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Abstract

Biomedical studies for chronic diseases often involve multiple event times. In this
dissertation, we focus on a scenario where one terminating event can dependently
censor a nonterminating event, but not vice versa. Such data structure was termed
as semi-competing risks data by Fine et al. (2001). We concern regression analyses of
semi-competing risks data under the modeling frameworks that accommodate vary-
ing covariate effects, including quantile regression (Koenker and Bassett, 1978) and
temporal regression (Fine et al., 2004). The two modeling frameworks are gaining
increased popularity in survival analysis for their flexibilities and ease of interpreta-
tions.

In the first project, we propose quantile regression methods for left-truncated semi-
competing risks data. The project is motivated by the Denmark diabetes registry
study, where the nonterminating event time of interest, time to diabetic nephropathy
(DN), is subject to the dependent censoring by time to death. Biological interests
are centered on regression analysis of time to DN, without removing the effect of
death. A notable complication in this dataset is the administrative left truncation to
death, which greatly complicates the analysis. We propose inference procedures for
the conditional quantiles of the cumulative incidence function of DN, by appropriately
handling left-truncation via the technique of inverse probability of censoring weight-
ing. We show that the proposed estimator has nice asymptotic properties including
uniform consistency and weak convergence. We illustrate the practical utility of the
proposed method via simulation studies and an application to the Denmark diabetes
registry data.

In the second project, we study quantile regression on the marginal distribution of
the nonterminating event. The project is motivated by the AIDS Clinical Trial Group
(ACTG) 364 study, where a study endpoint, time to first virologic failure, is subject
to censoring by patients dropouts. We develop a quantile regression method which
focuses on the marginal conditional quantiles of the study endpoint, while providing
information on the association between the study endpoint and the patient dropout.
The proposed estimating equations well utilize the special semi-competing risks data
structure, and can be solved by an efficient iterative algorithm. We derive the asymp-
totic properties of the resulting estimator, including uniform consistency and weak
convergence. Simulation studies demonstrate the proposed method performs well
with moderate sample size. We applied the proposed methods to the ACTG 364
study for analyses of the virologic endpoint.

In the third project, we study the same data structure as that in the first project
from a different perspective. Specifically, we develop temporal regression methods for
the cumulative incidence function of DN in the Denmark diabetes registry study, to
evaluate the temporal relationship between covariates and DN progression. We pro-
pose estimation and inference procedures for the time-varying regression coefficients.
Furthermore, some preliminary simulation results show that the proposed methods
perform well with realistic sample sizes.
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Chapter 1

Introduction
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1.1 Background

Biomedical studies for chronic disease often involve multiple event times. An event is

classified as terminating if its occurrence prevents subsequent observations of other

events, and non-terminating otherwise. In this dissertation, we focus on a bivariate

structure where a terminating event can censor a non-terminating event, but not vice

versa. This data structure differs from the traditional competing risks data where

the events are mutually exclusive, and was termed as semi-competing risks data by

Fine et al. (2001). Here and in the sequel, we use T1 and T2 to denote time to the

non-terminating event and time to the terminating event, respectively.

Semi-competing risks problem are frequently encountered in clinical studies in the

following two scenarios. The first scenario involves time to morbidity and time to

mortality (Peng et al., 2008). An example is the Denmark diabetes registry study

(Andersen et al., 1993) where time to diabetic nephropathy is subject to dependent

censoring by time to death. On the other hand, death is still observable if diabetic

nephropathy occurred first. The second scenario involves time to a study endpoint

and time to patients’ dropout. This is the case of AIDS Clinical Trial Group (ACTG)

364 study, where the primary endpoint is the first virologic failure. However, many

patients withdrew before the end of the study for disease related reasons, which

prevented subsequent follow-up and observation of the virologic endpoint. In the

sequel, we refer to these two scenarios as the mortality-morbidity scenario and the

endpoint-dropout scenario respectively.

Statistical challenges for semi-competing risks problems lie in the analysis of T1,

which must account for the dependent censoring by the terminating event, while

the analysis of T2 can typically be performed using traditional techniques concerning

independently censored univariate survival data. To analyze T1, one may choose from

two types of approaches according to the nature of the problem (Peng et al., 2008).

If the problem falls in the paradigm of time to morbidity and time to mortality, it



3

is preferable to focus on the crude quantities, which do not hypothesize the removal

of death for inference on morbidity. Commonly used crude quantities include the

cause-specific hazard λ1(t) = limh→0 Pr(t ≤ T1 < t + h, T1 < T2|T1 ≥ t, T2 ≥ t)/h

and the cumulative incidence function F1(t) = Pr(T1 ≤ t, T1 < T2). When T1 and

T2 correspond to time to a study endpoint and time to dropout respectively, it is

more sensible to treat T2 as dependent censoring time and use the net quantities for

statistical inferences and scientific implications. The net quantities, like the marginal

distribution function FT1
(t) = Pr(T1 ≤ t), hypothesize a setting where patients’

dropout does not exist. They are more relevant to the underlying biology of interest,

while appropriately accounting for complications that occurred to the observational

process.

In this dissertation, we study three research problems on regression analyses of

semi-competing risks data. We focus on regression models that accommodate noncon-

stant covariate effects (varying-coefficient models), as the constant effect assumption

posed by most existing literatures may be violated in many practical situations. For

example, our analyses of the Denmark diabetes registry data in Section 2.2.2 suggest

a varying pattern in the effect of diabetic onset age on time to diabetic nephropathy.

Neglection of such varying effect patterns may cause biased inferences on the quan-

tities of interest. Moreover, varying effect patterns themselves are often scientifically

meaningful and clinically important.

In the first two projects, we concern quantile regression for modeling of the semi-

competing risks data. Quantile regression is a regression technique introduced by

Koenker and Bassett (1978), and has emerged as an important alternative to accel-

erated failure time (AFT) model and Cox proportional hazards model in survival

analysis. Such a modeling strategy generally has advantages in model interpretation

and flexibility. However, there has been limited research on quantile regression with

semi-competing risks data. In the first project, we concern quantile regression on the



4

crude quantities of T1 under the mortality-morbidity scenario. Specifically, we focus

on a situation with an additional complication of left truncation to T2, as in the Den-

mark diabetes registry study. In the second project, we concern quantile regression

modeling of T1 under the endpoint-dropout scenario, where the net quantities are of

primary interest.

In the third project, we concern temporal regression for modeling the crude quan-

tities of T1. We focus on the same data structure as that in the first project, which

involves left truncation to the terminating event. By accommodating time-varying

regression coefficients, temporal regression can offer important insights into the tem-

poral relationship between the response and covariates (Fine et al., 2004).

In the rest of this Chapter, we first present two motivating examples, the Den-

mark diabetes registry study and the ACTG 364 study. Reviews of relevant existing

literature are provided after each example. Following that, we give brief introductions

of quantile regression and temporal regression. Finally, we present an outline of this

dissertation.

1.2 First Motivating Example

1.2.1 Denmark Diabetes Registry Study

The Denmark diabetes registry study (Andersen et al., 1993) is a prospective cohort

study on insulin-dependent diabetes patients referred to the Steno Memorial Hospital,

a diabetes specialist hospital in Denmark. From 1933 to 1981, the study enrolled

about 2700 patients diagnosed with insulin-dependent diabetes mellitus prior to age

31. One landmark event is diabetic nephropathy (DN), an indicator of kidney failure

and a prime indication for dialysis. It is of scientific interest to characterize the of

progression of DN after the diagnosis of insulin-dependent diabetes.

At entry, patients’ age, age of diabetes diagnosis, gender and the presence of DN
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were recorded. The patients were followed to death, emigration, or December 31,

1984. The observation on time to DN could be terminated by death, which remained

observable when DN occurred first. Letting the time origin be the diagnosis of insulin-

dependent diabetes, time to DN and time to death form a bivariate semi-competing

risks structure.

A notable complication in this study is the administrative left truncation on death.

That is, patients who died before study enrollment were excluded from study. As a

result, data were available only if time to death is larger than time to study entry.

Note that time to diabetic nephropathy was not subject to left truncation. Some

patients had developed DN before enrolled into the study.

1.2.2 Literature Review

In this example, T1 and T2 correspond to time to DN and time to death, respectively.

Let L be time to study entry, data were observable only when T2 > L. The major

challenge for analyzing semi-competing risks data subject to left truncation, as with

the untruncated case, lies in the inference on the nonterminating event time T1. As

discussed in Peng et al. (2008), when T1 and T2 correspond to time to morbidity

and time to mortality, as in the Denmark diabetes registry study, interpretations of

net quantities may be controversial because they unrealistically hypothesize a setting

where death can be completely eliminated before morbidity. Moreover, crude quan-

tities can be estimated nonparametrically (Prentice et al., 1978) in contrast to net

quantities that are cursed by non-identifiability (Tsiatis, 1975). By these considera-

tions, crude quantities are more preferable than net quantities in the analyses of the

Denmark diabetes registry and similar studies. The principles discussed above are

generally applicable to competing risks scenario and multi-state analysis.

In the one-sample case, how to estimate crude quantities in presence of left trun-

cation has been well studied. For example, one may only use the information on
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T = T1 ∧ T2 and employ the approach by Andersen et al. (1993) or Huang and

Wang (1995) for competing risks data to estimate the cumulative cause-specific haz-

ard Λ1(t) =
∫ t

0
λ1(s)ds and F1(t). Estimation tailored to semi-competing risks setting

was developed by Peng and Fine (2006a), and their estimator avoids information loss

due to artificial truncation, which is, removal of data with T2 > L but T ≤ L.

It is remarkable that left truncation poses considerable complexity to regression

analysis of semi-competing risks data. This may be due to the fact that covariates can

have some indirect effects on T1 through the truncation scheme defined as T2 > L.

In the absence of left truncation, semi-competing risks regression based on crude

quantities may follow the existing approaches for competing risks data, such as Fine

and Gray (1999), Klein and Andersen (2005), among others. Recently, some research

efforts have been made to extend these methods to left-truncated competing risks data

(Geskus, 2010; Shen, 2011; Zhang et al., 2011). However, adapting these methods to

the left-truncated semi-competing risks data considered here would require artificial

truncation and thus incur undesirable efficiency loss.

1.3 Second Motivating Example

1.3.1 AIDS Clinical Trial Group 364 study

AIDS Clinical Trial Group (ACTG) 364 study is a randomized, multicenter clinical

trial in AIDS patients with plasma human immunodeficiency virus HIV RNA above

500 copies/ml. In this study, 195 subjects were enrolled and randomly assigned to

one of the three treatment arms, which are protease inhibitor nelfinavir (NFV), the

non-nucleoside efavirenz (EFV), and NFV+EFV (Albrecht, Bosch, Hammer, Liou,

Kessler, Para, Eron, Valdez, Dehlinger, and Katzenstein, Albrecht et al.). One study

endpoint is the time from study entry to time of the first virologic failure (confirmed

HIV RNA above 200 copies/ml). Baseline characteristics include baseline HIV RNA,
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and whether 3TC is a new nucleoside reverse transcriptase inhibitor (NRTI) for the

patient. It is of scientific interest to compare the progression of virologic failure among

the three treatment arms, adjusting for baseline covariates.

During the 2 years follow up period, 55 patients dropped out from the assigned

study for disease-related reasons, such as toxicity, complications, excessively high

viral load, etc. There was also administrative censoring because of limited period of

follow-up. At the end of the study, 101 patients were observed to experience virologic

failure. Among the 94 patients whose failure time was not observed, 83 were due to

administrative censoring and 11 were due to dropout. Although the dropouts rate

prior to virologic failure seems low, 9 out of 11 were in the NFV+EFV arm. This

suggests that that the dropouts may be correlated to the treatment arms and thus

may be informative for the virologic endpoint.

1.3.2 Literature Review

In this example, T1 and T2 correspond to time to first virologic failure and time

to dropout, respectively. Denote the administrative censoring time as C. One can

naively treat T2∧C as an non-informative censoring time on T1, and adopt one of the

traditional techniques like the AFT model or the Cox proportional hazards model. If

the dropout is informative for the virologic endpoint, then these analyses correspond

to the cause-specific hazard function. It is more appealing to focus on net quanti-

ties, which correspond to a situation where dropouts do not exist, for example, the

marginal distribution of time to first virologic failure FT1
(t) = Pr(T1 ≤ t). Moreover,

it is worthwhile to examine the association between T1 and T2; that is, how the study

endpoint and dropouts are correlated with each other.

When T2 and T1 are dependent, the marginal distribution FT1
(t) and the de-

pendence structure are not identifiable under a pure nonparametric setting (Tsiatis,

1975). As a result, additional assumptions are often imposed on the joint distribution
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of T1 and T2 to solve the identifiability issue. One may apply some existing methods

for competing risks data (Emoto and Matthews, 1990; Heckman and Honoré, 1989;

Link, 1989), after reducing the data to competing risks format by keeping only the

time and type of the first event T = T1 ∧ T2. However, it is not practically desirable

to discard the extra information on T2 in the semi-competing risks setting.

Some methods tailored to semi-competing risks data have been developed under

the one-sample setting. For example, Fine et al. (2001) formulated the dependence

structure between T1 and T2 by positing the Clayton copula (Clayton, 1978) on the

observable region, and derived a closed form estimator for FT1
(t). Subsequent work

includes Wang (2003), which studied the degree of dependence under a general copula

class, and Jiang et al. (2005), which proposed a self-consistent estimator for FT1
(t)

under the Clayton model.

In the regression setting, Lin et al. (1996) modeled the marginal covariates effect

on both T1 and T2 via a bivariate accelerated failure time (AFT) model. They ac-

counted for dependent censoring by employing a novel artificial censoring technique.

To avoid excessive artificial censoring which can lead to substantial efficiency loss,

Peng and Fine (2006b) developed a new artificial censoring scheme which achieved

reduction in artificial censoring rate. Peng and Fine (2007) studied a general class

of functional regression models for the marginal survival function of T1, which in-

cludes the Cox proportional hazards model as a special case. Recently, Hsieh et al.

(2008) generalized Wang (2003)’s method to semi-competing risks data with covari-

ates. Their approach allowed association parameter to vary in different subgroups,

but requires that covariates only take discrete values. To date, very limited work has

been done for quantile regression of T1 subject to dependent censoring, especially in

the semi-competing risks set-up.
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1.4 Quantile Regression

In this section we briefly introduce the general framework of quantile regression, a

regression technique first introduced by Koenker and Bassett (1978). While many

traditional regression methods focus on the conditional mean of the response vari-

able given covariates, quantile regression methods offer a mechanism for estimating a

range of conditional quantiles to achieve a more comprehensive and robust analysis

(Koenker, 2005).

Given a (p + 1) × 1 covariate vector Z = (1, Z̃)T , the conditional quantiles of a

random variable T is defined as QT (τ |Z) = inf{t : Pr(T ≤ t|Z) ≥ τ}. A quantile

regression model may assume that

QT (τ |Z) = g{ZT β0(τ)}, 0 < τ < 1, (1.1)

where g{·} is a monotone link function, for example, log link or identical link, β0(τ)

is a (p + 1) × 1 vector of unknown regression coefficients. The first component of

β0(τ) is the transformed baseline quantile function g−1{Q1(τ |Z = 0)}, while the rest

components represent the effects of corresponding covariates on g−1{Q1(τ |Z)} that

may change with τ .

It is worth pointing out that quantile regression model (1.1) with g{·} = log{·}

and β(τ) = (Qε(τ), bT )T reduces to the accelerated failure time (AFT) model

log T = Z̃T b + ε,

where b is an unknown vector of regression coefficient and ε is the i.i.d. error term.

By allowing β0(τ) to vary across τ , model (1.1) can accommodate more realistic effect

patterns of covariates than location-shifts imposed by many traditional models.

In survival analysis, quantile regression is emerging as an important alternative to
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Cox proportional hazards model and AFT model. Research efforts have been devoted

to quantile regression for independently censored survival data. Early work by Powell

(1984, 1986) adapted the idea of least absolute deviation (LAD), under the assumption

that censoring time is always observed. However, this assumption might be too strong,

as censoring time is not always observed in most of the survival settings. Ying et al.

(1995) proposed a nonparametric procedure for median regression, which requires un-

conditional independence between censoring time and survival time. Under the usual

conditional independence assumption, Yang (1999) considered a median regression

approach based on weighted empirical survival and hazard function. However, this

approach requires the error structure to be nearly i.i.d. and cannot accommodate

heteroscedastic error structures. Without imposing the unconditional independence

assumption or stringent constraints on error distributions, Portnoy (2003) employed

the principle of self-consistency (Efron, 1967) and developed a grid-based recursively

reweighted estimation procedure. The resulting estimate reduces to the Kaplan-Meier

estimator in the one sample case, and its asymptotic properties were recently estab-

lished by Portnoy and Lin (2010). Peng and Huang (2008) developed an alternative

grid-based approach based on the martingale structure, their method is well-defined

and facilitates neat asymptotic properties. In the one sample setting the resulting

estimator reduces to the Nelson-Aalen estimator. Most recently, Huang (2010) devel-

oped a novel grid-free estimation procedure based on quantile calculus. The resulting

estimator is asymptotically equivalent to that of Peng and Huang (2008), when the

grid size of the latter is of order o(n−1/2).

While quantile regression has been well studied for independently censored survival

data, there has been limited work on quantile regression for survival settings involving

dependent censoring. One relevant work is Peng and Fine (2009), which studied the

conditional quantiles of the cumulative incidence function. Their method can be

applied to right-censored only competing risks and semi-competing risks data, but is
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not applicable in presence of left-truncation. On the other hand, no one has studied

quantile regression for the net quantities of T1, adjusting for dependent censoring by

T2.

1.5 Temporal Regression

To study the temporal relationship between covariates and response with event time

data, many existing literatures have considered hazard-based regression models. For

example, research efforts have been devoted to the extension of Cox proportional

hazards model by formulating time-varying effects on the hazard function (Zucker

and Karr, 1990; Murphy and Sen, 1991; Valsecchi et al., 1996; Martinussen et al.,

2002; Martinussen and Scheike, 2002; Winnett and Sasieni, 2003; Cai and Sun, 2003;

Tian et al., 2005). These methods generally require smoothing in the estimation

step. Alternatively, a distinct type of modeling strategies focuses on the mean of a

temporal process associated with the event times. With survival data, for example,

one can formulate the temporal covariate effects on the distribution function or sur-

vival function of the event time. This type of temporal regression strategies was first

proposed by Fine et al. (2004) for multistate event time data under noninformative

missing mechanisms. As compared to the hazard-based regression models, the mean-

based temporal regression models may be more appealing in several aspects. First,

estimation with these models does not require smoothing, thereby enabling easier

computation and higher efficiency. Furthermore, the mean-based models often lead

to straightforward interpretation and prediction on the temporal process of interest.

In this section, we give a brief introduction of temporal regression with survival data

along this direction.

With univariate survival data, Peng and Huang (2007) formulated a temporal
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regression model as

ST (t|Z) = exp[− exp{ZT β0(t)}}], (1.2)

where ST (t|Z) = Pr(T > t|Z) is the survival function of a univariate event time T ,

Z = (1, Z̃)T is the (p+1)×1 covariate vector, and β0(t) = {β(0)
0 (t), β

(1)
0 (t), ..., β

(p)
0 (t)}T

is a vector of the unknown time-varying regression coefficient. The first component

β
(0)
0 (t) corresponds to the baseline log-transformed cumulative hazard, and the re-

maining p components correspond to the temporal covariate effects. The model can

be viewed as an extension of the Cox proportional hazards model, which corresponds

to the situation when β0(t) is constant except in the first component. Peng and Huang

(2007) developed smoothing free estimation and inference procedures, by constructing

a forgoing estimating equation based on the martingale structure.

For analyses of the net quantities of T1 in semi-competing risks settings, Peng and

Fine (2007) studied a similar model for the marginal survival function of T1, specified

as

ST1
(t|Z) = g{ZT β0(t)},

where Z and β0(t) are (p + 1) × 1 vectors of covariates and unknown regression

coefficients respectively, and g(·) is a known monotone link function. The model in-

corporates a class of functional generalized linear models for the survival function. To

account for the dependent censoring from T2, the authors assumed a time-dependent

copula for the joint distribution of T1 and T2.

In semi-competing risks settings where scientific interest centers on the crude

quantities of T1, one may consider a semiparametric temporal regression model on

the cumulative incidence F1(t|Z) = Pr(T1 ≤ t, T1 < T2|Z), which assumes that

F1(t|Z) = g{ZT β0(t)}, (1.3)

with g(·) being a prespecified link function. As with the univariate case, model (1.3)



13

can be viewed as an extension of the proportional subdistribution hazard model by

Fine and Gray (1999) when g(x) = 1 − exp{− exp(x)}. The model was first studied

by Scheike et al. (2008) for competing risks data. Scheike et al. (2008) proposed esti-

mation and inference procedures for β0(t), using the technique of inverse probability

of censoring weighting (IPCW). However, their approach cannot handle the situations

with left truncation to T2, a common complication in observational studies.

1.6 Outline

In Chapter 2 we propose quantile regression methods based on the conditional quan-

tiles of the cumulative incidence function. We constructed a set of unbiased estimating

equations, which makes good use of the data structure and avoids artificial truncation.

The proposed methods provide meaningful interpretations as well as the flexibility

to accommodate varying covariate effects, and can be easily implemented based on

existing statistical software. Asymptotic properties of the resulting estimators are es-

tablished including uniform consistency and weak convergence. We also provided the

analytical form of the influence functions, which facilitate a standard error estima-

tion procedure that does not require resampling. Monte Carlo simulations showed the

proposed method have satisfactory finite-sample performance. Finally, an application

to Denmark diabetes registry data provides an illustration of our proposals.

In Chapter 3 we develop quantile regression methods for T1 when it is subject

to dependent censoring by T2. Our methods provide simultaneous inference on the

marginal conditional quantiles and the dependence structure between T1 and T2. We

formulated the dependence structure via a Copula model, and constructed two sets

of unbiased estimating equations which fully utilize the observed information. We

develop an efficient iterative algorithm to solve the proposed estimating equations.

The resulting estimators can be shown to be uniformly consistent and converge weakly
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to Gaussian. The finite-sample performance of the proposed estimators are evaluated

by Monte Carlo simulations. Furthermore, we illustrate the practical utility of the

proposed methods via an application to the ACTG 364 study.

In Chapter 4 we study temporal regression methods based on the cumulative

incidence of T1 when there involves left-truncation to the terminating event. We

construct estimating equations that offer valid estimates of the temporal coefficients

by properly handling left-truncation. We also derive consistent estimators for the

asymptotic covariance matrix. Some preliminary simulation studies suggest proper

finite sample performances of the proposed estimators.

In Chapter 5 we provide a summary and discuss future work for the dissertation.

We present possible extensions of the proposed methods, and directions for future

research.
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Chapter 2

Quantile Regression for

Left-truncated Semi-competing

Risks Data
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2.1 Regression Procedures

2.1.1 Data and Model

We begin with a formal introduction of data and notation. Let C denote an in-

dependent censoring time for both T1 and T2, say administrative censoring. Define

X = T1∧T2∧C, Y = T2∧C, δ = I(T1 < Y ), and η = I(T2 < C), where ∧ denotes the

minimum operator and I(·) is the indicator function. Let Z̃ be p×1 vector of recorded

covariates and Z = (1, Z̃
T
)T . Observed data include n independent and identically

distributed replicates of (X∗, Y ∗, δ∗, η∗, L∗,Z∗), denoted by (X∗
i , Y ∗

i , δ∗i , η
∗
i , L

∗
i ,Z

∗
i )

n
i=1,

where (X∗, Y ∗, δ∗, η∗, L∗,Z∗) follows the conditional distribution of (X,Y, δ, η, L,Z)

conditional on L < Y .

Mimicking scenarios in prevalence studies, where censoring induced by follow-

up mechanism is of primary concern and can only occur after sampling time, we

restrict the truncation time L be always less than the censoring time C. Such an

assumption has been imposed in much previous work on truncated and censored

data, for example, Wang (1991) and Asgharian et al. (2002). In addition, we assume

that (L,C) is independent of (T1, T2) and Z. Extensions to cases where (L,C) are

dependent on Z are briefly discussed in Section 2.3.

We consider a quantile regression model based on the cumulative incidence condi-

tional quantile function defined as Q1(τ |Z) = inf{t : F1(t|Z) ≥ τ}, where F1(t|Z) =

Pr(T1 ≤ t, T1 < T2|Z). The concept of cumulative incidence conditional quantile, like

its precursor in the one-sample setting introduced by Peng and Fine (2006a), has a

straightforward interpretation as the first time given covariate Z by which the prob-

ability of the nonterminating event having occurred in presence of the terminating

event exceeds τ . Based on this crude quantity, we consider a model which assumes

that

Q1(τ |Z) = g{ZT β0(τ)}, τ ∈ [τL, τU ], (2.1)
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where g(·) is a known monotone continuous link function, for example, log link or

identical link, β0(τ) is a (p + 1) × 1 vector of unknown regression coefficients, and

0 < τL ≤ τU ≤ 1. Note that when τL = τU , model (2.1) only holds for a single τ ,

like the median regression. The first component of β0(τ) is the transformed baseline

quantile function g−1{Q1(τ |Z = 0)}, while the rest components represent effects of

corresponding covariates on g−1{Q1(τ |Z)} that may change with τ . This model was

recently studied by Peng and Fine (2009) for competing risks data in the absence of

left truncation, a data feature that can greatly complicate the regression analysis as

explained earlier.

2.1.2 Estimation of β0(τ)

To estimate β0(τ) in model (2.1), our basic idea resembles that of inverse probability

of censoring weighting (IPCW) (Robins and Rotnitzky, 1992) and is to weigh the

observed data in an appropriate way such that the bias induced by truncation and

censoring is corrected in the estimation of β0(τ). The key is about constructing

weights for truncated and possibly also censored observations. Let α(z) = P (L <

T2|Z = z) represent the truncation probability given Z = z, and G(y) = P (L < y ≤

C). An inverse weight is suggested by the following equality:

E

{
I(X∗

i ≤ t, δ∗i = 1, η∗
i = 1)

W (Y ∗
i ,Z∗

i )

∣∣∣∣Z
∗
i

}
= F1(t|Z∗

i ), (2.2)

where W (y, z) = G(y)/α(z). To show (2.2), without loss of generality, we temporarily

omit Z∗
i s. Let Ω(ω; t) = {(t1, t2, l, c) : t1 ≤ t, t1 < t2, l < t2 ≤ c}, where ω denotes

the vector, (t1, t2, l, c), and let PT1,T2,L,C(t1, t2, l, c) be the joint distribution function

of (T1, T2, L, C). We first note that dPT ∗

1
,T ∗

2
,L∗,C∗(t1, t2, l, c) = α−1dPT1,T2,L,C(t1, t2, l, c)
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in the interior of Ω(ω; t). Therefore,

E

{
I(X∗ ≤ t, δ∗ = 1, η∗ = 1)

G(Y ∗)/α

}
= E

{
I(T ∗

1 ≤ t, T ∗
1 < T ∗

2 , L∗ < T ∗
2 ≤ C∗)

G(T ∗
2 )/α

}

=

∫

Ω(ω;t)

α

G(t2)
dPT ∗

1
,T ∗

2
,L∗,C∗(t1, t1, l, c) =

∫

Ω(ω;t)

1

G(t2)
dPT1,T2,L,C(t1, t2, l, c)

= E

{
I(T1 ≤ t, T1 < T2, L < T2 ≤ C)

G(T2)

}
= E

[
E

{
I(T1 ≤ t, T1 < T2, L < T2 ≤ C)

G(T2)

∣∣∣∣T1, T2

}]

= E

{
I(T1 ≤ t, T1 < T2) ×

G(T2)

G(T2)

}
= EI(T1 ≤ t, T1 < T2) = F1(t).

In light of (2.2), we propose to estimate β0(τ) by β̂(τ), which is the solution to

the following estimating equation:

Sn(b, τ) ≡ n−1/2

n∑

i=1

Z∗
i

[
I{X∗

i ≤ g(Z∗T
i b), δ∗i = 1, η∗

i = 1}
Ŵ (Y ∗

i ,Z∗
i )

− τ

]
= 0, (2.3)

where Ŵ (y, z) = Ĝ(y)/α̂(z). Here Ĝ(y) and α̂(z) are some estimates for G(y) and

α(z). While there may be multiple choices of Ĝ(y) and α̂(z), here and in the sequel

we shall focus on a special case where Ĝ(y) and α̂(z) are constructed as follow.

First, noting that L is only independently right truncated by T2 under the assump-

tion of L < C, one may estimate FL(y) ≡ P (L ≤ y) by the Lynden-Bell estimator

(Lynden-Bell, 1971; Woodroofe, 1985),

F̂L(t) =
∏

s>t

{
1 − dF ∗

Ln(s)

Rn(s)

}
,

where F ∗
Ln(s) = n−1

∑n
i=1 I(L∗

i ≤ s) and Rn(s) = 1
n

∑n
i=1 I(L∗

i < s ≤ Y ∗
i ). Following

Chao (1987), we propose to estimate the truncation probability α(z) by

α̂(z) =

∫ ν

0

ŜT2|Z=z(u)F̂L(du),

where ŜT2|Z=z(t) is an estimator of ST2|Z=z(t) ≡ Pr(T2 > t|Z = z), and ν is an upper
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bound of Y satisfying regularity condition C2 in Section 2.1.3. In practice, ŜT2|Z=z(t)

may be obtained by using any existing regression approach for left truncated and

right censored data provided that some mild requirements are met. We discuss the

detailed requirements on ŜT2|Z=z(t) in 2.4.1, and show in 2.4.4 that these theoretical

requirements are met when the popular Cox proportional hazards model is assumed

for T2.

To estimate G(y), we propose the following estimator,

Ĝ(y) =
1

n

n∑

i=1

I(L∗
i < y ≤ Y ∗

i )α̂(Z∗
i )

ŜT2
(y − |Z∗

i )
.

by employing IPCW based on the fact that

P (L∗ < y ≤ Y ∗|Z∗) = P (L < y ≤ C)P (T2 ≥ y|Z∗)/P (L < T2|Z∗).

In Section 2.4.1, we show that Ĝ(y) is a uniformly consistent estimator of G(y).

When a proper Ŵ (y, z) is available, equation (2.3) can be easily solved by its

monotonicity (Fygenson and Ritov, 1994). Specifically, following similar lines of Peng

and Fine (2009, Appendix), we can show that 2n1/2Sn(b, τ) equals the derivative of

the following L1–type convex function with regard to b:

Un(b, τ) =
n∑

i=1

δ∗i η
∗
i |g−1(X∗

i )Ŵ−1
i − bT Z∗

i Ŵ
−1
i | + |M1 − bT

n∑

l=1

−(Z∗
l δ

∗
l η

∗
l Ŵ

−1
l )|

+|M1 − bT
n∑

k=1

(2Z∗
kτ)|,

where Ŵi ≡ Ŵ (Y ∗
i ,Z∗

i ), and M1 is a sufficiently large positive number that can bound

|bT
n∑

l=1

−(Z∗
l δ

∗
l η

∗
l Ŵ

−1
l )| and |bT

n∑

k=1

(2Z∗
kτ)|. By this fact, β̂(τ) can be equivalently

obtained as the minimizer of Un(b, τ) using standard software, like the l1fit() function

in S-PLUS or the rq() function in the contributed R package quantreg.
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2.1.3 Asymptotic Results

We derive the asymptotic properties of β̂(τ) under the following regularity conditions:

C1 Z is uniformly bounded, i.e., supi||Zi|| ≤ M < ∞.

C2 (i) There exist ν > 0 such that P (C = ν) > 0 and P (C > ν) = 0; (ii) aL ≤ aY ,

bL ≤ bY ; (iii) infy∈(aY ,ν]G(y) > 0; (iv) inf ||z||≤M ST2|Z=z(ν) > 0. Here for a

nonnegative random variable Q, we define aQ = inf{q ≥ 0 : P (Q ≤ q) > 0},

bQ = sup{q ≥ 0 : P (Q ≥ q) > 0}.

C3 (i) β0(τ) is Lipschitz continuous for τ ∈ [τL, τU ]; (ii) f1(t|z) is continuous and

bounded above uniformly in t and z, where f1(t|z) = dF1(t|z)/dt.

C4 For some ρ0 > 0 and c0 > 0, infb∈B(ρ0)eigminA(b) ≥ c0. Here B(ρ) = {b ∈

Rp+1 : infτ∈[τL,τU ]||b−β0(τ)|| ≤ ρ}, A(b) = E[Z⊗2f1{g(ZT b)|Z}g′(ZT b)], g′(·)

represents the derivative of link function g(·), and u⊗2 = uuT for a vector u.

We briefly comment on the regularity conditions as follows. First, C1 requires

bounded covariates, which is reasonable in many realistic situations. C2(i) imposes a

mild assumption on the censoring time. For example, C2(i) is often satisfied in clinical

settings with administrative censoring. One may adopt a truncated censoring time

C∗ = min(C,CU), where CU is chosen to be slightly less than bC , to make C2(i) a more

realistic assumption at a price of small information loss. C2(ii) implies that (L, T2)

is observable throughout the whole support and thus ensures the identifiability of

ST2|Z=z(t). By C2(iii)–(iv), G(y) = P (L < y ≤ C) and R(y) ≡ Pr(L < y ≤ Y |L < Y )

are bounded away uniformly from 0, and this is necessary for the consistency of the

plug-in weight, α̂(z)/Ĝ(y). C3 assumes that the cause-1 subdensity is uniformly

bounded and smooth to the second order. C4 requires the asymptotic limit of Un(b, τ)

be strictly convex in a neighborhood of β0(τ) for τ ∈ [τL, τU ], which is critical for the
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asymptotic identifiability of β0(τ) and the uniform consistency of β̂(τ). Under these

conditions, we have the following theorems:

Theorem 2.1.1. Under conditions C1-C4, limn→∞ supτ∈[τL,τU ] ||β̂(τ) − β0(τ)|| p→ 0.

Theorem 2.1.2. Under conditions C1-C4, n1/2{β̂(τ)− β0(τ)} converge weakly to a

mean zero Gaussian process for τ ∈ [τL, τU ] with covariance matrix

A{β0(τ
′)}−1E[ζ(τ ′)ζ(τ)]A{β0(τ)}−T ,

where the formal definition of ζ(τ) is provided in Section 2.4.2.

To establish the asymptotic properties of β̂(τ), we first prove the uniform consis-

tency and weak convergence of the plug-in weight, α̂(z)/Ĝ(y), by using the empirical

process technique (Van der Vaart and Wellner, 1996). The uniform consistency of

β̂(τ) for τ ∈ [τL, τU ] is facilitated by the monotonicity of the estimating function. For

the weak convergence of n1/2{β̂(τ)−β0(τ)}, one challenge lies in the non-smoothness

of Sn(b, τ). This problem is handled by similar lines of Alexander (1984) and Lai

and Ying (1988). The detailed proofs of Theorems 2.1.1 and 2.1.2, along with the

influence functions of n1/2{β̂(τ) − β0(τ)}, are provided in Section 2.4.1 and 2.4.2.

2.1.4 Covariance Estimation

In Section 2.4.2, we show that Sn{β0(τ), τ} converges weakly to a mean zero tight

Gaussian Process with covariance matrix Σ(τ ′, τ) = E[ζ(τ ′)ζ(τ)], which can be con-

sistently estimated by Σ̂(τ ′, τ) = 1
n

∑n
i=1 ζ̂i(τ

′)ζ̂i(τ). Here ζ̂i(τ) are ζi(τ) with un-

known quantities replaced by their empirical counterparts or consistent estimators. In

order to estimate the covariance matrix of
√

n{β̂(τ)−β0(τ)}, one may use the resam-

pling method of Parzen et al. (1994) or Jin et al. (2001). Such an approach is quite

straightforward but may be computationally intensive especially with a large sample
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size. By utilizing the asymptotic linearity of Sn{β(τ), τ} in the vicinity of β0(τ), we

derive a consistent plug-in estimator for the covariance matrix of
√

n{β̂(τ)−β0(τ)}.

The covariance estimation procedure mimics the method introduced by Huang (2002)

and is described as follows. A brief justification is provided in Section 2.4.3.

1. Use spectral decomposition to find a symmetric matrix En(τ) such that En(τ)2 =

Σ̂(τ, τ);

2. Calculate Dn(τ) =
[
S−1

n {en,1(τ), τ} − β̂(τ), ...,S−1
n {en,p+1(τ), τ} − β̂(τ)

]
, where

en,j(τ) is the jth column of En(τ), and S−1
n (e, τ) denotes the solution to

Sn(b, τ) = e.

3. A consistent estimate for the asymptotic covariance matrix of
√

n{β̂(τ)−β0(τ)}

is given by

nDn(τ ′)E−1
n (τ ′)Σ̂(τ ′, τ)En(τ)−1Dn(τ)T .

In the special case that τ ′ = τ , we get a consistent estimate for the asymptotic

variance matrix given by nD⊗2
n (τ).

2.1.5 Other Inferences

In this subsection we study inferences which respectively address the following two

questions: (1) how to summarize the overall effect of a given covariate and assess its

significance? (2) does the effect keep constant over different quantiles?

Let v(j) denote the jth component of a vector v. For question (1), we pro-

posed to summarize the quantile effects of Z(j) by a trimmed mean effect defined

as Φ1,j{β0(τ)} = 1
τL−τU

∫ τU

τL
β

(j)
0 (τ)dτ , j = 1, . . . , p + 1. However, caution needs

be exercised in the interpretation of Φ1,j{β̂(τ)} when a cross-over effect pattern

is present. As a natural estimator of Φ1,j{β0(τ)}, Φ1,j{β̂(τ)}, preserves the con-

sistency and asymptotic normality of β̂(τ) because Φ1,j(·) is compactly differen-

tiable (Andersen et al., 1993). Furthermore, it can be shown that
√

n[Φ1{β̂(τ)} −
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Φ1{β0(τ)}] is asymptotically equivalent to n−1/2
∑n

i=1
1

τL−τU

∫ τU

τL
A{β0(τ)}−1ζi(τ)dτ ,

where Φ1(u) = {Φ1,1(u), . . . , Φ1,p+1(u)}T and A{β0(τ)} is defined in regularity con-

dition C4. In the justification for the proposed covariance estimation presented in

2.4.3, we show that
√

nDn(τ)En(τ)−1 is a consistent estimate for A{β0(τ)}−1. There-

fore the covariance of
√

nΦ1{β̂(τ)} can be consistently estimated by

n−1

n∑

i=1

{
1

τL − τU

∫ τU

τL

√
nDn(τ)En(τ)−1ζ̂i(τ)dτ

}⊗2

,

This result renders a Wald-type test for the null hypothesis H01 : Φ1,j{β0(τ)} =

0, τ ∈ [τL, τU ]. Testing H01 can provide an overall evaluation of the significance of

Z(j)’s quantile effects (j = 2, . . . , p + 1).

We propose to formulate (2) as a hypothesis testing problem with the null hy-

pothesis, H02 : β
(j)
0 (τ) = c0, τ ∈ [τL, τU ], where c0 is an unspecified constant and

j = 2, . . . , p + 1. If H02 holds, then
∫ τU

τL
Ξ(τ)β

(j)
0 (τ)dτ − Φ1,j{β0(τ)} = 0 must hold

for any weight function Ξ(τ) that satisfies
∫ τU

τL
Ξ(τ)dτ = 1. This fact motivates a test

statistic constructed based on Φ2,j(β̂) =
∫ τU

τL
Ξ(τ)β̂(j)(τ)dτ−Φ1,j(β̂) (j = 1, . . . , p+1).

Define Φ2(u) = {Φ2,1(u), . . . , Φ2,p+1(u)}T . Using similar arguments to those for co-

variance estimation, we can show that the covariance of
√

nΦ2(β̂) can be consistently

estimated by

n−1

n∑

i=1

[∫ τU

τL

Ξ(τ)
{√

nDn(τ)En(τ)ζ̂i(τ)
}

dτ −
{

1

τL − τU

∫ τU

τL

√
nDn(τ)En(τ)−1ζ̂i(τ)dτ

}]⊗2

.

A Wald-type test can thus be developed for H02 accordingly. In practice, one may

choose Ξ(τ) based on the observed β̂(τ) or the scientifically conjectured trajectory

of β0(τ) in order to better capture the departure from H02 and therefore boost the

power.
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2.2 Numerical Studies

2.2.1 Simulations

Simulation studies were conducted to examine the finite-sample performance of the

proposed methods. Specifically, we generated (T, T2) as

T = I(ε = 1)exp(γT Z̃ + e2 − e1) + I(ε = 0)exp(cT Z̃ + e2),

T2 = exp(cT Z̃ + e2).

Here the covariate vector Z̃ = (Z1, Z2)
T with Z1 ∼ Unif(0, 1) and Z2 ∼ Bernoulli(0.5).

We chose e2 = log{−log[Unif(0, 1)]}/3.2 and c = (0.3, 0.3)T /3.2 such that T2 followed

a Cox-Weibull model with shape = 3.2, scale = 1, and coefficients= (−0.3,−0.3)T

(Bender et al., 2005). We set ε ∼ Bernoulli(p1), p1 = 0.7, e11 ∼ Beta(2, 2)/2, and

e12 ∼ Exponential(1)/2. It can be shown that the underlying quantile regression

model satisfies

log{Q1(τ |Z)} = Q̃11

(
τ

p1

)
+ γ(1)Z1 +

{
γ(2) + Q̃12

(
τ

p1

)
− Q̃11

(
τ

p1

)}
Z2,

where Q̃11(·) and Q̃12(·) are quantile functions of e2 − e11 and e2 − e12 respectively.

Therefore, Z1 has a constant effect on Q1(τ |Z), while the effect of Z2 increases with

τ . We set γ ≡ (γ(1), γ(2))T to be either (0, 0)T or (−0.5, 0)T in the simulation studies.

Mimicking the Denmark diabetes registry study, we generated left truncation time

L from a mixture of a point mass at zero and a positive random variable, and let

independent censoring time C have a point mass at a common upper bound. We

considered the following two set-ups:

(A) L = rL×1.48Beta(2.5, 2) and C = rC×[L+Beta(3.5, 1)(1.7−L)]+(1−rC)×1.7;

(B) L = rL × 1.48Beta(4.7, 2), C = rC × [L + Beta(3.8, 1)(1.7−L)] + (1− rC)× 1.7,

where rL ∼ Bernoulli(0.8) and rC ∼ Bernoulli(0.8). The truncation rates are 30%
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and 45% in set-up (A) and set-up (B) respectively. Under each set-up, we imple-

mented the proposed method on 2000 simulated datasets with g(·) = exp(·), M1 = 106

and sample size n = 200 or 400.

In Table 2.1, we present the empirical biases (EmpBias), empirical standard de-

viations (EmpSD), average estimated standard deviations (EstSD), and 95% em-

pirical coverage probabilities (COV95) for the proposed estimator of β0(τ) with

τ = 0.1, 0.2, 0.3, 0.4. It is observed that our estimates are virtually unbiased, and the

estimated standard deviations agree well with empirical standard deviations. The

standard deviations tend to be smaller when τ = 0.3 and τ = 0.4 compared to those

when τ = 0.1 and τ = 0.2. The coverage probabilities of the 95% CIs match the

nominal level reasonably well and improve with sample size. In Table 2.1, we also

provide empirical biases of the estimate that does not account for left truncation

(PFBias), obtained by implementing Peng and Fine (2009)’s method which treats all

truncation times as 0. It is shown that failing to account for left truncation can lead

to substantial biases. Unreported simulations also suggest that a larger estimation

bias may be resulted from ignoring left truncation when the dependence between T1

and T2 increases.

We further examined the proposed estimator of the trimmed mean covariate effect

as well as the Wald tests for H01 and H02. We set τL = 0.1 and τU = 0.45, and

chose Ξ(τ) = 2I(τ ≤ τL+τU

2
)/(τU − τL). In Table 2.2, we summarize the empirical

biases (EmpBias), empirical standard deviations (EmpSD), mean estimated standard

deviations (EstSD) of Φ1,j(β̂) (j = 2, 3), and the empirical rejection rates of the two

Wald tests (EmpRR). Empirical biases of estimated trimmed mean effects are small

for both Z1 and Z2. Standard deviation estimates are quite accurate. The test for

H01 performs rather well regarding both size and power. For H02, the size can be a

little over conservative, but the performance improves with the sample size.

We performed additional simulations to assess the robustness of the proposed
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Table 2.1: Summary of simulation results: empirical biases of Peng and Fine
(2009)’s estimator (PFBias); empirical biases (EmpBias), empirical standard devi-
ations (EmpSD), mean estimated standard deviations (EstSD), and 95% empirical
coverage probabilities (COV95) of the proposed estimator at τ = 0.1, 0.2, 0.3, 0.4.

PFBias EmpBias EmpSD EstSD COV95

×103 ×103 ×102 ×102 ×103

N β̂
(0)

N
β̂

(1)

N
β̂

(2)

N
β̂

(0)
β̂

(1)
β̂

(2)
β̂

(0)
β̂

(1)
β̂

(2)
β̂

(0)
β̂

(1)
β̂

(2)
β̂

(0)
β̂

(1)
β̂

(2)

(A), γ = (−0.5, 0)T

200 201 −5 −32 −10 1 16 28 45 27 31 50 30 894 916 914
158 −3 −13 −4 1 9 19 32 19 22 35 21 919 932 930
117 −1 −5 1 0 6 16 27 16 18 30 18 938 942 938
104 −4 −1 6 0 5 15 25 15 18 29 17 955 957 953

400 204 −5 −24 2 0 3 20 32 19 21 35 21 897 913 923
159 −10 −2 1 1 3 14 22 14 15 24 15 928 933 927
114 −10 6 3 1 2 11 19 11 13 21 12 943 955 945
091 −12 8 4 1 6 10 17 10 12 19 11 952 957 949

(B), γ = (−0.5, 0)T

200 245 8 −29 10 −8 0 29 47 29 32 53 32 878 906 908
218 −1 −7 12 −10 −1 21 34 21 23 38 23 912 929 925
190 −6 7 12 −8 −1 17 29 17 20 33 20 935 947 939
160 −6 12 14 −6 0 16 27 16 20 32 19 954 960 955

400 253 12 −27 −10 11 13 21 33 20 23 37 22 902 908 919
215 −1 −6 −1 0 9 15 24 15 16 27 16 929 936 929
184 −5 7 2 2 1 12 20 13 14 23 14 941 949 944
160 −10 13 5 2 3 11 19 12 13 22 13 956 957 951

(A), γ = (0, 0)T

200 203 −9 −27 −5 −3 12 27 44 28 31 50 30 889 918 899
152 −2 −2 −3 4 6 19 31 20 21 35 21 916 934 924
126 −6 4 1 1 3 16 27 16 18 30 18 939 944 932
105 −6 8 7 −2 3 15 25 15 18 29 17 949 960 949

400 196 −1 −18 6 −7 7 19 32 20 21 35 21 891 924 907
151 −2 6 3 1 3 14 23 14 15 24 15 924 939 932
127 −7 10 3 3 3 11 19 12 12 20 12 941 944 932
106 −10 12 5 1 4 11 17 11 12 19 12 948 955 946

(B), γ = (0, 0)T

200 241 21 −25 0 −2 10 29 47 29 33 53 32 893 914 912
212 5 −8 5 −10 10 20 34 21 24 39 23 920 934 928
186 −2 1 6 −7 8 17 29 17 20 34 20 938 944 936
164 −12 7 11 −6 6 16 27 16 20 33 19 964 962 954

400 257 −5 −26 −5 4 14 21 34 21 23 38 22 896 916 919
222 −9 −7 0 4 5 15 24 15 16 27 16 934 936 933
190 −9 5 5 −1 4 12 21 12 14 23 14 944 948 934
163 −14 10 6 2 5 12 19 11 13 22 13 954 954 958
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Table 2.2: Summary of simulation study: empirical biases (EmpBias), empirical stan-
dard deviations (EmpSd), mean estimated standard deviations (EstSd) of Φ̂1,j(β̂)
(j = 2, 3), and empirical rejection rates of H01 (EmpRR1) and H02 (EmpRR2) at
significance level of 0.05.

Φ̂1,j(β̂) H01 H02

j n EmpBias EmpSD EstSD EmpRR1 EmpRR2
×1000 ×100 ×1000

γ = (−0.5, 0)T

(A) 2 200 1 27 28 0.463 0.027
3 200 8 16 17 0.360 0.199
2 400 0 19 19 0.750 0.035
3 400 4 11 12 0.648 0.480

(B) 2 200 −7 29 30 0.417 0.022
3 200 1 17 18 0.325 0.163
2 400 2 20 21 0.659 0.036
3 400 6 12 13 0.562 0.372

γ = (0, 0)T

(A) 2 200 1 26 27 0.047 0.023
3 200 5 16 17 0.376 0.199
2 400 4 19 19 0.047 0.038
3 400 −8 12 12 0.652 0.470

(B) 2 200 −7 29 30 0.047 0.023
3 200 −4 17 18 0.313 0.160
2 400 2 20 21 0.054 0.033
3 400 −6 12 13 0.560 0.388
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estimator of β0(τ) to misspecification of the regression model for T2. Specifically, we

replaced e2 by e2A ∼ 2Weibull(shape = 5, scale = 1)−2, e2B ∼ 2Beta(2, 2)−1.17, and

e2C ∼ 2Unif(0, 1)−1.17. This leads to situations where the Cox proportional hazards

model is not the true model for T2. Among the three substitutes of e2, e2A is most

similar to e2 and e2C is least similar to e2, thereby respectively representing the cases

with the smallest departure and the largest departure from the proportional hazards

assumption. In Figure 2.1, we plot empirical biases observed in these scenarios where

T2 is incorrectly specified to follow a Cox model. The magnitudes of biases are rather

small, mostly below 0.05. As expected, we also observe an increasing trend in bias

with the degree of violation of the assumed model. Overall, our simulation results

suggest quite robust performance of the proposed estimator.

2.2.2 Denmark Diabetes Registry Data Analysis

The Denmark diabetes registry study (Andersen et al., 1993) is a prospective cohort

study on insulin-dependent diabetes patients aged below 31 and referred to the Steno

Memorial Hospital in Greater Copenhagen between 1933 to 1981. Patients were

followed until death, immigration, or the end of the study at December 31, 1984.

Stratifications on diabetic onset age and birth cohort may be necessary to avoid non-

homogeneity. For example, those with early diabetic onset age may be under more

influence from genetic defects when compared to those who developed diabetes later.

In this analysis, we focus on a subcohort of patients who were born before 1940 and

had diabetic onset age greater or equal than 15. Among the 858 patients in this

subcohort, 29% experienced diabetic nephropathy (DN) and 40% died in the study

duration. Approximately 19% of patients had diabetic onset at the study entry and

therefore had zero truncation times. This implies the identifiability of ST2|Z=z(t).

We fit model (2.1) to this dataset. Covariates considered include patient’s gender

and diabetes onset age. We adopt the link function g(·) = exp(·) and M = 106. We
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Figure 2.1: Empirical biases of the proposed estimator when T2 is assumed to follow a
Cox model but is generated from an AFT model with e2A (dashed lines), e2B (dotted
lines), and e2C (long dashed lines).
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shift onset age down by 15 years, so that the intercept term corresponds to female

patients who had diabetic onset at age 15. Figure 2.2 plots the estimated coefficients

for Age and Gender, along with the corresponding 95% confidence intervals, and

the estimated trimmed mean quantile effects for τ ∈ [0.05, 0.22]. It is observed

from Figure 2 that diabetes onset age appears to have a significant effect on the

cumulative incidence quantiles of DN. Patients with older diabetes onset age tend to

have longer DN free survival time. It is interesting to note that the coefficients for

age tend to increase with τ , suggesting a stronger influence of age at diabetes onset

on time to DN for patients who developed DN rather late as compared to those who

had DN shortly after the onset of diabetes. The estimated coefficients for gender

and confidence intervals suggest that there may be little difference in the cumulative

incidence quantiles of DN between males and females with τ ∈ [0.05, 0.22].

Figure 2.2: Denmark diabetes registry study: estimated coefficients (bold solid lines),
the corresponding pointwise 95% confidence intervals (dotted lines), and trimmed
mean effect estimates (solid lines) for age and gender.
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In our second-stage exploration, we estimate the trimmed mean effect of age on DN

by 0.035 and the corresponding standard deviation by 0.013. This renders a p value

of 0.008 for testing H01 and provides some evidence for the overall significance of the
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diabetes onset age effect on time to DN. The estimated trimmed mean effect of gender

is -0.059 with a standard error of 0.102. This is consistent with Figure 2.2 where the

confidence intervals for the gender coefficients mostly cover zero. However, caution

should be exercised when interpreting this trimmed mean effect, since we observe

cross-over effects in gender from Figure 2.2. We also conduct hypothesis testing for

H02 to investigate whether age’s effect is constant or varying over quantiles. We

choose Ξ(τ) = 2I{τ ≤ (τL + τU)/2}/(τU − τL) in view of the monotonicity pattern of

the age coefficient estimates displayed by Figure 2.2. We obtain Φ̂2,j = −0.015 and

its standard error equals 0.007, leading to a Wald test of −2.048 and thus a p value

of 0.04. This result confirms our observation from Figure 2.2 that age’s effect on the

cumulative incidence quantiles of DN may increase with τ . This suggests that age

may play a more important role in DN progression for patients with relative lower

risk of DN. Applying the same test on the gender coefficients suggests that a constant

effect may be adequate (p = 0.17).

Based on model (2.1), we also plot predicted cumulative incidence quantiles of

time to DN with τ = 0.05, 0.1, 0.15 and 0.2; see Figure 2.3. For both males and

females, the predicted τth quantile increases with diabetes onset age, and the age

seems more influentious with larger τs. Figure 2.3 well reflects our findings from

Figure 2.2. First, the increasing trend of each curve indicates that a younger diabetic

onset age may be associated with a quicker progression to DN. Secondly, the rather

flat quantile curves corresponding to small τ ’s, such as τ = 0.05, reflect the diminished

prognostic value of age for DN progression among high DN risk patients. Lastly, we

observe that the DN cumulative incidence quantiles appear to follow similar patterns

for females and males. In Figure 2.3, we also plot the predicted quantile functions

obtained from using Peng and Fine (2009)’s approach. It is suggested that ignoring

left truncation may not only lead to decreased age effect for both females and males,

but also fail to detect the distinction in age effect between patients with high DN risk
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and those with low DN risk.

Figure 2.3: Denmark diabetes registry study: estimated quantiles for females and
males based on the proposed approach (the two top panels) and Peng and Fine
(2009)’s approach (2009) (the two bottom panels).
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In summary, by modeling cumulative incidence quantiles of time to DN, our re-

gression analysis of the diabetes registry data offers a sensible and comprehensive view

about the relationship between the DN endpoint and covariates of interest, among

this specific cohort of patients born before 1940 and had diabetic onset age between

15 and 31. The new regression procedure may be recommended for practical use in
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similar studies.

2.3 Discussion

In this Chapter, we propose a regression approach for left-truncated semi-competing

risks data. By formulating covariate effects on quantiles of the conditional cumulative

incidence function, our model has the flexibility to accommodate covariates with non-

constant effects while providing simple and meaningful interpretations. The developed

estimation and inference procedures well utilize the semi-competing risks structure

and account for left truncation, and can be efficiently implemented using existing

functionality in some standard statistical software.

In practice, choosing the quantile range when applying our method may follow the

same recommendation for competing risks quantile regression provided in Peng and

Fine (2009). That is, by regularity conditions C4 and C5, the τ in model (1) should

satisfy Q1(τ |Z) < ∞. With a real dataset, one may adaptively select τ according to

some exploratory analysis, for example, plotting cumulative incidence curves stratified

on covariates.

It is worth noting that β̂(τ) is a piecewise-constant function, which only jumps

at the observed T1 and T2 in the one-sample case. In general regression settings, it

is however rather difficult to determine the exact jump points of β̂(·). In practice,

one may approximate {β̂(τ), τ ∈ [τL, τU ]} by a step function superimposed to β̂(τ)

evaluated on a fine τ–grid with step size of order o(n−1/2). Provided the smoothness

of β0(·), it can be shown that such obtained estimator of β0(·) retains the asymptotic

properties stated in Theorems 2.1.1 and 2.1.2.

As suggested by one referee, a multi-state approach, such as the illness–death

model, may be developed for left-truncated semi-competing risks data. Such a re-

gression strategy is different from the one adopted in this paper but would allow for



34

inference on transition from disease to death and transition from disease-free to death

in addition to T1. Investigations along this line merit future research.

In this Chapter we assume the independence between (L,C) and Z for presen-

tation simplicity. In practice, one may relax this assumption by imposing additional

semiparametric modeling of (L,C) given Z which can render a reasonable estimator

for G(y, z). This may only demand rather minor changes in inferences and asymp-

totics. Furthermore, the proposed methods can be readily adapted to the competing

risks setting after slight modifications. Therefore, this work has potentially broader

applications in practice.
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2.4 Proofs

Define

Sn(b, τ) = n−1/2

n∑

i=1

Z∗
i [I{X∗

i ≤ g(Z∗T
i b), δ∗i η

∗
i = 1}Ĝ−1(Y ∗

i )α̂(Z∗
i ) − τ ],

SG
n (b, τ) = n−1/2

n∑

i=1

Z∗
i [I{X∗

i ≤ g(Z∗T
i b), δ∗i η

∗
i = 1}G−1(Y ∗

i )α(Z∗
i ) − τ ],

µ(b, τ) = n−1/2E{Sn
G(b, τ)}.

Without loss of generality, we assume aY = 0. Let T = (0, ν], Z = {z : ||z|| ≤ M}.

2.4.1 Proof of Theorem 1

The first step is to sort out the asymptotic properties of α̂(z)/Ĝ(y). To this end, we

need to look at each specific element of this plug-in weight. Define R(y) = P (L <

y ≤ Y |L < Y ), it follows from C2 that infy∈(0,ν]R(y) is bounded away from 0. Define

L̃i(y) =

∫ ν

y

I(L∗
i < u ≤ Y ∗

i )

{R(u)}2
F ∗

L(du) − I(L∗
i > y)

R(L∗
i )

where F ∗
L(l) = P (L ≤ l|L < Y ). By the results in Chao (1987), for the Kaplan-Meier

Estimators F̂L(·), we have

F̂L(t) − FL(t) =
1

n

n∑

i=1

FL(t)L̃i(t) + oTp (n−1/2). (2.4)

Here and in the sequel, oSp (n−1/2) means root n convergence to 0 in probability uni-

formly on set S.

We need to pose some mild requirements on ŜT2|Z=z(t), the estimator of ST2|Z=z(t) =

P (T2 > t|Z = z), to establish the properties of Ĝ(y) and α̂(z). Particularly, we re-
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quire that ŜT2|Z=z(t) can be expressed in the form of

ŜT2|Z=z(t) − ST2|Z=z(t) =
1

n

n∑

i=1

ξi(t,z) + εST2
(t,z), (2.5)

where ξi(t,z) are i.i.d. influence functions, and n1/2εST2
(t,z) converges to 0 in prob-

ability uniformly for t ∈ (0, ν] and ||z|| ≤ M . Also, we require that the functional

class {ξi(t,z) : t ∈ (0, ν], ||z|| ≤ M} is Donsker (Van der Vaart and Wellner, 1996)

with mean 0. The specific form of ξi(t,z), when T2 is assumed to follow the Cox

proportional hazards model, is provided in Section 2.4.4.

Now by (2.4) and (2.5), we can apply Taylor expansion to show

α̂(z) − α(z) =
1

n

n∑

i=1

∫ ν

0

[
ξi(u,z)dFL(u) + ST2|Z=z(u)d{FL(u)L̃i(u)}

]
+ oZp (n−1/2)

≡ 1

n

n∑

i=1

ai(z) + oZp (n−1/2).

It is not hard to see Eai(z) = 0 from Eξi(t,z) = 0 and EL̃i(t) = 0. Following this,

we combine Taylor expansion and some algebraic manipulations to show

α̂(z)

ŜT2|Z=z(y)
− α(z)

ST2|Z=z(y)
=

1

n

n∑

i=1

{ ai(z)

ST2|Z=z(y)
− α(z)ξi(y, z)

S2
T2|Z=z

(y)

}
+ oT ×Z

p (n−1/2)

≡ 1

n

n∑

i=1

κi(y, z) + oT ×Z
p (n−1/2),
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with Eκi(y, z) = 0. We can further show

Ĝ(y) − G(y) =
1

n

n∑

i=1

{I(L∗
i < y ≤ Y ∗

i )α(Z∗
i )

ST2|Z=z(Y ∗
i )

− G(y)
}

+
1

n

n∑

i=1

n∑

j=1

κi(Y
∗
j ,Z∗

j)

n
I(L∗

j < y ≤ Y ∗
j ) + oTp (n−1/2)

=
1

n

n∑

i=1

gi(y) + oTp (n−1/2)

(2.6)

where

gi(y) ≡
{
I(L∗

i < y ≤ Y ∗
i )

α(Z∗
i )

ST2|Z=z(Y ∗
i )

− G(y)
}

+ Eω̃∗

j

{
κi(Y

∗
j ,Z∗

j)I(L∗
j < y ≤ Y ∗

j )
}
,

with ω̃
∗
i denoting (L∗

i , X
∗
i , Y ∗

i , δ∗i , η
∗
i ,Z

∗
i ) and Eω̃∗

j
representing the expectation over

ω̃
∗
j , j = 1, 2, ...n. Noting that E

{
I(L∗

i < y ≤ Y ∗
i )α(Z∗

i )/ST2|Z=z(Y
∗
i )

}
= G(y) and

Eω̃∗

i

[
Eω̃∗

j
{κi(Y

∗
j ,Z∗

j)I(L∗
j < y ≤ Y ∗

j )}
]

= Eω̃∗

j

[
I(L∗

j < y ≤ Y ∗
j )Eω̃∗

i
{κi(Y

∗
j ,Z∗

j)}
]

= 0,

we have Egi(y) = 0. We would show later that the functional class {gi(y) : y ∈ T } is

Donsker thus Glivenko-cantelli, therefore Ĝ(y) is uniformly consistent for G(y) on T .

Combining the above and Taylor expansion, we have

α̂(z)/Ĝ(y) − α(z)/G(y) =
1

n

n∑

i=1

{
ai(z)

G(y)
− α(z)gi(y)

G(y)2

}
+ oT ×Z

p (n−1/2)

≡ 1

n

n∑

i=1

wi(y, z) + oT ×Z
p (n−1/2) (2.7)

with Ewi(y, z) = 0.

Next, we claim that {wi(y, z),z ∈ Z, y ∈ T } form a Donsker class (Van der Vaart

and Wellner, 1996). Then, by the functional law of the iterated logarithm (Goodman
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et al., 1981), (2.7) implies supz∈Z,y∈T |α̂(z)/Ĝ(y) − α(z)/G(y)| = o(n−1/2+r) for 0 <

r < 1
2

and consequently

supτ,b||n−1/2Sn(b, τ) − n−1/2SG
n (b, τ)|| = o(n−1/2+r), a.s. (2.8)

To show {wi(y, z),z ∈ Z, y ∈ T } is Donsker, we first need to prove that {ai(z) :

z ∈ Z} forms a Donsker class provided {ξi(t,z) : t ∈ T ,z ∈ Z} is Donsker. We

first examine the component, 1√
n

∑n
i=1

∫ ν

0
ξi(u,z)dFL(u), in ai(z) and show its weak

convergence to a tight Gaussian process. It is easy to see 1√
n

∑n
i=1 ξi(t,z)  ϕ(t,z)

according to Donsker’s property, where ϕ(t,z) is a tight Gaussian process and  

means converge weakly. Note that

sup
z∈Z

|
∫ ν

0

{x(u,z) − y(u,z)}dFL(u)| ≤ sup
t∈T ,z∈Z

|x(t,z) − y(t,z)|; x, y ∈ ℓ∞(T × Z).

Then the map π that maps x(t,z) to
∫ ν

0
x(u,z)dFL(u) is a continuous map from

ℓ∞(T × Z) to ℓ∞(Z). Therefore 1√
n

∑n
i=1

∫ ν

0
ξi(u,z)dFL(u)  

∫ ν

0
ϕ(u,z)dFL(u) ac-

cording to the Continuous Mapping Theorem. Since π is a linear map,
∫ ν

0
ϕ(u,z)dFL(u)

is a mean zero Gaussian process. The continuity of π further ensures the asymptotic

tightness of 1√
n

∑n
i=1

∫ ν

0
ξi(u,z)dFL(u) and also the tightness of

∫ ν

0
ϕ(u,z)dFL(u).

Similar arguments can be applied to other components of ai(z). Hence, {ai(z) : z ∈

Z} is a Donsker class.

By similar arguments and the boundness of S−1
T2|Z=z

(y) on T × Z, we can show

{gi(y), y ∈ T } forms a Donsker’s class. Since Donsker implies Glivenko-cantelli

(Van der Vaart and Wellner, 1996) and Egi(y) = 0, Ĝ(y) is uniformly consistent

for G(y) on y ∈ (0, ν]. It follows that {ai(z)/G(y) − α(z)gi(y)/G(y)2, z ∈ Z, y ∈ T }

is also Donsker, because Donsker’s property is preserved under Lipschitz transforma-

tions, and both G(y)−1 and α(z) are bounded on T ×Z. Therefore, we can see (2.8)

holds.
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Define F =
{
Z∗

i [I{X∗
i ≤ g(Z∗T

i b), δ∗i η
∗
i = 1}G−1(Y ∗

i )α(Z∗
i ) − τ ], b ∈ Rp+1, τ ∈

[τL, τU ]
}
. The function class F is Donsker and thus Glivenko-Cantelli because the class

of indicator functions is Donsker, Z∗
i , α(Z∗

i ) are uniformly bounded and G(Y ∗
i ) is uni-

formly bounded from 0 (Van der Vaart and Wellner, 1996). By the Glivenko-Cantelli

Theorem, supτ,b||n−1/2SG
n (b, τ)−µ(b, τ)|| = o(1), a.s. and thus supτ,b||n−1/2Sn(b, τ)−

µ(b, τ)|| = o(1), a.s. follows from (A.5). This, coupled with the fact that µ{β0(τ)} =

0 and n−1/2 Sn{β̂(τ), τ} = o(1), a.s., implies that

sup
τ∈[τL,τU ]

‖µ{β̂(τ), τ} − µ{β0(τ)}‖ = o(1), a.s. (2.9)

Following the same lines of Peng and Fine (2009), we can show that Condition

C4 and the monotonicity of µ(b, τ) in b imply

inf
b/∈B(ρ0),τ∈[τL,τU ]

||µ(b, τ) − µ{β0(τ)}|| > c0ρ0.

Consequently, {β̂(τ) : τ ∈ [τL, τU ]} ⊆ B(ρ0) for n large enough with probability 1.

Applying Taylor expansion to µ{β̂(τ), τ} around β0(τ) gives

sup
τ∈[τL,τU ]

||β̂(τ) − β0(τ)|| = sup
τ∈[τL,τU ]

||A{β̌(τ)}−1[µ{β̂(τ), τ} − µ{β0(τ)]||

≤ c−1
0 sup

τ∈[τL,τU ]

||µ{β̂(τ), τ} − µ{β0(τ)||,

where β̌(τ) lies between β̂(τ) and β0(τ) and is therefore within B(ρ0). Note that the

last inequality holds by condition C5. The uniform convergence of β̂(τ) to β0(τ) for

τ ∈ [τL, τU ] then follows from (2.9).
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2.4.2 Proof of Theorem 2

For simplicity, we write Wj = W (Y ∗
j ,Z∗

j), Ŵj = Ŵ (Y ∗
j ,Z∗

j) and wij = ai(Z
∗
j)/G(Y ∗

j )−

α(Z∗
j)gi(Y

∗
j )/G(Y ∗

j )2. Let ≈ denote asymptotic equivalence unformly in τ ∈ [τL, τU ].

First, by (2.7), simple algebraic manipulations show that

Sn{β0(τ), τ} = n−1/2

n∑

j=1

Z∗
j

(
I[X∗

j ≤ g{Z∗T
j β0(τ)}, δ∗j η∗

j = 1]Ŵ−1
j − τ

)

= n−1/2

n∑

j=1

Z∗
jI[X∗

j ≤ g{Z∗T
j β0(τ)}, δ∗j η∗

j = 1](Ŵ−1
j − W−1

j )

+ n−1/2

n∑

i=1

Z∗
i

(
I[X∗

i ≤ g{Z∗T
i β0(τ)}, δ∗i η∗

i = 1]W−1
i − τ

)

≈ n−1/2

n∑

j=1

Z∗
jI[X∗

j ≤ g{Z∗T
j β0(τ)}, δ∗j η∗

j = 1]
n∑

i=1

wij/n

+ n−1/2

n∑

i=1

Z∗
i

(
I[X∗

i ≤ g{Z∗T
i β0(τ)}, δ∗i η∗

i = 1]W−1
i − τ

)

≈ n−1/2

n∑

i=1

{
Z∗

i

(
I[X∗

i ≤ g{Z∗T
i β0(τ)}, δ∗i η∗

i = 1]W−1
i − τ

)

+
1

n

n∑

j=1

(
Z∗

jI[X∗
j ≤ g{Z∗T

j β0(τ)}, δ∗j η∗
j = 1]wij

)}

An application of the Glivenko-Cantelli Theorem to 1
n

n∑

j=1

(
Z∗

jI[X∗
j ≤ g{Z∗T

j β0(τ)}, δ∗j η∗
j =

1]wij

)
gives

Sn{β0(τ), τ} ≈ n−1/2

n∑

i=1

{ζ1i(τ) + ζ2i(τ)},

where ζ1i(τ) = Z∗
i

(
I[X∗

i ≤ g{Z∗T
i β0(τ)}, δ∗i η∗

i = 1]W−1
i −τ

)
and ζ2i(τ) = Eω̃∗

j

(
Z∗

jI[X∗
j ≤

g{Z∗T
j β0(τ)}, δ∗j η

∗
j = 1]wij

)
with ω̃

∗
i denoting {L∗

i , X
∗
i , Y ∗

i , δ∗i , η
∗
i ,Z

∗
i } and Eω̃∗

j
repre-

senting the expectation over ω̃
∗
j , j = 1, 2, ...n. Following similar arguments for ai(z)

in the proof of Theorem 2.1.1, we can show that {ζ1i(z) + ζ2i(z), z ∈ Z} is also a

Donsker class. Therefore, Sn{β0(τ), τ} converges weakly to a mean zero Gaussian

Process with covariance matrix Σ(τ ′, τ) = E[ζ(τ ′)ζ(τ)], where ζi(τ) = ζ1i(τ)+ζ2i(τ)
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(i = 1, . . . , n).

Next, we establish the asymptotic linearity of SG
n (b, τ) in the vicinity of b = β0(τ);

that is, for any positive sequence {dn}n
n=1 such that dn → 0,

sup
b,b′∈B(ρ0);||b−b′||≤dn

||{SG
n (b, τ)−SG

n (b′, τ)}−n1/2{µ(b, τ)−µ(b′, τ)}|| = op(1). (2.10)

The proof for (2.10) greatly resembles the lines of Alexander (1984) and Lai and Ying

(1988). The key is to show

V ar
{
Z∗

i [I{X∗
i ≤ g(Z∗T

i b), δ∗i η
∗
i = 1} − I{X∗

i ≤ g(Z∗T
i b′), δ∗i η

∗
i = 1}]W−1(Y ∗

i ,Z∗
i )

}

≤ G0||b − b′||.

This can be verified by using the uniform boundedness of the subdistribution density

f1(t|Z), Zi and W (y, z).

It follows from (2.10) that

Sn{β̂(τ), τ} − Sn{β0(τ), τ}

= n−1/2

n∑

i=1

Z∗
i W

−1
i I

(
δ∗i η

∗
i = 1)(I[X∗

i ≤ g{Z∗
i β̂(τ)}] − I[X∗

i ≤ g{Z∗
i β0(τ)}]

)

+ n−1/2

n∑

i=1

Z∗
i I(δ∗i η

∗
i = 1)(I[X∗

i ≤ g{Z∗
i β̂(τ)}] − I[X∗

i ≤ g{Z∗
i β0(τ)}])(Ŵ−1

i − W−1
i )

≈ n1/2[µ{β̂(τ), τ} − µ{β0(τ), τ}]

Along with the fact that A{β0(τ)} = {∂µ(b, τ)/∂b}|b=β0(τ) and β̂(τ) uniformly con-

verges to β0(τ), a Taylor expansion of µ(b, τ) around b = β0(τ) gives that

Sn{β̂(τ), τ} − Sn{β0(τ), τ} ≈ A{β0(τ)}n1/2{β̂(τ) − β0(τ)}.
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This implies

n1/2{β̂(τ) − β0(τ)} ≈ −A{β0(τ)}−1Sn{β0(τ), τ}, (2.11)

and then n1/2{β̂(τ)−β0(τ)} converges weakly to a mean zero Gaussian process with

covariance matrix

A{β0(τ
′)}−1Σ(τ ′, τ)A{β0(τ)}−T .

2.4.3 Justification for the Proposed Covariance Matrix Esti-

mate

With the strict convexity condition in C4, it is implied from the proof of Theorem

2.1.1 that
{
S−1

n {en,j(τ), τ}, τ ∈ [τL, τU ]
}

falls in B(ρ0) with probability 1 when n is

large enough, and uniformly converges to β0(τ), j = 1, 2, ..p + 1. Denote bn,j(τ) =

S−1
n {en,j(τ), τ}. Using arguments similar to those for (A.7), we can show that

Sn{bn,j(τ), τ} − Sn{β̂(τ), τ} ≈ A{β0(τ)}n1/2
[
bn,j(τ) − β̂(τ)

]
.

By the definition of Dn(τ) and En(τ), this implies En(τ) ≈ √
nA{β0(τ)}Dn(τ).

Thus
√

nDn(τ)E−1
n (τ) is a consistent estimator for A−1{β0(τ)}. It follows immedi-

ately that

nDn(τ ′)E−1
n (τ ′)Σ̂(τ ′, τ)En(τ)−1Dn(τ)T

is a consistent estimator for the asymptotic covariance matrix of n1/2{β̂(τ)−β0(τ)}.

2.4.4 The Form of ξi(t, z) under the Cox Proportional Hazard

Model

Here we present the form of ξi(t,z) when the Cox proportional hazards model is

assumed for T2. In that case, P (T2 > t|Z) = exp{−Λ0(t)exp(γT
0 Z̃)}, where γ0 is the

p × 1 regression coefficient, and Λ0(t) is the baseline cumulative hazard function.
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Define Ni(t) = I(Y ∗
i ≤ t)η∗

i , Mi(t) = Ni(t)−Λ0(t)exp(γT
0 Z̃

∗
i ), Ri(t) = I(L∗

i < t ≤

Y ∗
i ), S(j)(γ, t) = 1/n

∑n
i=1(Z̃

∗
i )

⊗j×Ri(t) exp{γT Z̃
∗
i }, where j = 0, 1, 2. Let E(γ, t) =

S(1)(γ, t)/S(0)(γ, t), V (γ, t) =
S(2)(γ, t)

S(0)(γ, t)
−E(γ, t)⊗2, G =

∫ ν

0
V (γ0, t)S

(0)(γ0, t)dΛ0(t),

and P (t) = −
∫ t

0
E(γ0, u)dΛ0(u). Let η0(t) = {Λ0(t),γ0}T . Adapting Andersen and

Gill (1982)’s results, we can show

η̂(t) − η(t)

=




1
n

∑n
i=1[P (t)T

∫ ν

0
G−1{Z̃∗

i − E(γ0, u)}dMi(u) +
∫ t

0

1

S(0)(γ0, u)
dMi(u)]

1
n

∑n
i=1

∫ ν

0
G−1{Z̃∗

i − E(γ0, u)}dMi(u)}


 + oTp (n−1/2)

≡ 1

n

n∑

i=1

{p(1)
i (t),p

(2)
i }T + oTp (n−1/2),

and
{(

p
(1)
i (t),p

(2)
i

)T
, t ∈ T } forms a Donsker’s class.

Applying Taylor expansions gives that

ŜT2|Z=z(t) − ST2|Z=z(t) = − 1

n

n∑

i=1

exp(γ0
T z)ST2|Z=z(t){p(1)

i (t) + Λ0(t)p
(2)
i

T
z} + oT ×Z

p (n−1/2).

Therefore, it is easy to see that the influence function of ŜT2|Z=z(t) is given by

ξi(t,z) ≡ −exp(γ0
T z)ST2|Z=z(t){p(1)

i (t) + Λ0(t)p
(2)
i

T
z}.

We can show {ξi(t,z), t ∈ T ,z ∈ Z} is Donsker following similar arguments for ai(z)

in 2.4.1.
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Chapter 3

Quantile Regression adjusting for

Dependent Censoring
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3.1 Regression Procedures

3.1.1 Data and Model

We start with a formal introduction of data and notations. Let T1 be time to the

primary endpoint and T2 be time to dependent censoring. Let Z = (1, Z̃
T
)T be the

(p + 1) × 1 covariate vector. There may also be an administrative censoring time

C that is conditionally independent of (T1, T2) given Z. Define X = T1 ∧ T2 ∧ C,

Y = T2∧C, δ = I(T1 ≤ T2∧C), η = I(T2 ≤ C), where ∧ is the minimum operator and

I(·) is the indicator function. Observed data includes n identically and independently

distributed replicates of {X,Y, δ, η,Z}, denoted by {Xi, Yi, δi, ηi,Zi}n
i=1.

Define the τth conditional quantile of an event time T1 as QT1
(τ |Z) = inf{t :

Pr(T1 ≤ t|Z) ≥ τ}, we assume that

QT1
(τ |Z) = exp{ZT β0(τ)}, 0 < τ < 1, (3.1)

where β0(τ) is a vector of unknown regression coefficient representing covariate effects

at the τth quantile of the event time.

To estimate model (3.1), it is important to recognize that dependent censoring

by T2 induces the nonparametric nonidentifiability of the marginal distribution of T1

(Tsiatis, 1975). This necessitates additional assumptions on the dependence structure

between T1 and T2 because model (3.1) concerns the marginal quantiles of T1. Such

a strategy has been widely adopted in previous work on dependent censoring, which

either restricts the joint distribution using semiparametric or parametric models (Link

1989; Emoto and Matthews 1990) or performs a sensitivity analysis (Peterson 1976;

Slud and Rubinstein 1983; Klein and Moeschberger 1988; Zheng and Klein 1995;

Scharfstein and Robins 2002; among others.). Following a similar idea, we assume
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the association structure between T1 and T2 follows a copula model:

Pr(T1 > s, T2 > t|Z) = Ψ
{
1 − F1(s|Z), 1 − F2(t|Z), g(Z̄

T
r0)

}
, (3.2)

where Fi(t|Z) = Pr(Ti ≤ t|Z) is the distribution function of Ti (i = 1, 2), and

Z̄ = (1, Z̃0), with Z̃0 being a sub-vector of Z̃, or Z̃ itself. Here Ψ(·) is a known copula

function, for example, Clayton’s copula (Clayton, 1978) or Frank’s copula (Genest,

1987). The copula parameter, here specified as g(Z̄
T
r0), is often closely connected

to a measure that characterizes the dependence strength between T1 and T2. For

example, under the Clayton’s copula model where Ψ(u, v, θ) = (u1−θ +v1−θ−1)1/(1−θ),

(θ − 1)/(θ + 1) equals the Kendall’s tau coefficient (Kendall and Gibbons, 1962). In

model (3.2), r0 is an unknown parameter used to characterize the dependent censoring

mechanism that may vary according to Z̄. When Z̄ = 1, the association between T1

and T2 is assumed to be homogeneous for all subjects.

While model (3.2) helps identify the marginal quantiles of T1, the estimation of

model (3.1) is further facilitated by the fact that T2 is only subject to independent

censoring by C and therefore standard censored regression techniques can be applied

to estimate F2(t|Z). While in theory the regression model for F2(t|Z) may be specified

arbitrarily, it is natural to assume the form of the model for T2 is the same as that

for T1. That is,

QT2
(τ |Z) = exp{ZT α0(τ)}, τ ∈ (0, 1), (3.3)

where α0(τ) is a (p + 1) × 1 vector of regression coefficient, which can be estimated

by using Peng and Huang (2008)’s approach. Denote the resulting estimator as α̂(·).

Without further mentioning, models (3.1)–(3.3) are assumed for the estimation and

inferences presented in the sequel.
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3.1.2 Estimating Equations

Our proposal for estimating β0(τ) and r0 is based on the following two equalities:

Pr(X > t|Y > t,Z) =
Pr(T1 > t, T2 > t|Z)

Pr(T2 > t|Z)
= KA{F1(t|Z), F2(t|Z), g(Z̄

T
r0)},

(3.4)

and

Pr(X ≤ s|Y > t,Z) =
Pr(T1 ≤ s, T2 > t|Z)

Pr(T2 > t|Z)
= KB{F1(s|Z), F2(t|Z), g(Z̄

T
r0)}

(3.5)

for s ≤ t, where KA(u, v, θ) = Ψ(1 − u, 1 − v, θ)/(1 − v) and KB(u, v, θ) = {1 −

v − Ψ(1 − u, 1 − v, θ)}/(1 − v). We can cancel out Pr(C > t|Z) in both (3.4) and

(3.5) by conditioning on I(Y > t), basing on the conditional independence between

C and (T1, T2). Note that (3.4) stems from the assumed joint distribution of (T1, T2)

on the diagonal line, while (3.5) is derived from the information on the upper wedge

of (T1, T2), which is uniquely available in the semi-competing setting.

To utilize the above facts to construct estimating equations for β0(τ) and r0, we

need to further bridge α0(·) and β0(·) with the distribution functions of T1 and T2.

This may be done as follows:

F2(t|Z) ∧ τ =

∫ τ

0

I
{
F2(t|Z) ≥ u

}
du =

∫ τ

0

I
[
t ≥ exp{ZT α0(u)}

]
du, (3.6)

and F1[exp{ZT β0(τ)}|Z] = τ for any τ ∈ (0, 1).

Motivated by (3.4), (3.5) and (3.6), we consider two estimating functions taking

the following forms:

Sn{β, α̂, r, τ} = n−1

n∑

i=1

ZiPi{β, α̂, r, τ}, W n{β, α̂, r, τ} =n−1

n∑

i=1

Z̄iQi{β, α̂, r, τ},
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where

Pi{β,α, r, τ} = I{log Xi > ZT
i β(τ)} − I{log Yi > ZT

i β(τ)}

× KA{τ,
∫ τU,2

0

I{ZT
i β(τ) ≥ ZT

i α(u)}du, g(Z̄
T
i r)},

Qi{β,α, r, τ} = I
[
Yi > 2 exp{ZT

i β(τ)}
]
×

(
I
[
Xi ≤ exp{ZT

i β(τ)}
]

− KB

{
τ,

∫ τU,2

0

I
[
2 exp{ZT

i β(τ)} ≥ exp{ZT
i α(u)}

]
du, g(Z̄

T
i r)

})
.

Note that we restrict our attention to α0(τ) with τ ∈ (0, τU,2], where τU,2 is a con-

stant less than 1 subject to certain identifiability constraints, as α0(τ) may not be

identifiable for all τ ∈ (0, 1) due to the censoring by C (Peng and Huang, 2008).

Similarly, we restrict our attention to β0(τ) with τ ∈ (0, τU,1]. where τU,1 < 1 is a

constant satisfying mild identifiability conditions, as stated in regularity condition C5

in Chapter 3.4.1.

We propose to estimate β0(τ) and r0 by solving the following estimating equations:

n1/2Sn{β, α̂, r, τ} = 0, n1/2

∫ τb

τa

W n{β, α̂, r, τ}dτ = 0 (3.7)

where τa and τb are prespecified constant in (0, τU,1]. We integrate W n{β, α̂, r, τ} over

τ ∈ [τa, τb) to make a better use of semi-competing risks information, which would

lead to increased estimation efficiency and improved numerical stability. Under the

assumed models (3.1)–(3.3), it is easy to verify that ESn{β0(τ),α0, r0, τ} = 0 for

any τ ∈ (0, τU,1], and E
[ ∫ τb

τa
W n{β0(τ),α0, r0, τ}dτ

]
= 0.

In practice, τU,j, j = 1, 2, may be selected in an adaptive manner as suggested by

Peng and Huang (2008) for randomly censored data. To accommodate the identifiabil-

ity consideration, one may further “truncate” equations (3.4) and (3.5) by restricting
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the range of t, and solving

n1/2S∗
n{β, α̂, r, τ} = 0, n1/2

∫ τb

τa

W ∗
n{β, α̂, r, τ}dτ = 0 (3.8)

instead of (3.7), where

S∗
n{β,α, r, τ} =n−1

n∑

i=1

ZiI{ZT
i β(τ) ≤ ZT

i α(τU,2)}Pi{β,α, r, τ},

W ∗
n{β,α, r, τ} =n−1

n∑

i=1

Z̄iI[2 exp{ZT
i β(τ)} ≤ exp{ZT

i α(τU,2)}]Qi{β,α, r, τ}.

The inclusion of the two indicator functions ensures S∗
n{β0,α0, r0, τ} and W ∗

n{β0,α0, r0, τ}

to be mean 0 for any τ ∈ (0, 1), with little influence on the asymptotic results. The

estimating equations in our numerical studies is given by (3.8).

Here and in the sequel we may write β as a shorthand for β(τ), and α for α(τ),

with the understanding that these coefficients are τ -specific. Also, we would abbrevi-

ate
∫ τb

τa
W n{β, α̂, r, τ}dτ as W n{β, α̂, r}, and

∫ τb

τa
W ∗

n{β, α̂, r, τ}dτ as W ∗
n{β, α̂, r}.

3.1.3 Computational Algorithm

We developed an efficient iterative algorithm to jointly estimate β0 and r0 based on

(3.8). Let GL(n) = {0 < τ0 < τ1 < ... < τL(n) = τU,1 < 1} be a prespecified grid on

[0, 1], and ||GL(n)|| = max{τj −τj−1; j = 1, 2, ..., L(n)} be the size of the grid. For any

given r, let β̂(τ ; r), with a shorthand β̂(r), denote a right-continuous step function of

τ which jumps only on GL(n) and satisfies n1/2S∗
n{β̂(r), α̂, r, τ} = o(1) for τ ∈ GL(n).

The details of the algorithm are described as follows.

Step A Estimate
{
α̂(τ), τ ∈ (0, τU,2]

}
using Peng and Huang (2008)’s method.

Step B Set k = 0 and choose an initial value for β̂, denoted by β̂
[k]

.

Step C Solve r̂
[k] from n1/2W ∗

n{β̂
[k]

, α̂, r} = 0.
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Step D Update β̂
[k]

with β̂
[k+1]

= β̂(r̂[k]). Then increase k by 1 and go to Step C

until a certain convergence criteria is satisfied.

In practice, β̂
[0]

can be set to be the naive estimate, acquired by treating (X, δ)

as independently censored survival data and employing Peng and Huang (2008)’s

method.

Since n1/2W ∗
n{β̂

[k]
, α̂, r} is a smooth function of r, the root-finding in Step C can

be easily implemented with existing statistical functionalities, like the optim function

in R. To solve n1/2S∗
n{b, α̂, r̂[k], τ} = 0 in Step D, we propose to obtain β̂(τ ; r[k])

through the following iterative procedure:

D.0 Set m = 0 and let β̂
[k+1,m]

(τ ; r̂[k]) = β̂
[k]

(τ ; r̂[k]).

D.1 Find β̂
[k+1,m+1]

(τ) by solving

n−1/2

n∑

i=1

ZiB̂
[m]
i {I(log Xi > ZT

i b) − Â
[m]
i (τ)} = 0, (3.9)

where B̂
[m]
i (τ) = I{ZT

i β̂
[k+1,m]

(τ) ≤ ZT
i α̂(τU,2)} and Â

[m]
i (τ) = I{log Yi >

ZT
i β̂

[k+1,m]
(τ)}KA

[
τ,

∫ τU,2

0
I{ZT

i β̂
[k+1,m]

(τ) ≥ ZT
i α̂(u)}du, g(Z̄

T
i r̂

[k])
]
.

D.2 Increase m by 1 and go to D.1 until a certain convergence criteria is satisfied.

It can be shown that the estimating function in (3.9) is a monotone random field

in b (Fygenson and Ritov, 1994), and equals the derivative of the following L1-type

function

−n−1/2

2

[ n∑

i=1

B̂
[m]
i (τ)

∣∣ log(Xi)−ZT
i b

∣∣+
∣∣M−

n∑

i=1

B̂
[m]
i (τ)ZT

i b
∣∣+

∣∣M+2
n∑

i=1

B̂
[m]
i (τ)Â

[m]
i (τ)ZT

i b
∣∣
]
,

(3.10)

where M is an extremely large number that can bound |∑n
i=1 B̂

[m]
i (τ)ZT

i b| and

|2 ∑n
i=1 B̂

[m]
i (τ)Â

[m]
i (τ)ZT

i b|. Such an L1–type minimization problem can be readily

implemented in the rq function in R or the l1fit function in Splus. In Section ??,
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we show that the proposed algorithm produce fast and stable implementation of the

proposed estimation method. More details of the algorithm, including convergence

criteria adopted for iterations, are provided in Chapter 3.5.

3.1.4 Asymptotic Results

In this section we outline the asymptotic properties of the proposed estimators. In

the below, Theorem 3.1.1 states the consistency of r̂ and the uniform consistency of

β̂(τ), and Theorem 3.1.2 gives the results on the limiting distribution of n1/2(r̂− r0)

and n1/2{β̂(τ) − β0(τ)}. In order to establish the two theorems, we need to require

regularity conditions C1-C5, the details of which are deferred to Chapter 3.4.1.

We have the following theorems.

Theorem 3.1.1. Under conditions C1-C5, if limn→∞ ||GL(n)|| = 0, then there exists a

{β̂(τ), r̂} in a neighborhood of {β0(τ), r0}, such that supτ∈[ν1,τU,1] ||β̂(τ)−β0(τ)|| p→ 0,

for any 0 < ν1 < τU,1 and r̂
p→ r0.

Theorem 3.1.2. Under condition C1-C5, if limn→∞ n1/2||GL(n)|| = 0, then there

exists a {β̂(τ), r̂} in a neighborhood of {β0(τ), r0}, such that n1/2(r̂ − r0) converges

in distribution to a Normal distribution with mean 0. Moreover, n1/2{β̂(τ) − β0(τ)}

converges weakly to a mean 0 Gaussian process for τ ∈ [ν1, τU,1], where 0 < ν1 < τU,1.

The asymptotic arguments are heavily challenged by the need to remove the effect

of dependent censoring. To show the consistency in Theorem 3.1.1, we first notice that
∫ τU,2

0
I[t ≥ exp{zT α̂(u)}]du serves as a consistent estimate of F2(t|z)∧τU,2. Following

that, we can employ empirical process techniques to show supτ∈(0,τU,1] s{β̂(r),α0, r, τ} =

op(1). This implies the uniform consistency of β̂(τ ; r) to β̃(τ ; r) for any fixed r ∈

R(dR), and furthermore the consistency of r̂ to r0. Coupled with the result that

β̃(τ ; r) has bounded derivative against r at r = r0, these give the uniform consis-

tency of β̂(τ) = β̂(τ ; r̂).
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Establishment of the asymptotic normality in Theorem 3.1.2 is not only chal-

lenged by the non-smoothness of the estimating equations, but also by the inexplicit

relationship between β̂(τ) = β̂(τ ; r̂) and r̂. There are two key results in our proofs.

Firstly, we show the asymptotic linearity of n1/2{β̂(τ ; r̂) − β̂(τ ; r0)} with regard to

n1/2{r̂−r0} by mimicking the arguments in Lai and Ying (1988) and Peng and Huang

(2008). Secondly, we used extensive empirical process and integral estimating equa-

tion techniques to show that n1/2[W n{β̂(r̂), α̂, r̂}−W n{β̂(r0), α̂, r0}] can be written

as sum of i.i.d. influence functions, and moreover is asymptotically linear with regard

to n1/2(r̂ − r0). The combination of these two results leads to the weak convergency

of the proposed estimators. We provide the detailed proofs in Chapter 3.4.2–3.4.3,

along with the specific form of the influence functions for n1/2{β̂(τ) − β0(τ)} and

n1/2(r̂ − r0).

3.1.5 Inferences

Due to the complexity involved in the limit distribution of β̂(τ) and r̂, we propose

to use a bootstrap method for the inference on β0(τ) and r0. Specifically, we em-

ploy the paired-bootstrap scheme (Efron, 1979) and apply the algorithm presented

in Section 3.1.3 to each of the B bootstrapped datasets to acquire {α̂∗
b , β̂

∗
b , r̂

∗
b}B

b=1.

For a fixed τ ∈ (τ0, τU,1], we can use the sample standard deviation of {β̂∗
b(τ)}B

b=1 to

estimate the standard deviation of β̂(τ). Similarly, the standard deviation of r̂ can be

approximated by the sample standard error of {r̂∗
b}B

b=1. The confidence intervals for

β0(τ) and r0 can be constructed using normal approximation, or with the empirical

percentiles of the bootstrap estimates.

We can also perform second stage inferences for exploring the varying pattern of

covariate effects over τ . First, we define a trimmed mean effect, Φ1,q = {
∫ u

l
β

(q)
0 (τ)dτ}/(u−

l), to summarize the effect of Z(q). Here and hereafter, we use u(q) to denote the qth

component of a vector u. As a natural estimate of Φ1,q, Φ̂1,q = {
∫ u

l
β̂(q)(τ)dτ}/(u− l)
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can be shown to be consistent and asymptotically normal under mild assumption on

the functional form of β0(·). The standard error and the percentiles of Φ̂1,q can be

estimated using the bootstrap realizations [{
∫ u

l
β̂

∗(q)
b (τ)dτ}/(u − l)]Bb=1. This result

can be easily extended to an integral test for evaluating whether a covariate Z(q)

(2 ≤ q ≤ p + 1) has a significant effect on a range of quantiles with τ ∈ [l, u], namely,

H01 : β(q)(τ) = 0, τ ∈ [l, u]. In practice, one may be interested in accessing whether

the effect of a covariate Z(q) is constant for τ ∈ [l, u). The null hypothesis can be

formulated as H02 : β
(q)
0 (τ) = c0, τ ∈ [l, u), where c0 is an unspecified constant. With

a predetermined nonconstant weight function Ξ(τ) satisfying
∫ u

l
Ξ(τ)dτ = 1, the test

statistic can be constructed as T2,q =
∫ u

l
Ξ(τ)β̂(q)(τ)dτ − Φ̂1,q, standard error of which

can be estimated using [
∫ u

l
Ξ(τ)β̂

∗(q)
b (τ)dτ −{

∫ u

l
β̂
∗(q)
b (τ)dτ}/(u− l)]Bb=1. Wald-type or

percentile-based hypothesis testing can be performed accordingly. Rejection of H02

indicates that the effect of Z(q) may not be constant across the quantiles.

3.2 Numerical Studies

3.2.1 Simulations

We evaluated the finite-sample performance of the proposed estimators via exten-

sive Monte Carlo simulations. Let the covariate vector Z = (1, Z1, Z2)
T , where

Z1 ∼ Unif(0, 1) and Z2 ∼ Bernoulli(0.5). The model used for generating T1 takes

the form log T1 = b1Z1 + b2Z2 + ε1, where the error term ε1 is Normal(0, 0.152)

when Z2 = 0, and Normal(0, 0.52) when Z2 = 1. With such heteroscedastic er-

ror structure, the underlying regression quantile β0(τ) = {β(1)
0 (τ), β

(2)
0 (τ), β

(3)
0 (τ)} is

given by β
(1)
0 (τ) = Qnorm(τ, 0, 0.152), β

(2)
0 (τ) = b1 and β

(3)
0 (τ) = Qnorm(τ, 0, 0.52)−

Qnorm(τ, 0, 0.152)+b2. Notice that both β
(1)
0 (τ) and β

(3)
0 (τ) vary with τ while β

(2)
0 (τ)

is constant. We generated the dependent censoring time T2 from a log-linear model

with i.i.d. errors, log T2 = a1Z1 + a2Z2 + ε2, where ε2 ∼ Normal(µ2, 0.5
2). For the
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association structure between T1 and T2, we considered two types of copulas: the

Clayton’s copula (Oakes, 1982) and the Frank’s copula (Genest, 1987). The bivariate

survival function Pr(T1 > s, T2 > t|Z) is given by

{Pr(T1 > s|Z)− exp(rc) + Pr(T2 > t|Z)− exp(rc) − 1}−1/ exp(rc)

when the Clayton’s copula is adopted, and by

− 1

rf

log

(
1 +

[
exp{−rf Pr(T1 > s|Z)} − 1

]
×

[
exp{−rf Pr(T2 > t|Z)} − 1

]

exp(−rf ) − 1

)

when the Frank’s copula is adopted. For a fixed Z, the Kendall’s tau coefficient be-

tween T1 and T2 is linked to the copula parameters by exp(rc)/{exp(rc) + 2} under

the Clayton’s model, and by 1 + 4{D1(rf ) − 1}/rf under the Frank’s model, where

D1(r) = [
∫ r

0
t/{exp(t) − 1}dt]/r. We set rc = 1 and rf = 7.325, so that the cor-

responding Kendall’s tau coefficients equal 0.576 under both copula models. The

independent censoring time C was set to follow Unif(0, UC). We considered different

combinations of µ2, (a1, a2), (b1, b2) and UC , which led to the 4 setups presented in

Table 3.1.

Table 3.1: Summary of simulation setups, with CP1 = Pr(T2 < T1), CP2 = P (Y <
T1) and CP3 = P (C < T2).

Setup Copula µ2 (a1, a2) (b1, b2) UC CP1 CP2 CP3

S1.C Clayton 0.1 (0.4, 0.2) (0, 0) 18 0.85 0.80 0.90
S1.F Frank 0.1 (0.4, 0.2) (0, 0) 18 0.85 0.80 0.90
S2.C Clayton 0.0 (0.32,−0.1) (−0.5, 0) 8.5 0.80 0.72 0.85
S2.F Frank 0.0 (0.32,−0.1) (−0.5, 0) 8.5 0.79 0.72 0.85

Under each setup, we generated 2500 simulated datasets and implemented the

proposed numerical algorithm to obtain β̂(τ) and r̂. We chose sample size n = 200,

grid size ||GL(n)|| = 0.01, τa = 0.15, τb = 0.6, and bootstrap sample size B = 200.

The simulation results on β̂(τ), τ = 0.2, 0.3, ..., 0.7, are summarized in Table 3.2. We

report the empirical bias (EBias), the empirical standard error (ESD), and the average
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resampling-based standard error (ASD) for β̂(τ), as well as the empirical coverage

probabilities of the 95% Wald-type (ECPW) and percentile-based (ECPP) confidence

intervals of β0(τ). It is shown that the proposed β̂(τ) is close to β0(τ) under all

setups, and the bootstrap standard errors closely match the empirical standard errors.

Both the Wald-type and the percentile confidence intervals achieve empirical coverage

probabilities that are close to the nominal level. It is observed that the percentile-

based confidence intervals may perform better than the Wald-type intervals when τ

is small.

Table 3.3 summarizes the simulation results on r̂. We present the same set of

summary statistics including EBias, ESD, ASD, ECPW and ECPP. We can see r̂ is

virtually unbiased, and the estimated standard errors are close to their empirical coun-

terparts. We note that the Wald-type confidence intervals have slight over-coverages

under the Clayton’s model, while the percentile-based confidence intervals consis-

tently have good coverages under both copula models. In Table 3.3, we also present

the empirical bias and empirical standard error of the corresponding Kendall’s tau

coefficient estimates, denoted as K(r̂). As an established measure of association, the

Kendall’s tau coefficients are accurately estimated with small standard errors.

The results of second stage inferences are summarized in Table 3.4. We present the

EBias, ESD and ASD of the trimmed mean effect estimates Φ̂
(q)
1 = {

∫ u

l
β̂

(q)
(τ)dτ}/(u−

l), where q = 2, 3, l = 0.1 and u = 0.7. We also summarize the performances of the

two hypothesis tests for H01 : {
∫ u

l
β

(q)
0 (τ)dτ}/(u − l) = 0 and H02 : β

(q)
0 (τ) ≡ c0,

following the procedures in Chapter 3.1.5. To construct the test statistics for H02, we

chose the weight function Ξ(τ) as 2I(τ ≤ τL+τU

2
)/(τU − τL). For each test, we report

the empirical rejection rates based on normal approximation (ERRW) and those based

on percentiles (ERRP). We find that the trimmed mean effect estimates Φ̂
(q)
1 , q = 2, 3,

are well-performed in terms of biases and standard error estimates. It is shown that

both the Wald-type test and the percentile-based test achieve empirical sizes close to
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Table 3.2: Summary of simulation results on β̂(τ), which include the empirical bias
(×103), empirical standard error (×103), average of resampling based standard error
estimates (×103), as well as empirical coverages (%) of 95% wald-type and percentile
confidence intervals.

τ EBias ESD ASD ECPW ECPP

β̂
(0)

β̂
(1)

β̂
(2)

β̂
(0)

β̂
(1)

β̂
(2)

β̂
(0)

β̂
(1)

β̂
(2)

β̂
(0)

β̂
(1)

β̂
(2)

β̂
(0)

β̂
(1)

β̂
(2)

Setup S1.C
0.2 8 −14 −10 71 113 84 72 116 85 93.2 94.7 93.7 94.5 95.5 95.3
0.3 5 −10 −7 65 105 78 67 108 79 93.9 94.7 93.7 95.1 95.5 94.9
0.4 3 −8 −5 60 97 77 63 102 77 94.2 95.0 93.5 94.8 95.5 94.2
0.5 2 −7 −3 57 94 76 59 98 76 95.0 95.8 93.3 94.9 96.1 94.3
0.6 1 −6 −4 54 89 75 57 95 76 94.8 95.4 93.9 95.1 96.4 94.9
0.7 0 −6 −3 52 88 78 55 94 79 95.0 95.9 94.0 95.4 96.4 95.0

Setup S1.F
0.2 9 −14 −7 74 117 81 74 119 84 92.5 93.6 94.7 94.3 95.2 95.4
0.3 5 −9 −6 62 99 75 65 106 77 93.9 95.2 94.2 95.2 95.7 94.8
0.4 3 −6 −4 55 91 72 59 97 74 95.0 95.6 94.3 94.9 95.4 95.0
0.5 2 −5 −4 52 86 72 54 91 73 94.9 95.4 93.4 94.7 96.1 95.1
0.6 1 −4 −3 48 82 72 52 89 73 95.2 95.6 93.6 95.3 95.9 95.0
0.7 1 −5 −3 48 83 75 52 89 76 95.6 95.8 94.0 95.5 95.9 94.9

Setup S2.C
0.2 14 −25 −2 74 117 90 76 121 88 93.2 94.4 93.0 94.6 95.9 94.3
0.3 11 −20 0 69 108 87 71 114 85 93.8 94.9 93.4 95.2 95.9 94.1
0.4 9 −18 3 64 103 86 67 108 84 94.6 95.0 92.6 95.4 95.7 93.9
0.5 8 −16 4 59 96 85 63 103 86 95.5 95.3 93.0 95.7 95.7 94.6
0.6 5 −14 7 55 93 87 60 100 88 95.2 95.3 93.8 95.9 95.9 94.8
0.7 4 −12 8 54 91 90 58 98 92 95.7 95.1 93.7 95.5 95.3 94.8

Setup S2.F
0.2 16 −25 1 74 113 92 75 118 88 92.8 94.6 92.2 94.2 96.4 93.6
0.3 11 −17 5 64 99 85 67 106 83 94.1 95.3 92.4 94.6 95.9 93.6
0.4 8 −14 7 57 91 81 61 98 80 94.8 95.2 92.7 94.8 95.8 93.8
0.5 6 −12 7 53 86 79 57 93 79 95.6 96.1 93.4 95.3 96.1 93.4
0.6 4 −10 5 50 84 79 55 92 80 95.3 95.6 93.8 95.2 96.0 94.2
0.7 5 −11 7 49 84 83 55 92 86 95.8 95.4 94.8 95.6 96.3 94.9
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Table 3.3: Summary of simulation results on r̂, which include the true value, empirical
bias (×103), empirical standard error (×103), average of resampling based standard
error estimates (×103), empirical coverages (%) of 95% wald-type and percentile-
based confidence intervals, as well as the true value, empirical bias (×103) and empir-
ical standard errors (×103) of the corresponding Kendall’s tau coefficient estimates.

r̂ K(r̂)

TRUE EBias ESD ASD ECPW ECPP TRUE EBias ESD

S1.C 1 −28 244 277 98.3 96.9 0.576 −8 59
S1.F 7.325 −131 1377 1527 95.7 95.9 0.576 −12 57
S2.C 1 −25 287 333 98.6 96.6 0.576 −7 69
S2.F 7.325 −61 1633 1840 95.7 96.5 0.576 −12 67

the nominal level 0.05. The Wald-type test may slightly over-perform the percentile-

based test, particularly for H02. We observe that both hypothesis testing methods

are satisfactory in terms of power.

We also perform simulation studies to evaluate the robustness of the proposed

estimators. Specifically, we examine the proposed estimators when the association

structures are misspecified. We generated data from S2.C and S2.F, which corre-

spond to the first and second row in Figure 3.1, respectively. For each setup, we

implemented the proposed method by assuming the Clayton’s copula and the Frank’s

copula. Figure 3.1 summarizes the empirical mean of the resulting β̂(τ) under cor-

rectly or incorrectly specified copula assumptions. For comparison, we also plot the

empirical mean of Peng and Huang (2008)’s estimators by naively treating T2 as

independent censoring. Not surprisingly, the naive estimator yield large bias for

τ ∈ [0.1, 0.7] in all scenarios. We notice that the intercept term tend to be posi-

tively biased, and the bias manifest in the remainder regression coefficients as well.

When the association structures are correctly specified, the empirical mean of the

proposed β̂(τ) closely match the true regression quantiles, which agrees with the re-

sults in Table 3.2. With misspecified association structures, the proposed estimators

only exhibit small deviations from the true coefficients. For example, the bias of
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Table 3.4: Summary of simulation results on second stage inferences, which include
empirical bias (×103), empirical standard error (×103) and average of resampling

based standard error estimates (×103) of Φ̂
(q)
1 , q = 2, 3, as well as the empirical

rejection rates of H01 and H02 with Wald-type (ERRW) and percentile-type (ERRP)
methods.

Φ̂
(q)
1 H01 H02

q EBias ESD ASD ERRW ERRP ERRW ERRP

S1.C 2 -10 82 81 0.057 0.059 0.046 0.033
3 -7 64 61 0.457 0.456 1.000 1.000

S1.F 2 -9 79 78 0.059 0.067 0.043 0.032
3 -6 61 59 0.469 0.477 1.000 1.000

S2.C 2 -19 85 85 1.000 1.000 0.047 0.032
3 1 69 65 0.380 0.361 0.998 1.000

S2.F 2 -17 76 78 1.000 1.000 0.043 0.026
3 5 65 61 0.386 0.373 0.999 1.000

the proposed β̂(τ), when incorrectly assuming the Frank’s copula, is nearly negligi-

ble in S2.C. Next, we examine the performance of association parameter estimates.

The empirical mean of estimated Kendall’s tau coefficient, when Frank’s copula is

assumed in S2.C, equals 0.568, and that when Clayton’s copula is assumed in S2.F

equals 0.601. Both empirical means are reasonably close to the true Kendall’s coeffi-

cient 0.576. Our simulations suggest that the proposed estimators are robust to the

misspecification of the association structure, in both the regression quantile estimates

and the association parameter estimates.

Finally, we present summary statistics which demonstrate the computational ef-

ficiency of the proposed procedures. In Table 3.5, we report the percentage of non-

convergence (NoneConv), the mean CPU time in second for each simulation without

resampling (CPUtime), and the percentage of simulations which converge within 5

iterations between Step C and Step D (PerLe5). All programs were run in R 2.9.1 on

a computer with 2.66GHz core. Table 5 shows that the proposed algorithm converges

fast and stably under all setups. The majority of simulations converge within 5 iter-

ations, and the rates of non-convergence are negligible. The CPU time consumed for
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Figure 3.1: Performance of the proposed method under different copula assumptions.
(−− true regression quantiles; - - - empirical mean of naive estimators; · · · empirical
mean of proposed estimators, assuming Clayton’s copula; − · − empirical mean of
proposed estimators, assuming Frank’s copula. Data are generated from setup S2.C
in the first row, and from setup S2.F in the second row).
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each simulation increases with the censoring rate, and is affordable under all setups.

Table 3.5: Summary of convergence statistics, which include the percent of noncon-
vergence, the mean CPU time for one simulation, and the percent of simulations that
converged within 5 iterations.

NoneConv CPUtime PerLe5

(%) (seconds) (%)
S1.C 0.0 1.913 99.4
S1.F 0.0 1.804 99.3
S2.C 0.0 2.351 98.1
S2.F 0.4 2.072 97.2

In summary, our simulation studies show the proposed methods perform well and

are robust with realistic sample sizes. Moreover, the nice computational performance

facilitates the practical utility of the proposed method.

3.2.2 Aids Clinical Trial Group 364 Data Analysis

We illustrate the proposed methods by an application to the ACTG 364 study (Al-

brecht et al., 2001), a multicenter clinical trial in AIDS patients with plasma hu-

man immunodeficiency virus HIV RNA above 500 copies/ml. In this study, 195

subjects were enrolled and randomly assigned to one of the three treatment arms,

which are protease inhibitor nelfinavir (NFV), the non-nucleoside efavirenz (EFV),

and NFV+EFV. The randomization was stratified according to the treatments pa-

tients had received in previous studies. In this study, T1 and T2 correspond to time

to first virologic failure and time to dropout, respectively, while C represents the du-

ration of follow-up at the end of the study. In this analysis we focus on the subgroup

of patients who had been treated by lamivudine before entering the study. Among

the 129 patients, 44 dropped out from the assigned treatment within the follow-up

period for disease-related reasons, and 81 were observed to experience first virologic

failure. Among the 48 patients whose virologic endpoints were not observed, 7 were

due to dropouts and the other 41 were administratively censored at the end of the
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study. Though the censoring by dropout is not severe, 6 out of the 7 occurred in the

NFV + EFV group, which indicates the dropouts may not be random.

We consider two covariates, Z1 and Z2, which are treatment indicators for EFV and

NFV + EFV respectively. Therefore, the first element in β0(τ) = {β(1)
0 (τ), β

(2)
0 (τ), β

(3)
0 (τ)}

represents the log transformed quantiles in the NFV group, while β
(2)
0 (τ) and β

(3)
0 (τ)

represent the effects of EFV vs. NFV and NFV + EFV vs. NFV respectively, at the

τth quantile of time to first virologic failure. We implement the proposed algorithm

by assuming the Frank’s copula, and setting τa = 0.15, τb = 0.45, ||GL(n)|| = 0.005.

The standard error estimates and confidence intervals are obtained with 1000 boot-

strap resamples, out of which 7% were omitted for reason of non-convergence. We

obtain r̂ = 2.5, with a standard error estimate of 3.05. The estimate of Kendall’s

tau coefficient between T1 and T2 equals 0.26 with a standard error estimate of 0.21.

This may indicate that patients with slower virologic disease progressions tend to stay

longer on the assigned treatment. However, this association is not significant at the

0.05 significance level.

In Figure 3.2 we plot the estimated β̂(τ) for τ ∈ [0.05, 0.55), along with the

pointwise 95% Wald-type intervals. Also plotted is the naive estimate β̂N(τ) from

Peng and Huang (2008)’s method, which converges up till τ = 0.38. In this example,

β̂(τ) and β̂N(τ) are quite similar, probably because the rate of censoring by dropout

is quite low. We observe a clear trend of over-estimating the regression coefficient

for Z2 by the naive method. This may not be surprising, because dropouts mainly

occurred in the NFV + EFV group. The lower bound of the confidence interval for

β̂(3)(τ) stays above 0 when τ ≥ 0.3, suggesting that patients in the NFV + EFV

arm tend to have longer virologic failure free survival time when compared to those

in the NFV arm. We observe an increasing pattern of β̂(3)(τ) with τ . This suggests

that the difference in time to first virologic failure between the NFV + EFV group

and the NFV group may be more pronounced for those with late onset of virologic
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failure compared to those who had fast progression to virologic failure. In contrast,

the confidence interval for β̂(2)(τ) always cover 0, which suggests time to first virologic

failure may not be significantly different between the EFV arm and the NFV arm.

Figure 3.2: Estimated regression coefficients for the ACTG 364 study. (−−, estimated
regression coefficients using the proposed method; · · · , 95% Wald-type pointwise
confidence intervals; −−, estimate of trimmed mean effects; - - -, naive estimates
using Peng and Huang (2008)’s method.)
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Our second stage explorations confirm our observations in Figure 3.2. The esti-

mated trimmed mean effect of Z2 (NFV + EFV vs. NFV), for τ ∈ [0.05, 0.55), is

0.685 with an estimated standard error of 0.277. This renders a p-value of 0.01. The

trimmed mean effect of Z1 (EFV vs. NFV) is estimated as −0.038. The correspond-

ing standard error estimate is 0.241, which leads to a p-value of 0.9. These provide

some evidence for the superiority of the combined treatment NFV + EFV over EFV,

but not for NFV. We also conduct hypothesis testing to investigate whether covariate

effects are constant over the quantiles. To compute Ψ̂
(q)
2 , q = 2, 3, we set l = 0.05,

u = 0.55, and Ξ(τ) = 2I(τ ≤ l+u
2

)/(u − l). For Z2, we obtain Ψ̂
(3)
2 as −0.324 and

its standard error estimate equals to 0.152. The resulting Wald-type p-value equals

0.033, which confirms our impression in Figure 2 that the effect of Z2 varies with

the quantiles. There are some possible explanations of this interesting pattern. For
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Figure 3.3: Predicted quantiles of time to first virologic failure in days for the NFV
group (−−), EFV group (- - -) and NFV + EFV group (· · · ).
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example, those who had virologic failure rather quick may not have stayed on treat-

ment long enough for the effects to manifest, or their quick failures may be mainly

attributed to some other factors that dominated the treatment effects. For Z3, we

obtain the test statistics Ψ̂
(2)
2 as −0.21 and its standard error estimate as 0.14. This

leads to a Wald-type p-value of 0.12. Therefore, it may be adequate to conclude that

the difference in time to first virologic failure between the EFV group and the NFV

arm is constant.

Finally, we plot the predicted quantiles of time to first virologic failure for each

treatment groups in Figure 3.3. This plot is practically useful, as it allows us to

visualize the various quantiles of time to the virologic endpoint. It is clear from

Figure 3 that the predicted quantiles for the NFV+EFV group is always larger than

that of the NFV group. The magnitude of difference is more pronounced in upper

quantiles of T1 than that in lower quantiles. At τ = 0.5, for example, the difference is

as large as 434 days, which is clinically significant. The quantile curves for the EFV

group and NFV group intersect and do not show big difference.
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In summary, quantile regression based on the proposed method offers a compre-

hensive and meaningful view of the virologic endpoint in the ACTG 364 study. Our

analyses suggest that treatment NFV+EFV prolongs the virologic failure free sur-

vival time when compared to NFV alone. Moreover, the benefit of NFV+EFV over

NFV is more substantial among patients subject to low or moderate risk of virologic

failure.

3.3 Discussion

In this Chapter, we propose a quantile regression method that can properly accom-

modate dependent censoring situations that fall into the paradigm of semi-competing

risks. Our method offers a useful tool for investigating nonterminating endpoints

that often arise in clinical follow-up studies and their relationship with subsequent

competing endpoints. The marginal quantile inference pursued in this work is sen-

sible when studying covariate effects with the removal of dependent censoring is of

substantive relevance.

We impose assumptions on the dependent censoring scheme through a general class

of copula model. This is necessary for addressing the identifiability issue inherited

with the dependent censoring problem. Simulations have shown that the proposed

estimators are quite robust to misspecification of the copula model. This robustness

feature is expected to enhance the practical utility of the proposed method.

3.4 Proofs

3.4.1 Regularity Conditions

For a vector x, let x⊗2 denote xxT , and ||x|| denote the Euclidean norm of x.

For a random variable T , let fT (·|z) denote its conditional density function given
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Z = z. We define s(β,α, r, τ) = ESn(β,α, r, τ), w(β,α, r, τ) = EW n(β,α, r, τ),

and w(β,α, r) =
∫ τb

τa
w(β,α, r, τ)dτ . Let Bb(β,α, r, τ) = ∂s(β,α, r, τ)/∂β(τ),

Br(β,α, r, τ) = ∂s(β,α, r, τ)/∂r, Lb(β,α, r, τ) = ∂w(β,α, r, τ)/∂β(τ), and Lr(β,α, r) =

∂w(β,α, r)/∂r. Next, define µ(a) = E[ZI{Y ≤ exp(ZT a), η = 1}] as in Peng and

Huang (2008), and λ(b) = E[ZI{T1 ≤ exp(ZT b)}]. For d > 0, let A(d) = {a ∈

Rp+1 : infτ∈(0,τU,2] ||µ(a) − µ{α0(τ)}|| ≤ d} and R(d) = {r ∈ Rq+1 : ||r − r0|| ≤ d}.

Define B̄(d) = {β ∈ Rp+1 : maxτ∈(0,τU,1] ||λ{β(τ)}−λ{β0(τ)}|| ≤ d}. Let dA, dB and

dR be positive constants that determine the span of the neighborhoods.

We require the following regularity conditions:

C1 The covariate space Z is bounded, i.e., supi ||Zi|| ≤ ∞.

C2 (i) The regularity conditions in Peng and Huang (2008) hold for (Y, η,Z) and

α0(τ), τ ∈ (0, τU,2], (ii) for Bα(a) = ∂µ(a)/∂a, there exist a constant CF , such

that each component of ||fT2
{exp(zT a)|z} exp(zT a)×Bα(a)−1|| is bounded by

CF uniformly in z ∈ Z and a ∈ A(dA), where dA is a positive constant. (iii)

Define

V A(a, τ) = −Z
[
I{log Y > ZT β0(τ)}dA

{
τ, F2[exp{ZT β0(τ)}|Z], g(ZT r0)

}
×

I{ZT β0(τ) ≥ ZT a}
]

V B(a) = −Z̄
{ ∫ τb

τa

I[Y > 2 exp{ZT β0(τ)}]dB

{
τ, F2[2 exp{ZT β0(τ)}|Z], g(ZT r0)

}

I[2 exp{ZT β0(τ)} ≥ exp{ZT a}]dτ
}
,

where dA(u, v, θ) = ∂KA(u, v, θ)/∂v and dB(u, v, θ) = ∂KB(u, v, θ)/∂v. Every

component of [∂E{V A(a, τ)}/∂a]Bα(a)−1 and [∂E{V B(a)}/∂a]Bα(a)−1 are

bounded uniformly for a ∈ A(dA) and τ ∈ (0, τU,1] when Z contains continuous

components.

C3 (i)Each component of λ{β0(τ)} is a Lipschitz function of τ when τ ∈ (0, τU,1],
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(ii) let dθ(u, v, θ) = ∂Ψ(u, v, θ)/∂θ, ||dθ{u, v, g(zT r0)}g′(zT r0)|| is uniformly

bounded for z ∈ Z, u ≤ τU,1 and v ≤ τU,2. (iii) the conditional density functions

fX(t|z), fY (t|z), fT1
(t|z) and fT2

(t|z) are bounded above uniformly in t and

z ∈ Z.

C4 (i)EZ⊗2 > 0, and fT1
[exp{ZT β(τ)}|Z] > 0 for any β ∈ B̄ and τ ∈ (0, τU,1].

(ii) Define Hb(b) = E[Z⊗2fT1
{exp(ZT b)|Z} exp(ZT b)]. For any ν1 ∈ (0, τU,1],

min eig[Hb{β(τ)}] is bounded below by a positive number uniformly for β ∈

B̄(dB) and τ ∈ [ν1, τU,1], where eig(·) denotes the eigenvalues of a matrix,

(iii)infβ∈B̄(dB),r∈R(dR),τ∈(0,τU,1] min eig[−Bb{β,α0, r, τ}Hb{β(τ)}−1] > 0, (iv)

for any fixed r ∈ R(dR), there exists a unique solution to s{β̃(r),α0, r, τ} = 0

in B̄(dB), and min
∣∣eig[∂w{β̃(r),α0, r}/∂r]

∣∣ is bounded from 0 uniformly for

r ∈ R(dR), (v) every component of Lb(β,α0, r0, τ)×Bb(β,α0, r0, τ)−1 is uni-

formly bounded for β ∈ B̄(dB).

C5 (i)For any z ∈ Z, we have zT β0(τU,1) ≤ zT α0(τU,2), 2 exp{zT β0(τb)} ≤ exp{zT α0(τU,2)}.

(ii) Both infz∈Z Pr[C > exp{ZT β0(τU,1)}|Z] and infz∈Z Pr[C > 2 exp{ZT β0(τb)}|Z]

are bounded away from 0.

Condition C1 requires bounded covariates and is often met in practice. Condition

C2 imposes mild assumptions on the dependent censoring time T2. C2(ii) ensures

that
∫ τU,2

0
I[t ≥ exp{zT α̂(u)}]du can serve as a consistent estimate for F2(t|z)∧ τU,2,

while C2(iii) facilitates the asymptotic normality of s(β0, α̂, r, τ) and w(β0, α̂, r).

Condition C3 ensures that s{β0(τ),α0, r, τ} and w{β0(τ),α0, r, τ} are smooth in

both τ and r, and the conditional density functions of X, Y , T1 and T2 are uniformly

bounded. This type of assumptions are common in quantile regression models. Con-

dition C4 ensures the identifiability of the proposed estimator in a neighborhood of

β0 and r. Specifically, C4(i)–(ii) ensures that λ{β(τ)} is a one-to-one mapping

from B̄(dB) to
{
λ{β(τ)} : β ∈ B̄(dB), τ ∈ (0, τU,1]

}
, and has bounded deriva-
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tive against β(τ) for τ ∈ [ν1, τU,1]. Coupled with C4(iii), this further implies that

infτ∈[ν1,τU,1] min eig[−Bb{β0,α0, r0, τ}] can be bounded below by a positive number.

In fact, one can use simple manipulations to get

Bb{β0,α0, r0, τ} = −E

(
Z⊗2I[C > exp{ZT β0(τ)}]Ψ′

1{1 − τ, 1 − FT2
[exp{ZT β0(τ)}|Z], r0}

× fT1
[exp{ZT β0(τ)}|Z] exp{ZT β0(τ)}

)
,

where Ψ′
1(u, v, θ) = ∂Ψ(u, v, θ)/∂u ∈ (0, 1). Furthermore, it can be shown that

infτ∈(0,τU,1] min eig[−Bb{β0,α0, r0, τ}Hb{β0(τ)}−1] > 0 under boundary conditions

C5, when Ψ(u, v, θ) corresponds to the Clayton’s copula. Hence it is reasonable to

assume infτ∈(0,τU,1] min eig[−Bb{β,α0, r, τ}Hb{β(τ)}−1] > 0, as well as the unique-

ness of β̃(r), for (β, r) in the vicinity of (β0, r0). Finally, C5 imposes mild boundary

conditions that ensures the estimating equations to be unbiased.

3.4.2 Proof of Theorem 1

Lemma 3.4.1. For µ(a) = EZI{Y ≤ exp(ZT a), η = 1}, we have

sup
z∈Z,t

∣∣∣∣
∫ τU,2

0

I[t ≥ exp{zT α̂(u)}]du −
∫ τU,2

0

I[t ≥ exp{zT α0(u)}]du
∣∣∣∣

≤ 2CF sup
τ∈(0,τU,2]

||µ{α̂(τ)} − µ{α0(τ)}||.

Proof of Lemma 3.4.1. By regularity condition C2(ii) and Taylor expansion, we

have

sup
z∈Z

∣∣F2[exp{zT α̂(τ)}|z]−F2[exp{zT α0(τ)}|z]
∣∣ ≤ CF ||µ{α̂(τ)}−µ{α0(τ)}||, τ ∈ (0, τU,2],

where F2[exp{zT α0(τ)}|z] = τ . Moreover, let εF denote supz∈Z,τ∈(0,τU,2]

∣∣F2[exp{zT α̂(τ)}|z]−
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τ
∣∣, we can show

sup
z∈Z,t

∣∣∣∣
∫ τU,2

0

I[t ≥ exp{zT α̂(u)}]du −
∫ τU,2

0

I[t ≥ exp{zT α0(u)}]du

∣∣∣∣

≤ sup
z∈Z,t

∫ τU,2

0

I
{
F2(t|z) ∈

[
F2[exp{zT α̂(u)}|z] ∧ u, F2[exp{zT α̂(u)}|z] ∨ u

]}
du

≤ sup
z∈Z,t

∫ τU,2

0

I
{
F2(t|z) ∈ [u − εF , u + εF ]

}
du ≤ 2εF .

Here and in the sequel, we use ∧ to denote the minimum operator and ∨ to denote

the maximum operator. This completes the proof of Lemma 3.4.1. �

For any fixed θ, the copula function Ψ(u, v, θ) satisfies the Lipschitz condition

in u and v (Nelsen, 2006). Hence KA(u, v, θ) and KB(u, v, θ) are both Lipschitz

continuous in v when v ≤ τU,2. Therefore, we can use Lemma 3.4.1 and the fact that

supτ∈(0,τU,2] ||µ{α̂(τ)} − µ{α0(τ)}|| p→ 0 (Peng and Huang, 2008) to show

sup
z∈Z,r,b,τ

∣∣∣∣KA

{
τ,

∫ τU,2

0

I{zT b ≥ zT α̂(u)}du, g(zT r)
}

− KA

{
τ,

∫ τU,2

0

I{zT b ≥ zT α0(u)}du, g(zT r)
} ∣∣∣∣

p→ 0.

It follows that

sup
β,r,τ

||s(β, α̂, r, τ) − s(β,α0, r, τ)|| p→ 0. (3.11)

Next, we claim that G1 = {ZiPi(β,α, r, τ) : Zi ∈ Z, β,α ∈ Rp+1, r ∈ Rq+1, τ ∈

(0, 1)} is Donsker thus Glivenko Cantelli. This follows by noting that the class of indi-

cator functions is a VC-class, and by using the permanence properties of the Donsker

class (Van der Vaart and Wellner, 1996). Therefore, Glivenko-Cantelli theorem gives

sup
β,α,τ,r

||Sn(β,α, r, τ) − s(β,α, r, τ)|| = op(1). (3.12)

Since β̃(τ ; r) is the root to s(β,α0, r, τ) = 0, we can use simple manipulations and
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get

||s{β̂(r),α0, r, τ} − s{β̃(r),α0, r, τ}|| = ||s{β̂(r),α0, r, τ}||

≤ ||s{β̂(r), α̂, r, τ}|| + ||s{β̂(r),α0, r, τ} − s{β̂(r), α̂, r, τ}||. (3.13)

Combining (3.12) and the fact that supτ∈[ν1,τU,1]
||Sn{β̂(τ ; r), α̂, r, τ}|| = o(1), we get

supτ∈[ν1,τU,1] ||s{β̂(τ ; r), α̂, r, τ}|| p→ 0. Hence we can use (3.11) and (3.13) to get

sup
r,τ∈[ν1,τU,1]

||s{β̂(r),α0, r, τ} − s{β̃(r),α0, r, τ}|| p→ 0. (3.14)

By condition C4(i)–(iii), min eig[−Bb{β̃(r),α0, r, τ}] is bounded below by a positive

constant k, uniformly for τ ∈ [ν1, τU,1] and r ∈ R(dR), where ν1 can be any constant in

(0, τU,1]. Therefore, one can combine the inverse function theorem and (3.14) to show

that there exist a β̂(τ, r) ∈ B̄(dB). Moreover, Taylor expansion of s{β̂(r),α0, r, τ}

around β̃(τ ; r) gives

sup
r∈R(dR),τ∈[ν1,τU,1]

||β̂(τ ; r) − β̃(τ ; r)||

≤ sup
r∈R(dR),τ∈[ν1,τU,1]

1

k
||s{β̂(r),α0, r, τ} − s{β̃(r),α0, r, τ}|| p→ 0. (3.15)

This fact, combined with the Glivenko Cantelli theorem on W n(β,α, r), implies

that supr∈R(dR) ||W n(α̂, r)−w̃(α̂, r)|| p→ 0, where W n(α, r) = W n{β̂(r),α, r} and

w̃(α, r) = w{β̃(r),α, r}. On the other hand, we can use Lemma 3.4.1 again to show

supr∈R(dR) ||w̃(α̂, r) − w̃(α0, r)|| p→ 0. It follows that

sup
r∈R(dR)

||W n(α̂, r)−w̃(α0, r)|| ≤ sup
r∈R(dR)

[
||W n(α̂, r)−w̃(α̂, r)||+||w̃(α̂, r)−w̃(α0, r)||

] p→ 0.

(3.16)

Therefore, we can see w̃(α0, r̂) = op(1) from W n(α̂, r̂) = op(1). By regularity condi-

tions C4(iv), r0 is the unique zero crossing of w̃(α0, r) in a neighborhood of r0, and
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∂w̃(α0, r)/∂r is of full rank for r ∈ R(dR). It follows that r̂
p→ r0.

To complete the proof, we need to show the partial derivative of β̃(τ ; r) with

respect to r is bounded at r = r0. Taking partial derivative ∂/∂r on both sides of

s{β̃(r),α0, r, τ} = 0, we get

Bb(β0,α0, r0, τ)
∂β̃(τ ; r)

∂r

∣∣
r=r0

+ Br(β0,α0, r0, τ) = 0.

By condition C3(ii), every component of Br(β0,α0, r0, τ) is uniformly bounded for

τ ∈ [ν1, τU,1]. Coupled with infτ∈[ν1,τU,1] min eig{−Bb(β0,α0, r0, τ)} > 0, this implies

∂β̃(τ ; r)

∂r

∣∣
r=r0

= −Bb(β0,α0, r0, τ)−1Br(β0,α0, r0, τ) (3.17)

and is uniformly bounded for τ ∈ [ν1, τU,1]. Therefore, we can show

sup
τ∈[ν1,τU,1]

||β̃(τ ; r̂) − β̃(τ ; r0)|| = op(1) (3.18)

following the consistency of r̂. Combining this with Equation (3.15) and the following

inequality,

||β̂(τ)−β0(τ)|| = ||β̂(τ ; r̂)− β̃(τ ; r0)|| ≤ ||β̂(τ ; r̂)− β̃(τ ; r̂)||+ ||β̃(τ ; r̂)− β̃(τ ; r0)||,

we can show the uniform consistency of β̂(τ) for τ ∈ [ν1, τU,1]. This completes the

proof of Theorem 3.1.1.
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3.4.3 Proof of Theorem 2

Lemma 3.4.2. For any sequence {βn(τ), τ ∈ [ν1, τU,1]}∞n=1 ∈ B̄(dB) satisfying

supτ∈[ν1,τU,1] ||s(βn,α0, r0, τ) − s(β0,α0, r0, τ)|| p→ 0, we have

sup
τ∈[ν1,τU,1]

n1/2||{Sn(βn,α0, r0, τ)−Sn(β0,α0, r0, τ)}−{s(βn,α0, r0, τ)−s(β0,α0, r0, τ)}|| p→ 0.

Similarly, we can show

sup
τ∈[ν1,τU,1]

n1/2
∣∣∣∣Sn(β0,αn, r0, τ) − Sn(β0,α0, r0, τ) − {s(β0,αn, r0, τ) − s(β0,α0, r0, τ)}

∣∣∣∣ p→ 0

for any sequence{αn(τ), τ ∈ (0, τU,2]}∞n=1 satisfying supτ∈(0,τU,2] ||µ{αn(τ)}−µ{α0(τ)}|| p→

0.

Proof of Lemma 3.4.2. Define σ2
B(β) = supτ∈[ν1,τU,1]

Var{Pi(β,α0, r0, τ)−Pi(β0,α0, r0, τ)},

Following the arguments of Lai and Ying (1988) and Peng and Huang (2008), it is

sufficient for the first part to hold if σ2
B(βn)

p→ 0. By condition C4(i)–(iii), one can

use Taylor expansion on s(βn,α0, r0, τ) around β0(τ) to show supτ∈[ν1,τU,1]
||βn(τ) −

β0(τ)|| p→ 0. Furthermore, the conditional density functions fX(t|z), fY (t|z) and

fT2
(t|z) are bounded above uniformly in t and z, and KA(u, v, θ) is Lipschitz conti-

nous in v. These facts allow us to mimic lemma B.1. in Peng and Huang (2008) and

get σ2
B(βn)

p→ 0.

Similarly, define σ2
A(α) = supτ∈[ν1,τU,1]

Var{Pi(β0,α, r0, τ) − Pi(β0,α0, r0, τ)}, a

sufficient condition for the second part is σ2
A(αn)

p→ 0, which follows directly from

Lemma 3.4.1 and the Lipschitz continuity of KA(u, v, θ) in v. This completes the

proof of Lemma 3.4.2. �

A. Weak Convergence of n1/2[s{β̂(r0),α0, r0, τ} − s(β0,α0, r0, τ)]

By simple manipulations, we can show n1/2[Sn{β̂(r0), α̂, r0, τ}−Sn(β0,α0, r0, τ)]
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equals

n1/2[Sn(β0, α̂, r0, τ)−Sn(β0,α0, r0, τ)]+n1/2[Sn{β̂(r0),α0, r0, τ}−Sn(β0,α0, r0, τ)]+εS

(3.19)

where εS = n1/2[Sn{β̂(r0), α̂, r0, τ} − Sn(β0, α̂, r0, τ)] − n1/2[Sn{β̂(r0),α0, r0, τ} −

Sn(β0,α0, r0, τ)]. Based on the uniform consistency of s{β̂(r0),α0, r0, τ} for τ ∈

[ν1, τU,1] in Equation (3.14), and the uniform consistency of µ{α̂(τ)} for τ ∈ (0, τU,2]

in Peng and Huang (2008), we can use Lemma 3.4.2 to show

n1/2[Sn(β0, α̂, r0, τ) − Sn(β0,α0, r0, τ)] = n1/2[s(β0, α̂, r0, τ) − s(β0,α0, r0, τ)] + oτ∈[ν1,τU,1]
p (1),

n1/2[Sn{β̂(r0),α0, r0, τ} − Sn(β0,α0, r0, τ)] = n1/2[s{β̂(r0),α0, r0, τ} (3.20)

− s(β0,α0, r0, τ)] + oτ∈[ν1,τU,1]
p (1).

Here and in the sequel, oS

p (1) means convergence to 0 in probability uniformly on

set S. Similarly, we use oS

p (n−1/2) to denote uniform root n convergence to 0 in

probability on set S. The remainder term εS can be shown to be o
τ∈[ν1,τU,1]
p (1) by

similar arguments.

According to Peng and Huang (2008),

n1/2[µ{α̂(u)} − µ{α0(u)}] = −n1/2

n∑

i=1

φ{ZiR
Y
i (α0, u)} + ou∈(0,τU,2]

p (1), (3.21)

where RY
i (α, u) = I[Yi ≤ exp{ZT

i α(u)}, η = 1] −
∫ u

0
I[Yi ≥ exp{ZT

i α(t)}]dH(t),

H(t) = − log(1 − t) for 0 ≤ t < 1, and φ is a continuous linear map that involves

product integration. The detailed form of φ can be found in Appendix B of Peng

and Huang (2008). Using empirical process techniques, the authors showed that

−n1/2
∑n

i=1 φ{ZiR
Y
i (α0, u)} converges weakly to a Gaussian process for u ∈ (0, τU,2].

With these facts, now we look at the asymptotic behavior of n1/2
[
s(β0, α̂, r0, τ) −

s(β0,α0, r0, τ)
]
.
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By Lemma 3.4.1 and the Lipschitz continuity of KA(u, v, θ) in v, we can use Taylor

expansion to see

n1/2{s(β0, α̂, r0, τ) − s(β0,α0, r0, τ)}

= −n1/2E

{
ZI{log Y > ZT β0(τ)} × dA

{
τ, F2[exp{ZT β0(τ)}|Z], g(ZT r0)

}
×

[ ∫ τU,2

0

I{ZT β0(τ) ≥ ZT α̂(u)}du −
∫ τU,2

0

I{ZT β0(τ) ≥ ZT α0(u)}du
]}

+ oτ∈[ν1,τU,1]
p (1),

(3.22)

where dA(u, v, θ) = ∂KA(u, v, θ)/∂v. We will proceed to show that n1/2{s(β0, α̂, r0, τ)−

s(β0,α0, r0, τ)} converges weakly to a Gaussian process with mean 0, and present

the specific form of its influence functions.

First consider the one-sample case, where exp{α̂(u)}, u ∈ (0, τU,2], is asymptoti-

cally equivalent to the uth quantile of the Nelson Aalen estimator (Peng and Huang,

2008). Specifically, it can be shown that F̂NA
2 [exp{α̂(u)}] = u + o

u∈(0,τU,2]
p (n−1/2),

with F̂NA
2 [·] representing the Nelson Aalen estimator of T2’s distribution function.

Therefore, we get

∫ τU,2

0

I{β0(τ) ≥ α̂(u)}du =

∫ τU,2

0

I
(
F̂NA

2 [exp{β0(τ)}] ≥ u
)
du + op(n

−1/2)

= F̂NA
2 [exp{β0(τ)}] + op(n

−1/2),

where F2[exp{β0(τ)}] ≤ τU,2 by regularity condition C5(i). It is well-known that

n1/2{F̂NA
2 (t)−F2(t)} is asymptotically Gaussian and can be written as n−1/2

∑n
i=1 πi(t)+

o(1), where πi(t) are i.i.d. and form a Donsker’s class with mean 0 (Kosorok, 2008).

Facilitated by that, we can see the right-hand-side of Equation (3.22) equals

−n−1/2

n∑

i=1

dA

{
τ, F2[exp{β0(τ)}], g(r0)

}
πi[exp{β0(τ)}] Pr{log Y > β0(τ)}+oτ∈[ν1,τU,1]

p (1)

(3.23)
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in the one-sample case. The arguments can be easily extended to the K-sample case,

where Z = {z1,z2, ...,zK} and Zi = zk if and only if observation i belongs to the

kth group. Similar to Equation (3.23), we can show the right-hand-side of Equation

(3.22) equals

−n−1/2

n∑

i=1

K∑

k=1

[
zkdA

{
τ, F2[exp{zT

k β0(τ)}|zk], g(zT
k r0)

}
πk,i[exp{zT

k β0(τ)}]×

Pr{log Y > zT
k β0(τ)|zk}

]
+ oτ∈[ν1,τU,1]

p (1), (3.24)

where πk,i(t) is the influence function for F̂NA
2,k (t), the Nelson-Aalen estimator within

the kth group, and equals 0 when Zi 6= zk. By the boundedness of dA(·), Z and

Pr{log Y > zT
k β0(τ)|zk}, we can show

∑K
k=1 zkdA

{
τ, F2[exp{zT

k β0(τ)}|zk], g(zT
k r0)

}
×

Pr{log Y > zT
k β0(τ)|zk}πk,i[exp{zT

k β0(τ)}] is also mean 0 and form a Donsker’s class,

as Donsker’s property is preserved under Lipschitz transformations. It follows that

(3.24) converges weakly to a mean 0 Gaussian process, by properties of Donsker’s

class.

Next consider the case when Z involves continous components. Define vA(a, τ) =

EV A(a, τ) and JA(a, τ) = ∂vA(a, τ)/∂a, where V A(a, τ) is defined in condition

C2(iii) in Appendix A. From condition C2(iii), each component of JA{α0(u), τ}B−1
a {α0(u)}

is uniformly bounded for any u ∈ (0, τU,2] and τ ∈ [ν1, τU,1]. Therefore, we can combine

Equation (3.21) and (3.22) to get

n1/2{s(β0, α̂, r0, τ) − s(β0,α0, r0, τ)}

=

∫ τU,2

0

n1/2[vA{α̂(u), τ} − vA{α0(u), τ}]du + oτ∈[ν1,τU,1]
p (1)

= −n−1/2

n∑

i=1

∫ τU,2

0

JA{α0(u), τ}B−1
a {α0(u)}φ{ZiR

Y
i (α0, u)}du + oτ∈[ν1,τU,1]

p (1).

(3.25)

It is not hard to show the right-hand-side converges weakly to a mean 0 Gaussian
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process by the boundedness of JA{α0(u), τ}B−1
a {α0(u)} and the linearity of the

integral operator. Therefore, we can see that n1/2[s(β0, α̂, r0, τ)− s(β0,α0, r0, τ)] is

asymptotically equivalent to sum of i.i.d. influence functions and converges weakly

to Gaussian, no matter Z is discrete or not. In the sequel we will unify (3.24) and

(3.25) and write

n1/2{s(β0, α̂, r0, τ) − s(β0,α0, r0, τ)} = n−1/2

n∑

i=1

ρi(β0,α0, r0, τ) + oτ∈[ν1,τU,1]
p (1).

(3.26)

Now by Sn{β̂(r0), α̂, r0, τ} = o
τ∈[ν1,τU,1]
p (n−1/2), we can see from Equation (3.19)

and (3.20) that

n1/2[s{β̂(r0),α0, r0, τ} − s(β0,α0, r0, τ)]

= −n1/2Sn(β0,α0, r0, τ) − n1/2{s(β0, α̂, r0, τ) − s(β0,α0, r0, τ)} + oτ∈[ν1,τU,1]
p (1),

where −n1/2Sn(β0,α0, r0, τ) converges weakly to Gaussian by properties of the Donsker’s

class (Van der Vaart and Wellner, 1996). Moreover, we can combine Equation (3.26)

and get

n1/2[s{β̂(r0),α0, r0, τ} − s(β0,α0, r0, τ)] = n−1/2

n∑

i=1

χi(β0,α0, r0, τ) + o[ν1,τU,1]
p (1),

(3.27)

where χi(β0,α0, r0, τ) = −ZiPi(β0,α0, r0, τ)−ρi(β0,α0, r0, τ) and n−1/2
∑n

i=1 χi(β0,α0, r0, τ)

converges weakly to a Gaussian process with mean 0.

B. Weak Convergence of n1/2W n{β̂(r0), α̂, r0}
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Using similar arguments as Equation (3.19) and Lemma 3.4.2, we have

n1/2[W n{β̂(r0), α̂, r0} − W n(β0,α0, r0)]

=n1/2[W n(β0, α̂, r0) − W n(β0,α0, r0)] + n1/2[W n{β̂(r0),α0, r0} − W n(β0,α0, r0)] + εW

=n1/2[w(β0, α̂, r0) − w(β0,α0, r0)] + n1/2[w{β̂(r0),α0, r0} − w(β0,α0, r0)] + op(1) + εW ,

(3.28)

where εW = n1/2
[
W n{β̂(r0), α̂, r0} − W n{β0, α̂, r0}

]
− n1/2

[
W n{β̂(r0),α0, r0} −

W n(β0,α0, r0)
]

can also be shown to be op(1). It is easy to see n1/2W n(β0,α0, r0)

converges weakly to a Gaussian process by properties of Donsker’s class. Moreover,

we can follow the arguments in (3.24) and (3.25) to show

n1/2{w(β0, α̂, r0) − w(β0,α0, r0)} = n−1/2

n∑

i=1

κi(β0,α0, r0) + op(1). (3.29)

The i.i.d. influence functions κi(β0,α0, r0) take the form

−
K∑

k=1

∫ τb

τa

[
zkdB

{
τ, F2[2 exp{zT

k β0(τ)}|zk], g(zT
k r0)

}
×

Pr[Y > 2 exp{zT
k β0(τ)}|zk]πk,i[2 exp{zT

k β0(τ)}]dτ

]
, (3.30)

in the K-sample case, and equals

−
∫ τU,2

0

JB{α0(u)}B−1
a {α0(u)}φ{ZiR

Y
i (α0, u)}du (3.31)

when Z contains continuous components, where JB{a} = ∂E{V B(a)}/∂a and

V B(a) was defined in regularity condition C2(iii). Following that, it is not hard

to show n1/2{w(β0, α̂, r0) − w(β0,α0, r0)} converges weakly to a mean 0 normal

distribution.

On the other hand, we can use regularity condition C4(iv) and Taylor expansion
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to show

n1/2[w{β̂(r0),α0, r0} − w(β0,α0, r0)]

=

∫ τb

τa

[
Lb{β0(τ),α0, r0, τ}Bb{β0(τ),α0, r0, τ}−1×

n1/2[s{β̂(r0),α0, r0, τ} − s(β0,α0, r0, τ)]

]
dτ + op(1). (3.32)

Combining Equation (3.27), (3.28), (3.29) and (3.32), we can show

n1/2W n{β̂(r0), α̂, r0} = n−1/2

n∑

i=1

ιi(β0,α0, r0) + op(1) (3.33)

and converges weakly to normal with mean 0, where ιi(β0,α0, r0) equals Z̄iQi(β0,α0, r0)+

κi(β0,α0, r0) +
∫ τb

τa
Lb{β0(τ),α0, r0, τ}Bb{β0(τ),α0, r0, τ}−1χi(β0,α0, r0, τ)dτ .

C. Asymptotic Normality of n1/2(r̂−r0) and Weak Convergence of n1/2
{
β̂(τ)−

β0(τ)
}

Using s{β̃(r̂),α0, r̂, τ} = s(β0,α0, r0, τ) = 0, we can obtain the following inequality

||s{β̂(r̂),α0, r0, τ} − s{β̂(r0),α0, r0, τ}|| ≤
[
||s{β̂(r̂),α0, r0, τ} − s{β̂(r̂),α0, r̂, τ}||

+ ||s{β̂(r̂),α0, r̂, τ} − s{β̃(r̂),α0, r̂, τ}|| + ||s{β̂(r0),α0, r0, τ} − s(β0,α0, r0, τ)||
]
.

According to regularity condition C3(ii), we can use r̂
p→ r0 to get

supτ∈[ν1,τU,1] ||s{β̂(r̂),α0, r0, τ} − s{β̂(r̂),α0, r̂, τ}|| p→ 0. When combined with the

above inequality and Equation (3.14), this implies supτ∈[ν1,τU,1] ||s{β̂(r̂),α0, r0, τ} −

s{β̂(r0),α0, r0, τ}||
p→ 0. Hence we can use regularity condition C4(ii) and Taylor ex-

pansion to show supz∈Z,τ∈[ν1,τU,1] ||β̂(τ ; r̂)− β̂(τ ; r0)||
p→ 0. Therefore, we can combine
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regularity condition C3(ii) and mimic the arguments in Lemma 3.4.2 to show

sup
τ∈[ν1,τU,1]

Var[Pi{β̂(r̂),α0, r̂, τ} − Pi{β̂(r0),α0, r0, τ}]
p→ 0

and

sup
τ∈[ν1,τU,1]

∣∣∣∣Sn{β̂(r̂),α0, r̂, τ}−Sn{β̂(r0),α0, r0, τ}

− s{β̂(r̂),α0, r̂, τ} + s{β̂(r0),α0, r0, τ}
∣∣∣∣ = op(n

−1/2).

(3.34)

On the other hand, we can show by similar arguments that

sup
τ∈[ν1,τU,1]

∣∣∣∣Sn{β̂(r̂), α̂, r̂, τ}−Sn{β̂(r0), α̂, r0, τ}

− Sn{β̂(r̂),α0, r̂, τ} + Sn{β̂(r0),α0, r0, τ}
∣∣∣∣ = op(n

−1/2).

Noting that supτ∈[ν1,τU,1]
Sn{β̂(r), α̂, r, τ} = o(n−1/2), we have

sup
τ∈[ν1,τU,1]

||Sn{β̂(r̂),α0, r̂, τ} − Sn{β̂(r0),α0, r0, τ}|| = op(n
−1/2).

Combined with Equation (3.34), this further implies

sup
τ∈[ν1,τU,1]

||s{β̂(r̂),α0, r̂, τ} − s{β̂(r0),α0, r0, τ}|| = op(n
−1/2).

By the uniform convergence of β̂(τ ; r0) to β0(τ) in τ ∈ [ν1, τU,1], we can use Taylor

expansion and get

sup
τ∈[ν1,τU,1]

||β̂(τ ; r̂)−β̂(τ ; r0)+Bb(β0,α0, r0, τ)−1Br(β0,α0, r0, τ)(r̂−r0)|| = op(n
−1/2∨||r̂−r0||).

(3.35)
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By the consistency of r̂ and the uniform consistency of β̂(τ ; r0), we can combind

Taylor expansion and Equation (3.35) to see

w{β̂(r̂),α0, r̂} − w{β̂(r0),α0, r0}

= Lr(β0,α0, r0)(r̂ − r0) +

∫ τb

τa

Lb(β0,α0, r0, τ){β̂(τ ; r̂) − β̂(τ ; r0)}dτ + op(n
−1/2 ∨ ||r̂ − r0||)

= Dr(β0,α0, r0) × (r̂ − r0) + op(n
−1/2 ∨ ||r̂ − r0||), (3.36)

where Dr(β0,α0, r0) = Lr(β0,α0, r0) −
∫ τb

τa
Lb(β0,α0, r0, τ)Bb(β0,α0, r0, τ)−1 ×

Br(β0,α0, r0, τ)dτ . In fact, it can be shown that Dr(β0,α0, r0) equals ∂w{β̃(r),α0, r}/∂r
∣∣
r=r0

basing on Equation (3.17).

Again mimicking the arguments in Lemma 3.4.2, n1/2[W n{β̂(r̂), α̂, r̂}−W n{β̂(r0), α̂, r0}]

can be approximated by n1/2[w{β̂(r̂), α̂, r̂} − w{β̂(r0), α̂, r0}
]
, and furthermore by

n1/2[w{β̂(r̂),α0, r̂} − w{β̂(r0),α0, r0}]. This fact, coupled with W n{β̂(r̂), α̂, r̂} =

o(n−1/2) and Equation (3.36), gives

−n1/2W n{β̂(r0), α̂, r0} = Dr × n1/2(r̂ − r0) + op(1 ∨ n1/2||r̂ − r0||),

which further implies

n1/2(r̂ − r0) = −n−1/2

n∑

i=1

D−1
r ιi(β0,α0, r0) + op(1). (3.37)

when combined with equation (3.33). It follows immediately that n1/2(r̂ − r0) con-

verges weakly to a normal distribution with mean 0.
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Finally, we combine Equation (3.27) and (3.35) to see

n1/2{β̂(τ) − β0(τ)} = n1/2{β̂(τ ; r̂) − β̂(τ ; r0)} + n1/2{β̂(τ ; r0) − β0(τ)}

= n−1/2

n∑

i=1

[
Bb(β0,α0, r0, τ)−1Br(β0,α0, r0, τ)D−1

r ιi(β0,α0, r0)

+ Bb(β0,α0, r0, τ)−1χi(β0,α0, r0, τ)
]
+ op(1),

which implies that n1/2{β̂(τ)−β0(τ)}, τ ∈ [ν1, τU,1], converges weakly to a Gaussian

process with mean 0. This completes the proof of Theorem 3.1.2.

3.5 Convergence Criteria

Reliable convergence criteria are needed to determine a good termination point of

the proposed iterative algorithm in Section 3.1.3. We first define convergence for

step D.0-D.2, where a sequence of {β̂[k,m]
(τ) : m = 0, 1, . . . } is obtained by solving

equation 3.9 iteratively to get β̂(τ ; r) for a fixed r = r[k]. For brevity we tem-

porarily omit k here and denote the sequence as {β̂[m]
(τ) : m = 1, 2, . . . }. Define

D{β1,β2} = maxi=0,1,...,p

∫ τU,1

ν1

||β(i)
2 (τ)−β

(i)
1 (τ)||dτ , which characterizes the distance

between two functions β1(τ) and β2(τ) for τ ∈ [ν1, τU,1). We regard the sequence

as converged at the qth iteration for a certain tolerance level tolb if D{β̂[q]
, β̂

[q−1]} ≤

tolb, and set β̂(τ ; r) as β̂
[q]

(τ). During the iterations, one may encounter slight

oscillations at a fraction of the grid points, such that D{β̂[q]
, β̂

[q−1]} > tolb but

D{β̂[q]
, β̂

[q−2]} ≤ tolb. If that happens, we also regard the sequence as converged and

set β̂(τ ; r) as {β̂[q]
(τ) + β̂

[q−1]
(τ)}/2. If neither of D{β̂[q]

, β̂
[q−1]} and D{β̂[q]

, β̂
[q−2]}

is less than tolb, then convergence is not yet achieved at the qth iteration. We would

proceed with the iterations until convergence, or a maximum number of iterations

denoted by max.iter0, at which we re-assess convergence with a relaxed tolerance

level tolb.relax. The iterations are concluded as non-convergent if convergence is not
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satisfied at max.iter0 with tolb.relax.

The convergence criteria for Step A-D need to concern both {β̂[k]
(τ) : k = 0, 2, . . . }

and {r̂[k](τ) : k = 1, 2, . . . }. Convergence of the former can be assessed in exactly

the same way as for {β̂[k,m]
(τ) : m = 1, 2, . . . }, except that we may choose a different

maximum number of iteration, denoted as max.iter1. For convergence to be achieved

at step q, we also need to require ||Ken(r[q]) − Ken(r[q−1])|| ≤ tolk, where Ken(r)

maps the association parameter r to the corresponding Kendall’s tau coefficient, and

tolk is a prespecified tolerence level. We specify the criteria on the Kendall’s tau’s

scale instead of on r itself, such that we have a unified criteria for different copula

functions.

In both Section 3.2.1 and 3.2.2, we choose tolb = 5e − 4, and tolb.relax = tolk =

5e − 3. Also we set max.iter0 = 10 and max.iter1 = 20.
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Chapter 4

Temporal Regression for

Left-truncated Semi-competing

Risks Data
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4.1 Regression Procedures

4.1.1 Data and Model

The data structure considered here is identical to that in Chapter 1. Specifically,

the semi-competing risks data comprises (X,Y, δ, η, Z), where X = min(T1, T2, C),

Y = min(T2, C), δ = I(T1 ≤ Y ), η = I(T2 ≤ C), and Z = (1, Z1, . . . , Zp)
T is the

(p + 1) × 1 covariate vector. Let L denote time to left truncation to the terminat-

ing event, data is observable only when L < Y . We denote the observed data as

(L∗
i , X

∗
i , Y ∗

i , δ∗i , η
∗
i , Z

∗
i )n

i=1, which are identically and independently distributed and

follow the conditional distribution of (L,X, Y, δ, η, Z) given L < Y .

Here we consider regression modeling of the cumulative incidence via a class of

semiparametric models that accomodate time-varying regression coefficients, as in

Scheike et al. (2008). Given covariate vector Z, we assume that

F1(t|Z) = g{ZT β0(t)}, (4.1)

where g(·) is a prespecified monotone link function, and β0(t) = {β(0)
0 (t), β

(1)
0 (t), ..., β

(p)
0 (t)}T

is the vector of unknown regression coefficients. The first component of β0(t) corre-

sponds to the g−1 transformed baseline cumulative incidence when Z = (1, 0T )T ,

and the remaining p components correspond to covariate effects on the cumulative

incidence function at time t.

When g(x) = 1−exp{− exp(x)}, model (4.1) can be viewed as an extension of the

proportional subdistribution hazards model (Fine and Gray, 1999), which corresponds

to the situation when β(j)(t), j = 1, 2, ..., p, are constant across t. Alternatively, model

(4.1) becomes the proportional odds model when g(x) = exp(x)/{1 + exp(x)}. This

allows us to investigate the odds of observing the nonterminating event before time

t. Another useful link is g(x) = 1 − exp(−x), which leads to an additive risk model
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for T1.

It is worth pointing out that the model (4.1) considered here differs from the cu-

mulative incidence quantile regression model (2.1) in Chapter 2 in two major aspects.

First, model (4.1) formulates the effects of covariates directly on the cumulative inci-

dence function, as compared to model (2.1) that formulates the effects on cumulative

incidence through its quantile functions. Second, the results from model (4.1) and

(2.1) should be interpreted in different ways. In the Denmark diabetes registry data,

for example, the regression coefficients in (2.1) reflect how covariates shifts the time

to which a certain percentage of patients experience the DN. By constrast, the regres-

sion coefficients in (4.1) characterize the relationship between covariates and patients’

DA status at each specific time points. The two models can both offer meaningful

and yet complimentary interpretations on the mechanisms of DN progression.

4.1.2 Estimation

To estimate β0(t), we similarly utilize the following relationship between I(X∗
i ≤

t, δ∗i = 1, η∗
i = 1) and the cumulative incidence function. Letting G(y, z) = P (L <

y ≤ C|Z = z) and α(z) = P (L < Y |Z = z), we have

E

{
I(X∗

i ≤ t, δ∗i = 1, η∗
i = 1)

G(Y ∗
i , Z∗

i )/α(Z∗
i )

∣∣∣∣Z
∗
i

}
= F1(t|Z∗

i ). (4.2)

In Chapter 2, we propose a consistent estimator of W (y, z) ≡ G(y, z)/α(z), denoted

as Ŵ (y, z). Therefore, an IPCW-type estimating equation can be constructed as

follows:

1√
n

n∑

i=1

Di{β(t)}Vi{β(t)}
[I(X∗

i ≤ t, δ∗i = 1, η∗
i = 1)

Ŵ (Y ∗
i , Z∗

i )
− g{Z∗T

i β(t)}
]

= 0, (4.3)
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where Di{β(t)} = −∂g{Z∗T
i β(t)}/∂β(t), and Vi{β(t)} is a scaler weight function. If

we set Vi{β(t)} = 1, the root finding in (4.3) is equivalent to the minimization of the

following objective function

1√
n

n∑

i=1

[I(X∗
i ≤ t, δ∗i = 1, η∗

i = 1)

Ŵ (Y ∗
i , Z∗

i )
− g{Z∗T

i β(t)}
]2

,

the minimizor of which can be found via standard statistical software, such as the

optim function in R. Alternatively, we can also solve (4.3) through existing root-

finding functionalities for generalized linear models, like the R function glm. The

resulting β̂(t) is piecewise constant and jumps only at the observed failure times of

T ∗
1 .

In Chapter 2, we showed that Ŵ (y, z)−W (y, z) = n−1
∑n

i=1 wi(y, z) + op(n
−1/2),

where wi(y, z) is of expectation zero and can be consistently estimated by ŵi(y, z).

The detailed form of wi(y, z) and ŵi(y, z) can be found in Section 2.4.1. Combining

this with empirical process arguments, we can show that β̂(t) is uniformly consis-

tent for t ∈ [l, u], where l and u are positive constants subject to certain regularity

conditions. Moreover, it can be shown that
√

n{β̂(t) − β0(t)} converges weakly to

a mean-zero Gaussian process with covariance matrix Σ(s, t) = E{ξ(s)ξ(t)T}. A

consistent estimator of Σ(s, t) may be given by n−1
∑n

i=1 ξ̂i(s)ξ̂i(t)
T , where

ξ̂i(t) = −
[
n−1

n∑

i=1

Di{β̂(t)}⊗2Vi{β̂(t)}
]−1

×
(

Di{β̂(t)}Vi{β̂(t)}[I(X∗
i ≤ t, δ∗i = 1, η∗

i = 1)

Ŵ (Y ∗
i , Z∗

i )
− g{Z∗

i β̂(t)}]

− 1

n

n∑

j=1

Dj{β̂(t)}Vj{β̂(t)}I(X∗
j ≤ t, δ∗j = 1, η∗

j = 1)

Ŵ (Y ∗
j , Z∗

j )2
ŵi(Y

∗
j , Z∗

j )

)
.
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4.1.3 Second Stage Inferences

Besides evaluating β0(t) on a range of t, it is also practically meaningful to provide

summary measures of the temporal covariate effects. We define the trimmed mean

effect η(j) = {
∫ u

l
β

(j)
0 (t)dt}/(u − l), j = 1, 2, ..., p, which can be interpreted as the

average effect of Zj on the transformed cumulative incidence function when t ranges

from u to l. A consistent estimator of η(j) is given by η̂(j) = {
∫ u

l
β̂

(j)
0 (t)dt}/(u − l),

where n1/2(η̂(j) − η(j)) converges in distribution to normal distribution with mean 0.

The standard error of n−1/2{η̂(j)−η(j)} can be consistently estimated by n−1
∑n

i=1 ι̂
(j)2
i ,

where ι̂(j) = {
∫ u

l
ξ̂

(j)
i (s)ds}/(u − l).

We also conduct formal hypothesis testing to access whether covariate Zj has a

significant effect on the cumulative incidence. The null hypothesis is specified as

H
(j)
01 : β

(j)
0 (t) = 0. A natural Wald-type test statistics T (j)

mean can be constructed based

on the trimmed mean effect estimate η̂(j). Alternatively, one can define a more robust

test statistics Tsup as

T (j)
sup = n1/2 sup

t∈[l,u]

|β̂(j)(t)Φ(t)|,

where the weight function Φ(t) can be chosen as the inverse of the estimated standard

error of β̂(j)(t). Based on the supreme-norm, T (j)
sup is omnibus for all departures from

H
(j)
01 . The distribution of T (j)

sup under the null hypothesis is rather complicated but

can be approximated via resampling.

Furthermore, it is also important to access whether the effect of Zj is constant

for t ∈ [l, u]. To this end, we specify the null hypothesis as H
(j)
02 : β

(j)
0 (t) = c0 and

define T (j)
cons =

∫ u

l
Ξ(t)β̂(j)(t)dt − η̂(j), where Ξ(t) is a nonconstant function satisfying

∫ u

l
Ξ(t) = 1. Again wald-type hypothesis testing can be conducted, utilizing influence

function based standard error estimates. In practice, the form of Ξ(t) can be chosen

based on scientific interests or prior knowledge of the covariate effects. For example,

one may set Ξ(t) = 2I{t ≤ (l+u)/2}/(u− l) if there is interest in accessing monotone
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trend in β
(j)
0 (t).

4.2 Numerical Studies

4.2.1 Simulations

We conduct some preliminary simulations to evaluate the performance of the proposed

estimator. Here we study the situation when g(x) = log{− log(1−x)}. The covariate

vector Z = (1, Z1, Z2)
T , where Z1 ∼ Uniform(0, 1) and Z2 ∼ Bernoulli(0.5). The

cumulative incidence of T1 satisfies

log[− log{1 − F1(t|Z)}] = log
(
− log[{1 − p + p exp(−t)}

)
+ Z1b1(t) + Z2b2(t)

for t ≤ 3, where p = 0.5, b1(t) = 0.75, and b2(t) = 0.4t/(0.4t + 1) is a monotone

function of t. We generated T2 from a Cox proportional hazards model with regression

coefficient γ0 = (0.4,−0.2)T and set the baseline to be Weibull(shape = 0.9, scale =

5). The left truncation time L = rL × Uniform(0, 2.1), where rL ∼ Bernoulli(0.8).

This truncation scheme leads to 20% left truncation on T2. We let the censoring

time C = L + D, where D ∼ Uniform(6, 7.5) and is independent of L. Overall, the

frequency of T1 and T2 being observed is 62% and 75% respectively.

We performed the proposed analyses on 1000 simulated datasets with sample

size n = 200 and 400. The simulation results are summaried in Table 1 below.

We reported the empirical bias (EmpBias), empirical standard error (EmpSD), and

average of estimated standard errors (EstSD) of β̂(t) at t = 0.8, 1.6, 2.4, as well as the

empirical coverage probabilities of the 95% Wald-type confidence intervals (COV95).

It is observed that β̂(t) is virtually unbiased. The relatively larger bias at small t

may have been because that β(0)(t) goes to −∞ when t → 0. We observe that the

magnitude of bias shrinks with the sample size. The standard error estimates are
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quite close to their empirical counterparts. The empirical coverages of the confidence

intervals based on normal approximation agree with the nominal level 95%.

Table 4.1: Simulation studies: empirical biases, empirical standard errors, average
standard error estimates of β̂(t), and the empirical coverage probabilities of Wald-
type confidence intervals.

t EmpBias EmpSD EstSD COV95

β̂(0) β̂(1) β̂(2) β̂(0) β̂(1) β̂(2) β̂(0) β̂(1) β̂(2) β̂(0) β̂(1) β̂(2)

n=200
0.8 -55 27 9 424 610 346 417 610 349 944 944 949
1.6 -34 18 8 320 474 272 333 506 286 950 956 956
2.4 -28 14 8 311 479 272 324 510 283 955 961 955

n=400
0.8 -19 -1 6 280 411 234 291 424 244 966 966 957
1.6 -3 -17 5 219 322 187 234 353 200 964 966 963
2.4 0 -18 3 216 334 185 228 357 198 964 966 966

We also performed second stage inferences on β
(j)
0 (t), j = 1, 2. Table 4.2 reports

the summary statistics of the trimmed mean effect estimates η̂(j)(t). We see that the

trimmed mean effects are accurately estimated, and the average estimated standard

errors of η̂(j)(t) matches the empirical values. In addition, we conducted the signif-

icance test for Z1 and Z2 via test statistics T (j)
mean, j = 1, 2, and the constancy test

through T (j)
cons. We summarized the performances of the two tests via their empirical

rejection rates (ERR), under columns H
(j)
01 and H

(j)
02 respectively (Table 4.2). Judg-

ing by these results, the significance test has reasonably good power in detecting the

departure from the null hypothesis, and the power increases with the sample size.

Furthermore, the constancy test is satisfactory in terms of size and power.

Therefore, we can see that the proposed estimators work well under this setup.

In near future, we will investigate their performances with other truncation schemes

and link functions.
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Table 4.2: Simulation studies: empirical bias, empirical standard errors, average
standard error estimates of the trimmed mean effect estimates η̂(j), and the empirical
rejection rates of the hypothesis tests.

n j η(j) H
(j)
01 H

(j)
02

EmpBias EmpSD EstSD ERR ERR
200 1 0.021 0.474 0.502 0.323 0.049

2 0.008 0.270 0.284 0.265 0.277
400 1 0.000 0.341 0.351 0.556 0.055

2 0.006 0.188 0.200 0.522 0.461

4.2.2 Analysis of Denmark Diabetes Registry Study

In Section 2.2.2, we performed quantile regression analysis for the cumulative inci-

dence of diabetic nephropathy (DN) , among the cohort of subjects that were born

before 1940 and had diabetic onset age greater or equal to 15 in the Denmark diabetes

registry study. There were two covariates, Z1 and Z2, which are diabetic onset age

and gender respectively. The analysis suggests that older diabetic onset age is asso-

ciated with slower DN progression, and the association is more pronounced among

subjects with relatively lower risks of DN. The analysis does not detect significant

gender effect for τ ∈ [0.05, 0.22].

In this subsection, we perform an alternative analysis by fitting model (4.1) to

the same cohort of subjects. Our target here is to evaluate the temporal relationship

between covariates and subjects’ DN status. We adopt the additive risk model for T1

by setting g(x) = 1 − exp(−x), where negative regression coefficients correspond to

protective covariate effects on DN.

Figure 4.1 shows the estimated regression coefficient β̂(t) for t ∈ [10, 35] (years),

as well as the corresponding 95% Wald-type confidence intervals. First, we observe

that the confidence interval for age mostly excludes 0, suggesting some protective

effect of older diabetic onset age on DN progression. Furthermore, the magnitude

of the regression coefficient for age seems to increase with time, which suggests that

patients with slower DN progression are more susceptible to the influence of diabetic
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onset age when compared to those who had fast progression to DN. These implica-

tions agree well with those offered by the quantile regression model. Concerning the

gender effect on DN, we observe that the difference between males and females is not

significant for relatively smaller t. However, it appears that males may experience

faster DN progression than females at larger time points. Interestingly, our quantile

regression analysis in Section 2.2.2 does not suggest a significant gender effect for

τ ∈ [0.05, 0.22], where the upper bound of the τ range is selected based on some iden-

tifiability considerations. A possible reason is that the τ range under consideration

in Section 2.2.2 mainly corresponds to the first half of the time range t ∈ [10, 35].

In our second stage inferences, we obtain a trimmed mean effect estimate for age

as −0.021 with an estimated standard error of 0.004. The corresponding p-value for

testing H
(1)
01 is less than 0.001, suggesting highly significant effect of diabetic onset

age on time to DN. In addition, the test statistics for H
(1)
02 equals 0.008 with an

estimated standard error of 0.002. This gives a p-value < 0.001, which indicates that

the age effect on DN progression may strengthen over time. We obtain a trimmed

mean effect estimate for gender as 0.082. The corresponding standard error estimate

equals 0.038, yielding a p-value of 0.02. This result suggests that there exists some

difference between male and female subjects in terms of DN progression. We obtain

T (2)
cons as −0.048 with an standard error of 0.02. The corresponding p-value for testing

H
(2)
02 equals 0.007, which confirms our observation from Figure 4.1 that the gender

effect varies with time.
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Figure 4.1: Denmark diabetes registry study: estimated regression coefficients based
on the temporal regression model. (bold solid line: estimated regression coefficients;
dashed line: 95% Wald-type pointwise confidence intervals).
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Chapter 5

Summary and Future Work

5.1 Summary

In this dissertation we study two scenarios of semi-competing risks data that are

commonly encountered in biomedical studies. We propose regression methods under

the frameworks of quantile regression and temporal regression, two varying-coefficient

regression models that are fastly emerging in survival analysis. The proposed methods

are well fitted to the scenarios of interest for scientific implications.

We first study the mortality-morbidity scenario, with an additional complication

by administrative left truncation. We develop inference procedures for the condi-

tional quantiles of the cumulative incidence function, which facilitate straightforward

scientific interpretation. The proposed inference procedures well-utilize the semi-

competing risks structure and do not require artificial truncation. The proposed esti-

mator can be acquired based on standard statistical software, and can be shown to be

uniformly consistent and weakly converge to Gaussian. Simulation studies show the

proposed method performs well with moderate sample size. We apply the proposed

method to Denmark diabetes registry study to illustrate its practical utility.

Next, we focus on the endpoint-dropout scenario. We develop inference proce-
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dures for the conditional quantiles of the marginal distribution function, which well-

characterize the underlying biological process, as well as the dependence structure

between the primary endpoint and the dependent censoring. The proposed infer-

ence procedure makes good use of all available information in the semi-competing

risks structure. We develop an efficient iterative algorithm, which can be readily and

stably implemented. Using sophisticated arguments involving empirical process and

stochastic integral equations, we established the asymptotic properties of the pro-

posed estimator. Monte Carlo simulations demonstrate the satisfactory performance

of the proposed estimator with moderate sample size. An application to the ACTG

364 study shows the applicational power of the proposed methods.

Furthermore, we study temporal regression under the mortality-morbidity sce-

nario. We proposed estimation and inference procedures for the temporal covariate

effects on the cumulative incidence by properly accounting for left-truncation. The

proposed methods can be implemented with standard statistical software, and leads

to straightforward interpretations of covariate effects on the cumulative incidence.

Some preliminary simulation studies suggest satisfactory performances of the pro-

posed estimator.

5.2 Future Work

In this subsection we discuss work to be done in the near future and possible extensions

of this dissertation work.

First, we will conduct more simulation studies for our third project to get a more

comprehensive evaluation of the numerical performances of the proposed estimator.

Specifically, we will consider simulation setups with different truncation schemes and

link functions. In addition, we will provide detailed justifications for the asymptotic

properties of the proposed estimators.
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It is worthwhile to consider the case of multiple event times, some of which are

nonterminating while others are terminating. A general solution to such problems

under the quantile regression and temporal regression frameworks would be especially

useful in practice.

Furthermore, it is interesting to study varying-coefficient regression on the crude

quantities of left-truncated competing risks data. Recently, some research efforts

have been devoted to regression modeling with such data structure by assuming a

proportional hazards model (Geskus, 2010; Shen, 2011; Zhang et al., 2011). It would

be desirable to relax the constant covariate effect assumption for more robust and

comprehensive analyses.
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Heckman, J. and Honoré, B. (1989). The Identifiability of the Competing Risks

Model. Biometrika pages 325–330.

Hsieh, J., Wang, W., and Adam Ding, A. (2008). Regression Analysis based on Semi-

competing Risks Data. Journal of the Royal Statistical Society: Series B(Statistical

Methodology) 70, 3–20.

Huang, Y. (2002). Calibration Regression of Censored Lifetime Medical Cost. Journal

of the American Statistical Association 97, 318–328.

Huang, Y. (2010). Quantile Calculus and Censored Regression. The Annals of Statis-

tics 38, 1607–1637.

Huang, Y. and Wang, M. (1995). Estimating the Occurrence Rate for Prevalent

Survival Data in Competing Risks Models. Journal of the American Statistical

Association 90, 1406–1415.

Jiang, H., Fine, J., Kosorok, M., and Chappell, R. (2005). Pseudo Self-consistent

Estimation of a Copula Model with Informative Censoring. Scandinavian Journal

of Statistics 32, 1–20.

Jin, Z., Ying, Z., and Wei, L. (2001). A Simple Resampling Method by Perturbing

the Minimand. Biometrika 88, 381–390.

Kendall, M. and Gibbons, J. (1962). Rank Correlation Methods. Charles Griffin,

London.



98

Klein, J. and Andersen, P. (2005). Regression Modeling of Competing Risks Data

based on Pseudovalues of the Cumulative Incidence Function. Biometrics 61, 223–

229.

Klein, J. and Moeschberger, M. (1988). Bounds on Net Survival Probabilities for

Dependent Competing Risks. Biometrics 44, 529–538.

Koenker, R. (2005). Quantile Regression. Cambridge Univ Pr.

Koenker, R. and Bassett, G. (1978). Regression Quantiles. Econometrica 46, 33–50.

Kosorok, M. (2008). Introduction to Empirical Processes and Semiparametric Infer-

ence. Springer Verlag.

Lai, T. and Ying, Z. (1988). Stochastic Integrals of Empirical-type Processes with

Applications to Censored Regression. Journal of Multivariate Analysis 27, 334–358.

Lin, D., Robins, J., and Wei, L. (1996). Comparing two Failure Time Distributions

in the presence of Dependent Censoring. Biometrika 83, 381–393.

Link, W. (1989). A Model for Informative Censoring. Journal of the American

Statistical Association 84, 749–752.

Lynden-Bell, D. (1971). A method of allowing for known observational selection in

small samples applied to 3CR quasars. Monthly Notices of the Royal Astronomical

Society 155, 95–118.

Martinussen, T. and Scheike, T. (2002). A flexible additive multiplicative hazard

model. Biometrika 89, 283.

Martinussen, T., Scheike, T., and Skovgaard, I. (2002). Efficient estimation of fixed

and time-varying covariate effects in multiplicative intensity models. Scandinavian

Journal of Statistics 29, 57–74.



99

Murphy, S. and Sen, P. (1991). Time-dependent coefficients in a cox-type regression

model. Stochastic Processes and their Applications 39, 153–180.

Nelsen, R. (2006). An Introduction to Copulas. Springer Us.

Oakes, D. (1982). A Model for Association in Bivariate Survival Data. Journal of the

Royal Statistical Society. Series B (Methodological) 44, 414–422.

Parzen, M., Wei, L., and Ying, Z. (1994). A Resampling Method based on Pivotal

Estimating Functions. Biometrika 81, 341–350.

Peng, L. and Fine, J. (2006a). Nonparametric Estimation with Left-truncated Semi-

competing Risks Data. Biometrika 93, 367–383.

Peng, L. and Fine, J. (2006b). Rank Estimation of Accelerated Lifetime Models

with Dependent Censoring. Journal of the American Statistical Association 101,

1085–1093.

Peng, L. and Fine, J. (2007). Regression Modeling of Semicompeting Risks Data.

Biometrics 63, 96–108.

Peng, L. and Fine, J. (2009). Competing Risks Quantile Regression. Journal of the

American Statistical Association 104, 1440–1453.

Peng, L. and Huang, Y. (2007). Survival analysis with temporal covariate effects.

Biometrika 94, 719.

Peng, L. and Huang, Y. (2008). Survival Analysis with Quantile Regression Models.

Journal of the American Statistical Association 103, 637–649.

Peng, L., Jiang, H., Chappell, R., and Fine, J. (2008). An Overview of the Semi–

Competing Risks Problem. In Biswas, A., Datta, S., Fine, J., and Segal, M., edi-

tors, Statistical Advances in the Biomedical Sciences: Clinical trials, Epidemiology,

Survival Analysis, and Bioinformatics, pages 177–192. Wiley-Blackwell.



100

Peterson, A. (1976). Bounds for a Joint Distribution Function with Fixed Sub-

distribution Functions: Application to Competing Risks. Proceedings of the Na-

tional Academy of Sciences of the United States of America 73, 11–13.

Portnoy, S. (2003). Censored Regression Quantiles. Journal of the American Statis-

tical Association 98, 1001–1013.

Portnoy, S. and Lin, G. (2010). Asymptotics for Censored Regression Quantiles.

Journal of Nonparametric Statistics 22, 115–130.

Powell, J. (1984). Least Absolute Deviations Estimation for the Censored Regression

Model. Journal of Econometrics 25, 303–325.

Powell, J. (1986). Censored Regression Quantiles. Journal of Econometrics 32, 143–

155.

Prentice, R., Kalbfleisch, J., Peterson Jr, A., Flournoy, N., Farewell, V., and Breslow,

N. (1978). The Analysis of Failure Times in the presence of Competing Risks.

Biometrics 34, 541–554.

Robins, J. and Rotnitzky, A. (1992). Recovery of Information and Adjustment for

Dependent Censoring using Surrogate Markers. Aids Epidemiology, Methodological

issues pages 297–331.

Scharfstein, D. and Robins, J. (2002). Estimation of the Failure Time Distribution

in the presence of Informative Censoring. Biometrika 89, 617–634.

Scheike, T., Zhang, M., and Gerds, T. (2008). Predicting cumulative incidence prob-

ability by direct binomial regression. Biometrika 95, 205.

Shen, P. (2011). Proportional subdistribution hazards regression for left-truncated

competing risks data. Journal of Nonparametric Statistics 1, 11.



101

Slud, E. and Rubinstein, L. (1983). Dependent Competing Risks and Summary

Survival Curves. Biometrika 70, 643–649.

Tian, L., Zucker, D., and Wei, L. (2005). On the cox model with time-varying

regression coefficients. Journal of the American statistical Association 100, 172–

183.

Tsiatis, A. (1975). A Nonidentifiability Aspect of the Problem of Competing Risks.

Proceedings of the National Academy of Sciences 72, 20–22.

Valsecchi, M., Silvestri, D., and Sasieni, P. (1996). Evaluation of long-term survival:

Use of diagnostics and robust estimators with cox’s proportional hazards model.

Statistics in Medicine 15, 2763–2780.

Van der Vaart, A. and Wellner, J. (1996). Weak Convergence and Empirical Processes:

with Applications to Statistics. Springer Verlag.

Wang, M. (1991). Nonparametric estimation from cross-sectional survival data. Jour-

nal of the American Statistical Association 86, 130–143.

Wang, W. (2003). Estimating the Association Parameter for Copula Models under

Dependent Censoring. Journal of the Royal Statistical Society. Series B (Statistical

Methodology) 65, 257–273.

Winnett, A. and Sasieni, P. (2003). Iterated residuals and time-varying covariate ef-

fects in cox regression. Journal of the Royal Statistical Society: Series B (Statistical

Methodology) 65, 473–488.

Woodroofe, M. (1985). Estimating a Distribution Function with Truncated Data.

The Annals of Statistics 13, 163–177.

Yang, S. (1999). Censored Median Regression using Weighted Empirical Survival and

Hazard Functions. Journal of the American Statistical Association 94, 137–146.



102

Ying, Z., Jung, S., and Wei, L. (1995). Survival Analysis with Median Regression

Models. Journal of the American Statistical Association 90, 178–184.

Zhang, X., Zhang, M., and Fine, J. (2011). A proportional hazards regression model

for the subdistribution with right-censored and left-truncated competing risks data.

Statistics in Medicine .

Zheng, M. and Klein, J. (1995). Estimates of Marginal Survival for Dependent Com-

peting Risks based on an Assumed Copula. Biometrika 82, 127–138.

Zucker, D. and Karr, A. (1990). Nonparametric survival analysis with time-dependent

covariate effects: A penalized partial likelihood approach. The Annals of Statistics

18, 329–353.


