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Abstract 
 

Rank-Favorable Bounds for Rational Points on Superelliptic Curves 
By Noam Kantor 

 
Let C be a curve of genus at least two, and let r be the rank of the rational points on its 

Jacobian. Under mild hypotheses on r, recent results by Katz, Rabinoff, Zureick-Brown, and Stoll 
bound the number of rational points on C by a constant that depends only on its genus. Yet one 
expects an even stronger bound that depends favorably on r: when r is small, there should be fewer 
points on C. In a 2013 paper, Stoll established such a bound for hyperelliptic curves using 
Chabauty's method. In the present work we extend Stoll's results to superelliptic curves. We also 
discuss a possible strategy for proving a rank-favorable bound for arbitrary curves based on the 
metrized complexes of Amini and Baker. Our results have stark implications for bounding the 
number of rational points on a curve, since r is expected to be small for "most" curves. 
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1 Background and Main Theorems

Diophantine finiteness, in its most general sense, is the philosophy that the set of rational

points on a variety of general type should be “small,” for example not Zariski dense. There is

a web of interconnected conjectures that make this philosophy precise, such as the Bombieri-

Lang conjecture (see [7], p. 479.) In the dimension one case, Bombieri-Lang is just Faltings’

Theorem, which says that the number of rational points on a curve of genus greater than

one is finite.

But it is computationally and theoretically important to have control of rational points

beyond the basic finiteness supplied by Faltings. In fact, one conjectures the following:

Conjecture 1 ([4]). Let C be a curve of genus g > 1 defined over a number field K. Then

there exists a constant B(g,K) such that #C(K) < B(g,K).

Significant progress has been made on this conjecture when the rank of the Jacobian of

C is somewhat smaller than g using a technique called Chabauty’s method. The classical

application of the method constructs a p-adic analytic differential ω and an associated p-adic

analytic function fω on JacC(Cp) such that the zero set of fω contains C(Q). Chabauty’s

original paper reasons using basic facts about analytic functions to show that fω only has

finitely many zeros. We now know that fω is really a p-adic integral of ω, and a robust

theory of p-adic integration is the key to modern applications of Chabauty’s ideas.

Indeed, a number of improvements have been made to Chabauty’s method which make it

both stronger and more widely applicable. First, Coleman [6] realized that one could apply

more sophisticated p-adic analytic machinery such as Riemann-Roch and Newton polygons

to explicitly estimate the number of zeros of ω, and thus the number of zeros of fω. Another
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limitation of the original method was that it required analysis in Cp, for p a prime of good

reduction for C. Since the first prime of good reduction might be arbitrarily large, even

Coleman’s Riemann-Roch improvement gave non-uniform bounds on the number of rational

points on C. Michael Stoll, in the groundbreaking paper [13], described a theory of p-

adic integration on annuli that allowed for uniform bounds using primes of bad reduction.

(Lorenzini–Tucker [10] had actually already used primes of bad reduction, but they required

a regular model of the curve in question, which led to non-uniform bounds.)

Prior to Stoll’s work, it was known that the p-adic integral that Chabauty and Coleman

used in the case of good reduction is actually two different integrals that happen to agree

in this case. These two integrals, the Berkovich-Coleman and Abelian integrals, no longer

agree in the bad reduction case because the “tube”

]y[= {x ∈ C | red(x) = y}

is an annulus when y is a non-smooth point of the special fiber. (Here red refers to the

reduction map from a curve to the special fiber.)

Stoll realized that one can use differentials for which the two integrals agree, and forc-

ing the two integrals to be equal in this way consists of one linear condition on the space

of differentials. (He imposes one more linear condition to choose a branch of the p-adic

logarithm used in the Berkovich-Coleman integral.) When C is a hyperelliptic curve, Stoll

explicitly describes the differentials on each tube. He then applies standard Newton polygon

arguments and a little linear algebra on each tube, and then incorporates a sophisticated

analysis of the combinatorics of the special fiber to prove the following:
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Theorem 2 ([13], Theorem 1.4). Suppose C : y2 = f(x) is a hyperelliptic curve defined over

Q. Assume further that g ≥ 3 and r := rank JacC(Q) ≤ g − 3. Then

#C(Q) ≤ 33(g − 1) + 1 if r = 0

and

#C(Q) ≤ 8rg + 33(g − 1)− 1 if r ≥ 1.

Note here that the given bound is linear in both g and r. Katz, Rabinoff, and Zureick-

Brown [9] have shown that the number of rational points on any curve defined over Q with

r < g − 2 is bounded quadratically by g, nearly completing the Chabauty program. Based

on Stoll’s results, however, one actually expects a bound that is linear in both r and g and

reduces to their bound when r is close to g.

In this paper we extend Stoll’s work to superelliptic curves, that is curves of the form

ym = f(x) for m ≥ 2 and f a rational polynomial of degree at least 4. Equivalently,

superelliptic curves are curves with Galois m-to-one maps to P1. We obtain a linear bound

in g and r for each fixed m, thus confirming the idea that small values of r should lead to

better Chabauty bounds.

The following theorem is a consequence of our main theorem, though we have weakened

the bounds considerably to make it easier on the reader’s eyes.

Theorem 3. Let C be the superelliptic curve defined above. Suppose r < g− 2, and let p be
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the smallest prime congruent to 1 modulo m. Then

#C(Q) < 2(2g − 2)(r + 3) +
2g − 2

m
+ (5p+ 2)(g − 1) + 4r.

Much of Stoll’s work transfers from the hyperelliptic case to the superelliptic case. Per-

haps surprisingly, the most technical input for our generalization is Raynaud’s classification

of order m automorphisms of the p-adic disc and annulus when (p,m) = 1. (Incidentally, the

p | m case is much more involved and plays a large part in the solution of the local lifting

conjecture in [11].)

Example. For concreteness, consider the case m = 3 and r = 0. The curve

2y3 = z4 − 10z3 + 35z2 − 50z + 24

is one such curve with genus 3. Then Theorem 3 gives a coarse bound of 149
3

(g − 1). In

contrast, the techniques of [9] give a bound of 76g2 − 82g + 22.

In the second half of the paper we extend ideas of Amini–Baker and Katz–Zureick-

Brown to show how one might prove a rank-favorable bound for arbitrary curves satisfying

the Chabauty rank hypothesis. In particular, we exhibit a bound similar to theirs that does

not require a regularity hypothesis. While we are not yet able to prove uniform statements,

we do establish a combinatorial criterion – “the Main Assumption” – from which one can

bound #C(Q). If one could prove that this criterion holds in a uniform way for all curves

then uniform rank-favorable bounds would follow.
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1.1 Notation

We now fix some notation for the rest of our discussion. From here onward, p will always be

a prime that does not divide m. We will let K be a number field, and k the completion of K

at some prime p lying over p ∈ Z. We denote by ζm a primitive mth root of unity in k or K

depending on the context. For any extension of p-adic fields, e will denote the ramification

index of the extension, and f will denote the residue degree.

Let C be a superelliptic curve over a number field K defined by an affine equation

ym = f(x) for some m ≥ 2 and f ∈ K[X], and we will assume C defines a curve of genus at

least two. In any case, C comes with an automorphism τ of order m given by y 7→ ζmy, and

the quotient of C by the subgroup generated by τ is P1.

Recall that the p-adic unit open disc of radius r is just the set

D0,k = {y ∈ Cp | |x− y| < r}.

Similarly, we define the p-adic annulus with outer radius r and inner radius α by

Aα,k = {y ∈ Cp | α < |x− y| < r}.

Finally, C has a g-dimensional vector space of p-adic analytic differentials denotedH0(C,Ω1
Qp

).
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2 Chabauty’s Method and Stoll’s Improvement

2.1 The Technique

We now describe in more detail the technology behind Chabauty’s method. For this section

C is any curve of genus at least two. We may replace C by a semistable model so that its

special fiber has no cusps. (See [8], Prop. 4.1 for a precise argument.) If x is any point of

the special fiber of C, then by [3] ]x[ is either a tube or an annulus depending on whether x

is smooth or singular, respectively. From here on we suppose that there is some K-rational

P ∈]x[; otherwise our bounds are trivially satisfied

The key lemma of Chabauty’s method revolves around a p-adic integral which vanishes

on the p-adic closure of JacC(Q).

Definition 4. Let A be an abelian variety over Cp. The abelian logarithm on A is the unique

homomorphism of Cp-Lie groups log : A(Cp)→ Lie(A) such that

d log : Lie(A)→ Lie(Lie(A)) = Lie(A)

is the identity map. Now by definition, Lie(A) is the dual of Ω1
A/Cp

(A), and we denote the

evaluation pairing by 〈·, ·〉.

Finally, for x, y ∈ A(Cp) and ω ∈ Ω1
A/Cp

(A) we set

Ab∫ x

O

:= 〈log(x), ω〉

and we call
Ab∫

the abelian integral on A. We also define
Ab∫ y

x
ω =

Ab∫ x
O
− Ab∫ y

O
. (We have
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let O denote the identity of A.) When C is a curve and ι is an Abel-Jacobi mapping into

its Jacobian, we define the integral from x ∈ C to y ∈ C by integrating from ι(x) to ι(y) in

JacC.

Fixing a residue tube ]x[, Chabauty’s method centers around the subspace Vchab of dif-

ferentials such that

fω(z) :=
Ab∫ z

P

ω = 0

for all z ∈ JacC(Q)∩]x[. Since C(Q) ⊆ JacC(Q), every rational point of C is a zero of fω for

all ω ∈ Vchab. The following lemma powers Chabauty’s method.

Lemma 5. Let r := rank(JacC(Q)). Then dim(Vchab) ≥ g − r.

The second integral that one can define on the curve C is called the Berkovich-Coleman

integral – it is essentially defined by formal anti-differentiation and is therefore (1) dependent

just on the endpoints of the integral on annuli, discs, and more general “wide opens” and

(2) it is amenable to the tools of Newton polygons.

Definition 6. Suppose ω is an analytic differential on the annulus Aα,k with local coordinate

T . Consider the local power series expansion of ω:

ω = g(T )
dT

T
=

∞∑
n=−∞

anT
ndT

T

where g(T ) converges on Aα,k. Denote by f the (incomplete) formal antiderivative of g given

by ∑
n 6=0

an−1

n
T n.
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Finally, let

Log(T ) =
∞∑
n=1

(−1)n+1 (T − 1)n

n

be the branch of the logarithm where Log(p) = 0. Then we define the Berkovich-Coleman

integral on C via the formula

BC∫ y

x

ω = (f(y) + a0 Log(y))− (f(x)− a0 Log(x)).

Stoll proves in [13] the following integral comparison theorem, which [9] generalizes using

analytic uniformization of p-adic abelian varieties.

Theorem 7. Suppose x, y ∈ C lie in the same residue annulus. Then there is a codimension

two subspace of Ω1
C/Cp

(C) such that

Ab∫ y

x

ω =
BC∫ y

x

ω

Now Lemma 5 and Theorem 7 help produce a differential which satisfies the equality of

the Berkovich-Coleman and Abelian integrals and also lies in Vchab: if r < g− 2 we conclude

that there is a nonzero subspace Wchab of differentials of dimension at least g − r − 2 for

which the Abelian and Coleman integrals are equal, and which vanishes on the closure of

the p-adic points of the Jacobian. The main work of this paper is to bound the number of

zeros of such a differential on a residue tube.

To summarize this section in one sentence: there is a “relatively large” subspace Wchab

such that: (1) the integrals of elements of Wchab vanish on C(Q) (owing to the Abelian

integral), and (2) the integral can be computed using formal antiderivatives (owing to the
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Berkovich–Coleman integral).

3 Automorphisms of the Annulus

Emulating [13], we proceed with the following process: A tube on the curve is a disc or an

annulus, so it is sent to another disc or annulus by the superelliptic automorphism (it may

be sent to itself). Since we know the possible automorphisms of the disc and annulus, we

know the behavior of the discs and annulus under the quotient map. Finally, once we know

the ramification behavior of the quotient map we use it to write explicit equations for the

annulus on the curve. Having this equation in hand, we can explicitly describe a basis for

the differentials on the annulus or disc.

In [13], Michael Stoll classifies the involutions of the p-adic disc and annulus “by hand.”

We here describe more general results of Raynaud that classify finite order automorphisms

of the p-adic annulus and disc using algebraic methods.

Theorem 8 ([12], Props. 2.3.1, 2.3.2).

1. Let τ : D0,k → D0,k be an analytic map of order m, with m coprime to p. Then after

an analytic change of coordinates, τ is just multiplication by an mth root of unity. In

particular, τ has only one fixed point and D0,k/〈τ〉 is a disc.

2. Let τ : Aα,k → Aα,k be an analytic map of order m such that |τ(z)| = |z| for all

z ∈ Aα(Cp). Then after an analytic change of coordinates, τ is just multiplication by

an mth root of unity. In particular, τ has no fixed points and Aα,k/〈τ〉 is an annulus.

3. Now suppose m is even. Let τ : Aα,k → Aα,k be an analytic map of order m such that
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|τ(z)| = α/|z| for some α. Then, after a change of coordinates, τ is given by either

z 7→ ζ/z, where ζm is a primitive mth root of unity, or z 7→ ζ ′a/z for some a with

|a| = α and ζ ′ is a primiitve m/2th root of unity. In particular, τ has two fixed points

and Aα,k/〈τ〉 is a disc.

4 Annuli on Superelliptic Curves

Based on the preceding lemmas, we can write explicit equations for the annuli on the curve.

We again follow Stoll’s notation. Denote by Θ the set of branch points of the m-fold cover

of P1 associated to C, alias the zeros of f . By a change of coordinates we can always assume

that infinity is not a branch point, so we can write

ym = f(x) = c
∏
θ∈Θ

(x− θ).

If θ 6= 0, we have the functions

f+
θ (x) =

(
1− θ

x

)1/m

, f−θ (x) =
(

1− x

θ

)1/m

.

These converge when |x| < |θ| and |x| > |θ|, respectively. They satisfy the equations

x− θ = xf+
θ (x)m and x− θ = −θf−θ (x)m.

The following lemmas are generalizations of those in [13]. The first gives equations

for both discs and annuli whose quotient is a disc. In this case, such a quotient is either
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completely ramified or completely split.

Lemma 9. Let φ : D0,k → D ⊆ P1
k be a parametrization of an open disc by the unit open

disc.

1. Suppose D(Cp) ∩ Θ = ∅. If, for any c ∈ D(k), f(c) is not an mth power in k, then

π−1(D) ∩ C(k) is empty. If f(c) is an mth power, π−1(D) is the disjoint union of m

disjoint open discs in C, each isomorphic to D via π.

2. Suppose D(Cp) ∩ Θ = {θ1}, and that D has radius r. Then θ1 ∈ k; further assume

that there is some c ∈ k such that r|f ′(θ1)| = |c|m. Then π−1(D) is a disc on C, and

up to an analytic change of coordinates the map π is just the m-th power map (i.e. the

superelliptic automorphism acts by rotation.)

3. Suppose D(Cp)∩Θ = {θ1, θ2}. Then (x−θ1)(x−θ2) has coefficients in k. Furthermore,

the set π−1(D) is either contained in the preimage of the smallest closed disc containing

θ1 and θ2, or π−1(D) is an annulus A in C such that, after an analytic change of

coordinates, π(z) = zm/2+β/zm/2 for some β ∈ k×. In this case τ acts as z 7→ ζm/2β/z.

Proof. The proofs follow Stoll’s work mutatis mutandis, so we simply record here the relevant

parameterizations of the discs and annuli on C.

1. When π−1(D) ∩ C(Cp) 6= ∅, there exists γ ∈ k× such that f(0) = γm. Then we have

the parameterization

D(i) = {(z, ζ imγh(z) | z ∈ D)}, i = 1, . . . ,m.
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2. By assumption there exist γ ∈ k× and u ∈ O×k such that γm = uf ′(θ1). We have the

parameterization

D = {uzm, γzh(uzm) | z ∈ D0,k}.

3. Changing coordinates so that θ1 + θ2 = 0, the equation for the curve is given by

ym = c′(x2 − a)h(x)m. The convergence properties of the m-th root when (p,m) = 1

is independent of m, and so if |x| > |a| and c′ is not an m-th power in k, x cannot be

the coordinate of a k-point. In this case the preimage of D in C is contained in the

preimage of {|x| < θ1}.

If c′ = γm with γ ∈ k then a parameterization φ : Aα1/m → π−1(A) is given by

z 7→
(
zm/2 +

a

4
z−m/2, γ(zm/2 − a

4
z−m/2)2/mh(zm/2 +

a

4
z−m/2)

)
.

The second lemma describes equations for annuli whose quotient is an annulus, in the

process generalizing Stoll’s lemma to account for the many possible behaviors of an auto-

morphism of an m-to-one mapping. Indeed, while the case m = 2 separates cleanly into odd

and even annuli, we have many more cases.

Lemma 10. Let φ : Aα,k → A ∈ P1
k be an open annulus such that A ∩Θ = ∅ and A(k) 6= ∅.

The complement of A in P1
k is the disjoint union of two closed discs, which partition Θ into

Θ0 and Θ1. This partition induces a factorization f(x) = cf0(x)f∞(x) with f0 and f∞ monic

such that the roots of f0 are the elements of Θ0 and the roots of f∞ are the elements of Θ0.
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Write l = gcd(#Θ0,m). If c′ is not an lth power in k, then π−1(A) ∩ C(k) = ∅. Assume

otherwise, and further suppose that there exists γ ∈ k with ulc′ = γm. Then π−1(A) is a

union of l annuli, and after an analytic change of coordinates the superelliptic automorphism

acts by both interchanging these annuli and rotating them by ζ
m/l
m .

Proof. By construction #Θ0 is invertible modulo m/l; let #Θ−1
0 denote the smallest integer

representative for its inverse in this ring. Then #Θ0#Θ−1
0 = 1 + n(m/l) for some integer n.

The parameterization is given by

A(j) = {(ul#Θ−1
0 zm/l, ζjm/lm γunz#Θ0/lh(ul#Θ−1

0 zm/l)) | z ∈ A0,k}, j = 1, . . . , l.

Combining Raynaud’s classification of automorphisms of the annulus with the preceding

two lemmata, we conclude:

Lemma 11. The preceding two lemmas provide an exhaustive list of the parameterizations

of maximal annuli on the curve C.

Proof. Suppose φ : A → C is a maximal annulus such that A(k) 6= 0. Then A can be

parametrized using Lemmas 9 and 10. We have two cases.

1. τ(A) ∩ A = ∅.

In this case π is an isomorphism from A onto its image, and we conclude that π(A) is

an annulus containing no ramification points. Thus, by Lemma 10, each component

of π−1(π(A)) can be parametrized via the map we described there. In particular, the
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lemma provides a parameterization of A itself. Of course, this parametrization depends

on the number of branch points within π(A), or rather the greatest common divisor of

that number with m.

2. τ(A) ∩ A 6= ∅, and τ preserves the orientation of the chain corresponding to A.

In this case we have τ(A) = A, and a standard argument from non-archimedean

geometry shows that the orientation condition implies that |(φ∗τ)(z)| = |z|. Raynaud’s

classification (Theorem 8) implies that (up to an analytic change of coordinates) φ∗τ is

a rotation of order dividing m on Aα,k. Thus π(A) is an annulus containing no branch

points.

We conclude that A is parametrized via Lemma 10. Furthermore, in this case (m,Θ0) =

1 since π−1(π(A)) = A.

3. τ(A) ∩ A 6= ∅, and τ reverses the orientation of the chain corresponding to A.

As above, τ(A) = A and the orientation condition implies that |φ∗τ(z)| = α/|z| for

z ∈ Aα,k. Raynaud’s classification tells us that φ∗τ is an inversion composed with a

rotation of order dividing m, so π(A) is a disc containing two branch points. It is thus

parametrized via the proof of Lemma 9.

5 Bounding Zeros of Differentials

Our goal in this section is to obtain bounds on the number of zeros of differentials on

the annuli which cover our superelliptic curve C. In general, the Weierstrass Preparation
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Theorem ([5], Theorem 2.4.3) says that an analytic function on an annulus A can be written

in the form f = gu, where g is a Laurent polynomial with finitely many exponents and u

has no zeros on A. One of Stoll’s key insights was that there is a basis for Ω1
C in which every

basis element has the same u in the Weierstrass decomposition. This uniform description

allows us to induce cancellation in the g-component.

Differentials on a smooth plane curve with equation f(x, y) = 0 have an explicit basis

given by

ω(j) = xi
dx
∂f
∂y

,

for 0 ≤ i ≤ g − 1. For C, after clearing an m from the denominator these terms are of the

form

xi
dx

ym−1
.

Based on our classification of annuli and discs on C, we thus have the following two local

descriptions of differentials:

1. A arises as in Lemma 9.

A similar computation shows

φ∗ω(j) =
(zm/2 + a

4
z−m/2)j(m

2
zm/2 − ma

8
z−m/2)

(zm/2 − a
4
z−m/2)2/m

η(z)
dz

z
,

where again η(z) is an analytic function with no zeros on A.

2. A arises as in Lemma 10.
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Recalling the notation l = (m,#Θ0), we have

φ∗ω(j) = zmj/l+m/l−#Θ0(m−1)/lη(z)
dz

z
.

Here η(z) is a constant multiple of a power of the function h(z) and hence is nonzero

on A.

Theorem 12. Let V 6= 0 be a subspace of codimension at least one of Ω1
C. Then there exists

a nonzero differential ω ∈ V such that φ∗ω = g(z)u(z)dz/z, where g is a finite Laurent series

with its highest and lowest exponents differing by at most m(r+ 3) + 1 (in the case of annuli

arising as in Lemma 9) or m(r + 2)/l + 1 (in the case of annuli arising as in Lemma 10)

and u is an analytic function that is nonzero on A.

Proof. Let W be the subspace of Ω1
C spanned by {ω(j) | 0 ≤ j ≤ r+2}. The ω(j) form a basis

of Ω1
C , and so W has dimension r + 3. By assumption V has dimension at least g − r − 2,

so W ∩ V 6= {0}. Let ω be a nonzero element in this intersection.

1. Suppose A arises as in Lemma 10. Then, since ω ∈ W , we have the description

φ∗ω =
r+2∑
j=0

zmj/l+m/l−#Θ0(m−1)/lη(z)
dz

z
.

Factoring out η(z)dz
z

, the remaining sum has exponents that range from m/l−#Θ0(m−

1)/l to m(r+2)/l+m/l−#Θ0(m−1)/l. Thus the highest and lowest exponents differ

by at most m(r + 2)/l + 1, inclusive. Here u = η.
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2. Suppose A arises as in Lemma 9. Then any nonzero ω ∈ V ∩W is of the form

φ∗ω =
r+2∑
j=0

(zm/2 + a
4
z−m/2)j(m

2
zm/2 − ma

8
z−m/2)

(zm/2 − a
4
z−m/2)2/m

η(z)
dz

z
.

Factoring out the denominator and η(z)dz
z

, the remaining polynomial has an exponent

spread of at most m(r + 3) + 1.

The denominator, (zm/2 − a
4
z−m/2)2/m, is analytic on the annulus A, and so the end

term we factored out is nonzero on A. We set u = η
(zm/2−a

4
z−m/2)2/m

. Our conclusion

follows.

6 The Final Count(down)

6.1 p-Adic Rolle’s Theorem

The strategy of effective Chabauty hinges on being able to control the zeros of
∫ z
P
ω based on

the zeros of ω using a p-adic Rolle’s theorem. The theory of Newton polygons (and in more

recent applications, sophisticated tropical geometry) provides the tools for this analysis.

If p > e+ 1, we define

µ := 1 +
e

p− e− 1
.

Proposition 13 ([13], Prop. 7.7). Suppose a p-adic analytic differential ω has a Newton
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polygon of length d in a p-adic annulus A, and that p > 2g. Then

fω(z) :=

∫ z

P

ω

has at most µd zeros on A.

6.2 Uniform Bounds

Remark 14. Throughout this section we will assume that K = Q and k = Qp for a prime

p that we will pick in the next section. It seems possible to obtain a bound when K is an

arbitrary number field in the same way Stoll does, but we feel as though a diversion in this

direction would detract from the explicit nature of the bounds over Q.

It is possible – though certainly difficult – to bound the number of rational points that

reduce to smooth points of the special fiber of C. This bound has been established in two

ways in the literature: Via the alternative rank functions of Katz and Zureick-Brown [9] and

through the theory of metrized complexes defined by Amini and Baker [2]. We restate their

theorem here.

For the purposes of this section, it is helpful to denote by CD the portion of C(Qp)

covered by discs and by CA the portion covered by annuli.

Proposition 15 ([13], Lemma 7.1, using [8], Thm. 4.4). Let V 6= 0 be a linear subspace

of codimension r of the space of regular differentials on C and let ND denote the number of

discs whose union is CD(k). Suppose further that p > e+ 1. Then the integrals fω for ω ∈ V

have at most

ND + 2µr ≤ (5q + 2)(g − 1)− 3q(t− 1) + 2µr.
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common zeros in CD(k).

To calculate the number of rational points lying in CA(Qp), we conclude the discussions

of the previous sections.

Proposition 16. Suppose p > e + 1. Then the number of common zeros in CA(Qp) of all

fω for ω ∈ Vchab is bounded by

((2g − 2)/m− 2))µ (m(r + 3) + 1) .

Proof. Our residue tube analysis shows that, in fact, each orbit of annuli that arise in the case

of a non-inverting action of τ contains at most m(r+ 2) + l ≤ m(r+ 3) shared zeros. When

τ inverts the annulus, the number of shared zeros on the annulus is at most m(r + 3) + 1.

We therefore take m(r + 3) + 1 as a uniform bound for the number common zeros of the

differentials in V on any orbit of annuli. Applying Stoll’s Newton polygon calculation for

the optimal differential in the residue orbit, this leaves at most µ(m(r + 3) + 1) common

zeros of the integrals fω.

How many such orbits of annuli can there be? Each orbit corresponds to an edge in the

image of a minimal skeleton of C via the analytification of the map π. This image is obtained

by starting with the convex hull of the ramification points in P1 (a tree with d leaves) and

removing the leaves. This leaves a tree with at most d− 2 nodes, hence at most d− 3 edges.

Now a simple computation with Riemann-Hurwitz shows that

2g − 2 = md−m− d− (m, d).
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Certainly, then,

d ≤ (2g − 2)/m+ 1,

so there are at most (2g − 2)/m− 2 orbits of annuli.

Combining the bounds on CD and CA, the total number of common zeros of all fω for

ω ∈ Vchab is bounded by

((2g − 2)/m− 2))µ (m(r + 3) + 1) + (5q + 2)(g − 1)− 3q(t− 1) + 2µr.

This completes the proof of Theorem 3, barring the choice of a prime p.

Now we optimize the choice of a prime that satisfies p > e + 1 and (p,m) = 1. A naive

approach might proceed as follows: We have that

[Qp(ζm) : Qp] ≤ φ(m).

A standard theorem of ramification theory then says that

ef = [Qp(ζm) : Qp],

where f is the residue degree of the extension. Thus e is certainly bounded above by φ(m),

and we conclude that we must choose p > φ(m) + 1 ≤ m. By Bertrand’s Postulate there

exists such a p that is less than 2n. Using the trivial bound f ≤ φ(m) from above, we see
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that

q ≤ (2m− 1)m−1.

We can immediately improve this astronomical bound as follows: The (p − 1)th roots

of unity are the only roots of unity in Qp for p odd, and so ζm ∈ Qp if and only if p = 1

(mod m). For such a prime we have e = f = 1.

The problem of finding the smallest prime in an arithmetic progression is answered by

Linnik’s Theorem. The theorem says that there exists an L and m0 such that for all m > m0,

the smallest prime congruent to one modulo m is less than a constant times mL. Recent work

has shown that L can be taken a little under 5, but at the cost of astronomical bounds for

m0. Under the GRH, the smallest prime congruent to one modulo m is less than m(logm)2.

We will content ourselves with an easily digested exponential bound, and trust the reader

to search for the smallest prime in an arithmetic progression in any one specific case or use

a polynomial bound in general if they want to:

Theorem 17 ([14]). The smallest prime congruent to one modulo m is at most 2φ(m) − 1.

Putting all of this together, we conclude that for each m, #C(Q) is bounded by a bilinear

polynomial in r and g. Furthermore, the dependence on m is at worst polynomial in nature,

and can be bounded easily as a function of 2φ(m) − 1.

This concludes the proof of the main theorem.
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7 Discussion

One might wonder whether the bound in the main theorem can be taken completely inde-

pendent of m. Based on our methods, even the most fanciful conjectures on the least prime

in an arithmetic progression still inject some dependence on m into our final bounds. In any

case, under RH the dependence is relatively small.

The main theorem thus provides infinitely many classes of curves C (as we vary m in the

main theorem) for which the number of rational points on C is be bounded linearly in r and

g, and raises the question of whether such a bound might hold for all curves.

7.1 Other Possible Attacks on Superelliptic Curves

In this section we note how one might use a tower of superelliptic curves to glean arithmetic

information about the individual curves.

Given the curve ym = f(x) as above, and the curve ys = f(x) for any divisor s of m, we

always have a cover

ρ : C → C ′ : ys = f(x).

This cover is given by the map (x, y) 7→ (x, ym/s).

Proposition 18. Suppose that #C ′(K) ≤ B. Then #C(K) ≤ R(K)B, where R(K) denotes

the number of m/s-th roots of unity in K.

Proof. Suppose P is a K-rational point of C. Then ρ(P ) is K-rational, too. Thus given

Q = (x0, y0) ∈ C ′(K), it lifts to a K-rational point on C if and only if y0 is an m/s-th power

in K, say y0 = s
m/s
0 . In this case any other lift of Q is given by (x0, ζ

i
m/ss0).
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We would like to then replace m by its smallest prime divisor and analyze the resulting

curve C ′, but it is not always true that C ′ satisfies the rank hypothesis of Chabauty’s method.

It is true, however, that one can relate the genus of the two curves using Riemann-Hurwitz,

so if Chabauty’s method does work on C ′ then we may obtain a genus-dependent (but

rank-ignorant) bound on the rational points of C ′.

8 Metrized Complexes

In this section we use the theory of metrized complexes to understand how one might prove

a rank-favorable bound for arbitrary curves satisfying the Chabauty rank hypothesis. Omid

Amini and Matthew Baker invented metrized complexes to interpolate between two existing

theories of the degeneration of linear series. On one hand, the Eisenbud-Harris theory is best

applied to curves whose dual graph is a tree. On the other hand, previous work of Baker

established a theory which worked mostly with curves whose dual graph has the same Betti

number as the curve itself. We give here a bare-bones account of the theory; see [2] for more

details and proofs.

Definition 19. A metrized complex over a field κ consists of:

1. A metric graph Γ;

2. a collection of irreducible and nonsingular curves {Cv}, one for each vertex v ∈ Γ; and

3. for each edge e ∈ Γ and endpoint v of e, an identification of v with a κ-point of Cv.

We let Av denote set of the points of Cv which have been identified with vertices of Γ.
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Now let X be a proper curve over a discrete valuation ring K with quotient field κ.

Associated to X is a metrized complex: The curves Cv are just the components of the

special fiber, the edges are identified with the non-smooth points of the special fiber, and

the endpoints of each edge are identified with the evident non-smooth points on the curves

Cv. To define the length of an edge e: Recall that if X is semistable over K, it is locally of

the form

K[[x, y]]

xy = pl

around a point P which reduces to a non-smooth point of the special fiber, where p is a

uniformizer of K. Then we let l be the length of the edge associated to P . Notice that Γ is

a metric version of the dual graph of the special fiber of X.

However, the most conceptually satisfying description of l is as the logarithm of the inner

radius of the residue annulus ]P̄ [. We describe the Berkovich picture more clearly now,

because it underlies much of the theory. The Berkovich analytification Xan contains X(K).

As we would expect of an analytic object, however, this set plays a minimal role in the

analytification. The most important part of Xan for us will be its skeleton – a canonically

embedded metric graph which is isomorphic to the metric graph Γ defined in the previous

paragraph. Berkovich proved that there is a canonical retraction map from X(K) to the

skeleton; see [9] for a complete account of this story. For a point P for which P̄ is singular, it

is defined as follows: Once we have identified the residue tube ]P̄ [ with an annulus of outer

radius one, P lies at some radius r0 on this annulus. We then retract P to the point on e of

distance logp r0 from from the vertex v.

We can use Berkovich’s retraction to define our own retraction τ∗ from K-points of X
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to points on CX. When P ∈ X(K) reduces to a smooth point P̄ of the special fiber on the

component Cv, we define τ∗(P ) to be P̄ ∈ Cv (such a reduction is defined because our model

is proper.) When P̄ is a singular point of the special fiber, τ∗(P ) is a point on the edge

corresponding to the reduction of P . We retract it using the retraction map to the skeleton

of the Berkovich analytification Xan, so that its exact location is determined by where it lies

on the annulus ]P̄ [.

Extending τ∗ by linearity, there is a map from divisors on X to divisors on CX. A divisor

on CX is what one would expect: a finite combination of points that are either on the curves

Cv or on the open edges e ∈ Γ. There is a parallel theory of divisors and linear equivalence

on CX. We state these precisely – they will be important to us.

Definition 20. A rational function f on CX consists of a rational function fv on Cv in the

usual sense, along with a piecewise-linear function fΓ on the metric graph Γ.

If CX is the metrized complex associated to a curve X, there is a tropicalization map

trop that takes a rational function f on X and produces a rational function f = trop(f)

on CX. It is important to note here that there may be more rational functions on CX than

those that come from tropicalizations, since in the above definition we do not require any

compatibility between fv and fΓ. One can use the new notion of rational functions to define

linear equivalence on CX. However, it will be sufficient for us to know the following two

facts:

Proposition 21. If f is a rational function on X, then τ∗(div(f)) = div(trop(f)).

In other words, whatever the correct notion of the divisor of a piecewise-linear function

is, taking the divisor of a tropicalized function is the same as first taking the divisor on X
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and then retracting. The second fact that we’ll need is that linear equivalence on CX is built

up from simpler chip-firing moves.

Proposition 22. The notion of equivalence for Div(CX) is generated by the following prim-

itive equivalences.

1. (Equivalence on Cv.) A divisor supported only on a curve Cv is equivalent to a divisor

on Cv which is equivalent in the usual sense.

2. (Equivalence on an edge e.) Suppose q ∈ e, and let ε be a number which is less than or

equal to the smallest distance from q to a vertex. Let q±ε be the two points at distance

ε from q on the edge e. Then 2q is equivalent to p+
ε + p−ε .

3. (Firing from a vertex to surrounding edges.) Suppose v is a vertex of Γ with outgoing

edges e1, . . . , ek, and ε is a number smaller than the length of each ek. Let q1
ε , . . . , q

k
ε

be points at distance ε from v on the respective edges. Finally, suppose s1, . . . , sk are

the points on Cv which have been identified with the endpoints of e1, . . . , ek. Then the

divisor
∑

i si is equivalent to the divisor
∑

i q
i
ε.

It turns out that the definition of divisor rank on curves – based on the dimension of L(D)

– is extremely ill-behaved for tropical divisors. Instead, we have the following definition.

Definition 23. Let D be a divisor on CX. The rank r(D) is the largest integer such that

D−E is equivalent to an effective divisor for any effective divisor E. If D is not equivalent

to an effective divisor, then we set r(D) = −1.

Now consider a set H = {Hv}, where Hv is a set of rational functions on the curve Cv.

Then the restricted rank of the pair (D,H) is the largest integer such that D−E is equivalent
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to an effective divisor for any effective divisor E, and where equivalences of type 2 must be

contained in the set Hv. Note that the rank agrees with the restricted rank when Hv = κ(Cv).

If D has degree d and (D,H) has rank r then we say (D,H) is a grd.

The notions of divisors and equivalence on CX are compatible with the parallel notions

on X. For example, τ∗ takes principal divisors to principal divisors, effective divisors to

effective divisors, and equivalent divisors to equivalent divisors.

Definition 24. Let Kv denote a canonical divisor on Cv. A canonical divisor K on CX is

any divisor equivalent to ∑
v∈V

Kv + Av.

Amini and Baker use their Riemann-Roch for metrized complexes to show that the re-

traction of a canonical divisor on X is a canonical divisor on CX. They also prove a version

of Clifford’s theorem which we state here. Recall that a special divisor is a subdivisor of a

canonical divisor.

Theorem 25 ([2], Theorem 3.4). Suppose D ∈ Div(CX) is special. Then

r(D) ≤ deg(D)

2
.

9 A New Chabauty Divisor

We define a Chabauty divisor on CX as follows. Say Q is a smooth point of the special fiber.

Then, mimicking KZB and Stoll, we choose a differential ω ∈ V that vanishes to the least

degree on the point Q after normalizing ω so that it doesn’t have any poles or zeros along
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the whole component Cv on which Q lives. In the notation of KZB, choosing an optimal

differential for each smooth point of the special fiber results in a divisor

Dg :=
∑

Q∈X(Fp)sm

nQQ.

If Q is a singular point of the special fiber then it has an associated edge e in the metric

graph portion of CX. For each differential ω ∈ V , we may retract its divisor to CX using the

map τ∗. Consider the divisor

D′e(ω) := τ∗(divω) �e

which just takes the divisor associated to a differential, retracts it to CX, and forgets all

points that don’t lie on the edge e. Then some differential ωe will minimize the degree of

De(ω); we finally set

De = D′e(ωe).

Packaging these edge-divisors together, we define the “graphical component” of the

Chabauty divisor by

DΓ :=
∑
e∈Γ

De.

Last but not least, the Chabauty divisor on our metrized complex is

Dchab = DΓ +Dg.
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10 Bounding degDchab

10.1 Katz and Zureick-Brown’s Analysis

At this point in the analysis, Katz and Zureick-Brown require two main ingredients to their

proof.

Dchab is Special

The Chabauty divisor of Stoll–Katz–Zureick-Brown is special because every differential van-

ishes to order at least nQ at the point Q: if we pick an arbitrary differential ω, divω is a

canonical divisor that vanishes to at least the same order as Dchab at every point, and thus

contains Dchab as a subdivisor. They then use a modified version of Clifford’s theorem on

the special fiber which shows that, since K −Dchab is also special,

r(K −Dchab) ≤ deg(K −Dchab)/2.

Dchab has Large Rank

Again, because every differential in Vchab satisfiesDchab, we have that h0(XFp ,Ω
1
Qp

(−Dchab)) ≥

g − r, and so r(K −Dchab) ≥ g − r − 1. Putting these two inequalities together,

g − r − 1 ≤ (2g − 2− degDchab)/2,

and solving for the degree gives the desired inequality degDchab ≤ 2r.
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10.2 degDchab on the Metrized Complex

One runs into a number of immediate issues when generalizing the argument of [8] to the case

of a non-regular model of the curve, and from now on Dchab will only refer to the metrized

complex Chabauty divisor defined in this paper.

Dchab is Special

Dchab is no longer special, since not only the order of vanishing of a differential matters, but

also the location of its zeros along an edge. Thus not every differential satisfies Dchab on the

metrized complex. It is however true that Dg +De is special for each edge e ∈ Γ, since it is

a subdivisor of the canonical divisor divωe corresponding to the optimal differential for that

edge. So not every differential satisfies the conditions imposed by Dchab, but one differential

satisfies part of it, and that is all we will need. Recall that the degree of a canonical divisor

on the metrized complex C is 2g − 2. Applying Amini–Baker’s Clifford’s theorem gives us

the inequality

rC(K −Dg −De) ≤
deg(K −Dchab)

2
= g − 1− deg(Dg) + deg(De)

2
.

K −Dchab has Large Rank

Here again Katz and Zureick-Brown used the fact that every differential satisfied the condi-

tions imposed by Dchab; since this is no longer the case for our Chabauty divisor, we need

a further assumption (the “Main Assumption” below.) The following theorem is key to the

Chabauty investigations of Amini and Baker:
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Proposition 26. Let X be a smooth proper curve over K, X a strongly semistable model

for X, and CX the metrized complex associated to X. Let D be a divisor on X and let

Lη = (L(D), Hη) for Hη ⊆ H0(X,L(D)) ⊆ K(X), be a grd on X. For any vertex v ∈ V ,

define Hv as the κ-vector space defined by the reduction to κ(Cv) of all the rational functions

in Hη, and let H = {Hv}v∈V . Furthermore set D = τ∗(D)

Let E◦ be an effective divisor of degree e supported on the smooth locus of the special fiber

of X, and define E◦ =
∑

v∈V E
◦
v ∈ Div(CX), where E◦v is the restriction of E◦ to Cv. Suppose

that Hv ⊆ L(Dv − E◦v) for all v. Then the pair (D − E◦,H) is a limit grd−e on CX.

Remark 27. Two crucial notes apply to this statement. The fact that the rank of (D−E◦,H)

has rank at least r is exactly saying that, for any degree r effective divisor F ∈ DivCX there

exists a linear equivalence f1 such that

D − E◦ −F + div f1 ≥ 0.

First, F can be taken to have support only on the smooth portion of the special fiber. Second,

f1 is constructed as the tropicalization of an element f1 ∈ Hη.

We upgrade their lemma, under an important assumption, to include divisors supported

on the metric graph portion of the metrized complex CX.

Lemma 28. Carrying over the setup of the previous proposition, let E× be an effective

divisor of degree h supported only on the edges of CX. For any rational function, denote its

tropicalization using a fraktur font.
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Assumption 29 (Main Assumption). Suppose furthermore that for every f1 ∈ Hη, we have

that E× is equivalent to a subdivisor of div(f1) via an equivalence f2 that is supported only

on edges of CX.

Then the pair (D − E◦ − E×,H) is a limit grd−e on CX.

Remark 30. Although Lemma 28 is quite general, we will in restrict ourselves to the case

in which f2 makes E× equivalent to a subdivisor of div(f1) restricted to one particular edge

e ∈ Γ.

Proof. By the proposition from Amini–Baker, for any degree r effective divisor F ∈ DivCX

there exists a linear equivalence f1 such that

D − E◦ −F + div f1 ≥ 0.

Let’s examine the divisor

D − E◦ − E× −F + div f1 + div f2.

On any smooth point of the special fiber this divisor is effective because both div(f2) and

E× are supported on the edges of the metrized complex.

On the other hand, the main assumption says that div(f1) + div(f2) − E× is effective.

Since D is effective and F is supported on the smooth part of the special fiber, we see that

D − E◦ − E× −F + div f1 + div f2 ≥ 0,
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and we are done.

10.3 Applying the Lemma to Chabauty

Amini and Baker use the above lemma with D = K, a canonical divisor, and E◦ = Dchab.

We instead take E◦ = Dg, while E× will be a subdivisor of De, with deg(E×) ∼ deg(De). For

convenience K will be the canonical divisor associated to ωe, the optimal differential for the

edge e. They furthermore let Hη be the subspace of L(K) corresponding to Vchab. Following

through the same steps as Amini–Baker, we get a bound on the degree of Dg + E× and thus

a bound on the degree of Dg +De. Finally, we sum over all edges e and obtain the following

theorem:

Theorem 31. By Lemma 26, for every edge e ∈ Γ there is a rational function f1,e that

displays the required equivalence. Let δe be the differential associated to f1,e in the bijection

between h0(Ω1) and L(−K). Assume that for every edge e ∈ Γ there exists an effective divisor

E×e ≤ De such that E×e is equivalent to a subdivisor of D′e(δe). (In other words, the Main

Assumption is satisfied for De.) Suppose furthermore that there exists a constant αe ∈ N

such that deg(De) ≤ αe deg(E×). Then

#E deg(Dg) +
∑
e∈E

1

αe
deg(De) ≤ 2r#E.

Proof. Applying Lemma 28 and Clifford’s theorem, we see that

deg(Dg) + deg(E×e ) ≤ 2r,
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and hence

deg(Dg) +
1

αe
deg(De) ≤ 2r.

Summing over E completes the proof.

Remark 32. Given this lemma, we have that

∑
deg(De) ≤ 2r#Emax

e∈Γ
{αe}.

Since #E ≤ 3g − 3 for a semistable curve ([9], Lemma 4.14), an absolute bound on the

constants αe would lead to a rank-favorable bound on deg(Dchab).

We argue in the next section that the p-adic Rolle’s theorem provides evidence for the

main assumption. We have to modify E× even further there: E× will be the subdivisor of

zeros of ωe which lie in between common zeros of the integrals of ω ∈ Vchab

11 Evidence for the Main Assumption

What does the Main Assumption amount to, given the discussion of applying our lemma to

Chabauty’s method? It requires that De is equivalent to a subdivisor of

τ∗(div δe)

for the differential δe ∈ Vchab via an equivalence supported only on the edge e. This section

is meant to discuss the implications of a strict version of Rolle’s Theorem for the differentials
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δe and ωe. A strict Rolle’s theorem does not hold for all power series (there are easy coun-

terexamples for polynomials even), but the point is that we might reasonably expect that

the Main Assumption holds for just the pertinent differentials δe and ωe. In fact, a weak

version of the p-adic Rolle’s theorem we discuss below does hold.

Here’s the idea. We’d like to bound the number of common zeros of the integrals. Over

the real numbers, Rolle’s Theorem tells us that the zeros of the differentials interlace with

the zeros of the integrals. If two functions have two common zeros, then the derivatives of

the functions each have a zero in the open interval dictated by the common zeros. We would

like to use a similar constraint in the p-adic case to prove that the Main Assumption holds

if a strict version of Rolle’s Theorem holds.

Remark 33. We say that a strict version of Rolle’s theorem holds for a p-adic analytic

function f if, for any distinct zeros a 6= b of f with |a| ≥ |b|, there is a zero c of f ′ with

|b| ≤ |c| ≤ |a|.

A weaker version of Rolle’s theorem is known for discs, with a “fudge factor” in the

interval:

Theorem 34 ([1], p. 316). Let f ∈ Cp[[X]] have convergence radius rf > 1. If f has two

distinct zeros a 6= b in the closed unit ball satisfying |a− b| ≤ |p|
1

p−1 then f ′ has a zero in the

closed unit ball.

As far as the author knows, a generalization of this statement for p-adic annuli is missing

from the literature.

Assume that a strict version of Rolle’s theorem holds for both ωe and δe on the edge e.

Suppose further that the integrals of δe and ωe have no zeros on e with the same valuation.
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We will construct E× in two steps. First, let A× be the subdivisor of De constructed as

follows: For every two neighboring common zeros of the functions
∫
δe and

∫
ωe, keep the

zero of ωe that lies in between them. In the spirit of chip firing, we can think of our task

as a game. We have the divisors D′e(δe) and A×. Consider z1, z2, z3 common zeros of the

integrals
∫
δe and

∫
ωe. Then by the strict version of Rolle’s theorem, both δe and ωe have

zeros in the intervals [|z1|, |z2|] and [|z2|, |z3|]. Consider these two zeros of ωe as a subdivisor

of R×. It’s not hard to see that an elementary equivalence can take make two zeros of δe

cover at least one of the zeros of ωe. Add the zero that can be covered to E×.

Continuing this process, we get a divisor E×e on the edge e. By construction, the degree

of E×e is approximately half of the number of common zeros of
∫
ωe and

∫
δe on the edge

e. This observation replaces the use of p-adic Rolle’s in [8]: whereas they bound deg(Dchab)

and then pass to zeros of the integrals, the present strategy aims to use a Rolle’s theorem

first and then conclude a bound on the zeros of the integrals by construction.

One upshot of this strategy is that it uses rational functions on CX that don’t come from

rational functions on X. It is thus largely combinatorial, so for example it is not be hard

to see that the numbers αe could be small if the edge-divisors De and D′e(δe) are relatively

equidistributed on the edge e. Of course, any hope of a uniform bound with either strategy

depends on combinatorial properties of τ∗(div(ωe)) on the edge e that must wait until future

work.
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