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Abstract

Computational and Theoretical Study of Disordered Systems

By Xiang Cheng

In the physical world, there are tremendous more disordered materials than ordered ones.
For ordered physical systems, there has been a rich spectrum of well-defined theories,
models, phases, and methods; while disordered systems have more questions that are
unclear. In this work, we study 3 disordered systems in finite dimensional lattice-like
structures, which may contribute new insights comparing to a large amount of work in
mean-field-like models.

First, we apply a lattice glass model proposed by Biroli and Mezard onto a num-
ber of hierarchical networks. These networks combine certain lattice-like features with
a recursive structure that makes them suitable for exact renormalization group studies
and provide an alternative to the mean-field approach. We explored both the equilibrium
and dynamic behaviors and discover jamming transitions and no phase transitions. This
discovery is the first clear-cut evidence of a jamming transition with no phase transition.

Secondly, the antiferromagnetic Ising model (AFM) is a convenient model to introduce
disorderedness and glassy dynamics. We study the properties of the Ising antiferromag-
net on four hierarchical networks using both Monte Carlo methods and renormaliza-
tion groups. Exact renormalization group calculations show that the system encounters
an infinite-order transition into a glassy state, characterized by a super-critical Hopf-
bifurcation in coupling-space to chaotic behavior for low temperatures.

Thirdly, random field Ising model (RFIM) is studied to understand the aging in
an experimental system, a thin-film ferromagnet/antiferromagnet (F/AF) bilayer. The
experiments show extremely slow cooperative relaxation. In our computational study, the
experimental system is coarse-grained into a RFIM on a 2D square lattice. Monte Carlo
simulations indicate that the aging process may be associated with the glassy evolution
of the magnetic domain walls, due to the pinning by the random fields. The scaling of
the simulated aging agrees well with experiments. Both are consistent with either a small
power-law or logarithmic dependence on time.
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Chapter 1

Introduction

In the physical world, there are tremendous more disordered materials than ordered

ones. In ordered physics, there has been a rich spectrum of well-defined theories, models,

phases, and methods; while disordered systems still have a variety of challenging and

unclear questions.

This chapter first introduces the general disordered system and 3 specific disordered

systems, i.e. jamming transition, antiferromagnetic Ising model, and random field Ising

model. Then the finite dimensional networks we use in our study are described. In the

end of this chapter, the computational methods used are reviewed and discussed.

1.1 Disordered System

In the real world, most materials can be considered as disordered materials because

of their heterogeneous structures with defects and impurities. While the techniques to

study and understand the properties of ordered materials are well-developed, our ability

to anticipate, let alone to design, properties of disordered materials have not yet reached

1
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nearly the same level of sophistication [3].

Disordered materials not only have the most amount but also numerous categories or

types. There are various types of disordered materials, such as glass [4, 5], polymers[6],

granular materials [7], and biological tissues [8].

Here we focus on models of disordered systems that lend themselves to theoretical

investigations, such as Edwards-Anderson model [9], Sherrington-Kirkpatrick model [10],

random field Ising model (RFIM) [11], antiferromagnetic Ising model (AFM) [12], fully

frustrated model [13, 14], spin glass [15], lattice glass model [16]. These different models

share three main similarities.

Figure 1.1: An example of the geometric frustration in antiferromagnetic Ising model.
There are more than one ground states even in this simple triangular lattice. A more
complex network would lead to extensive and entangled frustrations.

Two main commonalities are frustrations (from geometry or quenched disorder) and

glassy dynamics in these systems. First, the frustration is usually introduced either by

random interactions (quenched disorder) or complex structures [17]. For example, in

AFM, any odd loop in the structure can lead to the geometric frustration [12] (as illus-

trated by Fig. 1.1). In spin glass, the interaction constant Jij between spin i and j is

random and can be either negative or positive, which is known as frustrated interaction

[9] or quenched disorder. Second, the glassy dynamics is often observed in the simulations
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of these disordered systems [18]. For example, a strongly interacting glassy material is

observed to have a power-law relaxation [19]. The glassy dynamics often lead to the glass

transition [20] or jamming transition [21]. In all the three disordered systems studied

(Chapter 2 - 4), they share both the geometric frustration and the glassy dynamics with

a power-law relaxation, and we explore to see whether there is any phase transition or

glass transition.

Another commonality is the analytical and computational complexity. Analytically,

only certain models in certain lattices or structures are exactly solvable. For example, the

mean field theory [22] is the most popular method to solve problems of spin glass [10],

lattice glass model [16], fully frustrated XY model [23], etc. However, the majority of these

models in real-world lattice or complex networks are not analytically solvable. Moreover,

their computational complexity is often NP-complete [24] because the computational cost

grows exponentially with the system size [25, 26]. These difficulties of computational

complexity drive physicists to develop efficient and robust methods and algorithms to

solve the problems in disordered systems, and these methods and algorithms go even

beyond physics into fields of computer science and mathematics [27, 28].

In our studies, we have the same difficulties. In order to address these problems,

we utilize a combination [29, 30] of real-world-like lattices, Monte Carlo methods, and

renormalization group using scientific computing languages (C/C++, Python) and mod-

ern computing tools (Mathematica, MATLAB). Our physical modeling, computational

implementations, and results are described in details in Chapters 2-4.
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1.2 Jamming Transition

The first focus here is on systems which jam [31]. Those systems undergo a jamming

transition from a liquid-like to a solid-like state with extremely slow dynamics at a high

packing density. The most interesting part in this disordered system is the physics near

the jamming transition. The jamming transition, as introduced by Liu and Nagel in

1998 [21], has been the focus of intense studies [31–33].

A granular disordered system with increasing density can reach a jammed state at

which a finite yield stress develops, or at least extremely long relaxation times ensue,

similar to the emerging sluggish behavior observed when the viscosity of a cooled glassy

liquid seemingly diverges. Thus, a jamming transition may be induced in various ways,

such as by increasing density, decreasing temperature, or/and reducing shear stress [32].

The phase diagram shown in Fig. 1.2 proposed by Liu, et. al. [21, 34] also show the

factors inducing jamming transitions. Below the jamming transition, the system stays in

long-lived meta-stable states, and its progression to its corresponding equilibrium state

entails an extremely slow, non-Debye relaxation [35–37].

Jamming transitions have been observed in various types of systems, such as granular

media [38], molecular glasses [39, 40], colloids [41], emulsions [42], foams [33, 43], etc [32,

37]. These systems can behave like stiff solids at a high density with low temperature

and small perturbations. In these transitional processes, the systems can self-organize

their own structure to avoid large fluctuations [33] and to reach a quasi-stable jammed

state, characterized by an extremely slow evolution to the unjammed equilibrium state.

The properties of those quasi-stable non-equilibrium states as well as their corresponding

equilibrium state is the main focus of our work in jamming.

The properties of the jamming transition have been studied extensively [31, 32, 38],
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Figure 1.2: Jamming phase diagram from experimental findings in colloidal particles.

but we still lack an essential understanding of the physics underlying the jammed state.

Theoretical progress has been much slower than the accumulation of experimental dis-

coveries. One of the reasons is the scarcity of theoretical microscopic models to capture

the complex jamming process [44, 45].

In recent years, a lattice glass model proposed by Biroli and Mezard (BM) [16] has

been shown as a simple but adequate means to study the jamming process. It is simple

because the model follows specific dynamical rules which are elementary to implement

in both simulations and analytical work. In distinction to kinetically constrained models

such as that due to Kob and Andersen [46], in which particles are blocked from leaving

a position unless certain neighborhood conditions are satisfied, BM embeds geometric

frustration merely by preventing the neighborhood of any particles to consist of more than

l other particles. Beyond that, it proceeds purely thermodynamically. The phase diagram

can be reduced to just one (or both) of two control parameters, chemical potential and



Chapter 1. Introduction 6

temperature. Either is sufficient to reproduce a jamming transition which is similar to

that observed in off-lattice systems [16].

Using this model in a mean-field network (i.e., a regular random graph), Krzakala

et al. find jammed states in Monte Carlo simulations and a genuine thermodynamical

phase transition (ideal glass transition) in its mean-field analytical solutions [44]. The

equilibrium curve of the packing fraction vs chemical potential (temperature) from mean-

field method shows a kink which indicates a Kauzmann transition to a static glass phase

[44]. In other words, the jammed state coincides with an underlying equilibrium state

that possesses a phase transition to a glassy state. There is also other work trying to

prove the similar idea using mean-field models [39, 47, 48]. That raises the prospect that

this equilibrium phase transition might be the reason for the onset of jamming. However,

such a connection between phase transition and jamming transition is hard to ascertain

for finite-dimensional lattice glasses. Our work (Chapter 2) focuses on jamming in finite-

dimensional hierarchical networks which could contribute closer insights to real world

systems.

1.3 Ising models

The Ising model was proposed by Wilhelm Lenz and Ernst Ising [49, 50] in the 1920s. It

has simple nearest-neighbor interactions and a simple Hamiltonian H (energy)

H = −J
N∑
〈i,j〉

sisj −H
N∑
i=1

si (1.1)

where si = ±1, 〈i, j〉 stands for nearest-neighbor spin-pair, si J (> 0) is the exchange

interaction constant, and H is the external magnetic field. This is the most simple Ising
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model and usually called ferromagnetic Ising model (FM). However, this simple model

could represent approximately real-world systems and lead to phase transitions [51] or

complex dynamics [52] in different lattice structures. Numerous variations have been

proposed to study different systems, ranging from magnetic systems [53] to biological

systems [54].

In this section, two disordered Ising models, antiferromagnetic Ising model and ran-

dom field Ising model, are introduced and reviewed. They are also the focus of the studies

in Chapter 3 and Chapter 4.

1.3.1 Antiferromagnetic Ising Model

Unlike ferromagnetic Ising model (FM) having a large amount of investigations [55, 56],

the antiferromagnetic Ising model (AFM) has little work published until the 1970s [57].

The most interesting characteristic of the AFM is that it can easily introduce geometric

frustrations and may give rise to glassy dynamics or even a spin glass phase. While this

interesting characteristic is realized by simply changing the sign of the coupling constant

J (J < 0), and the Hamiltonian H is still the same as in Eq. 1.1. Then the geometric

frustrations can be simply introduced through odd loops (as illustrated in Fig. 1.1).

Using a combination of the simple AFM and complex networks, there has been inter-

esting phenomena observed, such as glassy dynamics [58], magnetization plateaus [59],

and spin glass phase transition [60]. However, most results have been gained from the

exact solutions of such models in their mean-field approximation, and these mean-field

descriptions for disordered systems often fail to capture the properties of real, finite-

dimensional materials. Unlike most of these findings, we study the AFM in real-world

lattice-like Hanoi networks who remain exactly renormalizable. Through these methods,
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we can learn both the non-equilibrium and equilibrium behaviors.

Our work using the AFM is inspired by an early attempt in Ref. [61] to avoid ran-

domness with a family of geometrically frustrated hierarchical networks susceptible to an

exact renormalization group (RG) treatment. As there, we find that glassy behavior is

associated with a transition into chaos for the RG-flow in coupling space. We show that

this transition into the glass state is of infinite order and occurs via a sub-critical Hopf-

bifurcation in the RG-flow [62]. This chaotic flow appears as a natural manifestation of

temperature chaos that is a characteristic of glassy order [63, 64]. We study the scaling

behavior of the zero-crossings in the domain-wall free-energy, for which we can derive an

exact expression in terms of renormalized couplings. More details are described in Sec.

3.3.

1.3.2 Random Field Ising Model

The random field Ising model (RFIM) was first introduced by Imry and Ma [11] in 1975.

It represents a class of quenched disordered spin models [15] with disorderedness coupled

to each individual spin, which is different from the spin glass models with disordered

interaction constants. The general Hamiltonian of RFIM with N spins is

H = −J
∑
<i,j>

sisj −
N∑
i=1

hisi (1.2)

where the major difference from the traditional Ising model is the random field term hi

for spin i. Different spins usually have identical independent distributed random fields

hi, and hi often follows a uniform [65] or Gaussian distribution [66].

As a statistical mechanical model, the most investigated theoretical aspect of RFIM

is still the critical phenomena, such as ferromagnetic phase transition. For one dimen-
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sional RFIM, its exact solution suggests no phase transition [67]. Through a number of

theoretical calculations [68, 69], three dimensional RFIM has a phase transition from a

paramagnetic phase to a ferromagnetic one [69], which suggests the lower critical dimen-

sion is dl = 3.

However, the focus of our study in Chapter 4 is not the phase transition but the aging

dynamics of the RFIM simulating experimental system. In terms of experimental studies,

the diluted antiferromagnet is considered as an experimental realization of the RFIM

[70, 71]. The model has also been used to study other materials, such as impure substrates

[72] and magnetic alloys [73]. The experimental system to model here is a thin-film

ferromagnet/antiferromagnet bilayer which exhibits non-Arrhenius power-law aging of

the magnetization state [30]. It is expected that, in such a complex experimental magnetic

system, the aging or relaxation to equilibrium state may be trapped by metastable states,

and the relaxation may follow an exponential scaling according to the Arrhenius law [74]

τ = τ0 exp

(
E

kBT

)
(1.3)

where τ is the characteristic activation time, τ0 is a material-dependent pre-exponential

factor, E is the energy barrier between two local/local (or local/global) minimum, kB

is the Boltzmann constant, and T is the temperature. However, what is observed in the

experiment is a power-law relaxation with a subunity exponent instead of an exponential

relaxation. The experiment itself cannot explain this phenomena, and the small exponent

is not convincing either to conclude the power-law relaxation.

In order to explain the experiment and justify the small-exponent power-law, we use

a two dimensional RFIM and the Monte Carlo method to simulate the experimental ma-

terial with simplifying approximations. This simple model captures the salient features



Chapter 1. Introduction 10

Table 1.1: Summary of Hanoi networks at system size N →∞

Network Degree Planarity Diameter Fractal Dimension

HN3 3 Planar
√
N 2

HN5 5 Planar lnN ∞
HNNP 4 Nonplanar lnN ∞
HN6 6 Nonplanar lnN ∞

of the non-Arrhenius aging observed in the experimental measures, i.e., power-law relax-

ation with a subunity exponent. In addition to the scaling, the aging in the Monte Carlo

simulation can be easily visualized, which shows the system evolves to two big domains

with oppositely oriented spins. What the aging can do is actually smoothing the domain

wall between these two domains, and the system can never break the barrier imposed by

the domain wall. More details are described in Chapter 4.

1.4 Hanoi Networks

In our investigations, one of the innovative insights is contributed from the finite-dimensional

lattice-like networks. We mainly use 4 types of Hanoi networks [75] which are small-world

networks with a hierarchical, recursive structure that avoid the usual randomness involved

in defining an ensemble of networks. Thus, no additional averages of such an ensemble

are required to obtain scaling properties in thermodynamical limit from a finite system

size, which reduces the computational effort. The Hanoi networks combine a real-world

geometry with a hierarchy of small-world links, as an instructive intermediary between

mean-field and finite-dimensional lattice systems, on which potentially exact results can

be found using the renormalization group [2].

Across all the chapters, we use four Hanoi networks (HNs): HN3, HN5, HNNP, and
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HN6. Their general characteristics are summarized in Table 1.1. These HNs have different

degrees, planarities, diameters, and fractal dimensions, each of which may have different

effects on the model. For example, there have been studies showing different degrees of

connections may affect the critical phenomena [76, 77]; the planarity of complex networks

may affect Ising model’s phase transition [78, 79] and computational complexity [25].

Each of them can be built on a simple backbone of a 1D lattice. The 1D backbone

has N = 2k + 1 (k = 1, 2, 3, · · · ) sites where the sites are numbered from 0 to N . Any

site n, 0 ≤ n ≤ N , can be defined by two unique integers i and j,

n(i, j) = 2i−1(2j + 1), (1.4)

where i, 1 ≤ i ≤ k, denotes the level in the hierarchy and j, 0 ≤ j < 2k−i, labels

consecutive sites within each hierarchy i. Site n = 0 is defined in the highest level k

or, equivalently, is identified with site n = N for periodic boundary conditions. With

this setup, we have a 1D backbone of degree 2 for each site and a well-defined hierarchy

on which we can build long-range links recursively in three different ways: HN3 [75]

is constructed by connecting the neighbor sites n(i, 0) ←→ n(i, 1), n(i, 2) ←→ n(i, 3),

n(i, 4)←→ n(i, 5), and so on and so forth. For example, in level i = 1, site n(1, 0) = 1 is

connected to n(1, 1) = 3; site n(1, 2) = 5 is connected to n(1, 3) = 7; and so on. A initial

section of a HN3 network is given in Fig. 1.3. As a result, HN3 is a planar network of

regular degree 3.

HN5 [1], as shown in Fig. 1.4, is an extension based on HN3, where each site in level

i (i ≥ 2, i.e., all even sites) is further connected to sites that are 2i−1 sites away in both

directions. For example, for the level i = 2 sites (sites 2, 6, 10, · · · ), site 2 is connected

to both site 0 and site 4; site 6 is connected to sites 4 and 8; etc. The resulting network
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0� 1� 2� 3� 4� 5� 6� 7� 8� 9� 10� 11� 12� 13� 14

(�, �) (1,�0)(2,�0)(1,1)(3,0)�(1,2) (2,1) (1,3) (4,0)(1,4)(2,2) (1,5) (3,1)(1,6) (2,3)

Figure 1.3: An example of the first 14 sites of HN3 on a semi-infinite line.

remains planar but has a hierarchy-dependent degree, i.e., 1/2 sites have degree 3, 1/4

have degree 5, 1/8 have degree 7, etc. In the limit of N →∞, this network has average

degree 5.

HNNP [1], also shown in Fig. 1.4, is constructed from the same 1D backbone as

HN3 and HN5. However, for site n in level i with even j, it is connected forwards to

site (n + 3 × 2i−1); while site n in level i with odd j is connected backwards to site

(n − 3 × 2i−1). Level 1 and level 2 sites have degree 3, and level 3, 4, 5, · · · sites have

degree 5, 7, 9, · · · . The HNNP has an average degree of 4 and is non-planar.

HN6 [1] is constructed from HNNP in the same way of constructing HN5 from HN3.

The extra links are initiated from site in level i (i ≥ 2 who i.e., all even sites) connects to

sites that are 2i−1 sites away in both directions. The resulting network is still a nonplanar

with hierarchy-dependent degree.

As you can see, these four networks are all constructed hierarchically and can poten-

tially use renormalization group in a similar way. Using these networks, renormalization

group has been applied to lattice gas model [2, 29] and ferromagnetic Ising model [80, 81].

In the study here, the models are extended to lattice glass model and antiferromagnetic
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Figure 1.4: Depiction of HN5 (top) and HNNP (bottom), first introduced in Ref. [1].
Green-shaded lines in HN5 represent its difference to HN3, which is at its core (dark
lines). While HN3 and HN5 are planar, HNNP is non-planar.
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Ising model.

1.5 Computational Methods

In all the three projects in this dissertation, the computational methods are the most

important part to implement the models and realize the computations. We use a wide

range of different computational methods, such as Markov-Chain Monte Carlo (MCMC)

method, non-Markov-Chain Monte Carlo method, Renormalization Group (RG), nu-

merical analysis, and graphical models. These methods requires a broad knowledge in

computer science, physics, mathematics, and statistics. Moreover, their implementations

take a large amount of time and effort for coding, testing, computation, and analysis.

Our computational work may not only contribute new insights in physics but also shed

light onto algorithms development and optimizations.

Specifically, we mainly adapted and implemented three advanced methods: Simulated

Annealing (SA), Wang-Landau sampling (WL), and Renormalization Group (RG).

The Simulated Annealing (SA) [82] was first formulated as a robust approach to find

a minimization of a function with a large number of variables in statistical mechanics

[83, 84]. This algorithm imitates the slow cooling process in metallurgy to increase its

crystallization and reduce its defects. In the implementation of the algorithm, it slowly

decreases the probability of accepting worse transitions or solutions to robustly find a

local or global minimum. In physics, the probability of a worse transition is usually

controlled by the temperature, which makes this name self-explaining. Kirkpatrick et. al.

[82] published a famous paper on Science to formally define, apply, and discuss SA in the

scenarios of combinatorial optimization, statistical mechanics, physics design of computer,

and even the famous traveling salesman problem. It is a widely used method not only to
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search for a global minimum but can also to simulate the dynamics of a physical system

because the annealing process simulates the physical process. In the implementation of

SA in our studies, our goal is to not only simply search for the minimum (ground states)

but also learn the relaxation dynamics. This process is extremely costly in terms of the

computational time because we need to cool the system slowly and repeat the annealing

many times (50 ∼ 1000 runs in our projects). For most SA results in Chapter 2 and 3,

each curve takes about ∼ 50 hours using sequential computation on a single core. More

detailed computing setup is described in Chapter 2 and 3.

The Wang-Landau sampling (WL) [85] is a computational method using non-Markov-

chain Monte Carlo. It is a flat histogram method which keeps track of all the random

walks in the function (energy or configuration) space. Every transition from one state to

another depends on all the histories of these two states. This method is based on the fact

that a random walk in the function space with a probability proportional to the inverse

of the probability density (or mass, for discrete system) enforces a flat histogram. In

physics, this method is extremely attractive because it can be used to sample the density

of states. The density of states can be used to calculate most physical properties using the

partition function in statistical mechanics [86]. It has been shown as a successful method

in solving the problems of ferromagnetic Ising model [87], HP model of protein folding

[88], polymer chain [89], and numerical integration [90]. However, it has its limitations,

too. The two main limitations are accuracy and convergence [91]. These two aspects are

strongly correlated with each other and also depend on the specific problems [88, 92].

There has been a lot efforts trying to improve both aspects [93, 94]. In our work, all

the models are disordered systems with entangled geometric frustrations which makes

it extremely difficult to explore all the energy or configuration space. We improved the

algorithm by introducing one more type of random walk, which significantly improved the
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computational efficiency [29]. The computation time for the largest system size achieved

decreases from ∼ 150 hours to ∼ 20 hours. More details of the setup, procedure, and

results are described in Chapter 2 and 3.

The Renormalization Group (RG) [95] is an analytical method to take advantage of

the symmetries in the problem and to renormalize the problem to a low-dimensional

self-similar one. Using RG, some problems can be solved on paper beautifully. For exam-

ple, one-dimensional and two-dimensional Ising model without external magnetic fields

can be solved exactly using RG [51]. However, more complex problems require compu-

tational implementations using modern symbolic computational tools, such as Mathe-

matica. Boettcher et. al. develop a RG procedure in hierarchical networks using RG and

Mathematica [2, 96, 97]. We use the same RG procedure to explore various equilibrium

physical properties, such as internal energy, entropy, magnetization, specific heat, suscep-

tibility. These equilibrium results are extremely valuable to learn the dynamics and phase

transitions, especially considering all computational methods may fail to equilibrate for

problems of large disordered systems at low temperatures. More details of the RG setup

are described in Sec. 3.3.



Chapter 2

Jamming in Hanoi Networks

In this chapter 1, we propose to use the lattice glass model (BM model) on hierarchical

networks [75], which are networks with a fixed, lattice-like geometry. They combine a

finite-dimensional lattice backbone with a hierarchy of small-world links that in them-

selves impose a high degree of geometric frustration despite of their regular pattern. In

fact, the recursive nature of the pattern can ultimately provide analytical solution via the

renormalization group (RG), positioning these networks as sufficiently simple to solve as

well as sufficiently lattice-like to become an alternative to mean-field solutions [2]. Un-

like mean-field models, our network is dominated by many small loops that are also the

hallmark of lattice systems. Our goal is to find

1. whether the lattice glass model leads to jamming state in hierarchical networks;

2. whether there is an ideal glass transition underlying the jamming transition;

3. whether the local dynamics affect the jamming process.

1The results of this chapter have been published in Ref. [29].

17
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To our knowledge, these questions have not been studied in any small-world systems.

Our results can contribute new insights to understand jamming.

We find that BM in these networks can jam, even when there is certifiably no equi-

librium transition; the geometric frustration that derives from the incommensurability

among the small-world links is sufficient in many cases to affect jamming. In fact, jam-

ming is most pronounced for fully exclusive neighborhoods (l = 0). It disappears for

more disordered neighborhoods (l = 1), at least for our non-regular networks, where the

allowance of l = 1 neighbor to be occupied seems to provide the “lubrication” that averts

jams. However, the packing fractions at which time-scales diverge is virtually indistin-

guishable from random close packing within the accuracy of our simulations.

Mean-field calculations of BM in Ref. [47] predict a kinetic transition for dynamic

rules based on nearest-neighbor hopping. In our simulations, we find that such hopping,

in addition to the particle exchange with a bath, can affect a dramatic change in the

dynamic behavior and eliminated jamming in all cases we consider.

2.1 Lattice glass model

The lattice glass model as defined by Biroli and Mezard (BM) [16] considers a system of

particles on a lattice ofN sites. Each site can carry either xi = 0 or xi = 1 particle, and the

occupation is restricted by a hard, local “density constraint”: any occupied site (xi = 1)

can have at most l occupied neighbors, where l could range locally from 0 to the total

number of its neighbor-sites. In this model, the jamming is defined thermodynamically

by rejecting the configurations violating the density constraint. Here, we focus on global

density constraints of l = 0 (completely excluded neighborhood occupation) and l = 1

as the most generic cases. The system can be described by the grand canonical partition
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function

Z(µ) =
∑

allowed {xi}

exp

[
µ

N∑
i=1

xi

]
, (2.1)

where the sum is over all the allowed configurations {xi}. Here, µ is the reduced chemical

potential, where we have chosen units such that the temperature is kBT = 1/β = 1, and∑N
i=1 xi is the total number of particles in a specific configuration.

From the grand canonical partition function in Eq. (2.1), we can obtain the thermo-

dynamic observables we intend to measure, such as the Landau free energy density w(µ),

the packing fraction ρ(µ), and the entropy density s [ρ(µ)], as defined in the following

equations:

w(µ) = − 1

N
lnZ, (2.2)

ρ(µ) =
1

N

〈
N∑
i=1

xi

〉
µ

=
1

N

∂ lnZ

∂µ
,

s(µ) =
1

N

(
1− µ ∂

∂µ

)
lnZ.

2.2 Monte Carlo Methods

We aim to learn both the non-equilibrium dynamics and equilibrium behaviors in our

model and networks. To benchmark the equilibrium properties of the model on those

networks, we implement a multi-canonical algorithm due to Wang and Landau [85, 98].

We further need a grand-canonical annealing algorithm to study the dynamics of the

lattice glass model on those networks.
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2.2.1 Wang-Landau Sampling

Wang-Landau sampling [85] is a multi-canonical method to numerically determine the

entire density of states gn within a single simulation. This method is initially proposed to

study ferromagnetic Ising model, and we independently modify this algorithm to sample

density of states in the lattice glass model.

As introduced in Sec. 1.5, this method is based on the fact that a random walk in

the configuration space with a probability proportional to the inverse of the density of

states with occupation n, 0 ≤ n ≤ N , enforces a flat histogram in gn over all n. Based

on this fact, Wang-Landau sampling keeps modifying the estimated density of states in

the random walks over all possible configurations and can make the density of states

converge to the true value. The sampling procedure is:

1. Initially, set all unknown density of states {gn = 1} and the histogram {Hn = 0}

for all occupations n, initiate the modification factor f = e1 ≈ 2.71828 . . . ;

2. Randomly pick a site i; if it is empty (occupied), add (remove) a particle with a

probability of min
[
1, gn

gn+1

]
(min

[
1, gn

gn−1

]
) while obeying the rule of the hard local

density constraint on having at most l occupied nearest neighbors of site i;

3. Randomly pick one occupied site and one empty site; transfer a particle from the

occupied site to the empty, if the density constraint is not violated;

4. Update the Hn and gn of the current state, i.e., set {Hn = Hn+1} and {gn = gn×f};

5. Repeat steps 2 to 4 until the sampling reaches a nearly flat histogram for the Hn,

then update the modification factor f =
√
f and reset {Hn = 0};

6. Stop if f ≤ 1 + 10−8.
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Our procedure mostly follows the standard procedure of Wang-Landau sampling [85],

except for step 3. Its purpose is to facilitate the random walk to explore phase space

more broadly and to expedite convergence.

Wang-Landau sampling has been proved as an effective method to find the density of

states [85, 99, 100]. In our study, it can find convergence for system size of up to N ∼ 103

within a reasonably computational cost. From the density of states, we can calculate the

equilibrium thermodynamical properties for the corresponding system sizes.

2.2.2 Grand-Canonical Annealing

In parallel to the equilibrium properties provided by Wang-Landau sampling, we also

implement a form of simulated annealing [82] to explore the dynamics of the model

and the possibility of jamming, in a process that is similar to an experiment. Simulated

annealing used in this study follows the standard procedure [101]. The corresponding

experiment is exchanging particles between the network and a reservoir of particles with

(dimensionless) chemical potential µ. In our study, the annealing speed is not controlled

by decreasing temperature (which we set to β = 1) but by increasing the chemical

potential. The procedure of the annealing algorithm is:

1. Initially, start with chemical potential µ0 = 0 ;

2. Randomly pick a site n; if it is empty (occupied), add (remove) a particle with a

probability of min [1, exp(µ)] (min [1, exp(−µ)]) while obeying the rule of the hard

local density constraint on having at most l occupied nearest neighbors of n;

3. If hopping is allowed, randomly pick one site; only if it is occupied, randomly pick

one of its empty neighbor(s) and displace the particle if the density constraint

remains satisfied;
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4. Increase µ by dµ every 1 Monte Carlo sweep (N random updates), where dµ/dt (in

time-units of dt = 1) is the annealing schedule and dµ� 1;

5. Repeat steps 2 to 4 until µ reaches a certain (large) chemical potential.

Following the procedure above, the simulated annealing can reveal whether or not a

jamming transition occurs in the process. Besides that, we can test the effect of local

dynamics [16, 44] by adding a local hopping random walk (step 3), i.e., a particle can

transfer any of its empty neighboring sites as long as the constraint remains satisfied.

The results are shown and explained in the following section.

2.3 Results

To assess the properties of jamming, we first have to benchmark our systems with the

corresponding equilibrium behaviors. After that, we discuss the dynamic simulations with

the annealing algorithm in reference to these equilibrium benchmarks.

2.3.1 Equilibrium Properties

Wang-Landau sampling, as described in Sec. 2.2.1, is ideally suited for our purpose, since

it provides access directly to the density of states gn as a function of occupation number

n, which yields the partition function as

Z(µ) =
nmax∑
n=0

gne
nµ. (2.3)

All thermodynamic quantities in the equilibrium can be obtained numerically by sum-

mation of the formal derivates of Z(µ), such as those in Eqs. (2.2), over all permissible

occupation numbers 0 ≤ n ≤ nmax < N . (For all nmax < n ≤ N it is gn = 0.)
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Table 2.1: Closest packing fractions ρCP found by Wang-Landau sampling. The values
for l = 0 have been previously obtained with exact RG, the one for HNNP being unique,
with every second, odd site occupied. For l = 1, we also predict exact fractions with
nontrivial entropy densities, see Fig. 2.1. However, the results for l = 1 is based on
results of system sizes 16 ≤ N ≤ 512. The closest packing fraction may change for larger
system sizes.

Network l = 0 l = 1

HN3 3/8 [2] 9/16
HN5 1/3 [2] 1/2

HNNP 1/2 1/2

In Fig. 2.1, we plot the density of states as a function of the packing fraction, both

obtained with Wang-Landau. It becomes apparent that each model has a simple rational

value for its optimal (µ → ∞) “random” close packing fraction ρCP = nmax/N . This

corresponds to a random packing in the sense that it has a nontrivial entropy density

due to geometric disorder (imposed by the lack of translational invariance in the lattice),

except for HNNP at l = 0, which has a unique “crystalline” packing of every odd site

being occupied. While these values for ρCP have been previously obtained with RG for

l = 0 [2], the simulations predict also strikingly simple but nontrivial values for l = 1,

where exact RG is likely not possible. These values are listed in Table 2.1.

Wang-Landau sampling converges within a reasonable time for system sizes smaller

than N ≈ 2000 but fails to converge for larger system size within 2 weeks of compu-

tational time. There may be two reasons for the lack of convergence: (1) the density of

states is not symmetric as a function of packing fraction, and this asymmetry requires

Wang-Landau to sample the whole configuration space, which increases the computa-

tional cost dramatically especially for large system sizes; (2) the lower the density of

states of the closest packed state, the harder it is for Monte Carlo sampling to find its

closest packing state because of the hard density constraint. Although Wang-Landau
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Figure 2.1: Density of states from Wang-Landau sampling at N = 1024. The green
dash-dot vertical line are showing the closest packing fractions (as shown in Table 2.1)
for each system. Note that only for HNNP at l = 0 there is a unique, crystalline ground
state.

sampling fails for large system sizes, the results of system size N = 1024 can still offer

an insight to the equilibrium state because the density of states and the packing fraction

exhibit only small finite-size corrections for increasing N . For example, the convergence

of HN3 with l = 0 is shown in Fig.2.2. Other networks with l = 0, 1 have similar or even

better convergence.

We can further demonstrate the quality of the Wang-Landau simulations, and ap-

praise their residual finite-size effects, by comparison with exact results obtained with

the renormalization group (RG) for l = 0 on HN3 [2]. In Fig. 2.3, we compare the results

for the packing fraction ρ(µ) as a function of the chemical potential for Wang-Landau

sampling on networks with N = 2k sites, k = 8 ∼ 10, with those from the exact RG after
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Figure 2.2: Convergence to the thermodynamic limit for finite system sizes for the ex-
ample of HN3 with l = 1 using Wang-Landau sampling. The figures are for the density
of states (left) and the packing fraction (right). The equilibrium packing fraction ρ(µ) as
a function of chemical potential µ is calculated from the density of states according to
Eq. (2.2); it approaches the closest packing fraction ρCP for 1/µ → 0. The convergence
for other systems is similar or better.

500 iterations, corresponding to a system of N = 2500 sites. Despite the much smaller

sizes of the Wang-Landau simulation, its results are barely distinguishable from the exact

result, affirming the Wang-Landau sampling results as good references for our dynamic

simulations, with negligible finite-size effects.

2.3.2 Dynamic Properties

The dynamic simulations of the BM on our networks uses the grand canonical partition

function controlled by a chemical potential µ that mimics the experimental situation in a

complex fluid or colloid, where particles are pumped into the larger system (the reservoir)

and can enter the field-of-view through open boundaries inside a smaller window. For

example, this could correspond to a 2d slice of a 3d colloidal bath used in colloidal
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Figure 2.3: Plot of the error in the finite-size packing fraction in Wang-Landau sampling,
|ρWL − ρRG|, as a function of 1/µ near close packing (µ→∞) in HN3 at l = 0. Here, RG
result ρRG(µ) from Ref. [2] at system size N = 2500 is taken as the exact, thermodynamic
packing fraction. Relative to ρRG(µ), the finite-size packing fraction, ρWL(µ), at N = 2k

with k = 8, 9, 10 already exhibit quite small and rapidly diminishing corrections.

tracking experiments [102]. Since our particles are not energetically coupled and merely

obey hard excluded volume constraints, temperature is irrelevant and we can set β = 1,

making the chemical potential dimensionless, βµ → µ. As we increase µ, the system is

more likely to accept more particles and increase the packing fraction ρ(µ). When µ is

small (or negative), the reservoir and the network readily reach an equilibrium state with

a certain packing fraction. However, when µ is large, the equilibrium state defined by the

partition function has a packing fraction close to the close packing ρCP . Because of the

density constraint and the disorder imposed by the hierarchical network geometry, the

system enters into a jam at a density far from equilibrium packing. As in experiments,
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this jammed state remains for an extremely long time, even when µ is further increased.

The ultimate packing fraction ρ∗ that the systems gets stuck at, in fact, is ever further

from random close packing, the faster the quench in µ is executed, where dµ
dt

is the quench

rate. In this, our results closely resemble those reported in Ref. [44].

2.3.2.1 Results for HN3

The equilibrium packing fraction and entropy from Wang-Landau sampling as well as

the dynamic results from simulated annealing for HN3 are shown in Fig. 2.4. Based on

the analytical results by Boettcher et al. [2], we can confidently conclude that there is

no phase transition in HN3 with l = 0. Yet, the dynamic simulations indicate that the

system jams nonetheless. The system jams even further from equilibrium for the case of

l = 1. Here, RG results have not been obtained so far and it is not clear whether there is

a thermodynamic phase transition. The equilibrium results from Wang-Landau sampling

(at N = 210) seem to suggest a singularity near 1/µ ≈ 0.06 where the entropy density

jumps noticeably and ρ(µ) ≡ ρCP for all larger µ. Either RG or results for bigger systems

may be needed to confirm whether there is phase transition or not.

The possible jamming transitions for both l = 0 and 1, revealed by the dynamic

annealing simulations in Fig. 2.4 (a) and (c), are further supported by a power law decay

of the residual packing fractions, ρCP − ρ∗(dµ), as a function of the annealing rate, dµ.

Here, we set the jammed packing fraction, obtained at µ → ∞ after annealing at rate

dµ, as ρ∗(dµ) = ρ(µ → ∞; dµ), where dµ/dt → dµ when measured in units of dt=̂1

sweep. Note that at these system sizes (N = 32, 768), even the weakest jam is of order

ρCP − ρ∗(dµ) ≈ 0.001 and, thus, still consists of a sizable number (> 30) of frustrated

particles.

As shown in Fig. 2.5, a linear fit of the data on a double-logarithmic scale at the
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Figure 2.4: Reduced packing fraction and entropy density for HN3 from Wang-Landau
sampling and Simulated Annealing. (a)&(b) are for l = 0, and (c) &(d) are for l = 1.
The black solid lines represent the equilibrium properties from Wang-Landau sampling
with N = 1024. The dotted lines are from simulated annealing with N = 32, 768, run at
different annealing schedules with dµ = 0.001/2j for j = 0, . . . , 8, from top to bottom.
Wang-Landau sampling provides the entropy density via Eq. (2.2), as shown in (b) and
(d), which is difficult to obtain from other Monte Carlo methods. For both, l = 0 and 1,
we find a non-zero entropy density for random close packing at µ→∞.
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Figure 2.5: Scaling of the dynamically reached packing fraction ρ∗(dµ) as a function of
the annealing rate dµ for different system sizes N of HN3. (a) For l = 0, the dashed
lines are for systems sizes N = 2k with k = 7, . . . ,10, 12, 14 and 15, from bottom to
top. All data sets (except for the smallest sizes, N = 128, . . . , 1024) collapse onto the
top line with a slope of 0.34 ± 0.01, which is obtained from a fit using the data of the
largest system size N = 32, 768. (b) For l = 1, the data sets converge even faster towards
power-law scaling. The dashed lines are for system sizes of N = 2k with k = 5, . . . , 8, 10,
12, 14 and 15, from bottom to top. All but the first 3 sets collapse onto a line of slope
0.19± 0.01, which is obtained from a fit for N = 32, 768. Error bars are about of the size
of each data point or smaller, indicating a relative error of less than 3%.
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Figure 2.6: Results of simulated annealing with hopping for HN3. For both (a) and (b),
the figure consists of one solid line for the equilibrium result obtained with Wang-Landau
sampling and 9 dotted lines obtained with simulated annealing at rates dµ = 0.001/2j

for j = 0, . . . , 8. For HN3 with l = 0 and l = 1, the system equilibrates for nearly all
annealing schedules, collapsing the data onto the equilibrium line. Only for HN3 with
l = 1, small deviations from equilibrium are observed for annealing schedules dµ ≤ 10−5.

largest systems is nearly perfect, justifying the assumption that the time-scales 1/dµ for

the existence of the jam diverge asymptotically with a power law for ρ→ ρCP . For HN3

at l = 0, the slope is 0.34 ± 0.01 with coefficient of determination R2 = 0.9975, while

for l = 1 the slope is 0.19 ± 0.01 with R2 = 0.9997, in both cases indicating a dramatic

increase of time-scales.

We also test the effect of introducing local hopping, implemented as suggested in step

3 of the algorithm in Sec. 2.2.2, which has not been addressed in Refs. [16, 44]. The results

shown in Fig. 2.6 indicate a substantial difference from the simulation without hopping.

For HN3 with l = 0, the jamming transition disappears even for the fastest annealing

schedule, dµ = 10−3. For HN3 with l = 1, the jamming transition can be eliminated at

least for an annealing schedule of dµ ≈ 10−5 or slower.
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Besides the Hanoi networks, we have repeated the annealing simulations on random

regular graphs, following Krzakala et al. [44]. On those graphs, BM with a hopping dy-

namics can reach a much denser state than with a varying chemical potential alone, which

is similar to what Rivoire et al. [47] argue. But because of the enormous computational

cost, we can only test dµ to as small as ∼ 10−6 for system sizes at most as large as ∼ 105.

No results are obtained to conclude that the jamming transition disappears entirely for

some smaller dµ, and we suspect that the behavior instead may resemble the mean-field

predictions of Rivoire et al. [47].

2.3.2.2 Results for HN5

The case in HN5 is different from that in HN3. Note that HN5, unlike HN3 and most

finite-dimensional lattices or the random graphs studied in Ref. [44], is not a regular

network but has an exponential degree distribution. In HN5 for both, l = 0 and l = 1,

as shown in Fig. 2.7, the equilibrium behavior obtained from Wang-Landau sampling is

smooth and there is no indication of a phase transition. Annealing reveals a jamming

transition and a power law decay similar to that in HN3 in the dynamic simulations only

for l = 0. For l = 1, surprisingly, there is no jamming transition. The simulations with

different annealing schedules equilibrate easily and collapse with the curves from Wang-

Landau sampling. This suggests that the combination of heterogeneity in neighborhood

sizes together with the possibility to have one occupied neighbor “lubricates” the sys-

tem sufficiently to avert jams. Correspondingly, the results from Wang-Landau converge

rapidly even for larger system sizes. As for HN3, permitting a local hopping dynamics

unjams the system also for HN5 with l = 0.
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Figure 2.7: Reduced packing fraction and entropy density for HN5 from Wang-Landau
sampling and Simulated Annealing. (a)&(b) are for l = 0, and (c) &(d) are for l = 1.
The black solid lines represent the equilibrium properties from Wang-Landau sampling
with N = 1024. The dotted lines are from simulated annealing with N = 32, 768, run at
different annealing schedules with dµ = 0.001/2j for j = 0, . . . , 8, from top to bottom. As
in Fig. 2.4, Wang-Landau sampling provides the entropy density via Eq. (2.2), as shown
in (b) and (d).
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Figure 2.8: Scaling of the dynamically reached packing fraction ρ∗(dµ) as a function of
the annealing rate dµ for different system sizes N of HN5 for l = 0, the dashed lines are
for systems sizes N = 2k with k = 8, 10, 12, and 14. All data sets collapse onto the black
solid line with a slope of 0.31± 0.01 with R2 = 0.9989, which is obtained from a fit using
the data of the largest system size N = 16, 384. Error bars are about of the size of each
data point or smaller, indicating a relative error of less than 3%.

Table 2.2: Summary of the results. “JT” means “ Jamming Transition ”, and “PT”
stands for “ Phase Transition ”. For each network and the allowed neighborhood occu-
pations of l = 0 and l = 1, we list to potential for a jam in dynamic simulations and the
likely existence of an equilibrium glass transition.

l = 0 l = 1

HN3 JT & no PT JT & uncertain
HN5 JT & no PT No JT & no PT

HNNP JT & uncertain No JT & no PT



Chapter 2. Jamming in Hanoi Networks 34

0 0.1 0.2 0.3
0

0.005

0.01

0.015

0.02

0.025

0.03

1/µ

�
C

P
�
�
(µ

)

(a): l = 0

0 0.1 0.2 0.3
0

0.05

0.1

1/µ

E
n
tr

o
p
y
 d

e
n
s
it
y

(b): l = 0

0 0.1 0.2 0.3
0

0.002

0.004

0.006

0.008

0.01

0.012

1/µ

�
C

P
�
�
(µ

)

(c): l = 1

0 0.1 0.2 0.3

0.28

0.3

0.32

0.34

1/µ

E
n

tr
o
p

y
 d

e
n

s
it
y

(d): l = 1

Figure 2.9: Reduced packing fraction and entropy density for HNNP from Wang-Landau
sampling and Simulated Annealing. (a)&(b) are for l = 0, and (c) &(d) are for l = 1.
The black solid lines represent the equilibrium properties from Wang-Landau sampling
with N = 1024. The dotted lines are from simulated annealing with N = 16, 384, run at
different annealing schedules with dµ = 0.001/2j for j = 0, . . . , 8, from top to bottom. As
in Figs. 2.4 and 2.7, Wang-Landau sampling provides the entropy density via Eq. (2.2),
as shown in (b) and (d). Note that in the limit of µ → ∞, HNNP at l = 0 has a zero
entropy which corresponds to a unique ground state. At l = 1, it attains the same close
packing fraction, ρCP = 1

2
, see Table 2.1, but now at a non-trivial entropy.
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Figure 2.10: Scaling of the dynamically reached packing fraction ρ∗(dµ) as a function of
the annealing rate dµ for different system sizes N of HNNP for l = 0, the dashed lines
are for systems sizes N = 2k with k = 8, 10, 12, and 14. All data sets collapse onto the
top line with a slope of 0.23± 0.01 with R2 = 0.9997, which is obtained from a fit using
the data of the largest system size N = 16, 384. Error bars are about of the size of each
data point or smaller, indicating a relative error of less than 3%.
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2.3.2.3 Results for HNNP

HNNP provides an interesting alternative among the networks we are considering here.

Unlike HN3 and HN5, HNNP is a nonplanar network, but like HN5 it has an exponential

distribution of degrees with an average degree of 4. Most importantly, HNNP at l = 0

possesses a “crystalline” optimal packing that is unique, see Fig. 2.9(b), and consists of

every second site along the line being occupied, i.e., those sites that uniformly have the

lowest degree of 3. Therefore, it provides the opportunity to explore the potential for

a first-order transition from a jammed state into the ground state, as was observed for

lattice glasses in Ref. [16]. In this case, RG can be applied to obtain ρ(µ) in equilibrium

exactly.

Indeed, we find a weakly jammed state in HNNP with l = 0, with only a small number

of frustrated particles, as shown in Fig. 2.9. The results of annealing simulations also show

a power-law decay (Fig 2.10), consistent with the approach to a jamming transition. As

RG suggest, and the smooth equilibrium curve for N = 1024 and the convergence with

increasing system sizes affirm, there is no thermodynamic phase transition in HNNP with

l = 0. Despite the weakness of those jams, we can find no indication that the annealing

simulations at any rate dµ can ever decay into the ordered state. Apparently, the struc-

tural disorder, enforced in HNNP through a heterogeneous neighborhood degree and the

hierarchy of long-range links, prevents such an explosive transition. The dominance of

such structural elements is further emphasized by the fact that HNNP for l = 1 exhibits

no jams, similar to HN5, with which HNNP shares that structure.
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2.4 Conclusions and Summary

We have examined the Biroli-Mezard lattice glass model on hierarchical networks, which

provide intermediaries between solvable mean-field models and intractable finite-dimensional

systems. These networks exhibit a lattice-like structure with small loops but also with

a hierarchy of long-range links imposing geometric disorder and frustration while pre-

serving a recursive structure that can be explored with exact methods, in principle. We

observed a rich variety of dynamic behaviors in our simulations. For instance, we find

jamming behavior on a regular network for which RG has shown that no equilibrium

phase transition exists. However, whether the dynamic transition occurs at a packing

fraction distinctly above random close packing remains unclear, and can only be resolved

with more detailed RG studies that are beyond our discussion here.

We have simulated the model on our networks with a varying chemical potential

µ, with and without local hopping of particles. Hopping impacted those simulations in

a significant manner, always eliminating any jams that have existed without hopping.

Solutions of the corresponding mean-field systems would have suggested that a dynamics

driven by hopping (but at fixed particle number) results in kinetic arrest [47]. Whether

canonical simulations with hopping alone, or hopping at different rates, would change this

scenario, we have to leave for future investigations, as well as the question on whether a

combined method of updates would alter the behavior observed on lattices and mean-field

networks.



Chapter 3

Antiferromagnetic Ising Model in

Hanoi Networks

In this chapter, we use both computational and theoretical methods to study the dynam-

ics and phase transitions in antiferromagnetic Ising model (AFM) in Hanoi Networks.

First, the motivation of this study is reviewed in Sec. 3.1. Then two Monte Carlo methods

are used to learn both the equilibrium and non-equilibrium properties for finite system

sizes, which is described in 3.2. In Sec. 3.3, the exact renormalization group (RG) is set

up for both fixed point analysis and equilibrium properties explorations. Using the Monte

Carlo methods and RG, spin glass phases, chaos, and a phase diagram are discovered in

the model and Hanoi networks, which is described in Sec. 3.4.

3.1 Spin Glass Phase and Chaos in Antiferromagnets

As introduced in Sec. 1.3.1, the Ising antiferromagnet (AF) is a convenient model of glassy

dynamics. With non-random interactions, it can still introduce geometric frustrations

38
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through complex structures and may give rise to a spin glass phase and glassy relaxation

at low temperatures [60, 103]. The motivations of this model in hierarchical networks are

• the antiferromagnetic Ising model (AFM) has been shown to have glassy dynamics

[58], magnetization plateaus [59] , and phase transitions [60], and even more in-

teresting results are expected from our hierarchical networks which are both finite

dimensional and exact solvable using RG ;

• the Hanoi networks are renormalizable and can be studied exactly [80, 81], which

could provide more insights about the equilibrium dynamics underlying the ex-

tremely slow glassy dynamics;

• the ferromagnetic Ising model in hierarchical networks has been studied and shows

phase transitions in Hanoi networks [104].

It is interesting to see how AFM behaves in these 4 hierarchical networks, HN3, HN5,

HNNP, and HN6, whose short-range and long-range bonds create entangled loops of

different sizes. These entangled loops can generate complex geometric frustrations and

introduce glassy dynamics and even phase transitions.

First of all, the Wang-Landau algorithm (WL) is employed to investigate the energy

landscape and the corresponding equilibrium behaviors for a range of different system

sizes. Then the simulated annealing (SA) is used to explore the dynamical behaviors,

and an extremely slow relaxation is discovered at low temperatures, which also has a

power-law scaling to different annealing schedules. In addition to these two Monte Carlo

methods, the renormalization group (RG) is the main focus to study the equilibrium

properties in the thermodynamic limit and to compare with the results from SA and

WL. We discover three phases (ferromagnetic, paramagnetic, and spin glass phases),
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chaos, and an interesting phase diagram of the transitions. The details of our work are

described in the following sections.

3.2 Monte Carlo Methods

Similarly to the methods in Chater 2, two Monte Carlo methods are used. The Wang-

Landau sampling (WL) is used to estimate the density of states, its energy landscape,

and further equilibrium properties for finite system sizes; while the simulated annealing

can simulate experiments and the glassy dynamics.

3.2.1 Wang-Landau Sampling

Wang-Landau sampling is first introduced to estimate the density of states in ferromag-

netic Ising model [85]. Here we use it to calculate the density of states gn of AFM in

these 4 networks. Comparing to traditional Ising model, AFM in Hanoi networks has

entangled geometric frustrations, so we expect slower convergence and more computa-

tional complexity. From the experience in the Jamming systems sampling in Chapter 2,

the sampling procedure for AFM in Hanoi networks is:

1. Initially, set all unknown density of states {gE = 1} and the histogram {HE = 0}

for all energy states E, initiate the modification factor f = e1;

2. Randomly pick a spin i and flip it with a probability of min
[
1,

gE1

gE2

]
where E1 is

the current state, and E2 is the state if the spin is flipped;

3. Randomly pick 2 spins and exchange them to explore more states quickly;

4. Update the HE and gE of the current state, i.e., set {HE = HE + 1} and {gE =

gE × f};
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5. Repeat steps 2 to 4 until the sampling reaches a nearly flat histogram for the HE,

then update the modification factor f =
√
f and reset {HE = 0};

6. Stop if f ≤ 1 + 10−8.

The goal of Step 3 is to facilitate the random walk to explore phase space more

broadly and to expedite convergence. We test the computations both with and without

Step 3. However, no significant difference of computational efficiency is found, which is

very different from the effect in Chapter 2. The difference effect may be due to the in-

trinsically different interaction models. Exchanging in Jamming system only changes the

configuration within the same occupation number n; while exchanging in AFM changes

both the configuration and the energy, which is equivalent to randomly flipping of 2 sites.

Due to geometric frustrations, Wang-Landau sampling can only find convergence for

system size of up to N ∼ 103 within ∼ 70 hours of sequential computation. From the

density of states, we can calculate the equilibrium thermodynamical properties for the

corresponding system sizes, which is included in Sec. 3.4.

3.2.2 Simulated Annealing

One of the most interesting phenomena in AFM is its glassy dynamics which can be learnt

using Monte Carlo simulation. In this work, a canonical Monte Carlo method, Simulated

Annealing [82], is used to explore the dynamics from high to low temperatures.

Similarly to the study of jamming in Chapter 2, the Monte Carlo simulation can be

considered as an experiment. The corresponding experiment is randomly flipping spins

in the networks under a certain temperature T . The standard procedure of the simulated

annealing [101] is adopted in this model. In the simulation, the procedure of the annealing

algorithm is:
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1. Initially, start with a high temperature T0 = 10 ;

2. Randomly pick a spin on a lattice site n to propose a flip;

3. Flip the selected spin with a probability of min [1, exp(−∆E/T )] where ∆E is the

potential energy change if the spin is flipped;

4. If exchange is allowed, randomly pick 2 neighbor-spins and exchange with a prob-

ability of min [1, exp(−∆E/T )];

5. Decrease T by dT every 1 Monte Carlo sweep (N random updates), where dT/dt

(in time-units of dt = 1 ) is the annealing schedule and dT � 1;

6. Repeat steps 2 to 4 until dT reaches a certain low temperature T = 1e− 3.

Step 4 is not a standard procedure in simulated annealing. The goal is to test the effect

of local dynamics, similar to what is used in Chapter 2. However, there is no significant

difference in the results, while jamming states are eliminated in Chapter 2. The reason

of that may be similar to what we observe in Wang-Landau sampling, which is due to

model differences.Detailed results are shown in Sec. 3.4.

3.3 Renormalization Group

Renormalization Group (RG) is applied to these 4 Hanoi networks (HN3, HN5, HNNP,

and HN6) which are suitable for decimation transformation in RG. The standard pro-

cedure developed for FM model by Boettcher, et. al. [80, 81] is used in the AFM here,

too. First, the general approach of RG on Hanoi networks is introduced; then the AFM

Hamiltonians without and with external fields for these 4 networks is specifically set up

and derived for RG.
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Figure 3.1: HN3 five-spin RG unit with all the couplings among the spins. K0 and K1

are actual bonds (connections) in HN3; while L is emerged in the RG steps.

Figure 3.2: Hanoi networks three-spin graph after tracing over xn±1.

3.3.1 RG on Hanoi Networks

The Hanoi networks are constructed hierarchically which is inherently suitable for RG.

As in the standard RG procedure, the spins in HNs are also hierarchically traced out

level by level [80, 104]. For example, the site n in HNs can be described by Eq. 1.4 (

n(i, j) = 2i−1(2j + 1) ), then the spins are traced out from level i = 1 level by level. In

the end, there is only 3 “spins” left, and all the Hamiltonian is renormalized to the bonds

among these 3 “spins”.

In terms of the 4 specific Hanoi network, we start with the most simple one HN3.

As shown in Fig. 3.1 [80], all the couplings are included in a RG unit of 5 spins. The

interaction constant on the backbone is K0 (= βJ0); the coupling through the long-range

bonds is K1 (= βJ1); and L is the emerging interaction which is initially 0.

After tracing over the odd spins xn±1, the long-range coupling as well the K0 and L
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Figure 3.3: HN5 five-spin RG unit with all the couplings among the spins.

Figure 3.4: HNNP five-spin RG unit with all the couplings among the spins.

between low-level sites is renormalized into K ′0 and L′. The depiction of the graph left is

shown in Fig. 3.2 [80], which is about half of Fig. 3.1 [80]. K ′1 in Fig. 3.2 [80] connects

to another adjacent half, which produces another five-spin RG unit. By recursively re-

normalizing the graph, the system size is reduced exponentially, and the final graph

simply has 3 spins but very complicated couplings K ′0, K
′
1 and L′. The most important

part in RG is to calculate these renormalized couplings.

In addition to HN3, the other three networks have different setup of the five-spin RG

unit but the same three-spin renormalized RG graph. The 5-spin graphlets are shown in

Fig. 3.3 [80] for HN5, in Fig. 3.4 [80] for HNNP, and in Fig. 3.5 [80] for HN6.
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Figure 3.5: HN6 five-spin RG unit with all the couplings among the spins. L1 is another
interaction term emerging in the RG steps.

3.3.2 RG with no magnetic field

The setup of RG is started by separating the AFM’s Hamiltonian into hierarchies

− βH =
k−2∑
n=1

(−βHn) +R(K2, K3, · · · ) (3.1)

where R is the coupling beyond Hn of levels k > 2. Hn depends on the interactions K0

on the backbone and L0, L1, K1, · · · among the long range couplings. The detailed RG

procedure is described network by network.

3.3.2.1 HN3, HN5, and their interpolations

For HN3 and HN5, the Hamiltonian Hn for each hierarchy with 5 Ising spins is

−βHn = K0 (xn−2xn−1 + xn−1xn + xnxn+1 + xn+1xn+2)

+K1(xn−1xn+1) + L0(xn−2xn + xnxn+2)

+yL1(xn−2xn+2) + 4I (3.2)



Chapter 3. Antiferromagnetic Ising Model in Hanoi Networks 46

where y is 0 for HN3 and 1 for HN5. y can be extended to a wide range of parameters from

−∞ to +∞, which leads to the interpolations of HN3 and HN5. These interpolations

may introduce more interesting phases and transitions. K0 is the interaction term of the

1D backbone. In terms of traditional Ising model’s interaction term J0, K0 = βJ0 which

is usually β = −1/T by setting J0 = −1 for AFM. The long range links over the same

hierarchies have the coupling term K1 (= βJ0) which is set as a constant in this RG flow.

L0 also stands for the coupling term emerged in the RG flow, and its initial value is 0. L1

is accounted for the extra long range links in HN5 comparing to HN3. The last term I is

a constant emerging after the first step of RG, and its initial value is 0. Its coefficient 4

is a simply a mathematical choice because there are effectively 4 spins in each hierarchy.

The initial values for these parameters are

I = 0

K0 = βJ0 = − 1

T
< 0

K1 = βJ0 = − 1

T
< 0

L0 = 0

L1 = βJ0 = − 1

T
< 0

(3.3)

where Boltzmann constant k is set as 1 here. K1 is not changing in the RG flow because

it is introduced again at every RG step. Therefore, it is equivalent to −1/T which can

be used as a reference to temperature. High temperatures T →∞ stands for K1 → −0;

while low temperatures T → 0 corresponds to large K1 → −∞.

After tracing over the sites xn−1 and xn+1, we can get this form of equation

− βHn = 2I ′ +K ′0 (xn−2xn + xnxn+2) + L′0(xn−2xn+2) (3.4)
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which is ‘half’ of original RG setup. For the convenience of mathematical and computa-

tional analysis, these parameters is transformed to a new set of activity parameters

C = e−4I

κ = e−4K0

λ = e−4L0

µ = e−2K1 = e−2L1

(3.5)

The pre-factors of K0, K1, I, and L1 is for the convenience of the RG calculations. Thus,

the new initial values are

C = 1, κ = µ2 > 1, λ = µ2y, µ > 1 (3.6)

where µ is equal to e2/T since K1 is set as a constant of −1/T . Apparently, only µ needs

to be specified to start the numerical RG flow. In other words, the initial values for

HN3(y = 0) and HN5(y = 1) are determined by µ and y.

To establish an intuitive connection to these defined RG parameters, the relationship

between µ and T is ,

T → 0 ⇔ K1 → −∞ ⇔ µ→∞ ⇔ 1/µ→ 0+

T →∞ ⇔ K1 → 0− ⇔ µ→ 1+ ⇔ 1/µ→ 1−
(3.7)

, and the relationship among κ, J0, temperature T , and µ is

J (0) = −1,

T = 2/ log(µ)

J (n) = −T
4

log κ(n)

(3.8)



Chapter 3. Antiferromagnetic Ising Model in Hanoi Networks 48

where J (0) stands for the initial value in the RG flow and is the same as J0, and J (n) and

κ(n) are the i-th renormalized variables.

By tracing over all the {xn} in Eq. 3.2 and Eq. 3.4, we can get 23 equations with 3

unknown variables (K0, L0, I). The solutions in terms of (κ, λ, C) are

κ′ =
2κλ(1 + µ)

κ2 + 2µκ+ 1

λ′ = µ2y (1 + µ)(1 + κ)2

2(κ2 + 2µκ+ 1)

C ′ =
C2κµ√

2(1 + κ)(1 + µ)3/2
√
κ2 + 2µκ+ 1

(3.9)

These solutions are the same as the RG process in FM Ising model [80], but the RG

results afterward are very different due to the inherent frustrations and complexity in

AFM. The fixed point analysis is continued in Sec. 3.4.

3.3.2.2 HNNP, HN6, and their interpolations

The initial RG setup of planar networks, HN3 and HN5, has been described in the

previous subsection. While the non-planar networks, HNNP and HN6, share a similar

setup except for different interaction terms due to different long-range links in these

small-world networks. The Hn for each hierarchy is

−βHn = K0 (xn−2xn−1 + xn−1xn + xnxn+1 + xn+1xn+2)

+K1(xn−2xn+1 + xn−1xn+2) + yL1(xn−2xn+2)

+L0(xn−2xn + xnxn+2) + 4I (3.10)
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where y is 0 for HNNP and 1 for HN6. The interpolations of HNNP and HN6 can also

be easily explored using different y’s. K0 (= βJ0 = −1/T ) is the interaction term of the

1D backbone. K1 (= βJ0) is also set as a constant βJ0 (= −1/T ). L0 is an emerging

terms after the first RG step, and L1 is for the extra long range links in HN6 comparing

to HNNP. I is still a constant. The initial values for these parameters are All the initials

values for these activity parameters are

I = 0

K0 = βJ0 = − 1

T
< 0

K1 = βJ0 = − 1

T
< 0

L0 = 0

L1 = βJ0 = − 1

T
< 0

(3.11)

By tracing the sites xn−1 and xn+1, the reduced form of Hamiltonian with 3 spins is

− βHn = 2I ′ +K ′0 (xn−2xn + xnxn+2) + L′0(xn−2xn+2) (3.12)

which is the same as that in HN3 and HN5. Similarly, a new set of parameters is intro-

duced, and their definitions and possible values are

C = e−4I > 0

µ = e−2K1 = e−2L1 > 1

κ = e−4K0 > 1

λ = e−4L0 > 1

(3.13)
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Their corresponding initial values are

C = 1, κ = µ2, λ = µ2y (3.14)

where y can be 0 for HNNP, 1 for HN6, and any other values for thier interpolations.

All the initials values for these activity parameters are the same as in HNNP. The RG

recursive equations are

κ′ =
κλ(1 + µ)2

(1 + µκ)2

λ′ = µ2y (κ+ µ)2

(1 + µκ)2

C ′ =
C2κµ2

(1 + µ)2(κ+ µ)(1 + µκ)

(3.15)

These solutions are also the same as those in Ref. [80], but we expect possible glassy and

chaotic behaviors introduced in AFM and these complex networks.

3.3.3 RG with magnetic filed

In order to study a broad range of physical properties using RG, the external magnetic

field H is needed. We plan to explore different physical properties, such as internal energy

e, magnetization m, free energy f , entropy s, specific heat cv, and magnetic susceptibility

χ.

Here the RG setup is extended to a more general scenario by including H. The proce-

dure of such RG has been developed by Brunson and Boettcher in FM of Hanoi networks

[104]. In AFM, the same procedure is followed with corresponding adjustments of tem-

perature T (µ in RG) and prefactors of these derivations. Instead of detailed derivations
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[104], only the general logic and the formulations of targeted physics properties are de-

scribed in this section.

The starting point of all these equilibrium physical properties is the partition function

Z. As shown in Fig. 3.2, the partition function of the smallest system size N = 21 +1 = 3

Z(1) = e−βH(K(1),L(1),··· ; x1,x2,x3) (3.16)

where K(1), L(1), · · · stands for the raw activity parameters of temperature T , coupling

J , and magnetic field H; x1, x2, and x3 are the 3 spins (±1). Using RG and its recursive

solutions (similar to Eq. 3.9 in RG without magnetic field), it is easy to obtain the

renormalized activity parameters K(n), L(n), · · · . The superscript n means system size

N = 2n + 1.

The physical properties calculated are

1. internal energy per spin

e = − 1

N

∂ lnZ

∂β
(3.17)

The goal is to find the equilibrium energy to uncover the non-equilibrium dynamics

in simulations.

2. Free energy per spin

f = − 1

N

1

β
lnZ (3.18)

3. Free energy difference between parallel and anti-parallel boundary conditions

The equation of the free energies is still the same as Eq. 3.18. The difference is that

the first spin (x0) and last one (xN) are fixed, i.e., the parallel boundary condition

(f1) have both x0 = xN = +1, while the anti-parallel boundary condition (f2) has
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x0 = +1 but xN = −1. The difference is

∆f = f1 − f2 = − 1

N

1

β
(lnZ++ − lnZ+−) = − 1

N

1

β
ln
Z++

Z+−
(3.19)

where Z++ and Z+− stand for the partition functions of parallel and anti-parallel

boundary conditions, respectively.

The goal of this parameter is to discover the chaotic dynamics and spin glass phase.

In a spin glass system with chaotic dynamics, the difference ∆F is non-zero in the

thermodynamic limit and changes signs at different temperatures [105]. In a range

of temperatures, the number of times of changing sign of ∆F may increase with

system size following a power-law.

4. entropy per spin

s =
1

N

∂

∂T

(
1

β
lnZ

)
(3.20)

Entropy may be useful to understand the geometric frustrations and compared to

Wang-Landu sampling’s density of states.

5. magnetization per spin

m =
1

N

1

β

∂ lnZ

∂H
(3.21)

The magnetization may have interesting patterns at low temperatures [59, 106] due

to complex local spin configurations.

6. specific heat per spin

cv =
∂e

∂T
(3.22)

If there is any second-order phase transition, specific heat cv may show the transi-
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tion.

7. magnetic susceptibility per spin

χ =
∂m

∂H
(3.23)

If there is any second-order phase transition, susceptibility cv may show the tran-

sition.

There equations are trivial and can be found in the textbook, but their implementation

in RG take a large amount of analytical deviations and numerical testing. The detailed

description can be found in the work by Brunson and Boettcher [104].

3.4 Results

The most common observations in AFM with geometric frustrations are the glassy dy-

namics at low temperatures, which is often observed in experiments and simulations.

However, the equilibrium behaviors near and beyond the critical point can only be de-

tected using analytical method. Using both the computational and analytical methods

introduced the previous section, results of dynamic properties, fixed point analysis, and

corresponding equilibrium properties are described in Sec. 3.4.1, Sec. 3.4.2, and Sec. 3.4.3,

respectively.

3.4.1 Dynamic Properties

The interesting glassy dynamics can be observed from simulational experiments using

simulated annealing described in Sec. 3.2. In the simulations, the only control parameter

is the temperature T . The starting point is high T (T = 10.0) which corresponds to

paramagnetic disordered states. As the T is decreased, the system is more and more likely
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to accept a transition to a lower energy state. In a system with no geometric frustrations,

a low T → 0 would lead to the ground state with the lowest energy. However, AFM in

Hanoi networks cannot reach ground states due to complex geometric frustrations.
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Figure 3.6: Energy vs. temperature T from the Simulated Annealing of all the four
networks. In each of the 4 subfigures, the dotted curves from top to bottom correspond
to annealing schedules of 10−3, 10−3/21, 10−3/22, · · · , 10−3/29, respectively. The slowest
annealing schedule is 1.95×10−6. The solid black curves on the bottom are the equilibrium
curves from RG, which clearly shows the gap between equilibrium and non-equilibrium
behaviors.

The behavior at low T is similar to what is observed in the jamming systems in
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Figure 3.7: Scaling of dynamically reached lowest energy at different annealing schedules.
The error bar is calculated from 100 or more runs with different random initializations.
The ground states are obtained using renormalization group.

Chapter 2. As shown in Fig. 3.6 and 3.7, all four networks show the glassy dynamics with

a power relaxation. HN5 may reach equilibrium ground states at a much slower annealing

schedules due to increasing variations at lower schedules. Other networks have clearly a

gap between ’jammed’ state and the equilibrium ground states, and the gap can only be

eliminated at an infinitely slow annealing rate after an infinitely long time due to the

power-law scaling.

In order to get the relaxation scaling in Fig. 3.7, the most challenging part is to find

the ground states. Unlike the exact and fractal ”ground states” in the jamming systems,

AFM in these four HNs has different but converging ground states as the system size

gets larger and larger. Wang-Landau sampling fails to produce ground states for system

sizes N > 210, and renormalization group (RG) has to be used to find the ground states

at different system sizes. From RG calculations, the equilibrium ground states for HN3,

HN5, HNNP, and HN5 at system size N = 214 are −1.0, −1.166503..., −1.480224...,

−1.285644..., respectively. More details of RG and equilibrium properties are discussed
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in Sec. 3.4.3.

3.4.2 Fixed Point Analysis

Starting from the recursive solutions of Eq. 3.9 and Eq. 3.15 in Sec. 3.3, the fixed point

analysis can help discover possible chaotic and critical behaviors.

3.4.2.1 HN3, HN5, and their interpolations

For HN3 with y = 0 in Eq. 3.9, there are 2 analytical fixed points which are

κ∗ = 1, λ∗ = 1; (3.24)

κ∗ = 0, λ∗ =
1 + µ

2
(3.25)

where only the first one is a stable fixed point solution. The second one is only stable at the

high temperature limit, and any finite temperatures lead to the fixed point κ∗ = 1, λ∗ = 1.

The stability of the two fixed points is mathematically analyzed using the Jacobian matrix

later in this section.

HN5 with y = 1 has more interesting fixed points. The two fixed point solution are

κ∗ = 0, λ∗ = µ2yµ+ 1

2
(3.26)

κ∗ =
1

2

[
µ2 − µ+

√
(µ+ 1)(µ3 − 3µ2 + 8µ− 4)

]

λ∗ =
µ

4

[
µ2 − µ+ 2 +

√
(µ+ 1)(µ3 − 3µ2 + 8µ− 4)

] (3.27)

With different y, the parameter of interest κ in Eq. 3.27 can be written in a general
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form as a function of µ (µ > 1) and y

κ∗ =
1

2

[√
4 (µ1+y + µy − 1) + (µ1+y + µy − 2µ)2 + µ1+y + µy − 2µ

]
(3.28)

, and the corresponding λ is

λ∗ =
µy

4

(
2µ+ µy+1 + µy −

√
(µ+ 1) (4µ+ µ2y + 4µy+1 + µ2y+1 − 4µy − 4)− 2

)
(3.29)

The stability of the fixed points can be proved by both numerical iterations (as shown

in Fig. 3.8) and the eigenvalue of the Jacobian from Eq. 3.9. The Jacobian matrix is

Jacobian(κ, λ;µ) =

(
∂(κ′, λ′)

∂(κ, λ)

)
=

 J11 J12

J21 J22

 =

 ∂κ′

∂κ
∂κ′

∂λ

∂λ′

∂κ
∂λ′

∂λ

 (3.30)

where Jacobian is used to avoid conflicts with the interaction constant J , and the matrix

elements are

J11 =
∂κ′(κ, λ)

∂κ
= −2(κ− 1)(κ+ 1)λ(µ+ 1)

(κ2 + 2κµ+ 1)2
(3.31)

J12 =
∂κ′(κ, λ)

∂λ
=

2κ(µ+ 1)

κ2 + 2κµ+ 1
(3.32)

J21 =
∂λ′(κ)

∂κ
=

(κ− 1)(κ+ 1)(µ− 1)(µ+ 1)µ2y

(κ2 + 2κµ+ 1)2
(3.33)

J22 =
∂λ′(κ)

∂λ
= 0 (3.34)

From the Jacobian matrix, it is easy to calculate the eigenvalues which is not shown

here due to its complex and long form. The fixed points of Eq. 3.28 and Eq. 3.29 produce

eigenvalue with magnitude less than 1, which means stable fixed points.
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Figure 3.8: The numerical fixed points of κ∗ and corresponding J∗ using Eq. 3.35 for
HN3, HN5, and their interpolations. y = 0 corresponds to HN3; y = 1 corresponds
to HN5; and y < 0 corresponds that the extra bonds of HN5 comparing to HN3 are
ferromagnetic.

The fixed point as a function of temperature (µ or T ) at different y’s are shown in

Fig. 3.8. Equivalently, the fixed point of κ∗ is the converged renormalized κ∗ , and the

corresponding interaction constant J∗ is the renormalized interaction constant in the

thermodynamic limit. Based on Eq. 3.8, the relationship between κ∗ and J∗ is

J∗ = −T
4

log κ∗ (3.35)

As shown in Fig. 3.8, κ∗ changes with temperature µ. Similarly to FM Ising model

[80], the values of µ satisfying κ(µ) = 0 are the phase transition temperatures. After

transformation of Eq. 3.28, the equation κ(µ) = 0 can be rewritten as

µ1+y + µy − 1 = 0 (3.36)
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Figure 3.9: Transition temperatures at different y’s. This is also a phase diagram. The
phase above the curves is the paramagnetic phase while the phase below the curve is the
ferromagnetic phase.

where there is a real root for y ≤ −1.0 in the antiferromagnetic range of µ > 1. The

transition temperature (µC or TC) as a function of y is shown in Fig. 3.9.

3.4.2.2 HNNP, HN6, and their interpolations

In the AFM scenario, for HNNP (y = 0), there are only 2 possible fixed points

κ∗ = 0, λ∗ = µ2 (3.37)

κ∗ = λ∗ = 1 (3.38)

The stability of HNNP is not uniform across different temperatures. The fixed point of κ

and λ is 1 for µ ≤ 3 (T ≥ 1.820478 · · · ) and oscillating or chaotic fixed points for µ > 3

(T < 1.820478 · · · ). This chaotic behavior is referred as super-critical Hopf-bifurcation

[62]. This result is obtained from both numerical iterations of κ∗(κ, λ). The reason of the

chaotic RG trajectory from the microscopic perspective is that the effective coupling (J∗)
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switches between strong-coupling region (J∗ � 0) and weak coupling region (J∗ ∼ 0),

which indicates the correlation between different spins are very different [61]. Therefore,

the subsets of the spins behave heterogeneous and disorder to each other, which may

imply a spin glass phase [61]. More discussion of chaos is included in Sec. 3.4.3 to confirm

the spin glass phase.

The fixed point stability can be analyzed using the Jacobian of the recursive equations.

The simple numerical iterations of Eq. 3.15 is shown in Fig. 3.10, and the absolute

eigenvalue of Jacobian matrix is shown in Fig. 3.11.

Similarly to the approach in HN3 and HN5, the Jacobian matrix of the recursive

equations is

J11 =
∂κ′(κ, λ)

∂κ
=
λ(µ+ 1)2

(κµ+ 1)2
− 2κλµ(µ+ 1)2

(κµ+ 1)3
(3.39)

J12 =
∂κ′(κ, λ)

∂λ
=
κ(µ+ 1)2

(κµ+ 1)2
(3.40)

J21 =
∂λ′(κ)

∂κ
=

2(κ+ µ)

(κµ+ 1)2
− 2(κ+ µ)2µ

(κµ+ 1)3
(3.41)

J22 =
∂λ′(κ)

∂λ
= 0 (3.42)

The 2 eigenvalues are

Jevig = − (µ+ 1)

2(κµ+ 1)3

[
λµ(κ+ κµ− 1)− λ±√

λ2(µ+ 1)2(κµ− 1)2 − 8κ (µ2 − 1) (κ+ µ)(κµ+ 1)
]

(3.43)

We can plug in the 2 possible fixed points to these two eigenvalues, and the eigenvalues
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Figure 3.10: κ and J of HNNP RG recursive numerical results. When 1/µ < 1/3 or
T < 2/ log(3), there is no stable fixed point. This kind of chaotic fixed points is referred
as super-critical Hopf-bifurcation, which indicates a spin glass phase.
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become

Jevig =
±
√
−7µ2 − 2µ+ 9− µ+ 1

2µ+ 2
(3.44)

Because µ > 1 for AFM, the eigenvalues are complex numbers. In this case, the absolute

values matter: if the absolute value is smaller than 1, there is a stable fixed points,

otherwise there is not. The complex number means that the unstable fixed points are

oscillating. More descriptions of the chaotic fixed points is included for generalized y’s

later in this section. As shown in Fig. 3.11, by solving the Eq. 3.43 == 1, we can get the

transition temperature is µg = 3 (Tg = 1.820478...).

In this scenario, y makes the fixed point much more complicated. One of the fixed

point is

κ∗ = 0, λ∗ = µ2+2y (3.45)

Another positive fixed point for µ > 1 is
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Figure 3.12: Numerical iterations (dotted black) and analytical (red dashed) fixed points
of κ. The numerical solutions are data points between RG steps 20, 000 and 20, 100. There
is a chatoic transition for −2.0 < y < 2.0.
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Figure 3.13: Numerical iterations (dotted black) and analytical (red dashed) fixed points
of J . The numerical solutions are data points between RG steps 20, 000 and 20, 100. There
is a chatoic transition for −2.0 < y < 2.0. At y = ±2.0, all the data points of numerical
and analytical fixed points should exactly agree. The discrepancies at low temperatures is
due to the finite numerical iterations. The discrepancies converge to 0 at infinite iterations
which is to the thermodynamic limit.
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κ∗ =
−2µ+µy/2(µ+1)

(
µy/2+
√

4(µ−1)µ+µy
)

2µ2

λ∗ = 1
2
µy−2

(
2(µ− 1)µ+ µy + µy/2

√
4(µ− 1)µ+ µy

) (3.46)

Most interestingly, the fixed points are also chaotic for −2 < y < 2 (as shown in Fig.

3.12 and 3.13). When y > 2, other links is relatively weak, and the model becomes fairly

simple and has no phase transition. When y < −2, the whole system became similar

to ferromagnetic model and have FM-like phase transitions (as shown in Fig. 3.14). As

shown in Fig. 3.14, we can find the FM-like transition temperatures by solving κ∗ == 0

for y < −2.0, which is equivalently the solutions of

1− µ1+y − µ2+y = 0 (3.47)
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Figure 3.15: Numerical Solution of chaotic transition temperatures and phase transition
temperatures at different y’s for HNNP and HN6 interpolations.

The chaotic transition temperatures Tg can be determined from the eigenvalues of the

Jacobian matrix. The Jocobian matrix is

J11 =
∂κ′(κ, λ)

∂κ
=
λ(µ+ 1)2

(κµ+ 1)2
− 2κλµ(µ+ 1)2

(κµ+ 1)3
(3.48)

J12 =
∂κ′(κ, λ)

∂λ
=
κ(µ+ 1)2

(κµ+ 1)2
(3.49)

J21 =
∂λ′(κ)

∂κ
=

2(κ+ µ)µ2y

(κµ+ 1)2
− 2(κ+ µ)2µ2y+1

(κµ+ 1)3
(3.50)

J22 =
∂λ′(κ)

∂λ
= 0 (3.51)

The transition temperature can be solved by setting an equation of |eigenvalue| == 1.

The explicit equations of the eigenvalues are not shown due to length and complexity.

Because the 2 eigenvalues are conjugate complex numbers, |eigenvalue| is the 1st norm.

For complex eigenvalues, if the 1st norm is smaller than 1, the recursive equations can

reach a stable fixed point; otherwise, it would not. Also, complex eigenvalues usually
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Figure 3.16: Density of states from Wang-Landau sampling for system size N = 512.
Both the planar networks have highly degenerated ground states; while the nonplanar
ones have unique ground states. This is also confirmed by the entropy from RG.

mean oscillating flow of the parameters, which is what we see in the numerical iterations

in Fig. 3.12. The equation of |eigenvalue| == 0 is not solvable analytically but can be nu-

merically solved to find the chaotic transition temperatures. The transition temperatures

at different y’s are shown in Fig. 3.15

3.4.3 Equilibrium Properties

Equilibrium properties are vital to learn critical phenomena and almost impossible to

study experimentally for glassy systems due to the extremely long relaxation. To learn

the equilibrium properties of AFM in Hanoi networks, there are 2 methods: Wang-Landau

sampling and/or RG.

Wang-Landau sampling can estimate the density of states gE, which yields the parti-
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tion function as

Z(β) =

NE∑
i=1

gEi
e−βEi (3.52)

where β is 1/T , and NE is the total number of energy states. The density of states for

different HNs in AFM are shown in Fig. 3.16. We can see there is clearly a difference

between planar (HN3, HN5) and nonplanar networks (HNNP, HN6). The planar networks

have highly degenerate ground states, which may indicate more glassy dynamics at low

temperature. The nonplanar networks have unique ground state, which may indicate

an equilibrium phase transition. The ground states degeneracy can be further proved

by the entropy density s from RG as shown in Fig. 3.17. However, the Wang-Landau

sampling can only converge for system sizes < 1024. Due the small system sizes in Wang-

Landau sampling’s results, no evidence is obtained to prove the speculations of phase

transitions. Therefore, RG is needed to reach any meaningful conclusion for systems in

the thermodynamic limit.
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Figure 3.17: Entropy Densities for all HNs of system sizes N = 216, 232, 264. Each Hanoi
network has 3 curves of different system sizes, and these curves all collapses on each
other, which shows these curves can represent the behavior in the thermodynamic limit.
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Figure 3.18: Magnetization patterns with increasing external magnetic fields at low tem-
perature T = 0.1 for system size N = 2128 using RG.

Using RG, we explored most common physical properties, such as internal energy per

spin 〈e〉, magnetization per spin 〈e〉, free energy 〈e〉 with different boundary conditions,

specific heat, susceptibility. Our interesting findings are described as follows.

The results of the internal energy have been included in Sec. 3.4.1 and show the glassy

dynamics ( Fig. 3.6 ) sand the power-law relaxation (Fig. 3.7).

Another interesting finding is the magnetization behavior as to the increasing external

magnetic field. The plateau patterns similar to others’ findings [59] have been found as

shown in Fig. 3.18. These plateaus may be because of the hierarchically distributed local

spin pattern. Specifically, the overall average magnetization per spin is zero, but the local

spin-generated fields are non-zero and may be correlated with the Hanoi networks’ hierar-

chy. These local non-zero fields may have a nonuniform discrete distribution, which leads

to the plateaus with different lengths. Often, these magnetization plateaus are believed

to be from quantum effects [106, 107]. This result provides another example of classical

system where the plateaus are mainly caused by the structure of the networks. Further

conclusion needs detailed information of the low-temperature (even ground states) spin
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configuration, which is not directly retrievable from the RG.
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Figure 3.19: The free energy difference between the 2 boundaries conditions at different
temperatures. The system size is N = 2k, which are 216, 224, 232 in the figure above.
Obviously, at higher temperatures, there is no difference; at low temperatures, there is
more and more difference variations for bigger and bigger system sizes. A plot for low T
is shown next (Fig. 3.20) which shows the chaos at low T .

One of the main goals of RG is to explore the chaotic behaviors and phase transition

found in the fixed point analysis. In AFM, the free energy with different boundary con-

ditions has been used to study the chaos in physical systems. The reference parameter is

the free energy difference ∆F (Eq. 3.19) between different boundary conditions [105]. The

formulation of the free energies with different boundary conditions has been described

in Sec. 3.3.3. The difference in a wide range of temperatures is shown in Fig. 3.19 which

shows the ∆F is 0 at high T but non-zero and chaotic at low T . The curves may have

very different patterns for different system sizes, and Fig. 3.20 is an example.

The causes of the temperature chaos as shown in Fig. 3.19 and Fig. 3.20 is that the

spin glass phase may have spin configurations who share similar free energies but different
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Figure 3.20: The free energy difference between the 2 boundaries conditions at low
temperatures T < 2.0. The yellow dashed line is to show where the crossings of f1 and
f2 are. (f1: parallel boundary condition; f2: anti-parallel boundary condition.)

energies and entropies [63, 108]. Therefore, the free energy difference ∆F = ∆E − T∆S

could be chaotic due to ∆E � ∆F and ∆S � ∆F [105]. These dissimilar configurations

with similar free energies may distinguish from each other by a domain wall [105], which is

also why we can detect the temperature chaos from the free energies of different boundary

conditions.

The crossing point is where ∆F = 0 and ∆F changes sign. In other words, f1 (parallel

boundary condition) and f2 (anti-parallel) switch their order. In a spin glass with chaotic

dynamics, the number of crossings Nc is expected to increase polynomially with system
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Figure 3.21: Number of free energies crossings fitted to k (=log2N) in the temperature
range T ∈ [10−3, Tg] for HNNP. The yellow squares are the raw Nc’s which have fluctua-
tions due to finite size scaling and numerical precision. To get a more reliable fitting, the
moving average (MA) (black circles) with window size of 6 and overlap of 3 are used for
fitting. Two methods of fitting are used: Eq. 3.54 (left figure) and Eq. 3.55 (right figure).
The exponents are 0.312± 0.003 and 0.309± 0.003, respectively. Both of the R2 is bigger
than 0.99.

size [105]

Nc = ANα (3.53)

where A is a constant, N is the system size, and α is the exponent. The exponent α is

called the chaotic exponent. There are two way to obtain chaotic exponent α. The first

way is

log2Nc = log2A+ α log2N (3.54)

, and the second one is

log2Nc

log2N
=

log2A

log2N
+ α (3.55)

where log2N = k. The two ways can show us the trend from different perspectives as

shown in Fig. 3.21. These two exponents are 0.312±0.003 and 0.309±0.003, respectively.

Both strongly show there is a power-law increase with system size, which further confirms
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the temperature chaos and the spin glass phases.

As you may notice from the free energy curves in Fig. 3.20, Nc may depend on

the temperature and step size. First, we tested different 2 more temperatures ranges

T ∈ [0.1, 0.2] and T ∈ [0.2, 0.3] which show similar pattern. Second, different step sizes

are tested to make sure the Nc does not change with a smaller step size.

The specific heat and susceptibility are also calculated, and no second order phase

transition is found. Therefore, the phase transition from paramagnetic to spin glass phase

found in the fixed point may be a infinite order transition.

3.5 Summary and Conclusion

The antiferromagnetic Ising model has been studied in these four Hanoi networks. A com-

bination of both Monte Carlo methods and exact renormalization is applied to learn both

the non-equilibrium and equilibrium behaviors. There are interesting and new discoveries

in these disordered systems, as summarized below.

The Wang-Landau sampling provides a direct access to the equilibrium density of

states, which compares well with the asymptotic entropy density obtained by RG. Unfor-

tunately, the WL can only return results for system sizes up to 512. Nothing else could

be concluded using results from WL alone.

Another Monte Carlo method, the simulated annealing, simulates the dynamics at

different cooling rates. As the temperature gets lower and lower, the system gets trapped

indefinitely into meta-stable states of increasing worse energy for more rapid quenches

characterized by a power-law relation [29] which is also observed in jamming in Chapter 2.

The same power-law relaxation here may contribute new insights to how these disordered

connected with each other.
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Finally and most importantly, the exact renormalization provide the most information

of the equilibrium dynamics. The free energy chaos and super-critical Hopf-bifurcation

in the RG-flow are discovered, which indicates a spin glass phase transition. Moreover,

if we tune the strengths of the long-range links in these Hanoi networks, we can also

get paramagnetic-ferromagnetic phase transition. Using these results, we obtain a phase

diagram of the transition temperature with different interpolation strengths.

The temperature chaos and the power-law relaxation in AFM make our systems look

like a real glassy system, but the infinite-order phase transition is untypical. This findings

is new to physics. More investigations are needed to understand how the model and the

geometry play a role in these findings.



Chapter 4

Aging in the Two-Dimensional

Random Field Ising Model

The work in this chapter is motivated by the experimental study of antiferromagnet CoO

polycrystalline films in Sergei Urazhdin’s group [30]. In the experimental findings, glassy

dynamics and non-Neel-Arrhenius aging has been discovered. In this computational study,

a Monte Carlo simulation using the Random Field Ising Model (RFIM) is proposed to

explain and understand the experimental findings.

This chapter first introduces RFIM and its connection with the experiment. Then

the details of Monte Carlo simulations are described, and the choices of parameters are

discussed. All the results from simulations are shown in the third section (Sec. 4.3).

Finally, we conclude this chapter with interesting findings and discussions.

75
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Figure 4.1: The power-law exponents from experiments. The left figure is for CoO2 sam-
ple, and the right one is for CoO4 sample. The exponent may depend on the temperature
and specific materials.

4.1 Random Field Ising Model and experiments

As introduced in Sec. 1.3.2, the RFIM has been extensively utilized for modeling diluted

antiferromagnets [71], impure substrates [72], and magnetic alloys [73]. The experimental

system to simulate in this work is the polycrystalline films of antiferromagnet CoO [30].

It has 2 layers, antiferromagnet (AF) CoO layer with thicknesses from 2nm to 10nm and

ferromagnet (F)10-nm-thick permalloy layer. The resistance is measured at low temper-

atures to investigate the aging behaviors. A power-law scaling is observed in the aging

(as shown in Fig. 4.1), which is inconsistent with the Neel-Arrhenius model of thermal

activations. Sergei Urazhdin, et. al. [30] believe the phenomena indicate cooperative ag-

ing and may provide new insights into the mechanisms of AF/F bilayers, and potentially

other frustrated magnetic systems.

To simulate this complex experimental system, we need to make several simplify-

ing approximations. First, we are interested in the aging phenomena in the AF layer,

and therefore model only this layer. We assume that the magnetization state of the

thin AF film does not vary through its thickness, so that it can be approximated by a
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two-dimensional (2d) square lattice of Ising spins. We consider the staggered AF order

parameter, which is modeled by the ferromagnetic exchange interaction of each spin with

its four nearest neighbors. In the experiments, an external magnetic field is applied to fix

the ferromagnetic spins parallel to each other, but the external field has negligible effect

on AF spins. Therefore, The dipolar spin-spin interactions and the interaction with the

external fields used in our experiments are negligible, and the aging behavior is dominated

by the interaction and frustration at the interface which can be approximated by random

local fields hi coupled to each spin. The exchange interaction with F layer is described

by an uncorrelated quenched random field hi with a Gaussian distribution N (0, σ2
rand) of

zero mean and width σrand. In this approximation, the reversal of the magnetization of

F utilized in our experiments to initiate aging is modeled by the reversal of the random

field.

The direct comparison between experimental material and simulational system is

described as follows. The freshly prepared sample is coarse-grained to a two dimensional

(2D) RFIM with a random spin initialization. To obtain a stable magnetic state, the

samples are cooled from T = 300K at a rate of 4K per minute to low temperatures of

5K ∼ 150K for aging; while, in the simulation, a similar approach is taken to anneal the

system slowly to a stable state from T = 10 to a certain low temperature (0.1 < T < 1.0).

In the experiment, the aging is captured by measuring the resistance changes with time

under flipping external magnetic field H. The flipping field H is to keep the system in a

measurable aging state. In the simulation, the energy relaxation is measured with flipping

random fields, i.e. changing the sign of the random fields.

The random field Ising model, for example, in a square lattice, is described by the
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Hamiltonian is

H = −J
∑
<i,j>

sisj −
N=L2∑
i=1

hisi (4.1)

where the coupling constant J sets the overall energy scale and is set to 1 here, the spins

are bimodal, si = ±1, where 〈i, j〉 enumerates nearest-neighbor spins, L is the linear

dimension of the 2D square lattice with the total number of spins N = L2, and periodic

boundary conditions. The effects of temperature are modeled by the sequential random

flipping of spins with the probability P = exp(−∆E/T ) where ∆E is the energy change if

the flipping is committed. The time t is measured in sweeps, where one sweep corresponds

to N random sequential update attempts.

The experimental system and connection with random field Ising model has been

described and discussed in this section. The next section covers more details of the

simulation.

4.2 Monte Carlo Simulation

The general procedure of MC simulation in RFIM is similar to that in Chapter 3, but the

most challenging part is to approximate the experimental system with a reasonable set of

procedures and parameters. Different procedures are tested to simulate the experimental

procedure, and the final procedure used in the simulation is shown in the end of this

section. Meanwhile, a wide range of parameters are also tested to explore the dynamics

and behaviors of the RFIM, and all the parameters tested are shown in Table 4.1.

In the simulation, we first anneal the system to the aging temperature T at a slow

rate of r = 0.0001 per Monte Carlo sweep, which is comparable to the cooling process in

the experiment. After the annealing, the system stops evolving at some metastable state
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Variables Parameters
Temperature T 0.1 ∼ 1.0
Random Field σrand 0.1, 0.3, 0.5, 1.0
Annealing rate r 1e-1, 1e-2, 1e-3, 1e-4, 1e-5
System Size N 322, 642, 1282, 2562

MC sweeps in each cycle 2, 000 ∼ 50, 000

Table 4.1: Parameters tested in the simulations.

with spin domains (as shown in Fig. 4.2). The snapshots before and after annealing is

shown in Fig. 4.2. Then we simulate the aging at a fixed aging T (0.1 ≤ T ≤ 1.0). In the

aging process, we flip the random fields every 20,000 MC sweeps, which excites the system

to a non-equilibrium state. The parameters used in the simulations are determined by

exploring a wide range of each parameter (see Table 4.1). For example, annealing rates

(10−1 ≤ r ≤ 10−5) are tested to make sure that a metastable state is reached, and slower

annealing rates lead to no significant changes to the metastable state. Another important

parameter is the random field standard deviation σrand where too small σrand leads to plain

2D Ising model with exponential relaxation, and too big σrand would dominate the spin

behavior comparing to unit near-neighbor spin interactions.

After exploring different procedures and different parameters, the final procedure and

parameters used in the simulation are

1. Randomly generate independent and identically distributed (i.i.d.) random field

(hi ∼ N (0, 1)) and a random spin orientation (si = ±1) for each site;

2. Anneal the system from temperature T0 = 10 to the aging T (T = 0.1 ∼ 0.5) at a

rate of r = 10−4, and the spins are randomly flipped using Metropolis choice based

on the energy change;
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Before Annealing After Annealing

Figure 4.2: The snapshots of spin configurations before and after annealing of system
size L = 128. The state before annealing is simply a random state; while the state after
annealing is a metastable state which seemingly does not change any more.

3. After annealing to a certain temperature, fix the aging temperature T (T = 0.1 ∼

0.5), flip the spins using Metropolis choice, and measure the energy relaxation;

4. Flip the random fields every 20, 000 MC sweeps after the annealing to keep the

aging measurable in a reasonable time length.

The results from simulation and their comparison to experiments are described in the

next section below.

4.3 Results and Comparison to Experiments

After the annealing, the system reaches a metastable state with interlocking spin domains

of oppositely oriented spins. Although almost all spins are aligned with their neighbors at

the end of annealing and attain their Ising-energy per spin, 〈e〉 ≈ −2, see Fig. 4.3 and 4.4,
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(a) t=20000 (b) t=40000

(c) t=80000 (d) t=160000

Figure 4.3: Spin pattern snapshots in the Monte Carlo simulation at T = 0.3 for the
system size L = 128. (a) is the spin pattern after the annealing and before the first
random filed. (b), (c), and (d) are the spin snapshots at the end of cycles 1, 3, and 7,
respectively. The corresponding energy changes can be found in Fig. 4.4. In the aging
process, there is clearly domain wall formed gradually.
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Figure 4.4: Sequential simulations of energy relaxation for the system size L = 128 with
random field σrand = 1.0, temperature T = 0.3. Black symbols represent an average
of 100 simulation runs, and the blue curves are the power-law fittings with Eq. (4.2).
Each individual simulation is performed starting with the initial state obtained by quasi-
adiabatic annealing.



Chapter 4. Aging in the Two-Dimensional Random Field Ising Model 83

a sub-extensive amount of energy remains stored in rough domain walls that are pinned

by the random field. To initiate aging at a fixed temperature T , we flip the random fields

and simulate the evolution over 20,000 steps, after which the random field is flipped again

and the simulations are repeated. The field flip brings the system into a non-equilibrium

state, dislodging the domain walls. The snapshots of the spin distributions taken in the

end of different aging cycles in Fig. 4.3 show evolving spatial patterns, indicating that

the system does not relax to a unique equilibrium state, consistent with the experimental

result [30].

To establish the correlation with our experimental observations, a wide range of values

(as shown in Table 4.1) was explored for each parameter. For example, we tried the

random field σrand from 0.1 ∼ 2.0 where we found that small random fields would behave

similarly as 2D Ising model, and big random fields would be dominate comparing to J .

The measured variations of magneto-resistance due to aging are directly proportional to

the variations of the local random field exerted by AF on F.

To compare the results of our simulations to the experimental observations, we an-

alyzed the evolution of the average energy per spin 〈e〉 . We argue that the functional

form of the time dependence of 〈e〉 is likely the same as that of the measured magneto-

resistance, since the latter is directly proportional to the Zeeman energy of the ferro-

magnet, and other contributions to the energy of the F/AF system may be expected to

evolve in a similar manner. An example of the time dependence of 〈e〉 including ten se-

quential aging cycles, starting from an annealed state, is shown in Fig. 4.4. The obtained

dependencies can be well described by the power law

e(t) = e0 + A · t−c (4.2)
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Figure 4.5: Dependence of exponent c on temperature, for the system size L = 128 with
random field σrand = 1.0. At low temperatures, the power-law fitting may not converge
sometimes, for example, in Cycle 3 at T = 0.1. That is also why no temperatures T < 0.1
is used in the simulations.
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Figure 4.6: Asymptotic energy for different aging cycles for system size N = 1282 at
temperature T = 0.3. The asymptotic energy is obtained from the power-law fitting at
t→∞, i.e. e0 in Eq 4.2. Other temperatures tested show the same pattern.
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where e0 is the asymptotic (equilibrium) energy, A and c are the scale and the exponent,

respectively, and time t is the number of the Monte Carlo sweep. We note that changing

the time scale in Eq. 4.2 simply rescales the value of A without any effect on the exponent

c, allowing direct comparison with the experiment.

Fig. 4.5 shows that the values of exponent determined from the simulations are very

close to those obtained in our experiments as shown in Fig. 4.1. The simulations also

reproduce the relatively slow increase of c with increasing temperatures. This results is

inconsistent with the Neel-Arrhenius model. For example, for c ≈ 0.05 at T = 0.1, this

model would predict c = 1.7 at T = 0.5, a much larger increase than in Fig. 4.5. There is

no aging on the meaningful timescale at zero temperature, as expected for the thermal

relaxation of the system. Fig. 4.6 shows the dependence of the asymptotic (equilibrium)

energy value e0 provides further evidence that the system does not relax to a unique

equilibrium state, and thus cannot be described by the Neel-Arrhenius model.

4.4 Summary and Conclusion

The experimental findings in the AF/F CoO/Py polycrystalline bilayer films show glassy

dynamics and power-law aging effects with subunity exponents. In order to understand

the aging phenomena, the thin film material is approximated by the random field Ising

model on the 2D square lattice where the disordered AF/F interaction is described by

the uncorrelated quenched random fields.

The simulational procedure and parameters are tuned to reproduce the the experi-

mental system. Specifically, firstly, a slow annealing process is used to reach a metastable

state with interlocking spin domains (as shown in Fig. 4.3); secondly, a set of parameters

are tested to balance with random effects, finite size scaling, and computational cost;
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lastly, the energy states are recorded and compared to the resistance in experiments.

From the simulational results, the energy relaxation with respect to time is ana-

lyzed to compare to the experiments. A similar pattern to the experimental findings is

observed. The power-law aging and subunity exponents c are found, which can be di-

rectly compared to the results in the experiments. In addition to the small exponents,

the asymptotic (equilibrium) energy values indicate that the system does not relax to a

unique equilibrium state which may be the ground state at the low temperatures. Con-

sidering the power-law scaling, small exponents, and non-unique equilibrium state, the

simulation also shows non-Neel-Arrhenius model.

In summary, the model used in the simulation simplifies the complex experimental

system to only incorporate the two well-defined interactions: the nearest-neighbor ex-

change interaction, and the effective random fields produced by the interactions between

the F/AF layers. Using a proper set of parameters and procedure, the Monte Carlo sim-

ulation reproduces the power-law aging and subunity exponents with non-unique equi-

librium energies. The agreements between the experiment and the simulation provides

a strong evidence for the dominance of frustration caused by the random exchange in-

teraction at the F/AF interface, and may contribute insights to explain and understand

other frustrated magnetic systems.



Chapter 5

Summary and Future Work

Three disordered systems in finite dimensional lattice-like networks have been studied

using the Monte Carlo methods and renormalization group. There are both interesting

findings and challenges in all these three disordered models.

In the lattice glass model, the first evidence of a jamming transition with no phase

transition is discovered in HN3 with zero-allowed-neighbor constraint. In the antiferro-

magnetic Ising model, we find interesting chaotic RG-flows, spin glass phase, and infinite-

order phase transition. In the two-dimensional random field Ising model, the Monte Carlo

simulations help to explain the experimental observations of a power-law relaxation and

small exponents.

In addition to these interesting findings, there are also challenges and potential di-

rections we may work on in the future. The following 3 sections cover a summary of our

work, challenges, and future work.

87
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5.1 Jamming in Hanoi Networks

The lattice glass model is studied in finite-dimensional Hanoi networks. The grand-

canonical Monte Carlo simulations show non-equilibrium behaviors with a power-law

relaxation which indicates there is a jamming transition. We further explore the equi-

librium behaviors using the Wang-Landau sampling and the exact renormalization. The

equilibrium behaviors in the thermodynamic limit show that there is no phase transition

underlying the jamming transition in HN3, which is a new discovery in physics. Moreover,

the local dynamics is tested, and local hopping can not only eliminate jamming but also

improve the efficiency of these two Monte Carlo algorithms.

There are mainly three challenges in this project. Other projects actually have similar

ones.

1. The computational cost is high. Each computing job of the Wang-Landau sampling

and the Monte Carlo simulation takes 1 ∼ 200 hours to run on one node of a

HPC cluster. There are 3 networks, 2 sub-models (l = 0, 1), multiple system sizes

(N = 64 ∼ 65536) to test. A lot of time is spent on implementing the algorithm

using C/C++ and optimizing the code to improve the efficiency.

2. One problem is exactly solvable, but a similar one may not be. For example, HN3

with l = 0 has been solved by Boettcher and Hartman [2]. However, a similar

problem of HN3 with l = 1 cannot be solved in the same way. We try to solve

it using different ways, such as re-structuring the RG parameters and introducing

approximations, but these ways do not work, either.

3. The interpretation of the results is not trivial. A big problem we try to understand

is what causes the jamming, which is not immediately clear from the results of
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Monte Carlo methods and RG. We suspect the jamming is due to the metastable

states which has been shown in other models [47, 109, 110].

In the future, we may try to extend RG to more general jamming problems, such

as other complex networks and other constraint rules. After exploring more jamming

scenarios, we may gain more understanding of what causes jamming so that we can

understand the jamming transition better.

5.2 Antiferromagnetic Ising Model in Hanoi Networks

The antiferromagnetic Ising model (AFM) is a simple model but can have complex geo-

metric frustrations in these four Hanoi networks (HNs). In AFM, all four HNs except for

HN5 have a gap between the equilibrium and non-equilibrium energies, which is similar

to what is observed in Chapter 2. The relaxation scaling is also a power-law. Using the

exact renormalization group, more interesting results are discovered. Specifically, in the

RG-flow, the activity parameters are chaotic and have no stable fixed points in HNNP,

HN6, and their interpolations. Further analysis of the equilibrium properties, such as

free energies, specific heat, and susceptibility, confirms there is an infinite-order phase

transition to the spin glass phase. The chaotic exponent for HNNP is calculated to be

0.31± 0.01.

This project has similar challenges as those in the jamming project. In this case, the

RG computation takes much longer because of the requirements of larger system sizes

and high numerical precision to avoid numeric fluctuation-induced chaos. The fixed point

stability analysis needs mathematics, physics, and computer science to implement and

understand. In addition to that, in terms of physics, the temperature chaos discovered

need more investigations to understand the difference and similarities comparing to that



Chapter 5. Summary and Future Work 90

in quenched disordered systems.

In the future, the chaotic RG-flow could be analyzed further to understand the dif-

ferent patterns in different temperature ranges. We can also compare the temperature

chaos in Hanoi networks to those in other models to understand the chaotic behavior

better. The transition temperatures in the phase diagram may be able to be represented

using analytical equations based on the RG-flow calculations. Moreover, the structure of

the networks can be studied further to understand the what types of complex networks

may give rise to spin glass phase in AFM.

5.3 Aging in Two-Dimensional Random Field Ising

Model

The experimental system of AF/F bilayer films is approximated and modeled using the

random field Ising model (RFIM) in the square lattice. The Monte Carlo simulations

show power-law relaxations with subunity exponents at low temperatures, which is in

agreement with the experimental findings. The theoretical model and simulation help

explain the experiments.

The major challenge in this project is connecting the theoretical model, the Monte

Carlo simulation, and the real-world magnetic material together. To establish the model-

ing approximation and the simulation procedure, a lot of relevant work is reviewed, and

a range of procedures and parameters are tested.

In the future, the growth of separate domains may be studied to understand how the

random fields affect the spin patterns. In addition to RFIM, more advanced models, such

as fully frustrated XY model and Heisenberg Ising model, may be tried to model more
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complicated magnetic systems.
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