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Abstract

Like random walks, quantum walks are taking on a central role in both describing phys-

ical transport phenomena, and establishing a framework for quantum search algorithms.

Unlike their classical counterpart, quantum walks present a model for universal quantum

computation and can be used to simulate potentially any quantum system. Despite re-

cent theoretical and experimental advancements, our understanding of quantum walks still

lacks far behind that of random walks as they exhibit a much broader spectrum of be-

haviors awaiting categorization and context, even on simple lattices. Using analytic and

numerical methods, we explore dynamical properties of quantum walks on self-similar net-

works. In particular, we study the longtime asymptotic spreading on networks without

translational invariance. For one commonly studied quantum walk, we find a simple re-

lationship between quantum and classical dynamics suggesting a deeper connection, yet

to be understood. Furthermore, we show that the parameters of quantum walks affect its

dynamical properties on these networks significantly. We also encounter a phenomenon

called localization where parts of the dynamics never move far from the initial site. We

contrast this behavior on regular lattices and a fractal.
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1 Introduction

Everything starts somewhere, although

many physicists disagree.

Terry Prachett, Hogfather

Quantum mechanics is arguably one of the most important and revolutionary theories

developed in the twentieth century. Despite its unintuitive predictions, it has succeeded in

describing phenomena that seemed classically paradox, impossible, or at best surprising.

Today, quantum mechanics founds the basis for our understanding of many branches in

science [28].

To study the behavior of quantum systems, it seems only natural to use a controllable

quantum system to simulate it. Based on this idea, Manin in 1980 [47] and independently

Feynman two years later [27] suggested the use of what we now consider quantum com-

puters: devices that use the laws of quantum mechanics to carry out their operations.

In contrast to classical computers where information is stored in sequences of zeros and

ones, quantum mechanics allows for superpositions of states and simultaneous manipula-

tions of them. This, together with quantum interference and entanglement, offers potential

advantages over classical computers [42]

Among the first algorithms for a quantum computer were the Deutsch algorithm [20],

and its generalization the Deutsch-Jozsa algorithm [21]. They provided an example for a

problem a quantum computer can solve more efficiently than a classical computer. It also

inspired the later proposed algorithms by Shor [65] and Grover [30] which started research

in the area of quantum information and quantum computation. This interdisciplinary
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topic resides on the intersection of quantum physics, computer science, mathematics and

engineering. Studying these systems yielded new insights into the analysis of quantum

algorithms and problems they are suitable to solve efficiently [3].

Quantum walk in their modern representation can be seen as generalization of their

classical counterpart, random walks. While the dynamics are stochastic in the latter case,

quantum walks obey unitarity, and exhibit exclusively quantum properties like interference,

and entanglement. For example, quantum walks can exhibit localization, meaning that

there is a finite probability to find the quantum walker close to the starting site at all

times. This can only be seen in disordered random walks where the dynamics depend on

the specific location the walker finds itself [33]. In quantum walks this can even occur in

translation invariant scenarios [36, 37, 7, 72, 25].

As for random walks, there are two different formulations: discrete-time [3, 50, 2, 6] and

continuous-time [26] quantum walks. Both have been studied extensively over the past

decade [70], but the relationship between them is far less understood [16, 66, 15] compared

to the situation for random walks [34]. In this thesis, we focus exclusively on discrete-time

quantum walks.

Random walks are routinely used in many different fields. From modeling transport phe-

nomena or foraging animals, to descriptions for the stock market, they are also at the core

of randomized algorithms, e.g., Markov-Chain-Monte-Carlo methods [43] and stochastic

local search algorithms like simulated annealing [40] or WalkSAT [63]. For quantum walks,

the situation is similar. While the first publications were concerned with quantum trans-

port [3] and quantum lattice gases [50], the range of application has expanded over time.

With the proof that quantum walks can perform universal quantum computations [14, 46],

and the recent interest in quantum simulations [8, 62], quantum walks have evolved beyond

the framework of quantum (search) algorithms. Nonetheless, quantum search algorithms

in the spirit of Grover’s algorithm still remain one of the major application driving current

research [17, 58, 1, 68].

But quantum walks are not only a theoretical tool to model systems and study their
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properties. Several experimental realizations have successfully implemented quantum walks

in various systems: waveguides [56, 48], photonics [61, 18], optical lattices [74], and trapped

ions [49].

Despite the broad range of applications in various fields, the general understanding of the

dynamics of quantum walks still lacks far behind that of random walks, as they exhibit a

broader spectrum of behavior. Aside from analytic results on regular lattices [9, 29, 36, 25],

the hypercube [51], and certain types of disorder in one dimension [41, 5, 4, 71], very little is

known about general properties and their circumstances. Some exploration has been done

numerically [1, 55, 44], but we have not understood the interplay of quantum interference

and geometry to describe, let alone predict, quantum walks in general ways.

In this thesis, we address discrete time quantum walks on self-similar networks and

explore their long-time properties starting from localized initial conditions. This approach,

while being in the spirit of quantum transport phenomena, is likely to also shed light

on algorithmic applications for quantum search algorithms. Our methods include direct

numerical simulations, analytics and numerics using renormalization group methods, as

well as some analytic calculations.

The thesis is structured as follows. In chapter 2, we introduce discrete time quantum

walks. We show similarities and highlight key differences to random walks by studying both

on the one dimensional line. After discussing the renormalization group for both, we study

the asymptotic behavior on different networks in chapter 3 exploring some of parameters

intrinsic to quantum walks. In the last part, chapter 4, we present an intuitive explanation

for localization on translational invariant lattices and compare it to self-similar networks.

In the conclusions, chapter 5, we summarize our finding again, and discuss possible future

directions.



2 Discrete Time Walks and the

Renormalization Group

I think I can safely say that nobody

understands quantum mechanics.

Richard Feynman, The Character of

Physical Law

Before we formally define discrete-time quantum walks, we will revisit the well-known

discrete time random walk in section 2.1 to highlight the differences later in section 2.2. To

gain familiarity with the methods of the renormalization group, we introduce the techniques

used for random walks in section 2.3 on the one dimensional line. The last part of this

chapter explores why these methods only partially transfer from the stochastic random

walk to the unitary quantum walk, and offers a possible alternative trying to overcome the

found hurdles.

2.1 Random Walks

Classical random walks represent important stochastic processes that have found many

applications in various fields, most notably, as a model for transportation and as key

concept for randomized algorithms. With the discrete time quantum walk in mind, we

shall also focus on the discrete time random walk here. The differences between continuous

and discrete time in the classical framework are well understood, and in most cases in the
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long time limit irrelevant [60].

2.1.1 Time evolution

The random walk constitutes a stochastic motion of a walker hopping from one node of a

given graph to a neighboring one. This means the paths individual walkers take from a

given initial condition are random and not precisely predictable. Commonly, the process

is described in terms of the probability pm,t of finding the walker at a site m after t time

steps from known initial conditions, say the walker starts at m0. The master equation [69]

captures the evolution of these probabilities. In the most compact form it can be written

|pt+1〉 = W · |pt〉 (2.1)

where |pt〉 is the staggered vector with pm,t as its mth component. The elements Wm,n of

the matrix W are the transition probabilities for the walker at node n to move to node

m. The matrix is stochastic, i.e. its columns sum up to one ensuring conservation of

probability. For an unbiased random walk, all Wm,n = 1/r where r is the degree of each

node1. With this choice every direction is equally likely, and the walk is called biased, if

this does not hold.

It is noteworthy that, while any particular realization of a random walk is stochastic and

random, the master equation is a deterministic equation for the probabilities at each site.

These do not vary between different observed walks if the initial conditions are identical,

and can be reconstructed from multiple independent walks.

To illustrate what the master equation describes, and as a precursor to the quantum

walk, let us look at the unbiased random walk on the one dimensional line as an example.

Figure 2.1 shows how we break down each time step into two parts: First, the walker

tosses a coin, deciding where to go next. This splits the total probability into two equal

1To keep the notation simple, we assume that the networks is regular. While not necessary for either the
random, nor the quantum walk, a constant degree is often chosen to keep the notation as simple as
possible.
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Figure 2.1: Three consecutive nodes of the one dimensional line. The top panel shows an
example for the probabilities to find the walker at each node at a given time
t. The coin toss of the walker can be seen as splitting these probabilities up
into two equal parts, one for each direction (second panel). The hopping of the
walker represented in the third panel corresponds to shifting the probabilities to
the right (red) and left (blue). The gray entries originate from, or move to sites
not shown. The sum of both components at every site equals the probability
at time t+ 1 (last panel).

components. In the second step, one component in shifted to the left, the other one to the

right. The sum of the two components at each node yields the probability at the next time

step. This may seem like a cumbersome description for the random walk, but it highlights

the analogy to the quantum walk.

2.1.2 Asymptotic Properties

Random walks starting from a localized initial condition are known [34] to follow an asymp-

totic description of the probabilities for large time that reads

pm,t ∼ t−df/dw · f
(

lm

t1/dw

)
(2.2)

where lm equals the shortest distance between site m and m0. The two parameters, df and

dw, are know as the fractal dimension of the underlying graph, and the walk dimension



16 2 Discrete Time Walks and the Renormalization Group

characterizing the walk’s dynamics. The static feature df provides information about the

type of graph under consideration. To gain insights into the dynamical properties of the

walk on that particular graph, usually dw is the first starting point.

One common quantity often used to study the dynamics, in particular the spreading of

the walk, is the mean-squared displacement

σ2
t =

∑
m

pm,t · l2m . (2.3)

It is easy to show in the long time limit, when we can approximate pm,t by equation (2.2),

what the scaling of σ2
t should be:

σ2
t ∼

∑
m

l2mt
−df/dw · f

(
lm

t1/dw

)

∼
∞∑
l=0

ldf−1 · l2 · t−df/dwf
(

l

t1/dw

)

≈ t−df/dw
∞∫

0

ldf+1f

(
l

t1/dw

)
dl

∼ t2/dw
∞∫

0

xdf+1f(x) dx

︸ ︷︷ ︸
=const.

(2.4)

Here we used the relation that the number of nodes a distance l away from any given site is

proportional to ldf−1 to convert the sum over all nodes into one over all possible distances.

Please refer to [67] and the references with for a more detailed discussion of df . We then

approximated the sum by an integral to find the third line. By a change of variables, we

can isolate the explicit time dependence and rediscover this well-know scaling relation.

For unbiased random walks on hypercubic lattices, dw = 2 regardless of the dimension

d. This is called diffusive behavior, and any deviation from it is commonly referred to as

anomalous diffusion. In this former case, the scaling function f in equation (2.2) can be

found analytically: f(x) = (4π)−d/2 · ex2/4.
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2.2 Quantum Walks

Discrete time quantum walks can be interpreted as a generalization of random walks.

They follow a similar time evolution as described above, but the stochastic matrix W is

replaced by the unitary time evolution operator U which now acts on the quantum state

of the system. Probabilities have to be calculated from the state vector by computing

appropriate inner products.

2.2.1 Time Evolution

To satisfy the unitarity requirement for quantum system the master equation (2.1) for the

random walk is replaced by

|ψt+1〉 = U · |ψt〉 . (2.5)

Here, |ψt〉 is the wave vector describing the quantum state of the whole system. It is again

a staggered vector composed of the local wave vectors, |ψm,t〉, at each individual node.

The probability of observing the walker at a particular site is defined by

pm,t = 〈ψm,t| ψm,t〉 . (2.6)

This will prove to be a key difference when studying quantum walks on self-similar net-

works compared to random walks. For now, it only highlights the difference between the

stochasticity of the random walk and unitarity here. The source of randomness in the

former is the probabilistic coin toss itself, whereas in the quantum system, everything is

deterministic until a measurement is performed.

The condition U†U = 1 is usually accompanied by the desire that U is local, meaning

that each node’s local state at time t only influences its neighbors states at t+ 1. This has

immense implications on the structure of U, and on the Hilbert space to which the local

wave vectors belong. Following Meyer [50], let us investigate this in some detail on the one
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dimensional line. For this case, equation (2.5) locally reads

|ψm,t+1〉 = A · |ψm−1,t〉+ B · |ψm+1,t〉 ∀ m (2.7)

where A and B describe the transition m→ m± 1 for the local wave vectors |ψm,t〉. This

system of equations only corresponds to a unitary time evolution, if

A†A + B†B = 1 and A†B = B†A = 0 . (2.8)

These conditions can only be satisfied by scalars if one of them is zero, and the other one

unimodular. While obeying all criteria, the time evolution in this case would be trivial: all

|ψm,t〉 would be multiplied by a phase factor and then shifted to the left or right. There

would be no interaction between wave functions on neighboring nodes.

There are two common ways to prevent this trivial behavior: First, introducing an

internal degree of freedom at each site, often referred to as the coin state or chirality

[58, 6]. This transforms |ψm,t〉 into a complex vector, and A and B into matrices which

can satisfy condition (2.8) nontrivially. Generally, the minimum dimension of the internal

degree of freedom has to match the degree of the node, but can be larger. The second

option is to compose U out of (at least) two operators2 acting on different local subsets of

the networks sequentially. We will discuss the first method here in some detail, as we use

it throughout the rest of the thesis. However, a discussion of the second approach and the

relationship between both can be found in section 2.2.3.

The introduction of the coin space as an internal degree of freedom first appeared in the

work of Aharonov et al. [2] and Ambainis et al. [6], and has been the canonical representation

ever since [39, 70, 58]. The key concept is the parametrization of the time evolution

operator in terms of a coin and a shift operator, called C and S respectively. Formally, the

2There is no reason to stop at two steps here.
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Figure 2.2: Three consecutive nodes of the one dimensional line. The top panel shows
an example for the (here two dimensional) local wave vectors at each node at
a given time t. The coin acts of them individually, illustrated by the same
rotation (second panel). The shift operator translates different components of
the vectors (decomposition illustrated in the third panel) to the neighboring
sites (last panel). We obtain the wave vectors at time t+1 by simply combining
all different components at each node. In the two last panels, the gray arrows
highlight components that either go to, or originate from sites not shown in
the image.

relationship is written as

U = S · (1⊗ C) . (2.9)

The coin acts on the coin state on each node in the same way. Subsequently, the shift

operator exchanges components of all wave vectors between adjacent nodes. This mimics

the random walk, where the walker tosses a stochastic coin and moves according to the

outcome. Here the coin is unitary and the quantum walk evolves into a superposition of

all possible directions.

In analogy to our discussion of one time step decomposed as a coin toss and a hop for

the random walk, see figure 2.1, let us illustrate what this means for equation 2.5. In

figure 2.2, we again present the one dimensional line as the simplest example, but the ideas

generalize easily to more complicated networks.

The minimum dimension of any |ψm, t〉 equals the degree of node m. In our example,

we represent the local wave vectors by black arrows. Note that we choose them to be
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real for illustrative reasons, but in general they can be complex. To construct a unitary

U, the coin C has to be unitary as well. In figure 2.2, a rotation3 of all arrows from the

first to the second panel symbolizes that. Now the shift operator exchanges components

between adjacent nodes in a consistent manner. In our example, the horizontal/vertical

components are moved to the right/left. This has to be done consistently, usually realized

by a permutation as the shift operator.

2.2.2 Asymptotic Properties

The long time behavior of quantum walks on regular lattices is well understood. Grimmett

et al. [29] proved that almost every4 coin leads to a scaling described by equation (2.2) with

dw = 1. In this context, the scaling function is called the weak limit, as there are rapid

oscillations present in the true probability density function, whereas the limit is a smooth

function. In some cases, the weak limit has been explicitly calculated [6, 35, 73, 25].

On networks without translational invariance, it is unknown whether the scaling relation

(2.2) holds or not. Here, we postulate that it does. This assumption will be confirmed

by our numerical simulations, but has no analytic underpinning at this point. A proof

of this hypothesis requires a deeper understanding of the interplay between the network’s

geometry and the dynamics than we are able to achieve here.

2.2.3 Coinless Quantum Walks

The second approach to avoid a trivial evolution was first discussed implicitly by Meyer

[50], more explicitly by Patel et al. [54], and later in more generality by Falk [24]. Di Franco

et al. [22, 23] presented a hybrid approach where they reduce the internal dimension of the

first approach by using ideas from the second one. In fact, both approaches can be unified

into a very general framework discussed in section 2.2.3.

3A unitary matrix leaves the norm of a vector invariant. For real vectors rotations form one class of
operations possessing this property. We use this as an example.

4They only make one assumption about the Fourier transformed time evolution operator (for details, see
4.16)): its eigenvalues cannot be equal. This case would correspond to a trivial motion of the wave
vectors in one direction.
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−2 −1 0 1 2

U0 U0 U0

U1 U1 U1

Figure 2.3: A possible realization for a coinless quantum walk on the one dimensional line.
The blue and orange rectangles represent the two tessellations on which U0 and
U1 are applied.

For these coinless quantum walks no internal degrees of freedom have to be introduces,

i.e. the |ψm,t〉 are simply complex numbers. Similarly to the coined walk the time evolution

operator is composed out of multiple local operators itself:

U =
∏
i

Ui . (2.10)

In the references [54, 22, 24], only two factors are considered, but in principle there is no

limit to this number.

The idea is that each Ui acts on local sets of nodes, called patches or tessellation:

Ui = P−1
i · (1⊗ Ci) ·Pi (2.11)

We assume for simplicity that all patches contain the same number of nodes defining the

dimension of Ci. The dimension of the identity here corresponds to the number of patches.

The permutation matrix Pi sorts the components of |ψt〉, such that the nodes of each

patch are consecutive components of the vector Pi|ψt〉. In other words, the Pi represent

the tessellation. This formulation means that the same unitary operator Ci is applied on

each patch independently. If these patches for different i overlap, there is the possibility

for the wave function to spread across the whole system.

To illustrate this idea, consider the one dimensional line. Figure 2.3 shows the two

possibilities how the one dimensional line can be split up in pairs of nodes. Now we just

define two 2×2 matrices, C0 and C1, and we have constructed a coinless quantum walk that
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only has a complex number associated to each node. This can, of course, be generalized

to higher dimensional lattices, and essentially every graph.

But how does this relate to the alternative of introducing an internal degree of freedom

and using a shift operator? Our naming already suggest that the local operator on the

patches will correspond to the coin. If we reinterpret two nodes, say every even node

together with the following odd one, as one node with two internal degrees of freedom, the

operator C1 immediately corresponds to the coin. The special choice

C0 =

0 1

1 0

 (2.12)

would facilitate the same effect the shift operator has. This means, if we combine the nodes

of the blue patches and regard them as one node, we rediscover the formulation using a

coin acting on an internal degree of freedom followed by a shift operator.

We have described this framework in all generality. Patel et al. [54] consider the special

choice

C0 = C1 =
1√
2

1 i

i 1

 (2.13)

and show how this can reproduce the coined walk arguing similarly to the above explana-

tion. Falk [24] on the other hand considers the two dimensional grid with patches of size

2× 2 and chooses

C0 = C1 =
1

2



−1 1 1 1

1 −1 1 1

1 1 −1 1

1 1 1 −1


. (2.14)

Our discussion for one dimension can be generalized to any graph, and whatever model

is studied can be seen a special choice of the operators Ui. For higher dimensional lattices

or graphs with certain symmetries, it could be advantageous to compose the time evolution
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Figure 2.4: A schematic of the quantum walk implementation of a quantum walk using
photons in waveguide lattices (top of left panel). Photons are injected into
the thin layer where perform a quantum walk along the x direction with the
z direction representing time. The intensity in each wave guide (bottom left
panel) is proportional to the probablity distribution. The right panel shows a
probability distribution reconstructed from such a measurement. Image taken
from [56].

operator out of more than two Ui. For the rest of the thesis, we will restrict ourselves to the

coined model, as it naturally compares to the random walk with several parameters that

affect the phenomenology qualitatively, as we will discover in chapter 3. Additionally, the

choices of different tessellations adds more ambiguity5 and complexity to the description.

2.2.4 Physical Implementations

The model of quantum walks described here might have merits on its own in the context of

quantum algorithms and quantum information, but to be useful for quantum simulators,

experimental setups implementing their time evolution are indispensable. In this section

we mention two important advancements in this regard.

The first system (see figure 2.4) we want to acknowledge was implemented by Perets

et al. [56] using a waveguide lattice. They created a waveguide structure that is periodic

in x direction (representing the one dimensional lattice) and homogeneous in z direction

taking on the role of time as the injected photons move along it. The structure allows the

photons to tunnel between adjacent waveguides realizing the hopping in the lattice.

The right panel of figure 2.4 shows a measurement of the probability density at a given

5The number of possible tessellations quickly grows with the number of nodes in each patch, and so does
the number of parameters of the most general unitary matrix. In turn, this also holds opportunities to
find new behaviors for the very same reasons.
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Figure 2.5: An illustration of the quantum walk implementation using ultra cold atoms in
an optical lattice.(top row). The bright spots correspond to the actual position
of the walker. The left image (a) shows the initial state where the spins of most
of atoms along one line have been set up. The evolution in time can be seen in
the panels (b) through (d). The bottom row depicts the probabilities for each
displacement. Image taken from [74].

value for z. It clearly shows the different shape, with two peaks far out and strong oscilla-

tions, compared to the classical random walk, that would be a bell-shaped curve. Although

this system corresponds to a continuous time quantum walk, the phenomenology on one

dimensional line are equal to the discrete time version we study here. We mention this

implementation as it was one of the first to implement a system with a significant number

of sites (∼ 100) simulating with almost no decoherence for long enough times to clearly

see the ballistic spreading.

The second system, see figure 2.5, implements the quantum walk using ultra cold atoms

in an optical lattice. Here, one spin degree of each atom acts as the coin state and can

be individually addressed in the experiment. The interaction between neighboring lattice

sites can be directly controlled enabling Weitenberg et al. to start and stop the walk at any

given time. We can immediately see that the simulated system is much smaller than in the

first implementation. This is due to the decoherence in the system and other experimental

factors that render this approach more difficult than the waveguides. Nonetheless, the

probability densities in the lower panels clearly deviates from those of a random walk.

From these two realizations, we can see the potential for future applications when the
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experimental achievable system sizes and time intervals become large enough. Once truly

quantum systems implementing quantum walks can be build, they can be used to exper-

imentally investigate quantum systems in ways unimaginable with numerical simulations

on classical computers.

2.2.5 Quantum Walks and Quantum Search Algorithms

The quantum walk we described is not a quantum search algorithm as we treat every node6

the same. To turn it into a procedure that can be used to search, we only need to make a

small modification [64]: The coin applied to the marked vertex, say C1, has to be different

from the one applied to every other node, say C0 following the notation in [64]. A common

choice is C1 = −1, implementing a phase shift at the marked site rather than a mixing

of the components. The application of a coin depending on certain properties of the item

can be implemented without the exact knowledge of which item has this property. This is

often called the oracle [58] and essential for this algorithm to work.

By marking a node with a special coin, the unitarity of the time evolution is preserved.

As a consequence, the search algorithm does not converge to the solution for long times,

but instead concentrates close to the special item periodically. To perform a successful

measurement, one needs to wait a specific number of steps that depends on the system

size. If this yields the correct node with a probability that does not tend to zero for larger

and larger system sizes, this procedure successfully returns the right item eventually even

for large databases.

Grovers original algorithm [30] requires a non-local time evolution, meaning that every

node is connected to every other node. This assumption can be weakened, and quantum

search algorithms on hypercubic-lattices are known to show the same speed up compared to

their classical counterpart [64, 68, 58]. This is very important as the non-locality strongly

limits the database size as decoherence tends to be stronger in physical realizations with

6In quantum search algorithms, every item is represented by a node in the graph. Finding an item means
performing a measurement and observing the walker on a specified node.
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many interactions.

2.3 The Renormalization Group for Random Walks

While there are several ways to approach the question of the long time asymptotic of the

one dimensional line [34, 60], we revisit a recursive method know as the renormalization

group [57]. By its nature, it lends itself to graphs/networks that can be defined recursively

like fractals or other self-similar networks. Before we explore those in chapter 3, we first

hone our skills by studying the one dimensional line, where the amount of algebra does not

obscure the concepts of the method. We will extract the long time behavior of the random

walk by studying the time evolution given by the master equation (2.1) under a rescaling

of the typical length scale of the system. In other words; how much longer do I have to

wait for a certain event, if the system is, say, twice as big?

In order to apply a decimation scheme, we first introduce the discrete Laplace transform7

[38, 60, 69]

p̃m(z) =
∞∑
t=0

pm,tz
t and pm,t =

1

2πi

∮
|z|=1

p̃m(z)z−t−1 dz . (2.15)

The transformation is very similar to the Fourier transform in equation (4.2), but trades

the discrete time for a complex parameter rather than space. While the Fourier transform

greatly reduces the dimensionality of the master equation for translational invariant lat-

tices, the Laplace transform turns equation (2.1) into an algebraic equation with explicit

7This concept is known under different names in different fields. Other names include the generating
function, and the z-transform.
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z dependence. To see that, multiply equation (2.1) by zt and sum over all times

∞∑
t=0

zt · |pt+1〉 =
∞∑
t=0

zt (W · |pt〉)

z−1
∞∑
t=1

zt · |pt〉 = W ·
( ∞∑
t=0

zt · |pt〉
)

|p̃(z)〉 − |p0〉 = z ·W · |p̃(z)〉

|p̃(z)〉 = z ·W · |p̃(z)〉+ |p0〉 (2.16)

This linear system still has the same dimensionality, but is no longer a difference equation in

t. While the z dependence contains the complete information, one can use local knowledge

around special points in the complex z plane to draw conclusion about the time dependence.

For example, the point z = 0 contains the initial conditions, while the surroundings of z = 1

entail information about the limit t→∞ [38].

Let us consider the random walk on the one dimensional line starting at the origin at

time t = 0. The master equation for every node m and its Laplace transform read

pm,t+1 = A · pm−1,t +B · pm+1,t +M · pm,t (2.17)

p̃m(z) = z ·A · p̃m−1(z) + z ·B · p̃m+1(z) + z ·M · p̃m(z) + δm,0 (2.18)

where A = B = 1/2 and M = 0 represent the unbiased random walk. We can use the

linear system for the sites surrounding site m, which we assume to be even:

p̃m−1(z) = z ·A · p̃m−2(z) + z ·B · p̃m(z) + z ·M · p̃m−1(z)

p̃m+1(z) = z ·A · p̃m(z) + z ·B · p̃m+2(z) + z ·M · p̃m+1(z)

(2.19)

to find a solution for p̃m±1 in terms of p̃m and p̃m±2:

p̃m−1(z) = (1− z ·M)−1 · (z ·A · p̃m−2(z) + z ·B · p̃m(z))

p̃m+1(z) = (1− z ·M)−1 (z ·A · p̃m(z) + z ·B · p̃m+2(z))

(2.20)
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Plugging this into equation (2.18) we find the equation

p̃m(z) = A′ · p̃m−2(z) +B′ · p̃m+2(z) +M ′ · p̃m(z) + δm,0 (2.21)

where the new, renormalized hopping parameters A′, B′ and M ′ are solely functions of the

original parameters8:

A′ = A (1−M)−1A B′ = B (1−M)−1B

M ′ = M +A (1−M)−1B +B (1−M)−1A

(2.22)

These equations are often referred to as the renormalization group flow, as they describe

the evolution of the hopping parameters when coarse graining the system [57, 60]. In our

case, we eliminated every odd node, cutting the system size in half. This can be repeated

multiple times, leading to a description of bigger and bigger systems contained in the

hopping parameters of a much smaller system.

As we are only interested in the unbiased case (A = B = 1/2 and M = 0 initially),

we can parametrize the recursion equations with just two parameters: A = B = a and

M = m. We add a subscript k to emphasize the number of iterations already performed.

For these two parameters, the recursions take the form

ak+1 =
a2
k

1−mk
and mk+1 = mk +

2a2

1−mk
(2.23)

with the initial conditions a0 = z/2 and m0 = 0.

The key concept now is that larger and larger systems are described by ak and mk for

increasing k. A network with the hopping parameters parametrized by ak and mk actually

contains the information of a system with 2k as many nodes. If we interpret equation

(2.23) as a dynamical system, this means that its fixed points describe the infinite system.

For these equations, the only fixed point is ak = 0 which describes the system without any

8Note that we absorbed the factors of z into the parameters A, B, and M compared to the ones in equation
(2.18). We will have to take that into account by setting A = B = z/2 as the initial values.
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hopping. But this does not mean the random walk is trapped. It is merely a consequence

of the number of sites eliminated during the recursion step and the dynamics of the random

walk. We have to study the system very close to this point. We do this by making the

following ansatz9:

ak = ck1 · αk and mk = 1− ck2 · µk (2.24)

Plugging this into equation (2.23) and solving for αk+1 and µk+1 leads to consistent equa-

tions only for c1 = c2 = 1/2:

αk+1 =
2α2

k

µk
and µk+1 = 2µk −

4α2
k

µ
. (2.25)

This system has only the fixed point α∗ = µ∗/2. As discussed below, the Jacobian of

the system in equation (2.25) and its eigenvalues contain all the information we need to

determine the exponent dw in equation (2.2). The Jacobian and its eigenvalues at this

point read

∂ (αk+1, µk+1)

∂ (αk, µk)

∣∣∣∣
α∗,µ∗

=

 2 −1
2

−4 3

 =⇒ λ = {4, 1} . (2.26)

Together with the fact that the decimation removed half of the nodes, this yields the

familiar result

dw =
log(4)

log(2)
= 2 . (2.27)

This procedure needs some explanation as to why it works. We will only give a qualitative

reasoning here, and a more rigorous derivation can be found in [60, 34]. The scaling

assumption in equation (2.2) provides a relation between length and time scales in the

argument of the scaling function f . By using the renormalization procedure as outlined

above, we relate a change in length (iterating the recursion equations) to a change in time

(distance to the fixed point).

9This particular choice was motivated by evolving the recursion equations numerically for a few steps and
recognizing the exponential decay of ak and 1−mk.
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Every iteration of the recursion equations decimates the system to half the size. In turn

that means that the parameters αk and µk entail the information of a larger system, 2k

times larger to be precise, compared to the numbers of nodes left. For the one dimensional

line a typical length scale, say Lk, described by the hopping parameters doubles with

every iteration, Lk+1 = 2Lk, as every connection represents two connection in the previous

iteration.

Whatever quantity we study, the approach z → 1 contains information about the t→∞

limit as it includes more and more terms in equation (2.15) giving us access to the long

time properties. In fact, there exists a so called Tauberian theorem stating that

p̃m(z) ∼ (1− z)−ρL
(

1

1− z

)
(z → 1−) ⇐⇒ pm,t ∼

tρ−1

Γ(ρ)
L(t) (t→∞) (2.28)

for some function L(x) satisfying L(λx)/L(x) → 1 for λ > 0 and x → ∞. This directly

relates the behavior around z = 1 with the long time properties.

Close to z = 1 small difference in the initial condition of the parameters will grow with

the number of iterations. Assuming that the growth of this difference happens close to

an unstable fixed point, the change in ε = 1 − z from one generation to the next can be

directly linked to the change in a characteristic time scale [60]. In dynamical system, the

growth of the difference is dominated by the larges eigenvalue of the Jacobian [67].

In the next section, we will try to generalize this method to the unitary quantum walk.

2.4 The Renormalization Group for Quantum Walks

Applying this decimation procedure to draw conclusions about the system based on the

properties of recursion equations directly transfers to the quantum walk description. There

are, though, some differences we explore in this section.

As we already hinted, the key difference between random and quantum walks is the

meaning of the equations (2.1) and (2.5). In the former case it describes the probabilities
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|ψ̃−〉 |ψ̃+〉

Figure 2.6: A finite line segment with absorbing boundaries (squares) on both sides.

directly, while we have to use equation (2.6) for the quantum walk to obtain them. This

may sound like a technicality at first, but it has profound implications on our method. The

relation between quantities in z space and their time dependent counterparts still holds, but

in quantum mechanics the wave function itself has little meaning. Only observables, e.g.

probabilities, are physical reality. This means we have to find a way to access properties

of p̃m(z) given knowledge about |ψ̃m(z)〉.

From general properties of the z-transform, it can be shown that

p̃m(z) =

∞∑
t=0

pm,t · zt =

∞∑
t=0

〈ψm,t| ψm,t〉 · zt

=
∞∑
t=0

∞∑
s=0

〈ψm,t| ψm,s〉 · ztδs,t

=
∞∑
t=0

∞∑
s=0

〈ψm,t| ψm,s〉 · zt
 1

2πi

∮
|ν|=1

νs−t−1 dν


=

1

2πi

∮
|ν|=1

[ ∞∑
t=0

〈ψm,t| ·
(z
ν

)t]
·
[ ∞∑
s=0

|ψm,s〉 · νs
]

dν

ν

p̃m(z) =
1

2πi

∮
|ν|=1

〈
ψ̃m

(z
ν

)∣∣∣ ψ̃m(ν)
〉 dν

ν
. (2.29)

The consequence is obvious: everything that can be learned from local properties, say

around z = 1, in the classical case, is now encoded in an integral around the unit circle.

Let us focus on a very simple observable to explore the implications in more detail.

Consider the one dimensional line with absorbing boundaries, where the quantum walk

can enter, but not escape. A small system is depicted in figure 2.6. The observable we
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want to study is the probability of ever getting absorbed at, say, the right end:

F0 =
∞∑
t=0

〈ψ+,t| ψ+,t〉 =
1

2πi

∮
|z|=1

〈
ψ̃+(1/z)

∣∣∣ ψ̃+(z)
〉 dz

z
. (2.30)

This kind of integrals is in general highly oscillatory for quantum walks, so there is little

chance to calculate this quantity exactly10. But under certain circumstances, the integral

could be dominated by a domain around a fixed point z∗, where a simple change of variables

between generations preserves the structure of the integrand locally. This is, of course, not

a necessity, but we shall see later in chapter 3 that it seems to be true for a particular

coin on all networks we consider here. The substitution that allows reasoning similarly to

section 2.3 would be ε = z − z∗ → λ · ε when going from one generation to the next.

Let us investigate the renormalization group for the one dimensional line. It is know

that all coins lead to the same asymptotic scaling, so we can choose one without loss of

generality. A common choice here is the so called Hadamard coin [6, 2]

CH =
1√
2

1 1

1 −1

 . (2.31)

By choosing the particular parametrization

A =

a 0

0 0

 · CH B =

0 0

0 −a

 · CH M =

b 0

0 b

 · CH (2.32)

for the hopping parameters in equation 2.18, which are now two dimensional matrices, we

find a closed set of recursion equations from the system in equation (2.22) for the complex

10To our knowledge, nobody has tried to calculate the absorption for the random walk this way either. This
is because it is impractical to extract finite numbers like this from the renormalization group. Instead
one usually studies the scaling of quantities as the system size changes.
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parameters a and b:

ak+1 =
a2
k√

2
(
1−
√

2bk + b2k
) bk+1 = bk +

a2
k(
√

2− 2bk)

−2 + 2
√

2bk − 2b2k
(2.33)

Those equations are immediately more complicated than their random walk counter-

part in equation (2.23), but we can still find all the fixed points and the corresponding

eigenvalues of the Jacobian

(a∗, b∗) = (1, 1)/
√

2 =⇒ λ = {2, 2}

a∗ = 0 =⇒ λ = {0, 1}
(2.34)

One might think that the largest eigenvalue is still of relevance here, but as it turns out,

this notion does not hold on the networks considered in chapter 3. Instead we can use

ak and bk to calculate |ψ̃(k)
+ (z)〉 with 2k sites between the two absorbing sites, starting

adjacent to the left absorbing site. The numerical value for the absorption for this case in

the infinite system size limit has been calculated by Bach et al. [9]. We do not want to

calculate this number, but want to draw conclusions from its approach towards its limit.

The left panel in figure 2.7 shows the integrand that yields F0 for different itera-

tions/system sizes. We can identify that the first fixed point is part of a oscillatory regime.

If we look in an neighborhood around it, we find that a rescaling with λ = 2 matches

the integrand well for large enough system sizes in a finite region around θ = arg(z) = 0,

shown in the right panel.

This type rescaling is at the heart of our renormalization approach for quantum walks. In

the next chapter, we encounter cases where it works and we can use a numerical evolution

of the recursion equations to confirm analytic values for dw. But we also find coin operators

that show no unstable fixed point and this approach simply does not apply. This highlights

another difference between random and quantum walks. The stochastic nature of the

former guaranties that there is a fixed point describing the infinite system size limit. For

the unitary quantum walk, there is no guarantee that the recursions have a fixed point,
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Figure 2.7: The integrand in equation (2.30) at different iterations k of the recursions of one
dimensional line (left panel). There is an unstable fixed point for θ = arg(z) =
0. The rescaling that leaves the integrand locally invariant is shown in the right
panel. Here, λ = 2 reproduces the known value dQWw = 1 as Lk+1 = 2Lk [13].

especially an unstable one.
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To understand recursion, you must

first understand recursion.

Unknown

For the regular lattices, the Fourier transform provides an indispensable tool for analytic

insights for both random and quantum walk, and we use it in chapter 4 extensively. And

while quantum walks offer a broader spectrum of possible behaviors , the asymptotic scaling

remains the same for all of them, i.e. dw = 1 [29]. The same is true for random walks

where dw = 2 holds for all unbiased variants.

Random walks have been successfully studied on a much broader variety of networks

[59, 34, 60], including self-similar networks and fractals. We follow this path and study the

asymptotics of quantum walks on them.

We begin by defining the networks considered here in section 3.1 where we first study

the random walk to gain familiarity. Following in section 3.2, we introduce a numerical

method to estimate dw from direct simulations. We apply this and the renormalization

group ideas from section 2.4 in 3.3 to explore the rich phenomenology of quantum walks

on self-similar networks.

3.1 Self-similar networks

Self-similar networks are graphs where parts of it are similar/identical to the whole. This

property lends them to recursive methods such as the renormalization group to study them.
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Important examples are fractals and hierarchical networks.

The idea for all networks considered here is to apply simple substitution rules to a

given graph to construct a new one. Following this recipe to grow the network, one finds a

sequence of different networks, called generations, based on how often this iterative scheme

has been applied. This procedure is intimately related to the renormalization group ideas

we use to solve the random walk on them.

We will outline the calculations for one of the networks here in some detail. The methods

directly apply to all of them, and all results are summarized in table 3.1.

The network we study in depth is based on work by Migdall and Kadanoff[11, 57], which

we will refer to as MK3. The concept here is to replace every edge with a more complicated

connection between the nodes introducing new ones. The specific recipe for this network,

and the first two generations are depicted in figure 3.1. One important aspect when

studying quantum walks is the type of edges adjacent to each node. Those are represented

by different colors and letters in the figure. The different types of connections introduce

a concept of local directionality meaning that the walker can distinguish between different

directions. For the classical random walk with no memory, this distinction is not necessary,

but it becomes indispensable for their quantum counterpart. To ensure self-similarity, the

edge types for every node have to be preserved when iterating the recursive scheme. For

MK3 this is achieved by conserving the type/color adjacent to node 1 and 2 in figure 3.1.

Before we can apply our method from section 2.3 to MK3, we need to calculate the

fractal dimension. Here, we use the Hausdorf dimensions [59, 67] defined by

N ∼ Ldf (L→∞) . (3.1)

The relation states that the number of nodes, N , within L steps from a (random) node

scales like a power law with df as the exponent. This generalizes the concept of dimension

to non-integer values while coinciding with the results for d-dimensional Euclidean spaces.

To calculate the number, note that the number of edges satisfies, Ek+1 = 7Ek, where k
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Figure 3.1: Illustration of the decimation procedure for the Migdal Kadanoff graph. For
growing the network, each bond (top left) is replaced by a graphlet (top right).
The colors encode the different hopping operators required for quantum walks.
Note that edge type for node 1 and 2 do not change between generations. This
ensures that the iterative scheme preserves the local hopping operators. The
lower two panels show the first (left) and second (right) iteration.

is the generation. With the initial condition E0 = 3, the solution is Ek = 3 · 7k. From

this, we can find the number of sites: every edge is connected to two sites, but every node

has degree 3. Therefore, Nk = 2/3Ek = 2 · 7k. By looking at the scheme in figure 3.1,

we see that the distance between node 1 and 2 quadruples between iterations. This holds

for any distances if we go from k to k + 1, yielding Lk ∼ 4k. For large k, we hence find

df = log(Ek)/ log(Lk) = log4(7).

To find the walk dimension, dw, consider the top right graphlet in figure 3.1. For the



38 3 Quantum walks on self-similar networks

sites 3, . . . , 6, it represents the system of equations in Laplace space1



p̃3

p̃4

p̃5

p̃6


=



A 0 M B C 0

0 0 B M A C

0 0 C A M B

0 A 0 C B R


·



p̃1

p̃2

p̃3

p̃4

p̃5

p̃6


(3.2)

where M allows for self-interaction at each site. In the original graph M = 0. The system

can be solved for p̃3, . . . p̃6 in term of p̃1 and p̃2. Plugging the result into the equations for

the remaining site amplitudes

p̃1 = Mp̃1 +Ap̃3 +Bp̃3̄ + Cp̃¯̄3

p̃2 = Mp̃2 +Ap̃6 +Bp̃6̄ + Cp̃¯̄6

(3.3)

where the indices with bars on top represent the other neighbors of 1 and 2 analogous

to 3 and 6 but connected by a different edge type. The equation for those are cyclic

permutations (A → B → C → A) of (3.2). Rearranging the terms, we find recursion

equations relating the hopping parameters A, B, C, and M of the original system and the

one with six seventh of the sides removed (the previous generation):

(Ak+1, Bk+1, Ck+1,Mk+1) = RG (Ak, Bk, Ck,Mk) (3.4)

Here k counts the number of decimation steps performed, i.e. effectively the system size.

This is again the renormalization group flow [57, 60] containing all the information by

representing different system sizes by different values of the hopping parameters. In the

case of the unbiased random walk, all the hopping parameters are simple scalars which we

1For the random walk, the hopping parameters are all identical scalars, but the distinction becomes
mandatory for the quantum walk. For clarity, we will treat the random walk more complicated than
needed.
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parametrize2 by A = B = C =: a, and M =: 1 − b. We describe the random walk with

these two parameters, a and b, for which the above outlined method produces the recursion

equations

ak+1 =
2a4

k

b3k − 4a2
kbk − akb2k

bk+1 = bk +
3a2

k(2ak − bk)(ak + bk)

b3k − 4a2
kbk − akb2k

(3.5)

with the initial conditions a0 = z/3 and b0 = 1.

Again, the long time asymptotic is contained in the properties of a fixed point describing

the infinite system. For this set of recursions, a = 0 is the only reachable fixed point for

the specific initial conditions. As for the one dimensional example in section 2.3, this does

not mean that nothing spreads, it is solely due to the fact that the decimation procedure

outgrows the diffusion dynamics such that M → 1. By studying the analogous system for

αk = 3kak and βk = 3kbk, we can investigate the system in this boundary layer, and find

the line of fixed point βk = 3αk. The Jacobian for this system at this point has the largest

eigenvalue λ = 21. This eigenvalue directly relates to rescaling of z and hence t between

iterations[60]. Together with the notion that distances quadruple between iterations, this

results in dRWw = log4(21).

This procedure can be directly applied to the following networks that follow different

substitution rules. The second one we investigate, titled MK4, is in the very same spirit as

MK3.The only difference is the inserted graphlet is four-regular, meaning that every node

has exactly four neighbors. An illustration can be found in figure 3.2.

The third network is called Hanoi network (HN3) [12]. Here, from one generation to

the next, new nodes are inserted along certain edges (A and B), and connections between

pairs of the new nodes are established preserving the hierarchical structure. Other edges

types (C and D) are not affected by the procedure. A peculiarity for HN3 is the fourth

kind of connection, D, that is not part of the network itself, but emerges necessarily when

2The ansatz already anticipates that M → 1 and parametrizes the difference to one. This simplifies the
following recursions, and was purely chosen for convenience.
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Figure 3.2: The decimation scheme for MK4. Every edge (left panel) at a certain gener-
ation is replaced by a graphlet of 6 nodes and 13 edges (middle panel). The
corresponding graphs for the three other edge types can be found be cyclic
permutation A → B → C → D → A. The right panel shows the zeroth
generation.

1

2

3A B

C
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1 2 34 5

Figure 3.3: Illustration of the decimation procedure for HN3. The network is grown by
inserting new nodes between an even and odd index and the appropriate con-
nections(left to middle panel). Note that D is not present in the original graph,
but emerges in order to close the renormalization group equations. The right
panel shows the network of generation four with 32 nodes.

we reverse the recursive scheme to find the renormalization group flow.

The last network is the well-known Dual Sierpinski Gasket (DSG) [32, 34] depicted in

figure 3.4. Here the self-similarity of the different edges between nodes proves to be harder

to satisfy. We solve this problem by introducing asymmetric hopping along the connections.

For those without an arrow (i.e. C in the figure) the hopping is symmetric between the

connected nodes, meaning the hopping matrix C describes the transition from node 4 to 9,

as well as the transition from 9 to 4. For the operators A and B, see figure 3.4, we choose

to break this symmetry. For example B describes the transition from site 4 to 5 while 5 to
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Figure 3.4: Illustration of the recursive scheme for the dual Sierpinsky gasket (DSG). To
ensure self-similarity, we have to introduce asymmetric hopping operators (di-
rected black and red edges) together with symmetric one (blue edges). The left
panels show how the next generation is optained by inserting the nodes 4, . . . , 9
(bottom) into every triangle (top). The right panel depicts the network at the
third generation.

4 is mediated by A. This allows us to consistently insert six new sites into every triangle

to find the next generation.

By applying the procedure, outlined above for MK3, to the other three networks, the

values for df and dw for the unbiased random walk can be analytically obtained. The

specific values can be found in table 3.1.

Table 3.1: Overview over the fractal and classical walk dimension for the networks.

Network df dRWw
MK3 log4(7) ≈ 1.404 log4(21) ≈ 2.196
MK4 log4(13) ≈ 1.850 log4(247/7) ≈ 2.571

HN3[12] 2 log2

(
24− 8

√
5
)
≈ 2.612

DSG[32] log2(3) ≈ 1.585 log2(5) ≈ 2.322
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3.2 Direct numerical simulations

The numerical simulation of the quantum walk consists of iterating equation (2.5) on large

system sizes for long times, and recording pl,t along the way. In this section we introduce

a method to estimate dw given the probabilities at different points in time.

The common method often found for numerical investigations [45, 58, 44] uses the second

moment σ2
t as a function of time, and its scaling relation in equation (2.4), to fit a power-

law to estimate dw. While this undoubtedly works for small values of dw, where everything

spreads fast, and the random walk, where pl,t is smooth, there are some problems when

applying this to quantum walks on self-similar networks. The main problem is caused

by the interplay between localization and the oscillations found in the probability density

function. Together they cause the second moment to be dominated by the behavior around

the initial conditions. The spreading part just does not carry enough weight to be the

dominant factor, at least not for numerically accessible system sizes and times. Therefore,

we will use the scaling relation in (2.2) directly and try to collapse the whole probability

density function for different times.

A scaling collapse like this is not uncommon in statistical physics in the context of finite

size scaling [43]. Usually the scaling is limited to a small region around a critical point,

and the analytic form of the scaling function is known. Here, we want to collapse over a

large region without making any assumptions about the scaling function f , because, as we

will see in the next section, it can vary drastically across networks.

Our method works in the following way. For a given estimate for dw, we use a non-

parametric fit [31] to estimate the scaling function. Based on this, we define an error of

this collapse, we use the residual sum of squares (RSS). Starting from an initial guess, we

apply the Nelder-Mead algorithm [52] to find an dw that minimizes this error. The next

paragraphs explain those steps in more detail.
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The scaling in equation (2.2) can be rewritten as

pl,t · tdf/dw ∼ f
(

l

t1/dw

)
(3.6)

which means that the quantity on the left hand side should be a universal function, with

l/t1/dw as the only argument. We know the fractal dimension df for our networks, and so

dw and f are the only parameters for collapsing the data. For our procedure, we first note

that the points

(Xi, Yi) :=
(
l/t1/dw , pl,t · tdf/dw

)
. (3.7)

approximate f for the right value of dw. A comparison between these points and a local

estimation f̂ based on them can be used to find a dw which collapses the data well.

We use a non-parametric fitting [31] where the data is fitted locally by a degree 3

polynomial, which we call P3. The locality of the fit is realized by weighing points with a

kernel K. We decided to use the Gaussian kernel with zero mean and a variance ∼ N−1/5

where N is the number of data points. This is a very common choice and the default kernel

in many software packages for nonparametric fitting. To deemphasize the large probabilities

around the initial site, and to better fit the spreading part of the probability density

function, we estimate not the probabilities themselves, but work with their logarithms.

Formally, we define our estimate of the scaling function f to be

f̂(x) = argmin
P3

∑
i

K (x−Xi)
[

log(Yi)− log
(
P3(x−Xi)

)]2
, (3.8)

Fitting the logarithm of f is ad hoc and has no analytic background. We merely postulate

this, and the results will justify our choice later on.

The error of the collapse is then measured by

RSS(dw) =
∑
i

[
log (Yi)− log

(
f̂(Xi)

)]2
, (3.9)
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which we minimize to find our estimate for dw. Note that our procedure automatically

puts more weight to larger times, as there are more points from later probabilities.

To estimate the error of our approach, we fit different subsets of the data, and use the

statistical error of these estimates. While there are many ways to do this, we decided to

introduce a lower cutoff to the fitting procedure as we cannot simulate enough different

initial conditions (see below). It limits the range for which log(f̂) is estimated, and excludes

points with probabilities too small. By decreasing the value, we expect to see the following

behavior. Above a certain value, the cutoff excludes too many points resulting in a poor

fit. Below a certain value, we expect our procedure to become inaccurate due to the finite

simulated time. By examining quantum walks on all considered networks, we find the range

10−50 . . . 10−10 to yield consistent results. This type of error analysis does not include any

systematic error that could result from the finite simulations or the fitting method itself,

a common problem for nonparametric fitting.

It is no surprise that we find best results for very long times. This restricts the number of

initial conditions we can simulate as the system sizes are very large. Here, we generate net-

works with ∼ 107 nodes and simulate up to t = 8192 . . . 65536 (depending on the network)

time steps. Compared to other recent simulations these are unprecedented combinations of

system size and simulated time. For example, Lara et al. [44] performed simulations on the

DSG with ∼ 20000 nodes allowing them to average over many initial conditions. In another

recent publication by Vieira et al. [71], quantum walks with N ≤ 2000 were simulated for

t ≤ 1000 steps, averaging over ∼ 20000 initial conditions. Counting the total number of

multiplications, this equals any single run presented here in section 3.3. Similar system

sizes (∼ 7 · 106 nodes) have been simulated by Patel et al.[53], but they provide neither the

longest simulated time for this system size, nor the number of initial conditions.

To validate that the value of dw does not depend we run always at least two random

initial conditions. While we show only the results of one of them, the values always agreed

within our estimated error. This also serves as evidence that the scaling relation in equation

(2.2) holds for quantum walks regardless of the specific initial state.
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Figure 3.5: The probability pl,t of the random walk on MK3 at different times.

Let us illustrate the procedure for the random walk on MK3. In figure 3.5, we show

probability density function at five different times. Again, our goal is to scale the x and y

axis such that these curves collapse. In this case, we already know that dw = log4(21) is

the asymptotically correct value.

The left panel in figure 3.6 shows the scaling of the very same probabilities for dw = 1,

which is obviously not correct, but it gives us an impression of f̂ . The right panel shows

the best fit found by minimizing equation (3.9).

In figure 3.7, we investigate the robustness of our method. The left panel shows the

estimated value of dw a function of the lower cutoff. The range for the lower cutoff is

small because for a larger dw the simulations have to be much longer for the probability

density function to spread as far. But we can see how our procedure becomes inaccurate

for too small and too large values. For a specific cutoff of 10−15, the right panel depicts

the quadratic minimum of RSS(dw) around the estimated value.

In comparison, the figures 3.8, 3.9, and 3.10 show the same procedure for a quantum
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Figure 3.6: The scaled probabilities for dw = 1 (left panel) as an illustration, and for the
estimated value dw = 2.19(1). The error to log4(21) is 0.3%.
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Figure 3.7: Dependency of the estimated value for dw on the lower cutoff used for f̂ (left
panel), and the function RSS(dw) around the best value found to confirm a
single minimum (right panel) for the unbiased random walk on MK3. The red
line shows the estimated value only minutely below the exact value of log4(21).
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Figure 3.8: The probability pl,t of a quantum walk on MK3 using the Grover coin at dif-
ferent times. See the following section for details.

walk using the so called Grover coin (see section 3.3.1 for details). We can immediately see

differences in the probability density function: the overall shape is different, and strong

oscillations are visible. But our procedure for f̂ works very well in smoothing these rough

data sets, and the found value for dw in the right panel of figure 3.9 collapses the data over

the whole shown range. For this case, the simulated time was long enough such that the

lower cutoff has almost no influence once it is small enough. The minimum of RSS(dw) is

more pronounced compared to the random walk.

3.3 Exploring different coins

In this section, we use the methods described earlier to determine the value of dQWw for

different coins. We focus on two important and well-known coins: the Grover and the

Fourier coin. The former is a highly symmetrical, real coin, while the second one originates

from discrete Fourier transforms and is sometimes studied [58]. As a third example, we
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Figure 3.9: The scaled probabilities for the classical value dw = 2.20 (left panel) and the
estimated optimal value dw = 1.10 for the quantum walk using the Grover coin
on MK3.
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Figure 3.10: Dependency of the estimated value for dw on the lower cutoff used for f̂ (left
panel), and the function RSS(dw) around the best value found to confirm a
single minimum (right panel) for a quantum walk on MK3. The red line shows
the estimated value.
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will look at an orthogonal coin that looks very similar to the Grover coin, but exhibits

different behaviors.

3.3.1 The Grover Coin

The Grover coin has taken on a very important role in quantum walks. Inspired by Grover’s

original work [30], this coin can be defined in all dimensions of the coin space. Only for the

two dimensions case does it not lead to interesting behavior as the quantum walker either

stays completely localized or moves deterministically into a certain direction.

The general definition of the Grover coin can be written as

CG = 2
|1〉〈1|
〈1| 1〉 − 1 . (3.10)

Here |1〉 is the vector with all entries equal to one, and 1 being the identity matrix, both

with the same dimension as the coin space. On the networks here, the three and four

dimensional cases read

CG =
1

3


−1 2 2

2 −1 2

2 2 −1

 and CG =
1

2



−1 1 1 1

1 −1 1 1

1 1 −1 1

1 1 1 −1


. (3.11)

By definition, this coin is always hermitian and self inverse. In fact, it is the negative of a

Hausholder reflection, a class of linear transformation well know from, e.g., QR decompo-

sitions.

Before using renormalization group to determine dw, we apply the numerical method

introduced in section 3.2 to gain insights into the behavior on the different networks. The

raw probabilities and the scaling collapses are shown in figure 3.11, and the parameters

and results of the simulations in table 3.2.

Note, regardless of the network the scaling function looks similar in all four cases. There
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Figure 3.11: Direct simulation of the quantum walk using the Grover coin on all four net-
works. The insets show the raw PDFs, while the main panel shows the best
fit. The parameters of all simulations and the estimated values for dw can be
found in table 3.2.
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Table 3.2: Parameters for the simulation shown in figure 3.11 using the Grover coin. The
networks with N nodes, and the maximum distance lmax from the initial con-
dition where evolved for tmax time steps. The colors in the plots correspond to
tmin (blue) in powers of 2 up to tmax (red). See text for discussion.

Network N lmax tmin tmax destw

MK3 2 · 78 ≈ 1.2 · 107 216 210 216 1.100(4)
MK4 2 · 136 ≈ 1.0 · 107 212 28 214 1.283(2)
HN3 224 ≈ 1.7 · 107 212 27 213 1.299(5)
DSG 2 · 314 ≈ 1.0 · 107 212 28 214 1.161(1)

is a relatively high peak at l/t1/dw = 0 indicating that there could be localization, see

chapter 4 for details. Then there is some intermediate range where f is almost constant,

followed by an exponential cut-off3. We show the results in table 3.2 to three significant

digits, which we determined by varying the cut-off for the non-parametric fitting. We want

to point out, that all the numbers are very close to half the classical values for the random

walk in table 3.1.

For three out of the four networks, we were able to simulate longer than the largest

distance of the finite system. This introduces, in principle at least, boundary effects that

could corrupt our results. We assure that the probabilities are not noticeably influenced.

After all, dw > 1 means that only an exponentially small fraction reaches further out than

l ∼ t1/dw . This enables us to simulate longer than the system size would allow for ballistic

spreading. For MK3, dw is too small to simulate substantially longer at the given system

size.

Based on these findings, we will now use the method outlined in section 2.4 to determine

the values for the walk dimension to almost arbitrary accuracy. To do that, we need to

find an adequate set of renormalization parameters and derive the recursion equations. We

begin with MK3, followed by MK4, HN3 and DSG.

The linear system corresponding to equation (3.2) we need to solve for the quantum

3Beware that the main panels of all plots are log-linear.
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walk on MK3 reads

|ψ̃3〉 = A|ψ̃1〉+ M|ψ̃3〉+ B|ψ̃4〉+ C|ψ̃5〉

|ψ̃4〉 = B|ψ̃3〉+ M|ψ̃4〉+ A|ψ̃5〉+ C|ψ̃6〉

|ψ̃5〉 = C|ψ̃3〉+ A|ψ̃4〉+ M|ψ̃5〉+ B|ψ̃6〉

|ψ̃6〉 = A|ψ̃2〉+ C|ψ̃4〉+ B|ψ̃5〉+ M|ψ̃6〉

(3.12)

Plugging the solution for |ψ̃3〉, . . . , |ψ̃6〉 in terms of ψ̃1 and ψ̃2. into the equations for nodes

that are not decimated,

|ψ̃1〉 = M|ψ̃1〉+ A|ψ̃3〉+ B|ψ̃3̄〉+ C|ψ̃¯̄3〉

|ψ̃2〉 = M|ψ̃2〉+ A|ψ̃6〉+ B|ψ̃6̄〉+ C|ψ̃¯̄6〉
(3.13)

yields a smaller set of equations self-similar to the above ones where the hopping is now

represented by the matrices A, B, C, and M. Due to the simplicity/symmetry of the

Grover coin, we find that only two parameters are needed to capture the evolution. The

parametrization for the matrices is as follows:

A =
a+ b

2
S1 · CG B =

a+ b

2
S2 · CG C =

a+ b

2
S3 · CG M =

a− b
2
1 · CG (3.14)

The components of the 3 × 3-matrices Si are defined by [Si]k,l = δi,k · δi,l. The recursion

equations for the two parameters read

ak+1 =
−9ak+5a3k+9bk+3akbk−17a2kbk−3a3kbk+3b2k+14akb

2
k−3a2kb

2
k−18a3kb

2
k

−18−3ak+14a2k+3a3k−3bk−17akbk+3a2kbk+9a3kbk+5b2k−9a2kb
2
k

bk+1 =
−3ak − a2

k + 3bk + 4akbk − 3a2
kbk − b2k + 3akb

2
k + 6a2

kb
2
k

6 + 3ak − a2
k − 3bk + 4akbk + 3a2

kbk − b2k − 3akb
2
k

(3.15)

with a0 = b0 = z as the initial conditions. The ansatz has been chosen because we can

show that if |z| = 1, |ak| = |bk| = 1 for all k. This means that the evolution of the two

complex variables in equation (3.15) condenses to two phase factors. Unfortunately, there

is no easier way of writing the recursions in terms of just the phases.
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Evidently, the recursions are more complex than for the random walk. It is not obvious,

but there are three fixed points for these equations and we can calculate the eigenvalues

of the Jacobian:

a∗ = b∗ = 1 =⇒ λ = {3, 7}

b∗ = −a∗ =⇒ λ = {0, 1}

b∗ = −(3 + a∗)/(1 + 3a∗)) =⇒ λ = {1, 5}

(3.16)

Two of them have one undetermined parameter, meaning they correspond to whole lines of

fixed points. One might suspect that the first one is related to dw since the determinant of

the Jacobian 3 · 7 = 21 would reproduce the value of the random walk. We will see below,

that this is not true for all networks, but it is indeed the one around which our rescaling

method works. The second one seems to be the absorbing state towards which ak and bk

evolve everywhere else, because it could be the only stable one4. The third one seems to

be not realized with the initial conditions here.

If we now study the rescaling of say arg(ak) around the first fixed point5, we can deter-

mine dw. The result is shown in figure 3.12. The analytic value for λ used for the rescaling

can be confirmed to an accuracy that depends on the numbers of iterations performed. For

k ≤ 40 here, we confirm at least 10 digits, meaning that if we change the eleventh digit, we

would recognize a broadening of the clear intersection shown in the inset. The accuracy

could be easily improved, but already suggests the exactness of dw = log4

(√
21
)

beyond

reasonable doubt.

4Since one eigenvalue equals one, the stability cannot be concluded from the Jacobian. Higher order terms
could both stabilize or destabilize it.

5Which parameter or observable we study here is irrelevant. They all collapse for the same λ.
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Figure 3.12: Rescaling of the phase of the first parameter ak around the fixed point z = 1
for MK3. The inset shows a magnification around the first intersection. In the
main panel, k = 4, 6, . . . , 14 while k = 30, 32, . . . 40 for the inset. This means
the largest system size is N ≈ 1034. λ =

√
21 yielding dw = log4

(√
21
)
.
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For MK4, the linear system for the sites 3, . . . 8 in figure 3.2 can be written as

|ψ̃3〉 = A|ψ̃1〉+ M|ψ̃3〉+ B|ψ̃4〉+ D|ψ̃7〉+ C|ψ̃8〉

|ψ̃4〉 = B|ψ̃3〉+ M|ψ̃4〉+ D|ψ̃5〉+ C|ψ̃6〉+ A|ψ̃8〉

|ψ̃5〉 = A|ψ̃2〉+ D|ψ̃4〉+ M|ψ̃5〉+ B|ψ̃6〉+ C|ψ̃7〉

|ψ̃6〉 = C|ψ̃4〉+ B|ψ̃5〉+ M|ψ̃6〉+ A|ψ̃7〉+ D|ψ̃8〉

|ψ̃7〉 = D|ψ̃3〉+ C|ψ̃5〉+ A|ψ̃6〉+ M|ψ̃7〉+ B|ψ̃8〉

|ψ̃8〉 = C|ψ̃3〉+ A|ψ̃4〉+ D|ψ̃6〉+ B|ψ̃7〉+ M|ψ̃8〉

(3.17)

Once the solution in terms of ψ̃1 and ψ̃2 is found, we can plug it into the equations for,

say, ψ̃1

|ψ̃1〉 = A|ψ̃3〉+ B|ψ̃3̄〉+ C|ψ̃¯̄3〉+ D|ψ̃¯̄̄3
〉 (3.18)

to find the renormalized system

|ψ̃1〉 = A′|ψ̃2〉+ B′|ψ̃2̄〉+ C′|ψ̃¯̄2〉+ D′|ψ̃¯̄̄2
〉 (3.19)

Our ansatz for MK4 reads:

Ak =
ak + bk

2
S1 · CG Bk =

ak + bk
2

S2 · CG Ck =
ak + bk

2
S3 · CG

Dk =
ak + bk

2
S4 · CG Mk =

ak − bk
2

· CG
(3.20)

Here the Si are the four-dimensional matrices defined by [Si]k,l = δi,k · δi,l. The corre-

sponding recursions for the parameters follow from some algebra:

ak+1 =
−8ak+5a3k+a4k+(8+4ak−22a2k−a3k+5a4k)bk+(4+21ak+3a2k−30a3k−4a4k)b2k+ak(5+13ak−4a2k−16a3k)b3k
−16−4ak+13a2k+5a3k+(−4−30ak+3a2k+21a3k+4a4k)bk+(5−ak−22a2k+4a3k+8a4k)b2k+(1+5ak−8a3k)b3k

bk+1 =
−8bk+b3k+a3kbk(5+4bk−16b2k)+a2k(4+13bk−26b2k−12b3k)+ak(8−12bk−18b2k+b3k)

−16−12ak+a2k+a3k+2(2−13ak−9a2k)bk+(5+13ak−12a2k−8a3k)b2+4ak(1+2ak)b3

(3.21)

with a0 = b0 = z as the initial conditions. Again, we crafted the ansatz such that if

|ak| = |bk| = 1 for some k, then it is true for all following iterations.
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This system of recursions has the fixed points and corresponding eigenvalues of the

Jacobian:

a∗ = b∗ = 1 =⇒ λ = {19/7, 13}

b∗ = −1/a∗ = 1 =⇒ λ = {1, 9}

b∗ = − 2 + a∗

1 + 2a∗
=⇒ λ = {1, 13}

a∗ = −b∗ =⇒ λ = {0, 1}

(3.22)

Again, the first one seems to resemble the classical fixed point, and the last one is the

absorbing state. The other two cannot be reached from the initial conditions. We perform

our renormalization procedure again around the unstable fixed point a∗ = b∗ = 1. The

rescaling of the phase of the second parameter6 is shown in figure 3.13. Here we can report

confirming λ =
√

247/7 and hence dw = log4

(√
247/7

)
to also about 10 digits accuracy.

The decimation for HN3 (see figure 3.3) requires a more complex parametrization. Be-

sides the 3 different hopping parameters A, B and C, we have to account for the necessity

to introduce D to close the recursion equations. Additionally, there will be two different

types of self-interaction terms M1 and M2 depending on whether the site index is even or

odd. This makes a total of 6 matrices, but for the highly symmetric Grover coin, we only

need 3 parameters that can again be shown to be complex variables of modulus one for all

6We could also have studied the first parameter, as the behave similarly. The only difference is where the
intersections are located, but qualitatively the picture would be the same.
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Figure 3.13: Rescaling of the phase of the second RG parameter bk around the fixed point
z = 1 for MK4. The inset shows a magnification around the first intersection.
In the main panel, k = 2, 6, . . . , 14 while k = 20, 22, . . . 30 for the inset. This
means the largest system size is N = 2 · 1330 ≈ 5.24 · 1033. λ =

√
247/7

yielding dw = log16(247/7).



58 3 Quantum walks on self-similar networks

iterations. We choose the following ansatz for the matrices:

A =


b−a

4
a+b+2c

4 0

0 0 0

0 0 0

 · CG B =


0 0 0

a+b+2c
4

b−a
4 0

0 0 0

 · CG

C =


0 0 0

0 0 0

0 0 z

 · CG D =


0 b−a

4 0

0 0 0

0 0 0

 · CG

M1 =


a+b−2c

4
b−a

4 0

b−a
4

a+b−2c
4 0

0 0 0

 · CG M2 =


a+b−2c

4 0 0

0 a+b−2c
4 0

0 0 0

 · CG

(3.23)

The linear system we need to solve in this case reads

|ψ̃4〉 = AT |ψ̃1〉+ BT |ψ̃2〉+ M1|ψ̃4〉+ C|ψ̃5〉

|ψ̃5〉 = AT |ψ̃2〉+ BT |ψ̃3〉+ CT |ψ̃4〉+ M1|ψ̃5〉
(3.24)

corresponds to the right graphlet in Fig. 3.3. Here AT represents the transpose of A. As

it turns out, the different bonds can become asymmetric depending which direction (left

or right in the figure) the quantum walker takes, and this ansatz automatically accounts

for it.

By solving these equations for |ψ̃4〉 and |ψ̃5〉, and inserting this into the equations for

the remaining sites,

|ψ̃1〉 = M2|ψ̃1〉+ D|ψ̃2〉+ DT |ψ̃2̄〉+ A|ψ̃4〉+ BT |ψ̃5̄〉+ C|ψ̃∗〉

|ψ̃2〉 = D|ψ̃1〉+ M2|ψ̃2〉+ DT |ψ̃3〉+ BT |ψ̃4〉+ A|ψ̃5〉+ C|ψ̃∗〉
(3.25)

we find the following recursion equations for the three RG variables. Note that the equation

for ψ̃3 is identical to the first one, and every node is connected to a node of unknown index,
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ψ̃∗, but the corresponding hopping matrix C does not change. After some algebra, we find

ak+1 =
ck(−3 + z)− bk(−3 + z + ck(−2 + 6z))

6− bk + ck + (−2 + 3bk − 3ck)z
,

bk+1 =
ck(3 + z)− bk(3 + z + ck(2 + 6z))

−6 + bk − ck + (−2 + 3bk − 3ck)z
,

ck+1 =
ck + ak(−1 + 2ck)

2 + ak − ck
,

(3.26)

with the initial conditions

a0 =
z2(1− 3z)

3− z , b0 =
z2(1 + 3z)

3 + z
, c0 = z2 . (3.27)

The ansatz again leads to variables that stay of modulus one through all iterations, if

the initial conditions fulfill this condition. Note that the equations explicitly depend on z

because of the unrenormalized matrix C.

The recursions have the following fixed points and corresponding eigenvalues of the

Jacobian:

b∗ = c∗ = −a∗ =⇒ λ = {0, 0, 1}

(a∗, b∗, c∗) =

( −3 + z(6 + z)

−1 + 3(−2 + z)z
,

3 + z

1 + 3z
, 1

)
=⇒ λ = {0, 2, 2}

(a∗, b∗, c∗) =

( −3 + z

−1 + 3z
,

3− z
−1 + 3z

,
3 + z

1 + 3z

)
=⇒ λ =

{
1 +
√

17

4
,
1−
√

17

4
, 2

} (3.28)

Remarkably, the last two fixed points depend explicitly on z while the eigenvalues do not.

At this point, it becomes clear that the fixed points for the renormalization of the

quantum walk are not necessarily linked to values encountered for the random walk. Here,

our rescaling works around the last fixed point. The results for rescaling the phase of the

first parameter are presented in figure 3.14. The rescaling here is not quite as nice as for

the previous networks. Not all curves intersect at exactly the same point. Therefore, we

look at the convergence of the kink towards a step function and how that drifts when the

value of λ is changed to estimate the accuracy. Due to the smaller effective system size,
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Figure 3.14: Rescaling of the phase of the first RG parameter ak around the fixed point
z = 1. The insets show a magnification to illustrate the conversion towards a
step function. In the main panel, k = 10, 12, . . . , 30 while k = 60, 62, . . . 80 for

the inset. This means the largest system size is N ≈ 1024. λ =
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√
5
)
.

we confirm dw = log2(24− 8
√

5)/2 to about 8 digits.

In case of the DSG, the linear system represented by figure 3.4 reads

|ψ̃4〉 = B|ψ̃1〉+ M|ψ̃4〉+ A|ψ̃5〉+ C|ψ̃9〉

|ψ̃5〉 = A|ψ̃1〉+ B|ψ̃4〉+ M|ψ̃5〉+ C|ψ̃6〉

|ψ̃6〉 = B|ψ̃3〉+ C|ψ̃5〉+ M|ψ̃6〉+ A|ψ̃7〉

|ψ̃7〉 = A|ψ̃3〉+ B|ψ̃6〉+ M|ψ̃7〉+ C|ψ̃8〉

|ψ̃8〉 = B|ψ̃2〉+ C|ψ̃7〉+ M|ψ̃8〉+ A|ψ̃9〉

|ψ̃9〉 = A|ψ̃2〉+ C|ψ̃4〉+ B|ψ̃8〉+ M|ψ̃9〉

(3.29)
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We solve for the inner nodes in terms of the outer, and eliminate the former ones from

|ψ̃1〉 = M|ψ̃1〉+ C|ψ̃2̄/3̄〉+ A|ψ̃4〉+ B|ψ̃5〉

|ψ̃2〉 = C|ψ̃1̄〉+ M|ψ̃3〉+ A|ψ̃6〉+ B|ψ̃7〉

|ψ̃2〉 = C|ψ̃1̄〉+ M|ψ̃2〉+ A|ψ̃8〉+ B|ψ̃9〉

(3.30)

The parametrization of the matrices requires five variables:

A =


a b 0

b c 0

0 0 0

 B =


c b 0

b a 0

0 0 0



C =


0 0 0

0 0 0

0 0 z

 M =


d e 0

e d 0

0 0 0


(3.31)

At this point, the algebra becomes very complex but still manageable with computer

algebra systems. While we can still find symbolic expressions for the recursion equations,

each is a rational function with dozens of terms in numerator and denominator. We can

only find two fixed points although there might be more.

a∗ = b∗ = c∗ = d∗ = −e∗/2 = −1/3 =⇒ λ = {0, 1/3, 1, 5/3, 3}

a∗ = b∗ = c∗ = 0 =⇒ λ = {0, 0, 0, 1, 1}
(3.32)

The rescaling is performed around the first one.

The scaling plot in figure 3.15 is different from the ones above. First of all, we show

a function of all parameters whose integral around the unit circle corresponds to F0, the

absorption probability when absorbing boundaries are introduced, see section 4.3 for the

modified network. This relates back to our arguments in section 2.4, but this should always

be equivalent to scaling the parameters directly. Another difference is that z = −1 is the
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Figure 3.15: Rescaling of θ = π − arg(z) around the only found fixed point z = −1. The
lower panel show that the peaks align and converge uniformly (see insets),
while the function converges to zero in between. In the upper part, we also
rescale the y axis. This makes the peaks diverge, but aligns the regions be-
tween them.[13]

fixed point around which the scaling works, for all other networks it is z = 1 as in the

classical case. Finally, we want to point out the logarithms x axis. The scaling is confined

to a very small region for θ = π − arg(z). We inverstigate that further in the last part of

chapter 4. The rescaling is done with λ =
√

5 or dw = log4(5) respectively.

All four networks fulfill the remarkable relationship

dQWw =
1

2
dRWw (3.33)

if the Grover coin CG is used. It is also true for every hypercubic lattice where dRWw = 2

and dQWw = 1 as discussed earlier. This leads us to conjecture that this relationship holds

universally. Although we only studied self-similar networks using a not completely under-

stood renormalization group scheme, we back up our claim by large numerical simulations

with unprecedented system sizes.
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Table 3.3: Parameters for the simulation shown in figure 3.16 using the Fourier coin. The
networks with N nodes, and the maximum distance lmax from the initial con-
dition where evolved for tmax time steps. The colors in the plots correspond to
tmin (blue) in powers of 2 up to tmax (red). See text for discussion.

Network N lmax tmin tmax destw

MK3 2 · 78 ≈ 1.2 · 107 216 210 216 1.20(2)
MK4 2 · 136 ≈ 1.0 · 107 212 28 214 1.72(2)
HN3 224 ≈ 1.7 · 107 212 27 213 1.69(1)
DSG 2 · 314 ≈ 1.0 · 107 212 28 214 1.61(5)

3.3.2 The Fourier Coin

The Fourier coin is is an easily constructed balanced coin for all dimensions. This means

that all matrix entries are of the same magnitude. As a result, if one would measure the

state of the quantum walker after each time step, this coin would resemble the random

walk. As a downside, this coin is less symmetric and inherently complex-valued, which

is why the number of parameters increases, and the recursion equations become more

complicated. For our three and four regular networks, the coin reads

CF =
1√
3


1 1 1

1 e2πi/3 e−2πi/3

1 e−2πi/3 e2πi/3

 and CF =
1

2



1 1 1 1

1 −i −1 i

1 −1 1 −1

1 i −1 −i


, (3.34)

respectively.

We again start with direct simulations and our procedure to estimate dw numerically.

Figure 3.16 shows the best rescaling of the PDFs, and the numbers can be found in table

3.3.

The scaling function exhibits several differences compared to the Grove case. The shape

is slightly different from the ones in figure 3.11: There is still a plateau followed by a

decrease, but the pronounced peak towards l/t1/dw → 0 disappeared. This agrees with our

observation that there is either less or no localization at all for the Fourier coin, an effect



64 3 Quantum walks on self-similar networks

0 0.5 1 1.5

10−17

10−13

10−1

103

100 101 102 103 104
10−12

10−9

10−3

100

MK3

l/t1/dw

p
l,
t
·t

d
f
/
d
w

l

p
l,
t

10−1 100 101

10−17

10−13

10−1

103

100 101 102 103
10−10

10−8

10−2

100

MK4

l/t1/dw

p
l,
t
·t

d
f
/
d
w

l

p
l,
t

10−1 100 101

10−17

10−13

10−1

103

100 101 102 103
10−10

10−8

10−2

100

HN3

l/t1/dw

p
l,
t
·t

d
f
/
d
w

l

p
l,
t

10−1 100 101

10−18

10−14

10−2

102

100 101 102 103
10−16

10−12

10−4

100

DSG

l/t1/dw

p
l,
t
·t

d
f
/
d
w

l

p
l,
t

Figure 3.16: Direct simulation of the quantum walk using the Fourier coin on all four
networks. The insets show the raw PDFs, while the main panel shows the
best fit. The parameters of all simulations and the estimated values for dw
can be found in table 3.3. Note the logarithmic x-axis for 3 of the main panels.
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known on the two dimensional square lattice [58]. Furthermore, note the logarithmic x

axis for MK4, HN3 and DSG. On these networks, the scaling functions decays slower as a

function of l/t1/dw .

The estimated values for the walk dimension are consistently larger compared to the

ones in table 3.2, but there is no obvious pattern the numbers follow with respect to the

random walk, or the quantum walk using the Grover coin. All we can conclude from the

numerics is the fact that CG seems to lead to a faster spreading than CF , but localization

is also stronger present in the first case. This seems to hold except for the DSG, where the

scaling function still could diverge for l/t1/dw → 0.

While the renormalization procedure is identical to the one presented for the Grover

coin, the complex entries and the asymmetry of the Fourier coin render it impossible to

show recursion equations here. The number of parameters is twice that necessary for CG on

all networks, and the recursions are rational functions with dozens of terms in numerator

and denominator. Although we can still study the recursions numerically, we were unable

to find an unstable fixed point, only stable ones. This means, that we cannot perform

the rescaling of the parameters as we did earlier. To use the renormalization group here,

we lack the proper understanding of how to extract the scaling of observables in a case

without an unstable fixed point. The numerical rescaling shows at least that the scaling

relation (2.2) still holds reasonably well. The long time scaling must be determined by

a different property of the recursion equations that is potentially retrievable without an

explicit solution.

3.3.3 An orthogonal Coin

The two coins presented above do not represent the full spectrum of possibilities. As a

first step in a categorization of all different behaviors, we will study a previously ignored

coin. While CG belongs to a very special class of self-inverse reflections7, and the Fourier

7Technically, it is also a rotation about 180◦, but being self inverse and symmetric sets it apart from
general rotations, for example.
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coin is a specimen from the special unitary matrices without any particular symmetry or

property other than the same magnitude for any element in the matrix, we introduce a

rotation that can be defined in every dimension r of the coin space:

CO =
2

r



1 1− r
2 1 1 . . . 1

1 1 1− r
2 1 . . . 1

...
. . .

. . .
. . .

. . .
...

1− 2
r 1 1 1 . . . 1


(3.35)

Though not obvious, this definition closely resembles the Grover coin, with one major

difference: Not the main diagonal, but the one above it, and the last element in the first

column are now distinct. We found this coin suitable for our numerical procedure, as well

as for our renormalization procedure. The subscript O symbolizes that it is an orthogonal

coin8. For the three and four dimensional coin spaces, this coin reads

CO =
1

3


2 −1 2

2 2 −1

−1 2 2

 and CO =
1

2



1 −1 1 1

1 1 −1 1

1 1 1 −1

−1 1 1 1


(3.36)

First, we simulate the quantum walk using this coin on our four networks. All parameters

and the corresponding rescaling plots can be found in table 3.4 and figure 3.17.

The rescaling for MK4 and DSG is very similar to what we found for the Fourier coin.

Note that the values for the DSG are very close, where we see a noticeable difference for

MK4. Doing the renormalization procedure, we encounter the same problems as with CF ,

namely that the recursion equations are too long to show here, seem to have no unstable

fixed point, and hence our procedure does not apply.

More surprising, our findings for MK3 and HN3 suggest a ballistic spreading for this

8The Grover coin also belongs to this class, but because of its distinct properties we do not expect it to
be representative.
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Figure 3.17: Direct simulation of the quantum walk using an orthogonal coin on all four
networks. The insets show the raw PDFs, while the main panel shows the
best fit. The parameters of all simulations and the estimated values for dw
can be found in table 3.4.
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Table 3.4: Parameters for the simulation shown in figure 3.17 using an orthogonal coin.
The networks with N nodes, and the maximum distance lmax from the initial
condition where evolved for tmax time steps. The colors in the plots correspond
to tmin (blue) in powers of 2 up to tmax (red). See text for discussion.

Network N lmax tmin tmax destw

MK3 2 · 78 ≈ 1.2 · 107 216 210 216 1.008(4)
MK4 2 · 136 ≈ 1.0 · 107 212 28 214 1.51(1)
HN3 224 ≈ 1.7 · 107 212 27 213 1.04(2)
DSG 2 · 314 ≈ 1.0 · 107 212 28 214 1.61(2)

coin. While on lattices the quantum walk spreads quadratically faster, i.e. dQWw = dRWw /2,

for a almost9 any coin, we find a strong dependence on the coin for networks without

translational invariance. Additionally, we seem to have found a coin that spreads at the

limit10 of dw = 1 on some networks. To our knowledge, a non-trivial, ballistic motion11 for

quantum walks on complex networks has not been observed previously.

We now look at the recursion equations on MK3 and see whether the rescaling around

a fixed point confirms this observation. The procedure for HN3 requires 6 instead of 3

parameters, and the recursion equations are too complex to be shown here. Furthermore,

the rescaling seems not to work around the one fixed point we find. This will require more

investigation in the future.

For MK3, we can use the same parametrization as in equation (3.14), but the corre-

9Exceptions are coins where the time evolution is trivial, i.e. no spreading whatsoever.
10Values dw < 1 are impossible when distances are measured as the shortest path length. The walk cannot

hop more than once at each time step.
11On some networks one can construct a coin such that the quantum walk will move deterministically

increasing the distance to the initial site at each time step. On the DSG, the alternating sequence of A
and C, for example, leads to such a case.
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sponding recursions read

ak+1 =
[
−6bk(3 + 4bk + 2b2k)− a4

k(13 + 44bk + 60b2k + 36b3k)

+ ak(18 + 84bk + 104b2k + 55b3k) + a3
k(32 + 119bk + 152b2k + 84b3k)

−a2
k(36 + 140bk + 173b2k + 92b3k)

]
/
[
36 + 60bk + 44b2k + 13b3k

+ 6a4
k(2 + 4bk + 3b2k)− a3

k(55 + 104bk + 84b2k + 18b3k)

− ak(84 + 152bk + 119b2k + 32b3k) + a2
k(92 + 173bk + 140b2k + 36b3k)

]
bk+1 =

bk(3 + 2bk) + a2
k(2 + 6bk + 6b2k)− ak(3 + 8bk + 6b2k)

a2
k(2 + 3bk) + 2(3 + 3bk + b2k)− ak(6 + 8bk + 3b2k)

(3.37)

Immediately, we notice that they are more complex compared to the Grover coin equations

(3.15). We are still able to find all the fixed points and the corresponding eigenvalues

a∗ =
2

3
b∗ = −5

4
=⇒ λ = {1, 5}

b∗ = −a∗ =⇒ λ = {0, 1}

b∗ =
2− 2a∗ ±

√
5a− 2a2 − 2

3a− 2
=⇒ λ = {1, 5}

(3.38)

Here the second one is the absorbing state, the last one is realized with a∗ = b∗ = 1 for

z = 1, which is where the scaling in figure 3.18 is performed. Our rescaling of the phase12

of ak yields λ = 4 or dw = 1 correspondingly. To estimate the accuracy we looked at the

first root of arg(ak) for λk arg(z) > 0 at different system sizes. For λ 6= 4 it was easy to see

a broadening of this point even for the system sizes shown in the figure. Without going to

larger system size we can confirm this value to about 10 digits accuracy.

12The two parameters are again of modulus one with the particular ansatz.
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Figure 3.18: Rescaling of the phase of the first parameter ak around the fixed point z = 1
for MK3 using CO. The different curves correspond to k = 4, 6, . . . , 12 (red to
blue), resulting in a system size of N ≈ 107. λ = 4 yielding dw = 1.
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3.4 Remarks

The first two coins presented here constitute the most studied choices for quantum walks.

Considering the 8 parameters for the most general SU(3) matrix13, and 15 for SU(4), the

natural questions of universality arises: How does the choice of the coin influence the long

time behavior? Are there certain classes of coins that all have the same asymptotic prop-

erties? This question has been very well understood for random walks [34, 57]. The newly

studied orthogonal coin CO merely shows the potential by giving the first known example

for ballistic spreading on a network lacking translational invariance. It also demonstrates

the direct impact of the network as this is only true for two of our networks. But the

parameter space is still vastly unexplored, so that a ballistically spreading coin could po-

tentially be found for every network. While searching for other suitable coins, we also

discovered a coin, namely

C =
1

2


1

√
2 1

−
√

2 0
√

2

1 −
√

2 1

 ,
where we know that it does not have any unstable fixed points, because we can solve the

fixed point equations, but it numerically yields a dw very close to CG on MK3. This example

gives at least hope that there is a chance to refine the renormalization group treatment to

work for coins without unstable fixed points. It shows that there might be other properties

of the recursions that cause a particular walk dimension.

13The special unitary group is enough to represent all relevant coins possible. The missing phase factor for
U(3) has no influence on observables which are invariant under multiplication by a factor of modulus
one.



4 Localization in quantum walks without

disorder

”What’re quantum mechanics?”

”I don’t know. People who repair

quantums, I suppose.”

Terry Pratchett, Eric

The results in chapter 3 suggest that localization is common in quantum walks. To

further investigate this issue, we consider the easiest quantum walk with this property

in section 4.2: the one dimensional quantum walk with a three dimensional coin. As a

precursor, we solve a similar classical random walk in section 4.1 to gain familiarity with

the methods used, and to show that this phenomenon is not possible in random walks

without disorder. In the last section 4.3, we show numerical results on the Dual Sierpinski

Gasket (DSG) to shed some light on this topic on self-similar networks.

4.1 The one dimensional random walk

As a preparation for the calculations for the three-state quantum walk on the line, we will

study a similar random walk first to lay out the basic tools needed. The walk presented

here allows the walker to not move and remain at a site during a time step with probability

1/2. If it moves it will go with equal probability to the left or to the right1. For this case,

1We choose these particular probabilities for easier expressions in the following calculations. The actual
numbers are irrelevant for the asymptotic scaling.
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equation 2.1 for any component reads

pm,t+1 =
1

4
pm−1,t +

1

4
pm+1,t +

1

2
pm,t ∀m (4.1)

The translational invariance suggests a description in Fourier space, by using the discrete

Fourier transform and its inverse:

p̃t(k) =

∞∑
m=−∞

pm,t · e−ikm pm,t =
1

2π

π∫
−π

p̃t(k) · eikm dk (4.2)

By multiplying equation (4.1) by e−ikm and summing over all m, we find the master

equation in Fourier space

p̃t+1(k) = cos2

(
k

2

)
p̃t(k) p̃t=0(k) = 1 (4.3)

where we assumed (without loss of generality) m0 = 0 as the initial position. The real

space solution then has to be reconstructed from the easily obtained solution

p̃t(k) = cos2t

(
k

2

)
. (4.4)

Although this integral can be solved exactly in terms of hypergeometric functions, we will

solve it approximately using the method of steepest descent [10]. This yields not only a

very familiar result, it also shows the approximation scheme used for the quantum walk

where analytic results might not be obtainable. The method allows us to evaluate the

integral in (4.2) approximately for large times. Before we apply any approximation, we

rewrite the inverse Fourier transform as

pm,t =
1

2π

π∫
−π

eikm · cos2t

(
k

2

)
dk =

1

2π

π∫
−π

et[ikm/t+2 log(cos(k/2))] dk . (4.5)
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The idea now is to find the saddle points in the complex k plane of the exponent and bend

the path of integration through them. Then, these points will dominate the asymptotic

behavior of the integral, and we can find an approximation by expanding the exponent

to second order. This yields a solvable Gaussian integral which will reproduce a familiar

result. By considering higher orders, one could find systematically better approximation,

but for most purposes this is unnecessary.

With the definitions

v =
m

t
(4.6) ϕ(k) = ikv + 2 log

(
cos

(
k

2

))
(4.7)

the integral of interest reads

p1,t =
1

2π

π∫
−π

et·ϕ(k) dk , (4.8)

and the saddle point is given by

dϕ

dk

∣∣∣∣
k=k∗

= 0 ⇐⇒ k∗ = 2i · arctanh(v) (4.9)

At this point

ϕ(k∗) = −(1− v) log(1− v)− (1 + v) log(1 + v) and ϕ′′(k∗) = −1− v2

2
. (4.10)

Note that because the walk could move every time step, −1 ≤ v ≤ 1, and everything is

symmetric around v = 0 as one would expect in this case. The approximation now becomes

pm,t ≈
1

2π

∞∫
−∞

etϕ(k∗)+ tϕ′′(k∗)
2

(k−k∗)2 dk

=
etϕ(k∗)

2π

∞∫
−∞

e
tϕ′′(k∗)

2
(k−k∗)2 dk

=
etϕ(k∗)

2π

√
2π√

−tϕ′′(k∗)
=

1√
2πt|ϕ′′(k∗)|

etϕ(k∗) (4.11)
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where we deformed the path of integration and extended the integral in the neighborhood

of the saddle point out to infinity. We did not have to worry about rotating the path of

integration here as ϕ′′ was already negative. This would add a phase factor to the final

result, and will become necessary for the quantum walk. A more detailed argument of this

can be found in [10].

As it turns out, ϕ(k∗) is negative except for v = m/t = 0, which means that pm,t will

only be significant larger than zero for m� t, and exponentially suppressed anywhere else.

By expanding even further for v � 1, we find

ϕ(k∗) = −v2 +O
(
v4
)

and
1√
|ϕ′′(k∗)|

=
√

2 +O
(
v2
)
,

and finally recover the familiar form

pm,t ≈
1√
πt

e−
m2

t . (4.12)

This formula has two important implications. First, by comparing this to equation (2.2),

we can deduce dw = 2 and df = 1. This is also true for the unbiased random walk without

the possibility to remain at a site, which leads to the second point: for random walks the

introduction of hops that remain at a node, corresponds to a rescaling of time. Note that

t → 2t leads to the familiar solution of the standard random walk. As we will see in the

following section, this is not necessarily true for quantum walks.

By the nature of the Fourier transform, this approach is limited to geometries that are

translational invariant (e.g., hypercubic latices) or possess special symmetries (e.g., the

hypercube). For quantum walks, we can follow a similar procedure with more technical

hurdles, but conceptually the same.
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4.2 The three-state one dimensional quantum walk

The one-dimensional quantum walk with the three-dimensional Grover coin was previously

studied by Inui et al. [36]. In this variation of the walk on the line, the walker can remain

on the site during a time step, which leads to a major difference compared to the usual

description with a two dimensional coin: there is a finite probability to find the quantum

walk very close to the initial site even after long times. This is called localization and

was previously found on the square lattice [35]. In fact, this model is the simplest model

exhibiting localization, a distinctly quantum effect entirely absent in the corresponding

classical random walks, as we have seen in section 4.1. A thorough understanding of

localization in this simple context becomes particularly relevant in light of the fact that

this phenomenon is commonplace in higher-dimensional systems [58]. Furthermore, in

systems without translational invariance, for instance, localization might be asymptotically

complete and broadly distributed as we argue in section 4.3.

Here we calculate analytic expressions for the localization, find the so called weak

limit[29] of the probability density function which is a smooth approximation to the rugged,

actual one. Additionally, in [25], we have studied the convergence towards this smooth de-

scription, and compare our analytic predictions with numerical simulations. Here we focus

more on the localization. In the end, we will give an intuitive argument why this localiza-

tion occurs, give a sufficient criterion for it, and show that localization is actually fragile

and uncommon for general coins.

4.2.1 Long time approximation

The time evolution for this variant is

|ψm,t+1〉 = A|ψm−1,t〉+ B|ψm+1,t〉+ M|ψn,t〉, (4.13)
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Our convention for the shift operation is the following: the first component is moved to

the left, the third component to the right, while the second one remains on the site. The

hopping matrices are therefore given by

A =


0 0 0

0 0 0

0 0 1

 · CG , B =


1 0 0

0 0 0

0 0 0

 · CG , M =


0 0 0

0 1 0

0 0 0

 · CG . (4.14)

For simplicity, we assume again initial conditions only on site m = 0, i.e. ,

|ψm,0〉 = δm,0 · |ψ0,0〉 . (4.15)

Analogous to the random walk, we apply the Fourier transform to equation (4.13). From

here on, a tilde indicates quantities with a k-dependence, which we will not explicitly show.

|ψ̃t+1〉 =
1

3


−κ 2κ 2κ

2 −1 2

2κ−1 2κ−1 −κ−1


︸ ︷︷ ︸

:=C̃

·|ψ̃t〉 , (4.16)

where κ = ei·k. Because of the internal degrees of freedom, this is still a matrix equation.

Its solution

|ψ̃t〉 = C̃t · |ψ0,0〉 (4.17)

can be found by computing the eigenvalue decomposition

T−1 · C̃ ·T =


λ̃1 0 0

0 λ̃2 0

0 0 λ̃3

 . (4.18)
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One eigenvalue is purely real, λ̃1 = 1, whereas the other two obey

λ̃2,3 = e±iω̃ , and cos (ω̃) = −2

3
− cos(k)

3
. (4.19)

The tth power of C̃ can then be expressed as

C̃t = M̃1 + λ̃t2 · M̃2 + λ̃t3 · M̃3 . (4.20)

Representations of T and the M̃ matrices are too large to show here, but can easily be

obtained with a computer algebra system, like Mathematica or Maple. In the end, the real

space solution is obtained by performing the inverse Fourier transform

|ψm,t〉 =
1

2π

π∫
−π

ei·m·k · |ψ̃t〉dk , (4.21)

and the probability density function is found via (2.6). We now study the long time

properties of equation (4.21).

The Stationary Distribution

One can see from equation (4.20) that a time-independent component of |ψ̃t〉 can exist

due to the constant eigenvalue of C̃. The inverse Fourier transform of this part can be

computed exactly by employing the residue theorem. Note that the corresponding integral

for this part following from equations (4.20) and (4.21), in terms of κ reads

|ψm,∞〉 =
1

2πi

∮
|κ|=1

κm−1M̃1 dκ

︸ ︷︷ ︸
:=U1(m)

·|ψ0,0〉 . (4.22)
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To evaluate these integrals, we do not have to resort to any approximation, but can solve

them analytically. Without showing M̃1 here explicitly, every element has the two poles

κ± = −5± 2
√

6, (4.23)

of which only κ+ lies inside the unit circle. Depending on m, there is an additional pole

at κ = 0. After some simple algebra, we find

U1(m) = κm+


1√
6

1−
√

2
3 2− 5√

6

−1−
√

2
3 −

√
2
3 1−

√
2
3

−2− 5√
6
−1−

√
2
3

1√
6

+ Res
κ=0

(κm−1 · M̃1) (4.24)

The last term is only non-zero if n ≤ 0 and counteracts the divergence of κm+ as m→ −∞.

All residues are of the form

Res
κ=0

(
aκp

1 + 10κ+ κ2

)
,

for some integer power p. To calculate the residue, note that with partial fractions

1

1 + 10κ+ κ2
=

1

4
√

6

[
1

κ− − κ
− 1

κ+ − κ

]
=

1

4
√

6

[ ∞∑
k=0

κk

κk+1
−
−
∞∑
k=0

κk

κk+1
+

]
.

With this representation, we find

Res
κ=0

(
aκp

1 + 10κ+ κ2

)
=

a

2πi

∮
κp

1

1 + 10κ+ κ2
dκ

=
a

4
√

6

∞∑
k=0

(
κ−k−1
− − κ−k−1

+

)
· 1

2πi

∮
κp+kdκ︸ ︷︷ ︸

=δ−1,p+k

=
a

4
√

6

[
κp− − κp+

]
.
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Plugging this result into equation (4.24), yields

U1(m < 0) =
κm−√

6


1 −2−

√
6 −5− 2

√
6

−2 +
√

6 −2 −2−
√

6

−5 + 2
√

6 −2 +
√

6 1



U1(m = 0) =
1√
6


1 −2 +

√
6 −5 + 2

√
6

−2 +
√

6 −2 +
√

6 −2 +
√

6

−5 + 2
√

6 −2 +
√

6 1

 (4.25)

U1(m > 0) =
κm+√

6


1 −2 +

√
6 −5 + 2

√
6

−2−
√

6 −2 −2 +
√

6

−5− 2
√

6 −2−
√

6 1


At first, the case distinction in the sign of m seems counterintuitive, but the comparison

to the numerics in figure 4.1 reveals the possibility of an asymmetric localization around

the initial site.

To obtain the stationary probability density function, we calculate

pm,∞ = 〈ψm,∞|ψm,∞〉 = 〈ψ0,0|U †1(m)U1(m)|ψ0,0〉 . (4.26)

We want to point out that the stationary probability density function always decays ex-

ponentially away from the initial site as pm,∞ ∼ κ2|m|
+ independent of the initial conditions,

even though the proportionality constant might differ for positive and negative m. The

initial conditions |ψ0,0〉 ∝ (1,−2, 1) is a non-generic case where the localization completely

vanishes. There exists also a whole family,|ψ0,0〉 ∝ (−a · (1 + κ±)/2 − b · κ±, a, b) with

a, b ∈ R, where the localization vanishes for positive (negative) m while still exponentially

decaying for negative (positive) values. This effect cannot be seen in the classical random

walk without introducing disorder in form of, e.g., position dependent hopping probabilities

[33].
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Figure 4.1: Comparison between analytic prediction (lines) and numerical simulation after
T = 220 time steps (symbols) for the localization around n = 0 . The ini-
tial conditions are |ψ0,0〉 ∝ (1,−1.9, 1) (red triangles), |ψ0,0〉 ∝ (10, 0, 1) (blue
circles), |ψ0,0〉 ∝ (1,−3, 2 + i) (black squares), and |ψ0,0〉 ∝ (410,−800, 499)
(orange diamonds). They have been chosen to show the possible asymmetry of
pm,∞ [25]
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To show that our calculations describe the localized part comprehensively, we compare

to a long simulation of a system, where the system is large enough that the finite size

has no influence on the probabilities near the initial site at the end of the simulation. The

system starts with different initial conditions and evolves for 220 time steps. In the end, the

final probabilities at sites around the origin are recorded. Figure 4.1 shows the comparison

between evaluating equation (4.26) and the simulation. To demonstrate the asymmetry,

we choose 4 particular initial conditions.

The rapid decay renders estimating p1(m) using simulations for |m| � 10 difficult. The

values range over 30 orders of magnitude, challenging the machine precision used in the

simulations. Furthermore, the time to converge to p1(m) grows exponentially with m

[25]. The case of zero localization for either m > 0 or m < 0 is also hard to resolve

numerically due to the limited machine precision, but the blue and orange curves in figure

4.1 demonstrate the asymmetry, and the jump at m = 0 can be arbitrarily steep.

Approximating the Time-Dependent Integrals

To show that the part not covered by the calculations above still spreads ballistically, we

approximate the remaining integrals with exactly the same method we used in section 4.1.

After solving the time independent part analytically, we have to resort to approximations

for the time dependent part of |ψ̃t〉 in the limit t→∞. In analogy to Eq. (4.22), we define

U2,3(t, n) =
1

2π

π∫
−π

ei·k·nM̃2,3 · λ̃t2,3 dk , (4.27)

such that the sum U1 + U2 + U3 = C̃t expresses the full time evolution. By using the

equations (4.6) and (4.19), we write the integrals as

1

2π

π∫
−π

f̃(k) · eit·(vk±ω̃) dk .
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where the function f̃ represents the different (slowly-varying) elements of the M̃ matrices.

The integrals can be approximated similarly to equation (4.12) using again the method of

steepest descent. The only difference is an additional rotation of the path of integration as

the second derivative of the exponent at the saddle point is not negative. A more detailed

discussion can be found in [10].

In this approximation, C̃t will contain the constant terms from U1 and terms propor-

tional to t−1/2 that further oscillate both in space and in time. In their full extent, these

terms are too complex to write down here, but are easily used to compute numerical values

for specific initial conditions. Despite the potential to describe the full probability density

function very well for sufficiently large times, one can find a smooth approximation, called

weak limit [29] that averages the spatial-temporal oscillations out.

Following Ambainis et al. [6], we can separate out the rapidly oscillating part of equation

(4.20). If we ignore the localized part for a moment, the corresponding distribution, which

we will call pavg(n, t), can be found via

pavgm,t = 〈ψ0,0|
(
U†2 ·U2 + U†3 ·U3

)
|ψ0,0〉 (4.28)

This expression seems ad hoc, but contains all non-oscillating terms from the full approxi-

mation. This corresponds to a temporal average at a specific site, assuming that the rapidly

oscillating phase factors lead to a negligible contribution to the inverse Fourier transform

(according to Riemann-Lebesgue). We argue that this also corresponds to a local spatial

average at fixed t, because as t→∞ a small change in n will only lead to a small change in

v, such that the non-oscillating contribution should be the same in a neighborhood around

a point that is reasonably small compared to t. This average also smoothes out the spatial

oscillations of the PDF. In fact, we can use a spatial average to numerically predict pavg.
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Figure 4.2: The smooth approximation pavg from equation (4.28) (orange line) and the
spatial average over 16 sites (blue dots) after 4096 time steps. The initial
conditions are |ψ0

0〉 ∝ (0, i, 1). They gray dots represent the numerical values
for the probabilities. The localized part is not described by pavg, but it is
included in the spatial average producing the blue dot at m = 0 with the
highest probability. [25].

Inserting the expressions for U2,3(n, t), we find the matrix

U†2 ·U2+U†3 ·U3 =
1

πt
√

2(1− 3v2) (1− v2)
·

(1− v)2 2v(1− v) 1− 5v2

2v(1− v) 2− 2v2 −2v(1 + v)

1− 5v2 −2v(1 + v) (1 + v)2


(4.29)

valid for all m subjected to |m|/t < 1/
√

3. Outside this interval, pavg(m, t) ≡ 0. The

dependency on m is implicit through v = m/t. For a specific initial condition, a comparison

between the numerical simulation and the analytic prediction can be found in figure 4.2.

Note that pavgm,t/t only depends on v which corresponds to the scaling function f in
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equation (2.2). Our definition of this averaged probability closely relates to the weak limit

proven by Grimmett et al. [29]. In their work they show that quantum walks on a regular

lattice generically2 exhibit this convergence with dw = 1.

To show that pavgm,t is a proper probability density function, let us look at the sum of the

contributions from all m. In the long-time limit, we can treat v = m/t as a continuous

variable. Hence, we approximate probabilities

p(m− ≤ m ≤ m+, t) ≈
m+∑

m=m−

pavgm,t

by integrals of the form

p(a ≤ v ≤ b, t) ≈
b∫
a

pavgt (v · t) · tdv .

Here a = m−/t and b = m+/t. By using the convergence of pavgt (v · t) · t to a stationary

distribution solely depending on v, we conclude that the spreading is always ballistic. In

this continuous limit, the localized part remains concentrated around the initial site, and

p1(v · t) · t→ 〈ψ0,0|


1√
6

1−
√

2
3 2− 5√

6

1−
√

2
3 1−

√
2
3 1−

√
2
3

2− 5√
6

1−
√

2
3

1√
6

 |ψ0,0〉 δ(v) (4.30)

characterizing the localization within the weak limit. Some algebra reveals that

∞∑
m=−∞

p1(m) +

1/
√

3∫
−1/
√

3

pavg(v · t, t) · t dv = 1 , (4.31)

i.e., our approximation actually yields a true probability density function.

As an example, we utilize pavgm,t to approximate the first three moments of the quantum

2Their proof uses the same methods applied here. They show that it always leads to the same scaling as
long as the eigenvalues of the coin are not all equal, which leads to trivial behavior again.
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walk, 〈mk〉 for k = 0, 1, 2, assuming it is always a good approximation, and the localized

part does not contribute to the time dependence of any moment.

〈f(m)〉t =
∞∑

m=−∞
f(m)p(m, t) ≈

1/
√

3∫
−1/
√

3

f(v · t)pavg(v · t, t) · t dv

Applying this to every matrix entry in equation (4.29) yields:

〈m0〉 =
1√
6
〈ψ0,0|


−1 +

√
6 2−

√
6 5− 2

√
6

2−
√

6 2 2−
√

6

5− 2
√

6 2−
√

6 −1 +
√

6

 |ψ0,0〉 (4.32)

〈m1〉t =
t√
6
〈ψ0,0|


2−
√

6 −2 +
√

6 0

−2 +
√

6 0 2−
√

6

0 2−
√

6 −2 +
√

6

 |ψ0,0〉 (4.33)

〈m2〉t =
t2

6
√

6
〈ψ0,0|


−13 + 6

√
6 14− 6

√
6 29− 12

√
6

14− 6
√

6 2 14− 6
√

6

29− 12
√

6 14− 6
√

6 −13 + 6
√

6

 |ψ0,0〉 (4.34)

We observe that the zeros moment is unity only for the initial conditions that show no

localization, 〈ψ0,0| ∝ (1,−2, 1)T . The matrix for the first moment has the eigenvector

(1, 1, 1)T with eigenvalue 0. However, this does not cover all symmetric initial conditions

that will yield a zero first moment by symmetry. It easily verified that the initial conditions

∼ (1, 0, 1)T also yield a zero first moment. Hence, every linear combination of those two will

do so, too, which now covers all symmetric initial conditions. These asymptotic formulas

show that any non-zero first moment grows linearly in time while the second moment is

proportional to t2.

Figure 4.3 shows a comparison between the approximation and numerical simulations.

The main result is that the second moment always grows ∼ t2 regardless of the initial

conditions, see equation (4.34). This means, only the shape of the probability density
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Figure 4.3: Comparison between the numerical values (symbols) and the evaluation of
equation (4.34) for the second moment 〈m2〉 . The inset shows the relative
difference εr between the two values [25].

function can be influenced by |ψ0,0〉, but not the asymptotic scaling of its spread.

4.2.2 Intuitive explanation for the localization

The fact that quantum walks can exhibit localization without any disorder is counterintu-

itive, and this phenomenon cannot be found in a comparable situation for the random walk.

After all, the equations are translational invariant, so how can the walker get stuck? The

important realization here is the initial conditions break the invariance. But the question

now is, whether this effect crucially depends on the coin or not.

There have been some studies about the localization effects in quantum walks in one

[36, 41, 4] and two [35] dimensions. Especially Štefaňák et al. [72] find whole families of

coins for the three state quantum walk on the line that show localization, and so they

draw the conclusion that localization must be a general feature. We will argue that this is

actually not the case, and for a majority of the coins localization effects are not present.
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While we used the Fourier transform to describe the system in a very compact manner,

and we found localization because of a constant eigenvalue of the Fourier transformed coin

operator (see equation (4.16) for its definition), we find a criterion from the real-space

description. We start from the assumption that the localization is the result of just two

adjacent nodes interacting with each other, but not with their other neighbors. If this is

true, then the linear system3

eiϕ · |ψm〉 = B · |ψm+1〉+ M · |ψm〉 B · |ψm〉 = 0

eiϕ · |ψm+1〉 = A · |ψm〉+ M · |ψm+1〉 A · |ψm+1〉 = 0

(4.35)

should have a non-trivial solution for some real value of ϕ. For our convention which

component moves where, we can also impose

|ψm〉 =


a

b

0

 and |ψm+1〉 =


0

c

d

 . (4.36)

The linear system directly transfers to any dimension of the coin space, whereas the ansatz

for the two wave vectors needs to be adjusted for the given circumstances.

This criterion can be formulated as the determinant of a matrix composed solely from

the elements of any particular coin one wishes to study. If this determinant is zero, the

quantum walk shows localization for some initial conditions4. In fact, the non-trivial

solution of (4.35) enables us to determine which initial conditions show no localization. If

one can find a |ψ0,0〉 that is orthogonal to both |ψm〉 and |ψm+1〉, these initial conditions

would show no localization whatsoever.

Let us illustrate the method for the Grover coin, where we know the answer from section

3We dropped the subscript t here, because we are looking for a time independent solution.
4We already saw for the Grover coin that special initial conditions can show no localization, but it was

not generically true
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4.2.1. With the hopping matrices from equation (4.14), it is straightforward to show that

|ψm〉 ∝


1

2

0

 and |ψm+1〉 ∝


0

2

1

 (4.37)

satisfies all the equations and is up to normalization actually an eigenvector of the time

evolution operator for all m. This is another way of looking at localization as eigenstates

of U with only a finite number of non-zero components. Our ansatz already assumes that

only four components are neccessary. As a confirmation that our approach works, we can

confirm that the initial conditions |ψ0,0〉 ∝ (1,−2, 1)T are orthogonal to both |ψm〉 and

|ψm+1〉.

To answer the question whether a solution can be found generically, let us count the

number of equations in (4.35). Each hopping matrix has only one non-zero row, so that

the system contains six non-trivial equations, but the number of unknowns in our ansatz

is only four! This brings us to the conclusion that localization cannot be a generic feature,

but is rather the consequence of the special structure of the Grover coin.

But why do Štefaňák et al. find a whole family of coins that show localization? To

understand this, we can look at a whole family of coins, defined by

CHH = 2 · |v〉〈v| − 1 with |v〉 = (cosα sinβ, sinα sinβ, cosβ)T . (4.38)

The subscript stands for Housholder and refers to the well-known transformations from

linear algebra5. They represent reflections around a certain axis in R3. For α = π/4 and

β = arctan
(√

2
)
, CG is obtained.

By solving using this parametrization, we can show that equation (4.35) has a non-trivial

5In fact, our family is the negative of a Housholder transformation, but this overall phase factor does not
affect any observables. Our definition was chosen to contain the Grover coin.
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solution, if

cos(2β) =
2 cos2 α

−3 + cos(2α)
. (4.39)

Note, this condition states that with the whole two dimensional parameter space only a

set of measure zero shows localization.

The two families of coins studied in [72] are

C1(ϕ) =
1

6


−1− e2iϕ 2 + 2e2iϕ 5− e2iϕ

2 + 2e2iϕ 2− 4e2iϕ 2 + 2e2iϕ

5− e2iϕ 2 + 2e2iϕ −1− e2iϕ

 , and

C2(ρ) =


−ρ2 ρ

√
2− 2ρ2 1− ρ2

ρ
√

2− 2ρ2 2ρ2 − 1 ρ
√

2− 2ρ2

1− ρ2 ρ
√

2− 2ρ2 −ρ2

 .
(4.40)

They are constructed by manipulating one eigenvalue for C1 and two eigenvectors for C2 in

the eigenvalue decomposition of CG. They call it a continuous deformation of the Grover

coin.

While our parametrization does not contain C1, the second one is reproduced by α =

arccos

( √
2ρ√

1+ρ2

)
and β = arccos(−ρ2)/2. This parametrization obeys equation (4.39)

which is why they find localization.

Additionally to these analytic results, we also generated random unitary matrices [75]

and checked whether condition (4.35) was fulfilled within numerical accuracy. We did not

find a single coin out of one million trials using 50 digits accuracy. We thus conclude that

localization only occurs for very special families of coins and should not be considered a

generic feature of three-state, one dimensional quantum walks.

Our method could be applied to higher dimensional, regular lattices. One would only

have to identify the minimum number of sites, and the corresponding ansatz in each case,

but the idea would still be that sparse eigenvectors with only a few non-zero entries exsist.

This could be used to inverstigate the localization on the square lattice [58].
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4.3 Localization on the Dual Sierpinsky Gasket

We now try to set the localization found in one dimensional quantum walks in relation to

the effects we see on the Dual Sierpinski Gasket (DSG). We already studied the different

coins on this fractal in chapter 3, where we noticed some signs for localization. With long

time simulations, we try to gain some insights into the nature of this phenomenon on this

network, which is know to lead to very strong localization for the continuous time quantum

walk [19].

The nature of these simulations is different from the ones in chapter 3 as we are here

interested in the properties of the non-moving parts of the walk rather than the out moving

front. For this reason, the simulations have to run far longer, beyond the size of the system.

To adjust to this requirement, we modify the graph slightly at the boundaries, see figure

4.4. We connect the two nodes at the base, where the initial conditions are placed either

symmetrically or asymmetrically. The node at the top is connected to an absorbing site,

where the walk can enter, but not escape. This will breaks the unitarity of the time

evolution and gives the quantum walk the chance to converge. Important is that it can

absorb the spreading part while (hopefully) not interfering with the localization around

the initial conditions. The absorption as a function of time is simulated.

The simulations were performed with a parallel C++ program using MPI. The program

was specifically developed for this kind of simulations with large graphs and local observ-

ables allowing for parallelism. We simulated different system sizes of generation 4, 5, . . . 12

(N . 1.6 · 106) for up to 228 time steps to ensure that most of the absorption already

occurred. At this point the numerical inaccuracy was comparable to what was absorbed

over a certain period of time. Due to the smaller system size we were able to run these

simulations on our cluster computer, which is why these simulations are, counting the total

number of multiplications, significant larger than the one in chapter 3.

The simulations show the same behavior for all initial conditions: the total absorption
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Figure 4.4: The modified graph used to study the localization of the quantum walk using
the Grover coin on the DSG. The initial conditions reside on the green nodes,
and the square represents an absorbing boundary. We only show a simplified
graph. The different types of edges are still present.

F0 tends to zero as the system size grows. More specifically, we observe

F0(k) ' c · L−αk (4.41)

for some exponent α and a constant c that depends on the initial conditions. One way of

extracting the exponent from the data is to write the scaling in the form

− log (F0(k))

log (Lk)
' α− c

log (Lk)
. (4.42)

This rewrite justifies the plot in figure 4.5. The left hand site is the y axis, and 1/ log(Lk)

is the x variable. In this plot, the scaling should be a straight line for x → 0 (meaning

Lk → ∞), and the exponent α will be the intersection at x = 0. As we can see from

the figure, all different initial conditions seem to accumulate around the same value of

α = 1.23(1) which we estimate by using the most linear extrapolation found.

The curvature of most of the data shows that the system sizes simulated are not big

enough to conclusively distinguish between one universal exponent independent of the
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Figure 4.5: Extrapolation for the scaling exponent in the decay of the simulated absorption
F0 with system Length Lk = 2k, k ≤ 12, based on a power-law, for many
different symmetric (+) and asymmetric (•) initial conditions. All data appears
to extrapolate to the same intercept (Lk →∞) at about 1.23(1), with the most
linear fit (extended line) provided by the symmetric initial conditions∝ (1, 2, 1).
This exponent is closely bounded below by dw = log2

(√
5
)

(×) [13].

initial conditions or a (continuous or discrete) spectrum of exponents. At point we can

only speculate, and bound its value to be dw ≤ α ≤ dw + 2β with β = 0.424(3) from

the two different scaling collapses in figure 3.15. To definitely solve this, we need a better

understanding of the renormalization group approach developed here. At this point, we

do not know how to extract this quantity from the recursion equations.
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I may not have gone where I intended

to go, but I think I have ended up

where I needed to be.

Douglas Adams, The Long Dark

Tea-Time of the Soul

In this thesis, we have studied the discrete time quantum walks on four self-similar

networks using the renormalization group and large scale numerical simulations. We found

that the postulated scaling relation even holds for quantum walks, and collected evidence

to conjecture a remarkable relationship between the walk dimensions of the generic random

walk and the quantum walk using the Grover coin. We discovered a strong influence of

both the coin and the underlying geometry on the long term asymptotic spreading and

localization effects.

This work represents a first step towards a better understanding of the rich phenomenol-

ogy found in quantum walks beyond regular lattices. We started this work with the am-

bitious goal of categorizing possible behaviors, and identifying universality classes, i.e.,

families of coins that all are asymptotically similar. And in some sense, we succeeded. We

showed how the Grover coin always seems to spread quadratically faster than the random

walk. The Fourier coin appears to be always slower than the Grover coin. We even con-

structed a coin that spreads ballistically on some networks, which has never been observed

before.

On the other hand, we also discovered several phenomena we do not fully understand,
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and still have open questions: Can we always construct a coin spreading with dw = 1

for any network? Is localization on some (self-similar) network generically present, like

our findings on the DSG suggest, or are there always coins that will spread through the

whole network without getting completely immobilized, or moving deterministically? The

answers to these questions could have a huge impact on the applicability of quantum

algorithms to certain problems.

While the above questions concern the nature of quantum walks and deserve future

attention, we also have an incomplete picture of the renormalization group grounded in

technical hurdles as well as conceptual problems. Those might seem less relevant for the

quantum computing aspects, but are another incarnation of the longstanding problem of

applying the renormalization group to certain quantum mechanical problems.
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