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Abstract 

Vitamin D and the Risk of Hospital-Acquired Infections in Adults Admitted to the 
Intensive Care Unit  

By Jordan Anthony Kempker 

Introduction: There is evidence that vitamin D is integral to the function of the innate 
immune response and that low serum 25-hydroxyvitamin D (25(OH)D) concentrations 
may be a risk factor for infection.  There have been no prospective studies examining the 
relationship between serum 25(OH)D levels and the risk for hospital-acquired infections 
(HAI) in patients admitted to the intensive care unit (ICU). 
 
Methods:   This is a prospective observational cohort of adult patients admitted to the 
Emory University medical ICU at Grady Memorial Hospital, Atlanta, Georgia from 
November 1, 2011 through October 31, 2012.  Patients were included in the study if they 
were anticipated to have an ICU stay ≥ 1 day and did not refuse enrollment, and excluded 
if they were not able to undergo study phlebotomy within 5 days of ICU admission. 
 
Results:  The cohort consisted of 314 subjects, with 136 (43%) of subjects deficient in 
vitamin D, as evidenced by serum 25(OH)D concentrations < 15 ng/mL.  The patient 
characteristics significantly associated with low 25(OH)D levels included admission 
during winter months (28% vs. 18%, p = 0.04), higher PaO2/FiO2 (275 ± 142 vs. 226 ± 
243 torr, p = 0.03) and longer time from ICU admission to study phlebotomy (1.8 vs. 1.5 
days, p = 0.02).  A total of 36 (11%) patients developed an HAI prior to discharge, death 
or within 30 days from ICU admission. In multivariate analysis adjusting for gender, 
APACHE II score, time to study phlebotomy, ICU length of stay and net volume status, 
serum 25(OH)D levels < 15 ng/mL were not associated with risk for HAIs (HR 0.94, 
95% CI 0.44 – 2.00). 
 
Conclusions:  In this prospective, observational cohort of adults admitted to a single-
center medical ICU, there was no significant association between 25(OH)D deficiency 
and the risk for HAI.   
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Introduction 

Hospital-acquired infections (HAI) continue to be a significant burden on 

individuals and society.  A recent report estimated that 400,000 children and adults in the 

United States were affected by an HAI in 2002, resulting in 100,000 deaths (1).  This 

presents a significant burden on the healthcare system, with all HAIs in the United States 

costing an estimated $28 – 40 billion in 2009 (2).  In response to this problem, the 

National Healthcare Safety Network of the Centers for Disease Control maintains 

standardized definitions for HAIs to facilitate national surveillance and guidelines for 

HAI prevention (3).  Research continues to search for effective and efficient strategies for 

curtailing the problem of HAIs. 

One promising avenue is in the anti-infective properties of vitamin D, a fat-

soluble secosteroid hormone obtained through dietary intake and cutaneous synthesis.  

While Vitamin D’s roles in the regulation of serum calcium for bone formation have long 

been understood, research in the last decade has begun to uncover that this steroid 

hormone has important roles in the optimal functioning of many organ systems.  Vitamin 

D receptors and 1α-hydroxylase have been discovered in many extraskeletal tissues and 

the vitamin D response element (VDRE) found in over 900 genes (4,5).  Furthermore, 

recent epidemiologic and clinical trials have suggested that optimal vitamin D status may 

be protective against several chronic illnesses, including risk of cardiovascular disease, 

lung disease, diabetes and systemic infection (6-10). 

 With these new discoveries in mind, the objective of this study was to determine 

if vitamin D levels assessed in patients at admission to the intensive care unit (ICU) were 

associated with the risk for HAI. 
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Background 

Vitamin D and the Innate Immune System 

Basic Science Research 

The innate immune system acts to rapidly identify invading organisms and 

respond with humoral and cellular defense mechanisms to contain, neutralize and remove 

offending pathogens.  These pathogens are identified by highly conserved pathogen-

associated molecular patterns (PAMP) that bind to pathogen-recognition receptors (PRR) 

on immune cells.  The cells that participate in these innate immune responses include 

neutrophils and monocytes as well as epithelial cells that not only provide barrier 

function but also have anti-pathogen activity (11,12). A vital role for vitamin D in this 

system was initially indicated by the discovery of vitamin D receptors (VDR) in nearly 

all types of immune cells, including activated CD4+ and CD8+ T cells, B cells, 

neutrophils, macrophages and dendritic cells (12).  While these cells span the body’s 

innate and adaptive immune responses to pathogens, vitamin D’s roles in the optimal 

functioning of the innate immune system have been more clearly elucidated.   

Vitamin D is integral to the innate immune system’s production of antimicrobial 

peptides (AMP) in response to various pathogens (11).  The most studied AMP is 

cathelicidin and its activated form, LL-37.  This peptide is produced by phagocytic 

leukocytes, mucosal epithelium and keratinocytes, and is present in mucosal secretions 

and plasma (13).  LL-37 has been shown to have direct microbicidal effects on various 

bacterial pathogens in vitro, including Pseudomonas aeruginosa, Salmonella 

typhimurium, Escherichia coli, Listeria monocytogenes, Staphylococcus epidermidis, 

Staphylococcus aureus, and vancomycin-resistant enterococci (14). Its immune functions 
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also include disruption of bacterial biofilms, promotion of phagocytosis and reactive 

oxygen species and chemotaxis of other immune cells to sites of infection (13).    

Supporting vitamin D’s role as a component of local cellular defense, in bovine 

mammary tissue infected in vivo, CD14+ cells demonstrated an increased expression of 

1α-hydroxylase, which converts 25(OH)D to its activated form (15).   Likewise, in 

women treated with vitamin D supplementation in vivo for 3 months, their urinary 

bladder cells demonstrated increased expression of cathelicidin and enhanced bacterial 

killing of Escherechia coli (16). In one study of human airway epithelial cells, vitamin D 

induced the production of cathelicidin and improved killing of the bacteria, Pseudomonas 

aeuroginosa and Bordetella bronchiseptica (17).  However, not all studies have shown a 

positive effect of vitamin D in pathogen clearance.  In mice with bacterial colitis, 

pretreatment with 1,25-α-dihydroxyvitamin D (1,25(OH)2D) showed impaired T-cell 

immunity and antibacterial peptide production (18).  Likewise, in oropharyngeal immune 

cells, incubation with 1,25(OH)2D or LL-37 enhanced Group A streptococcal resistance 

(19). In another study of human airway epithelial cells infected with respiratory syncytial 

virus, vitamin D reduced the inflammatory response but not viral clearance (20).   These 

data begin to construct a conceptual framework for the role of vitamin D and LL-37 in 

infection that is complex, likely having varying levels of action in different tissues, cell 

types, pathogens and degrees of systemic spread of infection.   

Clinical Research 

In a review of the observational literature regarding vitamin D and respiratory 

infections, much of the work has been performed in pediatric populations with 4 studies 

showing a positive association between respiratory infections and low 25(OH)D and 2 
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studies showing no association (21-26).   Two other studies of children admitted with 

severe pneumonia showed associations between low vitamin D and increased severity or 

worse outcomes from pneumonia (27,28).  This may suggest that vitamin D modulates 

the severity of respiratory infections or rather that it is a marker for poorer health status.  

Further complicating the picture, another study found that vitamin D receptor 

polymorphisms might be associated with the risk of acute lower respiratory tract infection 

in children (29).  This suggests that there may be heterogeneity in the way different 

individuals utilize vitamin D, perhaps accounting for some of the heterogeneity of results 

among these non-randomized studies. 

In the adult observational literature, a cross-sectional analysis of the over 18,000 

patients in the NHANES III cohort, found an independent, inverse relationship between 

25(OH)D and self-reported respiratory infection (30).  A prospective cohort of adults 

with serial measurements of serum vitamin D in the fall and winter showed that higher 

concentrations were associated with a decreased risk of pneumonia (31).  Similar to the 

pediatric literature, other studies have shown a relationship between severity of 

pneumonia and vitamin D.   One prospective cohort of patients hospitalized with 

pneumonia showed that low 25(OH)D was an independent predictor of mortality and 

improved the prognostic accuracy of the pneumonia severity index score (32).  Another 

prospective cohort of community acquired pneumonia patients revealed that the lowest 

vitamin D group was associated with a higher mortality (33).  

 Despite the provocative results from the basic sciences and observational 

literature, the results from clinical trials regarding vitamin D and respiratory infections 

have been predominantly null.  In two trials of vitamin D in children hospitalized with 
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pneumonia, neither showed that treatment reduced duration of illness while one showed a 

decrease in pneumonia recurrence (34,35).  The two trials of children in the community 

revealed conflicting results.  One showed no effect on the incidence of pneumonia while 

the other demonstrated a reduction in the incidence of influenza A infection (36,37).  In 

adults, all three randomized trials examining respiratory infections have all produced null 

results (38-40).  The fact that all three of these trials demonstrated a control group with 

relatively normal 25(OH)D concentrations demonstrates that in studying vitamin D in the 

community, there may be no true placebo group since vitamin D is freely available from 

the sun, making it difficult to show positive effects.   

 While the relationship between vitamin D and the risk for HAI in critically ill 

patients has not been well studied, this subpopulation may have higher baseline rates of 

low vitamin D and infections that may be well suited for studying this relationship. 

Vitamin D in the Critically Ill 

While vitamin D’s association with the risk of HAI in ICU patients has not been 

well studied, there is literature documenting a high prevalence of low vitamin D in the 

ICU and a potential effect on mortality.  The latter is particularly important in studying 

the risk of HAIs since death is a competing event that will need to be accounted for in 

analysis.   

Several retrospective studies have revealed a high prevalence of vitamin D 

insufficiency among the critically ill, with associations to outcomes less clear.  A single 

center prospective observational study examined all ICU patients admitted in a spring-

summer season and found serum 25(OH)D concentrations < 24 ng/mL in 79% (41).  

Spring admission, low albumin and high Simplified Acute Physiology II score were all 
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independently associated with low serum 25(OH)D concentrations (41).  They did not 

find associations between vitamin D, mortality or HAI (41). McKinney et al. conducted a 

retrospective study of 136 veterans admitted to the ICU who had a serum 25(OH)D  

drawn within a month before or after admission to the ICU, revealing 98% of the veterans 

to have low serum 25(OH)D concentrations (42).  The study also demonstrated a 

significantly increased survival rate (69% vs. 44%) among those with serum 25(OH)D 

concentrations greater than 20ng/mL (42).  A retrospective study by Venkatram et al. 

revealed an association between mortality and vitamin D deficiency (25(OH)D < 20 

ng/mL) in 437 patients at a single center ICU (43). 

Other studies in critical care settings have provided more specific data on the 

relationship between vitamin D and infections.  Jeng et al. showed that vitamin D 

insufficiency was present in 100% of critically ill patients with sepsis, 92% of critically 

ill patients without sepsis and 66.5% in healthy controls (44).  A prospective study of 66 

surgical ICU patients showed a non-significant trend towards an increased rate of 

infections and sepsis among the vitamin D deficient (<20 ng/mL) (45). Braun et al. 

conducted two retrospective studies on the same source population investigating this 

subject.  One was a retrospective analysis of 2,399 patients admitted to medical and 

surgical ICUs with a 25(OH)D drawn within the year prior to admission.  The data 

showed a 1.3 and 1.7 fold increase in all-cause mortality among vitamin D insufficient 

and deficient groups (<30ng/mL and <15ng/mL) respectively and a significant increase in 

blood culture positivity (46).  
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Background Conclusion 

The multiple functions of vitamin D in the immune system’s response to infection 

suggest it may be an integral component in combating infections.  The basic science data 

point toward vitamin D’s role in the optimal functioning of the innate immune system, in 

part by producing AMPs such as LL-37.  The early clinical data on its role in preventing 

and attenuating infections has suggested a link but there have been no prospective studies 

investigating the relationship between low vitamin D and the risk for HAIs in patients in 

the ICU.  Data suggest that this vulnerable population has a high prevalence of low 

vitamin D and with the risk for HAI in this group, it is study group amenable to the 

examination of the relationship between vitamin D and infection. 
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Methods 

 The main objective of this study was to conduct a prospective observational 

cohort study to assess vitamin D status, as measured by serum 25(OH)D concentrations, 

at admission to the medical ICU as a risk factor for subsequent HAI.  The secondary 

objective was to describe the patient characteristics and outcomes associated with low 

vitamin D on admission to the medical ICU. 

Null Hypothesis 

In adults admitted to the Emory Medical ICU at Grady Memorial Hospital, a 

serum 25(OH)D concentration < 15 ng/mL, measured within 5 days of ICU admission, 

will not be independently associated with an increased risk of HAI at hospital discharge 

or within 30 days from ICU admission. 

Alternative Hypothesis 

In adults admitted to the Emory Medical ICU at Grady Memorial Hospital, a 

serum 25(OH)D < 15 ng/mL, measured within 5 days of ICU admission, will be 

independently associated with an increased risk of HAI at hospital discharge or within 30 

days from ICU admission. 

Study Design 

Setting and Patient Selection 

A prospective observational cohort design was utilized for this study. Patients 

admitted to the medical ICU at Grady Memorial Hospital in Atlanta, Georgia from 

November 1, 2011 through October 31, 2012 were screened for enrollment.  Subjects 

were screened using an online ICU census and were eligible if they were ≥ 18 years of 

age and were anticipated to have an ICU stay ≥ 1 day.  Subjects were enrolled if they or a 
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surrogate gave informed consent or they qualified for a waiver of consent.  Subjects were 

excluded if they were previously enrolled in this study or the study staff was unable to 

perform phlebotomy within 5 days after ICU admission. The Institutional Review Board 

of Emory University and the Grady Research Oversight Committee approved the study.  

Data and Sample Collection 

The primary outcome was the development of an HAI, which was defined as an 

infection during the index hospitalization that was not present within the first 48 hours of 

admission to the ICU and qualified for an infection of the lower respiratory tract, urinary 

tract, blood stream or gastrointestinal tract using the 2008 criteria from the Centers for 

Disease Control and National Healthcare Safety Network (3).  Infections were captured 

up to 30 days from ICU admission, determined from the laboratory data and clinical 

documentation in the electronic medical record and adjudicated by an Infectious Diseases 

specialist.  The primary exposure of vitamin D was determined from serum drawn within 

5 days of admission to the ICU by trained study staff, preferentially from a central venous 

catheter or arterial line or by peripheral phlebotomy if these were unavailable. Assays for 

25(OH)D were performed using an automated chemiluminescent technique.   Quality 

assurance of the serum 25(OH)D determinations was provided by participation in the 

vitamin D external quality assessment scheme (DEQAS) and the NIST/NIH Vitamin D 

Metabolites Quality Assurance Program.   Vitamin D deficiency was defined as a 

concentration < 15 ng/mL.  As there is no known physiologic cutoff for the vitamin D’s 

effects on the immune system, this cutoff was chosen as it has some precedence in the 

critical care literature and from an extrapolation of the optimal vitamin D levels for bone 

health by the 2011 Institute of Medicine Report on calcium and vitamin D dietary 
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references (46-49).   This report identifies a serum 25(OH)D < 12 ng/mL as carrying a 

significant risk of bone disease for the individual while setting a population target at 20 

ng/mL (49). 

  The other information collected from the electronic medical record included 

patient demographics, ICU admitting diagnoses, past medical and social histories, 

physiologic data, hospital and ICU dates and vital status at hospital discharge.  The 

presence of medical comorbidities was recorded if they were documented in the past 

medical history of the hospital record. Physiologic data was gathered from the 6 hours 

before through the 18 hours after the time of the ICU admit orders and selected as the 

worse value by the Acute Physiology and Chronic Health Evaluation (APACHE) II 

scoring system (50).  Culture results were recorded as the final result listed in the 

electronic medical record.  Winter season was defined as ICU admission within the 

months of December through February and race was dichotomized into white and non-

White since the frequency of races other than Black and White was relatively small 

(Hispanic and Asian at 4% and 1% of entire cohort, respectively).  

  All data was initially collected into a paper form and then entered into a REDCap 

electronic database hosted at Emory University.  

Sample Size Calculation 

  Initial sample size calculations were performed using a chi-squared test to look 

for the relative change in frequency of HAI between the two vitamin D groups.  A target 

sample size of 400 gave an 85% power to detect a 30% relative reduction in HAI from a 

baseline HAI frequency of 50% and a 90% power to detect a 40% relative reduction in 

HAI from a baseline HAI frequency of 40%. 
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Data Analysis 

  All statistical analyses were performed using SAS 9.3 (SAS Institute: Cary, NC) 

with a p value < 0.05 considered statistically significant.  Bivariate analyses were 

performed using pooled t-tests for continuous variables of normal distribution and equal 

variances, unpooled t-tests for those with unequal variances and Wilcoxon rank sum tests 

for those with non-normal distributions.  Chi-squared tests were used for all categorical 

variables.  The multivariate analysis was performed using a Cox Proportional Hazards 

model for the time to hospital-acquired infection with subjects censored for death, 

discharge or at 30 days from ICU admission, whichever came first.  As he primary 

outcome was defined as an infection that was not present within the first 48 hours of 

admission to the ICU, the time zero for the analysis was defined as 2 days after ICU 

admission.  The model was built using the purposeful selection of covariates described by 

Hosmer and Lemeshow and briefly described here (51).  Covariates were initially 

selected for model inclusion if they were the primary exposure or associated with both 

the primary outcome and exposure at a p < 0.25 in the bivariate analyses.  Covariates 

were then retained in the model if the p < 0.10 or upon removal, the vitamin D parameter 

estimate changed by ≥ 20%.  Then each covariate from the entire dataset was entered into 

this reduced model and retained if they changed the parameter estimate of the primary 

exposure by ≥ 20%.  Final p-values of <0.05 in the model were considered statistically 

significant. 

  Kaplan-Meier survival curves were also generated for in-hospital mortality, with 

subjects censored at discharge or at 30 days of hospitalization, whichever came first.  
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Kaplan-Meier method was also used to estimate mean time to infection in both vitamin D 

groups, with subjects censored for death, discharge or at 30 days of hospitalization, 

whichever came first.  Cumulative incidence function curves for the incidence of HAI, 

accounting for the competing risk of death were constructed using a macro developed by 

SAS (SAS Institute: Cary, NC) (52). 

  There was a significant amount of missing data for the serum lactate (130 subjects, 

41% of entire cohort) and the arterial blood gas (108 subjects, 34% of entire cohort).  As 

the ratio of arterial oxygen tension to fraction of inspired oxygen (PaO2/FiO2), was 

associated with the outcome in the Cox Proportional Hazards model, the missing values 

for this covariate were imputed using a rule-based strategy. Since mechanical ventilation 

therapy is largely based on lung function that is in part determined by arterial blood gas 

measurements, receipt of this therapy was used to divide the entire cohort into two 

groups: those who received mechanical ventilation and those who did not.  The mean 

PaO2/FiO2 from the mechanically ventilated subgroup with arterial blood gas data was 

imputed to all those who received mechanical ventilation but did not have an arterial 

blood gas.  This same step was then performed for the group who did not receive 

mechanical ventilation.  The effects of imputation are shown in Appendix A. 

Ethics 

This study was approved by the Emory University Institutional Review Board; 

study number 51263 and by the Grady Memorial Hospital Research Oversight 

Committee. 
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Results 

  The study enrollment results are described in Figure 1. A total of 798 subjects 

were screened, with 388 enrolled; 72 subjects were withdrawn for inability to draw blood 

within 5 days and 2 subjects were withdrawn given inadequate blood collection volume, 

leaving a final study cohort of 314 subjects.   The entire cohort was predominantly male 

(57%) and black (83%), with 55 to 64 years old as the most represented age group (Table 

1).   The overall mean APACHE II score was 27.8 ± 6.9 with an in-hospital mortality of 

16%. 

  Forty-three percent of the entire population had a serum 25(OH)D < 15 ng/mL 

with the overall histogram of serum 25(OH)D revealing a rightward skewed distribution 

(Figure 2).   Graphical analysis of the seasonal variation of vitamin D over the course of 

the year revealed an attenuated sinusoidal pattern with a general peak in fall months and 

nadir the winter months (Figure 3). 

  Subject characteristics and clinical outcomes by vitamin D status are outlined in 

Table 1.  Characteristics significantly associated with vitamin D deficiency were 

admission during the winter season (28 vs. 18%, p = 0.04), higher PaO2/FiO2  (275 ± 142 

vs. 226 ± 243 torr, p = 0.03) signifying worse pulmonary function, and longer time from 

ICU admission to study phlebotomy (1.8 ± 1.2 vs. 1.5 ± 1.1 days, p = 0.02).  In the 

vitamin D deficient group there were trends towards younger mean age, lower prevalence 

of documented hypertension, higher mean serum total bilirubin and longer median ICU 

length of stay.  

  A total of 36 adjudicated HAI were documented. The most common infection site 

was the respiratory tract  (44%) followed by the genito-urinary tract (25%), blood stream 
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(22%), and gastrointestinal tract (8%).  By the Kaplan-Meier method, mean time to 

infection in the high and low vitamin D groups was 24.8 and 23.4 days, respectively.  

While the infectious microorganism was not identified in 19% of the HAIs and 14% of 

the HAIs were polymicrobial, the single most commonly identified organism was 

Enterococci spp.  (Table 2).   

  In the unadjusted Cox Proportional Hazards model, serum 25(OH)D < 15 ng/mL 

was not associated with an increased risk for HAI (HR 1.03, 95% CI 0.53 – 2.02).  For 

the multivariate analysis, while values were imputed for PaO2/FiO2, there were still 37 

subjects left out of the analysis due to missing values for other covariates.  In the final 

multivariate model adjusting for gender, alcohol use history, APACHE II score, days 

from ICU admission to study phlebotomy, ICU length of stay and net volume status, 

serum 25(OH)D levels < 15 ng/mL were not associated with an increased risk for HAI 

(HR 0.94, 95% CI 0.44 – 2.00) (Figure 4).  The only other covariate that remained 

significantly associated with the risk of HAI in this model was ICU length of stay (HR 

1.05, 95% CI 1.01 – 1.10).   The multivariate Cox Proportional Hazards model without 

imputation for PaO2/FiO2, included 192 subjects in the analysis and revealed similar 

results (Appendix A). 

  In addition to the primary outcome, in bivariate analyses vitamin D showed no 

associations with differences in the hospital length of stay, ICU length of stay or duration 

of mechanical ventilation (Table 1).  Kaplan-Meier survival curves did not demonstrate 

an association between vitamin D deficiency and hospital mortality (Figure 5).  

Cumulative incidence curves were generated to examine the cumulative incidence of HAI 
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by serum 25(OH)D status accounting for the competing risk of death and did not reveal a 

significant association (Gray’s Test p = 1.0) (Figure 6). 
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Discussion 

  In this prospective observational study, there was a high prevalence of vitamin D 

deficiency and a low rate of HAIs among patients admitted to a single center medical 

ICU. A total of 43% of patients had a serum 25(OH)D < 15 ng/ml and 11% of all subjects 

went on to develop a HAI within 30 days of ICU admission. There was no association 

between low vitamin D levels and the development of a HAI. While vitamin D has 

important immunological functions, this study’s results show that low Vitamin D levels 

alone do not lead to a high risk of HAI among severely ill medical patients.     

  The findings did not support the a priori hypothesis that low vitamin D status 

upon admission to the medical ICU would be a risk factor for HAI.  While this 

hypothesis is based on a large body of basic science that supports a role for vitamin D in 

the innate immune system’s response to infection, the results are consistent with the 

parallel body of clinical research that has demonstrated mixed results for the role of 

vitamin D alone in predicting and preventing infections (53).  The results are also 

consistent with extrapolations from the vitamin D literature in ICU patients, with one 

retrospective study showing an association between blood culture positivity and low 

vitamin D, while two others did not show significant associations between low vitamin D 

and infection (45,47,54). 

  The discrepancies between basic and clinical sciences may be explained by some 

of the difficulties in studying vitamin D in clinical studies.  These may include small 

clinical effect sizes, lack of a true null vitamin D group, lack of measurement of vitamin 

D storage and utilization, and genetic variation in vitamin D action (55).    
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  More specific to this study, serum 25(OH)D concentrations might have been 

influenced by the hemodilute or acute inflammatory state of our ICU patients rather than 

reflecting the vitamin D nutriture per se.  Regarding hemodilution, one small, well-

designed study has shown that intravenous fluid administration temporarily lowers the 

concentration of 25(OH)D (56). This is important to the study population as early in the 

ICU stay, when 25(OH)D was measured, many patients received large boluses of 

intravenous fluids. While the study did not find net fluid balance in the first 24 hours to 

be significantly associated with vitamin D status (Table 1), this number may not be 

indicative of the true clinical situation as the fluid administration by paramedics and in 

the emergency department was often not in the medical record.   In regards to the effects 

of inflammation on the vitamin D axis, several studies have suggested that serum 

25(OH)D levels decrease during acute inflammation only to recover a few days later, 

likely in part due to a decrease in vitamin D binding protein during acute inflammation 

(57-59).  Therefore, this study’s low 25(OH)D levels may not be indicative of a true 

vitamin D deficiency that would pose as a risk factor for future infection but rather the 

clinical state of the patient on ICU admission.  While measuring vitamin D levels before 

clinical illness may solve this problem, this was not feasible in the design for this study.  

  In addition to the above measurement issues, serum levels of 25(OH)D may not 

be indicative of the body’s utilization of vitamin D by the innate immune system.  There 

is an emerging scientific literature in the area of tuberculosis and vitamin D that has 

identified genetic variations in the vitamin D receptor, introducing variation in the 

immune system’s utilization of this nutrient (60-62).  While the data are not conclusive, 

in tuberculosis these vitamin D receptor polymorphisms have been associated with 
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25(OH)D levels, the presence of multidrug resistance and response to vitamin D 

adjunctive therapy (61,62).   In addition, one small study has shown associations between 

these polymorphisms and acute lower respiratory infections in children (29).  As this 

study did not test the receptor polymorphisms in the study cohort, this could account for 

significant confounding of our results.  Along the lines of determining the body’s true 

vitamin D status and its effects on immune function, this study did not measure the other 

components of the vitamin D axis or the antimicrobial peptides that may be regulated by 

vitamin D stores.  The measurement of free serum or local intracellular cathelicidin levels 

or the other metabolites of vitamin D, including 1,25α-dihydroxyvitamin D, 24,25-

dihydroxyvitman D, blood concentrations of parathyroid hormone, or calcium, or serum 

and urinary concentrations of vitamin D binding protein may have given a better 

understanding of an interaction between vitamin D and our patients’ immune function 

and risk for infection.   

  Despite the above issues, this study has several strengths.  Its prospective design 

allowed for the determination of vitamin D status upon admission to the ICU and 

followed patients forward for a sufficient time after to determine 25(OH)D’s association 

with the risk of HAI.  The study also included a diverse subject population reflective of 

the pathology seen in this urban hospital medical ICU.  

   This study has important implications for the future directions of vitamin D 

research in infection and critical illness.  While vitamin D’s therapeutic role in the 

prevention and treatment of infections is best approached through randomized controlled 

trials, there is still observational work to be done to inform the design of these trials.  

Further studies measuring the important mediators in the vitamin D-immune axis may 
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help to differentiate a truly deficient state in terms of immune function from other 

inflammatory or hemodilute states, allowing identification of the at-risk population likely 

to benefit in a clinical trial.  Furthermore, a better understanding of how receptor 

polymorphisms mediate the interaction between vitamin D and immune function may 

help us to not only identify target populations but also create more potent vitamin D 

analogues that may help larger populations (63). 
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Tables 

Table 1.  Summary of Demographic Characteristics and Severity of Illness in 
Patients Admitted to the Medical Intensive Care Unit at Grady Memorial Hospital, 
Atlanta, GA November 1, 2011 – October 31, 2012.  N = 314 a 

 
 
Variable N(%) 
Race  
  Black 261 (83) 
  White 39 (12) 
  Hispanic 12 (4) 
  Asian 2 (1) 
Age Categories in years  
  18 – 44 63 (20) 
  45 – 54 81 (26) 
  55 – 64 87 (28) 
  65 – 74  52 (17) 
  ≥ 75 31 (10) 
Female 131 (42) 
Mean APACHE II (SD) 27.8 (6.9) 

In-hospital Mortality 49 (16) 
aAPACHE II = acute physiology and chronic health evaluation 2.
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Table 2. Summary of Hospital-Acquired Infections at 30 days from Admission to the 
Intensive Care Unit by Infective Site and Organism in Patients Admitted to the 
Medical Intensive Care Unit at Grady Memorial Hospital, Atlanta, GA November 1, 
2011 – October 31, 2012.  N = 314 
 
 N (%) 
  
Overall Hospital-Acquired Infections 36 (11) 
  
Site of Hospital-Acquired Infections  
  Respiratory 16 (44) 
  Genito-urinary 9  (25) 
  Blood Stream 8 (22) 
  Gastroenterological 3 (8) 
    
Organism  
Unknown 7 (19) 
  Gram-positive   
    Enterococci 4 (11) 
    Staphylococcus aureus 3 (8) 
    Clostridium dificile 2 (6) 
    Coagulase-negative staphylococci 1 (3) 
  Gram-negative  
    Pseudomonas aeruginosa 2 (6) 
    Escherichia coli 1 (3) 
  Fungal  
    Candida albicans 3 (8) 
Polymicrobial 5 (14) 
Other Organism 8 (22) 
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Table 3.  Patient Characteristics and Hospital Outcomes by Vitamin D Status in 
Patients Admitted to the Medical Intensive Care Unit at Grady Memorial Hospital, 
Atlanta, GA November 1, 2011 – October 31, 2012.  N = 314a 

 
Variable 25(OH)D 

≥ 15 ng/mL 
N = 178 

25(OH)D 
< 15 ng/mL 

N = 136 

p 

Demographics    
Age, mean (SD) 57.2 (15.5) 54.4 (14.6) 0.1 
Age Categories, n (%)   0.2 
  18 – 44 25 (18) 38 (21)  
  45 – 54 30 (22) 51 (29)  
  55 – 64 41 (30) 46 (26)  
  65 – 74  21 (15) 31 (17)  
  ≥ 75 19 (14) 12 (7)  
Female, n (%) 55 (40) 76 (43) 0.7 
Weight, kg, mean (SD) 80.8 (22.9) 85.2 (33.2) 0.2 
Race, n (%)    
  White 20 (15) 19 (11) 0.3 
History of Tobacco Use, n (%) 62 (46) 82 (46) 0.8 
History of Alcohol Abuse, n (%) 26 (19) 45 (25) 0.4 
    
Past Medical History  
Liver disease, n (%) 7 (5) 16 (9) 0.2 
Pulmonary disease, n (%) 37 (27) 36 (20) 0.2 
Heart disease, n (%) 98 (72) 129 (72) 0.9 
Renal Disease, n (%) 32 (24) 37 (21) 0.6 
Immunosuppression, n (%) 25 (18) 26 (15) 0.4 
Diabetes Mellitus, n (%) 41 (30) 55 (31) 0.9 
Hypertension, n (%) 90 (66) 102 (57) 0.1 
Cerebrovascular disease, n (%) 20 (15) 20 (11) 0.4 
    
Admission Data    
  Winter 24 (18) 49 (28) 0.04 
    
Primary Admission Diagnoses, n (%)   0.2 
  Respiratory 47 (35) 45 (25)  
  Cardiac 49 (36) 75 (42)  
  Neurological 17 (13) 22 (12)  
  Gastroenterological 12 (9) 12 (7)  
  Other 11 (8) 24 (13)  
Sepsis at Admission, n (%) 72 (53) 98 (55) 0.7 
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Table 3 Continued.  Patient Characteristics and Hospital Outcomes by Vitamin D 
Status in Patients Admitted to the Medical Intensive Care Unit at Grady Memorial 
Hospital, Atlanta, GA November 1, 2011 – October 31, 2012.  N = 314a 

 
 
Variable 25(OH)D 

≥ 15 ng/mL 
N = 178 

25(OH)D 
< 15 ng/mL 

N = 136 

p 

 
Worst Physiologic parameters within 24 hours of ICU Admission, Mean (SD) 
PaO2/FiO2 , torr 226(142) 275(243) 0.03 
Creatinine, mg/dL 2.3 (2.5) 2.5 (2.7) 0.5 
Mean Arterial Pressure, mm Hg 77 (37) 81 (40) 0.4 
Patient on vasopressor therapy, n(%) 35 (26) 48 (27) 0.8 
Total Bilirubin, mg/dL 1.0 (2.3) 1.6 (3.1) 0.1 
Platelet count, x 109/L  193 (105) 189 (159) 0.8 
White Blood Cells, x109/L 12.3 (10.4) 11.9 (7.7) 0.7 
Hematocrit % 30.8 (8.7) 31.1 (8.1) 0.7 
Lactate, mmol/L 3.1 (2.4) 3.4 (2.4) 0.4 
Glasgow-Coma Scale score 10 (7-15) 12.5 (7-15) 0.2 
Net Fluid Balance, L -0.05 (2.1) -0.08 (2.4) 0.9 
SOFA score 7.1 (3.7) 7.1 (3.8) 1.0 
APACHE II score 27.5 (7.0) 28.0 (6.9) 0.6 
    
Days from Hospital Admission to serum 25(OH)D draw   
Mean (SD) 1.5 (1.1) 1.8 (1.2) 0.02 
    
Clinical Outcomes    
Mechanically Ventilated, n (%) 76 (56) 100 (56) 1.0 
Hospital Length of Stay, median (IQR) 9.5 (4-18) 11 (5-18) 0.3 
ICU Length of Stay, median (IQR) 3 (1-8) 4 (2-7) 0.1 
Days of Mechanical Ventilation, median (IQR) 4 (1-9) 4 (2-7.5) 1.0 
Hospital-Acquired Infection, n (%) 16 (12) 28 (16) 0.3 
    
a25(OH)D = serum 25α-hydroxyvitamin D; APACHE II = acute physiology and chronic 
health evaluation 2; PaO2/FiO2 = (partial pressure in torr of O2  in arterial blood/the 
fraction of inspired oxygen); SOFA = Sequential Organ Function Assessment 
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Table 4.  Results from An Adjusted Cox-Proportional Hazards Model For the Risk 
of Hospital-Acquired Infection in Patients Admitted to the Medical Intensive Care 
Unit at Grady Memorial Hospital, Atlanta, GA November 1, 2011 – October 31, 
2012.  N = 277.  Global Likelihood Ratio p = 0.06a 

 
 
Variable Adjusted HR (95%CI) 

25(OH)D < 15 ng/mL 0.94 (0.44 – 2.00) 
ICU Length of Stay, days 1.05 (1.01 – 1.10) 
PaO2/FiO2 , torr 1.00 (0.99 – 1.00) 
Days from ICU Admission to Phlebotomy 1.00 (0.77 – 1.39) 
Male Gender 0.77 (0.36 – 1.64) 
APACHE II Score  1.00 (0.94 – 1.05) 
Net Fluid Balance, L  0.85 (0.71 – 1.01) 
a In this analysis, imputed values were used for missing data for the PaO2/FiO2 covariates 
since 34% of the data were missing.  Despite this, 37 observations were not used in the 
final model due to missing data in other covariates.  
25(OH)D = serum 25α-hydroxyvitamin D; APACHE II = acute physiology and chronic 
health evaluation 2; ICU = Intensive Care Unit; PaO2/FiO2 = (partial pressure in torr of 
O2  in arterial blood/the fraction of inspired oxygen).	
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Figures 

Figure 1. Flowchart of Study Enrollment Process and Resultsa 

 
a ICU = intensive care unit. 
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Figure 2.  Distribution of Vitamin D Concentrations in Patients Admitted to the 
Medical Intensive Care Unit at Grady Memorial Hospital, Atlanta, GA November 1, 
2011 – October 31, 2012.  N = 314 
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Figure 3.  Mean Vitamin D by Month in Patients Admitted to the Medical Intensive 
Care Unit at Grady Memorial Hospital, Atlanta, GA November 1, 2011 – October 
31, 2012.  N = 314a 

 

 
a 25(OH)D = serum 25α-hydroxyvitamin D	
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Figure 4.  Adjusted Cox Proportional Hazards Curves for Hospital-Acquired 
Infection in Patients Admitted to the Medical Intensive Care Unit at Grady 
Memorial Hospital, Atlanta, GA November 1, 2011 – October 31, 2012.  N = 277a 

 

 
a Curves are adjusted for gender, alcohol use history, APACHE II score, days from ICU 
admission to study phlebotomy, ICU length of stay and net volume status.  Subjects were 
censored at death, discharge or 30 days of hospitalization, whichever came first. 
APACHE II = acute physiology and chronic health evaluation 2; HAI = hospital-acquired 
infection; ICU = intensive care unit. 
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Figure 5.   Kaplan-Meier Survival Curves by Vitamin D Status Infection in Patients 
Admitted to the Medical Intensive Care Unit at Grady Memorial Hospital, Atlanta, 
GA November 1, 2011 – October 31, 2012.  N = 314a 

 

 
a
 Subjects were censored at discharge or 30 days of hospitalization, whichever came first. 
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Figure 6. Cumulative Incidence Functions For Hospital-Acquired Infection by 
Vitamin D Status in Patients Admitted to the Medical Intensive Care Unit at Grady 
Memorial Hospital, Atlanta, GA November 1, 2011 – October 31, 2012.  N = 314a 

 

 
a The cumulative incidence function accounts for the competing risk of death while in the 
hospital. 
25(OH)D = serum 25α-hydroxyvitamin D; ICU = Intensive Care Unit; LOS = length of 
stay  
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Appendix A.  Effects of Imputation of Missing Values 
 
Figure 1B.  Effects of Imputation on the PaO2/FiO2 Mean and Standard Deviation 
by Vitamin D Status. 
 
Variable Imputation 25(OH)D ≥ 15 ng/mL 

N = 178 
25(OH)D < 15 ng/mL 

N = 136 
p 

PaO2/FiO2 
torr, mean 
(SD) 

No 225.8 (141.8) 274.5 (173.1) 0.03 
Yes 251.0 (123.1) 280.8 (143.7) 0.05 

 
Figure 2B.  Effects of Imputation on the PaO2/FiO2 Mean and Standard Deviation 
by Hospital-Acquired Infection Status. 
 
Variable Imputation Hospital-Acquired 

Infection 
N= 36 

No Hospital-Acquired 
Infection 

N=278 

p 

PaO2/FiO2 
torr, mean 
(SD) 

No 202.1(116.7) 263.3(167.5) 0.01 
Yes 210.9(105.3) 277.2(138.1) 0.0004 

 
Table 1A.  Results from An Adjusted Cox-Proportional Hazards Model For the 
Risk of Hospital-Acquired Infection in Patients Admitted to the Medical Intensive 
Care Unit at Grady Memorial Hospital, Atlanta, GA November 1, 2011 – October 
31, 2012.  N = 192.  Global Likelihood Ratio p = 0.41a 

 
Variable Adjusted OR (95%CI) 

25(OH)D < 15 ng/mL 1.07 (0.48 – 2.41) 
ICU Length of Stay, days 1.04 (0.99 – 1.09) 
PaO2/FiO2 , torr 1.00 (1.00 – 1.00) 
Days from ICU Admission to Phlebotomy 0.96 (0.70 – 1.32) 
Male Gender 0.81 (0.36 – 1.82) 
APACHE II Score  1.001 (0.96 – 1.07) 
Net Fluid Balance, L  0.86 (0.71 – 1.04) 
a In this analysis, 122 observations were not used in the final model due to missing data in 
other covariates.  
25(OH)D = serum 25α-hydroxyvitamin D; APACHE II = acute physiology and chronic 
health evaluation 2; ICU = Intensive Care Unit; PaO2/FiO2 = (partial pressure in torr of 
O2  in arterial blood/the fraction of inspired oxygen). 


