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Abstract

The impact of quality control exclusion criteria on functional connectivity in
children with neurodevelopmental disorders

By Liwei Wang

Background: Autism Spectrum Disorder (ASD) and Attention Deficit Hyperac-
tivity Disorder (ADHD) are two serious neurodevelopmental diseases in the United
States with increasing diagnosis rates. Resting-state functional magnetic resonance
imaging (rsfMRI) may be a useful tool to characterize the neural underpinnings of
neurodevelopmental disorders. Motion can create large artifacts in fMRI, and con-
sequently, data with head motion is often excluded. These excluded images may
contribute to selection bias, potentially mischaracterizing these neurodevelopmental
disorders compared to typically developing individuals.

Objective: The purpose of this study was to improve estimates of functional con-
nectivity in neurodevelopmental disorders by using detailed phenotypic information
to account for non-random missingness in fMRI data in a large sample of elementary
school-aged children, where missingness arises from quality control exclusion criteria.

Methods: We analyzed phenotypic information from 758 individuals and assessed
the functional connectivity of a neurodevelopmental disease group and a typical de-
veloping group based on analyses of 473 children (8-13 years old), which included
119 subjects with ASD, 119 subjects with ADHD, and 235 typical developing sub-
jects. We examined seed-based functional connectivity for a region located in the
left posterior cingulate cortex (L-PCC). We applied doubly robust targeted minimum
loss-based estimator (DRTMLE) to account for the possible confounding due to the
patterns of missingness (driven by motion) being related to the severity of the neu-
rodevelopmental disorders (captured by phenotypic information). We compared the
standard analysis ignoring possible confounding with DRTMLE.

Results: First, the non-random missingness in SRS, PANESS, and GAI is triggered
by the participants from multiple studies and some of them did not collect SRS,
PANESS, and GAI. Second, we found ASD hyperconnectivity between the L-PCC and
frontoparietal regions, and this hyperconnectivity was more extensive in DRTMLE
than in the naive approach. We also found regions of ASD-related hypoconnectivity
in the temporal lobe in DRTMLE that was not apparent in the naive approach.
Differences between ADHD and TD generally resembled those in ASD versus TD but
less extensive.

Conclusion: Head motion exclusion criteria may lead to biases in the sample of
children included in analyses of neurodevelopmental disorders, where more severe
pathology may be excluded due to motion. DRTMLE allows the incorporation of
phenotypic information to weight data, which may have led to the larger differences



between ASD and typically developing observed in the DRTMLE approach versus
the naive approach that ignores missingness. This suggests DRTMLE can be used to
improve our understanding of neurodevelopmental disorders.
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1 Introduction

Autism Spectrum Disorder (ASD) and Attention Deficit Hyperactivity Disorder (AD-

HD) are the most common neurodevelopmental diseases13. In the United States, ASD

and ADHD are serious and growing neurodevelopmental diseases. The diagnostic

criteria for the ASD include social deficit and restricted and repetitive behavior,

interests and activities1. In 2014, 1.7% of children have been identified as ASD

by Autism and Developmental Disabilities Monitoring (ADDM) Network6. ADHD

is diagnosed as inattention, hyperactivity, and impulsivity1. Having based a 2016

parent survey, the estimated percentage of children diagnosed as ADHD is increased

to 9.4% from 4.4%9.

To characterize the mechanisms and causes of these neurodevelopmental diseases,

many neuroimaging techniques are currently being investigated to analyze neural

pathways. Functional magnetic resonance imaging (fMRI) is a common tool which de-

tects the brain activities between brain regions by measuring the fluctuation of blood-

oxygen-level-dependent (BOLD) signals15. Recently, resting-state fMRI (rsfMRI) has

been used to detect differences in functional connectivity, which is defined as corre-

lation between different brain regions across time23. However, head motion, which

refers to subjects’ head displacement during MRI scanning, is a significant challenge

in fMRI20. Head motion can introduce spurious group differences in connectivity es-

timates derived from fMRI data24. Consequently, head motion exclusion criteria are

applied to fMRI to remove images that may contain motion artifacts7. Several studies

also have explored post-acquisition cleaning procedures for minimizing motion arti-

facts in functional connectivity estimates7;18;22. However, no technique can perfectly

solve the problem of motion artifacts. aCompCor is a method used for reducing the

distortion of head motion on the resting-state fMRI (rsfMRI) to improve the speci-

ficity of estimation of functional connectivity. However, a limitation of aCompCor is
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that it is only applicable to low-motion data18. Global signal regression can reduce

the impact of motion on functional connectivity, but there may still be issues with

distance-dependent artifacts18.

Neurodevelopmental diseases may be associated with excessive motion. Only recently,

studies have found that head motion-related artifacts are associated with these traits

of interest. Couvy-Duchesne et al. 8 found that head motion was moderately related

to self-reported inattention and hyperactivity-impulsivity. As head motion criteria

become increasingly stringent, data retention decreases while the potential to limit

the generalizability of the study findings increases. While previous studies explored

methods to alleviate the effect of artifacts related to head motion, they have not

examined the possible impacts of selection bias on the resulting sample of children

with neurodevelopmental disease. In these studies, bias may have been introduced

prior to post-acquisition cleaning procedures, leading to possible mischaracterization

of the functional connectivity among the children with neurodevelopmental disease.

Bias induced by missing data can sometimes be controlled using some form of co-

variate adjustment. Many methods have been developed to this end in the causal

inference literature, often based on propensity scores. The propensity score is the

probability of observing complete data on an individual given other relevant charac-

teristics of the individual. Estimated propensity scores are sometimes used to match

individuals to approximate a data set that might have been observed if there were no

missingness2. Propensity scores can also be used for inverse probability weighting,

which creates a “pseudo-population” in which missingness is independent of con-

founders by correcting for imbalance between features of individuals with complete

vs. missing data26. However, IPWE can be unstable if the estimated propensity score

is near zero. If some ”types” of individuals (as defined by their covariate values) are

only rarely observed to have complete data, then the inverse propensity weights can
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become very large and cause inflated variance of the estimator. Another approach

to covariate adjustment is using covariate-adjusted models of the outcome amongst

individuals with the outcome measured. This outcome model is then re-weighted or

standardized to the observed covariate distribution of all individuals in the study21.

Other estimators combine a propensity score with an outcome model to yield a doubly-

robust estimator. While the estimator is built based on two models, doubly-robust

estimators only require either the propensity score or outcome regression to be con-

sistently estimated in order to consistently estimate the association of interest. Ac-

cordingly, the stability and often the efficiency of the estimator is improved relative

to other approaches. Here, we apply a Doubly-Robust Targeted Minimum Loss-based

estimator (DRTMLE) to address the selection bias problem in our study4 3.

In order to address the biases identified in the literature, the purpose of this study

is to: 1) examine whether commonly used head motion exclusion criteria result in

biased samples of children with ASD and ADHD, and 2) improve the estimates of

differences in functional connectivity between these groups by adjusting for covariates,

including social responsiveness score, the Physical and Neurological Exam for Subtle

Signs (PANESS), and general ability index. We evaluated the relationship between

the probability of being excluded due to head motion and each trait of interest, as

well as evaluated how the traits of interest and motion related to these traits affects

estimates of functional connectivity in children with neurodevelopmental diseases.

2 Data description

2.1 Study population

Our cohort is an aggregate of 758 children between 8- and 13-years old who partici-

pated in a neuroimaging study of either ASD or ADHD at Kennedy Krieger Institute
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(KKI) between 2008 and 2019. Participants included 147 children with ASD (122

boys), 273 with ADHD (202 boys), and 338 typically developing (229 boys).

Table 1 summarizes demographic and phenotypic information for our cohort stratified

by diagnosis. Diagnosis of ASD was confirmed using the Autism Diagnostic Observa-

tion Schedule-Generic (ADOS-G) or Autism Diagnostic Observation Schedule, Second

Edition (ADOS-2), depending on the date of enrollment, and the Autism Diagnostic

Interview-Revised (ADI-R). To be included in the ADHD group, a participant had

to 1) receive a t-score of 60 or higher on the inattentive or hyperactive subscales on

the Conners’ Parent or Teacher scales, or 2) received a score of 2 or 3 on at least 6/9

items on the Inattentive or Hyperactivity/Impulsivity scales of the ADHD Rating

Scale-IV. Children were excluded from the TD group if they had a first-degree rela-

tive with ASD, if parent responses to either the Diagnostic Interview for Children and

Adolescents-IV (DICA-IV) or for more recent participants, the Kiddie Schedule for

Affective Disorders and Schizophrenia for School-Aged Children - Lifetime Version,

revealed a history of a developmental or psychiatric disorder, with the exception of

simple phobias, or if they scored above clinical cut-offs on the parent and teacher

Conners’ and ADHD Rating Scales. Available phenotypic data varied according to

the study in which participants originally enrolled. Core ASD and ADHD symp-

tomatology were quantified using parent responses to the Social Responsiveness Scale

(SRS) questionnaire5and the DuPaul ADHD Rating Scale17, respectively. The SRS

askes a caregiver to rate a child’s motivation to engage in social interactions, his/her

ability to recognize emotional and interpersonal cues from other people, to interpret

those cues correctly, and to respond to what he/she interprets appropriately. Higher

SRS scores indicate more severe social deficits. The DuPaul ADHD Rating Scale

askes a caregiver to rate the severity of inattention and hyperactivity/impulsivity

symptoms over the last six months and yields two subdomain scores: inattention and

hyperactivity/impulsivity. Higher DuPaul scores indicate more severe symptoms. In
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addition to ASD and ADHD trait severity, basic motor control was examined using

the Physical and Neurological Exam for Subtle Signs (PANESS) and intellectual abil-

ity using General Ability Index (GAI) derived from the Wechsler Intelligence Scale

for Children25. PANESS assesses basic motor control by a laterality inventory and a

detailed examination of subtle motor deficits. The motor deficits included overflow

movements, involuntary movements, and dysrhythmia11. Higher PANESS scores in-

dicated worse motor control. GAI is a measure of a child’s broad intellectual ability

that minimizes the influence of working memory and processing speed as compared

to the full-scale intelligence quotient. Higher GAI scores indicated greater intellectual

ability.
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TD (N=338) ADHD (N=273) ASD (N=147) Total (N=758) P value

Sex 0.00211

F 109 (32.2%) 71 (26.0%) 25 (17.0%) 205 (27.0%)

M 229 (67.8%) 202 (74.0%) 122 (83.0%) 553 (73.0%)

Age (years) 0.61762

Mean (SD) 10.34 (1.22) 10.32 (1.42) 10.41 (1.39) 10.35 (1.33)

Range 8.02 - 12.97 8.02 - 13.00 8.01 - 12.99 8.01 - 13.00

PANESS <0.00012

N-Miss 6 50 21 77

Mean (SD) 11.60 (5.82) 16.97 (6.38) 17.39 (7.14) 14.43 (6.84)

Range 0.00 - 29.00 1.00 - 30.00 2.00 - 31.00 0.00 - 31.00

SRS <0.00012

N-Miss 95 148 12 255

Mean (SD) 17.47 (12.47) 42.83 (18.16) 96.14 (26.27) 44.89 (37.58)

Range 0.00 - 92.00 8.00 - 91.00 33.00 - 168.00 0.00 - 168.00

GAI <0.00012

N-Miss 3 14 6 23

Mean (SD) 115.47 (12.06) 109.54 (12.85) 106.21 (16.51) 111.60 (13.79)

Range 83.00 - 157.00 79.00 - 146.00 70.00 - 146.00 70.00 - 157.00

Inattention <0.00012

N-Miss 8 10 10 28

Mean (SD) 2.93 (2.82) 19.02 (4.72) 16.85 (6.27) 11.34 (8.83)

Range 0.00 - 16.00 3.00 - 27.00 2.00 - 27.00 0.00 - 27.00

Hyperactivity/Impulsivity <0.00012

N-Miss 8 10 10 28

Mean (SD) 2.13 (2.47) 14.25 (6.46) 12.01 (5.94) 8.35 (7.55)

Range 0.00 - 13.00 0.00 - 27.00 1.00 - 27.00 0.00 - 27.00

1Pearson Chi-Square Test

2Kruskal-Wallis rank sum test

Table 1: Summary of cohort deographic and phenotypic characteristics. For continu-
ous variables, mean (standard deviation) and range are summarized; for binary and
categorical variables, frequencies and percentages are summarized. Differences among
each diagnostic group were tested using either the Kruskal-Wallis rank-sum test or
Chi-square test.

2.2 Imaging Data

Each participant completed a mock scanning session to acclimate to the MRI envi-

ronment and at least one rsfMRI scan on a Philips 3T Achieva (Philips Healthcare,

Best, the Netherlands) using a single-shot, partially parallel (SENSE) gradient re-

called echo planar sequence (TR/TE = 2500 ms/30ms, FA = 70, 3-mm axial slices
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with no slice gap, 128-162 time points). Scans were visually inspected for artifacts;

head motion was estimated using rigid body realignment (SPM12), and framewise

displacement (FD) was calculated from the realignment parameters19.

Resting-state fMRI data were processed using a comprehensive pipeline that utilized

Statistical Parametric Mapping software (SPM12, Wellcome Trust Centre for Neu-

roimaging, Department of Cognitive Neurology, Cambridge UK) and custom Matlab

(Mathworks, Inc.). Scans were slice-time adjusted, rigid-body realigned to adjust for

head motion, and warped to the Montreal Neurological Institute stereotaxic space.

Each rsfMRI scan was temporally detrended on a voxel-wise basis. The aCompCor

strategy was used to estimate spatially coherent nuisance components from tissues not

expected to demonstrate signals relevant to brain activity, as this method has been

shown to selectively attenuate physiological variation in the fMRI signal and mo-

tion artifact. The aCompCor components were regressed from the data along with

detrended realignment estimates and their first derivatives. A bandpass filter was

applied (.01-.1Hz pass band) and the data were spatially smoothed (6-mm FWHM

Gaussian kernel).

3 Methods

3.1 Estimates of functional connectivity accounting for se-

lection bias

To investigate how accounting for demographic and phenotypic differences between

included and excluded participants would impact functional connectivity differences

between diagnostic groups, we calculated DRTMLE estimates of functional connectiv-

ity for each diagnostic group under the three motion exclusion conditions separately.

Our simulation study also considers an IPWE. Consider using ndx observations of
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children with a particular diagnosis. For the ith child, i = 1, . . . , ndx, we observe

(Ai, Xi, Yi), where Ai = 1 if the child is included and 0 if excluded, Xi are covari-

ates measured on each child (SRS, inattention, hyperactivitity/impulsivity, PANESS,

General Ability Index, age, and sex), and Yi is functional connectivity. The IPWE is

computed separately for each diagnostic group as

µ̂IPWE
dx =

1

ndx

ndx∑
i=1

Yi1Ai=1

p̂dx(Ai = 1|Xi)
,

where 1Ai=1 is an indicator variable equal to one if Ai = 1 and 0 otherwise, and

p̂dx(Ai = 1|Xi) refers to the estimated propensity score for child i, i.e., the probability

of not excluding child i’s functional connectivity due to movement. We use the

subscript dx throughout to clarify this is estimated separately for each diagnostic

group. The DRTMLE estimator is computed as

µ̂drtmle
dx =

1

ndx

ndx∑
i=1

Q̂dx(Xi, 1) ,

where Q̂ is an estimate of the outcome regression and Q̂dx(Xi, 1) is the estimated

average functional connectivity for a child with covariates Xi and whose data are not

excluded due to movement. In the DRTMLE procedure this estimate is designed to

satisfy

1

ndx

ndx∑
i=1

1Ai=1

p̂dx(Ai = 1|Xi)

(
Yi − Q̂dx(Xi, 1)

)
= 0 ,

which endows it with double-robustness3. In the results that follow, results labeled

as doubly robust were produced using DRTMLE.

In our analysis, we used an ensemble of machine learning methods to estimate the

propensity score and outcome regression.

Two R packages were implemented for the estimation of functional connectivity: (1)
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Super Learner14 and (2) DRTMLE10. The super learner is an algorithm that uses

cross-validation to build an ensemble of several estimators, where the estimators can

include logistic regression and machine learning methods. Super learner has been

shown to asymptotically provide a fit to the true regression that is as good as the

best of the candidate estimators. To estimate propensity scores, we used polynomial

multivariate regression splines (earth R package), the marginal probability of miss-

ingness, and a generalized additive model (gam R package). To estimate the outcome

regression, we used polynominal multivariate regression splines, main terms linear re-

gression, linear regression with all two way interactions, random forest (randomForest

R package), and extreme gradient boosting (xgboost R package). These regressions

were then used to estimate the mean functional connectivity in each diagnosis group

using the drtmle R package.

3.2 Simulation description

The purpose of this simulation was to ensure that the causal inference method based

on the included scans only could be implemented into our dataset to obtain an ap-

propriate estimate of averaged functional connectivity among the general population.

We wanted to observe that the estimation was stable and approximated the true

averaged functional connectivity to guarantee that the causal inference method can

alleviate the effect of selection bias on the functional connectivity among children

with neurodevelopmental diseases and typical developing children.

For this simulation (N=10,000,000), we generated the following design. (1) The child’s

characteristics (wi) were independent and identically distributed as N (0, 1); (2)

Primary diagnosis (dxi) as ASD was distributed as binomial and the probability

to be diagnosed as ASD was related to characteristic of the children. (3) Both wi

and dxi impacted the probability of included scans (p2i), and the indicator variable
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for included, includedi, followed a Bernoulli distribution with probability p2i. (4)

The functional connectivity was linearly related to the child’s characteristics and the

child in which diagnostic group, but was independent of the scan that included or

excluded by the gross motion exclusion. Here functional connectivity was assumed as

independent of gross motion exclusion, so the estimation of functional connectivity

in a pseudo world with all the scans that were included by motion control criterion

approximated the functional connectivity in the real overall population regardless of

included or excluded by motion control criterion. For this simulation, two causal

inference methods were applied for this simulation and compared to each other: (1)

IPWE and (2) DRTMLE.

dxi ∼ Bin(p1i).

E[dx = 1|wi] = p1i.

log( p1i
1−p1i ) = β11 + β12wi (1).

(We assumed β11 = 0 and β21 = 8).

includedi ∼ Bin(p2i).

E[included = 1|wi, dxi] = p(included = 1|wi, dxi) = p2i.

log( p2i
1−p2i ) = β21 + β22wi + β23I(dxi = 1) (2).

(We assumed β21 = 0, β22 = −2, and β23 = −0.5)

yi = β31 + β32wi + β33I(dxi = 1) + εi (3).

(We assumed β21 = 0, β22 = 20, and β23 = 1)
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εi
iid∼ N(0, σ2)

(Here σ was the standard error of the residual and we assumed σ = 1).

Initially, we obtained the group difference (δ1) on functional connectivity between TD

and ASD group over the whole dataset:

δ1 = E[Y |dx = 1]− E[Y |dx = 0]

By law of large number, when the size of dataset was very large, the sample mean of

function connectivity could approximate to the expected value of functional connec-

tivity conditionally on diagnosis.

δ̂1 =
∑

i:dxi=1 yi

n1
−

∑
i:dx=0 yi
n−n1

n1 =
∑i=1

n 1(dxi = 1) for all the i that dxi = 1;

Second, We obtained the group difference (δ2) between TD and ASD group under the

another scenario that all the excluded scans are removed.

δ2 = E[Y |dx = 1 & included = 1]− E[Y |dx = 0 & included = 1]

Same by law of large number,

δ̂2 =
∑

i:dxi=1&usablei=1 yi

n21
−

∑
i:dxi=0&usablei=1 yi

n2−n21

n2 =
∑n

i=1 I(includedi = 1) for all the i that usablei = 1;

n21 =
∑

i:includedi=1 I(dxi = 1) for all the i that both usablei = 1 and dxi = 1

TD group (µ̂usable=1|dx=0):
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µ̂includedi=1|dx=0 = 1
n−n1

∑
i:dxi=0

yiI(includedi=1)
p2i

ASD group (µ̂usable=1|dx=1):

µ̂included=1|dx=1 = 1
n1

∑
i:dxi=1

yiI(usablei=1)
p2i

Then we obtained that the group difference between TD and ASD group by inverse

probability weighted estimation.

δ3 = 1
n1

∑
i:dx=1

yiI(includedi=1)
p2i

− 1
n−n1

∑
i:dx=0

yiI(includedi=1)
p2i

3.3 Impact of motion exclusion criteria on selection bias

In our study, we considered three levels of exclusion due to head motion. The lenient

case was modeled after the head motion exclusion thresholds used in the paper de-

scribing the Autism Brain Imaging Data Exchange (ABIDE)12: scans were excluded

if they had a mean FD greater than 0.77 mm, which was the sample mean for the

ABIDE dataset. The moderate case was modeled after common head motion exclu-

sion criteria prior to the discovery of the impact of micromovements on functional

connectivity in 2012: scans were excluded if the participant moved more than the

nominal size of a voxel between any two frames and had less than 5 minutes of data

after removing frames above this threshold. In the strictest case, scans were excluded

if mean FD exceeded .2 mm or FD for more than 16% of the frames exceeded .25

mm.7.

Initially, Pearson’s chi-squared test was used to assess whether the proportion of

excluded data differed by diagnosis. As mentioned in the description of the data, the

availability of phenotypic data varied according to the study in which participants
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originally enrolled. Before assessing potential relationships between the probability

of being excluded and any of the phenotypic variables, we first assessed patterns of

missingness in the phenotypic data. We used Pearson’s chi-squared test to compare

the proportion of missing data for each phenotypic measure across diagnostic groups.

Next, we examined correlations among phenotypic characteristics to determine whether

a single model containing all of the phenotypic characteristics or a separate model

for each phenotypic characteristic was necessary. Both generalized linear regression

(GLM) and generalized additive models (GAMs) were used to model the relationship

between the log odds of exclusion and phenotypic measures, controlling for age and

sex. If the effective degree of freedom (EDF) was approximately one, GLM was se-

lected to assess the relationship between the log of odds of exclusion by gross head

motion exclusion criteria and phenotypic characteristics controlling by sex and age

for the reason that GLM is easier to interpret.

includedi ∼ Bin(pi).

log( pi
1−pi ) = β0 + β1W + β2agei centered + β3sexi (1–GLM)

log( pi
1−pi ) = β0 + β1f(W) + β2agei centered + β3sexi (2–GAM)

3.4 Impact of motion exclusion on naive estimates of func-

tional connectivity

We conducted a seed-based correlation analysis to investigate whether previous find-

ings of atypical functional connectivity involving the default mode network (DMN) in

ASD and ADHD were influenced by selection bias. Seed-based Correlation Analysis

(SCA) is a common method to explore the functional connectivity within the brain
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by calculating the connectivity map, which is defined based on a time series of the

region of interest (ROI), the correlation of a time series of all the other voxels in the

brain. The connectivity map shows the r-score to indicate how well the correlation

between the specific seed and all of the other voxels.

Following the procedure used in Di Martino et al. 12 , we focused on a hub of the

DMN, the posterior cingulate cortex (PCC), and created a spherical 4-mm radius

region-of-interest (ROI) centered at the following MNI coordinates: -8, -56, 26. For

each scan, an average time-series was extracted for the PCC ROI and a pairwise

Pearson correlation was calculated between the average PCC ROI time-series and the

time-series of every other voxel in the brain. Pearson correlations were converted to

z-scores representing functional connectivity with the PCC using Fisher’s transform.

For the subset of participants in our cohort with complete cases (see Table 2), we

calculated naive estimates of functional connectivity for the ASD group under the

three motion exclusion conditions separately. We chose to focus on the ASD group

because the ASD group lost the highest proportion of participants under all three

exclusion conditions. Using only scans that passed a given motion control criteria,

we used linear regression to estimate naive functional connectivity differences related

to diagnosis while controlling for age, sex, and GAI.
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TD (N=235) ADHD (N=119) ASD (N=119) Total (N=473) P value

Sex 0.07891

F 68 (28.9%) 39 (32.8%) 24 (20.2%) 131 (27.7%)

M 167 (71.1%) 80 (67.2%) 95 (79.8%) 342 (72.3%)

Age (years) 0.09022

Mean (SD) 10.30 (1.15) 10.04 (1.27) 10.30 (1.37) 10.24 (1.24)

Range 8.02 - 12.90 8.02 - 12.99 8.01 - 12.99 8.01 - 12.99

SRS < 0.00012

Mean (SD) 17.45 (12.47) 43.02 (18.28) 96.01 (26.76) 43.65 (37.05)

Range 0.00 - 92.00 11.00 - 91.00 33.00 - 168.00 0.00 - 168.00

Inattention < 0.00012

Mean (SD) 2.83 (2.84) 19.44 (4.16) 16.82 (6.38) 10.52 (8.83)

Range 0.00 - 11.00 10.00 - 27.00 2.00 - 27.00 0.00 - 27.00

Hyperactivity/Impulsivity < 0.00011

Mean (SD) 2.08 (2.50) 13.65 (6.39) 11.94 (6.08) 7.47 (7.19)

Range 0.00 - 13.00 0.00 - 27.00 1.00 - 27.00 0.00 - 27.00

PANESS < 0.00012

Mean (SD) 9.69 (5.21) 14.42 (6.23) 15.42 (6.75) 12.32 (6.45)

Range 0.00 - 27.00 1.00 - 27.00 2.00 - 29.00 0.00 - 29.00

GAI < 0.00012

Mean (SD) 116.43 (12.53) 112.26 (13.36) 106.67 (16.32) 112.93 (14.32)

Range 85.00 - 157.00 83.00 - 146.00 70.00 - 146.00 70.00 - 157.00

Lenient Motion Control < 0.00011

Excluded 20 (8.5%) 25 (21.0%) 34 (28.6%) 79 (16.7%)

Included 215 (91.5%) 94 (79.0%) 85 (71.4%) 394 (83.3%)

Moderate Motion Control < 0.00011

Excluded 35 (14.9%) 35 (29.4%) 44 (37.0%) 114 (24.1%)

Included 200 (85.1%) 84 (70.6%) 75 (63.0%) 359 (75.9%)

Strict Motion Control < 0.00011

Excluded 127 (54.0%) 89 (74.8%) 94 (79.0%) 310 (65.5%)

Included 108 (46.0%) 30 (25.2%) 25 (21.0%) 163 (34.5%)

1Pearson Chi-Square Test

2Kruskal-Wallis rank sum test

Table 2: Participant characteristics by diagnostic group limited to participants with
complete phenotypic records

4 Results

4.1 Simulations Results

As seen in Table 3, using one large dataset containing both included/excluded images,

we observed that the averaged difference between the typical developing group and
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ASD group using the only included functional connectivity data was very different

from the averaged difference in functional connectivity between the typical developing

group and ASD group using the included/excluded data. This difference represents

the biases if analyses are conducted on only the included scans.

Seed 123 345 456 12345 54321
Group Difference 32.14 32.14 32.15 32.14 32.14
Group Difference Based on Included Scans 25.91 25.90 25.92 25.92 25.93
Estimated Group Difference by IPWE 32.14 31.99 32.24 32.08 31.99

Table 3: Simulation Results (N=10,000,000)

The IPWE of group difference of functional connectivity between TD and the ASD

group based on included scans was found to be stably approximate to the average

difference on functional connectivity from the included/excluded dataset. When sam-

pling on the 300 observations from the dataset, the DRTMLE of group difference on

functional connectivity between TD and ASD group was found to be more stable and

closer to the group difference on functional connectivity regardless of whether the

scans are included or excluded than was IPWE in Table 4. Depending on the our

real sample size, doubly-robust estimator was more stable and closer to the true value

than IPWE.

Seed 123 345 456 12345 54321
Group Difference 30.18 32.87 32.09 33.66 32.57
Group Difference Based on Included Scans 24.69 26.37 26.89 27.45 24.31
Estimated Group Difference by IPWE 23.98 25.58 38.03 42.90 19.98
Estimated Group Difference by DRTMLE 27.98 30.41 31.72 32.75 28.60

Table 4: Simulation Results (N=300)

4.2 Impact of motion exclusion criteria on selection bias

As seen in Table 5, of the 758 children in our cohort, 616 had at least one scan that

passed the most lenient threshold for head motion (ABIDE); 555 had a least one

scan that passed our moderate head motion criteria, and only 254 had at least one
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scan that passed the strictest head motion exclusion criteria. We observed that the

proportion of scans excluded differed by diagnosis using the lenient (χ2=30.9, df =2,

p< 10−06), moderate (χ2=24.7, df =2, p< 10−05), and strict motion criteria (χ2=40.9,

df =2, p< 10−08). Children with ASD or ADHD were more likely to be excluded than

TD children (all post hoc p < .001 corrected). The proportion of excluded scans did

not differ between the ASD and ADHD groups.

TD (N=338) ADHD (N=273) ASD (N=147) Total (N=758) P value

Lenient Motion Control < 0.00011

Excluded 34 (10.1%) 67 (24.5%) 41 (27.9%) 142 (18.7%)

Included 304 (89.9%) 206 (75.5%) 106 (72.1%) 616 (81.3%)

Moderate Motion Control < 0.00011

Excluded 61 (18.0%) 88 (32.2%) 54 (36.7%) 203 (26.8%)

Included 277 (82.0%) 185 (67.8%) 93 (63.3%) 555 (73.2%)

Strict Motion Control < 0.00011

Excluded 184 (54.4%) 203 (74.4%) 117 (79.6%) 504 (66.5%)

Included 154 (45.6%) 70 (25.6%) 30 (20.4%) 254 (33.5%)

1Pearson Chi-Square Test

Table 5: Scan Inclusion/Exclusion By Diagnosis Group

As can be seen in Table 6, missingness in ADHD rating scales was not dependent on

diagnostic group. However, we observed that missingness in SRS, PANESS and GAI

were not independent of diagnostic group (p-value<.01). The highest proportion of

children missing each of these measures was in the ADHD group. The current study

is pooling participants from multiple studies with various scientific aims. The earliest

of these studies did not collect SRS or PANESS data from children with ADHD,

and likewise, the case-matched TD children. The current analysis assumes that the

sample of TD and ADHD with SRS, PANESS, and GAI data is representative of the

population of TD and ADHD, i.e., if we were to randomly sample TD children, then

the distribution of SRS, PANESS, and GAI would be equal to the distribution in the

current study, and similarly for ADHD.
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TD ADHD Autism Total p value

SRS < 0.00011

Missing Value (N) 95 148 12 255

Inattention 0.86691

Missing Value (N) 8 10 10 28

Hyperactivity/Impulsivity 0.86691

Missing Value (N) 8 10 10 28

PANESS < 0.00011

Missing Value (N) 6 50 21 77

GAI 0.01471

Missing Value (N) 3 14 6 23

1 Pearson Chi-Square Test

Table 6: Missingness in Phenotypic Variables

Figure 1 illustrates that our phenotypic variables were all correlated, which would

complicate the interpretation of effects estimated using a single model containing all

of the phenotypic variables. To improve model interpretability, we created separate

logistic regression models for each phenotypic variable while covarying for age and

sex.
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Figure 1: The Pearson correlation of children’s phenotypic and demographic charac-
teristics (from left to right): Social Responsiveness Scale (SRS), inattention, hyper-
activity/impulsivity, PANESS, General Ability Index, age and sex (male as control)

As seen in Table 7 and Figure 2, we observed that the there are some estimated degree

of freedom (EDF) that are equal to 1. That means that a linear relationship between

log odds of exclusion using the motion criteria on phenotypic information controlling

by age and sex. Because that GLM is easier to be explanation than GAM is, so when

EDF=1, the selected model is GLM on relationship between log of odds of exclusion

and the phenotypic characteristic in this study.



20

Phenotype Lenient Moderate Strict
SRS 2.19 1.76 2.37
Inattention 2.02 2.07 1.29
Hyperactivity/Impulsivity 2.06 2.06 2.31
PANESS 6.03 1.00 1.00
General Index Ability 1.00 1.00 2.46

Table 7: Estimated degrees of freedom (EDF) of Social Responsiveness Scale (SRS),
Inattention, hyperactivity/impulsivity, PANESS, General Ability Index using uni-
variate generalized additive model controlling by age and sex

(a) Lenient motion exclu-

sion

(b) moderate motion exclu-

sion

(c) Strict motion exclusion

Figure 2: The relationship between the log odds of excluded scans of (from top to
bottom) Social Responsiveness Scale (SRS), inattention, hyperactivity/impulsivity,
PANESS, and General Ability Index using three levels head motion exclusion criteria
using GAM . [a, Left]: Lenient motion exclusion, [b, Middle]: Moderate motion
exclusion, [c, Right]: Strict motion exclusion

We observed that regardless of the level of head motion control used to assess the
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scan motion quality, children whose scans were excluded, on average, had higher

SRS (more severe social deficit), more overflow errors (worse motion control), were

more inattentive, hyperactive, and impulsive, and had worse intellectual ability than

children whose scans were included by motion control (Figure 3). Therefore, GLM

or GAMs were used to model the relationship between the log odds of exclusion

and each phenotypic measures, controlling for age and sex. All phenotypic measures

were significantly related to the probability of exclusion using both levels of motion

control (Figure 3). Children with more severe social deficits, inattentive symptoms,

hyperactive/impulsive symptoms, or poorer motor control were more likely to be

excluded, while children with higher GAI were less likely to be excluded (all p <

.001).
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Figure 3: Exclusion probability as a function of (from left to right) Social Respon-
siveness Scale (SRS), inattention, hyperactivity/impulsivity, PANESS, and General
Ability Index using the lenient (top row, blue lines), the moderate (second row, green
lines) and strict motion exclusion (bottom row, red lines) , controlling for age and sex.
Confidence intervals are shaded grey. Phenotypic distributions are displayed across
the bottom panel and colored by diagnostic group (typical developing [TD]: yellow,
Attention Deficit Hyperactivity Disorder [ADHD]: blue, Autism Spectrum Disorder
[ASD]: red).

4.3 Impact of motion exclusion on naive estimates of func-

tional connectivity

As previously mentioned, the availability of phenotypic data varied according to the

study in which participants originally enrolled. When estimating DMN functional

connectivity while accounting for selection bias, we had to limit our sample to par-

ticipants with complete phenotypic records. Table 2 summarizes the subset of our
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cohort with complete phenotypic records. We observed that for the children in the

ASD group, the proportion of the excluded scans is always highest for all exclusion

criteria. Among the three motion control criteria, most scans (79.0%) in the ASD

group are excluded by the strict head motion exclusion criterion. Under this sit-

uation, limited observations could lead to improper estimation and low statistical

power. In Figure 4, we obtained similar estimates ASD-related hypo- and hyper-

connectivity under the lenient and moderate motion control. Nevertheless, when

the number of included scans are very limited (N=25), the estimated ASD-related

hypo- and hyper-connectivity by linear regression is very different from the lenient

and moderate criteria.

(a) Left hemisphere (b) Right hemisphere

Figure 4: Seed-based correlation analyses for a seed region located in left posterior
cingulate cortex (L-PCC, x=-8, y=-56, z=26, (a) Left hemisphere’s Z maps of the
group differences between individuals with ASD and TD group across three level ex-
clusion.[Top row]: Lenient motion control, [Second row]: Moderate motion control,
[Bottom row]: Strict motion control. [Orange]: ASD > TD, [Blue]: ASD < TD (Z >
2, uncorrected), [Magenta]: Cingulo-Opercular, [Red]: Default, [Yellow]: Frontopari-
etal, [Light Blue]: Language, [Brown]: Posterior-Multimodal, [Aqua]: Somatomotor,
[Green]: Dorsal-attention.
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4.4 Estimates of functional connectivity accounting for se-

lection bias

4.4.1 ASD versus TD

First, as seen in Figure 5 in the thresholded image (Z> 2), based on the lenient motion

control criterion, we found little evidence of ASD-related hypoconnectivity (ASD

< TD). Interestingly, the DRTMLE estimates indicate hypoconnectivity within the

default mode network, including the temporal lobe, right PCC, and right pre-frontal

cortex (PFC). Regions of hyperconnectivity (ASD > TD) with the PCC were found

in frontoparietal, cingulo-opercular network, and dorsal-attention network. These

regions are apparent in the naive estimates but more pronounced in the DRTMLE

estimates. In addition, we compared linear regression estimation (top) and doubly-

robust estimation (bottom) and then found that doubly-robust estimation on ASD-

related hypo- and hyper-connectivity was more significant than estimation by linear

regression on ASD-related hypo- and hyper-connectivity.
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(a) Left hemisphere (b) Right hemisphere

Figure 5: Seed-based correlation analyses based on the lenient head motion exclu-
sion criterion referred Di Martino et al study for one core seed regions located in
left posterior cingulate cortex (L-PCC,x=-8, y=-56, z=26), (a) Left hemisphere’s Z
maps of the group differences between individuals with ASD and TD group.(b) Right
hemisphere’s Z maps of the group differences between individuals with ASD and TD
group.[Top]:linear regression estimation, [Bottom]:Doubly Robust estimation
L-PCC is depicted as black dots on the very inflate surface maps. [Orange]: ASD
> TD, [Blue]: ASD < TD (Z > 2, uncorrected), [Magenta]:Cingulo-Opercular,
[Red]: Default, [Yellow]: Frontoparietal, [Light Blue]: Language,[Brown]: Posterior-
MultiModal, [Aqua]:Somatomotor, [Green]:Dorsal-attention

Second, as seen in Figure 6, on voxel level (Z > 2, uncorrected), based on the moderate

head motion exclusion criterion, we found that similar ASD-related hypoconnectivity

and hyperconnectivity located on same network regions shown as in Figure 5 by the

moderate head motion exclusion criterion. We also found that DRTMLE on ASD-

related hypo- and hyper-connectivity was more significant than estimation by linear

regression on ASD-related hypo- and hyper-connectivity based on motion control

criterion referred by Di Martino et al.
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(a) Left hemisphere (b) Right hemisphere

Figure 6: Seed-based correlation analyses based on the moderate motion control crite-
rion for one core seed regions located in left posterior cingulate cortex (L-PCC,x=-8,
y=-56, z=26), (a) Left hemisphere’s Z maps of the group differences between individ-
uals with ASD and TD group.(b) Right hemisphere’s Z maps of the group differences
between individuals with ASD and TD group.[Top]:linear regression estimation, [Bot-
tom]:Doubly Robust estimation
L-PCC is depicted as black dots on the very inflate surface maps. [Orange]: ASD
> TD, [Blue]: ASD < TD (Z > 2, uncorrected), [Magenta]:Cingulo-Opercular,
[Red]: Default, [Yellow]: Frontoparietal, [Light Blue]: Language,[Brown]: Posterior-
MultiModal, [Aqua]:Somatomotor. [Green]:Dorsal-attention

Finally, due to the sample size of included images by the strict head motion ex-

clusion criterion is very limited (ASD: N=25), the Bottom Figure 7, on the voxel

level (Z>2, uncorrected), the estimation of ASD-related hypo-connectivity and hyper-

connectivity are distributed to the whole brain.
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(a) Left hemisphere (b) Right hemisphere

Figure 7: Seed-based correlation analyses based on the strict head motion exclu-
sion criterion for one core seed regions located in left posterior cingulate cortex (L-
PCC,x=-8, y=-56, z=26), (a) Left hemisphere’s Z maps of the group differences
between individuals with ASD and TD group.(b) Right hemisphere’s Z maps of the
group differences between individuals with ASD and TD group. [Top]:linear regres-
sion estimation, [Bottom]:Doubly Robust estimation
L-PCC is depicted as black dots on the very inflate surface maps. [Orange]: ASD
> TD, [Blue]: ASD < TD (Z > 2, uncorrected), [Magenta]:Cingulo-Opercular,
[Red]: Default, [Yellow]: Frontoparietal, [Light Blue]: Language,[Brown]: Posterior-
MultiModal, [Aqua]:Somatomotor,[Green]:Dorsal-attention

4.4.2 ADHD versus TD

As seen in Figure 8, on the voxel level, we only found that ADHD-related hyper-

connctivity (ASD > TD) (i.e Cingulo-Opercular network, Somatomotor, and Dorsal-

Attention network, and parts of the brain network for language) for the core seed

regions were located in the left posterior cingulate cortex (L-PCC) based on the

motion control criterion of Di Martino et al study. In addition, we compared lin-

ear regression estimation (top) and doubly-robust estimation (bottom) and again we

found that DRTMLE on ADHD-related hyperconnectivity was more significant than

estimation by linear regression on ADHD-related hyperconnectivity mainly on the

region of Language and Cingulo-Opercular network.
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(a) Left hemisphere (b) Right hemisphere

Figure 8: Seed-based correlation analyses based on the lenient head motion exclu-
sion criterion for one core seed regions located in left posterior cingulate cortex (L-
PCC,x=-8, y=-56, z=26), (a) Left hemisphere’s Z maps of the group differences
between individuals with ADHD and TD group.(b) Right hemisphere’s Z maps of
the group differences between individuals with ADHD and TD group. [Top]:linear
regression estimation, [Bottom]:Doubly Robust estimation
L-PCC is depicted as black dots on the very inflate surface maps. [Orange]: ADHD
> TD, [Blue]: ADHD<TD (Z > 2, uncorrected), [Magenta]:Cingulo-Opercular,
[Red]: Default, [Yellow]: Frontoparietal, [Light Blue]: Language,[Brown]: Posterior-
MultiModal, [Aqua]:Somatomotor, [Green]:Dorsal-attention

Second, as seen in Figure 9, on voxel level(Z>2, uncorrected), we also found that

similar ADHD-related hyperconnectivity located on same network regions shown as

in Figure 8 by the lenient motion exclusion criterion. We did not found the significant

difference between DRTMLE on ADHD-related hyperconnectivity and the estimation

by linear regression on ADHD-related hypo- and hyper-connectivity based on the

motion control criterion referred by Di Martino et al.study
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(a) Left hemisphere (b) Right hemisphere

Figure 9: Seed-based correlation analyses based on the moderate head motion ex-
clusion criterion for one core seed regions located in left posterior cingulate cortex
(L-PCC,x=-8, y=-56, z=26), (a) Left hemisphere’s Z maps of the group differences
between individuals with ADHD and TD group.(b) Right hemisphere’s Z maps of
the group differences between individuals with ADHD and TD group. [Top]:linear
regression estimation, [Bottom]:Doubly Robust estimation
L-PCC is depicted as black dots on the very inflate surface maps. [Orange]: ADHD
> TD, [Blue]: ADHD < TD (Z > 2, uncorrected), [Magenta]:Cingulo-Opercular,
[Red]: Default, [Yellow]: Frontoparietal, [Light Blue]: Language,[Brown]: Posterior-
MultiModal, [Aqua]:Somatomotor, [Green]:Dorsal-attention

Finally, same as ASD versus TD, the number of included image by the strict head

motion exclusion criterion is also limited (ADHD: N=30). As seen in Figure 10, Z

map of ADHD-related hypo- and hyper-connectivity are all distributed to the whole

brain.
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(a) Left hemisphere (b) Right hemisphere

Figure 10: Seed-based correlation analyses based on the strict head motion exclusion
criterion for one core seed regions located in left posterior cingulate cortex (L-PCC,
x=-8, y=-56, z=26), (a) Left hemisphere’s Z maps of the group differences between
individuals with ADHD and TD group.(b) Right hemisphere’s Z maps of the group
differences between individuals with ADHD and TD group.[Top]:linear regression
estimation, [Bottom]:Doubly Robust estimation
L-PCC is depicted as black dots on the very inflate surface maps. [Orange]: ADHD
> TD, [Blue]: ADHD < TD (Z > 2, uncorrected), [Magenta]:Cingulo-Opercular,
[Red]: Default, [Yellow]: Frontoparietal, [Light Blue]: Language,[Brown]: Posterior-
MultiModal, [Aqua]:Somatomotor,[Green]:Dorsal-attention.

5 Discussion

The purpose of this study was to find whether selection bias introduced by motion

control criterion leads to mischaracterization of diagnostic group differences on func-

tional connectivity. Using Doubly-Robust Nonparametric Estimation and Inference,

we found evidence of a selection bias due to motion control criteria and that this can

be minimized using DRTMLE when there is sufficient sample size of included images.

In our study, we found that at the voxel-level, the Z-map of ASD-related hypo-

connectivity (ASD < TD) for the core seed regions on the L-PCC mainly located in

Default network and ASD-related hyperconnectivity(ASD > TD) for the core seed
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regions on the L-PCC mainly located in Cingulo-Opercular, and Frontoparietal net-

work. This finding contrasts with Di Martino et al study where they found a more

significant Z-map. The difference in these results could be attributed to target pop-

ulations analyzed and the handling of covariate analysis. In our study, our target

population was different from the population in Di Martino et al study. In our study

only 8-13 year old school-aged children were enrolled, however, in Di Martino et

al. study, a few sites enrolled participants spanning childhood to adults (7-64 years

old). Macleod et al indicated that the neurological diseases may present later during

adolescent development (15 or 16 years old) rather than be evident among younger

children16. Therefore, the different age groups analyzed could explain why the differ-

ence on functional connectivity between ASD and TD group in our study (mean age:

10 years old) is not as significant as the difference on functional connectivity between

ASD and TD in Di Martino’s study(mean age: 13 years old). Secondly, the difference

between our study and Di Martino et al. study might be attributed to the fact that

we excluded the mean framewise displacement as a covariate for the group-level anal-

ysis, whereas they included this covariate in their analysis. Specifically, we did not

account for the mean framewise displacement in our moderate motion control and

strict motion control. In contrast, Di Martino et al used a more moderate criterion

for motion control (mean frame-wise displacement (FD) <2 s.d. above the sample

mean, 0.77mm). They also used the mean framewise displacement as a criterion for

functional connectivity for selecting high quality images. In addition, compared with

the estimation of functional connectivity using general linear regression, we found

that doubly-robust estimation is better to detect the group difference on functional

connectivity. This is because the doubly robust method uses all of the observation

to do the estimation, however, linear regression only uses the observations whose

imaging data is included by motion control criterion.

There are several strengths to this study. To our knowledge this is the first analysis
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which has implemented the Doubly-Robust Nonparametric Estimation and Inference

in the imaging field. This method also increases the power to detect the group

difference between ASD and TD, and between ADHD and TD when the sample

size is suitable. Notably, we expanded our analysis relative to Di Martino et al

and included the ADHD and TD groups and found that signficant ADHD-related

hyperconnectivity for the core seed regions on the L-PCC mainly located on Cingulo-

Opercular, Lanuage, and Somatomotor network.

There are several limitations to this study. One limitation is that doubly robust

estimation is not a good choice when the number of images included by the motion

control criterion is relatively low (<30). The estimated variance of the DRTMLE

may be anti-conservative in such small samples, which leads to a large Z statistic in

many voxels. Therefore, the DRTMLE estimation may not be suitable for settings

where strict motion control is required. Thus, in the future, the method that can be

used with small sample sizes will improve analysis on functional connectivity based

on the included scans by strict motion control. Another major limitation of this study

is that we do not correct for multiple comparisons. An important avenue for future

research is to correct for multiple comparisons when using DRTMLE.

In conclusion, the findings from this study can be used to assist with understanding

neurodevelopmental disorders by using causal inference to address selection bias in

imaging data introduced by head motion exclusion criteria.
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