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Abstract 
The data, information, knowledge and wisdom (DIKW) model has been widely 

used in data science fields to generate a comprehensive view of each domain. It provides 
a hierarchical representation of the understanding of the domain knowledge; the DIKW 
model can reveal insights in systems biology by integrating different types of –omics data 
to form a comprehensive understanding. 

 

The foundation of systems biology is mining genomics data with machine 
learning. As the use of high-throughput, next-generation sequencing (NGS) applications 
grows, research in genomics enters the “big data” era. NGS applications can be divided 
into two major categories, short-read and long-read techniques, which are based on the 
principle differences in generating “reads”. A “read” is the fundamental element of 
genomic information. Short-read applications have been widely applied in several fields 
of genomics research, while long-read applications just came to market in 2011. Long-
read applications have shown the potential to handle several areas of genomic questions. 
However, obtaining a well-defined genome still has a number of challenges in malaria 
systems biology research, and these challenges block researchers’ understanding the 
mechanism of the malaria disease progression. 

 

To tackle these challenges, we built a novel long-read NGS pipeline with third 
party modules and modified them to solve complicated Plasmodium genome assembly 
questions. These techniques provided a solution where traditional, short-read 
technologies could not because of the Plasmodium genome’s highly repetitive nature. We 
also implemented infrastructure to solve data management difficulties and developed 
several novel and robust pipelines to process and analyze the data. We host this pipeline 
along with other third party applications for data quality control, generic data 
visualization and data management tools. Our pipeline is also scalable and flexible to 
combine different technologies (long reads and short reads) to assemble the Plasmodium 
genome and conduct downstream annotations. 

 

This dissertation describes an overview of –omics research in the big data era and 
reveals the possibility of applying DIKW models through mining genomics data. There 
will also be detailed discussion on how to apply our platform to solve questions, 
including multiple Plasmodium genome assemblies and annotations, and an initial 
discussion of applying machine learning approaches in a host-pathogen transcriptome 
analysis and its data mining applications. 
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Chapter 1, Introduction 
 

 

1.1 Motivation 

The DIKW (data, information, knowledge and wisdom) model has been widely 

discussed and applied in data science; however, this model has not yet been widely used 

in biological research, especially in systems biology. Along with bioinformatics tools, the 

DIKW model could serve as a roadmap to tackle complicated systems biology questions. 

Next generation sequencing represents massively paralleled DNA sequencing 

technology, which has reshaped genomic research. An entire human genome can be 

sequenced in a single day using NGS (Liu et al. 2012). Using previous generations of 

sequencing technology, such as Sanger, to decipher the human genome required more 

than a decade to conduct the final draft. There are two categories of NGS technologies, 

short-read and long-read, defined by the length of their reads. Short-read sequencing 

technologies (<1K) have been widely used and have provided huge improvements over 

Sanger sequencing; however, their disadvantages, especially the read length, make some 

biological problems almost impossible to solve, including characterizing a complex 

genomic mixture, assembling a large genome with repetitive family, and others (Quail et 

al. 2012). Single-molecule real-time (SMRT) sequencing, developed by Pacific 

BioSciences (PacBio), provides a “long-read” approach (>30K) to solve the difficulties of 

short-read sequencing technology. However, there is currently no solid end-to-end 

pipeline for long-read sequencing users, and there are still many difficulties that need to 

be solved before the wide-spread application of long-read technology, especially the issue 

of the high-error rate in each sequencing read. Providing a solution to overcome the error 
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rate issue in several applications is necessary for downstream systems biology analysis. 

This dissertation addresses several long-read sequencing questions with robust and 

computationally inexpensive solutions. This pipeline can be adapted to different 

biological questions, including malaria whole genome sequencing and annotation (Chien 

et al. 2016).  

 

1.2 Key Questions 

 1. There is no fully integrated data analysis pipeline for long-read sequencing 

applications. Can we solve the engineering problem by integrating several third party 

tools into a centralized pipeline? Can it be scalable? Can this pipeline perform 

reproducible results? 

 2. Long-read NGS technology has not been applied to a Plasmodium full genome 

assembly. Can we apply this technology and design an algorithm to assembly the highly 

repetitive Plasmodium genome assembly and complete the annotation? Can this solution 

be reproduced? Can long-read NGS technology be combined with other NGS 

technologies to improve the Plasmodium genome assembly? 

 3. What kind of data mining questions can we answer with a superior, long-read 

genome and huge amounts of genomic information?  

 4. Is the DIKW model a good fit to solve systems biology questions? What are the 

limitations of the DIKW model in systems biology studies? 
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1.3 Dissertation Hypotheses  

 

By answering the major questions stated in Section 1.2, we hypothesize that an 

integrated cloud-based NGS data analysis system could be applied to different fields of 

infectious disease research. Together, with data mining techniques, we expect this system 

will play a key role in discovering the hidden genomics regulatory mechanisms behind 

the bigger systems biology.  We expect the scalable cloud-based system can not only 

handle variant bioinformatics data types (e.g. fasta, fastq, SAM/BAM) but also provide 

robust analysis results. We also expect our system can provide the most accurate long-

read sequencing results while handling different tasks from high-resolution sequencing to 

whole genome assembling. Moreover, we expect the final genomic products generated 

from our system will lead to other innovative and high impact studies while revealing 

secrets of systems biology in infectious diseases.  A study conducted by Le Roch et al. 

(Le Roch, Chung, and Ponts 2012) described different aspects of systems biology (Figure 

1.1), and we expect our system can at least handle two major areas of systems biology: 

genomics and transcriptomics.  
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1.4 Dissertation Organization   

 

In this dissertation, we will discuss several topics. In Chapter 2, the current issues 

of systems biology are introduced, showing how data science has rapidly become 

recognized as an essential discipline in the post genomic era. Malaria scientists have been 

adapting to new ways of developing, analyzing and integrating large datasets using 

systems biology approaches. Numerous data points are generated, from different omics 

fields, including genomics, transcriptomics, proteomics, epigenomics, lipidomics and 

metabolomics. Applying machine learning based techniques to high throughput Next-

Generation Sequencing (NGS) data is a promising means to construct the fundamental 

mechanistic understanding of such data in malaria research and identify new biological 

Figure	1.1,	Different	Components	of	Systems	Biology	(Le	Roch	et	al.	2012).		

Genomics	 identifies	the	genetic	diversity	and	is	important	 in	detecting	drug	resistance,	Epigenomics	
explores	 the	 transcriptional	 regulation,	 Transcriptome	 study	 helps	 us	 to	 evaluate	 RNA	 dynamics,	
Proteomes	helps	us	 to	understand	 the	protein	 levels,	 Immunome	research	characterizes	protective	
antigens,	 Interactomes	 reveal	 protein-protein	 interactions,	 Metabolomic	 research	 helps	 us	 to	
evaluate	metabolites.	
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targets of intervention. We also discuss the fitness of the DIKW model along with NGS 

workflow strategies and the impact of NGS technologies in malaria post-genomics 

research, the utility of several bioinformatic approaches, and the data-driven concepts of 

information to knowledge and insights to tackle systems biology questions in new and 

powerful ways.  

 

In Chapter 3, we demonstrate the basic workflow, from data processing to data 

interpretation. Our workflow has been successfully validated for the malaria whole 

genome assembly. We show that our workflow simply requires submission of raw data 

from PacBio sequencing to our pipeline; then with minimum tuning, our pipeline allows 

us to obtain a full genome assembly and annotation. Our methods are scalable and robust 

to several other Plasmodium genome assembly projects.   

 

In Chapter 4, we demonstrated our full genome assembly pipeline along with 

other third party modules to assemble large complex genomes. We demonstrated 

feasibility by assembling a Plasmodium coatneyi genome. Plasmodium coatneyi is a 

protozoan parasite species that causes simian malaria and is an excellent model for 

studying disease caused by the human malaria parasite, P. falciparum (Moreno et al. 

2013). Here we report the complete (non-telomeric) genome sequence of P. coatneyi 

Hackeri strain generated by the application of only Pacific Biosciences RS II (PacBio RS 

II) single-molecule real-time (SMRT) technology and assembled the genome using the 

Hierarchical Genome Assembly Process (HGAP) (Chin et al. 2013). This is the first 
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Plasmodium genome sequence reported using only PacBio technology. This approach has 

proven to be superior to short-read only approaches for this species. For further 

improvement, the Hi-C technology has been introduced along with the long-read based 

assembly method, and this hybrid method has resolved the contig orientation problems 

and improved assembly accuracy (Lapp, Geraldo, Chien et al. 2017). 

 

Chapter 5 describes the use of the concatenated host and pathogen genomes to 

perform the dual RNA-seq analysis to understand the interaction between hosts and 

pathogens in disease progression. A prior assembled Plasmodium coatneyi genome was 

used to avoid sequencing bias in this dual RNA-seq analysis. By combining several data 

mining approaches, a comprehensive host-pathogen time-series transcriptome analysis 

was conducted. We will also discuss further applications of these data mining and 

machine learning techniques. 

 

1.5 Contributions 

 

 This thesis describes the first long-read sequencing technology system hosted on 

the cloud; it produces experiment-specific, data-rich reports in industry-standard output 

formats. All data files are accessible directly to the user, and the system allows for easy 

third-party software analysis and collaboration.  This system offers the ability to 

assemble reads into a de novo genome and analyze RNA-sequence data.  
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Chapter 2, Systems Biology in Big Data Era 
 

2.1 Introduction to the Fundamental Elements of Systems Biology 

 

The systems biology modeling concept can be traced back to 1952, when Alan 

Lloyd Hodgkin and Andrew Fielding Huxley published the first cell biology numerical 

simulation mathematical model to explain the action potential propagation between the 

axon and neuronal cell (Hodgkin and Huxley 1952). This model described the interaction 

of two molecular components, potassium and sodium channels, at the cellular level and 

therefore has been considered as the first paper on computational systems biology. Alan 

Turing also published a paper in 1952 describing how the natural patterns of stripes, 

spirals, and spots, might arise naturally out of a uniform, homogeneous state; a theory 

which has served as classical model in theoretical biology (Turing, Aug, and Turing 

2007). After several decades, systems biology has evolved naturally alongside 

technological progression by adapting several computational approaches. In fact, each 

field of systems biology is more and more computationally intensive. The main research 

interest in systems biology is therefore in developing and using efficient algorithms, data 

structures, and data visualization and communication applications for building a 

computational model to describe a biological system with subsystems including signal 

transduction pathways, gene regulation networks and networks of metabolites.  
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Systems biology is an inter-disciplinary field of study that focuses on interactions 

within a biological system by applying computational and mathematical modeling 

techniques (Ideker, Galitski, and Hood 2001). Recent developments in the computational 

sciences have resulted in the creation of tools that allow for important advanced 

approaches to systems biology. For example, parallel cloud computing techniques allow 

systems biologists to process terabytes of data on a daily basis using workflows from 

genomics or transcriptomics research. However, these advances require multiple data 

types to be assimilated into a single representation and massive quantities of data to be 

correctly handled. As such, the three aspects of a computational approach are referred to 

as the three “V”'s of big data: velocity, variety, and volume (Ott, Longnecker, and Ott 

2001). Thus, the properties of systems biology questions are essentially similar to Big 

Data questions especially in data generating speed, data variety and data volume.  In this 

chapter, we will discuss different elements of systems biology under the DIKW scheme, 

but systems biology is not limited to the elements described here. 

 

2.2 Introduction to Current Genomics 

 

After decades of genome sequencing progress, a critical milestone for scientific 

advances in medical research was the sequencing of the entire human genome at the 

affordable cost of less than $1000 USD (Mardis 2006). Successfully reaching this target 

signaled that bioinformatics had entered the post-genome big-data analysis era, and this 

marked the beginning of personalized medicine and systems biology strategies (Weston 

and Hood 2004; Gonzalez-Angulo, Hennessy, and Mills 2010). Bioinformatics 
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researchers have since focused on big data-driven research, creating new large data 

collection tools, data storage, and data analyzing approaches that are being applied in 

malaria research. Following on the human genome success, several nonhuman (NHP) 

primate genomes have also been sequenced (Rogers and Gibbs 2014), greatly supporting 

the study of host-pathogen interactions using NHP model systems, as performed by the 

Malaria Host-Pathogen Interaction Center (MaHPIC) (Joyner et al. 2016; MaHPIC 

consortium, n.d.). 

 

In recent years, Pacific Biosciences and Illumina technologies have become 

recognized as the two main next generation sequencing (NGS) approaches (Quail et al. 

2012). These NGS sequencing technologies generate chain lengths of DNA data 

composed of either long (>500 base pairs) or short reads (25-500 bp), respectively. 

Illumina technologies generate short reads based on a massively parallel sequencing 

technique, a revolutionary and continuously improving industry standard for over 10 

years. In the last five years, PacBio technologies have gained ground with the additional 

advantage of being capable of generating long reads (Liu et al. 2012). Once reads, 

whether short or long, are generated and ordered into contiguous sequences called 

contigs, researchers then have highly scalable and quantifiable information regarding the 

nature and composition of the target sequences. All NGS applications can be separated 

into several categories based on the different data types they assess, including not only 

whole genome de novo sequencing, but also exon sequencing, transcriptome sequencing 

(RNA-seq), and chromatin immunoprecipitation sequencing (ChIP-seq), to name a few.   
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         More specifically, Illumina technologies generate millions of short reads to 

analyze a target genome, which bioinformaticians then process and analyze with different 

software packages, such as the Genome Analysis ToolKit (GATK), software packages 

developed by the Broad Institute (DePristo et al. 2011), and SAMtools, which handles 

short reads datasets (H. Li et al. 2009). These two software packages are most widely 

used for finding single-nucleotide polymorphism (SNPs) or small insertions and deletions 

(INDELs), each with different basic assumptions. The basic assumption behind the 

GATK model is that errors are independent, but SAMtools attempts to model the error 

dependency. Given the frequency as 1, the SAMtools model results will be similar to 

those generated from the GATK model. For most practical cases, the two models are 

actually rather similar in the face of shallow sequencing coverage; however, these two 

models do differ when high sequencing coverage (>100X) is assessed (H. Li et al. 2009). 

For single-sample SNP calling, high phred-scaled genotype likelihoods are not needed, 

thus, the difference has a slightly noticeable effect on detecting SNPs (Yu and Sun 2013). 

Additionally, several open-sourced bioinformatics tools are available, covering a wide 

range of topics. For instance, these include ABySS for de novo assembly (Simpson et al. 

2009), Bowtie for alignment (Langmead 2010), and RNA-STAR for transcriptomics 

research (Dobin et al. 2013). In general, technologies employing short reads are better 

able to locate SNPs (Hert, Fredlake, and Barron 2008). While short-read technologies 

possess certain advantages, these technologies require the building of large DNA 

scaffolds, particularly if the target sequence has numerous highly repetitive regions 

across the whole genome. This is especially true for inverted repeats and GGC sequences, 

whose presence can lead to gaps in the final genome assembly (Alkan, Sajjadian, and 
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Eichler 2011). As highlighted above for the SICAvar gene family, repetitive sequences 

are known to complicate the process of assembling Plasmodium genomes, and gaps have 

been commonplace until recently, with the application of PacBio technologies (Chien et 

al. 2016; Vembar et al. 2016; Rutledge et al. 2016). 

 

  Single Molecule, Real-Time (SMRT) DNA sequencing is a third generation 

sequencing technology, developed by PacBio, and this is the only NGS technology 

currently capable of processing long-reads datasets. The newest PacBio chemistry, P6-

C4, can generate DNA sequence reads with lengths averaging 10-14 kb. Furthermore, 

this method has significantly higher throughput (between 500 million to 1 billion bases 

per SMRT Cell), from two megabases to upwards of one gigabyte. Longer DNA 

sequence reads have a higher chance of being appropriately mapped to the genome being 

sequenced, and even to highly repetitive regions, which have remained problematic for 

other platforms (Shin et al. 2013). However, the high sequencing error rate (Quail et al. 

2012), particular to this technology, still poses a challenge. Since this technology detects 

the presence of individual fluorescent nucleotides from single molecules entering the 

DNA polymerase active site in real-time, there are two common sources of error. First, 

some nucleotides might be sampled by the polymerase but not immediately incorporated, 

yet become mistakenly detected as an additional nucleotide and leading to the insertion of 

an erroneous base in the resulting sequence. Furthermore, even nucleotides that are 

incorporated may not dwell long enough in the well to be detected, leading to the creation 

of an erroneous gap (Travers et al. 2010). In contrast, Illumina technologies are able to 

reduce the likelihood of that type of error by generally detecting ensembles of many 
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molecules to increase signal strength. For example, Illumina cluster generation 

algorithms create up to 1,000 copies of the template to ensure more accurate detection 

and validate the existence of nucleotides in the sequence.  

 

To compensate for these shortcomings in current long-reads technologies, 

“hybrid” approaches have been implemented to combine the high accuracy of Illumina 

technology with long reads generated from SMRT sequencing (Au et al. 2012; English et 

al. 2012). However, recently, the non-hybrid approach called Hierarchical Genome 

Assembly Process (HGAP) (Chin et al. 2013) has proven to be capable of generating 

accurate assemblies while relying exclusively on SMRT reads. This is accomplished by 

using the longest reads as ‘seed’ reads that can then be used as reference sequences for 

the mapping of shorter reads, leading to the formation of so called “pre-assembled reads”. 

These pre-assembled reads have the advantage of lower error rates since they are 

consensus sequences derived from the combination of multiple shorter reads. Pre-

assembled reads can be further assembled together to build a final consensus sequence, 

producing near-complete, high-quality genomes de novo. However, two significant 

problems remain with this method. It is still necessary to have high coverage for the final 

consensus sequence to compensate for the high error rate that results from using long 

reads. Moreover, it is still not feasible to discern the nucleotide sequence of more than 

one genetic variant if or when multiple variants are present in the genomic DNA sample 

being sequenced. Complex mixtures (even diploid genomes) are problematic for long-

reads-only approaches because closely related genomes have the potential to be mixed 

together and appear in the data as noise, leading to the mapping of a mixture of slightly 
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different sequences, which the consensus algorithms must then resolve to create the 

single best consensus. To address this issue, Dilernia et al. developed a novel 

classification algorithm for overcoming this difficulty by only applying long-reads DNA 

sequencing to separate closely-related genomic mixtures, a technique that has been 

validated on HIV-1 genomes (Dilernia et al. 2015).   

 

Table 2.1 Comparison of Major Sequencing Platform  

 

 

2.3 Introduction to Current Proteomics 

  

In order to understand the proteomics of Plasmodium infected animal model or 

clinical cases, the main task of proteomics research is to produce detailed proteomic 

profiles from selected experiments quantitatively (Bautista et al. 2014). Thus, proteomics 

research in systems biology research serves to provide positive identifications of both the 
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host and pathogen proteins and post-translational modifications (PTM) acquired by in-

depth screening of peptide fractions that have been generated after digestion or chemical 

cleavage (Aebersold and Mann 2003). Normally, proteomics research provides 

quantitative comparisons of relevant samples by applying tandem mass spectrometry 

(MS/MS). This data analysis workflow can be customized, but the main idea is very 

similar to metabolomics research. As a result, proteomics research involves identifying 

the pattern spectrum peaks, validating the identifications, building up the protein 

inference, and then conducting the quantification of the finding (Huang et al. 2012). For 

the identification step, the current best approach is to utilize search engines such as 

Mascot (Weatherly et al. 2005) and X! Tandem (Vaudel et al. 2011; Craig and Beavis 

2004), for searching the peptide MS "fingerprint" in several open-sourced online 

databases. Because Plasmodium is a higher-level eukaryote, Apicomplexan parasitic 

organism with complicated protein systems, one cannot gain a complete understanding of 

a protein’s structure even after obtaining the peptide, thus applying statistics inference to 

predict the distribution of the peptide/proteome is essential (Swan et al. 2013). To address 

this issue, the software ProteinProphet can calculate the probabilities of each protein 

being present in the sample according to the possibilities of the association presented 

peptides (Nesvizhskii et al. 2003). Finally, data visualization that can be realized by 

applying R & Bioconductor after model construction, which can be machine-learning and 

statistical-analysis heavy. 
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2.4 Introduction to Current Metabolomics 

 

Metabolomics research focuses on constructing the metabolic profile of 

experimental samples, whether plasma, serum, urine, sputum or other sample types 

collected from clinical cases, or in vitro model systems. Data acquisition is the first step 

for analyzing metabolomics data. Metabolomics data is collected using NMR, LC-MS, 

GC-MS (Jonsson et al. 2004; Young, Barrett Jr, and Beecher 2009; Ward et al. 2010), all 

of which yield spectral data. The spectral data then undergoes baseline correction, noise 

filtering, peak detection, peak alignment, normalization, and deconvolution to get an 

annotated data tables of features. After constructing the feature table, the analysis will 

move forwards in two directions, data analysis and metabolite identification (Goodacre et 

al. 2007; Shulaev 2006). For data analysis, machine-learning techniques that we have 

previously mentioned in section three will be applied (Dale, Popescu, and Karp 2010). By 

applying machine-learning techniques, researchers can construct the classification model 

or discover biomarker candidates. Machine-learning techniques are powerful when the 

dataset(s) is large and with numerous features, but how to select which method to apply is 

still dependent on the purpose and performance that one expects to acquire from the 

experiments (Martínez-Arranz et al. 2015). Identifying the metabolite is another 

important task in metabolomics research, which mainly requires relating a map of the 

novel metabolite back to the spectral databases based on the dataset features, including 

peak positions, and correlation patterns. The final step of metabolomics research is to 

generate a biological interpretation. Using tools like KEGG and MetaCYC (Martínez-

Arranz et al. 2015; Krieger et al. 2004), the finding associated retention time and analytic 
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conditions are first matched, then data mining is applied to find features that already 

exist. Applying data mining in databases can also be used for conducting pathway 

analysis, over-representation, and quantitative enrichment analysis. Recently, Li et al. 

presented a novel method that provides a faster solution to achieve high throughput 

metabolomics analysis. This method, called mummichog, determines functional activity 

from spectral features tables using knowledge of metabolic pathways and networks and is 

unique because it does not require a priori identification of metabolites (Salinas et al. 

2014; S. Li et al. 2013). Once finished with these analyses, the next step usually involves 

constructing the model based on Gaussian graphical modeling, network topology 

measures and of course the model will then be presented elegantly with visualization 

form. 

 

2.5 Malaria Genomics   

 

 Establishing a fundamental understanding of malaria systems biology from the 

genomics perspective, including a thorough examination of the complete sequence and 

expression characteristics of the genome of malaria-causing Plasmodium species is 

crucial for understanding the basis of Plasmodium biology and pathogenesis. The genome 

of P. falciparum, which has the highest mortality rate of all human malaria parasites, was 

published in 2002 as the first ‘fully sequenced’ Plasmodium genome (Gardner et al. 

2002). Shortly afterwards, the genome sequence of P. yoelii, a rodent malaria parasite 

species that serves as a model system, was also published (Jane M Carlton et al. 2002). 

After decades of focused effort by the malaria research community, genome sequence 



	

29	
	

information from >13 Plasmodium species/strains are now publicly available from 

PlasmoDB, an integrated multi omics database for multipurpose Plasmodium and malaria 

research studies (Aurrecoechea et al. 2009), and the genomes of most interest in this 

database are continually being improved upon with corrections to the original sequence 

or assembly data and its annotation. With the evolution of NGS technologies, the volume 

of novel information being generated and the diversity of different Plasmodium 

sequencing projects have increased as well. Plasmodium species that have been 

sequenced in the last 10 years include the most prevalent human malaria parasite P. vivax 

(J M Carlton et al. 2008), simian malaria parasites that serve as models for P. falciparum 

and P. vivax, respectively (P. coatneyi (Chien et al. 2016) and P. cynomolgi (Tachibana 

et al. 2012)), P. knowlesi (Pain et al. 2008a),which is a simian malaria parasite but also 

one that infects humans in South East Asia (Singh 2013), and another rodent model 

parasite, P. berghei (Janse and Waters 1995). 

 

While each species differs, Plasmodium nuclear genomes each have 14 linear 

chromosomes encoding between 5000–5800 genes, and with the overall genome sizes 

ranging from 16 to 27.7 megabases; in addition, the parasite has mitochondrial and 

apicoplast organellar genomes (Arisue et al. 2012), (Vaidya and Mather 2009). A 

common feature of Plasmodium genomes across different species is the presence of high 

Adenine/Thymine-rich regions. This high A/T feature introduces sequencing difficulties 

due to a physical structural obstacle for constructing ‘reads’. In addition, the Plasmodium 

genome has numerous repeated sequences, as well as complex multi-gene families that 

prove prohibitive for full genome completion with high confidence. A good example can 
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be found in P. knowlesi, whose large (>100 member) and complex (multi-intron/exon) 

variant antigen encoding SICAvar multigene family (Al-Khedery, Barnwell, and Galinski 

1999) is located all over the originally reported genome’s 14 chromosomes, but in many  

instances, SICAvar sequences are contained in unmapped or misplaced fragments (Pain et 

al. 2008b; Lapp, Korir, and Galinski 2009). Several SICAvar ORFs have also been 

annotated as hypothetical proteins, a placeholder feature, due to insufficient sequence 

similarity when comparing to already characterized proteins in available databases. In 

light of these issues, long-read PacBio sequencing technology (described below) can 

provide a solution for the A/T bias and detect repetitive regions without linkage by taking 

advantage of the length of the reads being generated (Ferrarini et al. 2013). A ‘PacBio-

only’ approach was in fact used recently to develop the first reported genome assembly 

for P. coatneyi, a species that is closely related to P. knowlesi, and which has a complex 

variant antigen gene family comparable to SICAvar (Chien et al. 2016). Chien et al. 

(Chien et al. 2016) brings to light the potential and necessity for long-reads technologies 

to support the development of new and improved, correctly assembled genomes for 

malaria research. 

 

2.6 Malaria Transcriptomics 

 

Now that several Plasmodium species and host genome sequencing and 

assembling projects have been completed, with reference genomes constructed and 

annotated, a solid foundation exists to investigate malaria transcriptomes, and in essence, 

many aspects of functional genomics. Functional genomics has been coined as a term to 
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define research related to the functional expression and regulation of a genome, which 

results in the various phenotypic outcomes of a biological system or interacting systems 

at various levels; whether cellular, tissue, organ, organismal, or from infections involving 

a host and pathogen, not to mention microbiome and a multitude of environmental 

influence. It is one thing to study infected hepatocytes or red blood cells (RBCs) in in 

vitro cultures, and another to study them in the context of an infected host, where the host 

environment comes into play. 

 

NGS technologies have advanced from genome sequencing to post-genomic 

utilities with RNA-seq analysis commonplace for studying transcriptome sequence data. 

In the past, microarrays were the standard technology for evaluating transcriptomes; 

however, microarrays are constrained in the amount of RNA that can be processed at a 

given time and this technology has limitations when it comes to quantifying expression 

levels with a large dynamic range, as well as the caveat of being unable to detect novel 

transcript regions that may not be represented on the arrays, leading to the possibility of 

some coding or non-coding RNAs being missed and ultimately not obtaining a full 

picture of gene expression activity. NGS techniques in transcriptome research have 

become recognized as a superior methodology for obtaining a more comprehensive view 

of transcriptome expression (Werner 2010). 

 

To conduct transcriptome research, RNA samples are first isolated from 

biological samples, e.g. from tissue samples, or in vitro or ex vivo cultures of a model 
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organism. Then, several preparatory steps can be applied, such as fragmentation of the 

extracted RNA and polymerase chain reaction (PCR) amplification. RNA fragmentation 

is useful for increasing the accuracy and reducing the error rate of the final sequencing 

step by allowing for shorter reads to be generated. Though PCR amplification can be an 

advantageous step for obtaining higher coverage depth or a stronger signal for reads of 

interest, especially when there is low input RNA, it may lead to the presence of artifacts 

in transcriptomic analysis where certain genes may appear to have much higher levels of 

expression than in actuality due to the biased presence of certain PCR amplicons. Once 

the extracted RNA has been processed, cDNA libraries of the RNA reads can be 

produced and then sequenced using an NGS platform to construct a comprehensive 

profile of the RNA reads sequences (Wang, Gerstein, and Snyder 2009; Martin and Wang 

2011). The sequence reads can then be mapped onto host and parasite genomes, as 

appropriate to begin to study the changes of gene expression and how these relate to 

specific biological functions and infection outcomes – whether relating to immunity or 

disease pathogenesis and illness.  

Because of the complicated life cycle of Plasmodium, including multiple hosts, 

stage-specific transcriptome studies have become an important starting point for 

understanding Plasmodium gene expression. Initial in vitro and ex vivo time course gene 

expression patterns have been constructed using microarray technology to understand P. 

falciparum, P. vivax, P. knowlesi, P. berghei ANKA, P. yoelii, P. chabaudi AS 

intraerythrocytic developmental cycles (IDC) (Bozdech et al. 2003; Llinás et al. 2006; 

Otto et al. 2014; Hoo et al. 2016; Zhu et al. 2016). IDC-based transcriptome profiling of 

these species has provided a global view of Plasmodium stage-specific gene expression 
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behavior in the blood-stage parasites, however, transcriptome profiling of the liver-stage 

parasites remain unexplored across the species (Albuquerque et al. 2009). Of overarching 

interest are Plasmodium species that are capable of entering a hypnozoite stage in the 

liver, as these parasite forms can remain dormant in the host and then activate months or 

years later causing relapsing blood-stage infections (Douglas et al. 2012; White and 

Imwong 2012). This is the case for P. vivax and P. ovale, as well as several simian 

malaria model species including P. cynomolgi. While obtaining Plasmodium transcripts 

from human liver tissue is not feasible, they can be obtained from NHP models or in vitro 

cultures as a starting point for learning about the parasite’s gene expression in the human 

liver environment (Joyner, Barnwell, and Galinski 2015).  

 

Regarding the vector, transcriptome profiling of RNA from P. berghei infected 

Anopheles stephensi mosquitoes has been conducted by Xu et al. in 2005 (Xu et al. 

2005). The advantage of profiling both Anopheles and Plasmodium simultaneously could 

lead to a better understanding of these host-pathogen interactions and the development of 

methods to block transmission by eliminating Plasmodium in the Anopheles mosquitoes 

without affecting the roles these mosquitoes play in the ecosystem. Likewise, rodent and 

NHP experimental model systems can allow for unprecedented profiling of the host and 

parasite, notably as infections are developing and the host is mounting a defensive 

response (Lovegrove et al. 2006; Hansen and Schofield 2010; Joyner et al. 2016; Reid 

and Berriman 2013). 
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Comparative studies are important for obtaining a better understanding of intra 

and inter species differences and to understand possible differences between model 

laboratory reared strains and wild strains under comparable growth conditions. Llinas et 

al. conducted a transcriptome comparison study of the IDC across three different strains 

of P. falciparum (Llinás et al. 2006). This study showed that the time series transcriptome 

for all three strains was highly conserved and that the main noticeable differences in gene 

expression between strains were for various transcripts encoding surface proteins that 

interact with the host immune system.  More recently, Hoo et al. conducted an integrated 

transcriptome analysis of the IDC across six species of Plasmodium. This study revealed 

that the early ring stage of the lifecycle displayed the highest transcriptional variance 

between the different species, most significantly in genes that encode basic proteins 

crucial to the parasite’s development and survival, such as transcription and translation. 

To explain this phenomenon, the authors suggested that the parasite’s gene expression 

behavior was not in response to host-specific variations in surface receptors, but rather 

dependent on host-specific conditions encountered upon invading erythrocytes. This 

discovery implies that the earliest stages of the parasite’s development may reflect 

genetically controlled initial adaptive behavior to adjust to the conditions inside a cellular 

environment, such as inside host erythrocytes (Hoo et al. 2016).  

 

Importantly, host responses play an important role in influencing changes in the 

gene expression patterns. Clearly, parasites can have different up-regulated and down-

regulated gene expression profiles depending on whether they are grown in vitro or ex 

vivo, indicating the importance of taking into consideration the possible in vivo influence 
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of host effects when studying the parasite’s growth and development behaviors in 

external experimental environments. Genomic expression control that is contingent on 

host conditions can be exemplified by the variable expression of the SICAvar multigene 

family (Al-Khedery, Barnwell, and Galinski 1999)(Howard, Barnwell, and Kao 1983). 

Barnwell et al. discovered that the erythrocytes of rhesus monkeys infected with P. 

knowlesi would display variant schizont-infected cell agglutination (SICA) antigens on 

their surface in the presence of a spleen, but would show loss of SICA protein expression 

(i.e., be SICA[-]) in monkeys that had their spleens removed (Howard, Barnwell, and 

Kao 1983). Lapp et al. since showed that SICA[-] parasites have downregulated - and in 

fact shutdown - their expression of SICAvar transcripts and proteins (Lapp et al. 2013). 

Early studies also showed differential expression of related variant antigens in P. 

falciparum whether in splenectomized or intact New World monkeys (“Surface 

Alterations of Erythrocytes in Plasmodium Falciparum Malaria. Antigenic Variation, 

Antigenic Diversity, and the Role of the Spleen” 1983). 

 

2.7 Transcriptional Regulation: Epigenetics   

 

            Next-Generation Sequencing technologies have also benefitted malaria 

epigenetics research. ChIP-seq is a technology that combines chromatin 

immunoprecipitation (ChIP) with parallel sequencing (Landt et al. 2012). Applying ChIP-

Seq can help to accurately detect the interactions between protein, DNA, and RNA as 

regulatory events for interpreting biological processes and disease states. Among the 

many advantages of ChIP-seq include the fact that it is not limited by array design, which 
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has proven to be especially useful for species without commercially available arrays. 

Furthermore, it has better signal to noise ratio and dynamic ranges; as well as higher 

resolution than an array based predecessor ChIP-chip (Park 2009; Ho et al. 2011). 

Bisulfite-seq is designed to detect DNA methylation by measuring the methylation status 

of each nucleotide. For this sequencing technique, the DNA sample is treated with 

bisulfite so that un-methylated cytosine will be turned into uracil while methylated 

cytosine remains protected (still as cytosine), and other bases stay unaffected (Y. Li and 

Tollefsbol 2011).   

 

Epigenetic mechanisms have been studied to understand Plasmodium gene 

regulation and antigenic variation (Ralph and Scherf 2005; Duffy et al. 2013; Scherf, 

Lopez-Rubio, and Riviere 2008), however, they have not yet been rigorously explored 

during malaria (Jiang et al. 2009). In recent year, Ponts et al. applied the Bisulfite-seq 

technique to reveal patterns of DNA methylation in P. falciparum and discovered the role 

of methylation in regulating transcripts (Ponts et al. 2013). Gupta et al. discovered 12 

histone post-translational modifications during the asexual blood-stage cycle and 

identified eight histone modifications that were correlated with transcriptional regulation. 

This study shows a set of euchromatic histones that work in conjunction, generating a 

unique dynamic pattern of histone combinations that is related to gene expression during 

the development of the Plasmodium blood-stage life cycle (Gupta et al. 2013). A recent 

P. falciparum transcriptional start site (TSS) and transcriptional termination site (TTS) 

profiling study can serve as the basis for further histone modification research (Rawat, 

Bhosale, and Karmodiya 2016). Although much research has been focused on 
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understanding the mechanisms in multigene families that code for variant antigens, other 

research has emphasized the importance of epigenetics in virulence, pathogenesis, and 

chromatin biology (Flueck and Baker 2014; Duraisingh and Horn 2016; Cortés et al. 

2012). Being able to better characterize epigenetic regulation in Plasmodium may further 

reveal hidden regulatory mechanisms that can lead to the discovery of novel drug or 

vaccine targets (Ay et al. 2015). 

 

 

2.8 The DIKW Model in Malaria Systems Biology 

 

According to J. E. Cohen, "Mathematics is biology's next microscope, only better; 

biology is mathematics' next physics, only better" (Cohen 2004). The universe, an 

extremely complex entity with gravitational interaction, electromagnetic interaction, 

weak interaction and strong interaction, and has been investigated for centuries, yet a 

solution to unify all these aspects of the system continues to elude scientists. Biological 

systems can be viewed as similarly or more complex than the universe because of the 

many factors and interactions that drive the functioning and evolution of cellular and 

organismal components, let alone host-pathogen interactions (Alberghina and Westerhoff 

2007; Voit 2016). Coincident with the rapid progression of technological advancement 

over the past decades, many computational tools have been developed for use in 

biological studies. In fact, attaining biological research results and insights by employing 

analytical capabilities of computing power are no longer a rarity but a daily occurrence. 



	

38	
	

The systems biology modeling concept can be traced back to 1952, when Alan Lloyd 

Hodgkin and Andrew Fielding Huxley published the first cell biology numerical 

simulation mathematical model to explain the action potential propagation between the 

axon and neuronal cell (Hodgkin and Huxley 1952). This model described the interaction 

of two molecular components, potassium and sodium channels, at the cellular level, and 

their work has been recognized as the first reported example of computational systems 

biology. Alan Turing also published a paper in 1952 describing how the natural patterns 

of stripes, spirals, and spots, might arise naturally out of a uniform, homogeneous state, a 

theory which has served as a classical model in theoretical biology (Turing, Aug, and 

Turing 2007). After several decades, systems biology as a scientific discipline has 

evolved naturally alongside technological progression by adapting several computational 

approaches. In fact, each field of systems biology has become more and more 

computationally intensive. The main research interest in systems biology is therefore 

focused on developing and using efficient algorithms, data structures, data visualization 

and communication applications to build computational models to describe a biological 

system with multiple, interconnected subsystems, including signal transduction pathways, 

gene regulation networks and networks of metabolites. The “Data, Information, 

Knowledge, and Wisdom” (DIKW) conceptual framework, described by Rowley et al. in 

2007 (Rowley 2007), may prove useful for malaria systems biology research. In the past 

hundred years of malaria research, knowledge towards ending malaria has been acquired 

from basic research experiments, clinical observation, and clinical trials (KS et al. 2007; 

Galinski and Barnwell 2008; Buffet et al. 2011). During this time, humankind has 

suffered greatly due to the prevalence of this infectious disease. Considering the hundreds 
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of millions of lives lost to malaria throughout human history, we currently possess 

relatively little knowledge about it. However, through the systems biology approach of a 

big picture view of malaria from the individual phenotypical perspective to the more 

expansive -omic level of interpretation, the speed of knowledge construction is 

significantly greater in today’s big data era than it has ever been. According to Russell 

Ackoff, we can now simply see our human mind as several categories, which include 

data, information, knowledge (with understanding) and wisdom (Rowley 2007). Data 

represent the raw value of these measurements, which without significance or insights, 

simply exists. Furthermore, without processing, data will not become useful information. 

Information can provide insight on the data, when the data has been given significance by 

its relationship between and among each data point, or when the data has been endowed 

with a specific purpose. Knowledge is a sophisticated collection of information, so 

forming knowledge is a deterministic process, which involves selecting ‘useful’ 

information to be gathered into knowledge. With a greater understanding of knowledge, 

the process of synthesizing knowledge will occur naturally. Publications simply present 

the results of one’s findings after combining several data points, interpreting them as 

information, and then combining previous works to form knowledge. While the previous 

three levels are all related to the past, wisdom is actually related to the future where we 

need to make a judgment or decision via sensible action to bring about beneficial 

consequences by applying the accumulation of knowledge through time. Moreover, 

wisdom is also the ability to deliver and to teach ‘information’ and ‘knowledge’; 

therefore, gaining wisdom is not only the result of an individual's decisions but also the 

distribution of knowledge. Challenges that may seem intangible can become tangible. 
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Wisdom can be extracted from experience, and experience plays an important role in 

biological research because of the contributions of scholars who have spent years in their 

fields building knowledge in different subtopics. Nevertheless, experience can also be 

subjective because humans cannot execute certain actions as precise as machines, e.g. 

memorize all the contents of all articles related to malaria in PubMed. Therefore, the 

integration of technologies in both the biological and computational domains is one of the 

most important tasks for systems biologists, requiring an assembly of an objective 

‘wisdom’ to construct systems for further research (Dale, Popescu, and Karp 2010; 

Ghosh et al. 2011). Based on the application of the DIKW scheme to the biological 

domain, Bernstam at el. describes the DIKW pyramid in biomedical information and 

knowledge systems from definitions to applications (Bernstam, Smith, and Johnson 

2010).  

In Figure 2.1, a comparable workflow of applying the DIKW model in malaria 
systems biology. 
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2.9 Malaria Systems Biology: Data Science from Conceptualization to Action  

 

The systems biology research consortium, known as the Malaria Host-Pathogen 

Interaction Center (MaHPIC), was designed in 2011 to systematically and 

comprehensively study malaria in nonhuman primate model systems and relate the 

findings to human malaria. The MaHPIC has developed since its official launch in 2012 

as a working model for malaria systems biology with computational biology, 

mathematical modelling and iterative experimentation all being key. Scientists across the 

center generate multi-omic, clinical, parasitological, and immune profiling large datasets 

from samples obtained from nonhuman primate longitudinal experimental infections, as 

Figure	2.1	The	DIKW	pyramid	model.		

The	levels	of	this	model	from	bottom	to	top	are	data,	information,	knowledge	and	wisdom.	In	this	diagram,	each	blue	box	
represents	the	components	of	each	level	of	pyramid.		



	

42	
	

exemplified by Joyner et al. 2016 (Joyner et al. 2016), and from clinical samples obtained 

from malaria endemic country partners. The diverse data and associated metadata from 

each experiment are validated to enable analytical reproducibility, and then stored in a 

secure, internal data repository that serves as a file ‘warehouse’. Experimental results are 

also loaded into the project’s relational database where they can be systematically 

queried, including by mathematical modelers working to gain new insights by integrating 

diverse results (e.g. how the parasitological and clinical findings over time in a host relate 

to the transcriptome, metabolome and immune profiles). Finally, to foster use by the 

broad research community and the creation and testing of new hypotheses, raw data files, 

information and knowledge gained are shared with scientists worldwide in canonical 

public data repositories (e.g. NCBI, PlasmoDB, PRIDE, IMMport, Metabolomics 

Workbench, MassIVE) with links made accessible from the MaHPIC website. This 

method allows for the collaboration of researchers around the world from both 

experimental wet-labs and computational dry-labs and supports the development of 

confirmatory studies, validation experimentation, and open communication towards the 

shared goal of a better understanding of malaria. (Appendix 1) 
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Chapter 3, Data Management Framework 
 

 

3.1 Introduction to the Infrastructure of Long-Reads Genomic Data Collection 

 

 After discussing each element of systems biology in chapter 2, an understanding 

the computational methods needed to obtain genomics data to build the “D” layer of the 

DIKW model is necessary. This chapter describes the data flow and the data management 

as fundamental elements of the “D” layer. In the era of big-data, biomedical investigators 

have increasingly focused on data-driven research (Liao, Chu, and Hsiao 2012; Bao et al. 

2014). Thus, many relevant and innovative data collection tools, data storage, and data 

analysis approaches have been developed in the past decade. The most widely used Next 

Generation Sequencing (NGS) technologies, PacBio, Illumina and 454 Life Science, are 

shaping the modern application of sequencing techniques in genomic research (Quail et 

al. 2012; Ferrarini et al. 2013; Nakamura et al. 2011; Liu et al. 2012), both in scale and 

scope. BaseSpace, an Illumina integrative cloud-based platform, allows users to conduct 

bioinformatics research in several areas 

(https://www.illumina.com/informatics/research/sequencing-data-analysis-

management/basespace/basespace-apps.html). Although this integrative analytical 

platform demonstrated outstanding performance in handling general-purpose research, a 

novel, flexible end-to-end solution is necessary because of the increasing complexity of 

different biomedical research domains and the accessibility of NGS technology.   
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To satisfy the need for customized long-read NGS data analysis, we developed an 

end-to-end workflow to address full genome assembly and other tasks.  

 

3.2 The Information Scheme in UML 

  

Here we demonstrate the basic workflow (Figure 3.1). In this first iteration, we 

integrated the Amazon cloud machine, EZ2, and cloud storage, S3, to achieve “easy I/O, 

easy access”. We also combined several third party bioinformatics tools to our analysis 
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platform to let users to have multiple tools to fit their research needs. 

Figure 3.1 Systematic view of the Bioinformatics pipeline 

 

The workflow was divided into three major steps that will be discussed below: 

1. Project Input and Output (I/O) and Quality Control (QC) 

The first step of the framework is to building a new project. Once a project has been 

built, the user must input the project’s purpose and parameters in main page of the user 

interface. Note that QC has been automatically applied inside the module of the 

“complexDiff”. The QC module uses “PacBioEDA” 

(https://github.com/TomSkelly/PacBioEDA), an open-source toolset for pipeline QC. 

2. Analysis Component  

The main analysis modules will be described in Chapter 4, including full genome 

assembly and annotation, and downstream RNA-seq analysis will be addressed in 

Chapter 5.  

 

3. Project Management and Storage Components 

After running the pipeline, the end results are stored in the user “project” folder as end 

product fasta files, including the QC report and the coverage report. All results and 

sample data were stored on Amazon S3, encrypted and made private. The data transfer 

followed the Amazon S3 protocol. 



	

56	
	

 

 

 

3.3 Workflow Design  

  

We applied the multiple instructions, multiple data (MIMD) model in our 

approach for several reasons. First, when we applied our data I/O to Amazon EC2, we 

expected our data source to have multiple accesses; we can withdraw different small, 

partial portions of read data at the same time but under different accesses. Using multiple 

accesses to download a data set is faster, or more time efficient. Second, when 

withdrawing data from Amazon EC2, our sequencing assembling pipeline will be used to 

process different parts of the data at the same time and generate the whole sequence with 

high accuracy in a short period. Presumably, the data set from each workstation will 

contain a large amount of data, and based on this assumption, our approach is to generate 

precise sequence data in a short period, thus the multiple instructions approach is 

reasonable and goal oriented. 

 

 For storage, we selected Amazon S3 as our platform to use after data processing, 

and by using Amazon S3, we can guarantee the efficiency of data access from the client’s 

ends. Amazon S3 has several advantages. It is a stable cloud storage platform that can 

provide fully protected access for private datasets. It also has an immediate data recall 

function and a user-friendly interface. For regular users of this proposed methodology, 



	

57	
	

typically researchers, hospital or healthcare facilities and pharmaceutical companies, our 

approach provides a reliable, standardized and certificated cloud storage platform. 

Amazon S3 is also relatively inexpensive because Amazon S3 can help researchers avoid 

hardware failure or hardware-agnostic, so it can lower the infrastructure costs.  

 

3.4 Discussion  

 

This pipeline shows the ability for conducting the studies of the complicated 

systems biology studies in malaria and the applications will be described in chapters 4 

and 5. By using Amazon Web Service (AWS), our data management platform offers a 

specific solution and retains reproducibility and robustness by combining its use with the 

downstream bioinformatics pipelines. AWS allows this scheme to be scaled to more than 

6,000 compute cores, multiple Petabyte of storage, and numerous core-hours of analysis. 

This scheme provides a graphic user interface (GUI) and a command-line tool, allowing 

users to upload raw sequencing data directly from any NGS instrument to our 

management system and to save the cost of building a computational pipeline and their 

own storage infrastructure.  
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Chapter 4, Large Genome Assembly & Annotation - 3rd Generation Sequencing-
Based Workflow 
 

 

4.1 The Challenges of Assembling a Plasmodium Genome 

  

One of the most important elements in systems biology is genomics, and all 

genomic knowledge comes from a well-defined genome. In this chapter, we discuss the 

importance of a well-defined Plasmodium genome as well as how to obtain a superior 

genome through our pipeline. Through our pipeline, we not only gather data (“D”) and 

information (“I”) but also form knowledge (“K”) based on the DIKW scheme. The first 

Plasmodium genome sequence (P. falciparum) was published in 2002 (Gardner et al. 

2002). Genome sequences for several other Plasmodium species have followed (Pain et 

al. 2008; Tachibana et al. 2012; Bright et al. 2012), but none were generated using only 

PacBio technology. Plasmodium coatneyi, which infects Macaca mulatta (rhesus 

macaques) and serves as a model of P. falciparum (Moreno et al. 2013), has not been 

assembled with PacBio technology. A preliminary draft of the P. coatneyi genome based 

on short-read (<500 bp) sequence technology is available in the NCBI database 

(PRJNA233970). Although the “big picture” can be gained from this genome assembly, 

there are over 500 sequence gaps distributed throughout the parasite’s estimated 14 

nuclear chromosomes. Like P. falciparum, the P. coatneyi genome has numerous 

repetitive sequences and complex multi-gene families, which present major difficulties 

that, have prohibited non-telomeric genome assembly with closure using only short-read 

technologies (Quail et al. 2012). Gaps prevent reliable gene content analysis, genetics and 
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reference-based gene expression analyses, all of which are critical to understand 

Plasmodium biology and disease progression. We have implemented PacBio (RS-SMRT) 

sequencing technology in our computational assembly and annotation pipeline to tackle 

these issues. 

 

 

4.2 Assembly Procedure  

 

Given that short-read sequencing applications for the Plasmodium genome cannot 

conquer the Plasmodium genome’s structural ‘gaps’, long-read sequencing technology 

was employed as another approach to obtain a better genome sequence. Because the read 

length of the long-read technology is at least 10 kb (Rhoads and Au 2015), the longer 

scaffolds will be more likely to cross the ‘gaps’ under the decent coverage, which 

provides better statistical confidence.  

 

Genomic DNA (gDNA) was extracted from ex vivo matured schizont-stage 

parasites with a Qiagen DNA blood midi kit. The gDNA was further purified with a 

PowerClean DNA cleanup kit (Mo Bio Laboratories). Five micrograms of gDNA were 

subsequently used for library preparation. SMRTbell DNA libraries (Pacific Biosciences) 

were constructed per PacBio standard protocols with the BluePippin size-selection 

system (Sage Science). Sequences were generated on a PacBio RSII instrument using P6-

C4 chemistry. Following cleaning, the mean assembled subread length was 5,824 bp; 
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the N50 was 7,257; the total number of bases was 1,792,197,364; and the total number of 

reads was 257,557. The modified “HGAP3” de novo assembly (Chin et al. 2013) was 

performed using the Amazon EC2 cloud SMRT portal; the parameters and algorithm 

have been provided as XML code 

(https://github.com/jtchien0925/PacBio_HGAP_assembly).  

The error correction module was defined as a minimum sub-read length of 

100 bp, a minimum read quality of 0.80, and a minimum read length of 6,000 bp. 

Following host (M. mulatta) contig removal, 15 nuclear contigs, one mitochondrial 

contig, and one apicoplast contig remained (51.42× average coverage). Contig identity 

and synteny were evaluated via BLASTn (Madden 2002) and progressive MAUVE 

algorithms (Darling, Mau, and Perna 2010), using the P. knowlesi genome from GeneDB 

as a reference. Two suspected inter-chromosomal rearrangements occurred within the 

gene family sequences located on Chr4/Chr13 and Chr12/Chr14, which could not be 

validated via PCR, suggesting that these sequences may in fact be correct as presented 

here. 

 

4.3 Assembly Evaluation - P. coatneyi 

  

Based on ontology, P. knowlesi and P. coatneyi are known to have very similar 

genome structures. We verified this similarity in silico, and we observed that the genome 

structure of P. coatneyi is very close to P. knowlesi, as presented in Supplemental 

Material 1. 
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First, we found the recombination event using a progressive Mauve algorithm. 

We observed two recombination events at two different contigs. We then reviewed the 

event region on contig 0 between, 1,667,610 bp to 1,780,719 bp, and we observed that 

this region has at least 30~40X coverage. We mapped our contig 0 with previous draft 

assemblies, using blastn to verify this region. A novel region was discovered that could 

not be mapped back to the draft assembly or the P. knowlesi genome. The region to left 

of the 3’ end of this region was mapped to chromosome 14 of the P. knowlesi 

genome, and the region to the right of the 5’ end of this region was mapped to 

chromosome 12 of the P. knowlesi genome. Moreover, we mapped the unplaced internal 

control (not shown in this dissertation) and the NCBI contigs to our contig 0 and found 

there are several contigs that mapped to the newly discovered region. The other 

recombination event was discovered in contig 8, from approximately 999,635 bp to 

1,004,000bp, and the coverage of this region was also ~40X. We compared our assembly 

contigs with public P. coatneyi draft genome chromosomal contigs; in general, our 

contigs are longer than the draft assembly, at least 10% longer than previously existing 

work and free of acquisition gaps. 

  

Based on our discovery, we might have to reconsider the order of the 

chromosomes. Typically, the order of the Plasmodium chromosomes is based on the 

length of the final scaffolds. In our assembly, contigs 14 and 16 are a part of chromosome 

10; the remaining 13 contigs can be matched to different chromosomes. The potential 

‘recombination’ event happens where contig 0 partially covers chromosome 14 and 



	

63	
	

entirely covers chromosome 12, with a novel region discovered, and contig 8 entirely 

covers chromosome 4 and partially covers chromosome 13. Based on our coverage 

report, the ‘recombination’ region has at least 40X coverage, with continuous, non-

fragmented reads, thus a possible explanation might be that the 

previous Plasmodium genome assembly projects may have misassembled their inter 

chromosomes due to their technology choice. For further verification, it might be 

necessary to apply long-read sequencing technology to any existing P. knowlesi assembly 

project.  

 

4.4 Annotation Strategy  

  

De novo gene prediction was performed using SNAP (Johnson et al. 2008) and 

Augustus (Stanke et al. 2004) for gene calls in the MAKER2 (Cantarel et al. 2008) 

genome annotation tool. The P. vivax and P. knowlesi predicted proteomes were included 

as evidence. In total, 5,516 protein-encoding genes were predicted, including up to 112 

SICAvar genes. The complete annotated mitochondrial and apicoplast genomes are also 

included in this chapter. The annotation was validated with P. coatneyi RNA-Seq data, 

Uniprot (Apweiler et al. 2004), KEGG (Nakaya et al. 2013) OrthoMCL Orthology (Li, 

Stoeckert, and Roos 2003), and InterProScan5 (Jones et al. 2014). Five thousand sixty 

genes have strong evidence of synteny. The fourteen chromosome sequences were 

deposited in the NCBI database (BioProject PRJNA315987) under accession numbers 

CP016239 to CP016252 and provided to PlasmoDB. The workflow of the Plasmodium 
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genome annotation is shown in Figure 4.1 and the source code of maker could be found 

at the URL below. 

(https://github.com/jtchien0925/useful_bioinformatics_scripts) 

 

 

 Figure	4.1	The	Genome	Annotation	Pipeline.		

The	annotation	pipeline	can	be	broken	into	several	steps.	1)	RNA-seq,	homologous	database	construction	for	reference	

purposes,	2)	modification	of	parameters	3)	training	SNAP	and	Augustus	for	gene	prediction	and	4)	functional	

annotation.	Note	that	all	of	parameters	in	these	steps	will	be	provided	in	github	link	above.	
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4.4.1 Genome Annotation Workflow 

 

There are several genome annotation applications available for researchers to use 

to achieve the genome annotation. We have selected Maker2 as our major annotation 

tool. We selected Maker2 because Maker2 is a flexible genome annotation pipeline. 

Maker2 was used to annotate smaller eukaryotic and prokaryotic genomes independently 

and to create genome databases. Maker2 allows the repeats identification, ESTs 

alignments, ab-initio gene predictions, proteins alignment and consensus all the data 

together to generate annotations. Maker2 has the training feature that allows outputs from 

previous execution to be used to retrain gene prediction algorithm and then producing 

gene models for subsequent runs. Maker2 generates different outputs and can be viewed 

and edited by using visualization tools e.g. Geneious.  

 

The annotation workflow can be described into several steps: 1) Generating input 

database by upload the transcript data, expressed sequence tag (ESTs), and homologous 

proteins. 2) Generating and editing maker2 configuration file (provided in github). 3) 

Training SNAP model for ab initio gene prediction 4) Rerun Maker2 with SNAP output 

models to generate next run of annotation model. 5) Training SNAP again along with 
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Augustus by using the output from last run of Maker2. In this step, we introduced the 

Augustus ab initio the gene prediction algorithm to this task along with SNAP to avoid 

the bias of single algorithm usage. 6) Rerun Maker2 again with previous run of the SNAP 

and Augustus prediction models as input. 7) Obtaining the final annotation file from 

Maker2. 

 

4.5 Repetitive Gene Families Analysis  

  

The sequencing of the SICAvar genes have been deeply reviewed; it has a long 

intron and a high AT repetitive feature. Because there is currently no public gene 

annotation indicating the number SICAvar genes in P. coatneyi, our genome assembly 

project is the first to report the number of SICAvar genes. Furthermore, by comparing the 

number of SICAvar genes in our assembly to P. knowlesi, our assembly showed the 

number of discovered, full P. coatneyi SICAvar CDS  (112) is slightly higher in P. 

knowlesi (97). This discovery again shows that these two species are very close from an 

evolutionary perspective when we look at the similarity of the number of SICAvar genes. 

Because the previous public assembly P. coatneyi project is not annotated, our assembly 

represents the first released annotation.  

 

To verify our assembly, we mapped the rest of the NCBI WGS P. coatneyi 

bioproject 144 unplaced contigs to our assembly. One hundred thirty-eight of 144 

unplaced contigs were mapped to our 15 chromosomal contigs, 1 apicoplast contig and 1 
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mitochondrial contig. Most of these unplaced contigs were mapped to the sub-telomerase 

region, the SICAvar and CoIR rich region. There were two unplaced contigs mapped to 

the newly discovered region in contig 0 (1,667,610 bp to 1,780,719 bp). This discovery 

indicated that the newly discovered region exists in the P. coatneyi naturally, and this 

region was not discovered in previous assemblies because of the limitations of short-read 

sequencing technology. In contrast, applying the long-read based sequencing technology 

can solve the problem of insufficient read length of short read technologies. For example, 

even though the SICAvar has >14 kb segment of genomic DNA, it is not problematic for 

long-read sequencing technology because the average read length is above 12000 kb.  

 

Although we did not obtain more than 100X coverage, 50X coverage allowed the 

assembly to be performed with confidence. The other difficulty of applying short-read 

technology to this region is that this region has plenty of repetitive families. After 

applying Repeatmasker to mark the repetitive families, we discovered that there are 101 

hits of repetitive regions in contigs 0 and 33 hits in contig 8. This feature has been 

reported as the main difficulty for short-read sequencing and PCR because of the 

confusion of the sequence fragment mapping; however, the repetitive regions are not a 

difficulty for long-read sequencing, like in our P. coatneyi assembly project.  

 

There is another newly discovered region (999,635 bp-1,004,000 bp) in contig 8. 

We also mapped the unmapped contigs from NCBI WGS P. coatneyi bioproject, but we 

did not acquire any hits in the newly discovered area. Based on the report from our 
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Maker2 annotation and RATT annotation (Otto et al. 2011), this newly discovered region 

partially covers the full SICAvar gene. This discovery indicates the difficulty of 

sequencing the SICAvar genes using short-read technology. After verified the two ‘novel’ 

regions, we also reviewed the rest of unmapped contigs from the NCBI WGS P. coatneyi 

bioproject by annotating the unmapped contigs in silico. The report shows that there are 

26 CoIR related regions, 20 SICAvar related regions and 96 highly repetitive fragments. 

This finding also indicates that long-read technology can sequence ‘across’ the 

problematic regions that short-read technology has.  

 

4.6 Mitochondria and Apicoplast Genome 

  

A complete mitochondrial genome and an apicoplast genome (Figure 4.2 & 4.3) 

have been found. We applied the P. knowlesi genome from GeneDB as our annotation 

reference for these two genome sequences. The mitochondrial genome is around 6k bp 

and has 3 CDS regions, cytochrome c oxidase III (coxIII), cytochrome b (Cytb) and 

cytochrome c oxidase I (cox1). For Apicoplast (Figure 4.3), the genome size is about 35 

kb, and it contains genes for the large subunit (LSU) and the small subunit (SSU) rRNAs, 

25 tRNAs, 3 subunits of RNA polymerase, 17 ribosomal proteins, caseinolytic protease C 

(clpC), elongation factor Tu (tufA), sulfur mobilizing protein B (sufB), and 7 unknown 

open reading frames.  
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Figure	4.2	Mitochondrial	Genome	Visualization	

The	3	CDS,	COX1,	COXIII	and	Cytb	are	present	in	the	yellow	bars,	and	the	gene	predictions	are	present	in	the	green	bars.	There	are	
7	misc_RNA	in	pink	and	22	rRNA	present	in	red.	

Figure	4.3	Apicoplst	Genome	Visualization	

There	are	30	CDS	present	in	yellow,	4	rRNA	present	in	red	and	35	tRNA	present	in	pink.	
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4.7 Case Studies of Robustness - Applying the Assembly & Annotation Pipeline to 

Other Species of Plasmodium 

 

The goal of constructing an assembly and annotation pipeline is to satisfy a need 

in the malaria research community; reference genomes are the most crucial aspect of 

downstream systems biology research. We applied our pipeline to several other 

Plasmodium species, including Plasmodium cynomolgi, Plasmodium vivax, and 

Plasmodium knowlesi. In this study, we demonstrated the robustness of our pipeline on 

several Plasmodiums and out-performed short-read technology. In the Plasmodium 

cynomolgi genome assembly, we demonstrated that long-read based technology, along 

with our pipeline, could capture more information in subtelomeric regions compared to 

short-read technology (Figure 4.6). Moreover, the end results of the Plasmodium 

knowlesi genome were validated via HI-C technology (Ay, Bailey, and Noble 2014; 

Yaffe and Tanay 2011; Korbel and Lee 2013) and showed that our pipeline can generate 

robust results compared to other genome assembly tools (Table 5.1). 

  

4.8 Combining Hi-C Assembly with the PacBio Assembly Pipeline  

 

Contings scaffolding and gaps closing in assembly projects are still difficult tasks 

that usually require time-consuming validation by applying expensive methods. Despite 

novel algorithms and new technologies are constantly introduced to tackle these issues, 

only a few widely used Plasmodium published assemblies have a higher consensus of 

agreements on reflecting the structure of the genome. Nevertheless, repetitive regions are 

still a problem, for example, antigen variation gene families show a wide range of 
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polymorphisms in chromosome structure level between different strains of the same 

species of Plasmodium. Moreover, current P. knowlesi assemblies do not provide the 

acceptable resolution for the subtelomeric regions and repetitive regions; instead, the 

published assemblies gather the problematic contigs into one concatenate scaffold and 

have been released along with the assembly projects in public domains.  

 

Plasmodium genomes in public archives that are sequenced and assembled are 

only partially complete. For instance, the most current version of Plasmodium knowlesi -

H genome, is available with a set of 14 scaffolds 14 contigs (Lapp et al. 2017). To 

conduct studies in comparative genomics and disease evolution, an incomplete genome 

will harm the quality of locus analyses, making genome-wide annotation and downstream 

expression analysis very challenging. Furthermore, the highly repetitive gene families 

and uncertain subtelomeric regions are related to genomic rearrangement events, making 

it difficult to conduct completed sequence and assemble. Chien et al in 2016 reported an 

approach for solving the Plasmodium genome complexity by applying long-reads 

sequencing method. However, to address these difficulties with higher accuracy and 

lower bias in assembly validation, applying long-reads and Hi-C sequencing approaches 

(Lapp, Geraldo, Chien et al. 2017) as a combination approach can use to guide genome 

assembly finalization especially in gap closing (Fig 4.5). The Hi-C methodology was 

originally developed to study the three-dimensional folding of the genome as well as the 

physical interactions that link regulatory elements with distant sequences. However, this 

methodology can also provide a sophisticated solution to improve chromosome- and 

genome-scale assembles constructed from short reads by taking advantage of the in 
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vivo chromatin interaction frequency data to accurately position individual contigs 

without a requirement for sequence overlap. Compared to applying a long-reads 

sequencing technology only method in Plasmodium genome assembly, this study 

demonstrated the ability to apply Hi-C to guide long-reads assembly in contig orientation 

which can lead to a high-quality assembly and annotation in an economical way. 

 

In this study, Hi-C can correctly scaffold the unplaced pre-assembled contigs into 

a reference genome correctly by identifying the interaction of each contig (Table 4.1). 

Our study first reported the combined application of both technologies in the Plasmodium 

genome assembly. The complete Plasmodium knowlesi genome structure obtained in our 

study enables the analysis of antigenic variation observation and could potentially lead to 

better understanding of the processes of Plasmodium parasites involved in evading the 

host's acquired immune system. Moreover, we expect our reference genome to increase 

the accuracy of future studies of Plasmodium knowlesi genome structure as well as 

increase the accuracy of quantitative expression analysis (Table 4.1). 

 

Upon comparing our Plasmodium genome assembly with the most recent 

chromosomal reference assembly, our genome differs from the previous assembly in 

several important aspects (Table 4.2)(Fig 4.4). First, our approach only requires the Hi-C 

data and set of HGAP assembled contigs as input with minor parameter tuning. Second, 

unlike previous P. knowlesi assemblies, our approach correctly identifies and scaffolds 

especially well in complicated repetitive regions, which is an obvious difficulty for short-
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reads based genome assembly methods. Third, our approach allows researchers to detect 

rearrangements events in chromosomes and to correct misassemblies, with visual and 

computational evidence. These features have the potential to be very informative for 

downstream analyses, for instances, comparing different P. knowlesi strains genome 

structure to understand the antigenic variation switching events quantitatively.  

 

Despite our approach potentially improving the de novo assembly of complex 

Plasmodium genomes, there are still opportunities for further enhancements. First, though 

the workflow can be executed smoothly, the entire workflow can be fully automated 

when the computing power is available. Second, the accuracy of HGAP pre-assembled 

contigs depends on not only the reads assembly coverage but also the (intra-chromosomal 

interactions). We have discovered that the HGAP algorithm misassembled contig0, the 

largest contig collected after running HGAP, which can be broken down into 3 smaller 

pieces manually based on suggestions from Hi-C interaction heat maps. These three 

pieces could then be mapped to three different chromosomes and to the public reference 

assembly (http://www.genedb.org/Homepage/Pknowlesi ), so the junctions of these three 

contigs were associated with the complicated repetitive regions. This discovery suggests 

that despite the superior length of reads that the PacBio system can provide for 

sequencing and assembling, currently available assembly algorithms are not “one fit all”. 

Moreover, applying any sequencing technology solely in the Plasmodium genome 

assembly project might introduce the technology selection bias to the results. 
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In summary, we believe our approach is robust and accurate for assembling 

genomes, scaffolding the complicated repetitive regions and distinguishing the 

differences between real chromosomal rearrangement and artifacts. 

 

 

 

 

A B C 

Fig 4.4 MaHPIC	PKNOH	genome	comparison	with	the	PKNH-V2	and	PCOAH 

A) SyMAP circular DNA comparison of the MaHPIC Pk genome sequence scaffolds to the PKNH 2015 consensus sequence. 
B) SyMAP circular DNA comparison of the MaHPIC Pk genome sequence scaffolds to the P. coatneyi HACKERI genome 
sequence that was assembled using PacBio technologies (Chien et al., 2016). C) SyMAP circular DNA comparison of the 
PKNH 2015 consensus sequence and P. coatneyi genome sequence. 	

Fig 4.5 A	Visualization	of	PacBio	sequence	closed	the	gap  

A) PacBio sequence provides support for the novel fusions relative to PKNH, it is not able to span some gaps that Hi-C was 
able to span.  B) PacBio was however, able to close a gap that is present in the PKNH version 2 genome sequence.  	
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4.9 Discussion 

 

In our P. coatneyi assembly, we observed the drastic difference between P. 

coatneyi and P. knowlesi with respect to the number of the CoIR/KIR regions. There are 

only 70 complete knowlesi interspersed repeats (KIR) annotated in P. knowlesi; however, 

we found 1002 complete coatneyi interspersed repeat (CoIR) regions and 283 fragmented 

CoIR regions. KIR was discovered and defined in 2008. This paper indicated that KIR is 

the second largest repetitive gene family in P. knowlesi; however, in our P. 

coatneyi assembly the CoIR-like region is actually the largest repetitive gene family 

rather than SICAvar. The discovery of the Plasmodium interspersed repeats (pir) super 

family was reported in several papers. The function of this super family has recently been 

discovered in P.knowlesi and P.cynomolgi in NHP model research. These two findings 

indicate that the ‘IR’ gene plays ‘molecular mimicry’ roles by mimicking CD99 in 

immunoregulatory regulation. We have not defined the function of our CoIR; however, 

there are clear differences in the number of groups in P.knowlesi and P. coatneyi, so 

conducting further investigation into CoIR will be the next step toward understanding the 

function of CoIR and the different evolutionary features.  
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In summation, the complete Plasmodium genome assembly demonstrates the 

ability of long-read DNA sequencing technology and set the standard for de 

novo Plasmodium genome assembly. We demonstrate that >40× PacBio coverage is 

sufficient to deliver a high-quality genome assembly (Appendix 3). However, to achieve 

an error-free assemble, the Plasmodium genome was obtained by applying the HGAP3 

assembly along with other advanced technologies, such as Hi-C. Based on the 

combination of long-read de novo assembly and Hi-C, we were able to assemble a high-

quality Plasmodium genome in a cost-effective manner (Appendix 4)). Technological 

advances in sequencing, as well as in sequencing chemistry, will eventually solve 

complex genome assembly tasks. High-quality genome assemblies will provide genomic 

information that allows the research community to conduct reliable analyses 

of Plasmodium genetics and gene expression, which is critical to understanding the 

disease and disease processes. 

Figure	4.6	A	Comparison	of	Different	Sequencing	Technology	in	Plasmodium	cynomolgi	Assembly		

	

The	green	regions	represent	the	genome	assembled	with	Illumina	technology;	the	blue	regions	represent	the	extra	
information	acquired	using	PacBio	technology.	
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Table 4.1 Mapping relationship between PacBio contigs and the HI-C assembly of the 
Plasmodium knowlesi genome  

PacBio Unitig Length Scaffold Assignment 

unitig_18_chr1 914,168 scf1 

unitig56 14,772 

scf2 unitig_23_chr3 719,235 

unitig_30_chr3 345,602 

unitig_0_chr6 489,988 
scf3 

unitig_3_chr6 606,307 

unitig_12_chr5_13 1,360,573 scf4 

unitig_10_chr13 1,435,464 scf5 

unitig_15_chr7 1,207,278 
scf6 

unitig_31_chr7 323,894 

unitig_96_chr11 13,068 
scf7 

unitig_7_chr10 1,543,775 

unitig_25_chr13 593,400 

scf8 
unitig45 2,418 

unitig_36_chr4 292,580 

unitig_20_chr4 832,288 

unitig_22_chr2 669,228 
scf9 

unitig_39_chr2 146,901 
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unitig_16_chr12 1,016,298 

unitig_13_chr8 226,016 

scf10 

unitig_0_chr8 1,066,829 

unitig_35_chr8 268,932 

unitig_34_chr8 9,837 

unitig_32_chr8  410,932 

unitig_2_chr12 1,267,252 

scf11 unitig_0_chr12  889,998 

unitig52 21,891 

unitig_1_chr9 2,187,873 scf12 

unitig_17_chr11 980,536 

scf13 

unitig_9_chr11 422,355 

unitig_37_chr11 207,973 

unitig_105_chr11 5,212 

unitig_21_chr11 612,914 

unitig_38_chr11 170,838 

unitig_26_chr14 586,198 

scf14 

unitig_43_chr14 17,326 

unitig_4_chr14 1,880,748 

unitig_33_chr14 298,116 

unitig_28_chr14  532,183 
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Table 4.2 Characteristics of genome sequences utilized in this study. 

Name Genome 

Size (nt) 

Scaffold 

Number 

Contig 

Number 

Gaps N50 

Contig 

Length 

N50 Scaffold 

Length 

Technology 

PKNO

H- 

PacBio 

24,588,173 N/A 50 N/A 1,207,278 N/A PacBio 

PKNO

H-

PacBio-  

Hi-C 

24,593,696 14 14 25 16,231 1,832,627 PacBio+Hi-C 

        

PKNH  24,359,384 

 

14 148 77 N/A 2,162,603 Illumina 

PKNA1

-C.2 

24,359,887 

 

N/A 45 N/A 1,061,780 N/A PacBio 

PKNA1

-H.1 

23,958,038 

 

N/A 37 N/A 1,017,166 N/A PacBio 

 

N/A = Not Applicable.  

PKNOH data presented here have had organellar sequences removed. 
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Chapter 5, Using Data Mining Approaches to obtain the Insights from Genomics & 
Transcriptome Data 
 

5.1 Machine Learning in Systems Biology  

 

 The top layer of DIKW model is “the wisdom”, which involves the knowledge 

processing, strategy selection and decision-making. In this chapter, we describe the 

approaches of applying data mining techniques (including machine learning approaches) 

to attempt to acquire the “wisdom”. Machine learning and data mining are two quickly 

converging fields of study that were developed from different roots. In 1950, Alan Turing 

published the paper “Computing Machinery and Intelligence”, posting the question ‘can 

machines think?’ (Turing, Aug, and Turing 2007). Thus, the primary aim of machine 

learning was to build a thinking machine that can learn from and adapt to new 

information. The roots of machine learning can also be traced back to 1957 when Frank 

Rosenblatt invented the perceptron algorithm, which models the neurons in the human 

brain, and this led to the development of neural networks (Rosenblatt 1958). Since the 

1980s, other algorithms have also been developed such as the decision-tree-like C4.5 

methods (Quinlan 1993), a classic example of 80s-90s era machine-learning research. In 

the mid-1990s, support vector machines (SVMs) were being widely applied to a diverse 

number of fields, but because of their emphasis on knowledge discovery from databases, 

SVMs also contributed to the growth of the data-mining field (Cortes and Vapnik 1995). 

Furthermore, Rakesh Agrawal at al. proposed an elegant algorithm for finding 

association patterns in large databases, creating a strong influence on discovering more 

efficient mining algorithms and frequent patterns (Agrawal 1993). Data mining is more 
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practical and industry oriented, since it is concerned with typically larger datasets and the 

speed of data processing. Although data mining is the intersection between machine 

learning, artificial intelligence, and statistic and database systems for identifying patterns 

in datasets, machine learning might play the most crucial role in data mining. A general 

workflow of applying machine learning in biological domains is described below (Figure 

5.1). 

Figure 5.1, The General Workflow of Applying Machine Learning in Research Questions  

 

The steps of applying machine learning in systems biology can be divided into 

data cleaning, data selection, and data modeling. Data modeling/integration is the 

foundation of systems biology, where computational researchers must not only process 

data, but also contextualize their findings. Systems biologists often receive high 

dimension data that has high variance because of the complex nature of biological data, 
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making data cleaning an essential pre-processing step. Data cleaning also involves human 

judgment in validating and normalizing data; therefore, it must be conducted with 

extreme care (Rahm and Do 2000).  After data cleaning, selecting the data with an eye 

towards knowledge discovery is an empirical process; either subjective or objective.  

 

Following the preprocessing step, there are three major categories for 

understanding pre-existing relationships, utilizing algorithms such as K-means or 

agglomerative clustering to find partitioned or hierarchical groupings of data. 

Classification is a statistical method that separates data points into different categories, 

applying prior knowledge to the initial labeled data. Widely used classification 

algorithms include SVM, linear discrimination analysis, and decision forests. Finally, 

regression is a statistical method for modeling the relationship between a dependent 

variable and independent variables in order to predict the values. This works by applying 

supervised learning algorithms such as Bayesian linear regression and neural network 

regression. In this fashion, data driven knowledge discovery methods can combine 

model-based integration methods with different datasets to produce a model that has been 

constrained to data-specific properties. To combine models in a meaningful way, model-

based integration must be carried out with a specific hypothesis and analysis for each data 

type (Kim 2015).  

 

Using our system to obtain accurate genomic data in either reference based 

analysis or de novo genome assembling  to have a better understanding of the regulatory 
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mechanism function in infectious diseases systems biology. By applying data mining 

techniques, a comprehensive view of systems biology can be constructed. In this chapter, 

I will introduce data mining and machine learning techniques as well as introduce a 

potential application of this system combined with malaria host-pathogen transcriptome 

interaction questions, and the potential contribution of this right-left combo application 

will be explored.   

 

5.1.1 Supervised Learning 

 

          Supervised learning, which has been widely used in classification problems like 

identifying handwritten ZIP codes, a classic example. More generally, classification is a 

common supervised learning approach in handling systems biology problems. In the case 

of neural networks, classification errors are used to adjust the network to minimize the 

error of the neural network. In real world applications of systems biology, neural 

networks were employed to demonstrate the feasibility on diagnose malaria in the 

Brazilian Amazon (Andrade et al. 2010).  For decision tree methods, classifications are 

performed to determine which features provide the most information. These supervised 

algorithms depend on the pre-determined classification data on which they learn the 

statistical dependencies of the features that minimize classification error. 

 

            For classification problems, the goal is to minimize classification errors. 

Algorithms learn from the "training set" but the learning models created typically cannot 
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be generalized to data outside of the training data. In other words, the ideal machine-

learning algorithms will be able to learn the generalizable relationship between data 

points without also learning noise or unique peculiarities of a particular dataset. As a 

result, over-fitting to the training data is a common problem in machine learning that 

must be tackled using regularization techniques. Even if a model makes a few errors in 

the training sets, it may produce more errors when working with other datasets as well. 

Thus, it is prudent to split available data and allocate each part to additional datasets, 

such as a development set, in order to validate sample performance during training. With 

these points in mind, one can see the challenges in producing robust models that can be 

generalized to many datasets (Pintelas 2007).  

 

5.1.2 Unsupervised Learning 

 

The objective of unsupervised learning is to have the machine identify patterns in 

new information based on similarities and differences between data points without using 

pre-classified data. Classic unsupervised learning in systems biology is called clustering, 

which finds related information by putting data points in groups that minimize a given 

distance metric. For instance, using several attributes of iris flowers, such as length, 

width, etc. it is possible to separate these flowers into three species and thus three groups 

by clustering their attributes. Systems biology is a data-rich research field for applying 

clustering algorithms (Yin et al. 2015). Yin et al applied several clustering methods 

including K-means, hierarchical clustering, and modulated clustering before constructing 
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a Bayesian network-based strategy for a genome scale model of malaria host-pathogen 

interactions over a certain period of time. 

 

5.1.3 Semi-Supervised Learning 

 

            Semi-supervised learning uses labeled and unlabeled data together to perform 

tasks, which can be a highly effective approach when lacking labeled data. The process of 

labeling data usually requires a skilled human agent (e.g. gene annotation) or 

experimentation (e.g. antibody 3D structure determination), so fully labeled datasets are 

often not available. Although semi-supervised algorithms have been in development 

since the late 1960s, due to the thriving use of machine learning and data mining in other 

fields, semi-supervised learning is being widely applied to enhance the performance of 

supervised learning tasks by parsing more unlabeled data related tasks when labeled data 

is expensive or insufficient. This technique has been demonstrated to have great potential 

prediction power (Zhu 2008). In one study, Shi et el.  (Shi and Zhang 2011) applied semi-

supervised learning to overcome a difficult small sample size in cancer research, 

providing promising robust predicting results.  
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5.1.4 Feature Selection 

 

            In general, feature selection is one of the most common questions in data science, 

especially in systems biology. There are two reasons why feature selection is a difficult 

question in systems biology, the abundance and variety of the data, and the deep 

knowledge of the problem domain (Guyon and Elisseeff 2003). For systems biology 

research, the dataset usually includes genomics, transcriptomics, proteomics and other 

highly variant types of data, with the volume of the datasets easily reaching terabyte scale 

due to the high rate that biological data is currently being generated. Furthermore, due to 

the wide variety of data, systems biology research generally requires not only expertise in 

one specific field but also knowledge of the interactions between and among systems. 

Hence, feature selection in systems biology is important due to the interconnectivity 

between or among each system under a bigger system scheme (Saeys, Inza, and 

Larranaga 2007). A small change in one particular system might completely alter the 

broader outcome of the big picture. Especially in the big data era where researchers face 

complicated questions on a daily basis, it is almost impossible to apply prior knowledge 

to feature selection when datasets have thousands of features (Xing, Jordan, and Karp 

2001). 
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Reducing the number of the features is the most intuitive solution, but another 

possibility is dimensionality reduction, which includes principal component analysis 

(PCA), singular value decomposition and Sammon’s mapping (van der Maaten, Postma, 

and van den Herik 2009; Ridder and Duin 1997). The main difference between feature 

selection and dimensionality reduction is that feature selection includes a handpicked 

selection of the original features while dimensionality reduction creates a smaller new 

feature set that represents the original features. There are limitations to dimensionality 

reduction because the relationships between the original features are not clear. Since the 

dimensionality reduction method applies a feature combination solution, it might 

generate “hidden” feature elements that provide some variance in the data. Also, the 

dimensionality reduction method can sometimes remove a small but significant 

differentiator in the model and affect the performance (Sasan Karamizadeh, Shahidan M. 

Abdullah, Azizah A. Manaf, Mazdak Zamani 2013). 

             

The purpose of applying feature selection methods in creating a model is to assist 

modelers in generating more accurate models while using less data, use shorter training 

time, and avoid over-fitting. In other words, feature selection can help modelers remove 

redundant features from the data that are not related to increasing accuracy and might 

potentially harm the accuracy of the model. There are three major approaches in feature 

selection: filter methods, wrapper methods and embedded methods.  
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            Filter selection methods apply statistical methods to measure and to assign a score 

to the features. After measuring and assigning, the features are discarded or kept based on 

the rank of the score. Most filter selection methods are univariate and treat each single 

feature independently or related to the dependent variable. There are several examples of 

applying filter selection to biology, such as the chi square test in two categorical variables 

and the correlation coefficient scores measuring the degree of linear relationship between 

two variables (Talavera 2005). 

 

         The wrapper methods select a subset of features as a searching problem within 

different combinations of the features, then evaluate and compare with other 

combinations. The searching strategy for finding the best combination can be stochastic 

or heuristic. Stochastic methods, for instance, the hill-climbing algorithm, may not find 

the global maximum but it has the capability to cover the local maximum. On the other 

hand, heuristics methods can add or remove the features in either the forward or 

backward direction, and then test the score of the new combination of subsets of the 

features during each iteration (Kohavi and John 2011). 

 

            The final type of feature selection, the embedded method, learns the accuracy of 

the model based on the contribution of each feature while building the model. The most 

common embedded method is regularization, also known as the penalization method, 

which provides additional restrictions to the process of optimization while also lowering 



	

92	
	

the complexity of the model. The LASSO method and Elastic Net method are commonly 

used methods as well (Xu et al. 2010; Zou and Hastie 2005). 

 

 

 

5.1.5 Missing Data 

 

            In systems biology research, modelers will have to deal with missing data when 

obtaining datasets from bench scientists. A classic example is missing data in a 

microarray dataset. Of course, the issue of missing data will not only manifest itself in 

microarray datasets, but in other technologies and in different areas of systems biology. 

As a result, each sub-system is interconnected in systems biology and maintaining the 

accuracy of the final model in spite of the missing data effect is essential. For modelers, 

building an accurate model under the assumption that data will be missing is common 

because bench experiments are expensive and time consuming. Due to the low success 

rate of replicating large scale experimental results, dealing with missing data in systems 

biology is an essential task.  

  

            When analyzing the missing data effect, the types of missing data have to be 

defined case by case to find the best solution. Missing data problems can be divided into 

three main categories: missing complete at random (MCAR), missing at random (MAR), 
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and missing not at random (MNAR). MCAR, also known as uniform non-response, is 

when the missing data is independent from both observed and unobserved measurements. 

An example of MCAR in the biomedical domain can be when an experimental sample is 

lost, resulting in a missing observation. A MCAR could also result from missing a 

random subset of parasitemia counts in a time-coursed disease progression experiment. 

The MAR condition can be observed when the missing data is related to a certain 

variable but not to the value of that variable. For example, a complete blood count (CBC) 

machines' accuracy might be varied in time-course animal experiments, and this will 

affect the data distribution. However, this phenomenon is not related to the actual CBC 

counts. The differences between MCAR and MAR can easily confuse researchers. The 

key differences are:  1, missing data in MCAR are simply missing subsets of data, and 2, 

that MAR is actually the data missing conditionally at random due to the missing data 

being dependent on the condition of another variable. The third type of missing data, 

MNAR, is where the data is missing for a specific reason. MNAR is a situation where 

even when we account for all available information, the data missing is dependent on 

unseen observations. For instance, time-coursed CBC data in a malaria disease 

progression animal model might be missing due to low blood volume or death in the late-

stage of the experiment(Chiu et al. 2013; Schafer and Graham 2002). 

 

Missing data will affect the model accuracy, so solving the missing data problem 

correctly is key. When the right method is used to solve the missing data problem, better 

accuracy in a model can be obtained. In systems biology, facing the data-missing 

problem while constructing sub-systems is expected; therefore understanding the 
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workflow of bench experiments is another important task for modelers. Understanding 

how data were collected gives modelers the confidence to determine the types of missing 

data problems present. There are several strategies that modelers can apply to the missing 

data problem: 1, the straightforward way of only analyzing the data available, 2, imputing 

missing data points with replacement values as observed data points, 3, replacing missing 

data with uncertainty, and 4, applying statistical models to make assumptions based on 

the available data. 

 

5.2 Data Mining Applications in Malaria Host-Pathogen Transcriptome Analysis 

 
In Chapter 5 we introduced how this system assembled and annotated the first 

Plasmodium coatneyi genome and the importance of this genome to the understanding of 

malaria systems biology. Malaria is the most prevalent parasitic disease, with 212 million 

clinical reports and 429,000 deaths globally in 2015 (“WHO. World Malaria Report. 

Geneva: World Health Organization; 2015.,” n.d.). The most prevalent regions are the 

tropical and subtropical areas of South Asia, Central South America, and Central and 

South Africa. There are five major different species of Plasmodium parasites that infect 

humans; P. falciparum and P. vivax, however, have the highest number of clinical case 

reports. Although the number of malaria clinical reports and mortality have decreased 

over the past decade, the mechanisms of asymptomatic and chronic infections are still 

unknown. Therefore, understanding the dynamics of chronic infections, especially 

transcriptomic analysis, might help malaria eradication. 
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Plasmodium infected non-human primates (NHP) often severe as model to study 

human malaria because of many shared biological features. Two simian Plasmodium 

species, P. coatneyi and P. cynomolgi, in rhesus macaques infection have been reported 

and serve as a model to imitate the dynamics of P. falciparum and P. vivax infections in 

human, respectively (Joyner, Barnwell, and Galinski 2015). These NHP-parasite 

models have been used to observe malaria pathogenesis, especially in clinical and 

hematological time-course studies. However, a comprehensive time-course studies of the 

host response at transcriptome level has not been address yet.  

  

The morphological features of P. coatneyi are similar to P. falciparum, the human 

malaria, in rhesus macaques in a blood stage infection (Moreno et al. 2007). Here, we 

present the host time-course transcriptome analysis by observing the expression dynamic 

during the experiment. The transcriptome data was collected from P. coatneyi sporozoites 

infected rhesus macaques whole blood under a controlled time-course experiment. The 

time course of the infection was characterized into three phases: the acute phase in the 

early infection that demanded anti-malaria chemotherapy, the recrudesce phase, and a 

chronic phase. To characterize the dynamics of transcriptome expression in each phase, 

we conducted a highly robust time-coursed characterization of differential expressions in 

the whole blood transcriptome. 

 

In this study, we built a robust transcriptome characterization pipeline that 

provides the foundation for studies of rhesus macaques (Macaca mulatta)- the 

Plasmodium parasites longitude infection model. The whole blood host transcriptome 



	

96	
	

data has been analyzed across different time-points of parasite infection. We quantified 

the host transcripts across the sample batches and applied DEseq2 to normalize the RNA-

seq data and conduct a differential expression analysis. Overall, a shift of the host 

transcriptional profile was observed throughout the phases of parasite development by 

applying Principle Component Analysis (PCA). The permutation of different time-point 

differential host expression was conducted to characterize different phases of infections, 

and we also applied a novel clustering method to demonstrate the dynamics of parasites 

expression during longitudinal observation. Moreover, we demonstrated the possibility of 

our pipeline to be combined with data mining techniques to generate comprehensive 

transcriptome analysis. 

 

5.2.1 Experimental Design 

 

1. Clinical follow-up of experimentally infected rhesus macaques 

 

A detailed description of the clinical procedures used with NHP exposed to the 

infection with simian malaria parasites has been described previously (Ref IAI 2013, 

Malaria J 2016). Briefly, a cohort of five male rhesus macaques (Macaca mulatta, 

RCs13, RTi13, RUn13, RZe13, and RWr13) born and raised at the Yerkes National 

Primate Research Centers was assigned for the experiment. The macaques were infected 

with 100 freshly isolated Plasmodium coatneyi sporozoites, collected from salivary 

glands of three different species of Anopheles mosquitoes infected and maintained at the 



	

97	
	

Centers for Disease Control and Prevention, using intravenous inoculation.  The animals 

were followed up for 100 days to evaluate the clinical outcome.  Capillary samples 

collected daily in the course of the infections were used for hematological and 

parasitological assessment. Venous blood and bone marrow aspirates were also collected 

at seven time points during the follow-up period for multi-omic analyses.  These time 

points correspond to a clinically relevant aspect of the infection. Based on the time course 

of the infection, the animal exhibited a spectrum of clinical phenotypes that reproduced 

the individual variability reported in humans.  One of the macaques (RCs13) did not 

develop parasitemias after inoculation of sporozoites and consistent with an ineffective 

infection changes in hematological parameters were not recorded. The four infected 

macaques developed parasitemias that peaked on ~day 22 after experimental infection 

and received subcurative treatment with artemether to avoid clinical complications. The 

early chronic phase resulted in a clinical phase characterized by self-controlled 

parasitemias with parasite levels lower than 1,000 parasites/ml.  This phase was defined 

as chronic.  The length of the chronic phase defined the clinical phenotype as follows. 1) 

Severe (RTi13, characterized by a short chronic phase of 9 days); 2) mild (RWr13, 

characterized by a long chronic phase of 60 days) and 3) intermediate (RUn13 and 

RZe13, characterized by chronic phases ranging between 34 to 39 days).  At the end of 

the follow-up period, the animals received a curative regimen of artemether. The 

workflow has been described in Figure 5.2. 
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2. RNAseq Library Preparations and Sequencing  

 

Figure	5.2.	MaHPIC	100days	NHP-P.coatneyi	Infection	Experiment	Design..		

The	yellow	area	represents	the	baseline	and	after	 infection.;	The	red	area	in	 the	diagram	represents	 the	acute	
phase;	the	green	area	 represents	 the	post	treatment	;the	darker	blue	area	 represents	 the	early	chronic	phase;	
and	the	light	blue	area	represents	the	chronic	phase.	
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Total RNA was extracted using the Paxgene RNA isolation kit (Qiagen, CA). 

Globin transcripts were depleted using GLOBINclear™ Human Kit (Ambion, 

TX) according the manufacturer's instructions. Libraries were prepared using the Illumina 

(Illumina Inc., CA) TruSeq™ mRNA stranded kit as per manufacturer’s instructions. 

Briefly, 1 ug of Globin depleted RNA was used for library preparation. ERCC (Ambion) 

synthetic spike-in 1 or 2 was added to each Globin depleted RNA sample. The TruSeq 

method (high-throughput protocol) employs two rounds of poly-A based mRNA 

enrichment using oligo-dT magnetic beads followed by mRNA fragmentation (120-200 

bp) using cations at high temperature. First and second strand cDNA synthesis was 

performed followed by end repair of the blunt cDNA ends. One single “A” base was 

added at the 3’ end of the cDNA followed by ligation of barcoded adapter unique to each 

sample. The adapter-ligated libraries were then enriched using PCR amplification. The 

amplified library was validated using a DNA tape on the Agilent 4200 TapeStation and 

quantified using fluorescence based method. The libraries were normalized and pooled 

and clustered on the HiSeq3000/4000 Paired-end (PE) flowcell on the Illumina cBot. The 

clustered PE flowcell was then sequenced on the Illumina HiSeq3000 system in a PE 101 

cycle format. Each sample was sequenced to a target depth of 100 million pairs (50 

million unique fragments) with exception of Time point 2 samples that were sequenced to 

200 million pairs (100 million unique fragments). 

 

3. Bioinformatics Pipeline 
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The reads were mapped to the Macaca mulatta reference genome V7.8.2 and 

concatenated with Plasmodium coatneyi Hackeri strain reference genome (assembled by 

using our pipeline as described in Chapter 4) using STAR v2.5.2b (using default aligning 

parameters). After aligning the reads to reference genome, the read counts for each 

annotated genes have been quantified by using STAR while applying HT-seq algorithm 

to generate the read counts. For proceeding to detect the differential expression between 

different time points and control, normalizing the count table has to be conducted prior 

the downstream differential expression comparison. In this study, we applied R package 

DESeq2 version 1.10.1 , implemented in R version 3.2.3, executing under OSX 10.11.4. 

The reason of using DESeq2 as tool for comparing differential expression is widely 

applied because DEseq2 adapted negative binomial generalized linear model (GLM) to 

evaluate differential gene expression and it has been reported as one of the appropriate 

differential expression detection tools (Anders, Reyes, and Huber 2012). 

  

4. Principle Component Analysis (PCA)  

 

We applied PCA analysis for visualize the pattern of host transcriptome dynamic 

in longitude observation. PCA has been widely applied on dimension reduction and it 

also has been widely applied on emphasizing the variation and characterizing the pattern. 

In our study, we treat genes (~16000) as feature (P) and host as (N) across time points. 

We applied Partech® genomics suite 6.16.0419 for visualization.  

 



	

101	
	

 5. Functional Enrichment Analysis  

  

We applied the Ingenuity Pathways Analysis (IPA, http://www.ingenuity.com) 

software to screen the whole gene set to determine the module that we are interested (e.g. 

top 100 gene sets) reached the threshold of enrichment with reported gene ontologies. We 

used Fisher exact test p-value as main threshold to select the significant gene sets. We 

also applied GSEA (http://software.broadinstitute.org/gsea/index.jsp), Metacore® 

(https://portal.genego.com) and DAVID (Huang et al. 2007) for gene set analysis to 

investigate enrichment of our gene set and compute the consensus gene sets correlate to 

disease status. 

 

 6. Consensus Clustering 

 

To identify the similarity of the parasite genes expression pattern, three clustering 

methods (self-organized map, K-means clustering, and hierarchical clustering) were 

performed, and genes that share the same pattern were grouped into the same clusters. 

We combined those three clustering methods into a consensus clustering approach to 

create the consensus clusters. The consensus clustering approach can represent the 

consensus across different clustering methods, and it can provide a better view of cluster 

numbers. Most iterative descent clustering methods, like k-means and SOM clustering, 

overcome some of the imperfections of hierarchical clustering by providing for 

unambiguously defined clusters and cluster margin. In our study, we assumed that all 
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three methods were generally feasible in identifying which genes had a strong association 

of expression patterns; therefore constructing a consensus cluster to eliminate the bias 

and assess the stability of clusters is essential. As a result, the strong correlations of 

parasite genes expression had been clustered together into the same consensus cluster.  

 

5.3 The Initial Results of Malaria Host-Pathogen Transcriptome Analysis 

 

To obtain a better understanding of the dynamic performance between the 

different time points during infection, gene enrichment analysis was applied to quantify 

the expression levels of the seven sequenced time points. We aligned the paired-end reads 

back to the concatenated host-pathogen genome reference-using STAR, and the 

alignment results were put into gene matrices. The normalized read counts were 

calculated and extracted by using DEseq2. 

 

5.3.1 Pathogen Transcriptome Analysis 

  

 Given the wide range of parasitemias and resulting parasite RNAseq read counts 

in the different samples, we normalized for parasite read count using variance stabilizing 

transformation (vst) normalization. After vst normalization, we performed the consensus 

clustering method to identify the pattern of each cluster of genes. 
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Most the pathogen genes had a transcriptional peak in the acute phase. A specific 

cluster (#14) included the ring-stage gene that expresses a histidine-rich knob protein-like 

protein KPRPC, which plays a key role in the generating knob proteins. Knob proteins 

reportedly have a significant role in cytoadherence and cytoadherence associate with 

malaria coma. The antigen variant SICAvar gene family has significant differential 

expression across the different time-points with the peak in the acute phase, and declining 

afterward. However, in our cluster plot (Figure 5.3A), the peak was not in acute phase 

because the plot did not show the average of several genes in that cluster.  Of the 1418 

annotated genes, only a small set of genes have their peak in the chronic phase. Meiotic 

recombination protein DMC1-like protein presented in the chronic phase, and it belongs 

to cluster 3 (Figure 5.3B). This gametocyte gene is reportedly involved in gametocyte 

development. Gametocyte genes are likely to have higher enrichment in the later stage of 

the infection than the early stage, and while below the level of microscopy detection, this 

result may imply a switch from asexual to sexual development (Mlambo, Coppens, and 

Kumar 2012). We applied the consensus clustering method in finding the pattern of the 

pathogen gene expression; however, because of the high parasitemia in acute phase and 

low parasitemia in other time points, applying any normalization method will introduce 

random errors in each data point. 
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5.3.2 Host Transcriptome Analysis 

 

To further identify genes that have significant expression differences between 

time points, a pairwise comparison was performed and the significance was confirmed 

using DEseq2. In total, we identified 13,884 differentially expressed genes through the 

different stages of infection and between the two time points with a P-adjust value of 0.05 

and |log2 fold change| ≥ 1.  We used a log2 fold change cutoff of +1 and -1 to define 

when a gene has been deferentially expressed. The detailed relationships between 

expressed genes and differentially expressed genes are shown in Figure 5.4A. 2690 genes 

have passed our differential expression threshold, and there were 169 genes commonly, 

A	 B	

Figure	Pathogen	Gene	Expression	Pattern	Clustering	.	

5.3A	&	3B,	The	pattern	model:	 4A	 represents	 cluster	 14	which	contains	8	 genes	with	similar	pattern.	 4B	 is	a	 pattern	 plot	
representing	the	cluster	3	contents,	183	genes	with	similar	pattern.	
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differentially expressed, corresponding to the major diseases stages, TP2 to TP6; 1,201 

(987 + 214) DEGs were specifically regulated in the acute infection stages; 1423 (1191 + 

232) DEGs corresponded to TP3 (Rx), post treatment; an average of 873 DEGs were 

detected during the early chronic phase; and an average of 872 DEGs were detected in 

the chronic phase. The distributions of up and down regulated DEGs through the 6 

pairwise comparisons are demonstrated in Figure 5.4B. The number of intersected DEGs 

detected in the pair-wise time point comparisons between the acute and chronic phase 

species were smaller than other pair-wised time points, indicating the significant 

differences between the two phases and their regulatory patterns. PGER2 and PGER3 

appear in the acute phase (TP2), while the G-protein alpha-i family appeared in the 

chronic phase (TP6) and did not contain PGER2 and PGER3. We observed the 

recrudescent phase of the disease progress to attempt to understand the dynamic 

mechanisms occurring as the disease moves from the acute phase to the chronic phase. 

The number of DEGs identified in the TP2 vs. TP3 comparison was significantly higher 

than the number detected between TP5 to TP6 and TP6 and TP7. These observations 

provide resources for further investigations into the complicated regulatory mechanisms 

that occur during the transition from acute phase to chronic phase. The overlapping of 

DEGs across different time-points is profiled in Fig 5.4C. 
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A	 B	

Figure	5.5	Host	Differential	Expression	Genes	in	different	Time	Points	

A)	Butterfly	Chart,	the	red	bars	represent	the	up-regulated	DEGs,	and	the	blue	bars	represent	the	down-regulated	DEGs.	
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 After mapping the DEGs from the entire experiment with the DAVID 

bioinformatics database, the most significant pathways are the response to wounding, 

inflammation, defense response, humoral immune responses, hemostasis, cell adhesion, 

blood coagulation and hemeostatic process (Fig 5.5). These pathways were enriched in 

the data set of 2690 genes induced after Plasmodium coatneyi infection. By using the 

classification from DAVID, we focused on genes related to acute infection and chronic 

C)		Time	points		Venn	diagram	represents	the	disease	progression	in	DEGs	overlapping.		
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infection. For a better global view of the DEGs, a heat map has been produced applying 

hierarchical clustering (FIG heatmap), and the heat map demonstrates the clear pattern 

between different time points and animals and it has the similar pattern as the (PCA 

figure). PCA demonstrated the disease progression pattern, as the profiles of expression 

pattern for individual samples and profiles of gene expression in different infection 

stages. TP2 could serve as a mark to indicate the acute infection, and it was dissimilar 

from each other and from baseline after the non-human primate models acquired the 

Plasmodium infection. The animal effect has been observed, the monkey model RWr13 

clearly has reached chronic phase before three other monkeys, and RTi13 was the last 

one to reach the chronic phase after treatment. Based on the observation from the heat 

map, we selected several DEGs based on the pattern of the time series expression into 

two groups, acute and chronic for comparison.   



	

109	
	

 

 

 

Figure	5.5	Host	DEGs	Pathway	Ontology	.	

2690	DEGs	Ontology	 profiling	was	 based	 on	 gene	 ontology	 annotations	DAVID	 Bioinformatics	 Database.	 	 Blue	 bars	 represent	 the	
number	of	genes	in	each	ontology	cluster	and	Fisher	Exact	(p-value)	is	adopted	to	measure	the	gene-enrichment	in	annotation	terms.	
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Figure	5.6	Host	Global	DEGs	heat	map.	Hierarchical	clustering	of	2690	genes	significantly	regulated	by	P.	coatneyi	infection	in	different	time	points	and	
individuals.	Clustering	was	performed	on	the	average	of	log10	ratios	of	gene	expression	comparing	to	TP1	(baseline);	fold	changes	were	calculated	by	
subtracting	the	log10	intensity	pre-infected	measurement	from	after-infection	measurement	for	individual	animals	prior	to	calculating	the	average.	
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Fig	5.7	Visualization	the	Disease	Progression	by	Applying	PCA	in	Host	DEGs	

Log10	intensity	measurements	of	2690	DEGs	in	4	NHP	models	RTi13	(triangle),	RUn13	(square),	RWr13	(diamond)	
and	RZe13	(hexagonal).	Colored	labels	represent	disease	stages	at	the	time	points.		
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5.3.3 Acute phase DEGs Analysis 

 

The most obvious finding was that a large number of genes associate with 

inflammation were highly expressed in acute infection phase, including CD40, CCR2, 

IL10, IL27, IL2RA. Note that CD40 has significant expression in acute phase; however, 

it was even more up regulated in late infection. CD40 has been reported in several 

Plasmodium infection studies, but the longitudinal observation was not well defined. The 

acute phase also has a strong up regulation of several innate immune associated genes, 

including complement systems and MyD88 pathway. We also observed up regulation in 

type I IFN induced genes, STAT1 & STAT2. The genes clustered in the acute phase also 

revealed that up regulated genes are associated with a number of known cell adhesion 

genes, including ICAM1, TNFAIP6, ITGB5 and ITGA2. Several angiogenesis associated 

genes are up regulated in the acute phase, including FLT1, C5, SERPINE1 and IL1A (Fig 

5.8).  

 

These data indicate that acute Plasmodium infection is associated with a 

significant up regulation of several genes involved in triggering innate immune responses 

and inflammation to clear malaria infections.  
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Fig	5.8	Host	Acute	phase	DEGs	heat	map.	Heat	map	of	53	selected	gene	sets	significantly	up	regulated	in	acute	phase.	
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5.3.4 Chronic phase DEGs Analysis 

 

 During the chronic phase, we observed that numerous genes were up regulated 

from TP4 – TP7. We then applied the ontology mapping and revealed up regulated genes 

were associated with an adaptive immune response. The innate immune response and 

inflammation related genes are significantly down regulated in chronic phase. The B-cell 

receptor pathway has highly up regulated, and the genes associated with these responses, 

including CD19, CD22, CD79B, CD79A, VAV2 and BLNK, are highly, differentially 

expressed. Genes, including TLR9, TLR10, TNF and CD80, are highly up regulated. 

These genes are associated with Toll-like receptor pathway, and this pathway regulated 

the Th1 cells and Th2 cells. We also observed genes associated with the transmembrane 

signals that produce immunoglobulin were upper regulated, including FGFR1, CD19, 

CD80, CD79B, CD79A, EBI3, CD180, and ADRB1. Collectively, the chronic phase 

DEGs analysis demonstrated a significant difference between acute and chronic infection 

host response (Fig 5.9).  
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Fig	5.9.	Host	Chronic	phase	DEGs	heat	map.	Heat	map	of	26	selected	gene	sets	significantly	up	regulated	in	chronic	phase.	
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5.4 Discussion 

  

We can see the potential to unlock complex transcriptome dynamics by applying 

our system and machine learning techniques. We used malaria as our example to 

demonstrate the potential applications because malaria remains one of the most difficult 

biological paradigms to understand, and the transition from genomics to functional 

genomics with an emphasis on transcriptomic research has just begun. Although we only 

have initial results at this moment, the results show the promising indication that applying 

host-pathgoen dual time-series transcriptome analysis has the potential to help us 

understand the complicated malaria host-pathogen interaction. Due to the low sample size 

(n=4), the unsupervised machine learning methods are the approaches to analyze the data; 

however, combining prior domain knowledge to select the gene list (feature selection) for 

further analysis is still a better method to provide comprehensive interpretation of 

massive transcriptome analysis in longitudinal experiments (Appendix 5).   

 

The pathogen gene expression analysis in this study was performed under the 

condition of dual RNA-sequencing, thus the low pathogen sequence coverage depth was 

expected other than in the acute infection phase. Low read coverage might introduce 

random errors while conducting the differential expression analysis; however, the scope 

of this study revealed the interaction between P. coatneyi and the NHP model rather an 

in-depth gene expression profiling of the disease progression. To conduct a low bias in-

depth dual RNAseq analysis in malaria host-pathogen interaction study, a deeper 
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sequencing experiment has to be performed in order to obtain a better resolution of the 

expression. 

  

To conduct a comprehensive understanding of disease progression in host-

pathogen response, a longitudinal transcriptome analysis is the initial step. However, this 

knowledge is not sufficient to reach the “wisdom” layer, thus combining other -omics 

data is necessary to complete the validation from different biological aspects. Combing 

immunological profiling could be one of the several possible approaches to investigate 

further because the host transcriptome data has shown strong signals in generating 

immunoglobulin, B-cell receptor pathways and Th1/2 regulation pathways 

(Supplementary Fig 1). However, without other –omics data to validate or to complete 

the “module” of the certain status of biological system, attempting to form the “wisdom” 

is still challenging.  

 

5.5 Conclusion 

 

 The ultimate objective in malaria research is translational work with new 

interventions to halt all aspects of malaria’s transmission and disease progression. This 

paper features malaria systems biology as a modern approach to this end, emphasizing 

current approaches and progress in genomics and functional genomics, and introduces the 

conceptual DIKW framework. True wisdom involves the human factor and decision-

making strategies, all of which require abundant experience. Making the right decisions 
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involves the consideration of multiple perspectives, which is important given the fact that 

the outcome of making various decisions during the process of ending malaria will 

undeniably influence the world in different realms spanning public health, the 

environment, economics, and eco-systems. As technologies have advanced exponentially 

over the past few decades, knowledge formation has similarly been just as dynamic and 

has progressed faster than ever. Today’s new generations of biological scientists can 

shorten the time frame required for the acquisition of data, information, knowledge and 

wisdom with the help of powerful computational tools that are now ubiquitous in the big-

data era.  
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5.6 Supplementary 

Figure	5.10	Host	DEGs	Canonical	Pathways.	Colored	bar	represents	pathway	–log(p-value)	in	each	time	points.	
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Appendix  
Appendix A  

Applying Data Science in Malaria Research: From Infections and Disease, to 
Knowledge and Insights (Chien et al. submitted) 

Appendix B  

High-Quality Genome Assembly and Annotation for Plasmodium coatneyi, 

Generated Using Single-Molecule Real-Time PacBio Technology - Genome 

Announcement 2016 

 Chien’s major contributions are below: 

 

1. Plasmodium genome assembly and evaluation 

- Algorithm evaluation  

- Performing HGAP assembly, A/B test 

- Performing QC 

- Performing BLAST genome global alignment and evaluation  

- Performing Progressive Mauve genome comparison 

- Assembly gap identification 

- Organelle genome assembly and evaluation 

- Assembled several species including P. coatneyi, P. knowlesi * 3, P. cynomolgi 
*2, P. vivax *1 

 

2. Building PacBio sequencing technology infrastructure on AWS and cluster 
computer 

- SMRT analysis system installation 

- Systems dependency verification 

 

3. Performing genome annotation 

- Performing RATT draft annotation 
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- Implementing MAKER2 genome annotation 

- MAKER2 parameter tuning, annotation model training 

- Involving the annotation validation and workflow designing 

 

4. Manuscript writing, revising and submission 

This work is published on Genome Announc. September/October 2016 vol. 4 no. 5 
e00883-16 

Appendix C  

PacBio assembly of a Plasmodium knowlesi genome sequence with Hi-C correction 
and manual annotation of the SICAvar gene family – Lapp, Geraldo, Chien et al. 
Parasitology, Special Issue on Plasmodium knowlesi  (in press) 

 Chien’s major contributions are below: 

 

1. Plasmodium genome assembly and evaluation 

- Algorithm evaluation  

- Performing HGAP assembly, A/B test 

- Performing QC 

- Performing BLAST genome global alignment and evaluation  

- Performing Progressive Mauve genome comparison 

- Assembly gap identification 

- Organelle genome assembly and evaluation 

 

2. Manuscript writing and revising (in press, co-first author) 

Appendix D  

Multi-omic profiles differentiate acute and chronic phases of malaria in Plasmodium 
coatneyi infected rhesus macaques (Joyner et al. nanuscript in preparation) 

 Chien’s major contribution are below: 

 

 1. RNA-seq bioinformatics analysis pipeline construction  
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 - RNAseq alignment 

 - Reads alignment counting 

 - Algorithm selection and evaluation 

 

 2. Differential genes expression Analysis 

 - Implementing several R packages for analysis includes DEseq2 and others  

  

 3. Non-supervised clustering analysis 

 - Performing PCA, k-means, SOM, hierarchical and Bayesian clustering methods 
for different tasks. 

 

 4. Differential gene sets enrichment analysis and pathway identification  

 - Statistical analysis 

- Performing pair-wised DEGs comparisons 

 - RNA-seq DEGs heat-map construction  

 - Performing IPA, DAVID and metacore for pathway analysis and identification 

 - Literature Research 

 

 5. Manuscript writing and the manuscript is in preparation 

 


