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Abstract

Harmonics Echoing Across Time and Space:
A Summary of Research on the Topology of the Universe

By Sara Lykken

On June 30, 2001 NASA launched its Wilkinson Microwave Ansiotropy

Probe (WMAP) to study the Cosmic Microwave Background (CMB) radi-

ation, radiation from the plasma that filled the universe until just 380,000

years after the Big Bang. The information collected by the WMAP satellite

provides clues as to the universe’s topology. Specifically, early WMAP data

suggested the near disappearance of temperature fluctuations in the CMB ra-

diation on large angular scales, going completely against what was predicted

by an infinite Euclidean model for the universe. Researchers attempted to

explain the missing large-scale fluctuations by suggesting the possibility of a

small, finite-volume universe. Observations about the local geometry of our

universe suggest a spherical, Euclidean or hyperbolic universe and, primar-

ily for reasons of practicality, research has focused on spherical 3-manifolds.

Comparing observed fluctuations in the CMB radiation to those predicted

by various spherical spaces, some advocate the Poincaré dodecahedral space

as a model for our universe. Recently, however, new data has been released

that may weaken the case for the dodecahedral space. This paper seeks to

explain and expand upon these topological investigations with the intention

of making them accessible to a wider audience, in order to facilitate dialogue

with specialists in other relevant areas.
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1 Introduction

In its earliest stages, our universe was approximately one-millionth of its current

size and so hot that electrons could not associate with nuclei. Photons were able

to interact with these free electrons, creating a hot, glowing fog – known as plasma

– that filled the universe. Approximately 380,000 years after the Big Bang, the

continued expansion of the universe had finally allowed it to cool enough to permit

the formation of atoms. The attachment of electrons to nuclei meant that there

were no longer free-floating electrons for photons to interact with, thus permitting

photons to begin traveling freely. The period after which photons began traveling

undisturbed is known as photon decoupling and was the last stage in the formation of

the Cosmic Microwave Background (CMB) radiation. When the cosmic microwave

background first formed, the photons were approximately 3000 Kelvin, putting them

at near infrared wavelength. Since then, the universe has expanded by a factor of

approximately 1100, and the once visible radiation has stretched into microwaves

with a wavelength of about a millimeter. These microwaves constitute the CMB

radiation, and they fill the background of our universe.

The finite speed of light means that we see objects in space as they were in the

past. We observe most stars as they were 10 to 100 years ago, and we see the spiral

galaxy of Andromeda as it was 2.5 million years ago [2]. When we look far out into

the distance, we see the Cosmic Microwave Background radiation as it was when the

universe was only about three-thousandths of one percent of its current age, so the

CMB radiation gives us a glimpse into the universe as it was during the final stages
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of the big bang. Therefore, CMB radiation provides some of the most important

information about the birth, expansion, geometry and topology of the universe.

On June 30, 2001 NASA launched the Wilkinson Microwave Anisotropy Probe

(WMAP) to study this CMB radiation. Although the CMB radiation is exception-

ally homogeneous, it is not perfectly so, demonstrating temperature fluctuations on

the order of one part in 105. These temperature fluctuations result from density

fluctuations in the primordial plasma: photons coming from denser regions have to

work harder against gravity and thus lose more of their energy and arrive cooler

than the average photon. Conversely, photons coming from less dense regions lose

less energy as they do not have to work as hard against gravity, so they arrive a

little bit warmer than their counterparts coming from denser regions. Thus, the

temperature fluctuations detected by the WMAP reflect density fluctuations in the

radiation in the early universe.

Cosmologists expected to find density fluctuations on all scales, in accordance

with the concordance model’s prediction of an infinite and eternally expanding Eu-

clidean universe. They were surprised to learn that, although the WMAP data

confirms the existence of these fluctuations on small angular scales, the fluctuations

essentially disappear for sections of the universe separated by more than about 60◦.

How can it be that the WMAP did not find the expected large-scale fluctuations? In

his paper The Poincare Dodecahedral Space and the Mystery of the Missing Fluctu-

ations, Jeffrey Weeks presents an overview of what these missing fluctuations might

tell us about the shape of the universe [1]. This paper seeks to expand upon Weeks’
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ideas, providing additional background and a more extensive discussion on the im-

plications of these missing fluctuations, with the intention of making this topic more

accessible to less specialized readers.

2 The geometry of our universe

We begin with a brief introduction to manifolds and, more specifically, spherical,

Euclidean and hyperbolic spaces. For more information on these topics, see [3].

A three-manifold is a space in which every point is contained in a neighborhood

homeomorphic to a subset of R3, and these neighborhoods must fit together nicely

to cover the space. This idea can perhaps be better understood through a lower-

dimensional analogy. One can think of the pages of an atlas as neighborhoods

making up the surface of a globe: each page of the atlas is flat and two-dimensional,

and the pages can fit together nicely to cover all of the points on the surface of

the three-dimensional globe. Similarly, on a small enough scale, a three-manifold

looks like three-dimensional Euclidean space – that is, the “ordinary” 3-D space

that we are used to – and these 3-dimensional sections fit together to cover the

entire manifold. Our knowledge of the universe’s topology is extremely limited, so

we use as a starting point the seemingly fair assumption that the local topology

everywhere throughout the universe is like that of the space we live in on Earth.

Therefore, because the space we occupy has the local topology of three-dimensional

Euclidean space, it is generally assumed that the universe is a three-manifold. But

which three-manifold do we live in?
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Clues from our universe’s local geometry can be used to rule out candidates in

the search for the topology of the universe. Recall that the topology of a space

refers to the properties of that space that are unaffected by continuous deformation

– that is, bending, stretching, twisting, etc., but not tearing or gluing. A sphere and

a cube are topologically equivalent surfaces since, given either a sphere or a cube

made from Play-Doh, one could easily mold the dough to make the other surface

without ripping or “gluing” the dough. A sphere is topologically different from

a doughnut because a doughnut has a hole in it whereas a sphere does not, and

neither of the surfaces can be deformed to look like the other without tearing or

gluing. In contrast, a space’s geometry refers to those properties that are affected

by deformation – properties such as curvature, volume, distance and angle. These

properties can help us determine the topology of the space since not every space can

admit, or be given, every geometry.

The observable universe is believed to be both homogeneous (i.e. its local ge-

ometry is the same everywhere) and isotropic (its geometry is the same regardless

of the angle of observation). Evidence such as the fact that the rate of expansion

of the universe is the same in all directions and that CMB radiation is distributed

in the same way in all directions to a precision of less than one part in 104, sug-

gests the isotropy of the observable universe. Of course, the fact that the observable

universe is homogeneous and isotropic does not necessarily mean that the universe

as a whole possesses these properties, but it does provide some support for the as-

sumption of a homogeneous and isotropic universe and has led researchers to focus
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on homogeneous, isotropic three-manifolds while trying to determine the topology

of the universe.

The only locally homogeneous and isotropic spaces are those admitting a geom-

etry of constant curvature – that is, spherical, Euclidean or hyperbolic geometry.

Before going further, let’s review some facts about these three geometries.

In order to illustrate a fundamental difference between the three geometries, we

will begin by drawing a triangle on each of three different surfaces: a sphere S2,

the standard Euclidean plane E2, and the hyperbolic plane H2. While the sphere

and the infinite plane are familiar objects, the hyperbolic plane may not be. In the

same way that the Euclidean plane E2 can be tiled by an infinite collection of unit

squares, one can think of constructing the hyperbolic plane by tessellating an infinite

space with identical regular octagons. Of course, in the familiar Euclidean plane

such a task would not be possible since eight octagons cannot fit around a central

octagon without overlapping. However, if we shrink the angles in the octagons to

45◦– and thus pass the octagons to a hyperbolic space – we can fit eight octagons

around a central one (see Figure 1). But how do we shrink the angles of an octagon?

To answer this question, we will use Henri Poincaré’s famous model for the infinite

hyperbolic plane (see Figure 4), in which H2 is portrayed as an open unit disk

whose boundary represents infinity. The Poincaré disk model has its own metric

– distinct from the familiar Euclidean metric – for measuring distance, area and

angles, although interestingly Euclidean and hyperbolic angles are equal. Because

of this metric, hyperbolic straight lines are depicted in the model as arcs that are
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orthogonal to the disk’s boundary (Figure 2). The closer a hyperbolic straight line

is to the disk’s center, the less it appears to bend. If we place a small octagon

in the center of the disk, its sides will be nearly straight and its angles close to

135◦. Now we can stretch the octagon’s vertices away from the center of the disk so

that its angles are as small as we like. By continuity, we will be able to move the

vertices just far enough from the center to form an octagon with angles of exactly

45◦. We can then identify the octagon’s sides as shown in Figure 3, thereby forming

a group of isometries. Now, allowing this group to act on the octagon, we can tile

the hyperbolic plane with an infinite number of copies of our octagon.

Figure 1: Although we cannot tesselate the Euclidean plane with flat octagons with
angles of 135◦, we can tesselate the hyperbolic plane with octagons cut from a saddle
and with angles of 45◦. Figure courtesy of Luminet. [4]

In many ways, we can think of the hyperbolic plane as opposite to the sphere,

and this can help us visualize the hyperbolic plane. Locally a sphere seems bowed

out, while the hyperbolic plane, in contrast, is locally saddle-shaped. If you took

a piece of a sphere and tried to flatten it, the piece would have to split open in

order to lay flat. If you flattened a piece of hyperbolic space, on the other hand,
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Figure 2: In the Poincaré disk model, hyperbolic straight lines are depicted as arcs
orthogonal to the disk’s boundary. Figure courtesy of Thurston [16].

Figure 3: A small, nearly Euclidean octagon in the center of the circle (right) can
be stretched into an octagon with 45◦ angles (left). We can then identify the sides
of our octagon as shown.

the piece would wrinkle and fold over itself (see Figure 6). Such properties of the

sphere and hyperbolic plane may cause one to wonder how, exactly, we will draw

a triangle with “straight” edges on all of these surfaces. We answer this question

by defining a “straight” edge in more general terms than one may be accustomed

to. Each side of the triangle must be a geodesic, meaning that it must be the

shortest path connecting the two vertices that serve as its endpoints. A geodesic is

an intrinsically straight line in that a two-dimensional object living on the surface,
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Figure 4: The Poincaré disk model portrays the infinite hyperbolic plane as a disk
whose boundary represents infinity. Using this model, we see a tiling of the hyper-
bolic plane by octagons (right). Note that, although the copies of the octagon closer
to the boundary of the disk appear smaller, this apparent change in size is due to
the metric of the Poincaré disk model; the octagons are all identical copies that are
hyperbolically isometric to one another. On the left, we see that the two copies
of the octagon can be mapped onto each other by a reflection over the geodesic L,
followed by a reflection over the geodesic M . Figure courtesy of Thurston [16].

with no knowledge of the outside three-dimensional world in which the surface is

embedded, would not feel that it bent to the right or left.

Figure 5: A piece of the hyperbolic plane. Note that H2 is locally saddle-shaped.
Figure courtesy of Weeks [3].
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Figure 6: When flattened, a piece of the hyperbolic plane would wrinkle. Figure
courtesy of Weeks [3].

We already know from basic principles of Euclidean geometry that the angles

of a triangle drawn in the Euclidean plane E2 will add up to 180◦, or π radians.

But what about the angles of a triangle drawn on the surface of a sphere or in the

hyperbolic plane? It turns out that on S2 the angles will add up to more than π,

and on H2 they will add up to less than π. Specifically, the sum of the angles of a

spherical triangle is equal to π plus the area of the triangle, while in the hyperbolic

plane the sum of a triangle’s angles is equal to π minus the area of the triangle.

This idea carries over to all polygons. For example, in the Euclidean plane, every

hexagon has angles summing up to 120◦. On the sphere, however, bigger hexagons

have bigger angles and in the hyperbolic plane, bigger hexagons have smaller angles.

The geometry of a sphere is termed spherical geometry and is said to have con-

stant curvature of +1; that of the Euclidean plane is called Euclidean geometry and

is said to have zero curvature; and that of the hyperbolic plane is known as hy-
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Figure 7: The angles of a triangle add to 180◦ in the Euclidean plane, more than
180◦ on a spherical surface, and less than 180◦ on a hyperbolic surface. Figure
courtesy of NASA.
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perbolic geometry and has constant curvature of -1. More specifically, given a line

L and a point p not on L, a spherical geometry is one in which there is no line

parallel to L and passing through p, Euclidean geometry is one in which there is

exactly one such line, and hyperbolic geometry is one in which there are more than

one such line. Of course S2, E2 and H2 are not the only manifolds admitting on of

these geometries: in particular, their three-dimensional analogs S3, E3 and H3 ad-

mit a spherical, Euclidean and hyperbolic geometry, respectively. Our focus in this

paper will be on 3-manifolds that admit one of these three geometries of constant

curvature.

3 Constructing a model of the universe

The surprisingly low quadrupole value in the CMB power spectrum tells us that an

unusually low number of large-scale fluctuations were observed in the background

radiation. One explanation for this could be that we live in a small, finite-volume

universe. Just as a vibrating piece of string with fixed endpoints cannot support a

wavelength of oscillation longer than twice the length of the string, a small enough

universe would have an upper limit on the length of waves it could support. Perhaps,

then, the large-scale fluctuations were too large for our universe and therefore the

WMAP observed very few fluctuations on this scale. (To understand how it would

be possible to observe any large-scale fluctuations given such a small universe, see

Appendix A.) We will use this possible explanation to help us narrow down our list

of potential models for our universe and will consider only finite-volume manifolds.
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By Hopf’s Theorem, any finite-volume three-manifold with constant curvature

will be a quotient X/Γ where the universal covering space X = S3, E3 or H3 and

where the holonomy group Γ is a subgroup of isometries that is properly discontin-

uous. Let’s break this idea down a bit.

A holonomy group is a group of symmetries that is discrete and has no fixed

points. Modding out by a symmetry, we preserve the metric and geometry of X.

A trivial holonomy group signifies a simply connected space, while a nontrivial

holonomy group implies a multiply connected space. We can think of a simply

connected space as one in which any string made into a loop can be tightened into

a small knot. On the other hand, in a multiply connected space, some loops will

be wrapped around a hole and thus will not be able to be tightened into a knot:

the loop will get stuck on the hole. A multiply connected space is the result of the

identification of points within the space, so, in theory, a multiply connected universe

could allow us to see multiple images of a single object, while a simply connected

universe would not. The unit hypersphere S3 is the only compact, homogeneous

and isotropic three-manifold that is simply connected.

If the holonomy group is discrete and X/Γ has finite volume, there is a funda-

mental domain of the group that is a polyhedron with a finite number of faces [4].

Allowing the transformations in the holonomy group to act on each point in the

fundamental domain tessellates a larger space, called the universal covering space,

with copies of the fundamental domain polyhedron. Thus X/Γ is a space with the

same local geometry as X, but in which each point is identified with other points
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in X according to the symmetries of Γ.

During the earliest stages of the universe’s evolution, electrons were not attached

to individual nuclei and would interact with any radiation present. Eventually,

however, the universe cooled down enough for electrons to begin joining with nuclei

to form atoms. Because photons cannot interact freely with atoms, the attachment

of all the free electrons to nuclei meant that each photon had a final interaction with

an electron, after which the photon was able to travel freely. All this took place

during a time when the universe was only about a thousandth of its current size,

so the photons have been traveling for most of the life of the universe. Therefore,

the photons received at any point x in the universe originated on the surface of

an enormous sphere centered at x. This surface is called a last scattering surface.

Note that, although every point in the universe has its own last scattering surface

encompassing it, when we refer to the last scattering surface, we are referring to

that of the Earth. The horizon radius is the radius of the last scattering surface,

and the horizon sphere, or observable universe, is the Earth-centered sphere with

radius equal to the horizon radius. It is within this horizon sphere that we perceive

the primordial plasma.

In contrast to the observable universe lies the physical universe. We define the

injectivity radius at a point x in our universe X/Γ as the radius of the largest ball,

centered at x, such that no two elements of the ball are identified with one another.

That is, if p maps X into X/Γ, then the injectivity radius at a point x ∈ X/Γ is

injrad(x) = sup{ε > 0 : p is one-to-one on B(x, ε)}. When we talk about our
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injectivity radius, we are referring to the injectivity radius at the point y, where

y represents the center of the Earth. So our injectivity radius is the radius of the

smallest Earth-centered sphere that “reaches all the way around the universe and

intersects itself”, and thus it represents a lower bound on the radius of the universe,

starting from Earth.

We now have three possibilities: one, the universe could have infinite volume;

two, the universe could have finite volume but our injectivity radius could be greater

than (or equal to) our horizon radius; or three, the universe could have finite volume

with the horizon radius exceeding our injectivity radius. Using observable data to

distinguish between possibilities one and two would prove difficult, but if the the

horizon radius is greater than our injectivity radius, in theory we should be able to

see multiple images of the same sources – for example, images of the same galaxy or

the same distribution of the primordial plasma in various different parts of the sky.

In a Euclidean manifold, the injectivity radius at a point x is arbitrary in the

sense that it is not a topological invariant, but depends on the isometry group Γ.

To see this, suppose that M1 = E3/Γ1 and let Γ2 = gΓ1g
−1, where g : E3 → E3 is

the Euclidean similarity taking x to cx. We can define a homeomorphism from M1

to M2 = E3/Γ2 by [x] 7→ [cx]. Note that if the point x ∈ M1 has injectivity radius

ε, then the corresponding point cx in M2 has injectivity radius cε. Therefore, M1

and M2 are homeomorphic (i.e. they are topologically equivalent spaces), but they

are not isometric (i.e. they are geometrically distinct spaces). The injectivity radius

of a point in a Euclidean space depends on the metric and consequently is not well-
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defined. Obviously, then, we cannot assume any logical relationship between the

horizon radius and our injectivity radius in a Euclidean universe, and therefore it

would be only with great luck that we would be able to detect a Euclidean topology

E3/Γ.

Fortunately, a hyperbolic universe would not present this problem since, by the

Mostow Rigidity Theorem, any two finite-volume hyperbolic 3-manifolds that are

homeomorphic are also isometric. Unfortunately, however, a compact hyperbolic

topology may still be extremely difficult to detect. To see why, we must first dis-

tinguish between the previously defined horizon radius and what we will call the

geometer’s horizon radius. The previously defined horizon radius is already known

to be approximately 46 billion light-years1, but geometers are interested in knowing

the horizon radius in radians, not light-years. Thus the geometer’s horizon radius is

the ratio of the horizon radius to the curvature radius, where the curvature radius

is measured in light-years.

We already know that in Euclidean space, the circumference of a circle of radius

r is ` = 2πr. To find the circumference in spherical space, we can imagine drawing

a circle on the surface of a sphere. Let the point a be the center of the circle, b be

the center of the sphere, and c be any point on the circumference of the circle. Draw

lines connecting point a to b, b to c and c to a, as shown, forming a right triangle. If

1A 46 billion light-year horizon radius is made possible in a 13.7 billion-year-old universe by
the universe’s expansion. Because the universe is about 1100 times larger now than it was at
the time of photon decoupling, the same space that the photons covered during their first year of
uninhibited travel, for example, would now take approximately 1100 years to travel across. Thus
the 46 billion light-year horizon radius reflects the fact that the universe was once considerably
smaller and, if it would now take a photon one year to travel across a given space, it would have
taken only a fraction of that time billions of years ago.
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R is the radius of the sphere, then we have that sin θ = s
R

and therefore s = R sin θ.

Now the circumference of the circle is

` = 2πs = 2πRsinθ (3.1)

Now, in order to relate r and θ, we note that the great circle on which the radius of

our circle lies, will have circumference 2πR and correspond to an angle of 2π, while

r corresponds to an angle of θ. This means that we can set up the ratio θ
2π

= r
2πR

,

and so θ = r
R

. Therefore, Equation (3.1) becomes

` = 2πR sin
r

R

(A similar argument works for hyperbolic space, in which ` = 2πR sinh r
R

.) Thus,

in theory we can determine our universe’s curvature radius, R, experimentally by

measuring values for ` and r and then plugging into this equation to solve for R.

Note that in Euclidean space, R→∞ and thus ` = 2πR sin θ = 2πR(θ− 1
6
θ3 + ...) =

2πr(1− r2

R2 +...) approaches 2πr(1+0) = 2πr, which is the equation we would expect

in Euclidean space.

Definition 3.2. The Normalized Density Parameter Ω is the ratio of the actual

mass-energy density of space to the critical value 3H2

8πG
required by a Euclidean space,

where H is the Hubble constant and G is the gravitational constant .

Einstein’s field equations in general relativity relate curvature to the normal-

ized density parameter Ω, telling us that the curvature of a space is completely
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Figure 8: A circle on the surface of a sphere will have circumference ` = 2πR sin r
R

.
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determined by the matter and energy within that space2. Ω > 1 implies positive

curvature, Ω = 1 zero curvature, and Ω < 1 negative curvature. Recall that S3

has curvature equal to +1, H3 has curvature of -1 and E3 has zero curvature. To

achieve other values of curvature, we can simply rescale the space: if we scale by λ,

the curvature of the space will be multiplied by a factor of 1/λ2. Therefore, we can

say that Ω > 1 indicates spherical geometry, Ω = 1 Euclidean geometry, and Ω < 1

hyperbolic geometry. Thus the curvature radius, and consequently the geometer’s

horizon radius, depends on the value of Ω.

An observer at a point x could, in theory, detect the universe’s topology if the

geometer’s horizon radius exceeds the injectivity radius at x, injrad(x). In a 3-

torus and in numerous spherical spaces, the value of injrad(x) is constant for all x

in the space, meaning that if the space’s topology is theoretically detectable by an

observer at point y in the space, it is also theoretically detectable by an observer

at any other point in the space. The same does not hold for hyperbolic topologies.

Because the injectivity radius at a point x in a hyperbolic space does not necessarily

equal the injectivity radius at a different point y in that space, it is possible that

the hyperbolic topology could be detectable by an observer at x by not by one at

y if injrad(x) < injrad(y). By creating “injectivity profiles” – that is, histograms

displaying the percentage of a manifold’s volume with a given injectivity radius

2In a general space, the value of R could vary from point to point, but we are only considering
3-manifolds of constant curvature, so R will be roughly the same everywhere. This may seem
strange given Einstein’s equation and the fact that some parts of space contain more mass than
others (e.g. the area around a planet in contrast to an area of space containing no planets or stars).
To reconcile the seeming discrepancy, it is important to keep in mind that on average the universe
is thought to be homogeneous, so on average mass should be distributed evenly throughout and
thus, by Einstein’s equation, on average the curvature of space will be constant.
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– for the first ten low-volume hyperbolic manifolds in the Hodgson-Weeks census,

Weeks was able to calculate the probability that a randomly-placed observer in each

of these manifolds would be located at a point x where injrad(x) is greater than

a given horizon radius [5]. Averaging these probabilities over the ten manifolds,

one can see that the chances of us being able to detect a hyperbolic topology are

relatively low.

If Ω = 0.98, the curvature radius is approximately 98 billion light-years, so the

geometer’s horizon radius is 46/98 ≈ 0.47, and a random observer in one of the ten

smallest hyperbolic topologies would have a 50% chance of being in a location where

her horizon radius is larger than the injectivity radius. If Ω = 0.99, the curvature

radius is about 139 billion light-years, so the geometer’s horizon radius decreases

to 46/139 ≈ 0.33, and the random observer’s chances of being in a spot where her

horizon radius exceeds the injectivity radius, go down to about 10%. As Ω goes

to 1, her chances approach zero. When Weeks’ article [1] was originally published,

data collected by the WMAP satellite indicated that Ω = 1.02 ± 0.02 at the 1σ

level. Given this, in a hyperbolic universe Ω is likely to be close to 1, meaning

that our chances of detecting a hyperbolic topology do not look good. Furthermore,

the volume of the quotient H3/Γ increases as the complexity of Γ does, so the fact

that the injectivity radius is usually larger than the horizon radius in even these

ten smallest hyperbolic manifolds paints an even bleaker picture for those hoping to

detect a hyperbolic universe.

A spherical universe S3/Γ may prove much easier to detect. Here the radius
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of curvature is just the radius of the hypersphere S3, and when Ω = 1.02, this

translates to a geometer’s horizon radius of 0.47 radians. Fortunately, this horizon

radius is large enough to allow us to detect the topology S3/Γ for most of the

simplest, most natural spherical groups Γ. Furthermore, unlike hyperbolic groups,

as spherical groups Γ become more complicated, their quotient spaces S3/Γ get

smaller. So for more complicated groups Γ, the topology is even easier to detect.

The spherical universe’s greater likelihood of being detectable, coupled with the

WMAP data’s suggestion that Ω = 1.02, has led many researchers to focus their

studies on spherical manifolds.

4 Hearing the shape of the universe

In the very early universe, before the differentiation of matter from light, particles

began to vibrate under the pressure of two opposing forces: that of gravity and of

radiation. When the CMB formed and photons were at last able to travel freely,

they retained an indication of this vibration in the form of temperature fluctuations

representing the density fluctuations in the primordial plasma. Just as a musical

tone can be decomposed into fundamental harmonics, the density distribution of

the primordial plasma can be decomposed into harmonics of 3-dimensional space.

The harmonics of a 3-dimensional space are simply the eigenmodes of the Laplace

operator, but we can understand them as the vibrational modes of space, comparable

to the vibrational modes – the harmonics – of a 2-dimensional drumhead. The way

a drum sounds – determined by the relative strengths of the drum’s harmonics –
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depends on the way in which the drum was initially struck, the drum’s material

composition, the curvature of its surface and the shape of its boundary. In the same

way, the relative strengths of the vibrational modes of space provide information

about initial fluctuations in the universe, the matter and energy it contains, spatial

curvature, and the topology of the universe.

In music, the fundamental harmonic determines pitch, and the relative amplitude

of each harmonic determines the timbre; thus, an instrument’s harmonics charac-

terize its sound. In analogy to the way that pressure and density fluctuations inside

a clarinet provide information about the size and shape of the clarinet, pressure

and density fluctuations in the primordial plasma can tell us much about the size

and shape of our universe. Looking deep into space at our horizon, we can see the

density fluctuations in the CMB radiation – more specifically, we see the intersec-

tion of the 3-dimensional eigenmodes with our 2-dimensional horizon sphere, and

the strengths of these observed modes are the CMB power spectrum. This spectrum

shows the temperature fluctuations on the last scattering surface, as dependent on

the angle of view. For example, the first observable harmonic, the quadrupole (with

wave number ` = 2), corresponds to an angle of observation of 90◦.

We look for evidence of the shape of our universe by comparing the observed

temperature fluctuations in the CMB with those that would be expected given a

certain topology. One can calculate the eigenmodes of the Laplacian for a given

topological space and then, using a set of initial conditions, simulate the evolution

of these harmonics through time to the present day in order to generate a predicted
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Figure 9: The density distribution of the primordial plasma can be decomposed into
harmonics of 3-dimensional space, in the very same way that a musical tone can be
decomposed into fundamental harmonics. Figure courtesy of the NASA/WMAP
Science Team.
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map of the CMB. The calculation of how a 3-manifold’s eigenmodes restrict to our 2-

dimensional horizon sphere are relatively simple, allowing for the direct comparison

of predicted to observed harmonics. The primary complication, then, is calculating

the eigenmodes for a candidate topological space.

If our universe X/Γ (where X = S3, E3 or H3) is multiply connected, its eigen-

modes lift in the obvious way to Γ-periodic modes of its simply connected universal

cover X. Additionally, if p : X → X/Γ is a covering map, then each Γ-periodic mode

λ will project down to an eigenmode of X/Γ, namely p(λ). Therefore, we can easily

go back and forth between the eigenmodes of X/Γ and the Γ-periodic eigenmodes of

X, so for ease of calculation we express the vibrational modes as Γ-periodic modes

of X, even though conceptually we think of them as the eigenmodes of X/Γ.

We will focus on the eigenmodes of spherical space S3, which are regular and

much easier to predict than those of hypebolic space H3. Let’s start off by exam-

ining the eigenmodes, or harmonics, of the circle S1. The harmonics of a circle

are usually written as the set {{cos θ, sin θ}, {cos 2θ, sin 2θ}, ...}. However, consider

what happens if we embed S1 in the xy-plane as the set {(x, y) ∈ R2 : x2 + y2 = 1}.

Now, using trigonometric identities, we see that the transcendental functions cos θ

and sin θ are equivalent to the linear functions x and y, respectively; cos 2θ and

sin 2θ are equivalent to the quadratic polynomials x2 +y2 and 2xy, respectively, etc.

The general transcendental functions cosnθ and sinnθ are equivalent to nth-degree

harmonic polynomials in x and y.

Similarly, the eigenmodes of S2 are the homogeneous harmonic polynomials in
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x, y, and z, and those of the hypersphere S3 are the homogeneous harmonic poly-

nomials in x, y, z, and w. (Recall that a homogeneous polynomial is one in which all

monomials with nonzero coefficients have the same total degree.)

Perhaps not so obviously analogous is the number of eigenmodes of the three

spaces. On the circle S1, the space of the homogeneous harmonic polynomials has

dimension 2, regardless of the degree of the polynomials. On S2, in contrast, the

dimension of space of the nth degree harmonic polynomials does depend on the

degree, the dimension being 2n + 1. Most relevantly to our discussion, the space

of an mth degree harmonic polynomial on S3 has dimension (m + 1)2. To see this,

note that for any mth degree monomial xaybzcwd, the exponents are restricted by

the equation a+ b+ c+ d = m. Therefore, once values have been chosen for a and

b, c can be at most m− a− b, and the value of d is completely determined by those

of a, b and c using the equation d = m− a− b− c. Given this, the possibilities for

mth degree monomials on the 3-sphere are as follows:

Table 1: Possibilities for mth-degree monomials on the 3-sphere

Degree of x Degree of y Number of Possibilities
0 0 k + 1
0 1 k
0 2 k − 1
... ... ...
0 k 1
1 0 k
1 1 k − 1
... ... ...
1 k − 1 1
... ... ...
k 0 1
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So the total number of possibilities is given by the sum

[(m+1)+m+(m−1)+...+1]+[m+(m−1)+...+1]+[(m−1)+(m−2)+...+1]+...+1

= (m+ 1) + 2m+ 3(m− 1) + ...+m ∗ 2 + (m+ 1) ∗ 1

Note that any homogeneous polynomial of degree m is a linear combination of

monomials of degree m and all the monomials of degree m with a coefficient of 1

are linearly independent, so this sum represents the dimension of the space of all

homogeneous polynomials of degree m in x, y, z, and w. Now to find the dimension

of the space of only the harmonic homogeneous polynomials of degree m, we must

recall that, by definition, a polynomial p(x1, x2, ..., xn) is harmonic if and only if it

satisfies Laplace’s equation

52p ≡ ∂2p

∂x1
2

+
∂2p

∂x2
2

+ ...+
∂2p

∂xn2
= 0 (4.1)

Let A be the space of all homogeneous polynomials of degree m and B the space

of all homogeneous polynomials of degree m− 2. Note that, if p is a homogeneous

polynomial of degree m ≥ 2, then the Laplacian acting on p will produce a homoge-

neous polynomial of degree m− 2, since each term will either be zero or nonzero of

degree m− 2. Consequently, we can define a map f : A → B that takes p 7→ 52p.

It turns out that this map is a surjective homomorphism, meaning that every homo-

geneous polynomial of degree m− 2 is the Laplacian of an mth degree homogeneous

polynomial [6].
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Therefore, the dimension of the space of homogeneous harmonic polynomials of

degree m on the 3-sphere will be equal to the dimension of the space of homoge-

neous polynomials of degree m minus the dimension of the space of homogeneous

polynomials of degree m− 2:

(m+ 1) + 2m+ 3(m− 1) + ...+ (m− 1) ∗ 3 +m ∗ 2 + (m+ 1) ∗ 1− [(m− 1) + 2(m−

2) + ...+ (m− 2) ∗ 2 + (m− 1) ∗ 1]

= (m+ 1) + 2m+ 2(m− 1) + 2(m− 2) + ...+ 2 ∗ 2 + 2 ∗ 1

= (m+ 1) + 2[m+ (m− 1) + (m− 2) + ...+ 2 + 1]

= (m+ 1) + 2[(m)(m+ 1)/2]

= (m+ 1) +m(m+ 1)

= m+ 1 +m2 +m

= m2 + 2m+ 1

= (m+ 1)2

In order to simulate the physics of a multiply connected spherical universe S3/Γ,

cosmologists use the Γ-periodic modes of S3, as discussed previously. For every

degree m, these Γ-periodic modes form a subspace of the (m + 1)2-dimensional

space of mth-degree polynomials on S3. Although in theory finding an orthonormal

basis for these subspaces should be simple, in reality the linear algebra becomes

extremely complicated as the value of m gets larger. Additionally, many of the

computations that can be done in a more reasonable amount of time end up being

unfit for use due to accumulated rounding errors.
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The difficulty of computing the eigenmodes has been a serious hindrance to cos-

mologists trying to understand and to model the physics of multiconnected spaces.

Fortunately, in 2005 Jesper Gundermann published calculations of the Γ-periodic

eigenmodes of S3 for the binary polyhedral spaces S3/T ∗, S3/O∗, and S3/I∗, up to

k = 100 [7]. Then, using symmetry properties of these eigenmodes, he derived esti-

mates for the `-terms of the CMB power spectra and their variances up to ` = 15,

when previously the CMB power spectra for these spaces were only known up to

` = 4. The results of Gundermann’s simulation of the CMB in the Poincaré do-

decahedral space has interesting implications for the possibility of this space as a

candidate for the shape of the universe, and shall be discussed later.

5 A spherical universe?

(This section assumes a basic understanding of abstract algebra. For relevant algebra

theorems, please see the appendix. Proofs of these theorems can be found in [8].)

Data collected by the WMAP satellite favors a spherical universe and spherical

spaces certainly seem easier to work with than hyperbolic ones, so it would make

sense to test for the possibility of the universe being a spherical 3-manifold. Fortu-

nately, all the 3-dimensional spherical spaces have already been classified (see [9]),

so in theory we should be able to calculate the eigenmodes of – and simulate a

power spectrum for – all spherical 3-manifolds in order to test whether any of their

eigenmodes match up with physical observations. In order to understand how the

spherical spaces have been classified, we must first review the quaternions, H. The
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quaternions provide a non-commutative algebraic structure on R4 and are spanned

by the set {1, i, j, k}, where i2 = j2 = k2 = −1, ij = k, jk = i, and ki = j. Just as

S1 has a natural multiplicative group structure as the set {x ∈ C : |x| = 1}, S3 has

a natural multiplicative group structure as the set of unit length quaternions.

Now let q ∈ H, and consider the effect of q acting on an element x ∈ H by

conjugation. Note that for all q ∈ H, the point 1 ∈ S3 will be fixed by conjugation

by q since q1 = 1q and thus, multiplying both sides by q−1 on the left, q1q−1 = 1.

Therefore, we can think of conjugation by q ∈ S3 as a rotation of the equatorial

2-sphere – that is, the intersection of S3 with the span of the set of purely imaginary

quaternions, {i, j, k}.

Recall that SO(3) is the group of proper (i.e. length- and orientation-preserving)

rotations of R3. Then if conjugation by q is a rotation of the equatorial 2-sphere,

each q ∈ S3 defines an element pq ∈ SO(3), where pq is the isometry sending x ∈ H

to qxq−1. Now consider the map p : S3 → SO(3) defined by p(q) = pq. This map is

a homomorphism since

p(qr)(x) = pqr(x)

= qrx(qr)−1

= qrxr−1q−1

= pq(pr(x))

and thus p(qr) = p(q)p(r) under the operation of function composition. We will
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use this homomorphism to classify the subgroups of S3, but first we need a full

classification of the finite subgroups of SO(3).

Fortunately, the finite subgroups of SO(3) are just the finite symmetry groups

of S2. These groups are well-known and are listed in Table 2.

Table 2: Finite Symmetry Groups of S2

Group Order Description
Cyclic groups Zn n Generated by rotations of 2π

n
radians about some axis

Dihedral groups Dm 2m Symmetry group of the regular n-gon
Tetrahedral group T 12 Symmetry group of the regular tetrahedron
Octahedral group O 24 Symmetry group of the regular octahedron
Icosahedral group I 60 Symmetry group of the regular icosahedron

Returning now to the homomorphism p, we see that the kernel is

Ker(p) = {q ∈ S3 : pq(x) = x, ∀x ∈ S3}

= {q ∈ S3 : qxq−1 = x, ∀x ∈ S3}

= {q ∈ S3 : qx = xq, ∀x ∈ S3}

But multiplication in H is noncommutative and, in fact, if a, b ∈ H are nonreal,

then ab = ba ⇐⇒ their imaginary parts are parallel. Therefore, we have that

Ker(p) = {±1}
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and thus p is a two-to-one mapping from S3 into SO(3). Let Γ be a finite subgroup

of S3. Obviously 1 ∈ Γ since, by definition, groups contain an identity element, so

we will now consider the cases where Γ does or does not contain −1.

Case 1 (−1 6∈ Γ): In this case, Ker(p|Γ) = {1} and thus p|Γ is a one-to-one map-

ping into SO(3). Because p is a homomorphism and Γ a finite subgroup, we know

that its image is a finite subgroup of SO(3) by the properties of homomorphisms.

Therefore, by the First Isomorphism Theorem, Γ must be isomorphic to one of the

above listed finite symmetry groups of S2. In fact, we may narrow down the list

of possibilities for Γ even further by noting that, since −1 is the only element of

S3 of order 2, Γ contains no elements of order 2. Cauchy’s Theorem tells us that

every finite group of even order has an element of order 2, and thus eliminates as

possibilities all finite symmetry groups of S2 except for the cyclic groups of odd

order. At the same time, Lagrange’s Theorem guarantees that no cyclic group of

odd order will have an element of order 2, leaving all cyclic groups of odd order as

possibilities.

We can see that for every odd integer n, there is, in fact, a cyclic subgroup

of S3 of order n that maps isomorphically into SO(3) as follows: let n be odd,

let Hn ⊂ S3 be the multiplicative group of order n generated by the unit-length

quaternion cos(2π
n

)1 + sin(2π
n

)i, and let φ : Hn → SO(3) be the restriction of p to

Hn - that is, φ(q) = pq. Suppose, by way of contradiction, that −1 ∈ Hn. Then

2πk
n

= π for some k ∈ {1, 2, ..., n} ⇔ 2k = n⇔ n is even. →← But this contradicts

the fact that n is odd. We conclude that −1 6∈ Hn and thus that Kerφ = {1}.
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Consequently, by the properties of homomorphisms, φ is a one-to-one mapping from

Hn into SO(3). Then |Hn| = |φ(Hn)| = n and so φ(Hn) must be isomorphic to Zn

since, for any odd value of n, Zn will be the only finite subgroup of SO(3) of order

n. Therefore, by the First Isomorphism Theorem, Hn is isomorphic to Zn.

Case 2 (−1 ∈ Γ): In this case, Ker(p|Γ) = {1,−1} and thus p|Γ is a two-to-

one mapping into SO(3). Therefore, Γ is a two-fold covering of one of the finite

symmetry groups of S2. On the other hand, each of these symmetry groups lifts to

a subgroup of S3. A binary polyhedral group is defined as the two-fold cover of a

finite symmetry group G ⊂ S2, constructed by simply taking the pre-image p−1(G).

For example, if G is a cyclic group of order n, then p−1(G) is called the binary

cyclic group of order 2n; if G is the tetrahedral group (order 12), then p−1(G) is

called the binary tetrahedral group (order 24), etc. The binary cyclic group of the

n-gon is simply the cyclic group of order 2n, so every cyclic group of even order is

a binary cyclic group. Note that, in contrast, the dihedral, tetrahedral, octahedral

and icosahedral groups are not subgroups of S3; only their binary covers are.

Thus, by Cases 1 and 2, we have the complete classification of finite subgroups

of S3:

• The cyclic groups Zn, of order n

• The binary dihedral groups D∗n, of order 4n, n ≥ 2 (D1 is isomorphic to Z4)

• The binary tetrahedral group T ∗, of order 24

• The binary octahedral group O∗, of order 48, and

• The binary icosahedral group I∗, of order 120
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To better understand how the subgroups of S3 act on S3 to form spherical 3-

manifolds, we will first begin with a definition.

Definition 5.1. A clifford translation g of a metric space M is an isometry that

translates all points to the same distance. That is, ∀x, y ∈M,d(x, g(x)) = d(y, g(y)).

A single-action manifold S3/Γ is one in which the elements of Γ act as right-

handed Clifford translations, where Γ is a subgroup of S3. Here a right-handed

Clifford translation corresponds to left multiplication by a unit-length quaternion q

and acts as a right-handed corkscrew rotation of S3. A left-handed Clifford transla-

tion x 7→ xq acts as a left-handed corkscrew rotation of S3, causing S3/Γ to be the

mirror image of what it would be if Γ acted as a right-handed Clifford translation.

We can see why right multiplication – as opposed to left multiplication – reverses

the direction of the corkscrew motion, through the following observation: notice

that (cos θ1 + sin θi)(a1 + bi + cj + dk)

= (a cos θ1−sin θi·(bi + cj + dk))i+cos θ(bi+cj+dk)+a sin θi+(sin θi)×(bi+cj+dk)

= (a cos θ + b sin θ)1 + (b cos θ + a sin θ)i + (c cos θ − d sin θ)j + (d cos θ + c sin θ)k,

whereas (a1 + bi + cj + dk)(cos θ1 + sin θi)

= (a cos θ1−(bi + cj + dk)·sin θi)i+a sin θi+cos θ(bi+cj+dk)+(bi+cj+dk)×(sin θi)

= (a cos θ + b sin θ)1 + (b cos θ + a sin θ)i + (c cos θ + d sin θ)j + (d cos θ − c sin θ)k.

A double-action manifold is a quotient space in which two subgroups, Γ and

Γ′ of S3 act simultaneously on S3 as right- and left-handed Clifford translations,

and each element in Γ occurs with each element of Γ′. A linked action manifold

is like a double-action manifold, except that each element in Γ occurs with only
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some elements of Γ′. All spherical 3-manifolds have been shown to belong to one

of these three categories – single, double or linked action manifolds – so with the

classification of finite subgroups of S3 we obtain a complete classification of spherical

3-manifolds [9].

Cosmologists are currently focusing mainly on single-action manifolds for two

main reasons: first, double and linked action spaces frequently require unrealisti-

cally complicated groups Γ; and second, double-action manifolds are globally inho-

mogeneous, i.e. their geometries look different depending on the observer’s location

within the space. A single action space, however, is globally homogeneous, so its

geometry – and thus the expected CMB power spectrum – look the same to every

observer, regardless of her location in space. Clearly, then, single action spaces are

much easier to work with since they assure that data collected on the CMB power

spectrum from one observation point will be consistent with that collected from

every other observation point.

6 Searching for a suppressed quadrupole

The ` = 0 constant term tells us the average CMB temperature. The value of

the ` = 1 linear term from the WMAP data, generally called the dipole, reflects

the dipole induced by the movement of the solar system relative to the CMB. The

dipole induced by this relative movement is far stronger than the dipole in the

CMB and thus overwhelms it. The removal of these two terms leaves the harmonics

representing the intrinsic temperature fluctuations in the CMB radiation. At small
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angular scales (large ` values), the WMAP data seems to coincide nicely with the

infinite flat space model. At large angular scales (small ` values), however, it tells

a different story. The ` = 2 quadratic term, often called the quadrupole, had a

measured value seven times weaker than what would be predicted by a flat, infinite

universe model. The probability of such a great difference occurring by chance is

only 0.2%. The ` = 3 cubic term, called the octopole, was also found to be a fair

amount weaker than expected, although the difference between its measured and

expected values fell within the range of acceptable error. Of course, the differences

could be due to chance, but when taken together, the facts that both the ` = 2 and

` = 3 terms were low and that the probability of such a great difference in the ` = 2

term is so small, merit an investigation.

Mathematicians have studied various multiply connected topologies, looking to

see how they affect large scale fluctuations. Results have shown that spaces in which

not all dimensions are of similar magnitude are highly inconsistent with the WMAP

data, in that they actually elevate the quadrupole instead of suppressing it. For ex-

ample, among the Euclidean spaces, mathematicians have studied the rectangular

oblate and prolate 3-tori, which are made by identifying opposite sides of rectangles.

While these spaces do indeed suppress the low-` terms, they lower the high-` terms

even more, thereby causing the quadrupole to be elevated in comparison. Similar

conclusions were made regarding spherical spaces. A lens space L(p, q) is the quo-

tient S3/Zp made by identifying the lower and upper surfaces of a lens-shaped solid

with a rotation of 2πq/p, where p, q ∈ Z+, p > q, and p and q are relatively prime
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(see Figure 10). Clearly not all dimensions of a lens space are of similar magnitude,

and, in fact, it behaves in a manner somewhat similar to that of a rectangular 3-

torus that is narrow in one direction and wide in the other two. Again, just as the

oblate and prolate 3-tori, the lens spaces lowered the high-` terms more than the

low ones and thus effectively elevated the quadrupole.

Figure 10: Constructing a lens space L(p,q). Picture courtesy of Gausmann et al
[9]

From this, mathematicians have concluded that only a “well-proportioned space”

that is of similar magnitude in every dimension, can produce the desired low ` = 2

term. Among the Euclidean topologies, they have examined the flat 3-tori and found

that, although a small cubic 3-torus – made by identifying opposite sides of a cube

– can lower the quadrupole, it also lowers the ` = 3, 4, and 5 terms. Obviously then,

since the WMAP data show an only somewhat low octopole and normal ` = 4 and

5 terms, a cubic 3-torus is not consistent with observations.

All of these results, together with the fact that WMAP estimates for Ω suggest a

spherical universe, have caused researchers to look into the binary polyhedral spaces

S3/T ∗, S3/O∗, and S3/I∗, as these spherical spaces have the nicely proportioned fun-

damental domains of a regular octahedron (a polyhedron with 8 triangular faces),
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a truncated cube (with 6 octagonal and 8 triangular faces) and a regular dodeca-

hedron (with 12 pentagonal faces), respectively. Conveniently, a circle inscribed in

a regular dodecahedron has radius π/10 ≈ 0.31. If we take Ω to be 1.02, then the

geometer’s horizon radius will be 0.47 > 0.31 and thus, in theory, if the universe is

in the shape of S3/I∗, we should be able to see multiple images of the same source

and detect the universe’s topology. For this reason, mathematicians have focused

on S3/I∗, commonly known as the Poincaré dodecahedral space.

At the time of the publication of Weeks’ AMS article [1], Weeks and his col-

leagues had only been able to compute the eigenmodes of S3/I∗ up to degree m ≤ 24

due to accumulating round-off errors, meaning that they were only able to generate

reliable estimates for the ` = 2, 3, and 4 terms of the predicted CMB power spec-

trum. They used the ` = 4 term to normalize, and the results that they obtained

seemed extremely promising, with the predicted quadrupole and octupole matching

observations. Additionally, the best fit was in the range 1.01 < Ω < 1.02, coinciding

nicely with the WMAP estimate for the normalized density parameter.

The small number of free parameters associated with the dodecahedral space

helped make this result especially satisfying. For example, while one can make a

3-torus from any one of 6 parallelepipeds, one can only make the dodecahedral space

using a regular dodecahedron. Additionally, in most 3-manifolds the position of the

observer will affect the predicted CMB power spectrum, but in the dodecahedral

space, the spectrum will be unaffected by her position. Thus one can see how the

dodecahedral space greatly reduces the number of free parameters as opposed to



37

other potential spaces. In fact, Ω was the only free parameter used in the study.

Therefore, it seemed quite promising that the dodecahedral space model was able

to predict quadrupole, octupole and density values that aligned so nicely with ob-

servations.

7 Do physical observations support the predic-

tions of a dodecahedral model?

If the universe is indeed a Poincaré dodecahedron, then the following should hold

true:

1. The low-` terms in the CMB power spectrum should be weak.

2. Space should be slightly curved.

3. We should be able to see multiple images of the same source in the sky.

As has already been discussed, the WMAP satellite data produced a CMB power

spectrum with a low quadrupole and octupole, so the first prediction coincides

perfectly with observations. The second prediction, on the other hand, may or

may not hold true. When Weeks’ article was originally published [1], WMAP data

suggested that Ω = 1.02±0.2. The dodecahedral model requires space to be slightly

curved (i.e. Ω ≈ 1.02), so the measurements for Ω were certainly consistent with a

dodecahedral space, but at the same time they did not rule out the possibility of a

flat universe with Ω = 1. Since the publication of the article, NASA has released
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additional and improved WMAP data, which may favor a flatter space. The 7-year

WMAP data, released in January 2010, suggests that either 0.99 < Ω < 1.01 at the

95% confidence level or 0.99 < Ω < 1.02 at the 95% level, depending on which other

data sets it is combined with [10]. While these new estimates for Ω do not rule out

the possibility of a dodecahedral universe, they clearly diminish some of the support

for the dodecahedral model.

What about the last prediction? If Ω = 1.02, then the radius of a circle inscribed

in the fundamental dodecahedron is a fair amount smaller than our horizon radius,

implying that the fundamental dodecahedron is smaller than our horizon sphere.

This being the case, the horizon sphere should “wrap around the universe and

intersect itself.” That is, the horizon radius will exceed the injectivity radius and we

will be able to see various points that are identified with each other. Because the

intersection of two spheres is a circle, each self-intersection of the horizon sphere will

be a circle and we, at the center of our horizon sphere, will be able to see the same

circle of intersection on opposite sides of the sky. We can use CMB temperature

fluctuations to look for such matching circles: identical density patterns will be

reflected in identical temperature patterns. If we could find the matching circles

predicted by a Poincaré dodecahedral space, we would have solid proof of the shape

of our universe.

Unfortunately, a search performed by Cornish et al and using WMAP data

looked for matching circles predicted by various topologies, including the dodeca-

hedral space, but found none [11]. These results, although disheartening, do not
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necessarily rule out the possibility of a compact universe. The CMB temperature

fluctuations do not perfectly reflect density fluctuations due to various sources of

contamination. For example, the temperature of the microwaves changes due to the

Doppler effect, meaning that their wavelengths (and hence temperature) change as

they move relative to us observers. Additionally, gravitational influences may have

affected the radiation’s temperature by causing them to lose energy during their

13.7 billion years of traveling toward us. While Cornish et al certainly attempted

to control for contamination, their data still contained foreground contamination

from the Milky Way and it is possible that this contamination was strong enough

to obscure matching circles. It is always possible that improved techniques for re-

moving foreground contamination may help researchers to find matching circles in

the future.

Nevertheless, it is a topic of intense debate whether researchers will find the six

sets of matching circles predicted by the dodecahedral model. Although researchers

such as Boudewijn Roukema, arguing for a dodecahedral universe, have suggested

that the sets of matching circles have indeed already been found [12], others have

pointed out flaws in the methodology and, in fact, offered evidence that the dodec-

ahedral model is not an apt model for our universe [13].

What if the matching circles do not exist? Such a scenario would certainly still

leave open the possibility of a compact universe, although it would mean that our in-

jectivity radius is comparable to or larger than our horizon radius. A universe about

the same size as, or only slightly larger than, the horizon sphere, could still explain
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the missing large scale fluctuations in the CMB power spectrum. If researchers are

not able to find the desired matching circles, the hope is that the universe is not

too much larger than the horizon sphere and that – in the same way that one can

determine the length of a guitar string by observing vibrations on its middle 80%

– we will be able to detect the topology of the universe using only what we can

observe in our horizon sphere.

8 New evidence

In addition to the unexpectedly low quadrupole, the WMAP data shows an un-

usual quadrupole-octupole alignment [14]. Since the publication of Weeks’ article,

improved techniques for calculating eigenmodes have allowed mathematicians to in-

vestigate how well the dodecahedral model explains this additional mystery. Work-

ing with Jesper Gundermann’s simulation of the CMB in S3/I∗ with modes up

through degree m = 102, Weeks and Gundermann found the Poincaré dodecahedral

space unable to explain any correlation between the quadrupole and octupole [14].

As Weeks points out, however, this does not serve as conclusive evidence against

a dodecahedral universe: it is possible that the quadrupole-octupole alignment is

the result of foreground contamination. Nevertheless, other spaces’ ability to better

explain the alignment may help to unmake the case for the Poincaré dodecahedral

space. In response to the discovery of the anomalous alignment, Aurich et al ex-

plored the hyperbolic Picard space, the Poincaré dodecahedron, binary tetrahedron,

binary octahedron, and the hypertorus [15]. All of these spaces suppress the low-`
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terms just as the dodecahedral space does, but none were found to fully explain

the quadrupole-octupole alignment. Interestingly, though, out of all of these spaces,

the Picard universe showed the greatest alignment between the quadrupole and oc-

tupole. Given that the recently released 7-year WMAP data estimate Ω = 1.0±0.01

leaves more room for the possibility of a hyperbolic universe, this finding might stack

some evidence against the case for a dodecahedral universe. If improved data ever

begins to more strongly favor a hyperbolic universe, the Picard space may become

a major candidate for further investigation.

However, the Picard space is not the only model for the universe competing

against the Poincaré dodecahedral space. The so-called standard model predicts an

infinite Euclidean universe and recently may have gained some additional support.

When the first set of WMAP data was released, the observed temperature fluctu-

ations in the CMB radiation did not match up well with those predicted by the

standard model. The new 7-year WMAP data, however, seems to provide better

support for the standard model. Not only does the new estimate for Ω of 1.0± 0.01

favor a Euclidean universe more strongly than the old estimate of Ω = 1.02 ± 0.02

did, but the standard model predicts specific patterns of polarization around hot

and cold spots in the universe, and these patterns have now been observed in the

7-year data.

Perhaps, then, our universe is not spherical at all, but rather Euclidean or even

hyperbolic. So are we back where we started, with no clue as to the topology of the

universe? Not at all. Over the past two decades, different data sets have favored each
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of the three types of manifolds under consideration: spherical, Euclidean and hy-

perbolic. But as mathematicians continue working with physicists and cosmologists

to solve the mystery of the shape of our universe, they continue to develop sophisti-

cated techniques to test complex models. In so doing, they continue increasing our

understanding of spherical, Euclidean and hyperbolic spaces, providing theoretically

testable hypotheses about what we should expect to observe in our universe given

a particular manifold as a model. Moreover, even as particular hypotheses appear

to be proven untrue, this work demonstrates the power of seemingly abstract topo-

logical models to describe real and meaningful properties of the physical universe.

As data collection techniques and computational methods continue to improve, this

seedbed of knowledge will undoubtedly help to nicely piece together otherwise cryp-

tic physical observations in order to draw important conclusions about the nature

of our universe.
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9 Appendix A

As stated previously, one possible explanation for the low quadrupole value is that

our universe has finite volume and is too small to support such long wavelengths.

But if our universe is too small to support large-scale fluctuations, one may wonder

why the quadrupole value was nonzero. If our universe is too small to support these

wavelengths, then how did we observe any fluctuations on this scale?

To see how this is possible, we will examine a lower dimensional analogy. Suppose

that instead of a 3-manifold, the universe was a 2-torus and that instead of a horizon

sphere, we observed the CMB radiation within a horizon circle. If the horizon circle

is a fair amount larger than our universe, within the horizon circle one will see various

copies of the fundamental domain polygon. If we define the size of the fundamental

domain polygon to be one unit, then the universe will not be able to support any

fluctuations broader than one unit. However, in Figure 11, we see that larger-scale

fluctuations can be observed: in our diagram, the copies of the fundamental domain

polygon line up to create a streak of blue on the left side of the horizon circle that

is approximately 3 units long, and a streak of red on the right side that is about

2 units long. Even though no one copy of the fundamental domain polygon can

support a fluctuation broader than one unit, the alignment of the polygons allows

for the detection of broader fluctuations. Clearly, then, some large-scale fluctuations

can be observed in a small, finite-volume universe. However, we would expect to

observe far fewer of these large-scale fluctuations in such a universe because on large

angular scales any temperature fluctuations in the CMB would, for the most part,
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tend to average out. Thus, in a small, finite-volume universe we would expect to

see a low – but not necessarily zero – quadrupole value, which is exactly what the

WMAP data showed.

Figure 11: Although the size of the fundamental cell is only one unit, we observe a
streak of blue on the left that is about 3 units long and a streak of red on the right
that is about 2 units long. Figure courtesy of Jeffrey Weeks.
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10 Appendix B

Theorem 10.1. (Some Properties of Homomorphisms) Let φ be a homomor-

phism from a group G to a group F and let H be a subgroup of G. Then φ(H) is a

subgroup of F. Also, if |Kerφ| = n, then φ is an n-to-1 mapping from G onto φ(G).

Theorem 10.2. (First Isomorphism Theorem) Let φ be a group homomorphism

from G to F. Then the mapping from G/Kerφ, given by gKerφ 7→ φ(g), is an

isomorphism. In symbols, G/Kerφ ≈ φ(G).

Theorem 10.3. (Cauchy’s Theorem) Let G be a finite group and let p be a prime

that divides the order of G. Then G has an element of order p.

Theorem 10.4. (Lagrange’s Theorem) If G is a finite group and H is a subgroup

of G, then |H| divides |G|.
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