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Abstract 

 

Unraveling the Impact of Fuzzy Similarity Algorithms on Missing Data 

Imputation of Heart Bypass Surgery Cohort  

By  

Hong-Jui Shen 

 

Objective: This thesis introduces the Fuzzy C-Means based Random Forest (FCRF) 

method, developed to address the limitations of existing data imputation techniques in 

public health datasets. Aimed at enhancing imputation accuracy, FCRF integrates fuzzy 

logic and similarity learning to navigate complex missing data mechanisms: Missing 

Completely at Random (MCAR), Missing at Random (MAR), and Missing Not at 

Random (MNAR). 

Method: The performance of FCRF is evaluated against traditional imputation 

methods—Mean, K-Nearest Neighbors (KNN), Multiple Imputation by Chained 

Equations (MICE), and Iterative Imputation—using metrics like Average RMSE, 

Normalized RMSE, Mean Absolute Error (MAE), Weighted F1-Score, and Normalized 

Accuracy. This comparative analysis spans various missing data scenarios to assess 

each method's effectiveness comprehensively. 

Results: Results show that FCRF exhibits competitive performance across all scenarios, 

particularly excelling in complex MNAR situations where conventional methods falter. 

Its methodological design, which combines clustering and predictive modeling, offers 

nuanced capabilities beneficial for public health research. 

Conclusion: FCRF marks a significant advancement in data imputation, promising 

more accurate and reliable analyses for public health research. Future work will explore 

FCRF's impact on standard error and variance estimates to ensure the method's 

robustness, aiming to prevent potential biases in statistical inferences. This research 

contributes to enhancing data integrity, supporting informed decision-making in public 

health. 

Keywords: Data Imputation, Public Health, Fuzzy C-Means, Random Forest, Missing 

Data, Machine Learning, Similarity Learning. 
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Chapter 1. Introduction and literature review 

1.1 Relevance of Data Imputation In Public Health 

In the realm of public health, the analysis of extensive datasets plays a pivotal role 

in shaping health policies, guiding disease control strategies, and refining healthcare 

services. The integrity and accuracy of such data are fundamental for monitoring 

disease outbreaks, evaluating health outcomes, and assessing the impact of public 

health interventions. Nonetheless, the prevalence of missing data in public health 

datasets—stemming from non-responses, attrition, or errors during data collection and 

recording—significantly undermines the reliability of health assessments and the 

consequent decisions derived from them. 

The challenge of missing data extends beyond its mere presence to include the 

diverse mechanisms through which data can become missing. These mechanisms, 

broadly classified into Missing Completely at Random (MCAR), Missing at Random 

(MAR), and Missing Not at Random (MNAR), each introduce specific complications 

for data analysis and necessitate tailored imputation approaches. Traditional imputation 

techniques, ranging from simple strategies like mean substitution to sophisticated 

models like Multiple Imputation by Chained Equations (MICE) and k-nearest 

neighbors (k-NN), have made strides in addressing missing data issues. However, these 

methods often encounter limitations in handling the complexity of public health data or 



 

 

substantial proportions of missing information, sometimes failing to adequately 

represent the uncertainty inherent in the imputation process. 

The evolution of machine learning and data mining technologies presents new 

frontiers for improving data imputation methodologies. In particular, similarity 

learning—which identifies and utilizes patterns of similarity among data points—

emerges as a promising approach for increasing imputation accuracy in datasets 

characterized by intricate relationships. Complementing similarity learning, fuzzy logic 

offers a framework for managing ambiguity and uncertainty, enabling a more nuanced 

classification and imputation of missing data. The synergistic application of these 

advanced techniques holds the potential for developing refined imputation methods that 

can more adeptly navigate the complexities of public health datasets. 

By integrating fuzzy logic with similarity learning, the Fuzzy C-Means based 

Random Forest (FCRF) imputation method proposes a novel solution to the pervasive 

issue of missing data in public health research. This approach seeks to surmount the 

constraints of existing imputation methods, paving the way for more accurate, reliable, 

and comprehensive analyses of public health data. As such, the FCRF method 

represents a significant advancement in the field of data imputation, promising to 

enhance the quality of public health research and contribute to the development of more 

effective health policies and interventions. 

1.2 Literature Review 

This literature review synthesizes existing research on data imputation, with a special 



 

 

focus on public health contexts. It underscores the significance of accurate data in 

health policy and service delivery, examines the impact of missing data, critiques 

current imputation methods, and explores the potential of similarity learning and fuzzy 

logic. By reviewing historical to recent publications, vital statistics, and expert 

communications, this chapter lays the groundwork for introducing the Fuzzy C-Means 

based Random Forest (FCRF) imputation method. 

The integrity of healthcare databases is crucial for informed decision-making and 

policy formulation in public health. The challenge of missing data in these databases 

cannot be understated, as highlighted by authors like Schmitt et al. (2015), who discuss 

the statistical and practical ramifications of missing data in health research. These 

challenges include compromised data integrity, biased statistical analyses, and 

ultimately, the potential for misguided public health policies.  

Traditional imputation methods, such as mean substitution, mode imputation, and 

even more sophisticated techniques like Multiple Imputation by Chained Equations 

(MICE), have been extensively explored in literature. For instance, Rahman and Davis 

(2013) critique these methods for their inability to adequately handle complex data 

relationships and their tendency to underestimate imputation uncertainty. Despite their 

utility, these conventional techniques often fall short in addressing the nuanced 

challenges presented by healthcare datasets, particularly those with high-dimensional 

data or significant proportions of missingness. 

Recent advancements in machine learning, notably similarity learning and fuzzy 



 

 

logic, offer promising solutions to these challenges. The work of Amiri and Jensen 

(2016) introduces fuzzy logic into the domain of data imputation, illustrating its 

potential to manage the inherent uncertainty and ambiguity of missing healthcare data 

more effectively than traditional statistical approaches. Similarly, the application of 

similarity learning, as explored in specific machine learning frameworks, has 

demonstrated its ability to discern complex patterns within data, suggesting a pathway 

toward more accurate imputation methods.  

Among the novel methodologies emerging in the field, the Fuzzy C-Means based 

Random Forest (FCRF) imputation method represents a potentially significant 

advancement. This approach, integrating fuzzy logic with the robust classification and 

regression capabilities of random forests, aims to address the limitations of existing 

imputation techniques directly. By leveraging the strengths of both fuzzy logic and 

similarity learning, the FCRF method proposes a sophisticated solution capable of 

handling the complexities and uncertainties characteristic of public health and 

healthcare datasets. 

In summary, the literature on data imputation in public health research emphasizes 

the critical need for more sophisticated methods that can navigate the challenges of 

missing data with greater accuracy and reliability. The exploration of advanced machine 

learning techniques, including fuzzy logic and similarity learning, alongside innovative 

approaches like the FCRF method, highlights a promising direction for future research 

in this domain. The integration of these methodologies could enhance the quality of 

data imputation, ultimately leading to more informed public health decisions and 



 

 

policies. 

1.3 Ethical Considerations 

This thesis on retrospective patient data from CABG surgeries at Emory Healthcare 

hospitals (2014-2019) strictly adheres to ethical principles, emphasizing the 

safeguarding of patient privacy and confidentiality through anonymization of personal 

information. (Manyam RB et al., 2024) It respects the original informed consent under 

which data was collected, ensuring transparency and integrity in the presentation of 

research findings. The study is committed to beneficence, aiming to maximize public 

health benefits while minimizing potential harm to individuals. Accountability in 

adhering to ethical standards and legal compliance with health data privacy laws, 

including HIPAA, is paramount. This approach ensures the research contributes 

responsibly to public health knowledge, respecting the dignity and rights of individuals 

involved. 

Chapter 2. Methodology 

2.1 Software and Package Utilization 

  The study's computational analyses were performed using Python version 3.9.13, 

chosen for its extensive support and robust libraries suited to statistical computation 

and machine learning. The following packages were instrumental in the data processing, 

imputation, and evaluation phases: 

⚫ Pandas: Employed for initial data encoding and preparation, offering powerful data 

structures like DataFrames, which facilitated the handling of complex, tabular data. 



 

 

⚫ NumPy: This fundamental package for scientific computing provided support for 

the high-level mathematical functions necessary for operations on multi-

dimensional arrays and matrices. 

⚫ SciPy: Utilized for its extensive statistical functions, aiding in the rigorous 

statistical testing needed for preliminary data analysis. 

⚫ Scikit-learn: A versatile machine learning library that provided tools for 

dimensionality reduction (PCA), Random Forest algorithms for the imputation 

models, and a suite of metrics for evaluating imputation accuracy such as f1-score 

and accuracy. 

⚫ Fuzzy C-Means: Applied for clustering the dataset into fuzzy clusters before the 

imputation process, aligning with the clustering approaches highlighted in the 

literature for handling ambiguities within data groupings (Khan and Hoque, 2020). 

⚫ Matplotlib and FancyImpute: These packages were used for visualization and 

advanced imputation algorithms, respectively. 

⚫ Statsmodels and Pytesmo: These provided additional statistical models, tests, and 

a toolbox for validation metrics such as RMSD and NRMSD. 

2.2 Data Collection and Processing 

The dataset underpinning this study consists of retrospective patient data collected 

from Coronary Artery Bypass Grafting (CABG) surgeries performed at Emory 

Healthcare over a five-year span (2014-2019). This data acquisition, authorized by the 

Society of Thoracic Surgeons, incorporates an extensive compilation of 12,328 records, 

each representing a unique surgical case. The initial phase of data preparation involved 



 

 

a meticulous encoding process. This process included the transformation of categorical 

variables into numerical codes, enabling efficient manipulation and analysis. In 

addition, essential continuous variables such as age and Body Mass Index (BMI) 

underwent standardization to ensure a homogenized data structure suitable for the 

application of statistical and machine learning techniques. 

2.3 Variable Selection 

The critical task of variable selection was informed by both clinical expertise and the 

analytical framework established by the extant literature. 59 variables, directly 

correlated with the outcomes of CABG surgeries, were meticulously chosen to be 

included in the analysis. The attributes of these variables can be viewed in Table1. 

2.4 Data Preprocessing 

In the preprocessing stage, the initial handling of missing values was addressed.  

Consistent with the guidelines set forth by Jadhav, Pramod, and Ramanathan (2019), 

variables with a missing data proportion exceeding a 30% threshold were earmarked 

for exclusion from the dataset to preserve analytical integrity. Using NumPy, a 

foundational package for scientific computing in Python, and Pandas, this stage also 

involved cleaning the data by detecting and correcting (or removing) corrupt or 

inaccurate records from the dataset, ensuring a high-quality dataset conducive for 

rigorous statistical analysis. 

Inspired by the work of Fouad et al. (2021), the preprocessing stage in this study also 

incorporates a preliminary exploration of similarity-based imputation techniques as a 



 

 

precursor to the main analysis. This involves the generation of MCAR (Missing 

Completely At Random), MAR (Missing At Random), and MNAR (Missing Not At 

Random) datasets to systematically evaluate the efficacy of various imputation 

strategies, including those based on similarity learning, within the context of different 

missing data mechanisms.  

2.41 Missing Completely At Random (MCAR) 

The MCAR datasets were generated by randomly introducing missing values across 

the dataset without regard to the values of other variables. This method will randomly 

select cells within the dataset without any bias towards specific rows, columns, or 

values. Replacing the selected cells' values with ‘NaN’ to simulate missingness, 

ensuring that the probability of any data point being missing is uniform across the 

dataset. 

2.42 Missing At Random (MAR) 

For the MAR datasets, missingness was introduced in a way that depended on 

observed data but not on the missing data itself. This method will identify causative 

variables whose observed values would dictate where missingness would occur in other 

variables. Then, systematically introducing ‘NaN’ values in specific variables based on 

the values of the causative variables, adhering to predetermined conditions (e.g., when 

a causative variable exceeds a certain threshold). 

2.43 Missing Not At Random (MNAR) 

The generation of MNAR datasets was the most intricate, given that the missingness 



 

 

of data depends on unobserved (missing) information. The approach taken in this 

research is to establish some criteria for missingness that directly relate to the values 

that would be missing (e.g., values below or above certain thresholds). Applying these 

criteria across the dataset to introduce ‘NaN’ values, thereby simulating scenarios 

where the likelihood of missingness is inherent to the missing data itself. 

The framework of creating MCAR, MAR, and MNAR data can be viewed in Figure1. 

2.5 Theoretical Foundation and Algorithmic Framework 

The Fuzzy C-Means based Random Forest (FCRF) imputation method represents a 

sophisticated convergence of clustering and predictive modeling, specifically tailored 

for the complexities of healthcare data. This methodology embraces the principles 

outlined by Bezdek (1981) in his seminal work on fuzzy clustering, which is 

particularly resonant with the ambiguous and overlapping nature of clinical data. The 

Random Forest algorithm, as a robust estimator within this framework, is favored for 

its capacity to handle high-dimensional spaces and complex data structures without 

succumbing to overfitting, a quality extensively discussed in Breiman's (2001) 

comprehensive analysis of ensemble methods. The proposed Fuzzy C-means based 

random forest imputation method (FCRF) framework can be viewed in Figure2. The 

main steps for the FCRF algorithm are explained in the following: 

Step 1-Sperate the data into the observed data and missing data. 

Step 2-Preliminary Imputation for incomplete datasets: For categorical variables, fill 

missing values with the mode; for continuous variables, use the mean. This step ensures 



 

 

there are no missing values that might affect the dimensionality reduction and clustering 

processes. 

Step 3- Dimensionality Reduction: 

⚫ Apply Standard Scaler: Normalize the dataset to ensure features contribute 

equally to the analysis. 

⚫ Perform PCA: Apply Principal Component Analysis (PCA) to the normalized 

dataset to reduce dimensions while retaining most of the variance. 

Step 4-Perform Fuzzy C-Means (FCM): Cluster the PCA-transformed data into 

predefined groups (clusters) using FCM, facilitating targeted imputation within similar 

observation groups. 

Step 5- Encode Categorical Variables: Convert categorical variables into numerical 

format using Label Encoding, preparing them for the Random Forest algorithm. 

Step 6-Imputation Process 

1. Cluster-Based Separation: Divide the dataset into clusters based on FCM 

results.  

2. Iterate Over Each Cluster: For observations within each cluster, perform 

the imputation separately.  

3. Categorical and Continuous Features: Use Random Forest Classifier for 

categorical features and Random Forest Regression for continuous features. 

4. Direct Imputation: Apply the Random Forest model to impute missing 

values based on the feature type. 



 

 

5. Binary Feature Post-processing: Ensure binary features are post-processed 

to be either 0 or 1.  

Step 7- Merge Imputed Data: Combine imputed observations back with the complete 

observations to form a fully imputed dataset. 

Step 10-Post-processing Imputed Data: 

1. Re-add excluded unique identifier columns back to the imputed dataset. 

2. Ensure binary and categorical variables are correctly formatted. 

2.6 Imputation Process 

Before the commencement of the actual imputation, the data must be rendered into a 

form where the complex, multi-dimensional nature of healthcare data is distilled into 

its most informative components. Initially, the dataset undergoes a PCA transformation, 

reducing its dimensionality while preserving as much of the variance as possible. The 

process of PCA, as expounded by Jolliffe (2002), ensures that the data's intrinsic 

structure is retained, which is pivotal for the effective clustering that follows. 

Subsequently, Fuzzy C-Means clustering categorizes the data into clusters with varying 

degrees of membership, a concept that deviates from the rigidity of hard clustering 

methods by allowing for more flexible data partitioning. This method's capacity for 

handling imprecise boundaries between clusters makes it highly applicable to the kind 

of heterogeneous and incomplete datasets prevalent in medical research. 

Within each fuzzy cluster, Random Forest imputation is executed separately for 

continuous and categorical variables. The Random Forest algorithm, known for its 



 

 

ensemble learning approach using multiple decision trees, is particularly adept at 

capturing the non-linear interactions between variables. By employing it within the 

homogenous groups defined by fuzzy clustering, the algorithm can make more accurate 

predictions, as the clusters are likely to contain similar response patterns. 

The Random Forest imputation is inherently iterative; it handles missing data by 

using the observed values to predict the missing ones iteratively. It begins with a simple 

imputation (e.g., mean imputation) and then fits a Random Forest model on the 

observed values to predict the missing values. The process is repeated until the 

predictions stabilize, ensuring that the imputed values are plausible given the observed 

data. 

Continuous variables with missing values initially undergo mean imputation. This 

step provides a simple yet effective way to maintain dataset integrity before applying 

more sophisticated imputation techniques. For each cluster identified by the Fuzzy C-

Means algorithm, a Random Forest Regression model is trained. Random Forest 

Regression is tailored for regression tasks, using multiple decision trees to estimate the 

missing values by averaging the predictions from all trees, providing a single 

continuous value as the output. By aggregating the predictions from many decision trees, 

Random Forest Regression reduces the variance of the predictions, leading to more 

accurate and stable imputed values for numerical variables compared to using a single 

decision tree. This model leverages the patterns and relationships observed within the 

cluster's complete cases to predict missing values for continuous variables. Since the 

imputation process for continuous variables benefits from an iterative approach, after 



 

 

the initial imputation, the Random Forest Regression model refines the imputation by 

iteratively predicting missing values based on the observed data, enhancing the 

accuracy of the imputed values with each iteration. 

Categorical variables first receive mode imputation, where missing values are 

replaced with the most common category within each variable. This step ensures that 

all categorical variables are complete before proceeding to more advanced imputation 

methods. To prepare for machine learning-based imputation, categorical variables are 

transformed into numerical format through Label Encoding. This encoding process 

assigns a unique integer to each category level, making the data compatible with 

Random Forest algorithms. Within each cluster, a Random Forest Classifier model is 

specifically tailored to impute missing values in categorical variables. As it can predict 

the category for each missing value by looking at the 'votes' from multiple decision 

trees and selecting the category with the majority vote. Moreover, it can capture these 

non-linear interactions effectively due to its ensemble nature, combining the outcomes 

of numerous decision trees trained on various subsets of the data. By training on 

complete cases within the cluster, the model utilizes the homogeneity of data within 

clusters to accurately predict missing categorical values. 

Once the Random Forest models have imputed the missing values—whether for 

continuous or categorical variables—within their respective clusters, the imputed 

values are seamlessly integrated back into the main dataset. This integration process 

ensures that the imputed dataset retains the structural and statistical properties of the 

original data as closely as possible. 



 

 

2.7 Evaluation Metrics 

  To rigorously assess and compare the performance of various imputation methods—

including FCRF, Simple Imputation, KNN, MICE, and Iterative Imputation—this thesis 

employs a comprehensive suite of evaluation metrics. These metrics are instrumental 

in quantifying the accuracy and reliability of the imputation methods applied to both 

continuous and categorical data within the dataset. Specifically, we utilize the following 

five key metrics: 

2.71 Continuous Variables Evaluation 

⚫ Root Mean Square Error (RMSE): RMSE measures the standard deviation of the 

prediction errors, providing insights into the average magnitude of the prediction 

error. It is particularly sensitive to outliers and thus is a robust indicator of the 

imputation accuracy for continuous variables. 

⚫ Normalized Root Mean Square Error (NRMSE): Normalizing RMSE by the range 

of the data provides a scale-independent measure of error magnitude, enabling 

comparisons across different datasets or variables with varying scales. NRMSE is 

critical for understanding the relative error size in the context of the data's 

variability. 

⚫ Mean Absolute Error (MAE): MAE assesses the average absolute difference 

between the imputed values and the actual values, offering a straightforward 

interpretation of the average error magnitude. Unlike RMSE, MAE is not as 

heavily influenced by outliers, providing a complementary perspective on the 



 

 

imputation accuracy for continuous variables. 

2.72 Categorical and Binary Variables Evaluation 

⚫ Weighted F1-Score: The weighted F1-Score combines precision and recall into a 

single metric, taking into account the label imbalance by weighting the scores of 

each class according to their presence in the dataset. This metric is particularly 

valuable for evaluating imputation performance on categorical and binary 

variables, ensuring that the model's accuracy is not overly influenced by the most 

frequent class. 

⚫ Normalized Accuracy: This metric represents the accuracy of correctly imputed 

values, adjusted for chance. Normalized accuracy is crucial for assessing the 

performance of imputation methods on categorical and binary variables, especially 

in datasets where some classes are significantly more prevalent than others. It 

provides a more nuanced understanding of the model's predictive power beyond 

simple accuracy. 

Chapter 3. Results 

  The evaluation of imputation performance was systematically conducted by 

comparing the Fuzzy C-Means based Random Forest (FCRF) imputation method 

against four traditional imputation techniques: Mean, K-Nearest Neighbors (KNN), 

Multiple Imputation by Chained Equations (MICE), and Iterative Imputation. The 

metrics utilized for this comparison were the Average Root Mean Square Error (RMSE), 

the normalized root mean square error (NRMSE), the mean absolute error (MAE), the 



 

 

weighted f1-score, and the normalized accuracy. Each metric sheds light on different 

aspects of imputation accuracy and reliability.  

3.1 MCAR Data Scenario 

In the MCAR scenario, the FCRF method demonstrated commendable performance 

with an Average RMSE of 1.474 and an Average AE of 0.316, closely aligning with the 

results of Simple Imputation and surpassing those of KNN. Notably, the F1-score and 

Accuracy metrics indicated robust capabilities in accurately imputing categorical and 

binary variables, with FCRF achieving a F1-score of 0.928 and an Accuracy of 0.882. 

This showcases the FCRF method's balanced performance across both continuous and 

categorical data under the MCAR mechanism. The results are in Table 2. 

3.2 MAR Data Scenario 

The MAR data scenario, characterized by missingness dependent on observed 

variables, further highlighted the strengths of the FCRF method. Achieving an Average 

RMSE of 1.068 and an Average AE of 0.281, FCRF performed on par with Simple 

Imputation and demonstrated improved efficiency over KNN. The FCRF method also 

showed competitive classification performance, with an F1-score of 0.926 and an 

Accuracy of 0.883, underscoring its effectiveness in contexts where missing data is 

related to other observed data. The results are in Table 3.  

3.3 MNAR Data Scenario 

The MNAR scenario, often considered the most challenging due to missingness 

being related to the missing data itself, saw the FCRF method achieving an Average 



 

 

RMSE of 0.571 and an Average AE of 0.136. These results not only exhibit the method's 

superior performance in accurately imputing missing values but also emphasize its 

precision in handling complex missing data patterns. The F1-score of 0.918 and an 

Accuracy of 0.875 further affirm FCRF's robustness across varied data types within the 

MNAR context. The results are in Table 4.  

3.4 Discussion 

The comparative analysis reveals the FCRF method's consistently strong 

performance across all three missing data scenarios. While the Iterative and MICE 

methods showed lower average RMSE and AE in some cases, the FCRF method's 

advantages become evident when considering its higher F1-scores and Accuracy in the 

challenging MNAR scenario. This suggests that while FCRF may not always have the 

lowest error metrics, it maintains a high level of predictive accuracy, particularly for 

categorical and binary data—a crucial aspect in many real-world applications. 

The FCRF method's balanced approach to imputation, leveraging both clustering to 

identify inherent data structures and Random Forest models to predict missing values, 

offers a nuanced capability to handle missing data. This method proves especially 

valuable in scenarios where the relationship between data points and missingness is 

complex, showcasing its potential as a versatile and effective tool for data imputation. 

Consider the inherent challenge of data imbalance, which significantly impacts 

imputation accuracy, especially for categorical variables. In datasets where certain 

classes are underrepresented, traditional imputation methods may inadvertently skew 



 

 

towards the majority class, leading to biased imputations. The application of 

oversampling techniques, such as Synthetic Minority Over-sampling Technique 

(SMOTE), before the imputation process can alleviate this bias by creating synthetic 

instances of the minority class, thus providing a more balanced dataset for the Random 

Forest models within the FCRF framework. While beneficial, oversampling must be 

applied judiciously to prevent the introduction of bias or overfitting, which could 

adversely affect imputation accuracy.   

The performance of the FCRF method heavily relies on the quality of clustering 

achieved by Fuzzy C-Means. Effective clustering that accurately reflects the underlying 

structure of the data can significantly improve the precision of the subsequent Random 

Forest imputation. Clusters that capture genuine groupings within the data allow for 

more targeted and contextually appropriate imputations. Assessing and optimizing the 

quality of clustering is therefore crucial. This might involve selecting the optimal 

number of clusters, adjusting clustering parameters, or incorporating additional 

preprocessing steps to enhance the distinctiveness and relevance of the clusters formed. 

Chapter 4. Conclusion and Future work 

This thesis presented a comprehensive analysis of the Fuzzy C-Means based Random 

Forest (FCRF) imputation method's performance compared to conventional imputation 

methods in handling missing data within a CABG surgery dataset. While the FCRF 

method did not outperform all traditional methods according to the chosen evaluation 

metrics, it demonstrated a robust potential in managing the complex nature of clinical 



 

 

datasets. 

The results highlighted the nuanced requirements of imputation in medical data, 

where preserving underlying relationships can be as critical as achieving low error rates. 

The comparative analysis provided valuable insights into the strengths and weaknesses 

of various imputation techniques, emphasizing that the choice of method must be 

tailored to the specific characteristics of the dataset and the research objectives. 

Future research should investigate alternative approaches to aligning sample sizes 

post-imputation, focusing on methods that retain the original dataset’s characteristics to 

avoid potential bias in performance evaluation. Also required to explore the impact of 

different initial imputation techniques on clustering and dimensionality reduction.  

There is a need for strategies that can maintain the inherent structure and variability of 

the data without resorting to mean imputation. Exploring advanced clustering 

techniques that can accommodate missing data may offer improvements in the pre-

imputation phase, leading to more accurate clusters and, consequently, more precise 

imputation. Incorporating cross-validation methods that are robust to variations in 

sample size could provide a more accurate measure of an imputation method's 

performance, ensuring that results are not skewed by the way the data is partitioned. 

Research into more effective ways of handling oversampling is needed to prevent the 

overestimation of imputation model performance, particularly in datasets where similar 

records are numerous. The ultimate test of any imputation method lies in its application 

to real-world data and its validation through practical deployment in clinical settings.  

Subsequent research could apply the FCRF method to other medical datasets, validate 



 

 

its effectiveness in various clinical scenarios, and compare its performance with the 

outcomes of actual patient records. Another promising avenue is integrating the 

imputation process with predictive modelling to directly measure the impact of different 

imputation strategies on the predictive accuracy of clinical outcome models. 

 

Appendix 

Table 1 Descriptive statistics of CABG data 

Variables Missing data (N) Missing data (%) Values 

Race 0 0 0-4 race group 

Age 0 0 In Years 

Gender 0 0 Male, Female 

BMI 0 0 kg/m2 

RF-Diabetes 2 0.02 Binary 

Dialysis 0 0 Binary 

Hypertn 0 0 Binary 

TobaccoU 0 0 None, Current, Former 

ChrLungD 3 0 Binary 

Hct 0 0 Continues 

PostopReinM_I

Ves_Simp 

0 0 Binary 

LOS 17 0.14 In Days 

A1cLvl 0 0 Mmol/mol 

CreatLst 0 0 Mg/dL 

HDEFD 9 0.07 Binary 

PrCVInt 0 0 Binary 

NumDisV 0 0 0-3 numbers 

SurSInf 0 0 Binary 

COpReBld 0 0 Binary 

COpReVlv 0 0 Binary 

COpReOth 0 0 Binary 

CSepsis 0 0 Binary 

CNStrokP 0 0 Binary 

CNParal 0 0 Binary 

CPVntLng 0 0 Binary 

CPPneum 0 0 Binary 

CRenFail 0 0 Binary 

COtArrst 0 0 Binary 



 

 

COtAFib 0 0 Binary 

Readmit 0 0 Binary 

CardRef 0 0 Binary 

DisLoctn 0 0 Binary 

FTR 0 0 Binary 

RF- 

Endocarditis 

3 0.02 Binary 

HmO2 2356 19.11 Binary 

SlpApn 2356 19.11 Binary 

Pneumonia 2358 19.13 Binary 

RF-IVDrugU 2357 19.12 Binary 

AlcoholU 2361 19.15 Binary 

LiverDis 2356 19.11 Binary 

ImmSupp 4 0.033 Binary 

MediastRad 2358 19.13 Binary 

PAD 3 0.024 Binary 

Syncope 2355 19.10 Binary 

CVD 4 0.03 Binary 

WBC 41 0.33 Million/mm 

MELDScr 3011 24.42 Continuous 

PrevMI 0 0 Binary 

CarShock 0 0 Binary 

CarCathPer 2354 19.10 Binary 

Status 0 0 Binary 

OpOCard 1 0.01 Binary 

CPBUtil 0 0 Binary 

CircArr 1 0.01 Binary 

AortOccl 1614 13.09 Binary 

IBldProd 32 0.26 Binary 

NumRadDA 694 5.63 0-5 distal anastomoses 

Complics 1 0.01 Binary 

s_no 0 0 12328 

 

Figure 1. The generation framework for MCAR (Missing Completely At 

Random), MAR (Missing At Random), and MNAR (Missing Not At Random). 



 

 

 

 

Figure 2. Proposed Fuzzy C-means based random forest imputation method 

(FCRF) framework. 



 

 

 

 

Table 2. Evaluation Metrics over five experiments for MCAR data. 

 
FCRF Simple  KNN Iterative MICE 

AVG RMSE 1.474 1.474 1.631 1.252 1.252 

AVG NRMSE 0.001 0.001 0.001 0.000 0.000 

AVG AE 0.316 0.317 0.336 0.266 0.265 

F1-score 0.928 0.985 0.979 0.947 0.947 

Accuracy 0.882 0.986 0.962 0.900 0.900 

 

Table 3. Evaluation Metrics over five experiments for MAR data. 



 

 

 
FCRF Simple  KNN Iterative MICE 

AVG RMSE 1.068 1.068 1.124 0.827 0.827 

AVG NRMSE 0.000 0.000 0.000 0.000 0.000 

AVG AE 0.281 0.283 0.297 0.217 0.217 

F1-score 0.926 0.983 0.978 0.947 0.947 

Accuracy 0.883 0.984 0.962 0.903 0.903 

 

Table 4. Evaluation Metrics over five experiments for MNAR data. 

 
FCRF Simple KNN Iterative MICE 

AVG RMSE 0.571 0.557 0.638 0.461 0.461 

AVG NRMSE 0.000 0.000 0.000 0.000 0.000 

AVG AE 0.136 0.120 0.161 0.107 0.107 

F1-score 0.918 0.988 0.916 0.934 0.934 

Accuracy 0.875 0.990 0.895 0.890 0.890 
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