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Abstract 

Early Detection of Neonatal Infection in NICU Using Machine Learning Models 

By 

Zhuohan Chi 

 

Early and accurate detection of neonatal infection is critical but current scores 

(SNAP-II, CRIB) require 12–24 h of data. Using the MIMIC-III NICU cohort, we 

built an explainable ML pipeline that aggregates vital-sign and lab data from the first 

30 min and 120 min after admission. Missing values were handled with iterative 

multivariate imputation, and 18 classifiers were tuned via stratified 5-fold cross-

validation. CatBoost performed best at 30 min (F1 = 0.76; Acc = 0.79), while 

Gradient Boosting led at 120 min (F1 = 0.80; Acc = 0.81), both surpassing traditional 

scores by ~6 pp. Feature-coverage experiments showed that half of the top features 

(30 min) and 80 % (120 min) maintained peak accuracy, yielding compact, 

interpretable models. A two-stage deployment—CatBoost for ultra-early screening, 

Gradient Boosting for refinement—could provide clinicians with reliable infection-

risk alerts hours before conventional methods, supporting faster intervention and 

improved neonatal outcomes. 
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CHAPTER 1: INTRODUCTION 

Neonatal infections, including sepsis, remain a leading cause of morbidity and 

mortality in newborns, particularly in critical care settings such as neonatal intensive 

care units (NICUs)[1],[2]. These infections, often difficult to diagnose in their early 

stages, require timely identification to enable effective interventions. Delayed or 

inaccurate diagnosis can result in rapid disease progression, increased mortality, and 

long-term complications[3]. In parallel, antimicrobial resistance (AMR) has further 

complicated neonatal infection management, necessitating data-driven approaches to 

optimize diagnosis and treatment strategies[4]. 

Traditional scoring systems, such as SNAP-II and CRIB, are widely used to evaluate 

neonatal illness severity and predict outcomes[5],[6]. However, these tools are limited 

by their reliance on fixed variables and retrospective observations, often spanning 12–

24 hours, which delays critical decision-making[7]. Furthermore, they lack the capacity 

to handle complex, multidimensional datasets or account for dynamic changes in patient 

conditions[8]. These limitations highlight the need for advanced, real-time predictive 

tools. 

Machine learning (ML) has emerged as a transformative approach in healthcare, 

offering the ability to integrate and analyze complex data from diverse sources[9]. 

Leveraging ML and deep learning (DL) models, such as random forests, support vector 

machines, and recurrent neural networks, enables accurate predictions of neonatal 
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infection onset and associated mortality risks[10],[11]. These models have demonstrated 

superior performance compared to traditional methods, particularly when applied to 

large datasets such as MIMIC-III, a publicly available database of critical care patient 

records[12]. MIMIC-III provides a rich repository of neonatal data, including 

physiological measurements, laboratory results, and clinical interventions, making it an 

ideal resource for developing robust predictive models[13]. 

This thesis aims to develop a machine learning framework using data from MIMIC-

III to predict neonatal infections and their associated mortality risks. By focusing on 

real-time measurement data collected within the critical first hours of care, the proposed 

approach seeks to enable early, actionable predictions. This framework will incorporate 

explainable AI methodologies to ensure transparency and trust in the predictive models, 

facilitating their integration into clinical workflows[14]. The outcomes of this research 

have the potential to enhance early diagnosis, improve resource allocation, and 

ultimately reduce neonatal mortality in NICUs. 
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CHAPTER 2: METHOD 

Figure 2 introduced the research pipeline. It begins by selecting NICU patients who 

were admitted only once to the ICU and survived at least 120 minutes post-admission. 

Relevant clinical data are extracted from chartevents, labevents, and selected variables, 

then aggregated into 30- and 120-minute windows. After cleaning and imputing missing 

values, machine learning models are developed through cross-validation, with 

hyperparameters optimized via grid search. Finally, feature selection and SHAP analysis 

are used to interpret model predictions and highlight important clinical variables. 

2.1 Data Source 

The data source of this study is Medical Information Mart for Intensive Care III 

(MIMIC-III), a relational critical care database developed by the MIT Lab for 

Computational Physiology. MIMIC-III is a publicly available dataset containing de-

identified health data from patients admitted to critical care units at Beth Israel 

Deaconess Medical Center. It contains detailed health-related data for 46,520 unique 

critical care patients admitted between 2001 and 2013, covering 58,976 hospital 

admissions and 38597 ICU stays. The dataset includes demographics, clinical diagnoses, 

procedures, medications, lab results, etc. MIMIC-III contains over 2 million chart events, 

380,000 laboratory measurements, and over 10,000 procedures, making it a 

comprehensive dataset for critical care research. 
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2.2 Data Preprocessing 

After data collection, preprocessing is crucial for achieving reliable, complete, and 

perfect data for prediction tasks[15],[16]. In this research, preprocessing includes 

gathering relative data and dealing with missing values. 

This research aims to create a machine learning model to predict newborn infections 

within a short period of time. The first step is gathering patients in the NICU, which are 

the natal patients. We exclude patients been admitted to ICU more than once, and 

patients dead in two hours after being admitted to ICU for reducing the complexity of 

model[17]. 

Various physiological and hematological parameters are essential for early 

identification and management in predicting neonatal infections. Heart rate is a key 

indicator; tachycardia may signal systemic infections or sepsis, while bradycardia can 

indicate severe infection. Respiratory rate is also crucial, with tachypnea reflecting 

respiratory distress and decreased rates indicating failure[18]. Oxygen saturation (SaO₂) 

levels reveal respiratory efficiency, particularly during infections such as 

pneumonia[19]. Temperature regulation is vital, as fever or hypothermia indicates 

systemic responses to infection. Elevated temperatures suggest inflammation and 

hypothermia often indicates severe sepsis. Blood pressure readings are important for 

assessing[20] cardiovascular stability, with hypotension being a critical late sign of 

septic shock[21]. Hematological markers are indispensable; white blood cell counts can 

indicate infection, while neutrophil counts reflect acute bacterial responses. Lymphocyte 
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counts may decrease, signifying immunosuppression. Thrombocytopenia and abnormal 

hemoglobin levels may complicate infection management[22]. Immature granulocytes 

in blood smears indicate a strong bone marrow response to severe infections[23]. 

All measurements are not always collected simultaneously for each patient, and 

measurements may be collected multiple times, we aggregate the data for one patient by 

two time windows, 30 minutes and 120 minutes. In the 30 minutes dataset, we aggregate 

the data to minimum, maximum, and mean for each variable in first 30 minutes after 

patients admitted to ICU. Then do the same thing for the 120 minutes dataset. 

2.3 Missing Value Imputation 

 In a hospital environment and specifically in ICUs, many variables are measured. 

Figure 2 shows the missing value distribution in the datasets. However, these measures 

are not always conducted and available at the same time for any patient and this is the 

reason for the frequent problem of missing data, especially in early hours of admission. 

Appropriate handling of missing data is crucial to ensure the validity and generalizability 

of study findings[24],[25].  

There are three missing types: Missing Completely at Random, missing at random, 

and missing not at random. Understanding the types of missing data is necessary to 

determine whether imputation methods, sensitivity analyses, or model adjustments are 

necessary to avoid misleading conclusions in research findings[26].  



 

6 

 

We explored the nature of missingness through a multi-step approach. First, we 

employed missingno visualizations—a matrix plot to reveal patterns of missing data in 

observations and variables, and a heatmap to indicate correlations in missingness[27]. 

Next, we performed Little’s MCAR test by label encoding categorical variables and 

applying mean imputation to derive a complete covariance matrix. We compared this 

covariance matrix to that of the fully observed subset and used the resulting statistics to 

ascertain whether the data were missing completely at random (MCAR). A non-

significant p-value (above 0.05) supported the MCAR hypothesis, while a significant 

result indicated that the data might follow missing at random (MAR) or missing not at 

random (MNAR) mechanisms[28]. 

To differentiate between MAR and MNAR, we conducted chi-square tests for each 

variable with missing data, creating a binary indicator to evaluate associations with other 

observed variables; significant results suggested MAR[29]. Finally, we performed two-

sample t-tests to determine if observed values differed between the “missing” and “non-

missing” groups for each variable. A significant difference (p < 0.05) suggested that 

missingness could be MNAR, implying dependence on unobserved information rather 

than solely on observed data. 

We examined two strategies for addressing missing data—row removal based on a 

pre-defined missing threshold (θ) and three imputation methods (Simple Imputer, KNN 

Imputer, and Iterative Imputer)[30],[31]. We systematically varied θ from 0.95 to 0.6 in 

increments of 0.05, discarding rows that surpassed each threshold’s proportion of 
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missing values to ensure that highly incomplete rows did not compromise imputation 

results. Subsequently, we artificially masked 10% of the numeric entries to create a 

known “ground truth” for performance evaluation, comparing original values to the 

imputed ones. 

We assessed imputation quality using mean squared error (MSE) and mean absolute 

error (MAE), calculated over all features where masking occurred. Hyperparameters like 

k-values for KNN and iteration counts for the Iterative Imputer were tuned via grid 

search, providing a robust benchmark of each method’s effectiveness. By systematically 

quantifying the trade-offs between excluding rows and employing various imputation 

techniques, this approach provides a clearer understanding of optimal strategies for 

handling incomplete datasets. 

2.4 Model Selection 

We explored a diverse range of classification algorithms to capture a broad spectrum 

of decision boundaries, incorporating models from multiple learning paradigms, such as 

Linear and Statistical Models (Logistic Regression, Naïve Bayes), Tree-Based Methods 

(Decision Tree, Random Forest, Gradient Boosting, AdaBoost, XGBoost, LightGBM, 

Extra Trees, CatBoost, HistGradientBoosting, and Bagging Classifier), Instance-Based 

Learning (k-Nearest Neighbors), Neural Networks (Multilayer Perceptron), Support 

Vector Machine[32]. 



 

8 

 

This comprehensive set of models ensured that both linear and non-linear decision 

boundaries were considered, allowing for a more robust evaluation of classification 

performance. 

To ensure a reliable assessment of model generalizability, we adopted a Stratified K-

Fold cross-validation approach with five folds (n_splits = 5). This technique maintains 

class distribution consistency across folds, mitigating potential class imbalance issues 

and ensuring fair evaluation across all candidate models[33]. 

Each model's predictive performance was assessed using four key metrics, computed 

through cross-validation: 

• Accuracy: The proportion of correctly classified instances. 

• Precision (weighted): The class-weighted mean of precision across all categories. 

• Recall (weighted): The class-weighted means of recall, ensuring balanced 
sensitivity. 

• F1-Score (weighted): The harmonic means of precision and recall, providing a 
robust measure of model effectiveness. 

The mean scores for each metric were computed across all five folds, ensuring 

stability in performance evaluation. 

The best-performing model was determined based on its mean F1-score, as this 

metric provides a balanced evaluation of both precision and recall, making it 

particularly suitable for imbalanced datasets[34]. Once the top-performing model was 

identified, it was re-trained on the entire imputed dataset (X_imputed, y) to produce a 

final, optimized predictive model ready for validation and deployment. 
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2.5 Hyperparameter Optimization 

We rigorously evaluated a diverse set of algorithms by employing this multi-step 

framework—comprising imputation, cross-validation, and metric-based model 

selection. This approach ensured that the final chosen model exhibited strong 

predictive performance across multiple evaluation dimensions, enhancing its reliability 

for real-world applications[35]. 

A predefined grid of hyperparameter values is established, covering a range of 

model-specific configurations such as learning rate, regularization strength, and 

complexity parameters. The grid systematically enumerates all possible combinations 

to be tested, ensuring that various configurations are explored comprehensively. 

For evaluation of each hyperparameter combination, a k-fold cross-validation 

procedure was employed. Specifically, the training data were split into k folds (e.g., 

k=5), and each fold in turn was treated as a temporary validation set while the 

remaining folds were used for model training. Five folds offered the best trade-off 

between statistical reliability and computation cost. Performance metrics, such as 

accuracy, precision, recall, or F1-score, were computed on the validation fold, and the 

process repeated for each combination of parameters. This approach mitigated the risk 

of overfitting to a single train–validation partition and provided more robust estimates 

of out-of-sample performance[36]. 

All hyperparameter combinations in the predefined grid were iterated over, with 

each model built and evaluated using the cross-validation scheme described above. For 



 

10 

 

Gradient Boosting, the grid spanned n_estimators, learning_rate, max_depth, 

subsample, and min_samples_leaf to balance ensemble size, step size, tree complexity, 

and sampling noise. For CatBoost, we varied iterations, learning_rate, depth, 

l2_leaf_reg, and bagging_temperature, allowing fine‑grained control over boosting 

rounds, tree depth, regularization strength, and stochasticity. The mean (and optionally 

standard deviation) of the performance metrics across folds was recorded for each 

parameter setting. Computational parallelization (using multiple CPU cores or threads) 

was leveraged where it was feasible to expedite the search process. The configuration 

achieving the highest mean performance metric (e.g., the highest mean F1-score) was 

identified as optimal. In certain cases, a secondary performance measure (e.g., model 

complexity, run time) or a tiebreaker (e.g., validation loss) was used to distinguish 

between comparably performing solutions. 

2.6 Model Selection 

The selected model’s built-in feature importance mechanism was first used to 

assign each variable a numerical score reflecting its contribution to predictive 

accuracy. The full feature matrix was used to train baseline tree-based ensembles, 

including Random Forest, Extra Trees, Gradient Boosting, HistGradient Boosting, 

LightGBM, XGBoost, and CatBoost. The native importance metric of each model—

mean decrease in impurity for bagging trees, total gain for boosting algorithms—was 

then extracted. These scores were min‑max scaled to 0–1 and averaged to create a 

consensus ranking that highlighted variables deemed influential across models. We 
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then generated a ranked list of variables in descending order of importance. 

Subsequently, we employed the SHAP (SHapley Additive exPlanations) framework to 

quantify each feature’s contribution to individual predictions, producing both summary 

plots and class-level insights. This interpretability analysis helped clarify which 

variables most strongly influenced the model’s predictive outcomes. 

To further investigate the relationship between feature subset size and model 

performance, we adopted an incremental coverage scheme ranging from 10% to 80% 

(in 5% increments). Specifically, if there were F total features, a coverage level of c% 

dictated retaining the top [c%×F] features according to the importance ranking. For 

example, a coverage of 10% preserved only the top 10% of features, whereas 80% 

coverage retained 80% of the most important ones. At each coverage level, we trained 

a new CatBoost model (using the same hyperparameters) and conducted a 5-fold 

stratified cross-validation. The mean and standard deviation of accuracy for each 

subset provided insight into both performance and stability across different feature 

inclusion thresholds. 
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CHAPTER 3: RESULT 

Table 1 shows the final list of 23 selected variables. In the 30-minute dataset, 

several variables exhibit notably high missingness rates (e.g., Atypical Lymphocytes, 

Bands, Basophils, and other hematological markers often missing in over 70% of 

cases), while respiratory- and temperature-related features (e.g., Heart Rate, Resp Rate, 

Temp Skin [C]) show comparatively lower missingness (40–70%). Overall, most mean 

values differ between infected and non-infected groups in the 30-minute window, with 

parameters like heart rate, neutrophils, and white blood cells tending to show higher 

average values in the infected cohort. By contrast, the 120-minute dataset contains 

fewer missing observations across many features (with most falling in the 20–50% 

range) and maintains a similar pattern of differences between infected and non-infected 

groups (e.g., higher Heart Rate, lower Neutrophils among infected). Although the 

mean values of several variables (e.g., Basophils, Monocytes) remain comparable 

across groups, both time windows demonstrate consistent distinctions in key 

physiological and hematologic parameters between infected and non-infected neonates. 

After doing Little’s MCAR test, the p-value for both a 30-minute dataset and 120-

minute dataset is less than 0.001, which indicates the missing data is not completely 

random. Then we utilize random forest accuracy to each variable, the result shows 

every row have a high accuracy (mean = 0.99). 
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3.1 Row Removal Threshold Result 

Figure 1 and Figure 2 illustrate how varying the missingness threshold (0.60≤θ≤

0.95) affects the number of retained and discarded rows for the 30-minute dataset and 

120-minute dataset, respectively. As the threshold becomes more permissive (moving 

from 0.60 to 0.95):Units 

• 30-Minute Data: At the lowest threshold (0.60), only about 1,500 rows are 
retained and around 5,000 rows are discarded, indicating that many rows exceed 
60% missingness. As the threshold increases, stricter row-removal criteria are 
relaxed, so more rows remain in the dataset. By a threshold of 0.95, nearly 
6,500 rows are retained and fewer than 500 are excluded. 

• 120-Minute Data: A similar trend appears, although even at θ=0.60 a larger 
portion of rows (over 4,000) is retained compared to the 30-minute dataset. This 
suggests that the 120-minute data have fewer high-missingness rows or more 
complete measurements overall. By θ=0.95, over 6,300 rows remain and only a 
small fraction are removed. 

Overall, these results demonstrate that raising the missingness threshold 

substantially increases the number of retained samples, especially for the 30-minute 

data (which generally exhibit higher missing rates). Investigators must balance the 

desire to keep more data against the risk that excessively incomplete records may 

introduce noise or reduce imputation quality. 

3.2 Best Imputation Method 

To identify the optimal approach to handling missing data in both the 30-minute 

and 120-minute datasets, we systematically varied the row-removal threshold, defined 

as the maximum allowable proportion of missing features per row, and compared 

multiple imputation strategies. Performance was assessed using mean squared error 
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(MSE) and mean absolute error (MAE) relative to a “ground truth” created by 

artificially masking 10% of the values. For the 120-minute dataset, a threshold of 95% 

missingness discarded only eight rows while yielding the lowest MSE (968,311) and 

MAE (91.65) under Iterative Imputer (max_iter=12), demonstrating that even highly 

incomplete rows could be retained without severely compromising imputation 

accuracy. By contrast, the 30-minute data benefited from a more stringent threshold of 

75%, removing 3,720 rows, to achieve the lowest MSE (962,903) and MAE (91.42) 

with the same imputation method. Despite differing optimal thresholds, Iterative 

Imputer consistently outperformed simpler approaches in both time windows, 

underscoring the utility of modeling inter-variable relationships to achieve robust 

imputation results. 

3.3 Best Machine Learning Model 

After applying the various classification algorithms to the 120-minute dataset, 

Gradient Boosting emerged as the top performer, achieving the highest average F1-

score (0.7983) across the cross-validation folds. In terms of overall classification 

metrics—Accuracy, Precision, Recall, and F1—Gradient Boosting consistently 

outperformed established ensemble methods such as Random Forest and CatBoost, as 

well as linear/logistic models (e.g., Logistic Regression) and instance-based methods 

(KNN). This result indicates that, over a longer 120-minute window of recorded 

physiological and laboratory parameters, a boosted ensemble approach can 

successfully capture complex nonlinear patterns that distinguish infected from non-
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infected neonates. Figure 3 indicates the top 5 ROC curves in the model selection part 

for this dataset. 

In contrast, the 30-minute data showed CatBoost as the best algorithm by F1-score 

(0.7634), narrowly surpassing Gradient Boosting (0.7628) and other tree-based 

methods (e.g., Random Forest, LightGBM) in terms of balanced predictive 

performance. Although certain algorithms (e.g., Logistic Regression) also 

demonstrated robust Accuracy, CatBoost’s specialized handling of categorical features 

and iterative boosting led to more balanced gains in Precision and Recall, rendering it 

particularly effective in this shorter time window, where missing data and limited 

observation periods can constrain model inputs. Figure 4 shows the top 5 ROC curves 

in the model selection part for the 30-min dataset. 

Notably, the F1-scores for Gradient Boosting (in the 120-minute data) and CatBoost 

(in the 30-minute data) were sufficiently close that either method could be considered a 

strong candidate for modeling neonatal infection risk. Consequently, the next stage of 

experimentation will apply both CatBoost and Gradient Boosting to both time 

windows under more targeted hyperparameter optimization, ensuring that the final 

model selection accounts for the subtleties of each approach’s performance in different 

temporal contexts. This two-model strategy aims to solidify which boosting framework 

ultimately offers the most consistent and clinically relevant predictions. 

We conducted an extensive grid search to optimize CatBoost and Gradient Boosting 

models for both the 30-minute and 120-minute datasets. Each experiment varied key 
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parameters such as tree depth, number of iterations (or estimators), learning rate, and 

subsampling rates, with cross-validation (CV) accuracy serving as the primary 

criterion for ranking configurations. For the 30-minute dataset, CatBoost achieved the 

highest CV accuracy (approximately 0.7946) under a configuration involving a 

moderate tree depth (depth=4) and 300 iterations at a learning rate of 0.05. By contrast, 

the best Gradient Boosting model on the same dataset attained a CV accuracy near 

0.7903, reflecting competitive but slightly lower performance relative to CatBoost. 

Inspection of confusion matrices and classification reports confirmed that these top-

ranked parameter sets offered balanced improvements in both Recall and Precision. 

In the 120-minute setting, the situation was reversed: Gradient Boosting attained a 

marginally higher CV accuracy (about 0.8024), surpassing CatBoost’s best of 

approximately 0.8006. Notably, the optimal Gradient Boosting configuration differed 

from the 30-minute scenario: it favored a shallower tree (max_depth=3) with more 

estimators (150) and a subsampling rate of 0.8, emphasizing consistent gains in 

predictive performance across folds. Although both models yielded robust accuracy on 

the fully trained dataset (ranging between 0.82 and 0.86 when evaluated via confusion 

matrices), the slight discrepancies between the final accuracy and CV ranking 

underscore the importance of cross-validation in guiding hyperparameter selection. In 

particular, the alignment of strong CV scores with high out-of-sample accuracy 

highlights the capacity of boosted ensemble methods to capture subtle nonlinearities 
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and interactions within newborn infection data, even under demanding early-time-

window conditions. 

3.4 Incremental Coverage Analysis 

To evaluate how classification performance is influenced by the number of features 

retained, we performed an incremental coverage analysis where only the top-ranked 

features (by model-specific importance) were retained in successive subsets. For the 

30-minute dataset (using CatBoost), coverage levels ranged from 10% to 80% of the 

total feature set, with each subset evaluated via 10-fold cross-validation. As shown in 

the results table, the highest mean accuracy (0.7896) was achieved at 50% coverage, 

suggesting that roughly half of the most important features were sufficient to obtain 

robust predictive performance. Notably, while lower coverage (e.g., 10% or 25%) 

produced a slightly lower accuracy (0.7754 and 0.7815, respectively), including too 

many features at 75–80% coverage again lowered accuracy, likely due to the 

introduction of less informative or redundant variables. 

A similar procedure was applied to the 120-minute dataset with a Gradient Boosting 

model, also tested at 10% to 80% coverage. In this case, the peak accuracy (0.8058) 

occurred at 80% coverage, indicating that a relatively larger proportion of features 

contributed meaningful signal in the extended 120-minute window. Despite a near-

competitive accuracy being observed at 70% coverage (0.8045), the model benefited 

from retaining a broader set of features, perhaps reflecting the richer data collected 

over a longer timeframe. Overall, these findings underscore that an optimal balance 
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exists between too few features (losing important signals) and too many (risking noise 

or redundancy). By identifying this “sweet spot,” we can streamline model complexity 

while preserving high predictive performance. 
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CHAPTER 4: DISCUSSION 

In this study, we explored multiple machine learning–based methods for predicting 

neonatal infection risk and compared their performances with a more conventional 

reference scoring system. Specifically, we aimed to identify an algorithm that could 

accurately predict infection-related outcomes when data are aggregated either from the 

first 30 minutes or the first 120 minutes of intensive care unit (ICU) admission. Our 

findings revealed notable differences in the models’ performances across these two time 

windows, highlighting the trade-offs of each approach for real-world clinical use. 

4.1 Overview of Findings 

In the 30-minute dataset, CatBoost emerged as the top-performing model with the 

highest F1-score (~0.7634), surpassing Gradient Boosting (~0.7628) and other tree-

based or linear methods. The marginal gap between CatBoost and Gradient Boosting 

suggests that, when data are relatively sparse (i.e., at only 30 minutes into an ICU stay), 

subtle differences in how ensemble algorithms handle missingness, outlier 

measurements, and imputation steps can substantially shape final performance metrics. 

CatBoost’s specialized handling of categorical data—alongside robust boosting 

iterations—may have conferred an advantage in the “ultra-early” context, where variable 

availability is inconsistent, and the physiologic signals can be less stable. 

When the time window was extended to 120 minutes, Gradient Boosting models 

exhibited the highest average F1-score (~0.7983) and displayed excellent calibration. 
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This improvement likely stems from the greater data richness at 120 minutes; additional 

laboratory results, updated vital signs, and time for more hemodynamic fluctuations can 

allow gradient-boosted ensembles to better capture complex, nonlinear relationships. 

Nonetheless, CatBoost, Random Forest, and certain neural network models also 

demonstrated strong discriminatory ability (F1-scores typically above 0.76), implying 

that multiple algorithmic families can achieve clinical usefulness once enough data 

points become available. The key difference was that Gradient Boosting reached slightly 

higher and more consistent cross-validation scores across accuracy, precision, and recall 

metrics. 

4.2 Interpretations and Clinical Implications 

Our results underscore the importance of time-dependent data availability in 

infection-risk modeling. While the 30-minute window allows for extremely early 

intervention, it imposes considerable data limitations, such as fewer blood gas analyses 

or incomplete laboratory results. As a result, advanced techniques that excel under 

missing data or can effectively leverage categorical inputs—like CatBoost—may offer 

a decisive edge in the first 30 minutes. 

By contrast, the 120-minute dataset captures a more complete clinical profile; 

repeated vital-sign measurements, additional laboratory panels, and extended 

neurological or cardiovascular observations can refine risk estimation. Gradient 

Boosting’s marginally superior performance in the 120-minute window highlights how 
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ensemble-based approaches can exploit this richer information to model more nuanced 

interactions among variables. 

From a decision-support perspective, these findings suggest a two-stage or adaptive 

approach: (1) an ultra-early model suitable for the first 30 to 60 minutes of admission, 

leveraging robust handling of missing data (CatBoost or a similar boosted method), and 

(2) a refined model (e.g., Gradient Boosting) retrained with updated data around 120 

minutes, delivering a more accurate prediction for subsequent critical-care decisions. 

4.3 Comparison with Existing Literature 

Several prior investigations have compared machine learning models (e.g., Random 

Forest, XGBoost, and neural networks) against established clinical scoring systems for 

sepsis or infection-related mortality. Consistent with those reports, we found that 

ensemble-based algorithms offer better calibration and higher F1-scores than classical 

logistic regression or basic score systems (e.g., APACHE II or simplified risk scores). 

Notably, in table2, the incremental gains are especially relevant in the “intermediate” 

time frame (1–2 hours), when important physiologic trends start to manifest yet remain 

absent at baseline. 

4.4 Limitation 

The first one is data quality and heterogeneity. Although we used standardized ICU 

data from MIMIC-III, variations in measurement frequency, device calibration, and 

charting practices can introduce biases. The real-world deployment of our model, 
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especially in other institutions, would require local calibration and external validation. 

In this study, we explored multiple machine learning–based methods for predicting 

neonatal infection risk and compared their performances with a more conventional 

reference scoring system. Specifically, we aimed to identify an algorithm that could 

accurately predict infection-related outcomes when data are aggregated either from the 

first 30 minutes or the first 120 minutes of intensive care unit (ICU) admission. Our 

findings revealed notable differences in the models’ performances across these two time 

windows, highlighting the trade-offs of each approach for real-world clinical use. 

We only extracted variables from the first 30 or 120 minutes. Future work could 

incorporate dynamic, time-series features beyond these discrete windows or investigate 

sliding-window updates (e.g., every 15 minutes) to capture evolving physiologic 

patterns. 

Although CatBoost and Gradient Boosting can produce feature-importance estimates 

or SHAP values, the underlying mechanisms remain “black-box” at the bedside. Efforts 

to embed transparent, clinically interpretable frameworks (e.g., rule-based ensembles) 

might further facilitate end-user adoption. 
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APPENDIX 

Table 1 Baseline characteristics of the study cohort 

 30-minute dataset 120-minute dataset 

Variable Not 

infected, 

mean(st

d) 

Infected, 

mean(st

d) 

Total, 

mean(st

d) 

Missin

g rate 

(%) 

Not 

infected, 

mean(st

d) 

Infected, 

mean(st

d) 

Total, 

mean(st

d) 

Missin

g rate 

(%) 

Atypical 

Lymphocytes 

0.80 

(1.64) 

1.33 

(2.66) 

1.12 

(2.32) 

78.84 0.79 

(1.59) 

1.25 

(2.47) 

1.03 

(2.10) 

48.20 

BP Cuff 

[Diastolic] 

37.62 

(8.16) 

33.60 

(18.58) 

34.77 

(16.35) 

59.78 37.64 

(7.64) 

33.41 

(14.89) 

34.97 

(12.86) 

25.71 

BP Cuff [Mean] 49.59 

(8.24) 

43.75 

(8.83) 

45.45 

(9.06) 

59.78 49.77 

(7.61) 

43.85 

(7.80) 

46.04 

(8.24) 

25.77 

BP Cuff 

[Systolic] 

68.97 

(9.64) 

62.06 

(16.46) 

64.07 

(15.13) 

59.78 69.34 

(8.99) 

61.99 

(10.40) 

64.71 

(10.52) 

25.72 

Bands 2.54 

(3.63) 

1.49 

(3.00) 

1.91 

(3.30) 

78.83 2.59 

(3.79) 

1.72 

(3.20) 

2.15 

(3.52) 

48.16 

Basophils 0.28 

(0.60) 

0.23 

(0.50) 

0.25 

(0.54) 

78.54 0.24 

(0.54) 

0.23 

(0.51) 

0.24 

(0.52) 

47.56 

Eosinophils 2.16 

(2.25) 

2.29 

(2.34) 

2.24 

(2.31) 

78.54 1.99 

(1.99) 

2.24 

(2.25) 

2.12 

(2.13) 

47.56 

Glucometer 67.60 

(20.57) 

63.13 

(25.64) 

64.18 

(24.60) 

74.77 69.11 

(19.12) 

69.55 

(25.23) 

69.43 

(23.77) 

45.70 

Heart Rate 143.93 

(16.58) 

149.90 

(17.15) 

148.15 

(17.20) 

43.71 141.23 

(15.17) 

146.93 

(15.39) 

144.83 

(15.55) 

5.12 

Hematocrit 51.67 

(5.72) 

48.93 

(6.65) 

50.04 

(6.43) 

78.35 51.81 

(5.71) 

49.03 

(6.83) 

50.38 

(6.46) 

47.13 

Hemoglobin 17.44 16.32 16.78 78.65 17.50 16.38 16.92 47.82 
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(1.93) (2.16) (2.14) (1.92) (2.25) (2.17) 

Lymphocytes 30.40 

(13.73) 

49.31 

(19.32) 

41.69 

(19.62) 

78.54 28.22 

(12.17) 

46.79 

(19.92) 

37.79 

(19.03) 

47.56 

MCH 35.56 

(1.94) 

36.59 

(2.61) 

36.17 

(2.41) 

78.65 35.56 

(1.89) 

36.74 

(2.46) 

36.17 

(2.28) 

47.82 

MCHC 33.76 

(0.94) 

33.36 

(1.09) 

33.52 

(1.05) 

78.67 33.78 

(0.91) 

33.45 

(1.06) 

33.61 

(1.00) 

47.86 

MCV 105.39 

(5.27) 

109.80 

(8.17) 

108.01 

(7.45) 

78.67 105.36 

(5.31) 

109.96 

(7.71) 

107.72 

(7.04) 

47.86 

Metamyelocytes 0.25 

(0.68) 

0.22 

(0.78) 

0.23 

(0.74) 

78.90 0.27 

(0.70) 

0.21 

(0.72) 

0.24 

(0.71) 

48.47 

Monocytes 6.87 

(3.73) 

6.78 

(3.65) 

6.82 

(3.68) 

78.54 7.11 

(3.63) 

6.91 

(3.82) 

7.01 

(3.73) 

47.56 

Myelocytes 0.15 

(0.68) 

0.12 

(0.55) 

0.13 

(0.60) 

78.96 0.14 

(0.56) 

0.12 

(0.52) 

0.13 

(0.54) 

48.48 

Neutrophils 56.59 

(14.78) 

38.07 

(18.80) 

45.53 

(19.53) 

78.54 58.66 

(13.49) 

40.41 

(19.34) 

49.26 

(19.08) 

47.56 

Platelet Count 307.43 

(73.73) 

275.28 

(80.91) 

288.21 

(79.65) 

78.64 301.87 

(78.21) 

265.36 

(81.77) 

283.00 

(82.11) 

47.68 

RDW 16.62 

(0.97) 

17.17 

(1.41) 

16.95 

(1.28) 

78.68 16.65 

(1.01) 

17.13 

(1.37) 

16.90 

(1.23) 

47.94 

Red Blood Cells 4.92 

(0.59) 

4.48 

(0.71) 

4.65 

(0.70) 

78.67 4.93 

(0.57) 

4.47 

(0.70) 

4.70 

(0.68) 

47.86 

Resp Rate 49.70 

(13.33) 

51.90 

(14.84) 

51.25 

(14.44) 

44.55 48.11 

(11.37) 

52.17 

(12.84) 

50.66 

(12.47) 

6.29 

SaO2 97.48 

(5.04) 

96.00 

(4.49) 

96.35 

(4.67) 

49.92 97.85 

(3.92) 

96.33 

(3.16) 

96.77 

(3.47) 

19.10 

Temp Axilary 

[F] 

98.41 

(0.70) 

98.51 

(0.83) 

98.49 

(0.80) 

83.25 98.52 

(0.61) 

98.71 

(0.71) 

98.66 

(0.69) 

47.51 
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Temp Skin [C] 36.60 

(4.77) 

36.57 

(3.94) 

36.57 

(4.10) 

71.92 36.53 

(3.94) 

36.58 

(3.72) 

36.57 

(3.77) 

41.33 

Temp/Iso/War

mer 

35.95 

(3.02) 

36.27 

(1.84) 

36.20 

(2.15) 

66.63 35.87 

(3.05) 

36.13 

(2.36) 

36.06 

(2.55) 

33.15 

White Blood 

Cells 

17.06 

(5.57) 

13.00 

(6.01) 

14.64 

(6.16) 

78.42 17.27 

(5.47) 

13.02 

(6.54) 

15.08 

(6.41) 

47.32 
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Table 2: Comparison between Different Infection Detection Methods 

Detection Method Time Window Accuracy(%) 

SNAP-II Score [37] 12-24 hours ~ 75 

CRIB Score [38] 12-24 hours ~ 73 

Naïve Bayes [39] 12 hour ~ 78 

New model 30 – 120 min ~ 80 
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Figure 1: Research Pipeline 
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Figure 2: Missing Value Distribution 
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Figure 3: Top Five ROC Curve in Model Selection of 120 Minutes Dataset 
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Figure 4: Top Five ROC Curve in Model Selection of 120 Minutes Dataset 
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