewudo  
 

 
Improvements in whole genome sequencing technology have created opportunities to 
find answers to questions relating to evolution within biological populations and the 
underlying genetic architecture of phenotypes of interest to researchers. This dissertation 
is aimed at seizing this development, to both develop and refine bioinformatics tools that 
could interpret high throughput data from next generation sequencing platforms to 
answer both classical genetics questions and to better characterize microbial populations 
in the emerging microbial genomics field.  
 
In this body of work, we analyzed genome-wide sequencing data of Neisseria 
gonorrhoeae isolates from across the globe to make inferences as to the nature of 
evolutionary forces prevalent in the pathogen population. N. gonorrhoeae causes 
gonorrhea, a sexually transmitted infection of public health relevance because the 
pathogen has shown the ability to evolve resistance to most known antibiotic drugs. It is 
believed that the transformative nature of N. gonorrhoeae underlies this ability. Our 
analysis suggests an appreciable effect of recombination within its population, and also 
reconfirmed the presence of previously described horizontally transferred resistance 
determinants in strains resistant to third generation cephalosporin. 
 
We pointed out some limitations in using the more widespread current sequencing 
technology platforms to make accurate inferences about the nature of whole genome data. 
There is also the need for a broader sample set than the collection we assembled, to 
further characterize this pathogen and similar microbial populations. 
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Chapter 1 

 

Introduction 

My Ph.D. thesis research is focused at the intersection of the study of genetic variation 

within bacterial populations and the development and application of next generation 

sequencing analysis tools. The ultimate goal of my work has been to use the wealth of 

information obtained from genome sequencing in order to gain insight, and ultimately 

solve, significant public health challenges. My work has had two main foci. The first aim 

is to use existing next-generation sequencing to identify genetic variation within strains 

of bacterial that influence their impact on human disease. The second uses genomics-

based approaches to analyze infectious disease pathogen populations. Both efforts are 

driven by recent developments in bacterial whole-genome sequencing capabilities and the 

opportunities provided by such genome-wide data sets. 

 

In this chapter, I introduce my study system Neisseria gonorrhoeae, within the context of 

the disease it causes. Then I highlight concepts from bacteria evolutionary biology, and 

their connection to evolution of antibiotic resistance. Finally, I discuss how analyzing 

high throughput data from next generation sequencing platforms can improve inferences 

on the significance of genetic variants underlying various phenotypes of interest such as 

antibiotic resistance and bacterial virulence. 

 

1.1 Neisseria Gonorrhoeae: Overview of pathogen and disease 

Neisseria gonorrhoeae, also known as the gonococcus, is a Gram-negative bacterium 
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responsible for gonorrhea, a highly infectious sexually transmitted infection (Ohnishi et 

al., 2011). One of eleven members of the Neisseria genus, N.gonorrhoeae, along with N. 

meningitidis are the two Neisseria pathogenic species. Neisseria belongs to the very 

diverse bacteria phylum known as Proteobacteria, which includes a variety of pathogens 

such as Escherichia, Salmonella, Vibrio and Helicobacter. An obligate pathogen, it 

infects only humans, causing urethritis in men and cervicitis in women.  

 

Gonorrhea, also referred to as “the clap”, is an ancient disease (with mentions in the 

bible; Old Testament; Leviticus 15:1-3) and it remains one of the most prevalent sexually 

transmitted infections. The first usage of the term “gonorrhea” was in the second century 

by the Roman physician Aelius Galenus, which implied the ‘flow of seed’, a description 

of the symptom of the disease caused by this pathogen. While there were sporadic 

observations of this bacterium through the millennia that followed, the German physician 

Albert Neisser, in 1879 first described the pathogen and gave its official name (Bergey & 

Breed, 1971). He demonstrated that it was present in to be human patients with 

symptoms. Furthermore he directly demonstrated that when discharges and N. 

gonorrhoeae culture were introduced to urethra of healthy men, they become infected. 

 

According to World Health Organization (WHO) estimates, gonorrhea represent 106 

million out of the estimated 498 million new cases of curable sexually transmitted 

infections globally every year (World Health Organization (WHO), 2012). Gonorrhea 

occurs in all regions of the globe, with the highest number of cases reported in the WHO 

Western Pacific Region (42 million cases) and the WHO South-East Asia Region (25.4 
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million) (Unemo & Shafer, 2014) Left untreated, gonorrhea is associated with high 

morbidity and negative socioeconomic consequences. In addition there is evidence that 

gonorrhea is associated with a five-fold higher risk of co-transmission of HIV in infected 

patients(Cohen et al., 1997; Ohnishi et al., 2011). While a majority of infected women do 

not display any clinical symptoms, only a small proportion of infected men are 

asymptomatic. If these infections remain undetected, N. gonorrhoeae can ascend to the 

upper genital tract and result in severe reproductive complications such as pelvic 

inflammatory diseases, penile edema, endometritis and ectopic pregnancies (Unemo & 

Shafer, 2014). 

 

The only current therapeutic option for gonorrhea is the use of antimicrobial therapy, 

since there is no vaccine for prevention. We have had effective antibiotics since the 

discovery and mass production of penicillin during World War II (Aminov, 2010). 

However, the choice of therapies has dwindled over time due to the emergence of 

antimicrobial resistance to most of the classes of drugs previously used to treat the 

disease and the lack of development of newer antibiotics that could effectively check the 

pathogen (Ohnishi et al., 2011). N. gonorrhoeae is naturally competent for DNA 

transformation; it has developed an elaborate mechanism which allows it to take up 

naked DNA from other bacteria within its environment (Aas et al., 2002). This 

transformative ability is key both in the spread of infection by the pathogen and the 

evolution of antibiotic resistance within its population (Unemo & Shafer, 2011). The 

trend toward resistance to current drugs suggests the need for studies aimed at developing 

therapies based on new targets as well as understanding how resistance to existing 
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antibiotics develops. For both purposes, I will argue that complete genomic information 

about the species is required to meet this emerging public health crisis. Furthermore, this 

kind of knowledge can inform studies of the evolutionary dynamics of other bacteria 

populations. 

 

1.2 Bacteria evolution and population biology 

Evolutionary processes act on genetic variations within the population to perpetuate more 

fit phenotypes within the context of the organism's environment. How such variations 

arise and are maintained within biological populations has been at the center of 

population genetics studies for the past century. After the 1950's, more attention was paid 

to bacteria and pathogenic populations as subjects of population genetics studies than was 

the case previously. Studies in this field have expanded, as approaches used by 

population and evolutionary biologists have increasingly converged with microbiologists, 

immunologists, clinicians and epidemiologists (Didelot, Bowden, Wilson, Peto, & Crook, 

2012a; Levin, Lipsitch, & Bonhoeffer, 1999; Nelson, Whittam, & Selander 1991) to look 

at problems in infectious diseases. As is the case in eukaryotic populations, the major 

evolutionary forces affecting gene and variant frequency in bacterial populations include 

genetic drift and natural selection. 

 

1.2.1 Genetic Drift 

Genetic drift is the change in frequency of an allele in a population, caused by random 

sampling of variants from one generation to the next. The most common model of genetic 

drift draws from the assumptions of the works of Fisher and Wright (R. A. Fisher, 1922; 
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S. Wright, 1931). The model consists of an idealized population model, where random 

sampling of alleles from an finite-sized parental population will result in different 

proportions of alleles in the next generation. The model assumes that there is no mutation 

introducing new alleles or natural selection changing the frequency of existing alleles. 

 

The overall effect of genetic drift is the removal of genetic variation from the population, 

at a rate that is inversely proportional to the population size per generation. Hence, drift is 

predicted to have a greater impact in smaller-sized populations. Because most bacteria 

populations are enormous (where infections may contain 106-1010 cells), genetic drift is 

expected to play a lesser role in the dynamics of allele frequencies over time (Batut, 

Knibbe, Marais, & Daubin, 2014). Alleles may be fixed or lost in a population as result of 

drift and for individual variants there is no directionality to the actions of drift. Were 

genetic drift the only evolutionary force at work in a finite-sized natural population, all 

variation would be lost. However, mutation acts to generate new alleles over time and 

add variation to the population. The balance of mutation and genetic drift on the 

frequency neutral alleles is elaborated in the neutral theory of molecular evolution 

proposed by Motoo Kimura (Kimura & Ohta, 1971). Neutral alleles do not affect the 

evolutionary fitness of the organism, and therefore their frequency should only be 

influenced by mutation and drift. Thus, Kimura suggests that most molecular evolution in 

a population results from the action of genetic drift that tends to remove variations and 

mutations that introduce variations in the first place. 
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At a minimum, the neutral theory provides a convenient null hypothesis that can be used 

to test for the departures that are inconsistent with the sole action of mutation and drift.  

The challenges to the neutral theory of molecular evolution focus largely on the role of 

natural selection in evolution. For example, the neutral theory predicts that organisms 

with shorter generation life spans should evolve faster than those with longer generation 

times. Yet there is strong evidence of similar ranges of heterozygosity across different 

species with vastly different generation times, which seems inconsistent with predictions 

from the neutral theory. 

 

A refinement to the neutral theory, by Tomoko Ohta (Ohta, 1973), suggested that most 

amino-acid mutations are not neutral but are slightly deleterious, and this accounts for the 

observed deviations from the predictions of the neutral theory. While some precepts of 

the neutral theory have been called into question (Rocha & Feil, 2010), other works like 

those of Wagner et al(Wagner, 2008) and Lynch (Lynch, 2007) still suggest a significant 

role for neutral mutations for eventual adaptation and evolution in a population. The	  

nucleotide	  composition	  of	  the	  bacterial	  genome	  can	  best	  be	  explained	  if	  all	  sites	  in	  

the	  genome	  are	  under	  some	  sort	  of	  weak	  selection,	  and	  the	  idea	  of	  purely	  ‘neutral	  

sites’	  is	  considered	  more	  of	  an	  artificial	  construct	  (Rocha & Feil, 2010). 

 

Recent widespread use of genomic approaches to study microbial evolution through 

measuring changes in microbial DNA suggests a pervasive role of positive selection in 

bacteria evolution (Alam et al., 2014; Joseph et al., 2012; Lefébure & Stanhope, 2009) 
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 1.2.2 Natural Selection 

Evolution by natural selection, which leads to adaptation in a particular environment, 

occurs through the perpetuation of variants underlying more fit phenotypes in a 

population. While evident everywhere, natural selection is quite difficult to observe in 

action due to the time scale required to bring about evolution in most eukaryotic 

organism. Bacteria populations on the other hand, with short generation times and often-

difficult environmental forces that provide strong selection pressure, are ideal candidates 

to demonstrate the work of natural selection and selective adaptation (Dykhuizen, 1990). 

The classic work of Luria and Delbruck (Luria & Delbrück, 1943) pioneered the 

experimental evolution approach of studying evolution using bacteria populations and 

offered insights on the role of selection in evolution. Our newfound ability to generate 

genome sequence information spanning different prokaryotic organisms has created more 

opportunities to ‘measure’ evolution in these organisms (Biek, Pybus, Lloyd-Smith, & 

Didelot, 2015) by analyzing evolutionary rate parameters gleaned from these genomic 

data. 

 

Natural selection in bacterial populations could be directional, with either positive or 

negative selection. Negative or purifying selection acts to remove deleterious alleles, 

which reduces variation in the population over time. This results in functionally 

important regions of the genome being more conserved compared to the rest of the 

genome (I. K. Jordan, Rogozin, Wolf, & Koonin, 2002) Positive selection conversely 

favors the survival and reproduction of individuals with variants that offer a competitive 

edge over the rest of the population. Antibiotic resistance in bacteria population is a 
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classic example of strong positive selection, and in situations called selective sweeps, 

positively selected variants completely replace the unselected variants across the 

population (Kaplan, Hudson, & Langley).  

 

Within bacteria, mutations and recombination through horizontal gene transfers are key 

agents that introduce and reassort variation within the population (Biek et al., 2015). The 

balance between these processes underlies how natural selection operates in microbial 

populations. 

 

1.2.2.1 De novo point mutations and bacteria evolution 

Point mutations are considered the basic material for evolution in bacteria. These changes 

normally involve substituting one nucleotide base with another on the genome sequence 

to create Single Nucleotide Variants (SNVs). If a variant increases in frequency above an 

arbitrary threshold (like 1% or 5%), then that variant may be called a Single Nucleotide 

Polymorphism (SNP). A synonymous nucleotide change is one that occurs in the coding 

sequencing of a gene but does not change the encoded amino acid in the protein. This 

class of variation is generally considered to be "neutral," having little or no effect on 

biological functions and is therefore invisible to natural selection. This is likely to be an 

oversimplification (Bailey, Hinz, & Kassen, 2014; Akashi, 1994; Akashi et al., 2006) but 

I will use this approximation in my own work. Conversely, nucleotide changes on protein 

coding sequences that lead to change in amino acid encoded in the codon are said to be 

non-synonymous. Single nucleotide inserts or deletions within a protein coding sequence 

will lead to a frame shift and the downstream codons will be interpreted differently, 
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leading to expression of altered amino-acid sequence. Point mutations in non-coding 

regions of the genome are usually thought of as neutral although they could be  

significant if they alter a regulatory element (Bryant, Chewapreecha, & Bentley, 2012; 

Warner, Folster, Shafer, & Jerse, 2007). Non-synonymous changes are of consequence in 

evolution and could serve as basis for tests for positive selection within a 

population(McDonald & Kreitman, 1991).  

 

Applying the neutral theory, the number of substitutions found on genome sequences of 

individuals within a population given a mutation rate for that population could be used as 

a measure of time - a molecular clock (S. Kumar, 2005) that has elapsed over 

evolutionary history of the population when traced back to previous common ancestor. 

This measure serves as a basis to create phylogenetic relationships between individuals 

sampled from a bacteria population (Didelot & Falush, 2007). 

 

Most non-synonymous mutations are likely to be deleterious and so purifying selection 

holds the level of spontaneous substitutions to a lower level in bacteria populations 

(Drake, 1991). In certain instances, as demonstrated experimentally by Sniegowski et al 

(Sniegowski, Gerrish, & Lenski, 1997) using E.coli species, strains that have mutator 

alleles arise to high frequency within the population in association with an adaptive 

mutation, when the selective cost of the mutator is less than the selective benefit of the 

adaptive mutation. When faced with novel challenging environments higher de novo 

mutation rates often confer a selective advantage(Tanaka, Bergstrom, & Levin, 2003).  
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The advent of next-generation sequencing and the wealth of whole genome information it 

has brought make it feasible to perform deep genome investigations into variations 

between individuals in a species or clone. Using next-generation sequencing techniques, 

one could observe on a genomic scale, the function, rate, type and distributions of point 

mutations in individuals in a bacteria population and draw insights into the evolutionary 

pressures acting in the population as a result of these (Bryant et al., 2012). 

 

Previously in bacterial functional studies, point mutations underlying phenotypes of 

interest were identified mostly using laboratory approaches such as complementation 

analysis (Wassenaar & Gaastra, 2001). Currently, whole-genome sequencing (WGS) and 

analysis allows for unbiased direct identification of variants that underlie phenotypes, 

speeding up understanding of the evolution of virulence and antibiotic resistance in 

pathogens, as a number of recent studies have demonstrated. For example, in the studies 

performed by Renzoni et al, WGS was used to identify SNPs in two isogenic strains of 

the bacteria pathogen Staphylococcus aureus; a parental strain, and a derivative strain 

that had undergone stepwise in vitro selection for resistance to the antibiotic teicoplanin. 

They identified four SNP differences in three loci that were confirmed experimentally to 

underlie the resistance phenotype as well as fitness of the derivative strain (Renzoni et al., 

2011). Similarly, Cosmas et al in their studies on Mycobacterium tuberculosis (Comas et 

al., 2012) reported the discovery of SNPs that compensate for cost of fitness associated 

with resistance to the antibiotic rifampicin. They carried out WGS on both laboratory 

evolved rifampicin isolates and clinical isolates, to understand the difference in fitness 

between these two sets of strain samples. Mapping the variants detected, to a reference 
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genome of M. tuberculosis, they identified 11 nonsynonymous SNPs from the clinical 

isolates, suggesting other genomic variations may have arisen outside of the timeline and 

environment of laboratory experiments to confer fitness advantages to these isolates. The 

work done by Tomasz’s group (Mwangi et al., 2007) demonstrated how the strong 

selection for resistance to antibiotics could lead to point mutations being fixed in the 

population. They sequenced the genomes of increasingly resistant Staphylococcus aureus 

isolates obtained from the bloodstream of a patient over a 4-month period. They observed 

that during this period, the strain accumulated 35-point mutations in 31 loci and this 

correlated with a steep drop in susceptibility of the strain to the antibiotic vancomycin, 

from the beginning of the study until the patient’s death 12 weeks later. Harris et al 

(Harris et al., 2010) in their studies of antibiotic resistance in S. aureus, performed WGS 

of 63 strains of Multi-drug resistant S. aureus (MRSA) and identified 38 homoplasic (not 

identified as shared from common ancestor) SNPs, of which 18 were nonsynonymous 

including ten SNPs previously identified to confer antibiotic resistance. The observation 

that the variants arose independently suggests frequent independent evolution of 

resistance in the pathogen in addition to clonal spread of resistant strains. There have 

been many other similar studies (Chattopadhyay et al., 2009; Mena et al., 2008) that point 

to evidence of positive selection through independent generation of variants on the same 

amino acid position in a sequence of interest. 

 

WGS has also made it more feasible to estimate mutation rates for different bacteria 

species (Biek et al., 2015; Ford et al., 2011). Direct estimation of mutation rates from 

clinical isolates may better reflect mutation rates in natural populations as compared to 
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mutation rates estimated in laboratory strains. Furthermore, whole genome sequencing 

offers the ability to detect most or all of genetic variation within a collection strains. In 

contrast, marker based approaches only sample a portion of the genome and may be 

subject to bias. Mutation rates are crucial in understating the evolutionary biology of 

bacterial species. For instance phylogenetic relationships are inferred using neutral 

mutations. Furthermore, the idea that mutation rates within a species could vary over time 

has been demonstrated by Mena et al. (Mena et al., 2008), through sequencing of 

Pseudomonas aeruginosa from early and later or chronic stages of a cystic fibrosis 

patient. The isolates from the chronic stage had a higher proportion of nonsynonymous 

SNPs that led to loss of functions of genes involved in the infection stage. This suggests 

that genes underlying acute infection might be selected against during chronic infection, 

suggesting hypermutation in long-term infection may improve genetic adaptation. 

 

In summary, point mutations are central to evolution in bacteria population and they arise 

spontaneously at varying rates across bacterial genomes. Most of the neutral point 

mutations that arise within a population are simply lost due to genetic drift. Many point 

mutations are deleterious and are removed by the action of purifying selection over the 

course of evolutionary time. WGS analysis has enabled a rich approach to understanding 

both the rates and breadth of these mutations across taxa, and the inference of 

phylogenetic relationships between sets of isolates. The question of how much of a role 

de novo mutations play in the diversity of bacteria population, especially species that are 

competent and can acquire genetic materials horizontally and from theoretically any other 
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bacteria species, is an ongoing one, as is the actual nature of bacteria taxonomy and 

classification.  

 

1.2.2.2 Impact of recombination in bacteria population 

The concept of bacteria ‘species’ is one that has been beset with ambiguity. In biology, 

especially in terms of eukaryotes, species refers to a group of organisms that are capable 

of exchanging genetic materials, which are passed down to their offspring. Bacteria 

species are generally asexual and haploid and reproduction is through division of their 

cells in binary fission, hence vertical transmission of genetic features predominates. This 

idea of passing down identical genetic material during bacteria reproduction is regarded 

as the ‘clone concept’ or clonality (Levin et al., 1999).  

 

However, early work done by Zinder et al (Zinder & Lederberg, 1952) demonstrated that 

bacteria also exchange genetic materials horizontally between individual cells. This work 

has been extended over the years to highlight sexual DNA exchange as a core process in 

bacterial evolution.  Exchange of genetic material between bacteria is mediated by any 

one of three processes, collectively termed horizontal gene transfer (HGT). These 

processes includes: direct uptake of DNA from the surroundings (transformation); phage 

mediated transduction; and inter-bacteria contact and exchange of DNA (conjugation), 

resulting in the integration of these external DNA materials in the recipient cell through 

recombination (Thomas & Nielsen, 2005). 
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Improvements in DNA sequencing made it obvious that there is a broad extent to these 

horizontal exchanges of DNA, which are most commonly intra-species events but which 

rarely can occur between bacteria cells from different species (Anderson & Seifert, 

2011).  It has become increasingly clear that genetic exchange between bacteria, once 

thought to be uncommon is now reckoned as a significant force driving evolution of 

prokaryotes(Didelot & Maiden, 2010).  Except for a few lineages of genetic 

monomorphic pathogen species, it is indeed now considered unusual to not find genetic 

exchange between bacteria (Achtman, 2008). Sexual DNA transfer appears to pose a 

challenge to the idea of clonal bacteria and bacteria species in general(Shapiro, 2014).  A 

more nuanced view of the idea of bacteria species, is to treat bacteria populations as not 

entirely clonal, rather a set of individual genomes capable of exchanging DNA 

horizontally. There is a varying degree of the ability of different individuals sharing DNA 

in different ecological niches (Didelot & Maiden, 2010; Shapiro, 2014).  

 

HGT promotes acquisition of novel genes from a pool of so called ‘accessory gene pool’. 

Within the pangenome (Mira, Martín-Cuadrado, D'Auria, & Rodríguez-Valera, 2010) or 

the collection of genes among individual bacteria strains in a given population, genes that 

are present in all the strains are referred to as core genes, while those not found in every 

member in the collection are regarded as accessory genes. The acquisition of accessory 

genes within and without a population have been shown in previous studies to impact 

pathogenic population and lead to emergence of new phenotypes (Hacker & Carniel, 

2001). But HGT could also result in homologous recombination, where bacteria import 

genes or genetic fragments, which recombine with homologous genetic regions in their 
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genome, akin to gene conversion process in eukaryotes. Unlike homologous 

recombination in eukaryotes where the exchange of parts of the genome goes both ways, 

in bacteria it is a one-way exchange with portions of the DNA of one cell replacing the 

corresponding portion of DNA in the receiving cell (Didelot, Méric, Falush, & Darling, 

2012b) This process was first discovered by observing mosaic genes at loci of antibiotic 

resistant genes in bacteria(Spratt, Bowler, Zhang, Zhou, & Smith, 1992). Spratt et al had 

observed the DNA sequence of the penA locus from 20 Neisseria isolates and surmised 

on evidence of similarity with Neisseria commensals, that resistant pathogen strains have 

acquired portions of the loci from commensals and evolved antibiotic resistance as a 

result. 

 

The incidence of recombination within bacteria populations has confounded the ability to 

infer genetic relationships within a lineage or set of strains, just based on differences in 

their genome sequences (Didelot & Maiden, 2010; Shapiro, 2014). If bacteria were all 

clonal, without horizontal genetic exchanges, then reproduction by binary fission will 

parallel replication of the cell’s DNA and the genetic history of daughter strains could be 

traced back to their ancestors given an underlying evolutionary model of a constant rate 

of substitution over time. Hence, given whole genome sequence data and variants across 

a group of strains, one could infer if identities observed in polymorphic sites are by 

descent from a common ancestor or if they occur by chance or convergence (Shapiro, 

2014). Recombination muddles this, by introducing “homoplasic” variants across loci 

that renders the phylogeny on those loci incongruent to the phylogeny based on the entire 

genome, see Fig 1.1. It is a fundamental challenge in bacteria population studies to 
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account for the impact of recombination on the phylogenetic relationships of strains and 

more broadly on evolution within a bacteria population (Didelot & Falush, 2007) 

 
 

 
 
Figure 1.1. Recombination in a locus resulting in replacement of receptor DNA sequence 
(orange color) with donor DNA sequence (purple color) in the gene, leads to incongruent 
phylogeny between tree based on the gene, and that based on entire genome. Figure 
from(Shapiro, 2014). 
 
 

Inferring the impact of homologous recombination in bacteria population, based on WGS 

sequence data has been mainly through two broad approaches: first, looking for evidence 

of unexpected similarities between divergent species, in a comparison where one of the 

species is hypothesized as the donor and the others as recipients, and movement between 

donor and recipient hypothesized to cause the similarities. Second, searching closely 

related bacteria isolates for evidence of imported genetic materials from a distantly 

related source. Here recombination is identified as regions of higher polymorphisms 

relative to the background level expected for closely related isolates that evolve clonally 

(Croucher et al., 2015). 
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There have been a number of bioinformatics methods developed to test for recombination 

based on these two approaches. The first uses non-parametric testing of the probability of 

observing homoplasies given the sequence data, without any recourse to an evolutionary 

model within the population. Examples of tools applying this approach include RDP3 

(Martin et al., 2010), CBrother (Fang, Ding, Minin, Suchard, & Dorman, 2007), and 

GARD (Kosakovsky Pond, Posada, Gravenor, Woelk, & Frost, 2006). The difficulty with 

this strategy is the necessity of having DNA sequences for both the donor, recipient and 

recombinant genotypes. This is quite challenging for bacteria, because of the diversity 

that could exist within donor populations, some of which might be extant. Hence 

tractability of source of DNA for all cases is nearly impossible using this approach, 

especially given our currently still limited genomic sequence data (Croucher et al., 2015). 

 

For the second approach, the methods used are chiefly based on coalescent theory. In 

brief, this is a statistical description of genealogical history of isolates sampled from a 

large and constant sized population with no selection or migration – the Fisher Wright 

population, where mutation introduces variation in the clonal population at a constant 

rate, which could be used to trace back the evolutionary time posts in the population 

(McVean, Awadalla, & Fearnhead, 2002). There are a number of tools that use the 

coalescent approach to estimate recombination and other evolutionary parameters in 

bacteria population, but two outstanding ones are LDHAT (McVean et al., 2002) and 

ClonalFrame(Didelot & Falush, 2007).  
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The algorithm for LDHAT adapted a modification of the infinite site models of the 

Wright-Fisher population to a finite sized population to compensate for the possibility of 

numerous mutations within the population that could give the appearance of signals of 

recombination. The algorithm derives composite likelihood estimation for the 

recombination rate of the entire sequence 2Ner, where Ne is the effective population size 

and r is recombination rate across the entire sequence length. This estimate is arrived at 

by first estimating the population mutation rate per site from the coalescent (ϑ = 2Ne µ; 

where µ is mutation rate), given the sequence data and observed substitutions across the 

sites on the sequence. Subsequently for each segregating site, the estimate of the rate of 

recombination is assessed as the likelihood of observing a particular allele on a given site, 

given the data and the evolutionary model. The composite estimate for recombination is 

finally arrived at by combining the likelihood of recombination for each set of 

comparisons, across all the sites (McVean et al., 2002). 

 

ClonalFrame on the other hand applies a Bayesian Monte Carlo Markov Chain (MCMC), 

to infer recombination spots as regions within the genomes with elevated levels of 

polymorphisms, distinct from a simultaneously constructed tree based on a clonal 

phylogeny of point mutations, outside of the recombination regions. The model assumes 

a prior coalescent genealogy and also supposes that for each sequence length considered, 

the number of recombination events, follows a Poisson distribution. It also assumes that 

the nucleotide substitutions in non-recombined regions are based on the Jukes and Cantor 

model of substitution (Didelot & Falush, 2007). The approach is based on the idea that 

recombination in bacteria affects only a contiguous region of DNA sequence, leaving the 
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rest of the circular chromosome unchanged, unlike crossovers in eukaryotes where the 

ends of daughter chromatids are swapped after a preceding double stranded break of 

homologous chromosomes to generate distinct pairs of chromosomes in the next 

generation (J.-M. Chen, Cooper, Chuzhanova, Férec, & Patrinos, 2007). The method 

therefore estimates for each branch, the subset of the genome that has not undergone 

recombination, otherwise known as the “clonal frame” (Milkman & Bridges, 1990). 

 

The pattern of gene flow between individuals within a population also offers clues on 

how much genetic exchange has taken place within geographical and ecological 

constraints. Given that physical proximity is essential for any of the HGT processes to 

occur, if related lineages are more often located in a common environment as compared 

to more distantly related lineages, then recombination between members of closely 

related lineages is more likely than recombination between members of different species. 

Bioinformatics tools like STRUCTURE (Falush, Stephens, & Pritchard, 2003) and BAPS 

(Tang, Hanage, Fraser, & Corander, 2009) apply the linkage model to trace gene flow in 

the population. The algorithm for these tools assumes that there are a number of ancestral 

populations and the genotype of each individual is drawn from these ancestral materials. 

Some individual genotypes could be exclusively from one ancestral population, while 

others are admixed. For a recombinogenic population, the admixed individuals will imply 

strains that have exchanged genetic materials over time, and the signals from analysis 

using these tools could infer the impact of HGT in a population and its correlation with 

geography and other ecological barriers (Didelot & Maiden, 2010). 
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WGS data analysis have provided a platform in recent years to more closely detect 

recombination in bacteria species and its impact in not only favoring selection of certain 

phenotypes like virulence and antibiotic resistance, but also in driving speciation within 

bacteria (Bryant et al., 2012). For instance, in the WGS studies on S. pneumoniae by 

Croucher et al (Croucher et al., 2011), they identified close to 700 recombination events 

by observing SNP densities and phylogeny in the genomes of 240 isolates of the PMEN1 

lineage of the species. One of the recombination hotspots in their studies was a locus that 

encodes a protein responsible for synthesis of a surface polysaccharide, which is a 

vaccine target. Changes wrought by recombination in this locus were traced to vaccine 

escape by the bacterium. Another, a recent studies by Shapiro et al (Shapiro et al., 2012) 

on Vibrio cyclitrophicus suggested how recombination could play a significant role in 

speciation within bacteria population. The authors studied two strains with identifiable 

phenotype differences, among the species found in distinct ecological niches that are 

differentiated by a number of SNPs. These variations were implicated through functional 

studies in the adaptation of each population. Using population genomic analysis tools, 

Shapiro et al inferred that there was significantly	  greater	  recombination	  within	  than	  

between	  subspecies.  This suggests that under different ecological or environmental 

settings recombination acts to accentuate genetic variation that could ultimately lead to 

very genetically different bacteria strains. This process could be a fundamental 

evolutionary pathway for bacteria that plays out in different ecological settings, not the 

least under antibiotic resistance selection pressure and would suggest that recombination 

might have a larger than previously understood role in adaptation, especially for highly 

competent cells like those of this study system --Neisseria gonorrhoeae.  
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1.2.2.3 Estimating positive selection in bacteria population 

A major goal of bacterial population genomics studies is to use WGS data to make 

inferences on signatures of selection within a population, the overall effect of selection 

and the forces driving evolution by natural selection within the population. There is a 

whole suite of different statistical tests based on observed sequence data that have been 

developed to test for selection within a population. Although most of these tests have 

been designed originally with sexual populations in mind, they could be adapted to detect 

selection in bacteria populations. The underlying premise for most of these tests is to 

highlight patterns of genetic variation that have been shaped by selection and contrast 

them from neutral patterns that are expected by random mutation or genetic drift. 

(Shapiro, David, Friedman, & Alm, 2009). 

 

A common approach to measure selection in DNA sequences is to estimate the 

proportion of nonsynonymous nucleotide changes (dN) to that of synonymous nucleotide 

changes (dS). A dN/dS > 1 suggests that more of the nucleotide base changes at a given 

locus leads to alteration of the amino acids on the sequence and implies positive 

selection. Conversely, a dN/dS < 1 would suggest the action of purifying selection at the 

given locus, to remove deleterious synonymous mutations. A dN/dS that is equal to or 

very close to 1 indicates a situation of neutral selection (Z. Z. Yang, 2007). A powerful 

extension of this measure for individuals of different species is McDonald-Kreitman 

(MK) test (McDonald & Kreitman, 1991) that uses protein-coding sequences obtained 

from individuals both within and between species. The key assumption of the MK test is 
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that in the absence of selection the ratio of nonsynonymous to synonymous changes in a 

given protein should remain the same for samples both within and between species. So if 

the measure of polymorphisms within species is represented as nonsynonymous 

polymorphism (pS) and synonymous polymorphism (pN), then MK derives a value 

known as the fixation index (FI) which is: (dN/dS)/(pN/pS). FI > 1 for the tested data, 

suggests positive selection between species, while FI < 1 will suggest negative selection 

between the species. The different modifications of the MK approach have been used to 

detect signals of selection in bacteria populations(Simmons et al., 2008), but some of the 

assumptions of the MK approach especially the assumption that all sites within organisms 

evolve independently have called to question the suitability of the test in all situations, 

and the need to relax this assumption for the test (Fay, 2011). 

 

 To understand the intricate nature of bacteria populations and evolution of prokaryotic 

genomes, one has to understand the interplay of the forces that introduce and maintain 

variation within these populations. Genetic variants are introduced to the population 

either through point mutations that are passed down, or via horizontal gene transfers from 

other bacteria cells. For bacteria populations which are normally of large size, with 

reduced effects of genetic drift relative to selection, variants that are beneficial are 

generally maintained in the population, while deleterious variants are more effectively 

removed than in eukaryotes (Shapiro, 2014). 

 

1.3 Bacterial antibiotic resistance  
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The treatment of bacterial infections with antibiotics has undoubtedly been one of the 

most significant medical breakthroughs in human history. The development of antibiotics 

could be traced to the late nineteenth century by acceptance of the ‘germ theory of 

disease’ after the work of Pasteur and Koch (F. Winau, Westphal, & Winau, 2004). 

Subsequently, Ehrlich’s small molecule screening approaches and successful 

characterization of the first anti-trypanosomal and anti-syphilitic drugs introduced the 

modern era of antimicrobial therapy (F. Winau et al., 2004). This discovery was quickly 

followed by a sequence of other developments: the development of synthetic 

antimicrobial agents by using the emerging science of organic chemistry, the discovery of 

the very potent chemically diverse, non-toxic antibiotics derived from bacteria and fungi 

and the advent of the medicinal chemistry era where already discovered antibiotic drug 

scaffolds are tailored or modified to evade antibiotic resistance (G. D. Wright, 2012). 

 

The history of antibiotic drug use has always been confounded by corresponding 

development of insensitivity to these drugs by target pathogen populations, ultimately 

eroding their clinical utility (Tenover, 2006). This phenomenon - antibiotic resistance- is 

becoming more widespread, and in recent decades, a number of pathogens such as 

Mycobacterium tuberculosis, Acinetobacter baumannii, Staphylococcus aureus and 

Haemophilus influenzae have all developed resistance to a spectrum of antibiotic 

medications – a situation referred to as multi-drug resistance (MDR)(J. Davies & Davies, 

2010) At the same time the pace of development of new antibiotic drugs has fallen off in 

recent years (Fischbach & Walsh, 2009; Krause, 1992). Furthermore, some of these 

pathogens that are increasingly multiple-drug resistant and contain many resistance genes 
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for different antibiotics and are also often associated with increased virulence(S. B. Levy 

& Marshall, 2004; Livermore, 2004). Some of the multi-drug resistant bacteria are indeed 

emerging as epidemic and pandemic strains, posing one of the most pressing public 

health challenges of our time (Croucher et al., 2015; Peirano & Pitout, 2010). 

 

An important step towards solving the antibiotics resistance crisis is understanding the 

molecular mechanisms driving the emergence of resistance in microbes and placing such 

processes within the context of the overarching evolutionary process playing out in the 

pathogen population. 

 

1.3.1 Molecular mechanisms of antibiotic resistance in bacteria 

Resistance could be simply defined as the continued growth of microorganisms in the 

presence of cytotoxic or growth-inhibiting levels of antibiotics. There is no standard 

dosing concentration across all antibiotic drugs instead each antibiotic drug has an 

empirically calculated minimum inhibitory concentration (MIC). Resistance by a 

pathogen is inferred when the organism thrives beyond the MIC concentration level of 

the drug (Didelot et al., 2012a). Understanding the molecular and biochemical paths 

involved in the development of resistance in an organism serves to highlight the various 

genes and underlying evolutionary process behind the emergence of resistant strains. 

 

Most common antimicrobial agents act by inhibiting protein, nucleic acids, or cell wall 

synthesis in bacteria. Some are also effective in disrupting crucial metabolic pathways in 

pathogens (Neu, 1992), Table 1.1. The overall effect of antibiotic action is either the 
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induction of cell death or inhibition of growth on contact with a target in the bacteria cell 

(Kohanski, Dwyer, & Collins, 2010b). There have been three main molecular 

mechanisms of antibiotic resistance by pathogens identified from past studies: (1) 

preventing antibiotic entry into the cell through drug efflux or reduced membrane 

permeability, (2) preventing the binding of the antibiotic to its target in the cell by target 

alteration and possible modification of metabolic pathways related to the target and (3) 

enzymatic modification and degradation of antibiotics (C. Walsh, 2000) .  

   

For instance, the mechanism of resistance to β-lactam antibiotics such as the penicillin 

and cephalosporin is via enzymatic cleavage of these antibiotics by the hydrolytic actions 

of β-lactamase enzymes(J. F. Fisher, Meroueh, & Mobashery, 2005) (encoded by 

resistance genes such as ampC, TEM, OXA) found in resistant bacteria. Similarly, the 

high level of resistance to vancomycin a glycopeptide antibiotic occurs through an 

intricate process of alteration of the peptidoglycan layers on the cell wall of the resistant 

bacteria, which is the binding site of the antibiotic. The underlying biochemical 

mechanism is driven by the expression of the van genes (vanH, vanA and vanX) that is 

triggered by the presence of the drug. The expressed enzymes catalyze an alternate 

metabolic pathway that leads to modification of the cell wall and reduced affinity for 

vancomycin binding, hence resistance(Bugg et al., 1991). The mtrCDE operon is an 

active efflux pump found in bacteria that exports macrolide antibiotics and has been 

implicated in high-level resistance to penicillin antibiotics (Veal, Nicholas, & Shafer, 

2002). 
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These mechanisms of resistance demonstrate that the presence and modifications of so-

called resistance genes -- genes involved within the various physiological or biochemical 

pathways culminating in resistance -- most often drive antibiotic resistance (MacLean, 

Hall, Perron, & Buckling, 2010). Understanding the source and flow of these genetic 

resistance determinants in pathogenic as well as non-pathogenic bacteria population will 

offer a broader picture in the quest to develop more effective antimicrobial therapies. 

 
Molecular Mechanism Antibiotic Class 
Interference with cell wall synthesis 
 
 

βLactams: penicillin, cephalosporin, 
carbapenems, monobactams 
Glycopeptides: vancomycin, teicoplanin 
 

Protein synthesis inhibition Aminoglycosides, chlorophenicol, 
clindamycin, tetracyclines, mupirocin and 
Macrolides 

Interference with nucleic acid synthesis 
 

Inhibit RNA synthesis: rifampin 
Inhibit DNA synthesis: fluoroquinolones 
 

Inhibition of metabolic pathways Sulfonamides, folic acid analogues 
 

 
Table 1.1. Mechanisms of action of antibiotic medications 
 
1.3.1.1 Antibiotic resistance mechanisms in Neisseria gonorrhoeae 

Antibiotic resistance is rampant within the Neisseria gonorrhoeae population (Ohnishi et 

al., 2011; Unemo & Shafer, 2014). There have been a number of studies that have helped 

elucidate the underlying molecular mechanisms driving resistance in this pathogen 

(reviewed by Unemo & Shafer, 2011), see figure 1.2. Broadly speaking, there are two 

groups of antibiotic drugs currently used in the treatment of gonorrhea: third generation 

cephalosporin and macrolides.   

 

Cephalosporin inhibits bacteria growth by preventing the biosynthesis of bacteria cell 
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wall. Studies have shown that the underlying genetic alteration that confers resistance to 

third generation cephalosporins is a mosaic-like resultant structure of the penA 

(Ameyama et al., 2002) gene, which encodes the binding protein for this class of 

antibiotics. Different alleles of the gene are believed to have developed from 

recombination with portions of DNA transferred horizontally from commensal Neisseria 

species. The reduced affinity for binding of cephalosporins to the penicillin binding 

protein 2 (PBP2) encoded by the gene translates into decreased susceptibility of N. 

gonorrhoeae to the antibiotic. PBP2 is involved in the development of bacteria cell wall, 

a key biological process in the pathogen, and hence a target of antibiotic drugs. 

 

Figure 1.2. Antibiotic resistance mechanisms in N. gonorrhoeae (Goire et al., 2014) 

 

The other class of antibiotic drugs used in treating gonorrhea is the macrolides. This class 

includes such drugs as azithromycin and erythromycin. Macrolides act by inhibiting 

bacterial protein synthesis by binding to the subunits of bacterial ribosomes. Previous 

studies have shown that resistance by N. gonorrhoeae to macrolides is determined by 4 

different alleles of the 23srRNA gene (Chisholm et al., 2009; Palmer, Young, Winter, & 

Dave, 2008; Starnino, Stefanelli, Neisseria gonorrhoeae Italian Study Group, 2009). This 

loci is the target for macrolides. It has also been shown that mutations in the mtrRCDE 
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operon, which encode an efflux pump, and penB- a gene that expresses a porin protein on 

the surface of the bacteria, account for some of the observed resistance to macrolides 

(Deguchi, Nakane, Yasuda, & Maeda, 2010; Hagman & Shafer, 1995). 

There are still some resistance phenotypes within N. gonorrhoeae which have not been 

fully explained by known genetic mechanisms (Unemo & Shafer, 2011). Therefore, the 

increasing amount of whole genome sequence data available for strains within this 

pathogen population could enable the characterization of novel variants underlying such 

antibiotic resistance phenotypes.  

 
 
 

1.3.2 Antibiotics resistance in commensal bacteria 

The golden era of antibiotics discovery may have commenced after Fleming publicized 

penicillin, but for millennia, resistance elements had already been circulating in bacteria 

populations long before any chemically manufactured antibiotic was in use (Clemente et 

al., 2015). It is also important to note that the vast majority of bacteria are non-pathogenic 

for humans. Naturally occurring antibiotics produced by microbes, are ancient. It has 

been estimated that the biosynthetic pathways for erythromycin, streptomycin and 

vancomycin emerged over 880,610 and 240 million years ago respectively (G. D. G. 

Wright, 2007). Microbes live their life surrounded by antibiotics and countless other 

similar molecules. This possibility of natural organisms serving as reservoir - the so-

called “resistome” - for the transfer of resistance genes to pathogens was demonstrated by 

evidence of lateral transfer of ctx-m genes, a type of β-lactamase from nonpathogenic 

bacterium of the genus Kluyvera to pathogenic bacteria. ctx-m genes had been circulating 
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in pathogenic bacteria population such as infectious E.coli (Bauernfeind, Grimm, & 

Schweighart, 1990) in clinics but the origin of the gene was unknown. The sequencing 

analysis work done by Olson et al showed that these resistance genes had 100% identity 

with chromosomal genes found in Kluyvera (Cantón & Coque, 2006; A. B. Olson et al., 

2005). 

 

The human microbiome affords a readily observable niche for the dynamics of exchange 

of resistance elements between commensals and pathogens. Almost every surface of the 

human body is colonized by a rich and diverse community of commensal microbes--the 

sum of which makes up the human microbiome-- that have substantial and continuous 

effects on human and various physiological processes (Dominguez-Bello et al., 2010; 

Human Microbiome Jumpstart Reference Strains Consortium et al., 2010). 

 

The use of antibiotics to treat infections potentially has unintended consequences on the 

portion of the microbiome that shares similar environment with the intended target, in 

addition to disrupting critical biological processes in a specific pathogen. This is 

especially true, considering the potential role of antibiotics as multi-activity signaling 

molecules (Yim, Wang, & Davies, 2007). From previous studies, there have been two 

broad categories of noticeable changes on the commensal microbiota resulting from the 

use of antibiotics: changes in the relative proportion of different species in the 

microbiota, with introduction of new species and the decline or eradication of some 

species (Dethlefsen, Huse, Sogin, & Relman, 2008; Jakobsson et al., 2010) and changes 

that alter the antibiotic resistome or resistance genes encoded by members of the 
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microbiota (Shoemaker, Vlamakis, Hayes, & Salyers, 2001; Sommer, Dantas, & Church, 

2009). In the latter category, there is noticeable enrichment and exchange of resistance 

genes within the microbiota, which increases the chances of incorporation of these 

elements in pathogenic organism and inoculating them against future treatment(Sommer 

& Dantas, 2011). However, recent findings of antibiotic resistance genes in the 

microbiome of previously uncontacted Amerindians would suggest that possibly some of 

these resistance elements are already primed regardless of contact with antibiotics 

(Clemente et al., 2015) 

  

The expectation of increased abundance of antibiotic resistance elements in microbiota 

exposed to antibiotics have been borne out by a number of studies, for instance a culture-

independent PCR assay showed that there was up to a 10,000-fold increase in the 

abundance of macrolide resistance genes compared to pre-treatment levels in the biomes 

of antibiotic-treated patients and persisted for more than two years (Jernberg, Löfmark, 

Edlund, & Jansson, 2007). The fitness cost of acquiring these resistance elements is offset 

mostly by compensatory adaptations. The persistence of resistance genes even after the 

cessation of antibiotic therapy (Jernberg et al., 2007; Sjölund, Tano, Blaser, Andersson, 

& Engstrand, 2005) is even more problematic, as it will suggest that with increasing 

exposure to antibiotics our microbiome are evolving to an even more resistant state, 

basically expanding the reservoir of resistance genes. While there have been in vitro 

experimental demonstrations of lateral transfers of resistant genes between distant genera 

(Hannan et al., 2010), there has been little in vivo experimental support for such transfers 

(Sommer & Dantas, 2011). This could be because of the difficulties involved in setting 
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up controlled in vivo studies where the donor and recipients need to have similar 

microbiota. The challenge will be devising an experimental design that will take into 

account the diversity in the microbiota of individuals in future studies 

  

1.4 Next generation sequencing (NGS) and big data analysis 

Generation of whole genome sequencing data for a wide range of organisms has become 

commonplace with advances in next generation sequencing technologies, allowing the 

possibility of in-depth studies in wide-ranging biological populations using information 

on variations provided by these data (J. Zhang, Chiodini, Badr, & Zhang, 2011).  

 

 For instance, in human studies the discovery of genome-wide genetic variation was 

central to the field of genomics (Chakravarti, 2011; Lander, 1996). Now, recent advances 

in second-generation sequencing technologies and better methods of targeted enrichment 

mean the detection of genome-wide patterns of genetic variation will soon be a routine 

operation (Bhangale, Rieder, & Nickerson, 2008; Fledel-Alon et al., 2009). There have 

also been numerous population genomics studies (Luikart, England, Tallmon, Jordan, & 

Taberlet, 2003) of pathogens that pose significant public health challenges, as a result of 

these improved technologies. 

 

Yet these advances in DNA sequencing have revealed a new bottleneck: the functional 

classification and interpretation of newly discovered genetic variation. The scale of this 

problem is enormous. The high throughput and low cost of second-generation sequencing 

platforms now allow geneticists to routinely perform single experiments that identify tens 
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of thousands to millions of variant sites in a single individual, but the methods that exist 

to annotate these variant sites using information from publicly available databases are too 

slow to be useful for the large sequencing datasets being generated. Because sequence 

annotation of variant sites is required before functional characterization can proceed, the 

lack of a high-throughput pipeline to annotate variant sites efficiently can be a major 

bottleneck in genetics research and clinical applications of genomics technologies 

(Ezewudo et al., 2012). 

 

1.4.1 Association studies using bacteria NGS data 

While identifying and connecting genetic determinants to phenotypes using WGS data 

has increasingly become the preferred approach for genetic studies in human populations, 

there is also the emerging possibility of using NGS studies of pathogen population to 

identify and correlate genetic variants or the underlying genetic architecture of relevant 

pathogen phenotypes such as antibiotic resistance, virulence and disease outbreak 

surveillance (P. E. Chen & Shapiro, 2015; Didelot et al., 2012a; Read & Massey, 2014).  

 

Prior to now, the studies and approaches that had been used to identify resistance and 

virulence determinants in bacteria have mostly been based on genetics analysis of 

individual loci of interest (Ameyama et al., 2002; Pan & Spratt, 1994; Veal et al., 2002). 

While individual loci analysis coupled with functional experiments has been helpful in 

elucidating mechanisms of antibiotic resistance in pathogens, the WGS approach offers 

more breadth, and the information gleaned from associations between phenotypes and 

identified variants could paint a better picture of the possible interactions between the 
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different known genetic variants and possible novel variants underlying phenotypes of 

interest. 

 

There are two approaches from recent genome-wide studies using WGS to associate 

genetic variants to phenotypic differences in bacteria. The first approach involves using 

modifications of the classic case – control association tests using variants detected from 

WGS of a number of bacteria strain of same species. This approach was taken is the 

genomics studies by Alam et al(Alam et al., 2014) on 75 strains of Staphylococcus 

aureus, 49 of which were sensitive to vancomycin and 26 were of intermediate resistance 

to the antibiotic. They used a genome wide association test statistical tool ROADTRIPS 

(Thornton & McPeek, 2010) that accounts for unknown population or genetic relatedness 

of the tested samples by using a genome-wide covariance structure. This corrects for the 

use of bacteria strains that could be of similar lineage and the spurious results population 

stratification from the sample set could cause. Of the 55,977 SNPs they tested, they found 

one nonsynonymous mutation in protein rpoB to be in significant association with 

increased vancomycin resistance. 

 

The second approach involves using ancestral reconstruction of phylogenies of individual 

strains in a sample set to perform statistical tests associating a change in phenotype of 

interest along branches of the reconstructed phylogeny of the individuals with a change in 

state or mutations along same branch. Modifications of these approaches are 

implemented in the bioinformatics tools such as PhyC (Farhat et al., 2013) and PPFS(B. 

G. Hall, 2014) and in the refined association mapping approach (Sheppard et al., 2013). 
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In the studies by Farhat et al (Farhat et al., 2013) to identify underlying genetic variants 

associated with antibiotic resistance in Mycobacterium tuberculosis they obtained WGS 

data for 123 strains of the pathogen, which they grouped based on the phenotype of 

resistance or sensitivity to antibiotics. They based their tests on the concept of 

evolutionary convergence, and the idea that mutations or variants that give rise to 

phenotypes of interest will arise independently and repeatedly over time in the 

evolutionary history of the strains. They were able to establish a significant association 

between mutations known to cause resistance in the pathogen and resistance phenotype, 

by correlating presence of these mutations along branches of resistant strains on an 

ancestrally re-constructed phylogeny of the strains.  

 

Given the growing ease and increase in WGS as well as metagenome sequencing of 

prokaryotic samples, using whole genome data to identify associations between 

underlying genetic variants and phenotypes of interest will be of more relevance in 

bacteria population and evolutionary studies. 

 

1.5 Questions examined in this thesis 

From the above discussions, we are left with a number of questions as to the nature of the 

N. gonorrhoeae population, the kinds of data that is used in genomic studies and the tools 

that could make sense of NGS data. Given the advantages of the sequence annotation tool 

SeqAnt, over similar tools, how could it be revised to become a platform for addressing 

similar questions centered on identifying genetic variants of significance associated with 
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phenotypes of biological interests, in more model organisms, including the plethora of 

prokaryotic organisms? 

 

N. gonorrhoeae, like a number of other bacterial species, does have an appreciable level 

of intra-species recombination taking place within its population (Hamilton & Dillard, 

2006; M G Lorenz, 1994). How does the impact of recombination in this population 

correlate with the broader issue of evolution of antibiotic resistance in the pathogen? 

Given the capability to obtain N.gonorrhoeae isolates from different regions of the globe, 

underscoring different prevalence and treatment approaches to gonorrhea, how does the 

resistance profile of isolates relate to their geographical location? And what does the 

admixture pattern from globally assembled strains of the pathogen tell us of the structure 

of the population and the evolutionary history of the bacterium. 

 

The molecular mechanisms underlying resistance in bacteria and in N. gonorrhoeae has 

been well studied in bacteria literature. The majority of the determinants identified to 

underlie resistance were discovered based on individual gene studies. What inferences 

could one make by performing genome-wide search and tests for variants that are 

associated with antibiotic resistance? Are there novel variants that associate with or 

augment resistance to antibiotics that could be uncovered using genome-wide association 

tests? 

 

1.6 Outline of thesis and chapter summaries 
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I will attempt to answer the questions I raised above in the following chapters of this 

document. Chapter 2 is an overview of current understanding of the underlying genetic 

architecture of complex diseases, the utility of using next generation sequencing 

technology tools to better understand the genetic basis of these disorders and the inherent 

challenges of using NGS analysis to make strong inferences on the causality of genetic 

variants (Ezewudo & Zwick, 2013) 

 

In Chapter 3, I follow up on Chapter 2 by presenting work done on revising a NGS 

annotation web tool, which serves as a bridge to actualize using whole genome 

sequencing to solve clinical and population genetics questions across a broad spectrum of 

life forms. It addresses the growing needs of researchers in the field for a platform that 

offers a broad and regularly updated gene and variants annotation database that 

efficiently identifies millions of variant positions in a model organism’s genome. The 

tool, which also employs a range of conservation scores to infer the functional relevance 

of annotated variant positions, is revised to include the capability of annotating 

prokaryotic genomes and hence could be very useful for pathogen population studies. 

 

The study I present in Chapter 4 is based on population genomics analysis of 76 N. 

gonorrhoeae strains sampled from across the globe, and with varying resistance 

phenotypes to a suite of antibiotics (Ezewudo et al., 2015). We set out to understand the 

roles of recombination and positive selection in evolution within this population and the 

intricate relationships between the structure of the pathogen population, the geographical 

spread of the isolates and antibiotic resistance phenotypes observed in the sample set. I 
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used the ClonalFrame tool and BAPS tool to piece the effects of homologous 

recombination within the pathogen population and the effects of these exchanges on the 

evolutionary history and population structure of this pathogen. I also queried the WGS 

used in the studies for the presence of known antibiotics resistance elements that have 

been previously described in the literature. Our results from this study suggest the 

pathogen is very cosmopolitan and has appreciable level of recombination occurring in its 

population. 

 

Chapter 5 is based on genome wide association studies performed on the data from the 

studies in Chapter 4. I utilized two approaches for this study, first I performed the 

association tests using QROADTRIPS, which could correct for the genetic relatedness of 

the strains in the sample set and hence not significantly impacted by population 

stratification. I also used the approach of PPFS to identify SNPS that are significantly 

linked to antibiotic resistance phenotypes across branches of the ancestrally reconstructed 

phylogeny of the strains. We uncovered a number of candidate variants and loci that 

could be causative of resistance to a number of antibiotic medications. 

 

Finally, in Chapter 6 I summarize the conclusions from the studies I presented in this 

dissertation. I also touch on further questions emanating from the studies and other 

inquiries, which could be taken on in the future to build on our results. 
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Chapter 2 

 

Evaluating Rare Variants in Complex Disorders Using Next-Generation Sequencing 

 

Matthew Ezewudo and Michael E. Zwick 

 

Modified from Current Psychiatry Reports 15(4): 349 doi 10.1007/s11920-013-0349-4 

 

2.1 Introduction 

The individual and societal burdens of common, complex neuropsychiatric disorders are 

truly profound (Eaton et al., 2008). One of the major goals of contemporary biomedical 

research is to elucidate those disease mechanisms that underlie complex neuropsychiatric 

disorders like autism spectrum disorder (ASD) or schizophrenia (SZ). The hope is that an 

understanding of the pathogenesis of these disorders will enable the development of new 

treatments for those patients already affected, and new preventatives for those who are 

not. Because susceptibility to neuropsychiatric disorders is influenced both by variation 

in genes and environmental exposures, both genetic and epidemiological studies can help 

uncover novel disease mechanisms. 

 

Our review focuses on what genetic studies of complex neuropsychiatric diseases have 

revealed about their genetic architecture, with a particular emphasis on studies of 

schizophrenia and autism. We divide the review into four main sections that reflect the 

technologies, experimental designs, and hypotheses tested in both recent and ongoing 
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genetic studies of complex neuropsychiatric disorders. The first section discusses the 

recent history of human genetic studies, which have focused on the contribution of 

common variation to the risk of complex diseases. The second examines the contributions 

of exceptionally rare variants with large effects on disease risk. The third section 

addresses how the rapid development of next-generation sequencing and the targeted 

enrichment of eukaryotic genomes are contributing to studies of complex traits. Finally 

the last section focuses on challenges facing the application of next-generation 

sequencing in both research and clinical translational applications. 

 

2.2 Common genetic variation and complex diseases 

For human genetic studies, the decade after the initial sequencing and analysis of a 

human reference genome has been a revolutionary one (Lander, 1996; Venter, Adams, 

Myers, Li, & Mural, 2001). The scaffold a reference genome provided allowed us to 

catalog one class of human genetic variation: single nucleotide polymorphisms (SNPs). 

Subsequent studies dramatically reduced the cost of genotyping genome-wide collections 

of hundreds of thousands of SNPs, while at the same time developing a map of the 

patterns of statistical correlation among common SNP variants, referred to as linkage 

disequilibrium, in the HapMap project (The International HapMap Consortium, 2005). 

Furthermore, theoretical predictions suggested that a classic experimental design derived 

from epidemiology, a case-control association study, would have more statistical power 

than traditional genetic family-based linkage studies (Risch & Merikangas, 1996). With 

these technologies in hand, genome-wide studies of complex disorders became feasible. 

From this point, the conceptual framework and the types of experiments pursued were 
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driven by both the availability of high-throughput genotyping platforms developed during 

the HapMap project and assumptions about the genomic architecture of common 

complex disorders (Zwick, Cutler, & Chakravarti, 2000). The initial application of these 

technologies focused on an experimental design called the genome-wide association 

study (GWAS). The human genetic GWAS “industry” set out to test the hypothesis that 

common variants (those with >5% frequency in the human population) with large effects 

contributed significantly to the risk of disease. The essential idea was that common 

disease-causing variants, which were expected to be found at an elevated frequency in 

cases as compared to matched controls, would either be genotyped directly or be in 

linkage disequilibrium with common SNPs, thereby allowing them to be discovered. This 

approach was successful in identifying many novel loci that contribute to a wide variety 

of complex diseases(Klein, Zeiss, Chew, Tsai, & Sackler, 2005; Visscher, Brown, 

McCarthy, & Yang, 2012a; Wellcome Trust Case Control Consortium, 2007). 

 

Unfortunately, the results of multiple genome-wide association studies of common 

neuropsychiatric disorders have been far more modest. Studies of schizophrenia (SZ) 

revealed only a few loci that exceed genome-wide levels of statistical significance, while 

the effect sizes of the variants uncovered were remarkably small(International 

Schizophrenia Consortium et al., 2009; Need et al., 2009; O'Donovan et al., 2008; Shi et 

al., 2009). Moreover, only a modest amount of the total heritability of SZ has been 

accounted for, in contrast to other complex traits, such as human height (Lee et al., 2012; 

McQuillan et al., 2012; J. Yang et al., 2010). Similarly for autism, multiple GWAS 

identified a few loci of very small effect(Anney et al., 2010; K. Wang et al., 2009; Weiss, 
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Arking, Gene Discovery Project of Johns Hopkins & the Autism Consortium, Daly, & 

Chakravarti, 2009). A subsequent meta-analysis suggested that finding any genetic 

variants with an odds ratio greater than 1.5 for autism is extraordinarily unlikely(Devlin, 

Melhem, & Roeder, 2011). For neuropsychiatric disorders, therefore, the effect sizes of 

the variants identified have been disappointingly small, particularly when compared to 

GWAS of other complex human disease traits. 

 

It is in fact the small effect size of common variants that is the most striking finding from 

nearly all genome-wide association studies of complex diseases. Together, these studies 

have soundly rejected the hypothesis that common variants with large effects underlie the 

vast majority of complex human diseases. Thus, while one can argue that the GWAS 

approach has been a success, these studies have revealed that the genetic architecture of 

most complex diseases is unlike that seen in cystic fibrosis or sickle cell anemia, where 

common alleles with very large effects account for most of the disease prevalence in 

human populations. This finding is particularly relevant for complex neuropsychiatric 

disorders like autism spectrum disorder and schizophrenia. Furthermore, although there 

are statistically compelling associations between common genetic SNPs and diseases 

(Manolio, 2010; Manolio, Brooks, & Collins, 2008), single nucleotide polymorphisms 

(SNPs) alone are unable to account for all the genetic proportion of heritability in 

complex traits. The fact that a substantial proportion of the estimated heritability of these 

traits remains unexplained points to other classes of genetic variants that have yet to be 

discovered (Eichler et al., 2010; Maher, 2008; Manolio et al., 2009). 

 



42 
 

2.3 Rare genetic variation and complex diseases 

In retrospect, perhaps this outcome should have been less surprising. Theoretically, it has 

long been recognized that both common and rare variation likely contribute to the genetic 

architecture of complex traits (Barton & Keightley, 2002; Barton & Turelli, 1989; 

Falconer, 1967; Lande, 2007; Pritchard & Cox, 2002; Zwick et al., 2000). In addition, 

genome-wide association studies of common variants were pursued for the simple reason 

that technological advances made this experiment became feasible. Direct sequencing of 

genomes to identify the contribution of rare variants in large numbers of patient samples 

faced daunting technological challenges and excessive costs that simply made such 

studies impractical (Schork, Murray, Frazer, & Topol, 2009; Visscher, Goddard, Derks, 

& Wray, 2012b; Zwick et al., 2000). 

 

While large-scale genotyping of SNPs for GWAS was underway, similar genome-wide 

technologies led to the discovery of widespread variations in copy number across the 

human genome (Iafrate et al., 2004; Perry et al., 2006; Sebat, Lakshmi, Troge, Alexander, 

& Young, 2004; Sharp et al., 2005).This class of genetic variation, consisting of deletions 

and duplications larger than 100 kb, was surprisingly frequent. Although clinical 

geneticists had long recognized that cytologically visible, and usually much larger, 

chromosomal changes were associated with rare human diseases, the developing 

technologies allowed the discovery of smaller copy number variants (CNVs) that were 

not observable using classic cytological approaches. The role of this structural variation 

in human disease became an immediate focus (Girirajan, Campbell, & Eichler, 2011; 

Stankiewicz & Lupski, 2010). Soon after, the discovery of an elevated frequency of 
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CNVs in patients with schizophrenia hinted at an explanation for the great heterogeneity 

of the disorder (Magri et al., 2010; S. E. McCarthy et al., 2009; Mulle et al., 2010; 

Stefansson et al., 2008; T. Walsh et al., 2008; Xu et al., 2008). Similar findings also came 

to light for autism (Glessner et al., 2009; R. A. Kumar et al., 2008; D. Levy et al., 2011; 

C. R. Marshall et al., 2008; Sebat et al., 2007; Weiss et al., 2008), as well as for both 

schizophrenia and autism (Moreno-De-Luca et al., 2010). Nevertheless, the apparently 

pathogenic CNVs discovered to date are in general large and very rare in the population, 

which means they alone are unable to explain all of the missing heritability. 

 

2.4 Next-generation sequencing, targeted enrichment, and complex diseases 

Comprehensive sequencing of human genomes would no doubt be better at capturing the 

allelic architecture of complex diseases than the genotyping of common variants in 

GWAS or the detection of rare, large CNVs with methods like array comparative 

genomic hybridization, but even in the recent past this has been cost-prohibitive. Recent 

advances in next-generation sequencing (NGS), however, have increased throughput 

while decreasing costs, so this barrier is eroding quickly (1000 Genomes Project 

Consortium et al., 2010; D. R. Bentley et al., 2008; Drmanac et al., 2010; Fujimoto et al., 

2010; Kidd et al., 2008; Lupski et al., 2010; Tong et al., 2010; Wheeler et al., 2008) see 

reviews in (Metzker, 2010; Shendure & Ji, 2008). Combining NGS with methods that can 

enrich for portions of complex eukaryotic genomes (Albert et al., 2007; Gnirke et al., 

2009; Hodges et al., 2007; Mondal, Shetty, Patel, Cutler, & Zwick, 2011; Okou et al., 

2009; 2007; Porreca et al., 2007; Tewhey et al., 2009)has made it feasible to pursue other 

types of genetic variation underlying complex disease traits.  



44 
 

 

The initial application of these technologies focused on whole-exome sequencing, which 

involves sequencing the 1% of the human genome that codes for proteins, in the context 

of diseases caused by mutations at single loci (so called Mendelian diseases) (Choi et al., 

2009; Ng et al., 2010; 2009). Application of these approaches to schizophrenia uncovered 

a role for de novo mutations in the etiology of the disorder (Girard et al., 2011; Xu et al., 

2011). A more recent study suggested that many of the variants contributing to 

schizophrenia must be very rare and have yet to be discovered (Need et al., 2012). 

Whole-exome sequencing studies of autism also point to a role for de novo mutations in 

autism phenotypes (Iossifov et al., 2012; Neale et al., 2012; O'Roak et al., 2011; 2012; 

Sanders et al., 2012). Targeted studies of the X chromosome in males with autism, an 

attractive target given the 4:1 preponderance of males affected with the disorder, have 

revealed a number of putative autism susceptibility loci (Chung et al., 2011; Noor et al., 

2010; Piton et al., 2011). More recently, a combination of targeted enrichment of the X 

chromosome exome and next-generation sequencing identified the AFF2 locus as having 

a significantly larger number of rare missense mutations in those with autism versus 

unaffected controls (Mondal et al., 2012). 

 

The clear message from all these studies is that exome sequencing can detect a broader 

allelic spectrum of complex neuropsychiatric disorders like schizophrenia and autism. As 

whole-genome sequencing becomes more and more cost effective, the field is bound to 

move towards this experimental design, which can reduce biases in ascertainment and 

make it possible to discover the full diversity of genetic variation. 
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2.5 Challenges facing next-generation sequencing and complex diseases 

Next-generation sequencing and genomic enrichment technologies promise to detect both 

common and rare variants, thereby giving us a better understanding of the genetic 

architecture of complex diseases, yet there are a number of substantial challenges facing 

the application of these technologies in both research, and ultimately, the clinic (see 

reviews in (Kiezun et al., 2012; Lyon & Wang, 2012)). We believe these challenges fall 

into three main categories: accurate identification of genetic variation, efficient analysis 

of next-generation sequencing data, and interpreting the functional effects of genetic 

variation. 

 

2.5.1 Accurate identification of genomic variation 

Next-generation sequencing technology platforms (Illumina, Roche 454, ABI SOLiD, Ion 

Torrent) have higher error rates in individual sequence reads than conventional Sanger 

sequencing. These errors could be systemic and significant enough to yield false-positive 

variant calls and associations, as well as obscure actual associations. Making even more 

errors possible are biases that arise in coverage: GC-rich genomic regions tend to have 

lower sequencing coverage. Further, enrichment technologies add another layer of 

possible errors, especially those methods that select sequences by hybridization to a 

complementary oligonucleotide. The existence of gene families and other repetitive 

regions imply that multiple genomic regions can be captured and enriched by a single 

oligonucleotide substrate targeted at a specific region. Finally, errors in mapping 

sequence against a human genome reference sequence can lead to the misidentification of 
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genetic variants. This is of particular concern because the human genome reference 

sequence is an idealized genome, and undetected variation among individuals can lead to 

spurious outcomes in the mapping and identification of genomic variation (Rosenfeld, 

Mason, & Smith, 2012).  

 

The fact that the human genome is very large (3000 Mb) implies that extraordinary 

accuracy is necessary to identify variant sites. Even modest error rates of 1%, for 

instance, could impugn the validity of association studies (Glenn, 2011). As a simple 

example, if we consider only SNPs, we expect approximately 3 million variant sites per 

genome. As shown in Table 2.1, in a scenario that surely underestimates the possible 

sources of error, unless algorithms calling variants sites are exceptionally accurate, the 

result will be an enormous number of false-positive findings.  

 

2.5.2 Efficient analysis of next-generation sequencing data 

Assuming we are able to accurately identify variant sites, the next step is functionally 

annotating those same sites so we can focus on those most likely to contribute to disease. 

Genomic variation identified with NGS technologies needs to be annotated to establish its 

type, genomic region, the evolutionary conservation of its site, and whether it has prior 

characterization. A typical whole-genome association study of a population would yield 

millions of variants, data that cannot realistically be characterized using public web 

genome browsers because of the huge effort involved. One early solution to this problem 

was the open source Sequence Annotator, or SeqAnt(Shetty et al., 2010); there are now a 

number of similar resources (Chelala, Khan, & Lemoine, 2009; K. Wang, Li, & 
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Hakonarson, 2010). Researchers will have to rely increasingly on such high-performance 

annotation tools to analyze the sequencing data generated from large sequencing studies. 

 

2.5.3 Interpreting the functional effects of genetic variation 

Ultimately, the goal of association studies is to link genetic variants to phenotypes 

through statistical tests that show significant connections (effect sizes) between the 

discovered variant and the phenotype of the disorder. In those cases of Mendelian 

disorders, where single variants can account for a given disease phenotype, interpreting 

the functional effects of genetic variation is in many cases easier.  

For complex neuropsychiatric disorders, on the other hand, the challenge is far more 

formidable (Kiezun et al., 2012). When performing statistical testing of association of 

hundreds of thousands of variants in a genome-wide study, one immediately confronts 

the multiple testing problem, which is simply that, when performing a very large number 

of tests, the expected number of findings that exceed a nominal threshold of 0.05 will be 

substantial. Statistical methods like a Bonferroni correction or permutation can be used to 

control this issue, such that only very significant association signals are selected and false 

positives are reduced (Aickin & Gensler, 1996); however, the extent to which false-

negative findings are increased by these approaches remains unclear and difficult to 

determine. 

Beyond this, the extent of genomic variation, perhaps much of it having no impact on the 

patient’s phenotype, provides a stark challenge to interpreting the effects of genetic 

variation. Figure 2.1, for example, shows a summary of single nucleotide variants 

discovered through targeted sequencing of the genomic region containing the FMR1 and 



48 
 

AFF2 loci in 144 boys with autism. A striking aspect of the figure is the enrichment for 

rare variants not seen before in public databases like dbSNP (Figure 2.1). Population 

genetic models predicted this pattern, and recent genome-wide empirical studies have 

clearly established the vast excess of rare, previously unseen variants in human 

populations. As a result, to gain sufficient statistical power to identify genetic variants 

contributing to complex diseases, very large patient collections, on the order of 10,000, 

are likely to be required (Kiezun et al., 2012). 

 

Another approach that could help meet the statistical challenges of association studies is 

biological network and pathway analysis. Increasingly knowledge of biological pathways 

can enable statistical methods that leverage this information to discern associations 

between patterns of genetic variation and gene networks or pathways. Holistically testing 

for pathways and networks between genes across the groups being compared may 

improve power for associating genes to disease phenotype than the single variant 

comparison approach (Sun, 2012). Still, these approaches presuppose knowledge of 

important pathways, and may not be the best way to uncover novel pathways or the 

action of mutant alleles that act outside of canonical pathways. 

 

Finally, it is worth noting that the ultimate demonstration of causation will almost 

certainly fall beyond purely statistical methodologies. It may become necessary, and 

important if we are to understand fundamental disease mechanisms, to perform direct 

functional testing of variants in vitro or in model organisms in vivo. These experiments 

are far lower throughput than the original sequencing at the present time and likely 
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represent a future bottleneck in our efforts to understand the genetic contribution to 

complex diseases. Furthermore, as we explore more deeply traits influenced by the 

actions of many genes, we will also need to more carefully examine the effects of 

environmental variation on the human traits of interest. In essence, DNA sequence and 

variation information is context-dependent, and to understand mechanisms of disease, we 

would ideally perform studies that can take into account both genomic variation 

information and putative environmental exposures. 

 

2.6 Conclusion 

The dramatic increase in the whole-exome and whole genome sequencing of large 

numbers of individuals has revealed more genetic variation between individuals than was 

previously suspected, as well as evidence for a higher incidence of rare and private 

variations in individuals within subpopulations (Keinan & Clark, 2012; Tennessen et al., 

2012). In a recent review on genetic variability among humans, Olson emphasized that, 

although a number of different evolutionary and demographic forces act to influence 

human genomic variation, population genetics studies and, more recently, deep 

sequencing point to mutation-selection balance as having the greatest impact on the 

genetic predisposition to disease (M. V. Olson, 2012). 

 

GWAS studies of neuropsychiatric disorders have unequivocally shown that common 

variants with large effects do not underlie schizophrenia or autism. While statistical 

analyses of these complex disorders are consistent with the action of a very large number 

of common alleles of small effect, they are unable to account for the entire estimated 
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heritability of the disorders. At the same time, while rare pathogenic CNVs can account 

for nearly all Mendelian forms of complex neuropsychiatric illnesses, because they are so 

rare in the general population, alone they cannot explain all of the missing heritability. 

Now, with the rapid advances and reduced costs of whole-genome sequencing, human 

geneticists will finally be able to more comprehensively uncover all classes of human 

genetic variation in large patient populations. Sifting through these enormous datasets 

will undoubtedly pose a stiff challenge for human geneticists, particularly given the 

tremendous heterogeneity and complexity underlying neuropsychiatric illnesses like 

autism and schizophrenia. There is little doubt that better integration of genomics with 

collaborative studies in physiology, biochemistry, and epidemiology is vital if we are to 

truly understand disease mechanisms and develop innovative methods of prevention and 

treatment for these devastating disorders. 
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2.7 Appendix 
 
The following appendix contains a table and figure already referenced in the text of the 
chapter. 
 
 

 
 
 
Figure 2.1. Summary of single nucleotide variant (SNV) and insertion/deletion (indel) 
variation discovered at the FMR1 and AFF2 loci in males with autism spectrum disorder. 
The frequency of SNVs and indels (minor alleles) in cases is plotted against their level of 
evolutionary conservation. Most common variation has already been discovered and 
exists in public databases like dbSNP (blue; circles and diamonds). In contrast, most of 
the rare variation at both loci was not contained in public databases (red; circles and 
diamonds). 
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Error Rate 

Expected Number 
of Errors  

(3000-Mb human 
genome) 

Expected Number 
of Variant Sites 

(per human 
genome) 

Expected 
Proportion of False-

Positive Variant 
Sites 

1.0E-3 3,000,000 3,000,000 0.5 

1.0E-4 300,000 3,000,000 0.1 

1.0E-5 30,000 3,000,000 0.01 

1.0E-6 3,000 3,000,000 0.001 

1.0E-7 300 3,000,000 0.0001 

1.0E-8 30 3,000,000 0.00001 

1.0E-9 3 3,000,000 0.000001 
 
Table 2.1. Expected number of errors in human whole-genome sequencing 
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Chapter 3 

 

SeqAnt 3.0: Revisions and updates on sequence annotation web application 

 

Thomas Wingo, Matthew Ezewudo, Alex Koltar, Robert Petit, David Cutler, 

Michael Zwick  

Under review for submission to a journal 

 

3.1 Introduction 

Improvements in next generation sequencing technology platforms have greatly increased 

the ease and affordability of generating genome sequence data for a wide range of 

organisms. There has been an unprecedented drop in the cost per base sequenced, using 

these platforms (see review in (Shendure & Ji, 2008)). This development parallels 

improvements in targeted DNA sequencing of functional regions of genomes of complex 

eukaryotes (see review in (Mamanova et al., 2010), and all of these improvements have 

increased the chance of finding variants that underlie genetic disorders. 

 

A combination of the aforementioned factors, a better appreciation of the role of rare 

variants in complex diseases (McClellan & King, 2010; Pritchard & Cox, 2002) and the 

possibility of identifying these rare genetic variants through direct sequencing (Ezewudo 

& Zwick, 2013) clearly suggest that direct sequencing will become a mainstay of genetics 

research. Processing the vast quantities of sequencing data and ascribing meaning to 

sequence variants remains a challenge for investigators and clinicians alike. The 
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challenge lies with dealing with the enormous amount of high throughput data from next 

generation sequencing platforms and efficiently analyzing this data and the possible 

millions of variants detected, to make sensible functional inference, ultimately linking 

identified variants to disease phenotypes. 

 

As an answer to the challenge of analyzing next generation sequence data, we had 

developed SeqAnt (Shetty et al., 2010) a customized and user-friendly web application 

that speedily annotates extensive genome data within minutes to identify variant types, 

the region of the genome they fall in, their functional relevance, and how conserved those 

regions are. There are a number of sequence annotation tools that have been developed in 

the intervening period since the development of SeqAnt, such as ANNOVAR (K. Wang 

et al., 2010), SeattleSeq Annotation (Ng et al., 2009) and GEMINI (Paila, Chapman, 

Kirchner, & Quinlan, 2013). SeqAnt is user friendly, includes reference genomes and 

annotation tracks for a variety of organisms into Homo sapiens, and can be used even in 

laboratories without dedicated bioinformatics specialists.  

 

Most importantly, performing annotation using this tool takes less than an hour to 

annotate more than 3 million variant positions from the human genome making it 

sufficiently fast (Shetty et al., 2010). Subsequent improvements to the annotation tool 

(Ezewudo et al., 2012) include additional eukaryotic genome tracks, a new conservation 

score track, as well as an overhaul of the web interface and result files. 
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Here, we present a major revision of the software. With this version, we have created an 

extensible framework that accommodates an arbitrary number of site-based information 

tracks and score tracks, handles non-human genomes, and further improves the speed of 

annotation processing, while keeping the memory footprint low for the annotation 

process. These changes put together will enhance the usability of the software while 

offering an automated and updated database pulled from current annotation and variation 

tracks from the UCSC genome browser (Sanborn et al., 2011). 

 

3.2 Implementation 

 

3.2.1 Overview 

The SeqAnt database is generated from custom genome builds and annotation tracks 

downloaded and processed from the UCSC genome browser web page. The current 

SeqAnt databases include the most updated UCSC genome builds for: humans (hg38 and 

hg19), mouse (mm10), zebra fish (danRer7), housefly (dm6), nematode (ce10) and yeast 

(sacCer3). There are a set of different tracks for gene annotation, SNP annotation, and 

conservation scores for each of the genome builds. These tracks are adapted into the new 

database format either within the Kyoto platform (for gene and SNP annotations) or as 

randomly accessible binary files (for the sequence and conservation scores data). A 

detailed description of the different genome builds and associated annotation tracks is 

shown in Table 3.1. This new revision accepts input files in the Variant Call Format 

(VCF) or a snpfile format file which contains chromosome positions for all variants 

within the genome of the model organism that is to be annotated. It could also easily 
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annotate an input of just a range of base positions for any given genome track within the 

SeqAnt database. The architecture of SeqAnt which is shown in Figure 3.1 is based on 

three layers: the user interface that accepts the input files and input command, the 

annotator that processes the commands and return results to the user, and the database 

that stores the genomic and annotation data for all the model organism, which is queried 

by the annotator scripts on the user’s command. The tool could also be implemented in 

the UNIX operating system command line and the scripts are contained in the publicly 

available distribution on Github. 

 

3.2.2 Database Platforms  

The SeqAnt database runs on two platforms: an implementation of the Kyoto DB 

(KCD)® database and a library of binary files with information that spans the genome of 

model organisms.  

The nature and extent of genome and annotation data being stored in the SeqAnt database 

determines the type of database used to store the annotation data. Data that does not span 

the entire genome of model organisms such as SNP, gene annotation, and clinical 

variation data are referred to as sparse track data and are stored within the KCD database 

platform for easy retrieval. Genome-wide information data such as the conservation 

scores and the nucleotide bases for each genomic position are referred to as genome-sized 

track data and are stored in individual binary files that are randomly accessed when 

queried in a quick and efficient manner. 

 

3.2.3 Gene Annotation Track 
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SeqAnt currently uses the Knowngene (for the hg38, hg19, and mm10 genome builds) 

and refGene (for the other genome builds) UCSC tracks for gene annotation. These tracks 

detail information on genes belonging to a particular genome build and are obtained by 

querying the UCSC mysql database for the respective genome builds and extracting 

information on: the gene names, chromosomal position, Refseq ID, exon positions of the 

genes to be translated as well as the exon frames. All of this information is stored as a 

collection of document records in a Kyoto database. 

 

3.2.4 SNP Annotation Tracks 

The different variant sites for any particular genome are represented in the UCSC SNP 

annotation tracks. The hg38 and hg19 currently have the SNP141 track, while the mm10 

has the SNP138 track. The remainder of the genomes of non-mammals in SeqAnt does 

not have a UCSC variation track. The tracks are obtained by querying the UCSC mysql 

database extracting fields for: the chromosome name, the position on the chromosome 

where the variant falls in, the allele frequency count for the position, the different alleles 

in that position and the name of the variant in the public SNP database All of this 

information is stored as a collection of document records in a Kyoto database platform. 

 

3.2.5 Clinical variations Annotation Tracks 

We also implemented the clinical variation (Clinvar) annotation tracks for hg38 and hg19 

in this version of the software. Data for these tracks include collated information on 

SNVs that have been shown in past studies to have clinical relevance. They are displayed 

in a summary spreadsheet on the NCBI Clinvar website. We obtained the data by 
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downloading the summary file from NCBI and then parsing the data for relevant fields, 

which includes the clinical review status of the variant position, the SNP ID, the 

cytogenic region it falls it, the review status or number of submitters that had worked on 

same variant and the ID of the phenotype associated with the variant. The information is 

likewise incorporated into the Kyoto database platform. 

 

3.2.6 Conservation Score Tracks 

There are two UCSC conservation tracks implemented in the current version of SeqAnt; 

phastCons scores and phyloP scores (Siepel et al., 2005). Both are represented in wiggle 

format files that store large expanse of conservation scores. phastCons scores represent 

the probability of negative selection on a given site, and uses a hidden Markov model to 

determine if a particular nucleotide base falls within a region conserved element or a 

block of conserved region phastCons considers both the individual position and its 

flanking regions. phyloP scores on the other hand is a measure of the conservation of 

individual nucleotide positions in the genome, while ignoring the neighboring positions. 

The absolute values of phyloP scores represent the negative log of the p-values of the 

positions under a null hypothesis of neutral evolution. So phastCons scores are more 

suited to detect conserved non-coding regions across genomes in a phylogeny, while 

phyloP is more suitable for evaluating signatures of selection at particular nucleotide or 

class of nucleotide sites (Felsenstein & Churchill, 1996; Siepel et al., 2005). For the hg38 

genome build, the conservation scores include the phastCons and phyloP scores obtained 

from multi-genome alignments of 7 vertebrate genomes and the human genome. The 

hg19 conservation scores consist of phastCons and phyloP scores from multi-alignment 
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of 99 vertebrate genomes and the human genome. The mm10 conservation scores include 

phyloP and phastCons scores from multi-alignments between 59 vertebrate genomes and 

the Mouse genome. The danRer7 build conservation scores include phastCons and 

phyloP scores from multi-genome alignment of 7 different genomes and the Zebra fish 

genome. The dm6 conservation scores include phastCons and phyloP scores from 

alignment of 26 insect genomes with the D. melanogaster genome. The ce10 

conservation scores include phyloP and phastCons scores from multi-alignments between 

6 worm genomes and the C. elegans genome. Finally, the sacCer3 build conservation 

scores include phastCons scores from multi-genome alignment of 7 different Yeast 

genomes. Data from these different tracks are downloaded from the UCSC browser and 

preprocessed into binary files that are loaded at runtime within the SeqAnt architecture to 

speed annotation. 

 

We also implemented C-scores from the combined annotation dependent depletion 

(CADD) tool, to this version of SeqAnt. The CADD tool is a system of scoring for 

deleteriousness of variant positions across the human genome. The scores were 

developed by Kircher et al(Kircher, Witten, Jain, O'Roak, & Cooper, 2014), and 

represent an integration of a number of conservation score tracks (including GERP, SIFT, 

Polyphen, phastCons and phyloP), to generate robust inference of the deleteriousness of 

any given single variant, across the entire genome. We implemented the most recent 

version-- CADD v1.2, which was predicated on the human genome GRCh37/hg19 build. 

 

3.2.7 Prokaryotic Annotation 
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Another novel feature of this revision of the software is the inclusion of a prokaryotic 

annotation capability to the tool. Researchers increasingly use molecular and sequencing 

approaches to study microbes especially pathogenic bacteria (Ezewudo et al., 2015; 

Joseph et al., 2012; Vidovic et al., 2014). One of the challenges has been the ability to 

annotate these prokaryotic genomes to garner information on genetic variants that could 

underlie different phenotypes of interest. The prokaryotic annotator accepts input file of 

variant positions in the prokaryotic genome in the VCF format, and an NCBI gene bank 

format file of the reference genome of the organism and generates an output with 

annotations for the positions indicated in the input variant file.  

 

3.2.8 Web Interface 

The SeqAnt web application has been completely rewritten. It is now a high-

performance, single page application (SPA), written in Angular.js, and supported by a 

Node.js/Express.js high-performance web server. Once compiled, most of the application 

is held in a single, 1.2-megabyte (MB) javascript file, which is cached by the browser for 

all future visits. All actions taken in the application, such as switching between pages 

happen without refresh, with interface performance approaching that of native desktop 

applications. Additionally, several new features distinguish this revision from SeqAnt 

1.0.  

 

The new interface now allows users to register and log in. The application supports 

uploads in the snpfile format described previously (Shetty et al., 2010) as well as the 

Variant Call Format (VCF). These formats will have information on all the variants and 
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chromosome positions that are required to be annotated. Upload progress is displayed in 

real time by duplex communication using the Node.JS file streaming protocol and 

XMLHttpRequest transport. The results from the annotation are saved in a zipped folder, 

which the user can download at any point when logged into the application. The results 

can also be emailed to the user upon completion. Since the web server now uses an event-

driven model, users can log out or close the SeqAnt application as soon as their job is 

submitted, without interrupting annotation progress. This is a substantial improvement 

over the original SeqAnt web application (Shetty et al., 2010). 

 

The output from the annotation is a comma delimited text file with a number of result 

fields spanning information on both the variant type and polymorphism annotation, the 

gene annotation, information on clinical relevance of annotated position and information 

on conservation of the given position. Table 3.2 lists out the different result field in the 

output file of the revised SeqAnt tool. The web application also provides a sample-level 

graphical summary of the results. A representation of the SeqAnt GUI summary is shown 

in Figure 3.2.  

 

3.3 Results and Discussions 

We performed a number of analyses using the new version the software to test its 

capabilities. These include: re-running clinically relevant data that had been previously 

used to establish biological relevance of a rare genetic variant, comparing the efficiency 

and speed of annotation of the revised SeqAnt and finally using the prokaryotic 
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annotation feature in the tool to compare genome annotation of a number of prokaryotic 

genomes from a recent microbial population studies.  

 

FoxP3 mutation associated with inflammatory bowel disease 

Previous work done by Okou et al (Okou et al., 2014), identified a novel mutation in the 

FOXP3 gene in second-generation family with inflammatory bowel disease. The 

nonsynonymous X-linked mutation c.694A>C, which is heterozygous in the mother and 

hemizygous in all the affected sons, was identified running the variants information 

through SeqAnt using the hg19 genome build. Here, we remapped the variant information 

to the current hg38 human genome build validate improvements made on this version of 

SeqAnt.  

 

The annotation results re-confirmed the presence of the mutation in the mother and all the 

sons as previously described, on chromosome X, with coordinates for the variant position 

on the hg38 genome build being 49255756. This region is highly conserved, as the 

phyloP score or the multi-sequence alignment of 100 vertebrates (phylop100way) is 

4.197 in the top percentile of all the variants annotated in the sample set. Similarly the 

CADD score of 24.3 for the mutation is ranked in the top 1% of conserved sites using the 

newest version (version 1.2) of the CADD scores. These results corroborate the previous 

findings on the biological significance of this genetic variant. 

 

Big data analysis capability  
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We implemented analysis of the complete exome sequences of 107 individuals, which 

include nearly 3 million variant sites, to test the capability of the revised version of this 

tool to handle large data sets and its performance doing so. The test data we used is 

available in this public repository: https://github.com/wingolab-org/seq 

 

Our analysis demonstrated that the revised SeqAnt annotates approximately 10,000 

variant positions every minute. The complete annotation of the ~3 million variant 

positions in the input data took under 5 hours. While this speed is a bit reduced in 

comparison to the previous version, the added detailed annotation information including 

additional gene annotation names and codes, improved SNP database information and 

elaborate clinical variation annotation for variants with clinical significance compensates 

adequately for this. 

 

Annotation of N.gonorrhoeae NGS strains 

Previous work by Ezewudo et al (Ezewudo et al., 2015) suggested that some genetic 

determinants underlie the antibiotics resistance phenotypes present in N. gonorrhoeae. 

We used the prokaryotic annotation feature of SeqAnt to annotate variant positions in 

genome sequences of 10 isolates used in that study.  

 

We annotated the four strains resistant to the antibiotic cefexime (MUNG4, MUNG15, 

MUNG14, MUNG20, MUNG4) and four strains sensitive to the antibiotic (MUNG26, 

ATL0108, ATL0105, ATL0103) from the study using the reference genome FA1090. We 

analyzed the results from the annotation of each strain for the presence of the mosaic 
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penA allele, a pattern of mutations on the gene has been shown to underlie resistance to 

the antibiotic (Ohnishi et al., 2010). Our analysis of the annotation showed the presence 

of multiple mutations (>12) on the penA locus (NGO1542) for each of the cefexime 

resistant strains annotated, implying the presence of the mosaic pattern, in contrast with 

the sensitive strains that have only 3 mutations on the locus. The results here re-

confirmed previous observations using molecular approaches about the link between the 

mosaic patterns on the penA locus and resistance to third generation cephalosporin 

(Ameyama et al., 2002; Ohnishi et al., 2010; 2011). 

 

3.4 Conclusion 

The recent revisions we have made to SeqAnt, has made it currently one of the most user-

friendly and efficient NGS annotation tools that is free and publicly available to 

researchers. We expanded the breadth of model organism genomes that could be 

annotated using this tool, creating more options for studies using these organisms. We 

also enhanced the user interface, increasing the ease and accessibility of the tool for non-

bioinformatics specialist personnel or laboratories.  

 

The ease of generating NGS is likely to keep improving, with decreased sequencing 

costs. Analyzing and interpreting the significance of the enormous amount of data from 

these projects will therefore be of even more importance in the near future. The capacity 

of SeqAnt to analyze enormous NGS data and present results in an intelligible manner 

will be quite useful for geneticists and genomics researchers going forward. 
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3.5 Appendix 
 
The following appendix contains tables and figures already referenced in the text of the 
chapter. 
 
 
 
Genome Build Gene Track SNP Track Conservation Scores 

Track 
hg38 (Homo sapiens) KnownGene SNP141, Clinvar phastCons, phyloP, 

CADD 
hg19 (Homo sapiens) KnownGene SNP141, Clinvar PhastCons, phyloP, 

CADD 
mm10 (Mus muculus) KnownGene  SNP138 phastCons, phyloP 
danRer7 (Danio rerio) RefGene  --- phastCons, phyloP 
dm6 (D. 
melanogaster) 

RefGene  --- phastCons, phyloP 

ce10 (C.elegans) RefGene  --- phastCons, phyloP 
sacCer3 (S. 
cerevisciae) 

XenoRefGene  --- phastCons 

 
Table 3.1 List of genome tracks for model organisms in SeqAnt database. Tracks were 
obtained from the UCSC genome browser, the NCBI Clinvar database and the 
CADD.gs.washington.edu web server. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



66 
 

Field Name Description 
Chr Chromosome Name 
Pos Chromosome Position 
Ref_base Reference Genome Nucleotide base 
Genomic_annotation_code Interpretation of genomic annotation 
Annotation_type Annotated variant type 
Codon number Number of annotated codon 
Codon Position Position of Codon on transcript 
Error_code Annotation warning messages 
Minor_allele Alternate nucleotide base 
New_aa_residue New amino acid from base change 
New_codon_seq New codon from base change 
Ref_aa_residue Original amino acid residue on reference 
Ref_codon_seq Original codon on reference 
Site_type Annotated site type  
Strand Direction of annotated sequence 
Transcript_id Name of transcript 
Snp_Id Name of annotated SNP 
PhastCons phastCons conservation score 
PhyloP phyloP conservation score 
Alt_names Alternative annotation identification 
Snp_features Additional SNP annotation information 
 
Table 3. 2 Representation of the various fields in the output file from SeqAnt Annotation 
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Figure 3.1 SeqAnt Architecture. The binary index files in the database stores 
conservation scores data while the Kyoto DB platform stores gene and SNP annotation 
data. 
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Figure 3.2 Screenshot of SeqAnt webpage display of summary of annotation results 
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Chapter 4 

Population structure of Neisseria gonorrhoeae based on whole genome data and its 

relationship with antibiotic resistance  

Ezewudo MN, Joseph SJ, Castillo-Ramirez S, Dean D, del Rio C, Didelot X, Dillon 

J, Selden RF, Shafer WM, Turingan RS, Unemo M, Read TD 

 

Modified from PeerJ 3:e806 https://dx.doi.org/10.7717/peerj.806 

 

4.1 Introduction 

Neisseria gonorrhoeae, a Gram-negative bacterium, causes gonorrhea, the most common 

bacterial sexually transmitted infection (STIs) causing more than 106 million cases per 

year globally (World Health Organization (WHO), 2012). The only effective option for 

treating the disease and stopping its spread has been the use of antimicrobial therapy. 

Currently, there is no vaccine to prevent infection. Antimicrobial treatment options have 

diminished over time due to the progressive emergence of antimicrobial resistance 

(AMR) to drugs previously used to treat gonorrhea and the paucity in the development of 

newer antibiotics that could effectively eradicate the pathogen (Ohnishi et al., 2011; 

Unemo & Shafer, 2014).  

 

AMR evolution should be considered in the context of the genetic structure of the N. 

gonorrhoeae population. Early work by O’Rourke et al. using electrophoretic analysis of 

enzymes of the pathogen and serological methods suggested that gonococci have a non-
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clonal sexual or panmictic population structure (O'Rourke & Stevens, 1993). More recent 

studies have also suggested high rates of recombination within the Neisseria genus 

(Didelot & Maiden, 2010). High levels of recombination could confound studies of the 

gonococcal populations, especially if the studies are based on few genetic loci within 

strains as compared to the entire genomes. Recent multi-genome studies have focused on 

either a restricted geographic region (Vidovic et al., 2014)(genomes also included in 

present studies or on a small subset of the N. gonorrhoeae population (Grad et al., 2014). 

Hence, there is a need for studies aimed at understanding the global N. gonorrhoeae 

population structure at the whole genome scale. 

 

Past AMR studies using limited numbers of gonococcal strains from specific geographic 

regions of the globe have mostly focused on a number of representative genes or genetic 

regions of the genome to elucidate underlying mechanisms of antibiotic resistance 

(Hagman & Shafer, 1995; Lindberg, Fredlund, Nicholas, & Unemo, 2007; Ohneck et al., 

2011; Thakur, Levett, Horsman, & Dillon, 2014; Tomberg, Unemo, Ohnishi, Davies, & 

Nicholas, 2013; Unemo & Shafer, 2014; Unemo, Golparian, & Hellmark, 2014; Unemo 

et al., 2012; Zhao et al., 2009). Extensive genome sequencing studies have yet to be 

conducted on a diverse collection of strains from different geographical locations and 

collected over longer time periods. Our approach in this study builds on recent multi-

genome studies (Grad et al., 2014; Vidovic et al., 2014), with the goal of using whole 

genome analysis to elucidate two processes: 1) the population structure and dynamics of 

Neisseria gonorrhoeae and 2) the correlation between this population differentiation and 

AMR evolution in gonococci. Our genome analysis of strains from multiple sites across 
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the world offers a geographic diversity of N. gonorrhoeae isolates, providing more depth 

in genome-wide studies of this pathogen and identifying possible sub-populations 

impacting AMR and evolution within the species.  

 

4.2 Materials and Methods 

 

4.2.1 Neisseria gonorrhoeae isolates 

Sixty-one N. gonorrhoeae isolates of diverse origin were obtained. These included 

isolates from the Gonococcal Isolation Surveillance Program (GISP) site covering 

Atlanta, Miami, New York city and North Carolina in the United States (n=21), from 

Canada (primarily, Saskatchewan) and Chile (n=1) (Vidovic et al., 2014)) (n=24), and 

from WHO global collaborations; Sweden (n=7), Norway (n=3), Japan (n=2), Austria 

(n=1), Pakistan (n=1), Philippines (n=1), and Australia (n=1). Phenotypic determination 

of the minimum inhibitory concentrations (MICs) of all isolates was performed using the 

agar dilution method or the Etest method (bioMerieux), according to the instructions 

from the manufacturer. The strains sequenced in this study were tested for resistance to 

primarily three antibiotics, tetracycline, azithromycin and cefixime, with breakpoints for 

resistance set at 2, 2.0, and 0.25 µg/mL, respectively, based on the CDC MIC (minimum 

inhibitory concentration) breakpoints for testing in the GISP protocol 

(http://www.cdc.gov/std/gisp/gisp-protocol07-15-2010.pdf). Antibiotic resistance profiles 

of the Canadian strains have been previously reported (Vidovic et al., 2014). Details of 
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the different isolates with their NCBI accession numbers are presented in Table 4.1.  

 

4.2.2 Sequence generation and assembly 

The N. gonorrhoeae strains were shotgun (WGS) sequenced using the Illumina HiSeq™ 

instrument, utilizing libraries prepared from 5 µg of genomic DNA for each sample. The 

average sequencing coverage was 225. The sequencing reads were filtered using the 

prinseq-lite algorithm (Schmieder R. et al, 2011) to ensure only sequence reads with 

average phred score ≥30 were used. The reads for each project were then assembled de 

novo, using the velvet assembler program (Zerbino & Birney, 2008). The optimal kmer 

length for each assembly prior to assembly was determined using the velvet optimizer 

algorithm (Gladman & Seemann, 2012). Data was deposited in the NCBI Sequence Read 

Archive public database (Accession # SRA099559) (Table 4.1). For this study, we 

included an additional 14 draft genome sequences of N. gonorrhoeae strains, downloaded 

from the NCBI draft genomes database (NCBI Bioproject numbers: PRJNA55649, 

PRJNA55651, PRJNA55653, PRJNA55905, PRJNA46993, PRJNA55657, 

PRJNA55655, PRJNA55659, PRJNA55661, PRJNA55663, PRJNA55665, 

PRJNA55667, PRJNA55669, PRJNA55671, and the reference genome sequence 

Ref_FA_1090 (NC_002946.2)  

 

4.2.3 Genome-wide phylogeny and pangenome analysis 

The assembled genomes were annotated individually using the NCBI PGAP annotation 

pipeline to give predicted proteome for each of the strains. The orthologs were 
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determined by OrthoMCL (L. Li, Stoeckert, & Roos, 2003), which uses bi-directional 

BLASTP scores of all the protein sequences to perform Markov clustering in order to 

improve sensitivity and specificity of the orthologs. For the OrthoMCL analysis, we used 

a BLASTP E-value cut-off of 1e-05, and inflation Markov clustering parameter of 1.5. 

Core genes were defined as the orthologous genes that are shared among all the N. 

gonorrhoeae strains used in this analysis  

 

The nucleotide sequences of all the core genes were concatenated together and core-gene 

nucleotide alignment was conducted using progressive MAUVE (A. C. E. Darling, Mau, 

Blattner, & Perna, 2004). Similarly, whole genome amino-acid alignment was also 

generated by concatenating the deduced amino-acid sequences of all the core genes 

generated using MUSCLE(Edgar, 2004), and to form a super protein alignment. 

Homoplasious sites were removed from the whole-genome nucleotide alignment using 

the Noisy software (Dress et al., 2008). The protein alignments were filtered by 

GBLOCKS (Talavera & Castresana, 2007)using default settings to remove regions that 

contained gaps or were highly diverged. A maximum likelihood (ML) tree from the same 

data set was created using the GTR and JTT substitution models for the nucleotide and 

protein alignment respectively and the GAMMA evolutionary model (Stamatakis, 2014). 

The majority rule-consensus tree was generated from 200 bootstrap replicates of the 

model. Linear regression of the root-to-tip distances against the year of isolation was 

performed using the Path-O-Gen tool (http://tree.bio.ed.ac.uk/software/pathogen/). 

 

4.2.4 Multi-locus sequence typing (MLST) locus analysis 
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MLST is a genotyping tool for Neisseria based on sequencing of 7 core housekeeping 

genes (Jolley & Maiden, 2010). There are currently close to 11,000 individual Neisseria 

sequence profiles in the publicly available MLST database (http://pubmlst.org). We 

utilized a custom python script mlstBLAST.py 

(http://sourceforge.net/projects/srst/files/mlstBLAST/) to perform a BLAST search of 

these genes across all the strains in our data set and identified the sequence type (ST) for 

each strain. Novel alleles of the locus and STs were submitted to the MLST database. A 

phylogeny of the concatenated DNA sequences of all the N. gonorrhoeae STs in the 

MLST public database was created using the neighbor joining distance matrix approach 

of the PHYLIP(Felstein, 1989). Mean nucleotide distance for the sequence alignments 

and MLST genes was computed using MEGA software (Tamura, et al 2013).  

 

4.2.5 Estimating population parameters and homologous recombination  

ClonalFrame (Didelot & Falush, 2007) utilizes a statistical framework to reconstruct the 

clonal genealogy as well as identify the regions along the genomes that has been affected 

both by recombination and mutation. The model uses a Bayesian approach to predict the 

phylogenetic relationship in the sample set, given the whole genome sequence alignment 

data. The input genome alignment data was the core genes (n = 1189) alignment 

generated from MAUVE. Four independent ClonalFrame runs were performed for 40,000 

iterations, with the first 20,000 discarded as burn-in. This allowed the model parameters 

to converge and each of the 4 runs were checked for the consistency of the estimated 

parameters as well as the consistency of the topology of the inferred clonal genealogies. 
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4.2.6 Population structure analysis 

The program BAPS (Bayesian Analysis of Population Structure) version 5.3 (Corander & 

Marttinen, 2006; Tang et al., 2009)was used to infer the underlying population structure 

of the 76 N. gonorrhoeae strains in the sample set. SNPs from the core MAUVE 

alignment, with gaps removed were converted to a BAPS input file, which is a 

representation of all the polymorphic loci in the multi-sequence alignment. BAPS applied 

a Bayesian model to predict the likelihood of a population structure given the input data 

and non-parametric assumption approach to trace ancestry of the different individuals in 

the sample set. For the mixture analysis we used the ‘Clustering of individuals’ approach. 

We ran a preliminary analysis to evaluate the approximate number of genetically 

differentiated groups using a vector from 2 to 40 K values, where K is the maximum 

number of groups. Given that 5 groups was the K value with the best log likelihood, we 

ran a second analysis using from 3 to 7 K values and again the best K value was 5 groups. 

We used the ‘Admixture based on mixture clustering’ module for the admixture analysis. 

For the analysis; the minimum population and the admixture coefficient for the 

individuals was then set to 5. For the reference individuals from each population and the 

admixture coefficient for reference individuals we used the values as described by 

Castillo-Ramírez et al (Castillo-Ramírez et al., 2012). In addition, population structure 

analysis of the sample set using the fineSTRUCTURE tool (Lawson, Hellenthal, Myers, 

& Falush, 2012) was performed. fineSTRUCTURE analysis was a two-step process-1) 

ChromoPainter algorithm was used to generate the co-ancestry matrix from the genome-

wide haplotype data using the linkage model. 2) The fineSTRUCTURE algorithm 
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performed a model-based clustering using a Bayesian MCMC approach to predict the 

likelihood of a population structure given the input data and non-parametric assumption 

approach to trace ancestry of the different individuals in the sample set. The 

fineSTRUCTURE approach was used to corroborate the findings from the BAPS 

population structure analysis. 

 

4.2.7 Mapping the movement of DNA between Neisseria gonorrhoeae clades 

We traced the flow of recombination between strains into five different subgroups in the 

phylogeny determined from the subgroups of the population defined by the BAPS 

analysis. We created a BLAST database of the whole genome sequence of all 76 strains 

in the sample set and included 14 whole genome sequences of all other Neisseria species 

(NC_008767.1, NC_014752.1, NC_017512.1, NC_017516.1, NC_003112.1, 

NC_010120.1 NC_017501.1, NC_017514.1, NC_017517.1, NC_003116.1, 

NC_013016.1, NC_017505.1, NC_017515.1, NC_017518.1) that are present in the NCBI 

database. Next, we performed a BLASTN search for each of the genomic region within 

the strains identified by ClonalFrame to be under recombination, selecting the best hit 

within the sequences in the database we created, with an identity of >98%, to be the 

source of the recombined region. We also removed BLAST matches found in strains 

from similar subgroups as the source of the recombined region. We used the migest 

package (http://cran.r-project.org/web/packages/migest/) implemented in the R statistical 

language to create a circular representation of the matrix of relationship between the 

subpopulations identified by BAPS based on the purported recombination between strains 

in the different subgroups. We also supplied migest with the matrix from BAPS 
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admixture analysis and recreated the circular flow of recombination across only the 

subpopulations as defined by BAPS. 

 

4.2.8 Comparison of nucleotide substitution rates  

Amino acid sequences were aligned using MUSCLE sequence aligner(Edgar, 2004). The 

amino acid sequence alignment was converted to nucleotide alignment based on the 

corresponding gene sequence using PAL2NAL(Suyama, Torrents, & Bork, 2006) and we 

implemented the YN00 method of the PAML package (Z. Z. Yang, 2007) to calculate the 

pairwise dN/dS ratios for the strains (Rocha et al., 2006). The contribution of each strain 

to the overall variation in the dN/dS rates across the sample set was estimated using 

ANOVA (Analysis of Variance) approaches. 

 

4.2.9 Analysis of positive selection 

For the analysis of positive selection within core genes of the strains in the sample set, we 

first identified and removed core genes that have signals of homologous recombination 

using three methods of Pairwise Homoplasy Index (PHI), Neighbor Similarity Score 

(NSS) and the maximum χ2 method. The three methods are implemented in the PhiPack 

package (Sawyer, 1989). A window size of 50 nucleotides was used to run the methods in 

the package, and genes shown to have significant probability of homologous 

recombination by a majority of the methods were not used for the positive selection 

analysis. Next, we identified core genes under positive selection using codeml of PAML 

tool version 4.7 (Z. Z. Yang, 2007). We applied the branch-sites test for positive selection 

Model A test 2 of the tool, to identify genes under positive selection population groups. 
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For each of the clades, we performed the Likelihood Ratio Test (LRT) for two 

hypotheses - the null hypothesis is the existence of neutral selection as implemented in 

the null model versus the alternative hypothesis implemented in the test model for 

positive selection. The LRT was performed to a degree of freedom of 1, and we corrected 

for multiple testing using the False discovery rate approach (FDR)(Benjamini & 

Hochberg, 1995). We further identified the Gene Ontology (GO) terms and functional 

characterizations of the genes under positive selection (see Table 4.2) and performed an 

enrichment test for functionality of these genes using the blast2go test pipeline(Götz et 

al., 2011). 

 

4.2.10 Confirming known predictors of antibiotic resistance phenotype 

We downloaded from NCBI reference DNA sequences of resistance determinants that 

have been shown in the literature to underlie the resistance phenotype we have observed 

in our sample set (see Table 4.3), and performed a BLASTN search for each of these 

DNA sequence regions across all the strains in the database of whole genome sequences. 

For convenience, the contigs for each assembly were ordered into one pseudocontig after 

tiling to the reference genome FA1090, using the ABACUS tool 

(http://abacas.sourceforge.net/). 

We selected the top hit (with identity match of 98% or more) for each sequence (strain) in 

the database and parsed the alignment between the query and the subject sequence in the 

database for the presence or absence of the underlying resistance genetic mutations as 

suggested in the literature. 
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4.3 Results and Discussion 

 

4.3.1 Genome-wide homologous recombination in diverse N. gonorrhoeae  

We sequenced 61 recent clinical isolates primarily from the US and Canada but also 

single representatives from other countries, including Japan, Pakistan, Australia, Austria, 

Philippines, Norway and Sweden using the WGS approach to a high average coverage 

(average 225-fold read redundancy). De novo assemblies based on these data produced a 

set of contigs that represented draft, unordered representations of the genomes with high 

sequence quality. A preliminary phylogeographical analysis of the Canadian isolates 

(n=23) was recently published (Vidovic et al., 2014). For the analysis, we included the 14 

N. gonorrhoeae draft NCBI genome sequences (12 from the US and 2 from Europe) and 

the genome sequence of the FA1090 N. gonorrhoeae reference strain. The 76 were 

assigned into 23 previously described MLST STs and four new STs (10931, 10932, 

10933, and 10934). The genetic diversity (measured as pairwise nucleotide distances of 

MLST loci) of the strains in this study was about half that of the N. gonorrhoeae strains 

as a whole (0.001 substitutions per site in our study compared to 0.002 in the large MLST 

set), and the STs from our sample set were represented across the different clades of a 

phylogeny of housekeeping genes of N. gonorrhoeae strains found in the MLST database 

(see Fig 5.1). Alignment of the shotgun assembly to reference genome FA1090 

(NC_002946.2) yielded 10,962 SNPs in the core region (conserved in all strains). The 

average per nucleotide diversity in the core genome regions was 0.003.  
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Homologous recombination is known to play a role in shaping bacteria 

populations(Didelot & Maiden, 2010). The ClonalFrame tool (Didelot & Falush, 2007) 

detected 952 independent recombination events, covering more than 50% of the reference 

genome. The average size of the recombination regions identified was 360 base pairs. 

The estimate for the ratio of effects of recombination and mutation (r/m) for our strain set 

was 2.2, a relatively high value for bacterial species (Didelot & Maiden, 2010) (and quite 

similar to the r/m estimate of 1.9 based on the whole genome alignment on a less 

genetically diverse group of N. gonorrhoeae strains reported by Grad et al(Grad et al., 

2014).  

 

We constructed a maximum likelihood phylogeny of the core genome of the 76 strains 

using the RAxML program (excluding regions identified as potentially recombinant) (Fig 

4.1). This tree had similar topology to the clonal frame that determined by the eponymous 

software. The tree showed multiple clades but the there was no strong signal of genetic 

isolation by distance at the continental scale. The rate of the molecular clock was 

estimated to be 8.93x10-6 mutations per year based on the slope of the regression of the 

root-to-tip divergence with isolation dates (see Fig S2). This value was similar to those 

obtained in other bacterial studies, ranging from 8.6 x 10-9 to 2.5 x 10-5 (Z. Zhou et al., 

2013). However, because the temporal signal was weak in the root-to-tip analysis, we did 

not use these data for Bayesian phylogeny analysis using the BEAST phylogeny tool 

(Drummond & Rambaut, 2007).  
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Figure 4.1 Maximum Likelihood phylogeny of strains in sample set. Taxa are colored by 
the population subgroups defined by BAPS (subgroup1 colored Orange, subgroup 2 
Turquoise, subgroup 3 Green, subgroup 4 Yellow and subgroup 5 Red), the tips of the 
taxa are colored based on location of isolation, Canada is colored red, US is blue, Europe 
green and Asia purple, tips of strains from Australia and Chile are colored brown 
 
 

4.3.2 Neisseria gonorrhoeae population structure and biogeography 

Given that recombination was frequent in these genomes, we sought to evaluate the 

genetic substructure of the population. We used two complementary methods. BAPS 

(Tang et al., 2009) predicts the likelihood of a population structure given the input data 

and uses a non-parametric assumption approach to trace ancestry. fineSTRUCTURE 
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(Lawson et al., 2012), on the other hand, uses similar methods of predicting population 

substructure, but to a finer detail and does not assume a prior optimum number of 

subpopulations (K). The BAPS tool identified 5 subgroups within the N. gonorrhoeae 

population from the strains within the sample set (Fig 4.2). As expected, members with 

the same subgroup ancestry generally were found near each other when mapped on the 

ML phylogeny constructed using the non-recombining portion of the genome. On the 

other hand, fineSTRUCTURE identified 30 genetic subgroups within our sample set. 

However, individual members of each of the fineSTRUCTURE (supplemental Fig 4.2.1) 

subgroups belong to the same BAPS subgroup. Each of the five BAPS subgroups 

contained strains from multiple continents based on geography or location of isolation 

(Fig 4.1). It was particularly interesting that each BAPS cluster had at least one US strain 

and one Canadian strain. The BAPS analysis revealed a complex relationship between 

Group 3 and 5, with the latter group 5 separated into two groups (Fig 4.1). Group 3 

strains in clades closely related to group 5 showed significant genetic import from group 

5. It is possible that the extent of admixture occurring in group 3 and 5 may have caused 

misidentification. Also, strains of sequence type (ST) 1901, which is the most abundant 

ST in our sample set all belong to subgroup 1, hinting at a correlation between BAPS 

subgrouping and MLST. 
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Figure 4.2 Population subgroups from strains or N. gonorrhoeae in the sample set 
defined by BAPS. The names for each strain in the different subgroup are indicated at the 
bottom of the plot on the x-axis, while the fineSTRUCTURE group labels for each strain 
is on top of the plot. Each color represents one of the genetically differentiated groups 
(subgroup1 colored Orange, subgroup 2 Turquoise, subgroup 3 Green, subgroup 4 
Yellow and subgroup 5 Red)  and each vertical colored bar corresponds to one isolate. 
When the vertical bars show two colors, each color corresponds to one of the groups. The 
proportion of every color in the bar reflects the extent of the genetic material coming 
from the group represented by that particular color. 
 
 
We assessed patterns of genetic drift effects in the population by estimating the pairwise 

substitution rates between all the core gene orthologs for the strains and determining the 

mean dN/dS ratio for each strain. The mean pairwise dN/dS ratios for each strain are 

shown in Fig 4.3. There was significant variation in the mean dN/dS ratios among the 

strains (ANOVA p-value = 2.0e-16). The overall mean of the dN/dS estimate was 0.3184, 

similar to the 0.402 value estimated for the bacterial pathogen Chlamydia trachomatis 

(Joseph et al., 2012). The mean dN/dS ratio for the five subgroups respectively was 

(0.32412976, 0.33325164, 0.31273103, 0.30952504 and 0.30990092). There is no 
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significant difference between group mean dN/dS ratios (p-value =0.921, t test of means). 

 

 
 
Figure 4.3 Boxplot of mean dN/dS ratio pair-wise comparison of core genes of each of 
the strains of N. gonorrhoeae in the sample set. The boxplot is colored by subgroups 
within the Neisseria population, defined by the BAPS tool. 
 
 
The mean dN/dS ratio for strains from the Canadian region was 0.3279, which was above 

the overall mean ratio, while that for strains collected in the US was 0.31708, which is 

below the overall pairwise dN/dS mean ratio for the sample set. This was also a 

statistically significant difference (p-value 0.0018 for t test of means), suggesting a 

possible geographical effect within this subset of strains.  

  

4.3.3 Genetic admixture within N. gonorrhoeae and with other Neisseria species 

In order to understand the flow of genetic information between the strains from five 
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different subgroups defined by the BAPS analysis (Fig 4.2) as well as strains from other 

Neisseria species, we used two independent approaches. The first was to search each of 

the 952 recombination regions identified by ClonalFrame for a best BLASTN match from 

another subgroup or Neisseria species (We created a blast database of the 76 genomes 

from this study and representative strains from the Neisseria genus). In parallel, we also 

counted the occurrence of co-ancestry of genetic markers revealed by the BAPS analysis. 

Both the BAPS and BLAST analyses suggested that group 3 was the most common nexus 

of homologous recombination between other clades, consistent with its basal 

phylogenetic status. In the BAPS-based network groups 1 and 2, and to a greater extent, 

group 5, were primarily DNA donors to group 3 (Fig 4.4B). But this pattern was less 

visible in the BLAST network (Fig 4.4A). It is notable that more than 90% of the 

recombination with strains from other Neisseria species occurred in groups 2 and 3. 

Group 5 stood out as a significant source of genetic exchange into strains in group 3.  

 
Figure 4.4 Pathways for exchange of genetic materials between populations. (A) 
Recombination pattern traced from BLAST results of similarity of recombined regions 
between the subgroups defined by BAPS of N. gonorrhoeae. The clade showed as 
external represents strains from other Neisseria species. (B) Exchange of genetic 
materials among subgroups within the sample set as defined by BAPS admixture 
analysis. Colored base sub-sectors of the circle for each subgroup in the diagram 
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represents outflow of genetic material while blank or white colored sub-sectors represents 
inflow of genetic materials to the subgroups. 
 
 
The genetic relatedness of the strains in the sample set or the purported sharing of genetic 

materials across the different subgroups shown by the BAPS figure paralleled the pattern 

revealed by the BLAST clonal frame analysis (p-value = 0.048, Mantel test for 

comparing the distance matrices of the five populations between both methods). The 

exchange of genetic materials from other Neisseria species was not accounted for in the 

BAPS admixture analysis. Based on the BLAST analysis, the proportion of DNA 

transferred within N. gonorrhoeae compared to arriving from Neisseria strains the 

species was 729 out of 849 intra-specific genetic events. This finding is line with the 

“fuzzy species” concept of Fraser et al (Fraser, Hanage, & Spratt, 2007): while N. 

gonorrhoeae is not sexually isolated, DNA flow seemed predominantly through intra-

specific exchanges. 

 

4.3.4 Genes under positive selection 

Of the 1189 core genes, we identified 352 genes as likely to contain past recombination 

histories using the PHIPACK tests (Sawyer, 1989). Thirty-one genes within the subset of 

837 non-recombining core genes were found to be under positive selection using the tests 

implemented by the PAML software (Materials and Methods). BAPS subgroup 5 had the 

highest number of core genes under selection (14) followed by subgroup 3 (7). While we 

found no significant enrichment of genes under positive selection in any of the functional 

classes in the Gene Ontology (GO) database, the functions of the best match proteins 

from genes under positive selection can be broadly classified to genes involved in DNA 
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or RNA synthesis of gene expression, membrane or transport proteins, and, to a lesser 

extent, genes involved in metabolic pathways in the bacterial cell (Supplement Data S2 

spreadsheet). Of the 352 genes found to have signals of recombination, we found no 

significant enrichment of the genes in any of the functional classes in the GO database. 

The functions of these genes could broadly be classified into 2 groups: genes encoding 

membrane and transport proteins; and those involved in metabolic pathways in the cell. 

 

 
Figure 4.5 Representation of antibiotic resistance profile of N. gonorrhoeae strains 
across different subgroups of the population. 
 
 
In regard to antibiotic resistance and selection, the most interesting gene found to be 

under positive selection was porB (N. H. Smith, Maynard Smith, & Spratt, 1995), which 

has been shown to be involved in mechanisms of resistance to penicillin, macrolides, 

cephalosporin and tetracycline (Unemo & Shafer, 2014). porB exhibited signals of 
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selection in subgroups 1, 3 and 5 - the groups that harbored most of the antibiotic 

resistant strains in our sample set (Fig 4.5). comA, which encodes a membrane protein 

necessary for competence of N. gonorrhoeae, was also found to be under selection in a 

handful of strains that make up subgroup 5. This finding is of interest in regards to the 

potential for DNA uptake in these strains, since they appear to be primarily DNA donors, 

rather than recipients in genetic exchanges (Fig 4.4). Other genes putatively under 

selection included a stress response gene, a gene encoding a chaperone protein of the 

HscA family and a number of proteins: ribosyl transferase, RNA polymerase, and an 

arsR family transcriptional regulator, which were all linked to gene expression. Genes 

under positive selection in subgroup 3 were also mainly involved in gene expression or 

DNA metabolism, including DNA helicase and tRNA pseudo uridine synthase. Most of 

the genes with known functions, identified to be under positive selection in subgroup 1 

were either membrane-associated or transport proteins. 

 

4.3.5 Analysis of known genetic predictors for AMR phenotypes 

A substantial amount of research effort over the past 10 years has been devoted to 

understanding the genetic basis of drug resistance in N. gonorrhoeae (Garvin et al., 2008; 

MD et al., 2014; Unemo & Shafer, 2011; Veal et al., 2002; World Health Organization 

(WHO), 2012). Since there is a an increasing interest in the direct attribution of resistance 

phenotypes based on genome sequencing, we attempted to ascertain how knowledge of 

existing variants could be applied to the N. gonorrhoeae genomes in this study. We 

searched for variants known to underlie resistance to 3 antibiotics classes within our 
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study (Table 4.3). In terms of subgroup distribution, tetracycline resistance was found in 

each of the 5 population subgroups, azithromycin resistance was present in only 2 of the 

strains tested (SK36809 and MUNG8) and restricted to subgroup 2 (Fig 4.5), and 

cefixime resistance was found in subgroup 1 and subgroup 2. We identified genes 

responsible for resistance to the drugs tested in this works using literature searches and 

the CARD antimicrobial resistance database (McArthur et al., 2013). 

 

The tetM resistant determinant, which confers high-level resistance to tetracycline, is 

borne on plasmids and is transferred either through conjugation or transformation 

(Knapp, Johnson, Zenilman, Roberts, & Morse, 1988; Morse, Johnson, Biddle, & 

Roberts, 1986; Turner, Gough, & Leeming, 1999). It was found in only 5 of the 10 strains 

with high-level resistance to tetracycline (MIC equal or greater than 16 µg/ml). Strain 

SK1902, one of the 5 strains with the tetM determinant, had a significantly higher MIC (> 

256 µg/ml) than the rest (see attached Supplement S1). Other strains with reduced 

susceptibility or chromosomally-mediated resistance to tetracycline, that is without the 

tetM determinant do have other corresponding chromosomal mutations on one or more of 

the resistance loci: mtrR (including its promoter), penB, rpsJ. Only one strain (ATL0508) 

within the sample set exhibits resistance to tetracycline in the laboratory, without the 

presence of any of the known resistance determinants of the tetracycline resistance 

phenotype.  

 

Different “mosaic” penA alleles are thought to have developed from recombination with 

portions of DNA transferred horizontally from commensal Neisseria and or N. 
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meningitidis and underlie decreased susceptibility or resistance to cephalosporin by 

preventing their binding action on the encoded mosaic PBP2 (Ameyama et al., 2002). 

The mosaic penA XXXIV (Ohnishi, 2011; Grad 2014; Unemo & Shafer, 2014) had the 

best positive predictive value of all the known resistance determinants we searched for 

within our dataset, being present in 6/7 of the strains resistant to cefixime. This result 

echoed the observations made by Grad et al (Grad et al., 2014)in their epidemiologic 

study of N. gonorrhoeae strains. The other loci (i.e., mutations in the mtrR, mtrCDE 

operon promoter region and penB gene) also proven to enhance the MICs of 

cephalosporin (Unemo & Shafer, 2011; Warner, Shafer, & Jerse, 2008) did not have a 

similar predictive property within strains in our data set. These variants were seen in 2 

out of 7 and 3 out of 7 cefixime resistant strains, respectively. MUNG17 is the only strain 

in the sample set that has an elevated MIC (0.38µg/mL) to cefixime that we could not 

find any of the known resistance determinants within its genome sequence (See attached 

supplement Data S1). 

 

Resistance to azithromycin can be mediated by mutations in the previously mentioned 

penB and mtr operon genes as well as mutations found in the 4 different alleles of the 23S 

rRNA gene that inhibits protein synthesis (Chisholm et al., 2009; Palmer, Young, Winter, 

& Dave, 2008; Starnino, Stefanelli, Neisseria gonorrhoeae Italian Study Group, 2009). 

The 23S rRNA mutation allele was found in one (SK36809) of the two strains with the 

azithromycin resistance phenotype. The other azithromycin resistant strain, MUNG8, did 

not have the 23S rRNA resistance determinant or any of the other known mutations in the 

mtrR or penB loci (See attached Supplementary Data S1). 
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4.4 Conclusions 

Our study suggested that N. gonorrhoeae globally is made up of at least five genetic 

subpopulations. That individual strains from the subpopulations are from diverse 

geographical locations confirms the cosmopolitan nature of the pathogen. This suggested 

a population structure with multiple waves of rapid international expansion. Subgroup 3 

strains may be the nexus for gene exchange within the species. Groups 1 and 2 might be 

the most recently branched and contain a higher proportion of resistant isolates to more 

currently used antibiotics. Given the importance of the antibiotic resistant phenotype, 

these may be emerging lineages that are expanding within N. gonorrhoeae. It will require 

a more extensive study with a broader number of strains to ascertain this suggested 

evolutionary trend. Our analysis confirms earlier studies that showed an appreciable 

effect of recombination within the population. This could be playing a role in the 

evolution of AMR in the bacterium, as strains with resistance phenotypes to currently 

used antibiotics are mostly within similar population sub-groupings. 

 

Although most of the known predictors that underlie the observed resistance phenotypes 

were accounted for in the strains we studied, they could not explain some of the 

phenotypes of several strains. These findings suggested that a broader genome search of a 

large number of whole genomes from strains of this pathogen could yield candidate novel 

variants that may explain some of the “missing” antibiotic resistance phenotypes we have 

observed. 
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In general, large genome sequencing studies examining a high number of temporally and 

geographically diverse N. gonorrhoeae isolates are essential to elucidate the evolution 

and diversity of the N. gonorrhoeae species as well as associations between genomic 

content, antibiotic resistance and clinical outcome of treatment.  
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4.5 Appendix 
 
The following appendix contains tables and figures already referenced in the text of the 
chapter. 
 

 
 
Figure 4.2.1 fineSTRUCTURE plot of strains in the sample set. The heat map represents 
pairwise relatedness between the different stains, superimposed on the left is the 
fineSTRUCTURE grouping of the strains into 30 different subgroups 
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Strain 

Name 

Locatio

n Date MLST 

Azithrom

ycin 

(MIC) 

Cefixime 

(MIC) 

Tetracycli

ne(MIC) 

CH811 Chile 1982 1583 0.25 0.008 2 

GC1-182 Canada 1982 1583 0.5 0.008 4 

SK708 Canada 2006 1594 1 0.016 0.5 

SK1902 Canada 2006 10935 0.25 0.002 256 

SK6987 Canada 2006 10010 1 0.016 4 

SK7461 Canada 2008 1901 0.5 0.032 8 

SK7842 Canada 2006 10010 1 0.016 8 

SK8976 Canada 2006 1594 0.06 0.004 2 

SK12684 Canada 2006 31129 0.5 0.016 8 

SK33414 Canada 2007 1928 0.25 0.008 4 

SK14515 Canada 2005 1893 0.25 0.016 2 

SK15454 Canada 2007 1585 0.06 0.004 2 

SK16259 Canada 2007 1893 0.125 0.008 4 

SK16942 Canada 2005 1893 0.125 0.016 2 
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SK17973 Canada 2006 1893 1 0.016 8 

SK22871 Canada 2007 8122 0.125 0.004 4 

SK23020 Canada 2006 1901 0.25 0.125 16 

SK28355 Canada 2007 1893 0.25 0.016 4 

SK29344 Canada 2007 10010 0.125 0.008 4 

SK29471 Canada 2005 1893 0.25 0.016 2 

SK32402 Canada 2007 8153 0.5 0.016 4 

SK36809 Canada 2007 8126 2 0.008 8 

SK39420 Canada 2008 1585 0.5 0.016 0.5 

ALB0303 USA 2011 1588 0.03 0.015 16 

ALB0403 USA 2011 1901 1 0.125 4 

ATL0103 USA 2011 10931 0.5 0.015 0.25 

ALB0102 USA 2011 1901 0.25 0.06 2 

ATL0105 USA 2011 1588 0.06 0.015 0.25 

ATL0108 USA 2011 1584 0.03 0.015 0.25 

ATL0117 USA 2011 10932 0.125 0.015 16 
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ATL0121 USA 2011 1902 0.5 0.03 1 

ATL0125 USA 2011 1901 0.25 0.015 1 

ATL0508 USA 2011 1585 0.06 0.015 16 

ATL0513 USA 2011 1893 0.25 0.03 2 

MIA0202 USA 2011 1901 0.5 0.03 2 

MIA0309 USA 2011 1931 0.125 0.015 16 

MIA0310 USA 2011 1584 0.03 0.015 16 

MIA0510 USA 2011 1901 1 0.03 2 

MIA0515 USA 2011 1901 0.25 0.03 16 

MIA0516 USA 2011 1901 0.5 0.06 8 

NOR0306 USA 2011 1583 0.25 0.015 2 

NYC0507 USA 2011 1901 0.25 0.06 2 

NYC0513 USA 2011 1901 0.25 0.06 4 

MUNG1 Canada 1991 10934 0.125 <0.016 0.25 

MUNG3 Japan 2003 7363 0.25 0.5 2 

MUNG4 Japan 1996 1590 0.5 0.25 4 
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MUNG5 

Philippin

es 1992 1901 0.25 <0.016 1 

MUNG6 Australia 2001 10008 0.125 <0.016 16 

MUNG8 USA 2001 8127 2 <0.016 0.5 

MUNG9 Sweden 2010 1901 0.5 1 2 

MUNG12 Norway 2010 1901 0.5 0.25 4 

MUNG14 Norway 2010 1901 0.5 0.25 4 

MUNG15 Austria 2011 1901 0.25 1 2 

MUNG17 Sweden 2010 1892 1 0.5 2 

MUNG18 Norway 2010 10933 0.125 <0.016 2 

MUNG19 Sweden 2010 1580 >256 <0.016 2 

MUNG20 Sweden 2013 7363 0.25 0.5 2 

MUNG21 Pakistan 2008 1902  1   0.032  2 

MUNG23 Sweden 1998 1585 0.064 <0.016 0.125 

MUNG25 Sweden 1998 1901  0.125  <0.016  0.5 

MUNG26 Sweden 1999 1584  0.064  <0.016  0.5 

 
Table 4.1 Location and date of collection of the N. gonorrhoeae strains including 
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Sequence Types and MICs of the different strains to the antibiotics azithromycin, 
cefixime and tetracycline The MIC breakpoint value for azithromycin resistance is 2 
µg/mL, for cefixime 0.25 µg/mL, and for tetracycline 2 µg/mL, based on the CDC 
breakpoints for antibiotic testing. 
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Gene Clades Present Gene ID (reference 

genomeFA 1090) 

PorB 1,3,5 NGO1812 

Acetate kinase 2 5 NGO1521 

Primosomal replication 

protein 

3 NGO0582 

DNA Helicase 3,5 NGO1196 

Hypothetical protein 5 NGO0880 

Hypothetical Protein 5 NGO1847 

Hypothetical protein 5 NGO1948 

ComA 5 NGO0276 

Chaperone Protein HscA  5 NGO0829 

tRNA-ribosyltransferase 5 NGO0294 

RNA polymerase Subunit β 5 NGO1850 

ArsR family transcriptional 

regulator 

5 NGO1562 

Hypothetical protein 5 NGO0165 

PriB 5 NGO0582 

ABC transporter subunit 3 NGO2088 

Hypothetical protein 3 NGO1984 

tRNA pseudouridine 

synthase B 

3 NGO0642 

Prolyl endopeptidase 1 NGO0026 
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Apo-lipoprotein N-

acyltransferase 

1 NGO0289 

Sodium dependent 

transporter 

1 NGO2096 

Phage associated protein 1 NGO1012 

Hypothetical Protein  4 NGO0914 

 
Table 4.2 Core genes of N. gonorrhoeae under positive selection in the different clades of 
the phylogeny of strains in the sample set. 
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Gene name FA1090 
Reference 
locus_tag/Gene 
Bank ID 

Genetic 
Mutations 

Resistance 
Phenotype 

References 

mtrR NGO1366 
 

G45D, A39T 
(glycine and 
aspartate 
substitutions) 

Decreased 
susceptibility 
to macrolides 
and beta-
lactams 

PMID: 
18761689 
 

mtrCDE 
promoter 

NGO1366 
 

Single 
nucleotide 
deletion on 
reference 
genome 
position 
1327932 

Decreased 
susceptibility 
to macrolides 
and beta-
lactams 

PMID: 
18761689 
 

penB 
NGO1812 
 

G101K, 
A102D 
(glycine and 
alanine 
substitutions) 

Decreased 
susceptibility 
to third-
generation 
cephalosporins 

PMID: 
17420216 
 

Mosaic penA NGO1542 
 
 

Mosaic 
pattern 
amino acid 
substitutions 
form 
position 294 
to end of 
gene 

Decreased 
susceptibility 
to third-
generation 
cephalosporins 

PMID: 
20028823 
 

rpsJ NGO1841 V57M Decreased 
susceptibility 
to tetracycline 

PMID:16189114 

23S rRNA AF450080 C2611T 
(Cystine to 
Threonine 
substitution) 

Decreased 
susceptibility 
to 
Azithromycin 

PMID: 
12183262 

tetM 
N/A Horizontally 

transferred 
determinant 
on plasmids 

Resistance to 
tetracycline 
(MIC >= 
16µg/ml) 

PMID: 
21349987 
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Table 4.3 Known antibiotic resistance determinants in sample set. The description 
includes the PubMed reference ID and associated resistance phenotypes of these 
determinants in N. gonorrhoeae. Cephalosporin antibiotics include cefixime and 
ceftriaxone, while macrolides include erythromycin and azithromycin. 
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Supplementary Data 
 

 
 
 



104 
 

 



105 
 

Chapter 5 

Genome-wide tests for antibiotic resistance-associated variants within Neisseria 

gonorrhoeae 

Matthew Ezewudo, Timothy D. Read 
 

Under preparation for submission to a peer reviewed journal 

5.1 Introduction 

Neisseria gonorrhoeae is a Gram negative human pathogen responsible for gonorrhea, an 

important sexually transmitted infection (STI) of humans. Gonorrhea is one of the most 

prevalent STIs, representing 106 million out of the estimated 498 million new cases of 

curable non-viral STIs globally every year(World Health Organization (WHO), 2012). 

The only effective option for treating the disease and stopping its spread has been the use 

of antimicrobial therapy; there is no vaccine to prevent the pathogen. Antimicrobial 

treatment options have diminished over time due to the emergence of antimicrobial 

resistance (AMR) to all of the classes of drugs previously used to treat gonorrhea and the 

paucity in the development of newer antibiotics that could effectively eradicate the 

pathogen (Ohnishi et al., 2011; World Health Organization (WHO), 2012).  One of the 

biggest challenges in this field is to understand the underlying molecular and 

evolutionary mechanisms that drive resistance in N. gonorrhoeae. 

 

A number of studies have helped to elucidate the underlying molecular mechanisms 

driving the resistance of this pathogen to the major classes of antibiotic drugs used to 
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treat the condition (reviewed by Unemo & Shafer, 2011). Broadly speaking, two groups 

of antibiotics currently used in the treatment of gonorrhea are third generation 

cephalosporin and macrolides.  

 

Cephalosporins inhibit bacteria by preventing the biosynthesis of peptidoglycan and 

accordingly the cell wall of the bacteria. Studies have shown that the main underlying 

genetic determinant for resistance to third generation cephalosporin such as cefixime and 

ceftriaxone, is a mosaic penA gene (Ameyama et al., 2002; Lindberg et al., 2007). This 

gene encodes a re-modeled (mosaic) penicillin binding protein 2 (PBP2), the lethal target 

for this class of antibiotics that is poorly acylated by beta-lactam antibiotics. Furthermore, 

an overexpression of the MtrC-MtrD-MtrE efflux pump, which actively exports beta-

lactams and other antibiotics, and specific mutations in the PorB1b porin gene, which 

decrease the influx of the antibiotics, further enhance the MICs of the cephalosporins 

(Unemo & Shafer, 2014).  

 

Macrolides, which include such drugs as azithromycin and erythromycin, act by 

inhibiting bacterial protein synthesis via binding to the 50S subunit of bacterial 

ribosomes. Resistance to macrolides frequently involves specific mutations in the 

macrolide target, i.e. 23S rRNA. As with beta-lactams, the presence and overproduction 

of the MtrC-MtrD-MtrE efflux pump can reduce gonococcal susceptibility to macrolides 

(Deguchi, Nakane, Yasuda, & Maeda, 2010; Hagman & Shafer, 1995). 

 

Over the past 10 years, substantial research effort has been devoted to understanding the 
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genetic basis of drug resistance in N. gonorrhoeae (Garvin et al., 2008; MD et al., 2014; 

Unemo & Shafer, 2011; Veal et al., 2002; World Health Organization (WHO), 2012). 

Since there is an increasing interest in direct attribution of resistance phenotypes based on 

genome sequencing, we attempted to build on knowledge of existing variants underlying 

resistance in the N. gonorrhoeae genomes in this study. This is because while past studies 

of this population in specific regions have focused on a number of representative genes or 

regions of the genome of N. gonorrhoeae, no extensive studies has been conducted on a 

global collection of strains. Our approach of genome-wide analysis of multiple 

international strains, represents an initial step towards providing increased depth in 

genomic regions covered, impacting the evolution of antibiotic resistance within the 

species. 

 

5.2 Materials and Methods 

 

5.2.1 Neisseria gonorrhoeae isolates 

Our sample set, which has been previously described (Ezewudo et al., 2015), consists of 

61 N. gonorrhoeae isolates of diverse origin. These included isolates from the Atlanta, 

Georgia Gonococcal Isolation Surveillance Program (GISP) site covering certain cities in 

the United States (n=21), Canada (n=24), Sweden (n=7), Norway (n=3), Japan (n=2), 

Austria (n=1), Pakistan (n=1), the Philippines (n=1), and Australia (n=1). The strains 

sequenced in this study were tested for resistance to two antibiotic drugs, azithromycin 

and cefixime, with MIC (minimum inhibitory concentration) breakpoints for resistance 
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set at 2.0, and 0.25 µg/mL, respectively, based on the CDC MIC breakpoints for testing 

in the GISP protocol. Phenotypic determination of the MICs across a number of different 

antibiotic classes was performed using the agar dilution method or the Etest method 

(bioMerieux), according to the instructions from the manufacturer. Details of the 

different isolates and their NCBI accession numbers is shown on Table 4.1.  

 

5.2.2 Sequence generation  

The N. gonorrhoeae strains were whole genome sequenced (WGS) using the Illumina 

HiSeq™ instrument, utilizing libraries prepared from 5 µg of genomic DNA for each 

sample. The sequencing reads’ quality were filtered using the prinseq-lite algorithm 

(Schmieder R. et al, 2011) to ensure only sequence reads with average phred score ≥30 

were used (Fig 5.1). The sequence reads data were deposited in the NCBI Sequence Read 

Archive public database (Accession # SRA099559). 

 

5.2.3 Variants calling 

We used two approaches to detect variants in the whole genome sequences of the strains. 

The first was through mapping the reads for each strain to the reference genome sequence 

Ref_FA_1090 (NC_002946.2) using the BWA aligner too l(H. Li & Durbin, 2009). We 

subsequently used the pipeline implemented in the Samtools package (H. Li et al., 2009) 

to identify variants in each of the strains and to generate a list of variants position files in 

the VCF format for each strain. The merged VCF file corresponding to variant positions 

of all the strains served as the source for the input files required by the QROADTRIPS 

tool (Thornton & McPeek, 2010).  



109 
 

 
Figure 5.1 Phred quality score of sequencing reads of the N. gonorrhoeae isolates used 
for this project.  
 
The other approach we used to call polymorphic sites in the data was an alignment -free 

method implemented in the kSNP tool (Gardner & Hall, 2013). kSNP searches the 

genomes in the sample set for the presence of SNPs flanked by a given length of 

repeating bases (Kmers). It only identifies variants present in more than one genome in 

the sample set; otherwise the base call is attributed to sequencing error. The list of SNP 

positions identified by kSNP serves as input data for the PPFS method (B. G. Hall, 2014) 

of identifying variants associated with phenotypes of interest. 

 

5.2.4 Nucleotide diversity analysis 

We estimated the genetic relatedness of the N. gonorrhoeae strains we have in our 

sample set by identifying the pairwise and average nucleotide distances between the 
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strains. We used the MEGA software (Tamura, et al 2013) to compute these nucleotide 

distances for the sequence alignments and compared with those of the Multi-Locus 

Sequence Typing (MLST) (Jolley & Maiden, 2010) housekeeping genes.  

  

5.2.5 Pangenome Analysis and Test for flexible genes underlying resistance 

We used the OrthoMCL tool to perform all by all blast searches of all the predicted open 

reading frames present in the genomes of strains in the sample set. While orthologs are 

defined as matching genes from a different strain, paralogs are closely matching genes 

found in the same strain. Orthologs and paralogs from all the strains were grouped into 

clusters, the entirety of which makes up the pangenome. The core genes are orthologs 

present in all the strains and are functionally relevant to the species, while the flexible 

genes are found in only a subset of the pangenome. 

 

We used a hypergeometric approach to test for the significance of associating the 

presence of a given accessory gene to the phenotype of antibiotic resistance across two 

antibiotic drugs: cefixime and azithromycin. 

 

5.2.6 Genome-wide association analyses 

We used two software packages for the genome-wide association analysis, to identify 

genetic variants that are significantly associated with antibiotic resistance phenotype: 

PPFS and QROADTRIPS.  

 

PPFS 
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Predicting Phenotypes From SNPs(PPFS) (B. G. Hall, 2014) is a recently published 

approach that accepts as its input data, several output files from  kSNP. The output of 

kSNP includes phylogenetic trees built using either parsimony, neighbor joining, or 

maximum likelihood methods, as well as FASTA format files of SNP sites across the 

different strains in the sample set. kSNP determines how many SNPs are common among 

strains on each node and branch of the phylogenetic tree. The SNPs predicted by kSNP 

are then presented to PPFS for analysis.  

 

PPFS analysis takes place in two steps: First, the tool determines the set of SNPs from all 

the SNPs in the dataset that could be used to accurately infer a given phenotype. This 

subset of SNPs is referred to as ‘diagnostic SNPs’. The diagnostic SNPs are selected 

using a chi-square test, the null hypothesis being that SNPs are randomly distributed 

between individuals with a phenotype of interest. P-values for the test, suggests the 

probability of observing the test statistic or more extreme values for the test, if the null 

hypothesis were true. The consensus diagnostics SNPs are selected over a number of 

iterations to test the accuracy of phenotype prediction by the set of SNPs chosen.  

Accuracy, which is the ratio of the accurate predictions to the overall predictions, is 

estimated by comparing the prediction of phenotypes in a subset of the sample set using 

the diagnostic SNPs. An accuracy level of 90% is the level encouraged, using the tool. 

Secondly, the ancestral relationship between all the diagnostic SNPs is reconstructed 

using a maximum likelihood phylogeny approach and the history of change of state 

across the branches from the internal nodes of the phylogeny is traced. The chi-square 

test statistic is again used to assess the null hypothesis that the occurrence of a diagnostic 
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SNP along branches where there is a change in phenotype is random and unrelated to 

causality of antibiotics resistance. So for this subsequent chi-square test, diagnostic SNPs, 

that occur frequently on branches or nodes of an ancestrally reconstructed phylogeny 

where there is a change of state of the phenotype of interest will have smaller the p-

values, which represents the probability of observing the test statistic or a more extreme 

value if the null hypothesis in this case is true.  

 

QROADTRIPS  

QROADTRIPS is a statistical tool in the ROADTRIPS (Thornton & McPeek, 2010) 

module, designed for performing case-control association analysis of genetic variants 

within a population with partially or unknown population and pedigree structure (Alam et 

al., 2014). QROADTRIPS is able to incorporate quantitative phenotypic data (in this case 

MICs) to test for associations with genetic variants, unlike ROADTRIPS, which is based 

on categorical phenotypes only. The p-values estimated for the associations were 

corrected for multiple testing using the Bonferroni method, and loci with variants 

significantly associated with the resistance phenotype were flagged as candidates for 

causation of antibiotics resistance. The input data included genotypes from all SNPs 

detected in each WGS N. gonorrhoeae genome compared to the FA 1090 reference 

genome, using Samtools (H. Li et al., 2009) SNP calling pipeline. The phenotypes were 

MIC values from AMR assays. 
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5.3 Results and Discussion 

 

5.3.1 Nucleotide diversity of sample set is lower than overall Neisseria diversity 

A comparison of the mean nucleotide distance at the seven housekeeping loci between 

strains in our sample set on one hand, and those of the different sequence types found in 

the MLST database (Table 5.1) suggests a low diversity among the strains we used for 

this study (average nucleotide distance = 0.001). This value is not significantly different 

from the mean nucleotide distance for all the sequence types in the MLST data (0.002), 

suggesting genetic similarity within the species across these loci, regardless of where the 

strains were collected. A phylogeny of all the N. gonorrhoeae sequence types in the 

MLST database inclusive of sequence types in our sample set is shown in Fig 5.2. 
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5.3.2 Novel genetic variants potentially associated with drug resistance in N. 

gonorrhoeae  

The previous findings of the possibility that some N.gonorrhoeae strains have an 

antibiotic resistance phenotype that could not be explained by known resistance genes 

and mutations (Unemo & Shafer, 2011) led us to search for novel genetic determinants 

underlying resistance in the species.  

 

The results from our analysis of the pangenome of N. gonorrhoeae follow the expected 

partitioning of core and flexible genes see Fig 5.3. Our approach to determine whether 

any non-core accessory gene showed a strong association with strains that were resistant 

to the antibiotic drugs tested yielded no significant association between any flexible gene 

and antibiotic resistance phenotype (p > 0.05 using Fishers exact test with Bonferroni 

Fig 5.2 Neighbor-Joining phylogeny of 
all the sequence types in the MLST 
database, taxa colored blue are 
Sequence types present in our sample 
set 
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correction).  

  
 

The other strategy was to apply genome wide association (GWA) algorithms to attempt 

to link SNPs and small insertions and deletions (indels) within the core genome to a 

phenotype.   

 

SNP Calling analysis 

 Our first GWA method was PPFS (B. G. Hall, 2014), which flags variants in an 

ancestrally reconstructed phylogenic tree that are highly correlated with the branches 

where there is change in phenotypes on the phylogeny, as candidates for causation of 

antibiotics resistance in the pathogen. The alignment-free tool kSNP which we used at the 

initial phase of this method to identify SNPs within strains in the sample set detected 

21,706 variant sites, which were fed to the PPFS tool for analysis. The accuracy level for 

selecting diagnostic SNPs was set at 90%. 

 

For our second approach, we used QROADTRIPS (Alam et al., 2014; Thornton & 

Fig 5.3 Pangenome of strains 
represented in sample set. 
Genes to the left of the red line 
represents the flexible genes 
while those to the right 
represent the extended core 
genes. 
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McPeek, 2010) which applies a classical regression method to associate variants with 

antibiotic resistance but compensates for the effects of population structure.  For this 

method, we started with 17,560 SNPs detected using the SNP calling pipeline on the 

mapped reads of all the strains in the sample set. The association test was performed 

using the level of antibiotic resistance as a continuous variable. Given the number of 

SNPs tested, the threshold for significance was set at 2.8 x 10-6 (correcting for multiple 

testing using the Bonferroni approach of dividing the desired experiment-wise Type I 

error rate (α=0.05) by the number of tests performed (m=17,560)). 

 

Phenotypic analysis 

The first phenotype we tested for was resistance to azithromycin.  Both GWA methods 

identified a combined number of 122 variants purported to be linked to resistance to this 

antibiotic (see table 5.2). For the other antibiotic drug –cefixime, QROADTRIPS did not 

identify SNPs that were significantly linked to the resistance phenotype, but PPFS 

flagged 31 diagnostic SNPs that were potentially associated with cefixime resistance 

(table 5.3).  For both phenotypes there were 16 non-synonymous SNPS within 

characterized loci of the reference genome and called by either method to be significantly 

associated with the phenotype (table 5.4) 
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 Of these 16 non-synonymous SNPs, 4 (reference genome positions: 14776, 1516686, 

1768055, 1957743) were corroborated to be appreciably linked to antibiotic resistance by 

both methods with a high degree of confidence (p < 1 x10-5)) see table 5.4.  These 4 SNPs 

which were corroborated by both GWA methods offer the most confidence of their 

potential association with antibiotic resistance. Also, the characteristics of the loci where 

these non-synonymous variants arise tend to support their potential for being causative of 

antibiotic resistance. For instance, SNP positions 14776 and 178055 occur on DNA 

isomerase and methyl-transferase proteins respectively. These are enzymes involved in 

metabolic pathways such as activation or deactivation of DNA synthesis and are potential 

targets of antibiotic medications. The non-synonymous mutation on position 1516686 of 

the reference genome occurs within the NGO1542 locus that codes for penicillin binding 

protein 2 (PBP2).  Mosaic penA, the gene encoding PBP2, have been previously indicated 

to be involved in cephalosporin resistance (Ameyama et al., 2002). Also, a number of 

mutations (SNP positions 1516409 – 1538106 on the reference genome) within this locus 

–NGO1542 were significantly linked to cefixime resistance by the PPFS method and to 

an appreciable extent the QROADTRIPS method, indicative of the mosaic penA pattern 

Fig 5.4 Manhattan plot of the 
natural log of the p-values of 
the SNPs within strains in the 
data set. SNP points above the 
dotted line are significantly 
associated to resistance to 
Azithromycin 
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(Table 5.3). Finally, the SNP on position 1957743, which was significantly associated 

with resistance to azithromycin by both methods, falls within a hypothetical gene (locus 

tag NGO1982) that has not been fully characterized in previous literature. Given that it is 

the only non-synonymous SNP within a hypothetical gene locus corroborated by both 

methods, it possibly could play a role in resistance to azithromycin, and this could be 

verified using functional and complementation analysis in the bacteria genetics 

laboratory. For the other 12 non-synonymous SNPs in Table 5.4 called by either of the 

methods, while they were not significantly corroborated by both methods, they could also 

serve as candidates for further analysis to experimentally validate their link to the 

respective antibiotics resistance phenotype. 

 

5.3.2.1 Comparison between PPFS and QROADTRIPS methods 

For the sets of SNPs tested by the two association test methods (21,706 and 17,560 for 

PPFS and QROADTRIPS respectively), both methods identified 6631 similar variants on 

the reference genome. kSNP identified 15153 unique SNPs not identified by our 

QROADTRIPS variant calling pipeline, while our SNP calling pipeline for 

QROADTRIPS identified 6608 unique SNPs not called using kSNP. 

 

Comparing the SNP calling results from both methods, 14 out of the 16 diagnostic SNPs 

identified by PPFS as associated with azithromycin resistance were also flagged by 

QROADTRIPS as associated with the phenotype.  In addition, a majority of the SNPs 

identified as significantly associated with azithromycin resistance via the QROADTRIPS 

SNP calling pipeline, were flagged as diagnostic SNPs by PPFS with p-values < 0.001 
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(Table 5.2). Similarly, for the cefixime antibiotics resistance phenotype, for two-thirds of 

the SNPs called by both pipelines, there is agreement between the two methods on the 

significance of association between the SNPs and cefixime resistance (Table 5.3). Both of 

these observations suggest an agreement by both methods on the approach to identify 

SNPs associated with antibiotics resistance, even though there is some discrepancy in the 

orders of magnitude of the p-values obtained using the two methods (Table 5.2, 5.3 and 

5.4).  

 

5.4 Conclusion 

 We identified 4 primary variants that were corroborated by two different methods of 

genome wide association testing to be significantly associated with antibiotics resistance 

to azithromycin and cefixime (Tables 5.4). Both approaches appear to reconfirm the 

importance of the penA loci (that expresses the PBP2) as a predictor of resistance to third 

generation cephalosporin. In addition, we flagged potential novel mutations found in 

genes that express a range of proteins, potentially significantly associated to resistance to 

the various antibiotic drugs tested. These genes are candidates for further study using 

experimental bacteria genetics, to confirm their involvement in antibiotics resistance. We 

also need to further investigate possible epistatic interactions of these genes with other 

known resistance determinants and how their varying levels of expression could correlate 

with the resistance phenotype.  

 

We applied two different tools -- PPFS and QROADTRIPS-- for the genome-wide 

association tests for novel antibiotic variants in strains within the sample set. PPFS 
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identified variants with lower p-values compared to QROADTRIPS. This is in part 

because of the PPFS approach of first detecting diagnostic SNPs that are associated to a 

particular phenotype as predictive SNPs for the phenotype and taking the further step of 

assessing the significance of change in state of this now smaller set of SNPs in relation to 

change in the phenotype along the branches of an ancestrally reconstructed phylogeny of 

all the strains tested. This could also be attributable to the fact that QROADTRIPS 

applies a quantitative approach when correlating the phenotype (MICs for the different 

drugs tested) as a continuous variable to the underlying genetic variation versus the 

qualitative approach of the PPFS method, which is based on a threshold and 

categorization of the phenotypes as discrete variables. Also, the kSNP approach of 

detecting SNPs in the sample set without recourse to a particular reference genome 

increases the pool of SNPs within the set from accessory genes, which may have been 

missed otherwise. One limitation of the PPFS method seem to be the absence of multiple 

testing correction for  the identification of diagnostic SNPs, but it is partly compensated 

for by the iterative nature of selecting the consensus set of diagnostic SNPs, and a 

threshold of acceptable measure of accuracy for arriving at this set of diagnostic SNPs. 

Going forward, carrying out complementation tests on the candidate resistant 

determinants identified through both methods will be a helpful step in corroborating the 

accuracy of the 2 different approaches. Also a different prokaryotic genome-wide 

phenotype association test such as PhyC (Farhat et al., 2013) could be used on the same 

data to provide better insight on the nature of the underlying SNPs in the sample set. 

 

Previous antibiotics resistance studies on N. gonorrhoeae have been performed on a 
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small number of loci. Only recently have there been extensive population genomics 

studies of the pathogen using WGS; for example, Grad et al (Grad et al., 2014) applied 

WGS analysis of more than 200 N. gonorrhoeae strains within the United States to make 

inferences on the epidemiology of resistance to the antibiotic cefexime. We analyzed data 

that was collected from a wider spread of geographical locations, and tested resistance to 

a larger suite of antibiotic drugs, to investigate the evolution of antibiotics resistance 

within the pathogen population. This work points to the need for a broader collection of 

strains sampled from locations worldwide and isolated at different time points that will 

serve as materials for a comprehensive genomic studies of evolution of antibiotic 

resistance in the N. gonorrhoeae population. 
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5.5 Appendix 
 
The following appendix contains tables already referenced in the text of the chapter. 
 
 
 

MLST Locus Nucleotide 
diversity in 
Neisseria spp  

Nucleotide 
diversity in 
N. 
gonorrhoeae 

Nucleotide diversity in 
our Sample 

abcZ 
0.084 0.003 0.002 

adK 
0.052 0.001 0.001 

aroE 0.169 0.002 0.001 

Pgm 
0.089 0.001 0.001 

fumC 
0.035 0.003 0.002 

Gdh 
0.116 0.001 0.001 

pdhC 
0.089 0.001 0.001 

 
Table 5.1 comparison of mean nucleotide distances in housekeeping genes of strains in 
MLST database and strains in our sample set 
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SNP position chi-test p-value for 
diagnostic SNPs 

chi-test p-value for 
causal SNPs 

QROADTRIPS p-
value 

12319 NA NA 2.19E-06 
12332 NA NA 2.19E-06 
12435 0.0015443 7.85E-34 2.19E-06 
12606 0.0015443 NA 2.19E-06 
13388 NA NA 2.19E-06 
13708 NA NA 2.19E-06 
13922 NA NA 2.19E-06 
13928 NA NA 2.19E-06 
13955 NA NA 2.19E-06 
14270 0.0043299 NA 2.19E-06 
14324 0.6455 NA 2.19E-06 
14393 NA NA 2.19E-06 
14401 NA NA 2.19E-06 
14776 0.0015443 7.85E-34 2.19E-06 
14813 0.0015443 NA 2.19E-06 
15347 NA NA 2.19E-06 
15362 NA NA 2.19E-06 
15481 0.0015443 NA 2.19E-06 
15606 0.0015443 NA 2.19E-06 
15636 0.0015443 NA 2.19E-06 
15823 0.002744 NA 2.19E-06 
15944 NA NA 2.19E-06 
15972 NA NA 2.19E-06 
15974 NA NA 2.19E-06 
16041 NA NA 2.19E-06 
16050 NA NA 2.19E-06 
16074 0.0015443 7.85E-34 2.19E-06 
16088 0.68578 NA 2.19E-06 
16182 0.011231 NA 2.19E-06 
40517 0.0045409 NA 2.19E-06 
62627 0.0015443 NA 2.19E-06 
170126 0.0043299 NA 2.19E-06 
327499 NA NA 2.19E-06 
447334 NA NA 2.19E-06 
447336 NA NA 2.19E-06 
447481 NA NA 2.19E-06 
447489 NA NA 2.19E-06 
521548 0.0039151 NA 2.19E-06 
638993 NA NA 2.19E-06 
647226 0.0015443 NA 2.19E-06 
743830 NA NA 2.19E-06 
774339 0.0093725 NA 2.19E-06 
848476 NA NA 2.19E-06 
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871260 NA NA 2.19E-06 
871267 NA NA 2.14E-06 
871302 0.059171 NA 2.14E-06 
871357 NA NA 2.14E-06 
871941 NA NA 2.14E-06 
871944 NA NA 2.14E-06 
1058899 0.0015443 NA 2.08E-06 
1059613 0.98213 NA 2.16E-06 
1101551 0.0015443 NA 2.19E-06 
1166653 0.0015443 NA 2.19E-06 
1167797 NA NA 2.19E-06 
1167916 0.0015443 NA 2.19E-06 
1239564 0.0015443 NA 2.19E-06 
1302153 0.0043299 NA 2.19E-06 
1330716 0.78413 NA 2.53E-06 
1371326 0.0015443 NA 2.19E-06 
1371374 0.0015443 NA 2.19E-06 
1371440 0.0015443 NA 2.19E-06 
1371803 0.0015443 NA 2.19E-06 
1371917 0.0015443 7.85E-34 2.19E-06 
1371974 0.0015443 NA 2.19E-06 
1371995 0.0015443 NA 2.19E-06 
1372293 NA NA 2.19E-06 
1372484 NA NA 2.19E-06 
1372749 NA NA 2.19E-06 
1373320 NA NA 2.19E-06 
1373356 0.0015443 NA 2.19E-06 
1373506 0.0015443 7.85E-34 2.19E-06 
1373653 0.0015443 NA 2.19E-06 
1373945 0.0015443 7.85E-34 2.19E-06 
1374038 0.0015443 NA 2.19E-06 
1374161 NA NA 2.19E-06 
1374164 NA NA 2.19E-06 
1374176 0.0015443 NA 2.19E-06 
1374200 0.0015443 NA 2.19E-06 
1374287 0.041593 NA 2.19E-06 
1374378 NA NA 2.19E-06 
1374472 NA NA 2.19E-06 
1374619 0.002744 NA 2.19E-06 
1374696 0.0015443 NA 2.19E-06 
1374748 NA NA 2.19E-06 
1374751 NA NA 2.19E-06 
1402714 0.059171 NA 2.19E-06 
1464451 NA NA 2.19E-06 
1483576 0.0015443 NA 2.19E-06 
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1533228 NA NA 2.19E-06 
1666211 0.0057358 NA 2.19E-06 
1713181 0.0015443 7.85E-34 NA 
1768055 0.0015443 7.85E-34 2.19E-06 
1780498 0.010964 NA 2.19E-06 
1787211 NA NA 2.19E-06 
1837063 0.0015443 NA 2.19E-06 
1848254 NA NA 2.19E-06 
1892797 0.51564 NA 2.59E-06 
1955412 0.0015443 NA 2.19E-06 
1955703 0.0045409 NA 2.19E-06 
1955928 0.0029302 NA 2.19E-06 
1956147 0.0015443 7.85E-34 2.19E-06 
1956159 0.0015443 7.85E-34 1.44E-04 
1956174 0.0015443 NA 2.19E-06 
1956217 0.0015443 NA 2.19E-06 
1956252 0.0045409 NA 2.19E-06 
1956453 0.0015443 NA 2.19E-06 
1956492 0.0015443 7.85E-34 2.19E-06 
1956510 0.0015443 NA 2.19E-06 
1956700 NA NA 2.19E-06 
1957060 0.0015443 7.85E-34 NA 
1957099 0.0015443 1.03E-12 4.83E-04 
1957243 0.0043299 NA 2.16E-06 
1957277 0.0015443 1.30E-17 2.70E-05 
1957476 NA NA 2.16E-06 
1957521 0.0015443 1.03E-12 1.44E-04 
1957609 NA NA 2.19E-06 
1957620 NA NA 2.19E-06 
1957743 0.0015443 7.85E-34 2.19E-06 
1983110 0.0015443 NA 2.19E-06 
1986130 NA NA 2.19E-06 
2027045 0.0015443 NA 2.19E-06 
2056067 0.059171 NA 2.90E-06 
 
Table 5.2 List of SNPs associated with resistance to azithromycin by both association 
test methods. The table depicts position of the SNPs on the reference genome and the chi- 
square p-value for test of randomness of the SNPs relative to the resistance phenotype of 
strains in sample set and the corresponding QROADTRIPS p-value. 
 
 
 
 
 
 



126 
 

SNP 
position 

chi-test p-value for 
diagnostic SNPs 

chi-test p-value for 
causal SNPs 

QROADTRIPS 
p-value 

205677 0.00014937 7.85E-34 NA 
379862 0.00014937 1.30E-17 NA 
421792 0.00014937 7.85E-34 NA 
427464 0.0031895 0.9607 0.114332 
749288 0.00027512 1.97E-09 0.730586 
764262 0.00014937 0.9343 NA 
887030 1.43E-06 1.30E-17 NA 
963415 0.00014937 7.85E-34 NA 
1089378 1.43E-06 1.30E-17 NA 
1127405 0.00014937 7.85E-34 NA 
1173580 1.43E-06 3.60E-12 NA 
1270489 0.00014937 1.30E-17 NA 
1406914 0.00014937 0.8678 NA 
1436301 0.00014937 7.85E-34 NA 
1452474 0.00014937 7.85E-34 NA 
1467455 0.00014937 1.30E-17 NA 
1515665 0.000014385 3.20E-11 0.0771767 
1516253 0.00051788 1.30E-17 NA 
1516364 0.00016463 1.30E-17 0.804895 
1516409 0.000040213 1.30E-17 4.40E-05 
1516586 0.00016463 1.30E-17 0.00129052 
1516686 0.00016463 1.30E-17 0.00049408 
1516709 0.00016463 1.30E-17 0.00039415 
1516799 0.00051788 1.30E-17 0.00017035 
1516823 0.00016463 1.30E-17 0.00017035 
1538106 0.014117 1.30E-17 NA 
1678634 0.00037474 7.26E-06 0.0120541 
1834823 0.00014937 7.85E-34 NA 
1865101 0.00014937 7.85E-34 NA 
1885133 0.00036157 0.8111 0.444821 
1885377 3.48E-06 0.8517 0.716525 
 
Table 5.3 List of SNPs associated with resistance to cefixime. The table depicts position 
of the SNPs on the reference genome and the chi- square p-value for test of randomness 
of the SNPs relative to the resistance phenotype of strains in sample set and the 
corresponding QROADTRIPS p-value. 
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Ref 
Genome 
position 

PPFS 
causal p-
value 

QROAD
TRIPS 
causal P-
value 

FA1090 
Reference 
locus_tag 

Protein 
Descripti
on 

Amino 
Acid 
Change 

Phenotyp
e 

14776 7.85E-34 2.19E-06 NGO0017 tri-iso 
phospahat
e 
isomerase 

A146T Azithromy
cin 
Resistance 

16088 NA 2.19E-06 NGO0019 protein-L-
isoaspartat
e O-
methyltran
sferase 

A30E Azithromy
cin 
Resistance 

963415 7.84E-34  NA NGO0992 Hypotheti
cal Protein 

M192T Cefixime 
Resistance 

1059613 NA 2.16E-06 NGO1097 Phage 
associated 
protein 

Q438L Azithromy
cin 
Resistance 

1089378 1.29E-17  NA NGO1149 Succinyl 
sulfhydrol
ase 

G251S Cefixime 
Resistance 

1127405 7.84E-34  NA NGO1183 ribosyl 
glycinami
de 
synthase 

H1039R Cefixime 
Resistance 

1371326 NA 2.19E-06 NGO1406 glycine 
cleavage 
system 
aminomet
hyltransfer
ase 

S324R Azithromy
cin 
Resistance 

1373356 NA 2.19E-06 NGO1408 Hypotheth
ical 
protein 

D6N Azithromy
cin 
Resistance 

1374200 NA 2.19E-06 NGO1410 Hypotheth
ical 
protein 

I87M Azithromy
cin 
Resistance 
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1374619 NA 2.19E-06 NGO1411 Hypotheti
cal 
protein, 
ion 
transport 

A12T Azithromy
cin 
Resistance 

1483576 NA 2.19E-06 NGO1514 Hypotheti
cal protein 

L96S Azithromy
cin 
Resistance 

1516686 1.29E-17 4.94E-04 NGO1542 Penicillin 
binding 
protein 2 

A160V Cefixime 
Resistance 

1666211 NA 2.19E-06 NGO1710 Trans-
acylase 
protein 

Q622* Azithromy
cin 
Resistance 

1768055 7.85E-34 2.19E-06 NGO1795 DNA 
methyl- 
transferase 

G145R Azithromy
cin 
Resistance 

1957243 NA 2.16E-06 NGO1981 Hypotheti
cal protein 

T119N Azithromy
cin 
Resistance 

1957743 7.85E-34 2.19E-06 NGO1982 Hypotheti
cal protein 

L19M Azithromy
cin 
Resistance 

 
Table 5.4 SNP identities, p-values of association by either association test methods, the 
protein ID and name of gene where the SNPs occur. Reference gene used for annotation 
was FA 1090 (NCBI accession: NC_002946.2) 
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Chapter 6 

 

Summary and future directions 

This dissertation has focused on the study of genetic variation within bacterial 

populations and the development and application of next generation sequencing analysis 

tools. I have applied these methods to answer questions about evolutionary processes in 

Neisseria gonorrhoeae, the causative organism of the sexually transmitted infection 

referred to as gonorrhea. The wide prevalence and large impact of gonorrhea in human 

populations makes this work highly relevant to public health. My studies also intersect 

with the recent developments in whole genome sequencing. How can we best make sense 

of the enormous quantities of data that we can now generate at low cost? How can we use 

this information to address classical questions from microbial genetics at a higher 

resolution using these data? And finally, how can we effectively combine phenotypic or 

clinical information form bacterial isolates with microbial genomics in order to address 

important questions related to public health? These are the significant and substantial 

problems addressed by this dissertation that led to the advances and discoveries I have 

described in detail in the previous chapters. 

 

My research started with how NGS has helped address one of the major questions in 

genetics studies, about the nature of the genetic architecture underlying complex diseases 

in humans. Furthermore, I addressed how deep sequencing could uncover novel rare 

variants and tie a phenotype of interest to genetic variants that contribute to its etiology. 

The advent of NGS in human genetics studies also parallels the application of the same 
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sequencing technologies to perform genomics analysis of microbial populations, an 

emerging field that offers broad opportunities for both clinical microbiologists and 

microbial population geneticists. Both developments require bioinformatics tools that 

could make efficient and accurate inferences on the biological significance of millions of 

variants generated through NGS. The developments we made in SeqAnt(Shetty et al., 

2010), a next generation sequencing analysis tool, address this issue. Over the past 3 

years we worked to progressively add relevant functionalities and user-friendly 

capabilities to this tool, which has extensive capacity to annotate millions of variant 

positions for a wide range of model organisms with record speed and accuracy. This is 

because of the various modifications we implemented on the underlying databases and 

the architecture of the software. Given that the tool now has added capacity to annotate 

bacteria whole genomes, it will be relevant going forward for most current research in 

genetics and pathogen genomics, dealing with the enormous amount of data from next-

generation sequencing technology platforms, as evidenced in its ability to annotate the 

mosaic penA alleles in strains in our sample set that are resistant to cefixime. 

 

I subsequently addressed the issue of antibiotic resistance in pathogenic bacteria, which 

continues to be a huge public health problem. There is preponderance of studies(Grad et 

al., 2014; Kohanski, DePristo, & Collins, 2010a; Schmieder & Edwards, 2012; Vidovic et 

al., 2014) aimed at trying to understand and mitigate this problem. N. gonorrhoeae is a 

species system that is representative of this challenge; a pathogen linked to an ancient 

disease and has a history of antibiotics resistance that parallels the development of 

different classes of antibiotic medications in the past century(Ohnishi et al., 2011; Unemo 
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& Shafer, 2011; 2014). The studies I carried out using this system therefore could serve 

as a basis to understand the roles played by different evolutionary forces, in the 

emergence and persistence of resistance in pathogen populations. Also, the N. 

gonorrhoeae isolates that make up the sample set used in our study were collected from 

different geographical regions -- with differing prevalences and treatment regimens to the 

disease – from across the globe. Other N. gonorrhoeae genomics studies were mostly 

based on isolates collected within a smaller geographic region(Grad et al., 2014; Vidovic 

et al., 2014).  

 

 

The bioinformatics methods we used in these studies were based on the analysis of whole 

genome sequence data from next generation sequencing platforms, yielding results from 

observations tested across the entire genome sequence and not just representative loci or 

genomic regions. One key observation from our studies was the significant impact of 

recombination within the pathogen population. A measure of the effects of recombination 

to mutation (r/m) is 2.2; this is appreciably greater than the ratio found in most other 

bacteria species. This ratio, which is distinct from relative recombination rate (Didelot & 

Maiden, 2010) -- the measure of the rate of recombination to that of mutation-- actually 

reflects the ratio of substitutions introduced by gene-conversion type recombination in 

bacteria genomes to that introduced through point mutations. (The actual value for ratio 

of recombination rate to mutation estimated using the Gubbins tool(Croucher et al., 2015) 

for our dataset is 0.098). We showed that random sequencing error in itself would not be 

enough to significantly skew the r/m ratio, by simulating base call errors (1 base call error 
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per 1000 nucleotide bases) into the multiple whole genome sequence alignment of the 

strains in the sample set. The r/m ratio obtained from this simulated data is a value of 1.9; 

this is understandable because random sequencing errors will not introduce multiple 

variants blocks across regions of the whole genome alignment, which is required to infer 

recombination signals using the ClonalFrame or Gubbins tools. How this appreciable 

recombination taking place in the population ties directly to evolution of resistance to 

antibiotics is not immediately clear from our studies, but the presence of most strains 

resistant to cefixime antibiotic on one super-clade in the phylogeny hints at possible 

horizontal acquisition of the underlying resistance determinant. Going forward, 

performing similar analysis with a larger sample size of strains with different antibiotics 

resistance phenotypes will likely confirm any HGT breakpoints in the phylogeny and the 

source of the resistance determinants. 

 

Another key finding from the studies was the determination that there were possibly 5 

ancestral subpopulations within the pathogen population. The strains in the sample set 

which showed the most admixture were mostly from one ancestral subpopulation and 

were those with earlier collection dates, which will suggest that over time individual 

strains acquire genetic materials from other strains from a different lineage. The 

observation that there was no correlation between geographical location of sampling and 

membership of a particular ancestral subpopulation and stratification within the 

population, could suggest a recent expansion of the pathogen across different 

geographical niches. It is instructive that previous studies on the structure of human 

population have suggested 5 subpopulations that parallels the 5 major geographic regions 
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in the world (Rosenberg, Pritchard, Weber, & Cann, 2002). It is possible, given that 

Neisseria gonorrhoeae is exclusively a human pathogen, that its population 

diversification could have tracked the human population expansion. Previous studies on 

pathogenic bacteria population structure (Achtman, 2004) have shown how epidemic 

factors could impact the nature of microbial populations, even highly recombinant ones 

like those of Neisseria meningiditis. It will be instructive for future studies to focus on 

how epidemiological factors drive the expansion of this pathogen population against the 

backdrop of other evolutionary forces in the population. 

  

Given the possibility of yet undiscovered variants underlying or augmenting antibiotic 

resistance in N. gonorrhoeae, I tested for these novel resistance variants in our sample 

set. I identified a number of potential candidate variants that are significantly associated 

with resistance to azithromycin and cefixime. I used both a conventional GWAS-type 

statistical test approach and an approach based on correlating change of state on branches 

of ancestrally reconstructed phylogeny of all the strains in the sample set to a change in 

resistance phenotype along same branch, to make the inferences. The putative variants 

would be subject to complementation analysis in bacteria genetics laboratory to confirm 

their functional relevance. 

 

As is the case with any scientific inquiry, my research in seeking to answer one set of 

questions, has raised some more relevant questions for future studies. Although the 

samples we collected for analysis in the studies offered ample breadth in terms of 

geographical locations covered, stronger inference could be achieved with greater depth 
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of coverage and an increase in the number of isolates available for analysis, especially 

with regards to the association tests for novel resistance determinants and the possibility 

of detecting rare variants within the population underlying resistance phenotypes. 

Collaborations like the recent studies by Grad et al (Grad et al., 2014)that involved 

sequencing of ~200 N.gonorrhoeae strains for epidemiological studies of the pathogen 

point to the future of studies in this field, because as data from these collaborations are 

more readily available to the public, researchers can more easily design experiments to 

answer microbial population related questions. 

 

The Illumina platform, which generated millions of paired end short reads of an average 

100 base length per read, was used to generate the data analyzed in this dissertation. The 

average coverage and sequencing reads’ quality scores (225 and Q30 respectively) offer 

confidence in the reliability of the nucleotide base calls made during sequencing. Also, 

the similar values obtained when comparing nucleotide diversity of N. gonorrhoeae 

housekeeping genes using strains in our sample set, against those in the MLST database 

(Table 5.1) offers validation as to the accuracy of the base calls in the sequencing project. 

Still, Illumina  technology does come with inherent challenges of context-specific errors, 

and the length of the reads creates a very difficult challenge for determining the accurate 

nucleotide sequence in genomic regions of long tandem repeats (Carneiro et al., 2012). 

The advent of pacBio sequencing which applies real time polymerase synthesis 

sequencing approach begins to address the above problems, by generating longer reads of 

thousands of base pairs in length and with sufficient depth of coverage attains 99.9% 

consensus accuracy (Ferrarini et al., 2013). Currently, the cost per nucleotide using this 
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technology is still exorbitant, but with the trend in the industry of decreasing sequencing 

costs, pacBio sequencing seems the approach for future analysis like this, which will 

offer better resolution on problematic genomic regions, and longer reads for easier de 

novo assembly.  

 

In this study we predicted the core genome size of N.gonorrhoeae to be 1189 and the 

number of accessory genes to be 2141. With an increased number of isolates, we could 

more confidently define the pangenome of N. gonorrhoeae, which is the representation of 

every possible gene within the population. With just 76 strains in our sample set, we 

likely have not captured the breadth of N. gonorrhoeae pangenome; a larger sample size 

would bring to the forefront accessory genes that could be tied to relevant phenotypes in 

the population. This expanded information will allow more precise estimates of how 

often taxas in the phylogeny (strains in the sample set) acquire or shed genes through 

HGT. A measure of the relative rate of HGT for each strain could be an important value 

to correlate with the antibiotic resistance phenotype, giving a snapshot to the relationship 

between HGT and antibiotic resistance within the population. 

 

Finally, functional analysis in the bacterial genetics laboratory is an important component 

to piece together the mechanisms of and the causative nature of the novel variants shown 

to be associated with antibiotic resistance using statistical tests. Using knock-down or 

knock-out approaches, bacteria geneticists could establish that the detected variants 

actually play a role in antibiotic resistance and are not just linked to the phenotype by 

happenstance. Because many variants may be found in strong linkage disequilibrium, 
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follow-on direct manipulative experiments, perhaps using CRISPR-CAS9 technologies 

for example, would allow direct determination of the effects of specific variants that I 

have implicated as being causative.  

 

In conclusion, it is my hope that the work presented in this thesis serves as a step further 

in understanding the N. gonorrhoeae population, and the evolutionary process within this 

population and possibly other microbial populations that drives the emergence of 

antibiotic resistance. Gonorrhea and antibiotic resistant gonococcus is a menacing public 

health threat, which requires many hands on deck to curtail. 
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