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Abstract 
 

The Relation between Number Acuity and Mathematical Ability in Young Children 
By Justin W. Bonny 

 
A system of number that detects differences in large quantities has been found to be 

active in young infants and adults.  Over development, the precision of this number 

system increases (Halberda & Feigenson, 2008).  Recent research focusing on whether 

mathematical reasoning is founded on this system of number representation has produced 

conflicting results.  This research, however, has focused on how this number system 

relates to math understanding broadly rather than whether the relation is to specific 

components of math understanding.  Additionally, the age ranges used for these studies 

focus on children who have already developed some mature number and math systems, 

leaving open the question of whether a relation exists in younger children who are still 

learning these skills.  The current study explored these issues using a task where 3- to 5-

year-olds decided which of two numerical quantities was larger and then completed a 

standardized math test.  Extending previous research with a younger age range, children 

who showed more precision (i.e. acuity) in their discrimination scored higher on the math 

test, even when age and verbal comprehension were controlled.  An item analysis 

revealed that correlations between number acuity and specific components of math 

understanding (i.e., arithmetic with physical objects and cardinal understanding) were 

driving the association between number acuity and math.  These results suggest that for 

some math abilities, the approximate number system is activated as children develop 

symbolic number and math abilities. 
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Abstract 

A system of number that detects differences in large quantities has been found to be 

active in young infants and adults.  Over development, the precision of this number 

system increases (Halberda & Feigenson, 2008).  Recent research focusing on whether 

mathematical reasoning is founded on this system of number representation has produced 

conflicting results.  This research, however, has focused on how this number system 

relates to math understanding broadly rather than whether the relation is to specific 

components of math understanding.  Additionally, the age ranges used for these studies 

focus on children who have already developed some mature number and math systems, 

leaving open the question of whether a relation exists in younger children who are still 

learning these skills.  The current study explored these issues using a task where 3- to 5-

year-olds decided which of two numerical quantities was larger and then completed a 

standardized math test.  Extending previous research with a younger age range, children 

who showed more precision (i.e. acuity) in their discrimination scored higher on the math 

test, even when age and verbal comprehension were controlled.  An item analysis 

revealed that correlations between number acuity and specific components of math 

understanding (i.e., arithmetic with physical objects and cardinal understanding) were 

driving the association between number acuity and math.  These results suggest that for 

some math abilities, the approximate number system is activated as children develop 

symbolic number and math abilities. 

Keywords: number, math, development 
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The Relation between Number Acuity and Mathematical Ability in Young Children 

Introduction 

 A hallmark of human cognition is the development of a symbolic number system.  

This system serves as the foundation for formal mathematics, which, in turn, serves as the 

basis for fields of study ranging from economics to nuclear physics.  Components of this 

number system, which take years of training to reach a mature state, can be found early in 

life.  Evidence suggests that infants have rudimentary numerical abilities, such as the 

ability to detect a change in non-symbolic number forms (e.g., an array of dots; Starkey 

& Cooper, 1980; Strauss & Curtis, 1981; Xu & Spelke, 2000; Lipton & Spelke, 2002), to 

perform simple arithmetic calculations (e.g., addition and subtraction; Wynn, 1992b; 

Simon, Hespos, & Rochat, 1995), and to expect either a larger or smaller quantity based 

on the relations of an ordinal sequence (e.g., ascending versus descending sequences; 

Brannon, 2002; Suanda, Tompson, & Brannon, 2008).   

Studies investigating preschooler performance on tasks that tap these abilities 

have shown a connection to performance on tests of mathematical understanding, though 

this connection varies with task properties, such as range of numbers and types of math 

questions used (Halberda, Mazzocco, & Feigenson, 2008; Booth & Siegler, 2006; Mundy 

& Gilmore, 2009; Gilmore, Mundy, & Spelke, 2010; Holloway & Ansari, 2009).  These 

results suggest a relation between early emerging non-symbolic quantitative abilities and 

more formal mathematical ability.  However, these studies have focused on general math 

skills with children who have substantial development in number and math ability (older 

than 5 years of age).  There may be differences in the relation between early number 

representations and specific math skills, such as counting and arithmetic, rather than math 
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ability in general.  Additionally, there may be more pronounced individual differences in 

younger children that are just beginning to understand symbolic number (e.g., Arabic 

numerals) and math abilities (e.g., addition).  The current study investigated the relation 

between the ability to detect a difference in two quantities (i.e., number acuity) of young 

children (3- to 5-year-olds) and specific components of number and math abilities to 

determine which components of mathematical understanding are related to the early-

developing approximate number system. 

Systems of Visual Number 

 For children and adults to make use of mathematical abilities across development, 

they must first be able to detect quantities.  Evidence of two dissociable visual systems of 

quantification is present in the distance effect as number varies from small (e.g., ! 4) to 

large (e.g., > 4) quantities (Chi & Klahr, 1975; Mandler & Shebo, 1982; Trick & 

Pylyshyn, 1994).  The distance effect refers to the decrease in comparison performance 

(i.e., slower reaction times and less accurate judgments) when the numerical difference 

between two quantities becomes smaller (Kaufman, Lord, Reese, & Volkmann 1949; 

Moyer & Lauder, 1967).  When examining the rate at which performance decreases, there 

is a distinct change between small numbers (1 – 4) and large numbers (> 4), suggesting 

that there are different systems for these two numerical ranges (Chi & Klahr, 1975; 

Mandler & Shebo, 1982; Trick & Pylyshyn, 1994).  The rapid, parallel, enumeration of 

small numerical arrays with little error is characteristic of  “subitizing,” which is 

theorized to be a pre-attentive visual process that is present across development (Chi & 

Klahr, 1975; Trick & Pylyshyn, 1994; Leslie, Xu, Tremoulet, & Scholl, 1998).  An 

example situation of when this system would be engaged is if you were asked how many 
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wheels are on a child’s bike that had training wheels.  You would not have to count the 

wheels, the subitizing system would rapidly identify a total of four objects in your visual 

field. 

 A separate system is engaged for estimating the quantity of arrays that contain 

more than 4 objects, dubbed the “approximate number system” (ANS) (Dehaene, 1997; 

Feigenson, Dehaene, & Spelke, 2004).  The ANS involves noisy representations, which 

abide by Weber’s law, where the difference needed between two numerosities to detect a 

difference increases proportionally as the numerosities increase (Dehaene, 1992).  The 

variability of number estimations is present across species as demonstrated by the 

Gaussian distribution of responses made by rats and humans when trained to make lever 

presses until a target number is reached (Mechner, 1958; Whalen, Gallistel, & Gelman, 

1999; Cordes, Gelman, Gallistel, & Whalen, 2001).  An example of when this system 

would be engaged is if a group of people had to guess how many legs a caterpillar has 

without counting.  For each person the ANS would provide an estimate based on the 

visual information, but each estimate would vary, with some being more accurate than 

others.  Unlike subitizing, there are developmental, and individual, differences in the 

variability of the estimation, with increasing precision over development (Pica, Lemer, 

Izard, & Dehaene, 2004; Halberda & Feigenson, 2008).  The early development of the 

two number systems has been investigated using young infants’ preference for novelty 

and preschoolers’ ability to detect similarities and differences in number. 

Exact and Approximate Number in Infancy and Childhood 

 Early studies exploring number representations in infants began with quantities 

that were within subitizing range (i.e., 1 – 4).  To determine the numerical competence of 
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young infants, looking time methods have been employed to examine whether infants 

preferentially look to a novel number.  After becoming familiarized, or habituated, to a 

specific numerosity via repeated presentation, infants’ longer looking to novel, rather 

than familiar, numbers suggests they can discriminate between two numerosities.  These 

studies suggest that young infants (5 to 12 months of age) were able to detect a change in 

the number of objects, at least when in subitizing range, for a variety of objects including 

visually homogeneous (Starkey & Cooper, 1980; Strauss & Curtis, 1981) and 

heterogeneous sets (Starkey, Spelke, & Gelman, 1990), as well as temporal sets of events 

(Wynn, 1996), which suggests that infants can extract numerosity from a range of 

sensory modalities (although see Clearfield & Mix, 1999).  Further evidence suggesting 

that infants are able to create representations of numerosity has been gathered using 

cross-modal (visual vs. auditory, visual vs. tactile) matching paradigms.  When infants 

viewed arrays of two and three heterogeneous objects while presented simultaneously 

with two or three sounds (Starkey et al., 1990; Jordan & Brannon, 2006) or touches 

(Féron, Gentaz, & Streri, 2006), they preferentially looked to the visual array with the 

matching number of objects. 

 For sets of larger numerosities, it is was unclear whether infants would be able to 

notice a difference between large numbers, due to the variability in ANS representations.  

Using habituation to large arrays (above subitizing range), by 6 months, infants could 

only discriminate 2:1 ratio changes (e.g., 16 vs. 8) or larger, and older infants, around 10 

months, could detect a more fine grained 3:2 change (e.g., 12 vs. 8) using either visual 

arrays of dots or auditory sequences of tones (Xu & Spelke, 2000; Lipton & Spelke, 
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2002; Xu & Arriga, 2007).  These studies suggest that with development, the acuity of 

the ANS increases by reducing the variability of the representations.   

 Until recently, research on ANS acuity has only focused on development in 

infancy.  The precision of ANS representations of 3- to 6-year-olds and adults was 

compared in a recent study by Halberda and Feigenson (2008).  Participants judged 

which of two numerical arrays had a greater number as the ratio between the two arrays 

was varied from coarse (2:1) to fine (10:9).  The extent to which participants in each age 

group could discriminate arrays was captured by calculating a Weber fraction for each 

individual in each group.  The Weber fraction expresses the amount of uncertainty an 

individual has about the approximate quantity of a numerical array (Pica, Lemer, Izard, & 

Dehaene, 2004).  For 3-, 4-, 5-, and 6-year-olds the highest number ratio they could 

reliably discriminate was 3:2, 4:3, 5:4, and 7:6, respectively (Halberda & Feigenson, 

2008).  American adults were accurate up to a 10:9 ratio, which replicates previous 

results collected from French adults (Pica et al., 2004).  This increase in ANS acuity 

across the preschool years allows children to distinguish between numerical arrays that 

are close in value and may enable the mapping of number words onto approximate 

representations (Gallistel & Gelman, 2000).  The question of what role early number 

systems have in learning formal number and math skills has focused on whether the 

approximate number system can express the formal principles and properties of counting 

and math.   

Development of Formal Counting and Arithmetic 

 In everyday life, individuals invoke formal principles of counting and arithmetic.  

For children to become proficient counters they must first be able to extract the relevant 
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information from the environment to be enumerated and understand three key principles 

of counting: one-to-one correspondence, ordinality, and cardinality (Gelman & Gallistel, 

1978, Gallistel & Gelman, 1992).  The principle of one-to-one correspondence implies 

that each item within a set of objects is present once in a number representation.  

Research demonstrating that infants can match visual and auditory number (Starkey et al., 

1990; Wynn, 1998) and that preschoolers can say whether two sets of objects have the 

same quantity (Gelman & Gallistel, 1978; Gelman & Meck, 1983) suggests that the 

principle of one-to-one correspondence is present prior to, and does not require, the 

learning of verbal counting.  The principle of ordinality, or ordered sequences of quantity, 

allows for the inference of more versus less relations among amounts.  Research 

demonstrating that 10- and 12-month-old infants choose the larger quantity of desirable 

crackers (Feigenson, Carey, & Hauser, 2002) along with evidence that 11-month-olds can 

detect a difference between a series of numerical arrays that increase or decrease in 

quantity (Brannon, 2002; Suanda, Thompson, & Brannon, 2008) suggest that children at 

a young age can make ordinal judgments.  The principle of cardinality, or that the integer 

last counted refers to the numerosity of the set, is composed of two concepts, exact 

mapping and the successor function (Gelman & Gallistel, 1978; Wynn, 1990, 1992a; 

Gallistel & Gelman, 1992; Carey, 2001; Izard, Pica, Spelke, & Dehaene, 2009).  Exact 

mapping involves understanding that the last number counted refers to the same number 

of objects in the set just enumerated.  The successor function refers to the knowledge that 

the next numeral in a count list is exactly one more than the previous and is one less than 

the number next in the list.  When asked to give a number of items to a puppet, the 

difference between children’s correct and incorrect responses suggest that there may be a 
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long acquisition period where it is only around 42 months that most children display an 

understanding of the cardinal principle (Wynn, 1990; Wynn, 1992a).  However, poor 

performance in younger children may be due to high task demands, masking a true 

understanding of cardinality (Gelman & Gallistel, 1978; Gelman, Meck, & Merkin, 1986; 

Gallistel & Gelman, 1992). 

 To create a system of mathematics, children must also understand how numerical 

representations can be manipulated by arithmetic operations.  In order to have an 

understanding of arithmetic, individuals must recognize that adding units to a target set 

increases the quantity of the target and that the inverse is true for subtraction.  Using a 

violation of expectation paradigm, arithmetic operations of exact quantities were 

presented to 5-month-old infants.  Infants looked longer when the revealed number of 

puppets did not match the arithmetic answer presented during a familiarization phase, 

suggesting that young infants are capable of simple addition and subtraction operations 

(Wynn, 1992b).  These results were later replicated (Simon, Hespos, & Rochat, 1995) 

and extended using approximate number quantities (McCrink & Wynn, 2004), though the 

strong arithmetic interpretation has been challenged as instead being due to differences in 

interest to stimuli and the computation of non-numerical cues (Mix, Huttenlocher, & 

Levine, 2002).   

Arithmetic abilities have also been investigated with preschoolers using 

approximate representations.  When 5-year-olds were shown two arrays of objects placed 

into a box and a comparison array was presented, children chose correctly whether the 

sum or the comparison array had more objects (Barth, La Mont, Lipton, & Spelke, 2005).  

Additional studies demonstrated that 5-year-olds could choose above chance when tones 
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were used, and when subtraction and multiplication were the operators, suggesting that 

the basic structure of formal math operations may be present at a young age, and may 

emerge without specific formal instruction (Barth et al., 2006; Barth, Beckman, & 

Spelke, 2008; Barth, Baron, Spelke, & Carey, 2009; Izard et al., 2009). 

 Two theories have been proposed to explain how children learn the principles of 

counting and arithmetic.  The main difference between these two theories is the specified 

role of the approximate number system.  The continuity hypothesis, put forward by 

Gallistel, Gelman (1992, 2000) and colleagues, holds that the preverbal number 

representations contain all the counting principles due to the way the ANS creates 

number representations.  Based on an accumulator model, number representations are 

created through an accumulator in which a neural pulse is added to a bin as each item in a 

set is counted or added.  This is analogous to dropping marbles into a bag, the system 

keeps track of how many marbles to place in, or add to, the bag, and once that number 

has been reached, the bag is closed and the quantity fixed.  Noise from memory processes 

add the characteristic variability of approximate representations.  Hence, since a non-

verbal counting process creates number representations, the quantity in the bin, the 

counting principles and arithmetic operations are inherent to the system (Gallistel & 

Gelman, 1992; Gallistel & Gelman, 2000; Leslie, Gelman, & Gallistel, 2008).  When 

young children learn verbal counting, what they learn is how to map their non-verbal 

counting process to the verbal count list of the particular language they are immersed in.  

This suggests there is a strong connection between early approximate number 

representations and all symbolic number and mathematical understanding. 



YOUNG CHILDREN’S NUMBER ACUITY 

 

13 

 The discontinuity hypothesis holds that the approximate number system does not 

contain a full set of counting principles since the representations it creates are too noisy 

for distinctions between them to be clearly identified.  Rather, as young children practice 

counting sets of objects that are within subitizing range, they are able to extract counting 

principles.  In order to learn these principles, children need to compare and contrast the 

differences between sets of objects to notice rules that are present in counting.  As 

children establish differences in small quantities, they are able to attach the values to the 

verbal count list and then learn the principle that the next item in the count list is exactly 

one more than the last and “boot-strap” this knowledge to quantities outside of subitizing 

range (Carey, 2001; Carey, 2004; Le Corre et al., 2006; Le Corre & Carey, 2007).  This 

process entails a qualitative difference in number concepts between children who have 

and have not learned cardinality, and holds that specific linguistic experiences (e.g., 

counting) are critical in establishing the cardinal principle (Carey, 2004; Le Corre et al., 

2006; Le Corre & Carey, 2007).  Since this hypothesis focuses on a discontinuity in 

cardinal understanding, it would suggest a connection between the ANS and specific 

math skills, such as abilities that require one-to-one correspondence, ordinal judgments, 

and arithmetic, which evidence suggests emerge early in development, but not abilities 

such as an understanding of cardinality. 

Relation between Approximate Number and Formal Math Ability  

 One view on the development of formal number and math ability holds that 

cultural knowledge used to construct these skills is built upon the early emerging number 

systems, in particular the ANS (Gallistel & Gelman, 1992; Dehaene, 1997, Butterworth, 

1999).  Previous research has suggested a relation between children’s spatial 
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representation of number and math performance.  Evidence exploring the mental 

representation of number has found evidence of a mental number line, where quantities 

are arranged spatially in an increasing fashion, similar to a ruler (Dehaene, 1992; 

Dehaene, Bossini, & Giraux, 1993).  Research investigating the development of the 

mental number line has found that when children are asked to mark where a target 

number is on a horizontal line there is a shift in the spatial layout of the responses during 

primary schooling from a compressed logarithmic layout to a more linear layout with 

equal intervals between numbers (Booth & Siegler, 2006).  When considering math 

achievement scores, children who score higher on the tests have a more linear spatial 

representation (Booth & Siegler, 2006).  In a similar task, the ability of 8-year-olds boys 

to ignore misleading spatial information while deciding which of two numerical distances 

was larger was correlated with their calculation ability (Lonnemann et al., 2008).  While 

these studies suggest that the spatial representation of numbers is related to math ability, 

other studies have linked math scores to the precision of their approximate number 

representations.  

Halberda, Mazzocco, and Feigenson (2008) sought to determine whether an 

individual’s number acuity, characterized by a Weber fraction, was related to their math 

ability.  For the task, adolescents determined whether there were more blue or yellow 

dots in a dot array as the ratio difference varied from 2:1 to 8:7 using quantities from five 

to sixteen.  Adolescents who had scored high on previously collected standardized math 

tests (Test of Early Math Ability – 2nd edition, Woodcock–Johnson revised calculation) 

as children had a higher Weber fraction (i.e., greater acuity), while controlling for verbal 

scores, suggesting a connection between non-symbolic number acuity and symbolic math 
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skills (Halberda et al., 2008).  This result has also been suggested with 6-year-olds on an 

approximate arithmetic task (Gilmore et al., 2010).  These results suggest that ANS 

acuity is not simply a measure of general intelligence, but is specifically related to math 

achievement.  

There has also been evidence suggesting no relation between approximate number 

and math ability.  Using quantities from one to nine, 6- to 8-year-olds had to choose 

which of two simultaneously displayed dot arrays or Arabic numerals was larger 

(Holloway & Ansari, 2009).  When controlling for verbal ability, math scores from the 

Woodcock-Johnson Tests of Achievement (Math Fluency and Calculation subtests) were 

only correlated with a numerical distance effect, for symbolic numerals rather than non-

symbolic dot arrays (Holloway & Ansari, 2009).  The lack of a relation between non-

symbolic number acuity and math ability has also been suggested with children of the 

same age and slightly younger children (4-to-7-year-olds) (Mundy & Gilmore, 2009; 

Soltész, Szücs, & Szücs, 2010).  However, when accuracy was used to calculate the 

distance effects, there was a relation between math calculation ability and both Arabic 

numeral and dot array versions of the task (Mundy & Gilmore, 2009; Soltész, Szücs, & 

Szücs, 2010).  The different results from studies investigating the connection between 

number acuity and general math skills may hide a different interpretation – specifically, 

that rather than acuity being related to all types of math skills, it may be that the relation 

exists for only specific facets of formal math understanding. 

 When considering the tasks and age ranges used to investigate the connection 

between number acuity and math skills, there are certain aspects that can influence the 

amount of difference in performance between individuals.  In order for the discrimination 
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task to accurately capture acuity of the ANS, only quantities that are out of subitizing 

range should be used.  One of the hallmarks of subitizing is that performance is near 

perfect and there are very few, if any, differences across individuals.  Additionally, the 

age ranges investigated by these studies have focused on children that have mastered the 

principles of counting and have begun to receive formal instruction in arithmetic.  

Younger children between the ages of 3 and 5 years are just beginning to acquire, or have 

just acquired, counting principles, in particular cardinality (Sarnecka & Carey, 2008).  It 

is during this period that individual differences in components of formal counting and 

arithmetic may be most pronounced.   

 For the standardized math tests, several different types of number and arithmetic 

abilities are combined into a general score (e.g., addition, cardinality, timed calculation).  

As such, correlating performance from a number comparison task and general math 

scores may mask specific components of formal math and number skills that may be 

driving the relation.  This is suggested by a recent study where a relation was observed 

specifically between distance effects and calculation scores, but not symbolic number 

knowledge, in 6- and 7-year-olds (Mundy & Gilmore, 2009).  In order to gain a clearer 

understanding of the nature of the relation between number acuity and math skills, 

potential differences in specific math skills needs to be explored. 

To address these issues, the current study investigated how approximate number 

acuity is related to a general score of math ability and specific facets of mathematical 

ability with 3- to 5-year-old children.  Similar to previous studies, children completed a 

computerized number task and standardized tests of math ability (Test of Early 

Mathematics Ability-3rd edition, or TEMA-3) and verbal ability (Peabody Picture 
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Vocabulary Test – 4th edition, or PPVT-4).  On the number task, children made ordinal 

judgments, deciding which of two visual arrays has a greater number of objects.  Number 

acuity, calculated from number task performance, was then compared to scores on the 

TEMA-3 and PPVT-4.  In addition, and unlike existing studies, items on the TEMA-3 

were categorized into clusters of specific skills, and the relation between number acuity 

and performance on each cluster was compared.  Based on previous research, two 

predictions were made.  First, we predicted that number acuity would relate to a general 

math score, when controlled for vocabulary scores.  Second, if the ANS is connected 

differentially to specific math skills, then there should be differences in the strength of 

the correlation between acuity and performance on math clusters. 

Method 

Participants 

 Children were recruited from the Atlanta metropolitan area using a database of 

families who had expressed an interest in participating in research at the Emory 

University Child Study Center.  A total of 50 children from 3 to 5 years of age 

participated (3-year-olds: 9 boys, 6 girls,  M = 42.3 months, SD = 2.9 ; 4-year-olds: 7 

boys, 16 girls,  M = 52.7 months, SD = 3.5; 5-year-olds: 7 boys, 5 girls,  M = 65.7 

months, SD = 3.9).  Over two sessions, children completed the number task, TEMA-3, 

and PPVT-4.  During the first session children were administered the number task and 

TEMA-3, and of the sample, 29 children completed the PPVT-4 during a second session.  

Children received a small prize at the end of each testing session.  An additional 2 

children did not complete the discrimination task due to fussiness and were not included 

in the analysis. 



YOUNG CHILDREN’S NUMBER ACUITY 

 

18 

Materials 

 Children completed the Number Task on a Dell Vostro Laptop, equipped with a 

touch screen (MagicTouch, Keytec, Inc.).  The program was developed using Visual 

Basic and children made their responses using a touch screen stylus.  The TEMA-3 

(Ginsberg & Baroody, 2003) and the PPVT-4 (Dunn & Dunn, 2007) were administered 

following a standardized protocol and all tasks were given in a quiet room.  The TEMA-3 

is a standardized math test, that contains various counting and math problems, such as 

giving a specific number of items to an experimenter’s request and solving word 

problems and takes on average 40 minutes to complete. The test has been normed with 

1,219 children from 3 to 8 years of age with internal consistency of r = .94 to .96 and the 

standardized scores have a mean of 100 and standard deviation of 15 (Ginsberg & 

Baroody, 2003).  The PPVT-4 is a standardized vocabulary comprehension test that 

contains four pictures on a page and children are asked to choose which picture matches a 

word and takes on average 10 to 15 minutes to complete.  The test has been normed with 

3,540 children and adults from 2 to 90 years of age with an internal consistency of r = .94 

to .95 and the standardized scores have a mean of 100 and a standard deviation of 15 

(Dunn & Dunn, 2007). 

 Number Task 

---------------------------------------------- 

Insert Figure 1 

---------------------------------------------- 

 On this task, children judged which of two dot arrays had the larger number of 

dots (see Figure 1).  The arrays were presented simultaneously and organized vertically 
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on the screen to avoid effects of left and right spatial associations (Dehaene, 1992; 

Dehaene et al., 1993).  One of the arrays was a reference array, which had a fixed number 

of 8 dots, and was present across all trials while size and color varied.  The comparison 

array had a number of dots varying from 4-7 and 9-12, yielding 8 different ratios (larger 

divided by smaller): 2.00, 1.60, 1.50, 1.38, 1.33, 1.25, 1.14, 1.13.  A reference array was 

used similar to previous work in which participants were required to make an ordinal 

judgment with respect to a fixed reference (Dehane, 1992).  To minimize the influence of 

cumulative contour length and area, each element of the array varied in size and the total 

area of the numerically larger array was either larger or smaller than the comparison array 

to create spatially congruent (i.e., more in number, more in area) and incongruent (i.e., 

more in number, less in area) trials.  In an attempt to ensure that the distracting effect of 

cumulative surface area was constant across the different ratios, the ratio difference of the 

surface area mirrored the ratio difference in number.  For example, if the ratio difference 

in number was 1.33, the ratio difference in surface area was also 1.33.  The position of 

the correct array, as well as spatial congruity was counterbalanced across trials. 

Procedure 

 Children were administered the number task and then the TEMA-3 over a 75 

minute session, and the PPVT-4 in a second session that lasted up to 45 minutes.  Prior to 

completing the number task, children played a short game to become familiar with the 

touchscreen and general procedure.  This game involved catching a picture of a frog by 

touching it with the touchscreen stylus and starting trials by touching a box.  For the 

number task, children were shown a short video where they observed two boxes that 

contained a different number of “bubbles” and were asked to choose which box had more 
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bubbles.  The training video served to help children become more familiar with the task 

and the instructions.   

Children then received 4 practice trials, with large ratio differences not seen 

during the test trials, where the experimenter demonstrated how to play the game and 

corrective feedback was provided.  Children were instructed to pick the box that had 

more bubbles in it as fast as they could before they popped.  For each trial, children 

touched a center box to begin the trial and were shown the two arrays of dots while being 

asked, “Which box has more bubbles in it?” and touched either array to end the trial.  If a 

child tried to count the bubbles, the experimenter discouraged the counting to ensure that 

only visual estimation was used, and told the child that this was not a counting game.   

For test trials, the same procedure as the practice trials was used.  No corrective 

feedback was given during these trials, and after 8 test trials, children were presented 

with an animation, which served as a reward, and were reminded of the instructions.  

There were 5 trials for each ratio for a total of 40 test trials.  After children completed the 

number task, children took a break and were then given the TEMA-3. 

Results 

Number Task 

 Based on previous research, it was predicted that older children would perform 

better than younger children, performance would be higher on spatially congruent than 

incongruent trials, and performance would be higher for farther than closer ratio 

differences (Halberda & Feigenson, 2008; Lonnemann et al., 2008).  Proportion correct 

was used as the dependent variable in these analyses.  Comparisons to chance revealed 

that the overall accuracy (collapsed across ratio differences) for spatially congruent trials 
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was above chance for all age groups: 3-year-olds, M = .664, SD = .173), t(14) = 3.672, p 

= .003, 4-year-olds, M = .817, SD = .169), t(22) = 5.989, p < .001, and 5-year-olds (M= 

.892, SD = .089), t(11) = 15.237, p < .001.  For spatially incongruent trials performance 

was at chance for 3-year-olds (M= .540, SD = .147), t(14) = 1.058, p = .308, but 

significantly above chance for both 4-year-olds (M= .674, SD = .139), t(22) = 5.989, p < 

.001, and 5-year-olds (M= .799, SD = .143), t(11) = 7.231, p < .001. 

A repeated-measures ANOVA with a between-subjects factor of age (3-, 4-, 5-

years) and gender (male, female) and within-subject factors of spatial congruity 

(congruent, incongruent) and ratio difference (2.00, 1.60, 1.50, 1.38, 1.33, 1.25, 1.14, 

1.13) revealed that gender was not a significant factor.  Subsequent analyses without the 

factor of gender revealed the following effects.  There were significant main effects of 

age, F(2, 47) = 11.157, p < .001, !p
2 = .322, spatial congruity F(1, 329) = 45.611, p < 

.001, !p
2 = .492, and ratio, F(7, 329) = 3.301, p =.002, !p

2 = .066.  Planned contrasts 

revealed that as the ratio difference increased, performance increased in a linear fashion, 

F(1, 47) = 8.894, p = .005 and as age increased, performance increased in a linear 

fashion, F(1, 47) = 21.477, p < .001.  There was also a significant interaction between 

spatial congruity and ratio, F(7, 329) = 2.127, p = .040, !p
2 = .043.  Post-hoc analyses for 

the spatial congruity and ratio interaction revealed the effect of ratio was significant for 

spatially incongruent, F(7, 343) = 4.305, p < .001, but not for spatially congruent trials, 

F(7, 343) = .434, p = .881.  These results indicate that for the spatially incongruent trials, 

as the ratio difference increased, performance increased in a linear fashion.  This was not 

the case for spatially congruent trials in which there was no difference in performance as 

ratio increased.  
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---------------------------------------------- 

Insert Figure 2 

---------------------------------------------- 

Relation Between Number Acuity and Math Ability 

 To capture individual differences in number acuity, the accuracy of each child 

was modeled as a function of ratio.  To this end, a psychophysical function, which has 

been used in previous research, was used to fit a Gaussian curve to the performance of 

each child (Piazza, Pinel, Izard, Le Bihan, & Dehane, 2004).  This model has been 

proposed to best represent the underlying number representation and behavior based on 

the representation (Pica et al., 2004; Piazza et al., 2004).  The fitted curve was then used 

to predict the child’s accuracy on a ratio discrimination that they were not been presented 

with (1.17),  yielding a proportion score between chance (50%) and perfect performance 

(100%).  While recent experiments have determined a cut-off point assumed to represent 

above chance performance, by using an unseen stimulus to predict performance this 

assumption can be avoided.  This process has also been used in previous research to 

predict performance using models of verbal number comparison (Dehaene, 1989).  The 

ratio of 1.17 was chosen since its placement is on the steepest slope of the Gaussian curve 

which allows for a wide variability in predicted performance.  The predicted accuracy 

served as an indicator of their number acuity on the task and was used in the correlational 

analyses described below.  

 For the standardized tests, children were given a standardized score reflecting 

their performance on the TEMA-3 and PPVT-4.  To explore performance differences on 

different types of number and math questions, children’s performance on the TEMA was 
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broken down into 6 different clusters by determining which math principles each item 

best fit (Gelman & Gallistel, 1978; Gallistel & Gelman 1992; Dehaene, 1992; see 

Appendix for TEMA item clusters).  Items that required children to make an ordinal 

judgment about which of two numbers was more or less comprised a number comparison 

score.  Items that required children to recite a count-list comprised a count-list score.  

Items that required children to assign a numerical value to a set of items or determine the 

value of the next number in a count list using the cardinal principle comprised a cardinal 

score.  Items requiring children to identify or write a numeral comprised a symbolic 

knowledge score.  Items requiring children to perform arithmetic with tokens, fingers, or 

written problems comprised a physical arithmetic score.  Items requiring children to 

perform arithmetic without counting and/or physical tokens comprised a mental 

arithmetic score.  Cluster scores were created using the proportion correct of items from 

below each child’s basal level up to the ceiling level on the TEMA-3 (see Table 1). 

---------------------------------------------- 

Insert Table 1 

---------------------------------------------- 

---------------------------------------------- 

Insert Figure 3 

---------------------------------------------- 

 The relation between number task acuity and mathematical ability was 

investigated using a hierarchical regression., When age, ß = -.017, t(25) = -.084, p = .934, 

and PPVT-4 scores, ß = .295, t(25) = 1.733, p = .095, were controlled for, children’s 

number acuity predicted a significant amount of variance in TEMA-3 scores, ß = .571, 
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t(25) = 2.885, p = .008, suggesting that there is a relation between approximate number 

discrimination and math ability (see Table 2).  To explore potential differences in the 

relation between task performance and specific number and math clusters, partial 

correlations between acuity and cluster scores, while controlling for children’s age, were 

calculated.  Significant partial correlations were found between number acuity and 

cardinal score, r (47) = .311, p = .030, and number acuity and physical arithmetic, r (47) 

= .371, p = .009, but not for number comparison (p = .482), count-list (p = . 426), 

symbolic knowledge (p = .359), and mental arithmetic (p = .886), suggesting that there 

are specific aspects of math ability that are related to ANS performance (see Table 3). 

---------------------------------------------- 

Insert Table 2 

---------------------------------------------- 

---------------------------------------------- 

Insert Table 3 

---------------------------------------------- 

Discussion 

 The goal of the study was to investigate the relation between approximate number 

representations and different math abilities.  Results from the number discrimination task 

demonstrated an increase in number acuity over the preschool years; children’s ability to 

differentiate two numerical arrays improved across this developmental period, replicating 

previous studies (Halberda & Feigenson, 2008; Mundy & Gilmore, 2009; Soltész et al., 

2010).  Additionally, when controlling for age and verbal scores, number acuity predicted 

children’s math performance, extending previous work to a younger age group (Halberda 
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et al., 2008; Gilmore et al., 2010).  The partial correlation analyses suggest that there are 

facets of math ability, specifically cardinal and physical arithmetic, that may be primarily 

responsible for the relation between math skills and number acuity.   

Could other variables account for this relation?  While one possibility is general 

intelligence, we would suggest that it can be ruled out as number acuity predicted 

TEMA-3 scores when age and verbal ability were controlled for.  General intelligence 

can also be ruled out since there were differences in the partial correlations between task 

performance and math cluster scores.  Another possibility is that working memory can 

account for the observed relation.  While these results cannot definitively rule out this 

factor, it seems unlikely, since, during the number task, arrays were presented 

simultaneously and were kept on the screen until a response was made, which would 

have minimized working memory demands.   

There were difficulties in using cluster scores comprised of TEMA-3 items.  Due 

to different start points in the test based on age, there were differences in the number of 

items each child received.  This led to some children not receiving many, if any, items of 

certain clusters (e.g., Mental Arithmetic).  Additionally, as the test progressed there was a 

shift in the focus of the items to more arithmetic based questions that were also more 

difficult, leading to floor effects, specifically in the mental arithmetic cluster.  While 

there were some differences in the mean performance across cluster scores, even with 

clusters that had similar mean and spread of performance (e.g., Count-List and Cardinal), 

there were differences in the relation to number acuity.  Despite difficulties, this suggests 

that cluster scores were a valid means of capturing and testing specific mathematical 

skills. 
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 While the current results replicate the findings of Halberda et al. (2008), they 

appear to be in conflict with Holloway and Ansari (2009).  The differences in the relation 

between non-symbolic performance and math ability may be due to differences in the 

range of quantities used.  Whereas in the current study and in Halberda et al. (2008), all 

numbers were above subitizing range, the range of numbers used by Holloway and 

Ansari (2009) spanned across subitizing and approximate number ranges.  The use of 

numbers within subitizing range may have reduced variability, as an exact rather than an 

approximate quantity may be extracted, which may in turn have skewed results.  

 Neuroimaging research has explored whether the neural correlates of math 

operations reflect results of behavioral experiments.  Numerical distance effects, where 

processing the difference between two numbers close in quantity takes longer than two 

numbers far in quantity, have been revealed whether the number format is a dot array, 

Arabic numeral or verbal word with adult participants (Moyer & Landauer, 1967; 

Buckley & Gillman, 1974; Dehaene, 1992).  These results were suggested to indicate that 

all forms of number activate an analog magnitude, similar to dot arrays.  This suggests 

that the relation between number acuity and math ability should be present regardless of 

the number format.   

Using neuroimaging techniques, a neural region, or neural activity, that is 

modulated by the small and large differences in quantity has been taken to indicate a 

neural correlate of the distance effect.  A particular region, the intraparietal sulcus (IPS) 

has been found to be modulated by the distance effect with non-symbolic and symbolic 

number with adult participants (Pinel et al., 2009; Ansari & Dhital, 2006; Piazza, 

Mechelli, Price, & Butterworth, 2006).  When exploring neural correlates of number 
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development, the IPS has been found to be sensitive to the distance effect when viewing 

analog and symbolic number.  When passively viewing changes in the quantity of dot 

arrays, the IPS was similarly activated for both 4-year-olds and adults, suggesting a 

continuity in ANS processing across development (Cantlon, Brannon, Carter, & 

Pelphrey, 2006).  Additionally, when choosing which of two dot arrays or numerals was 

larger, IPS activation was modulated by the distance between the two quantities, for both 

notations, for both 6- to 7-year-olds and adults (Cantlon, Libertus, Pinel, Dehaene, 

Brannon, & Pelphrey, 2009).  These results suggest that across development, similar 

neural regions are activated when viewing number in different formats.  Additionally, this 

suggests that the correlation between acuity and math skills in the current study is not 

limited to children, but should also be present in adults. 

Studies exploring the neural correlates of arithmetic have focused on whether, 

similar to numerical comparison, parietal regions are activated during operations, such as 

addition.  Using event-related potential (ERP) and fMRI neuroimaging techniques, the 

operations of approximate and exact arithmetic have been contrasted.  When completing 

approximate arithmetic, where adult participants had to choose which of two answers 

were closer to an arithmetic answer, there was greater activation and quicker processing 

in visuo-spatial regions compared to language and frontal regions activated for exact 

calculation (Dehaene, Spelke, Pinel, Stanescu, & Tsivkin, 1999).  These results suggest 

that, compared to exact arithmetic, approximate arithmetic may more strongly activate 

neural regions that are also activated by number comparison (Dehane et al., 1999).   

Differences in neural activation during arithmetic have also been reported as a 

result of task strategies.  When participants reported solving arithmetic problems using 



YOUNG CHILDREN’S NUMBER ACUITY 

 

28 

fact retrieval (e.g. recalling a multiplication table) versus a procedural process, greater 

activation was present in the left angular gyrus, a region that has also been shown to be 

connected to language processes (Grabner et al., 2009).  These results suggest that neural 

regions are differentially activated by approximate and exact arithmetic, a dissociation 

that was present in correlations in the current study. 

The myelination of neural connections between frontal and parietal regions also 

suggest different pathways for approximate and exact calculation.  A recent study used 

diffusion tensor imaging with children to determine the level of myelination in the neural 

connections between the IPS and frontal regions and its relation to performance scores on 

math knowledge and approximate and exact arithmetic problems (Tsang, Dougherty, 

Deutsch, Wandell, & Ben-Schachar, 2009).  Children with higher levels of measured 

white matter scored higher on the approximate arithmetic problems, but there was no 

relation between white matter and exact calculation indicating the connection between 

the IPS and frontal regions plays a role in approximate arithmetic performance.  The 

implication of the IPS during approximate, but not exact, arithmetic supports the specific 

relations between number acuity and facets of math ability observed in the current study.  

Differences in numerical operations are also predicted by models of number 

processing.  One model in particular, the triple-code model put forward by Dehaene 

(1992), postulates the presence of three different forms of number representations, each 

associated with specific number and math operations.  In the model, number can either be 

represented as an analog magnitude (similar to representations of the ANS), an Arabic 

number, or an auditory / written word.  Additionally, these representations are 

interconnected meaning that numerical information in one representation can be 
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transformed into any other number representation.  However, each representation has 

exclusive number procedures which can only be used in the native number format.  In the 

model, the processes of number comparison and approximate arithmetic are exclusive to 

the analog magnitude representation.  The process of determining parity is exclusive to 

the Arabic numeral representation.  The process of accessing multiplication and addition 

tables is exclusively tied to the word representation.  The model further postulates that 

the analog magnitude representation is present from an early age and the word 

representation is highly connected to general language processes. 

 The specific relations between cluster scores and number acuity reflect some of 

the subtleties predicted by the triple-code model.  In the model, number acuity represents 

the precision of the analog magnitude representations and, in turn, would then be related 

to analog specific processes.  The relation between number acuity and physical arithmetic 

suggests that this cluster is similar to the approximate arithmetic processes predicted to 

be part of the analog magnitude representation.  Additionally, the sharp contrast between 

the relation of number acuity to physical and mental arithmetic is also supported by the 

model since calculating arithmetic answers mentally requires some use of arithmetic 

tables, which are part of the auditory / word number representation.  The clusters of 

count-list and symbolic knowledge would also be part of the auditory / word 

representation and Arabic numeral representation, but not analog magnitude, which is 

reflected by a lack of a correlation between number acuity and these clusters.  The lack of 

a relation between number acuity and the number comparison cluster at first does not 

seem to follow the model.  However, the majority of the items in the cluster used Arabic 

numerals and number words, so this cluster may be more related to the ability to transfer 
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between number representations, which may take longer to develop.  The relation 

between number acuity and performance on the cardinal cluster is supported by the triple-

code model.  Since both subitizing and ANS are proposed to be inputs to the analog 

magnitude representation, it would predict a relation between cardinal understanding and 

number acuity.   

 While the different relations between number acuity and cluster scores support the 

triple-code model, they do not discriminate as to how the cardinal principle is learned.  

Based on the continuity theory, learning the cardinal principle requires mapping 

culturally-determined count lists to nonverbal counting mechanisms.  Since number 

acuity is a measure of the ANS, in addition to a relation between number acuity and 

performance on the cardinal cluster, there should be a relation between number acuity 

and performance on the count list cluster, which did not occur.  Based on the 

discontinuity theory, the cardinal principle is learned through the process of subitizing 

and experience with language.  Since the ANS is not proposed to play a role in the 

cardinal principle, then there should be a weak, if any, correlation between number acuity 

and cardinal performance, which did not occur.  These results, suggest that a hybrid 

theory may explain the role of the ANS in learning the cardinal principle.  For children, 

the ANS may serve as an implicit source for counting principles, but children also need a 

large amount of practice with language to gain the experience needed to make these 

counting rules explicit.  A representational re-description model of learning would fit this 

view and the observed relation between number acuity and performance on the cardinal 

cluster (Karlimoff-Smith, 1992). 
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Future research should investigate the nature of the connection between number 

acuity and mathematical ability.  While number acuity predicts math performance, it is 

unclear whether math skills are built from the ANS.  Rather, as children learn math skills, 

the ANS may be activated simply since it is part of a broader number and math system.  

Additionally, while the relation between number acuity and components of math skills 

are in line with the triple-code model, future research should investigate further how 

children’s ability to transfer between the three number representations of the model is 

related to math ability.  Research with older children already suggests that there is a 

relation, but the development of this skill between preschool and primary school years is 

relatively unknown (Mundy & Gilmore, 2009). 

Future research should also explore how number acuity can be used as a index of 

early math development.  The extension of the relation between acuity and math ability to 

young children opens the possibility that acuity tasks can be used as a fast means to 

gauge the math ability of children who have not yet entered primary schooling.  The low 

verbal demand of these tasks ensures that preschool children who have yet to learn the 

vocabulary needed to perform arithmetic problems can complete the tasks.  By using 

number acuity tasks in tandem with standardized testing, children who may need more 

instruction when learning math skills can be identified and reduce the possibility of 

children falling behind in the classroom.   

 Overall, this study suggests a specific, rather than general, relation between 

number acuity and select math skills.  The differences in the relation between number 

acuity and components of mathematical abilities reflect a model of number processing 

and suggests the ANS plays a role in learning the cardinal principle.  While the causal 
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nature of the relation remains unclear, the specific correlation between number acuity and 

components of mathematical ability suggests that the ANS is activated as these skills are 

developed.  
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Table 1. Descriptive Statistics of TEMA-3 Clusters 
Cluster Example Item N M SD 
Number 

Comparison 
 “Which is larger, five or six?” 

50 0.647 0.301 
Count-List  “Count to 10.” 50 0.725 0.238 
Cardinal “Give me five tokens.” 50 0.717 0.212 
Symbolic 

Knowledge 
“Can you write the number 

‘5’?” 45 0.544 0.310 
Physical 

Arithmetic 
“Use your tokens to solve 2 

plus 3.” 50 0.447 0.395 
Mental 

Arithmetic 
“What is 4 plus 7?” (timed and 

cannot use fingers) 32 0.244 0.298 
 

Note.  Each cluster score was created by averaging proportion correct on items that were 

determined to best fit the skill of focus for each cluster.  A representative example of an 

item from each cluster is given. 
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Table 2. Hierarchical Regression Model for TEMA-3 Score 

Step Factor R2 Change p 
1 Age 0.052 0.234 
2 PPVT-4 0.049 0.246 
3 Number Acuity 0.225 0.008 

 

Note.  Using TEMA-3 scores as the dependent variable, the regression tested whether 

there was a significant increase in predicted variability when each factor was added.
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Table 3. Partial Correlations of Number Acuity and TEMA Cluster Scores Controlling for 
Age 

  PPVT
-4 

Number 
Comparison 

Count 
List Cardinal Symbolic 

Knowledge 
Physical 

Arithmetic 
Mental 

Arithmetic 

 rp -0.129 0.103 0.116 0.311* 0.142 0.371** 0.027 
 p 0.512 0.482 0.426 0.03 0.359 0.009 0.886 
 df 26 47 47 47 42 47 29 
*p < .05, **p < .01      

 

Note.  Reported is the significance of two-tailed partial correlations between cluster 

scores (as well as PPVT-4 standardized scores) and number acuity, while children’s age 

is controlled.
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Figure 1.  Sample trial presented to children during the number task.  Children chose 

which box had more bubbles in it. 
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Figure 2.  Performance on the number task by spatial congruity condition as measured by 

proportion correct. 
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Figure 3. Scatter plot of predicted performance scores on the computerized number task 

and standardized TEMA-3 scores for all children. 
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Appendix 

TEMA-3 Items used in Cluster Sub-scores: 

 Number Comparison: 4, 19, 20, 27, 37, 58 

 Count-List: 3, 6, 12, 21, 23, 24, 31, 33, 38, 40, 42, 68 

 Cardinal: 1, 2, 7, 9, 10, 11, 13, 18, 22, 28, 36, 39, 48 

 Symbolic Knowledge: 14, 15, 29, 30, 35, 44, 45, 60, 66 

 Physical Arithmetic: 8, 16, 17, 25, 49, 55, 59, 62, 63, 69, 71 

 Mental Arithmetic: 26, 32, 41, 43, 46, 47, 50, 51, 52, 53, 54, 56, 57, 61, 64, 65, 

67, 70, 72 

 (Two items could not be categorized according to the criteria, 5 & 34) 

Sub-score Creation Example: If a child’s basal ended at item 24 and ceiling ended on 

item 36, items 24 and below would be counted as correct, correct items between 24 and 

36 would be counted correct and items 36 and above would be counted as incorrect. 
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