
Distribution Agreement

In presenting this thesis as a partial fulfillment of the requirements for a degree from
Emory University, I hereby grant to Emory University and its agents the non-exclusive
license to archive, make accessible, and display my thesis in whole or in part in all
forms of media, now or hereafter now, including display on the World Wide Web. I
understand that I may select some access restrictions as part of the online submission
of this thesis. I retain all ownership rights to the copyright of the thesis. I also retain
the right to use in future works (such as articles or books) all or part of this thesis.

Signature:

Rodrigo Jose Gonzalez Hernandez March 30, 2022

Application of the Double Descent Color Intermittent Diffusion Method to a
Variational Data Assimilation Problem

By

Rodrigo Jose Gonzalez Hernandez

Manuela Manetta Ph.D.
Advisor

Department of Mathematics

Manuela Manetta Ph.D.
Advisor

Alessandro Veneziani, Ph.D.
Committee Member

Dan Sinykin, Ph.D.
Committee Member

2022

Application of the Double Descent Color Intermittent Diffusion Method to a
Variational Data Assimilation Problem

By

Rodrigo Jose Gonzalez Hernandez

Manuela Manetta Ph.D.
Advisor

An abstract of
a thesis submitted to the Faculty of Emory College of Arts and Sciences of

Emory University in partial fulfillment
of the requirements of the degree of
Bachelor of Science with Honors

Department of Mathematics

2022

Abstract

Application of the Double Descent Color Intermittent Diffusion Method to a
Variational Data Assimilation Problem
By Rodrigo Jose Gonzalez Hernandez

The Double Descent Color Intermittent Diffusion Method (DD-CID) is a global op-
timization algorithm that identifies the global minimum of a smooth function through
the combination of the Double Descent method and a basin-escape technique with
stochastic features. Data Assimilation (DA) is the branch of applied mathematics
that involves the optimal blend of mathematical models and observed data. In this
work, two data assimilation problems in the form of constrained optimization prob-
lems are proposed. Specifically, the goal is to identify some unknown parameters
in two boundary-value problems. The DD-CID method is tested against these and
numerical results are presented.

Application of the Double Descent Color Intermittent Diffusion Method to a
Variational Data Assimilation Problem

By

Rodrigo Jose Gonzalez Hernandez

Manuela Manetta Ph.D.
Advisor

A thesis submitted to the Faculty of Emory College of Arts and Sciences
of Emory University in partial fulfillment

of the requirements of the degree of
Bachelor of Science with Honors

Department of Mathematics

2022

Acknowledgments

I would like to thank my thesis advisor, Dr. Manuela Manetta, for all of her sup-

port throughout my undergraduate career. I would also like to thank Dr. Alessandro

Veneziani and Dr. Dan Sinykin for being on my thesis committee. Finally, thank you

to my family and friends for your encouragement.

i

Contents

1 Double Descent and Color Intermittent Diffusion for Landscape Ex-

ploration 3

1.1 Global Optimization . 3

1.1.1 Global Optimization: an introduction through a simple working

example . 4

1.1.2 Numerical solution to the simple working example 12

1.1.3 Some difficulties of the global optimization problem 14

1.2 DD-CID . 20

1.3 Local search . 20

1.3.1 Local search: saddle point . 20

1.3.2 Local search: local minimum 21

1.4 Landscape exploration . 23

1.4.1 Local minimum to saddle point 23

1.4.2 Saddle point to local minimum 24

1.5 DD-CID at a glance . 25

1.6 DD-CID visualized . 26

1.6.1 Contour plot and Hessian regions 26

1.6.2 Finding an initial minimum through Double Descent 27

1.6.3 Escaping the basin of attraction of the minimum through color

noise diffusion . 28

1.6.4 Finding a saddle point through Damped Newton 29

1.6.5 Escaping the basin of attraction of the saddle through Diffused

Double Descent . 30

1.6.6 Finding a local minimum point through Double Descent . . . 31

2 Data Assimilation and Global Constrained Optimization 33

2.1 Data Assimilation: the big picture . 33

2.2 Parameter estimation . 35

2.2.1 The state equation . 37

2.2.2 The adjoint problem . 37

2.2.3 The optimality condition . 38

2.2.4 Two test problems . 38

2.3 One-dimensional problem . 39

2.3.1 Boundary value problem . 39

2.3.2 Function to be optimized . 40

2.3.3 Derivation of the gradient . 40

2.3.4 Summary . 43

2.4 Multi-dimensional problem . 44

2.4.1 Boundary value problem . 44

2.4.2 Function to be optimized . 45

2.4.3 Derivation of the gradient . 45

2.4.4 Summary . 48

2.5 Numerical Hessian . 49

3 Results and Conclusions 51

3.1 The coding environment: FEniCS . 51

3.2 From MATLAB to Python . 54

3.3 Visualization of the functionals . 57

3.4 Results . 58

3.5 Conclusions . 59

Bibliography 61

iv

List of Figures

1.1 The global minima of the objective function. 5

1.2 The critical points of the objective function. 7

1.3 The local maxima of the function g(x). 8

1.4 The inflection point of the function h(x). 9

1.5 The saddle point of the function h(x). 10

1.6 Newton’s Method to find the critical points of f(x). 13

1.7 The Matyas Function . 17

1.8 Newton’s Method on f(x) with a different set of starting points. . . . 18

1.9 The Ackley Function. 19

1.10 Simple Test function . 26

1.11 Hessian regions . 27

1.12 Initial Double Descent. 28

1.13 Escaping the basin of attraction of the minimum. 29

1.14 Damped Newton to saddle point. 30

1.15 Escaping the basin of attraction of the saddle. 31

1.16 Double Descent to second minimum. 32

3.1 J for the one-dimensional problem. 57

3.2 J for the multi-dimensional problem. 58

v

List of Tables

1.1 Newton’s Method starting from x0 = −3 and converging to xc = −2. 15

1.2 Newton’s Method starting from x0 = −1 and converging to xc = 0. . . 15

3.1 Global minima - simple test function. 55

3.2 Global minimimum - Rosenbrok. 55

3.3 Global minima - Boggs system with the Python version of DD-CID. . 56

3.4 Global minimum - Shubert function with the Python version of DD-CID. 56

3.5 Global minima found by the DD-CID algorithm for the one-variable

test problem. Initial point µ = 18.1, β = 16.6 59

3.6 Global minimum found by the DD-CID algorithm for the multi-variable

test problem. Initial point µ = 19.1, βx = 9.4, and βy = 15.4 59

1

Overview

The objective of this work is to test a novel optimization algorithm in a parameter

estimation procedure. Numerical optimization problems are ubiquitous in different

quantitative fields beyond mathematics such as biology, engineering, and economics.

Loosely, its primary goal is to determine the element of the domain of a function

that minimizes its value. Moreover, many mathematical models are dependent upon

a set of parameters that are unkown in general. However, given some data of the

phenomenon that is being modeled, a procedure can be devised so that the parame-

ters are determined. This often leads to the optimization of some function, hence the

need of a numerical procedure that performs this task. Most optimization schemes,

however, are local in the sense that do not completely explore the function to be op-

timized. This is challenge since the parameter estimation procedure does not have a

unique solution in general. Therefore, a global optimization scheme is highly recom-

mended. This motivates the work in this thesis. More precisely, the Double Descent

and Color Intermittent Diffusion (DD-CID) global optimization algorithm is tested

against an estimation problem.

The work is organized as follows. Chapter 1 explores Global Optimization. First,

a general introduction to optimization, including a discussion of the basic concepts, is

given. This section is meant to be Then, the DD-CID is discussed in length. A visual

example of the DD-CCID at work is included with the goal of clearly explaining the

major steps of the algorithm. Finally, its translation from MATLAB to Python is

2

discussed and numerical results are given.

Chapter 2 explores Data Assimilation. This is the broad mathematical framework

from which the estimation procedure is derived. Again, a brief introduction to Data

Assimilation is given. Then, its particularization to the estimation problem as well

as the relevant mathematical tools are discussed. In particular, a discussion of the

“misfit functional ” as well of its gradient is included. Such functional is precisely

the one whose optimization yields the solution of the estimation problem. Then,

two specific test problems are discussed. Specifically, a one-dimensional boundary-

value problem with unknown parameters and its multi-dimensional counterpart are

introduced. Additionally, a lengthy mathematical treatment of these two problems is

included. Finally, the specific optimization strategy is detailed.

In Chapter 3, the thesis concludes with the numerical results the as well as the

conclusions and discussion of future work.

3

Chapter 1

Double Descent and Color

Intermittent Diffusion for

Landscape Exploration

1.1 Global Optimization

Global optimization is one of the oldest and most relevant problems of applied math-

ematics. This is not a surprise, as it arises in many different fields including the

sciences, engineering, and beyond. In many situations, there is a necessity to find the

configuration of a system so that some optimal condition is satisfied. It is easy to

imagine, for instance, that it is of the utmost importance for business owners to find

the amount of labor, machinery, software, etc. that will maximize profit.

A perhaps more sophisticated example can be found in the field of computational

biology, specifically in protein structure prediction. As described in [APS+22], the

objective of this problem is to find the spatial structure of a protein based on the

amino acids that composite it. While there are different approaches to this problem,

there is evidence that the structure can be successfully predicted by performing a

4

global optimization of some potential energy function, given the amino acid sequence.

It is therefore understandable that massive efforts are put into understanding

and developing novel global optimization techniques. In this document, the Double

Descent and Intermittent Diffusion (DD-CID) global optimization method is briefly

described an used in data assimilation procedure. Such method combines a double-

descent technique and a basin-escaping technique in search of global minimizers. How-

ever, before further discussing this algorithm, a simple working example is studied in

order to provide the basic concepts behind global optimization.

1.1.1 Global Optimization: an introduction through a simple

working example

Suppose a function f(x), which will be referred to as the objective function, is

given. Such function takes a single real number x as input to produce a single real

number f(x) as output. For instance, suppose that f is defined as

f(x) =
x4(5x2 + 6x− 15)

30
(1.1)

Notice that f is a simple polynomial function. Its graph around the origin looks

as follows.

5

-3 -2 -1 0 1 2 3

x

-4

-3

-2

-1

0

1

2

3

4

y

f(x)

Global Minima

Figure 1.1: The global minima of the objective function.

The goal is to minimize the objective function. More specifically, the optimization

problem consists of finding a point xm in the real line such that, for any other point

x, the condition

f(xm) ≤ f(x) (1.2)

is satisfied. Such point will be referred to as the global minimima (or global

minimizer) of f . In other words, the goal is to find the element of the domain of the

function that produces the lowest value. By a simple inspection of ??, it is possible

to conjecture that the point xm = −2 satisfies such condition. In most real problems,

however, the graph of the objective function is not available, and even if it is, a visual

inspection will not be enough to safely conclude a global minima has been found.

In other words, a formal mathematical procedure must be developed to solve the

optimization problem. In order to introduce the major ideas behind this procedure

and many of the relevant definitions that are relevant to this work, imagine that no

graph was given for our simple objective function. How could it be formally verified

that xm = −2 is in fact the global minima of the cost function?

First, start by noticing the points x = −2 and x = 1 on the graph. What do these

6

have in common? These points are special since they both are minimal to some points

in the domain. Specifically, these are the local minima (or local minimizers) of f .

Both points act as global minima of the function, if its domain was to be restricted

to a small region around them. In mathematical terms, it is said that a is a local

minima of f if there exists a positive real number ε > 0 such that for all x in the

interval (a− ε, a+ ε) the condition

f(a) ≤ f(x) (1.3)

is satisfied. Note that the global minima of the objective function must be itself a

local minima. To check this, note that it is always true that f(xm) ≤ f(x), regardless

of the choice of ε > 0. This reveals the importance of local minima in the global

optimization problem, and provides the foundation of the optimization procedure.

Specifically, assuming that at least a reasonably large amount of local minima can

be found, choosing the one that achieves the lowest value would be enough to solve

the optimization problem. Therefore, the goal is to determine the local minima of a

function. This is done by first finding a broader class of points for which the local

minima are a subset of: the critical points of the objective function.

Intuitively, the critical points of f are the set of points for which the graph f

is “instantaneously” flat. For the simple objective function that is being considered,

the points x = −2, x = 0, and x = 1 satisfy this condition. In order to appreciate

this, the following graph contains tangent lines that go through these points.

7

-3 -2 -1 0 1 2 3

x

-4

-3

-2

-1

0

1

2

3

4

y

f(x)

Critical Point

Tangent Line

Figure 1.2: The critical points of the objective function.

Mathematically, xc is a critical point of f(x) if the derivative of f at xc is zero. If

the derivative of f is the function denoted by f ′, then this condition is equivalent to

f ′(xc) = 0. For the simple objective function, the derivative is given by

f ′(x) = x3(x+ 2)(x− 1) (1.4)

It is straightforward to check that f ′(−2) = f ′(0) = f(1) = 0. Note that x = −2

and x = 1 are the local minima that were previously identified. Therefore, it is true

that the the local minima are a subset of the critical points, but the converse is not:

not all critical points are local minima. To see this, consider the point x = 0. While

it is true that f ′(0) = 0, it is not a local minima.

Generally, critical points may also be local maxima (or local maximizers) or

saddle points of a function. The definition of a local maxima is similar to that of a

local minima. Specifically, a is a local maxima of a function g if there exists a positive

real number ε > 0 such that for all x in the interval (a− ε, a+ ε) the condition

g(x) ≤ g(a) (1.5)

is satisfied. As an example, consider the following function and its graph

8

g(x) =
x(2x2 + 3x− 12)

6
(1.6)

-4 -3 -2 -1 0 1 2

x

-4

-3

-2

-1

0

1

2

3

4

y

g(x)

Local Maxima

Tangent Line

Figure 1.3: The local maxima of the function g(x).

It is possible to appreciate that a = −2 is a local maxima. Finally, for one-variable

real-valued functions, f : R → R, all critical points that are not either local maxima

or local minima are called inflection points of the function. For instance, consider

the function h and its corresponding graph.

h(x) = x3 (1.7)

9

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

x

-4

-3

-2

-1

0

1

2

3

4

y

h(x)

Saddle Point

Tangent Line

Figure 1.4: The inflection point of the function h(x).

Note that, in this case

h(0) > h(x) for all x < 0 (1.8)

h(0) < h(x) for all x > 0 (1.9)

Which implies that that no positive real number ε > 0 will make the critical point

x = 0 fit the definition of local minimum or local maximum of h. Therefore, it is

an inflection point. For multi-variable functions, inflections points are generalized as

saddle points. For instance, consider the function h : R2 → R defined as

h(x1, x2) = x21 − x22 (1.10)

In higher dimensions, the notion of derivative is generalized with the gradient of

the function, and is a vector composed with the partial derivatives of the function.

In mathematical terms, the gradient of h is denoted by ∇h, and its value at the point

(x1, x2) is given by

10

∇h(x1, x2) =

hx1(x1, x2)

hx2(x1, x2)

 with hxi
=

∂h

∂xi
(1.11)

For our h, this is

∇h(x1, x2) =

 2x1

−2x2

 (1.12)

Then, the critical points of h are those points such that the gradient of the function

is zero. In other words, the points (x1, x2) such that ∇h = 0⃗. For our function, we

have that (0, 0) satisfies this condition. The following figure shows the graph of h

around this point

Figure 1.5: The saddle point of the function h(x).

It is possible to see that (0, 0) is not an extremum. Indeed, (0, 0) is a local

maximum in the line given by x2 = 0, and a local minimum in the line x1 = 0. Thus,

a saddle point.

Now, consider again f , our one-variable objective function. It is now clear that

solving the equation f ′(x) = 0 yields the critical points. It is then necessary to

identify which of these are local minima, local maxima, or saddle points. This is

11

done by determining the shape of the function around them. In fact, if the function

is concave up (shaped like a union symbol “ ∪ ”) around the critical point, then

it is a local minima. On the other hand, if the function is concave down (shaped

like a intersection symbol “ ∩ ”) around the critical point, then it is a local max.

Mathematically, this is done by determining the sign of the second derivative of the

function. This function is denoted by f ′′(x) and defined as the derivative of the

derivative of f . The following theorem describes how it is used to classify critical

points.

Second derivative test: Assume that f ′′(x) is continuous at the critical point

xc. Then,

• if f ′′(x) > 0, then xc is a local minima.

• if f ′′(x) < 0, then xc is a local maxima.

For the simple objective function, the second derivative is given by

f ′′(x) = x2(5x2 + 4x− 6) (1.13)

Note that f ′′(−2) = 24 > 0 and f ′′(1) = 3 > 0. Therefore, these two points were

correctly identified as local minima. Moreover, note that f ′′(0) = 0. Therefore, this

critical point cannot be classified using the second derivative test, as it is inconclusive

in this case.

Finally, he general steps for global optimization procedure can be summarized as

follows

1. Find the critical points of the objective funciton by solving f ′(x) = 0.

2. Determine which of these critical points are local minima. For one-variable

functions, this can be done following the second derivative test.

12

3. From the set of local minima, choose the point that produces the lowest smallest

value. Set this as best candidate for global minima.

To be clear, this is an oversimplified guide to solving the global optimization

problem. Nevertheless, having these steps in mind is helpful as they provide a general

scheme that can be followed. Moreover, the process that has been discussed is referred

to as a unconstrained optimization. That is, x can attain any real value in this

problem. However, some constrains can be forced. Imagine, for instance, that it is

desired that x < 0. While simple, this is a rule that would transform the process into

a constrained optimization problem. In these cases, the variable is constrained to

take a specific set of values.

1.1.2 Numerical solution to the simple working example

The previous section described the importance of finding the critical points of a

function in the global optimization process. This was achieved by finding the points

c such that f ′(c) = 0. In the previous example, this was done analytically. In

other words, it was straightforward to determine the critical points from the explicit

expression for f ′(x) in 1.4. However, in many cases, this can not be done. Instead,

a numerical procedure to find the critical points is preferred. In general, these are

iterative methods that update a point in the domain of the function, and given some

iterations of this procedure, it is hoped that the point gets “close enough” to the

critical point. That is, a sequence {x1, x2, x3 . . .} is created such that, in the limit, it

converges to some critical point c. Mathematically,

lim
n→∞

xn = c with f ′(c) = 0 (1.14)

One of the most popular of such numerical schemes is Newton’s Method. This

is a root-finding algorithm. In other words, if a function h(x) is given, then Newton’s

13

Method produces a sequence {x1, x2, x3 . . .} of points that converges to a a point c

such that h(c) = 0. The xi+1 element of the sequence is determined by the xi element

by following the rule

xi+1 = xi −
h(xi)

h′(xi)
(1.15)

Note that finding the critical points of f(x) is precisely the same problem as finding

the roots of its derivative f ′(x). Then, allowing h(x) = f ′(x), Newton’s Method for

critical points is given by

xi+1 = xi −
f ′(xi)

f ′′(xi)
(1.16)

Note that the rule does not state which point x0 should be initial element of the

sequence. In general, choosing a different starting point will drive the convergence to

a different critical point. To illustrate this, consider starting this procedure from the

the points x0 = −3, x0 = −1, and x0 = 2 for our simple objective function f(x). The

result for the three iterative procedures is shown in the following graph.

-3 -2 -1 0 1 2 3

x

-4

-3

-2

-1

0

1

2

3

4

y

f(x)

x
0
 = -3

x
0
 = -1

x
0
 = 2

Critical points

Figure 1.6: Newton’s Method to find the critical points of f(x).

The sequence starting from x0 = −3 converged to the critical point at xc = −2,

14

the sequence starting from x0 = −1 converged to the critical point at xc = 0, and the

sequence starting from x0 = 2 converged to the critical point at xc = 1. Therefore,

repeating Newton’s Method for this particular selection of initial points was successful

in finding the three critical points of f(x). After this, the second derive test can be

used to conclude that xc = −2 and xc = 1 are local minima. Finally, by comparing

the values of f at these two points, it is concluded that the global minimum is at

xm = −2.

1.1.3 Some difficulties of the global optimization problem

The previous section established two major components of the numerical solution of

the global optimization problem. First, the use of a iterative method to find a single

critical point, and second, the repetition of this procedure from different starting

locations to find all of the critical points. In this section, these two components

are revisited in more detail in order obtain a better understanding of some major

difficulties in global optimization.

First, the convergence speed Newton’s Method and stopping criteria are discussed.

To do this, recall that Newton’s Method converges to a critical point as the number of

iterations goes to infinity. Of course, it is impossible to repeat this process indefinitely,

and it must stop after a finite number of steps. This means that the final point of is

likely not a critical point, but rather a point that is “close enough” to it. To formalize

this notion, let the distance between xi - the ith point produced by Newton’s Method

- and xc - the critical point - be measured by |xi − xc|. Moreover, a positive real

ε > 0 is defined to be maximum error allowed. In other words, ε is the tolerance,

and the iterative procedure finalizes when the condition |xi − xc| < ε is met. Having

this notion allows the study of the convergence speed of Newton’s Method. This can

be illustrated using the example in the previous section. Suppose that the tolerance

is set to ε = 0.01. The following tables contain the points produced by Newton’s

15

Method, starting from the initial points x0 = −3 and x0 = −1.

i xi |xi + 2|
0 −3.00 2.00
1 −2.55 0.55
2 −2.25 0.25
3 −2.07 0.07
4 −2.01 0.01
5 −2.00 0.00

Table 1.1: Newton’s Method starting from x0 = −3 and converging to xc = −2.

i xi |xi − 0|
0 −1.00 1.00
1 −0.60 0.60
2 −0.39 0.39
...

...
...

12 −0.01 0.01
13 −0.00 0.00

Table 1.2: Newton’s Method starting from x0 = −1 and converging to xc = 0.

Notice that, even though the initial error was |x0 − xc| = 1 in both cases, the

sequence starting from x0 = −1 required more than double the number of iterations

to reach the allowed tolerance. Moreover, recall the critical point and the error are not

known beforehand. This means that a practical stopping criterion must be defined.

For instance, consider that a maximum number of iterations is established. While this

criterion is simple to implement, it also comes with some risks. Evidently, choosing a

small number is desirable as it lowers the computational costs, but on the other hand,

it can not too small so that the iterative method does not get close enough to the

critical point. For instance, if a small number, say N = 10, iterations were allowed

in the previous example, Newton’s Method would not be fast enough to be within a

reasonable distance of the xc = 0 if the initial point was x0 = −1. This highlights

the importance of using fast iterative schemes: methods that require less iterations

to converge to the critical point are referred in general.

16

Alternatively, an upper bound on the magnitude of the derivative can also be

used as stopping criteria. Specifically, a value ε > 0 is chosen and the iterative

procedure stops when when the condition |f ′(xi)| < ε is satisfied. This makes sense

intuitively, as the derivative of the cost function is zero at the critical point, and it

can be expected to be close to zero for points around it. However, this criterion also

has some drawbacks, specially for “flat ” regions of the function, as these contain

points that are not necessarily close to the critical point, but have small derivative

nonetheless. Again, the previous example can be used to illustrate this. For instance,

consider the two first elements in the previous two tables. Their error is comparable

at |x1+2| = 0.55 and |x1−0| = 0.60, which means that both are at a similar distance

of their corresponding critical points. However, the x1 element of the first sequence

has a large derivative of f ′(x1) = −32.4, and the x1 element of the second sequence

has a small derivative of f ′(x1) = 0.5. Therefore, basing the criterion by the size of

the derivative runs the risk of stopping at points that are not close enough to the

critical points.

More broadly, this analysis highlights the difficulty of dealing with relatively flat

functions. In fact, note that the region around xc = 0 in ?? is flat and Newton’s

Method considerably slowed down around this point. In general, flat cost functions

represent a challenge, and robust numerical algorithms should be able to handle these

situations. This is the reason why it is common to test such methods against flat

functions. For instance, consider the Matyas Function from [JY13]. It is defined

f : R2 → R, and given by

f(x1, x2) = 0.26(x21 + x22)− 0.48x1x2 (1.17)

17

Figure 1.7: The Matyas Function

The only local minima of this function corresponds to the global minima, which

is located at (x1, x2) = (0, 0). Therefore, in this case, efficiently converging to this

critical point is the challenge for the iterative algorithm. Once this point is found,

the global optimization problem is solved as there are no other critical points to visit.

Furthermore, recall that in the previous section Newton’s Method was repeated

starting from different locations so that all critical points were found. In general there

is no guarantee that this will always be the case. To illustrate this, suppose that a

new set of initial points are selected. In particular, take x0 = −1.5, x0 = −0.5, and

x0 = 0.5. Newton’s Method will produce the following results

18

-3 -2 -1 0 1 2 3

x

-4

-3

-2

-1

0

1

2

3

4

y

f(x)

x
0
 = -1.5

x
0
 = -0.5

x
0
 = 0.5

Critical Points

Figure 1.8: Newton’s Method on f(x) with a different set of starting points.

In this case, the sequence starting from x0 = −1.5 converged to the critical point

at xc = 1, the sequence starting from x0 = −0.5 converged to the critical point at

xc = 0, and the sequence starting from x0 = 0.5 also converged to the critical point

at xc = 0. Therefore, the critical point at xc = −2 was not visited, which is relevant

since this is the global minima of the function. It is also worth pointing out the

that the sequence starting at x0 = −1.5 converged, after a single step, to xc = 1.

Intuitively, it is reasonable to think that the iterative procedure would converge to

the critical point closest to its initial point, which in this case would be xc = −2.

This counter example shows that this is not true in general.

More broadly, it also exemplifies another challenging aspect of global optimization:

choosing the best initial positions so that the iterative procedure successfully visits

different critical points. This is very difficult to know beforehand, specially because

cost functions may vary wildly. For instance, consider the Ackley Function from

[JY13]. This is a two-variable test function f : R2 → R defined by

19

f(x1, x2) = −a exp

(
−b
√

1

d
(x21 + x22)

)
− exp

(
1

d

(
cos(cx1) + cos(cx2)

))
+ a+ 1

(1.18)

Where a, b, and c are real parameters. Its graph and its graph is as follows

Figure 1.9: The Ackley Function.

Notice that there are many critical points that are not the global minima. There-

fore, it is expected to repeat Newton’s Method from many different starting locations

so that these points are found. Ideally, once a critical point is found, the next starting

location should drive Newton’s Method to a different critical point, as it would be a

waste of computational resources to visit a point that has been already identified.

In conclusion, there are two main challenges that a numerical algorithm must

address. First, it should implement a robust iterative scheme to converge to a critical

point. Second, after finding the critical point, it should restart the iterative scheme

so that a critical point a different critical point is found. In the following section, an

algorithm with this characteristic is discussed.

20

1.2 DD-CID

TheDouble Descent and Color Intermittent Diffusion (DD-CID) is the global

optimization algorithm considered in this thesis. It was originally introduced in

[DMZ20]. It consists of two major processes that are repeatedly executed one af-

ter the other: local search and landscape exploration of the objective function. In the

former, either Damped Newton or Double Descent is used to reach a critical point. In

the latter, a basin-escaping approach with stochastic features is used to move away

from the critical point so that the function is explored. These two major processes

are discussed in the following sections.

1.3 Local search

During the local search process, the DD-CID algorithm identifies a critical point of

the objective function. There are two main cases: the search of a saddle point and

the search of a local minimum. Both of these are accomplished through iterative

algorithms. These may be written in the following way

xi+1 = xi − hivi (1.19)

where vi is the search direction and hi > 0 is a parameter that modifies the step

size. Converging to a specific type of critical point - saddle points or local minimum

- may be achieved by modifying the choice of vi. This is considered in the following

sections.

1.3.1 Local search: saddle point

Newton’s method is a popular iterative scheme used to find critical points. For

multi-variable objective functions f : Rn → R, it is given by

21

xi+1 = xi −H−1(xi)∇f(xi) (1.20)

Where ∇f(x) is the gradient and H(x) is Hessian of the objective function. These

are the generalizations of the first and the second derivative. We can see that Newton’s

direction is vi = H−1(xi)∇f(xi). This is a “pure form” of Newton’s method, and

it is not the one implemented by DD-CID. Instead the algorithm uses Damped

Newton’s method to converge to a saddle point. This variation of Newton’s method

is implementing by choosing some hi > 0 and allowing

xi+1 = xi − hi(H
−1(xi)∇f(xi)) (1.21)

Again, hi modifies the step size. Its specific choice will be discussed in the following

section. Moreover, it is worth noting that Newton’s method converges to critical

points rather than to saddle points specifically. Therefore, it is possible that the

method may identify a local minimum. This is not a problem since the discovery of

local minima is precisely one of the goals of the optimization algorithm.

1.3.2 Local search: local minimum

Now we consider the local search of a minimum. The DD-CID algorithm usesDouble

Descent method to achieve this. To introduce it, we again recall that there is no

guarantee that Newton’s method will converge to a local minimum. Therefore, it

would be ideal to use an iterative method that takes a step in a descent direction.

A descent direction is a direction v such that f(x + hv) < f(x) for some h > 0.

Thus, moving in such direction would force a method to “go downhill” - that is,

decrease - the objective function and converge to a minimum instead of other critical

points. Moreover, a descent direction is not unique, and if v is a descent direction,

then (∇f(x))Tv < 0. It is common to take the gradient-descent choice, that is

22

v = −∇f(x). This leads to the Steepest Descent method

xi+1 = xi − hi∇f(xi) (1.22)

Where we choose the parameter hi > 0 sufficiently small such that f(xi+1) < f(xi),

assuming that ∇f(xi) ̸= 0⃗. Therefore, this method achieves the desired “descent”

over the function. However, it is also very slow: compared to other methods, it may

require many iterations to converge to a local minimum.

The Double Descent method combines these two previous methods. In order

to introduce it, first we define the “auxiliary potential” F : Rn → R as F (x) =

1
2
(∇f(x))T (∇f(x)). Note that ∇F (x) = H(x)∇f(x), which implies that Newton’s

direction is a descent direction of this auxiliary potential F (x).

The Double Descent direction is a descent direction for both f and F , hence its

name. This combination ensures that we converge quickly to a local minimum. If the

Hessian is positive definite then the Double Descent direction corresponds to Newton’s

direction. If the Hessian is indefinite, then it is replaced with H+, the closest positive

semidefinite matrix to it. More precisely, if H = V ΛV T is the diagonalization of

H, and Λ = diag(Λ+,Λ0,Λ−) is the diagonal matrix containing its eigenvalues, then

H+ = V Λ+V T with Λ+ = diag(Λ+, 0, 0). In other words, H+ is the projection of

V ΛV T onto the positive eigenvalue subspace. Then, in these two cases the Double

Descent method is given by

xi+1 = xi − hi(H+(xi))
†∇f(xi) (1.23)

Where M † is the pseudoinverse of the matrix M . Note that, if H is positive

definite then H = H+ and the previous is precisely Newton’s Method.

23

1.4 Landscape exploration

Once a critical point has been found, the local search must be restarted. Ideally, this

will be done from a point that drives the iterative procedure to converge to a different

critical point. This is achieved by the landscape exploration of the function. As

in the local search, there are two main processes, namely, the local minimum to saddle

point step, and the the saddle point to local minimum step.

1.4.1 Local minimum to saddle point

The local minimum to saddle point step is achieved by first escaping the basin of

attraction of the local minimum. This is a relatively steep region around it. A local

search algorithm that starts on the basin of attraction a minimum will converge to

it. After escaping it, the local search process described in the previous section is per-

formed: Damped Newton’s method is used to converge to a saddle point. Specifically,

there are three basic steps to go from a minimum to a saddle.

First, we activate the color noise diffusion. This is the process by which the

method escapes the basin of attraction of the minimum. We take some α > 0, a

parameter chosen by the user of the algorithm, and perform an initial “kick” out of

the minimum by allowing

x1 = x0 + ασ(x0)W (1.24)

Here, x0 is the local minimum, W = N(0, 1)T , and σ(xi) = −v1(xi)v1(xi)n is a

rank 1 matrix, where v1(xi) is the eigenvector corresponding to the largest eigenvalue

of the Hessian at xi. The term σ(xi)W corresponds to a “diffusive step”, and the

choice of α will amplify its size. After this, we proceed by allowing

x̂i+1 = xi − hiH
†(xi)∇f(xi) (1.25)

24

to be the step that would be taken with Newton’s method. The choice of hi is

made such that |F (x̂i+1)| < |F (xi)|, which ensures that we are approaching a critical

point. This Newton’s step is then modified by adding the diffusive term. Namely,

xi+1 = x̂i+1 + α
√
hiσ(xi)W (1.26)

The diffusion process stops once the Hessian contains some negative eigenvalues.

In other words, the iterations continue as long as xi is in a region where the Hessian is

positive definite and stops when it enters one where it is indefinite. Finally, Damped

Newton’s method is used to converge to a saddle point. This is achieved by allowing

xi+1 = x̂i+1. In other words, the diffusive term is no longer considered.

1.4.2 Saddle point to local minimum

The saddle point to local minimum step is performed in an analogous way. The

process starts by first escaping the basin of attraction of a saddle. After this, the

local search process described in the previous section is performed: Double Descent

is used to converge to another local minimum. More specifically, there are three basic

steps to go from a saddle to a minimum.

First, take some α > 0 and again perform an initial “kick” out from the saddle by

x1 = x0 + ασ(x0)W (1.27)

Here, x0 is the saddle point and σ(xi) = −vn(xi)v1(xi)T is a rank 1 matrix,

where vn(xi) is the eigenvector corresponding to the smallest (in this case, the most

negative) eigenvalue of the Hessian at xi. Similar to the previous case, the term

σ(xi)W corresponds to a “diffusive step”, and the choice of α amplifies its size.

Then, Diffused Double Descent is performed to escape the basin of attraction

of the saddle, while also descending over the objective function. To do this, allow

25

x̂i+1 = xi − hiH
†
+(xi)∇f(xi) (1.28)

to be the step that would be taken with double descent. Here, the choice of hi

depends on ∇f(xi) has a meaningful component on the direction of V+(xi) - the

matrix whose columns are the eigenvectors of H(xi) which correspond to positive

eigenvalues. If there is a meaningful component, then hi is selected so that both

|f(x̂i+1)| < |f(xi)| and |F (x̂i+1)| < |F (xi)|. If there is not, then hi is selected so

that |f(x̂i+1)| < |f(xi)|. Therefore, this last inequality holds in both cases, and it is

guaranteed that objective function always decreases in absolute value. Then, Diffused

Double Descent is achieved by adding a diffusive term as follows

xi+1 = x̂i+1 + α
√
hiσ(xk)W (1.29)

The diffusive process continues as long as xi is in a region where the Hessian is

indefinite and stops when it enters one where it is positive definite. Finally, Double

Descent is used to locate a local minimum nearby. Similarly to the previous step, this

is achieved by allowing xi+1 = x̂i+1 so that the diffusive term is no longer used.

1.5 DD-CID at a glance

The DD-CID algorithm starts with an initialization step, and then enters a main

loop. During the initialization, and initial point is randomly chosen within a region

of interest. Such point may be chosen from some a priori information of the objec-

tive function. Then, Double Descent is used to find a local minimum. This initial

minimum is stored in a table that will be used to contain the critical points that have

been visited.

Then the main loop starts. First, a random point is chosen from the table. Note

26

that in the first iteration it only contains the initial minimum. Then, the process

described in the previous section is followed. That is, a diffusive process is used to

escape the basin of attraction of the critical point, and then, a local search is used

to find the next critical point. This new point is stored in the table. The main loop

is repeated for a number of times. Finally, the local minimum with smallest value is

extracted from the table of critical points. This is the candidate for global minimum

proposed by the algorithm.

1.6 DD-CID visualized

In this section we showcase the DD-CID as it explores the simple test function 3.1

discussed in the previous section.

1.6.1 Contour plot and Hessian regions

The following is the contour plot of the test function. There are three critical points:

(−1, 0), (1, 0), and (0, 1). The first two are global minima, and the last is a saddle

point.

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Objective function

Critical Points

Figure 1.10: Simple Test function

27

The following shows the regions the “Hessian regions” of the function. The Hessian

of the objective function is positive-definite in the blue region and indefinite in the

white.

Figure 1.11: Hessian regions

1.6.2 Finding an initial minimum through Double Descent

The first step is to find an initial minimum point. The starting location was chosen

to be x0 = (−0.5, 0). The steps of taken by the Double Descent algorithm to converge

to the minimum at xmin = (−1, 0) are shown in the following figure.

28

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Objective function

Critical Points

Double Descent

Figure 1.12: Initial Double Descent.

1.6.3 Escaping the basin of attraction of the minimum through

color noise diffusion

Now that an initial minimum is known, the DD-CID proceeds to escape its basin of

attraction. As described in the previous section, this is achieved by a diffusive process

that stops when a Hessian-indefinite region is reached. Indeed, the following figure

shows that the final point is near x = (0,−0.5), which is in a indefinite region as

shown in Figure ??.

29

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Objective function

Critical Points

Minimum Basin Escape

Eigenvector direction

Figure 1.13: Escaping the basin of attraction of the minimum.

Note that, while the process has a random component, the search direction is

generally along the span of the eigenvector corresponding to the largest eigenvalue.

1.6.4 Finding a saddle point through Damped Newton

Now the goal is to find a saddle point nearby. This is achieved through Damped

Newton. The following figure shows how this scheme starts at the final location of

the previous step and converges to the saddle point at xsad = (0, 1).

30

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Figure 1.14: Damped Newton to saddle point.

1.6.5 Escaping the basin of attraction of the saddle through

Diffused Double Descent

At this point the DD-CID algorithm has found two critical points. To keep exploring

the function, it randomly selects one of these points, and starts escaping its basin

of attraction. For simplicity, we may assume that the saddle point was chosen. The

basin-escape is then performed through Diffused Double Descent. This process stops

when a positive-definite region is reached. We see in the following figure that the final

point is near x = (1.5, 1), which is in a positive-definite region as shown in Figure ??.

31

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Objective function

Critical Points

Saddle Basin Escape

Eigenvector direction

Figure 1.15: Escaping the basin of attraction of the saddle.

Note that, while the process has a random component, the search direction is

generally along the span of the eigenvector corresponding to the smallest eigenvalue.

1.6.6 Finding a local minimum point through Double De-

scent

Finally, the DD-CID performs a final local search in which the second minimum is

identified. This is achieved through Double Descent, and the steps taken are displayed

in the following figure.

32

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Objective function

Critical Points

Double Descent

Figure 1.16: Double Descent to second minimum.

All critical points have been found, the minimum that produces the lowest value

of the objective function is chosen as global minimum. In this case, these would be

the two minima found.

33

Chapter 2

Data Assimilation and Global

Constrained Optimization

2.1 Data Assimilation: the big picture

Data assimilation is the branch of applied math that concerns with the combination

of mathematical models and data or measurements to improve the knowledge of real

problems.

The early development of DA was mainly motivated by meteorology, specifically,

in Numerical Weather Prediction (NWP). As stated in [Nav09], atmospheric DA was

born from the need of estimating the initial conditions of the initial-value problems

posed by NWP. Moreover, in [JY13], DA is described as the mathematical assim-

ilation of available observations with forecast models in order to provide accurate

weather analyses. The need of this came from the availability of more data to com-

bine with mathematical models in a sort of continuous improvement. The sequential

improvement of knowledge provided by models with available data is called “filtering”.

Mathematical models are bound to be imperfect descriptions of natural phenomena.

They are often limited by simplifying assumptions and incomplete knowledge in the

34

form of inaccurate or unknown initial conditions, boundary conditions, parameters,

etc. On the other hand, observed data is not fully reliable, as it is corrupted by some

noise or random perturbations. Therefore, DA concerns the optimal blend of these

two components to obtain more reliable quantitative analyses.

There are several techniques in DA, most of them belong to two groups: sequential

methods (e.g., Kalman Filtering) and variational techniques. In the first case, the

assimilation happens at each time step of an evolutionary problems, the second group

relies on methods of constrained optimization. The latter comes to play in the frame

of using the parameter to estimate as a control variable to minimize the mismatch

between the observed data and the numerical predictions.

In recent years, DA has been applied to the medical sciences. For instance,

[BDPV14] offers an introduction to DA applied to cardiovascular and blood-flow

problems. In [YV15], DA is applied to the field of electrophysiology. Specifically, a

variational DA approach is used to estimate the electrical conductivity of the cardiac

tissue from available potential measures. The idea is to extract from the (surface)

measures a knowledge about the status of the (volumetric) cardiac tissue. This knowl-

edge may eventually detect pathological regions (called “scars”) or help identifying

the optimal implementation of therapies like cardiac re-synchronization therapy (pace-

maker) or ablation (burning some small portion of tissue to restore a physiological

potential propagation).

In [YV15], the authors pursue a variational approach, where optimization comes

to play [Gun02]. We basically consider a control problem, by introducing (i) an ob-

jective functional to minimize; (ii) variables that define the state of our system (the

cardiac tissue), like the intra-cellular, extra-cellular potentials and their difference

(called transmembrane potential); (iii) variables to implement the control, i.e. the

minimization, in our case the parameters to estimate (the cardiac conductivity); (iv)

a problem stating the connection between the control and the state variables. In elec-

35

trophysiology, the point (iv) is represented by the so called “monodomain equations”.

With these ingredients, we can formalize a generic control (DA) problem: “find

the control variables that minimize the optimization functional, under the constraint

of the equation(s) in (iv).”

We summarize the ingredients of a control problem:

• State variables

• Control variables

• An objective functional

• Constraints the state and control variable must satisfy.

In continuity with the previous Chapter, we do have an optimization problem here

(i.e. something to minimize), yet we have a constraint too.

A classical approach to consider the constraint is to pursue the optimization of a

modified functional, incorporating the constraint through a coefficient called Lagrange

multiplier. In our case, the constraint is not just an algebraic equation, it is an initial-

boundary value problem (monodomain).

How to incorporate an IBVP into the Lagrange multiplier constrained optimiza-

tion will be addressed in detail in the next section.

2.2 Parameter estimation

In this section we introduce the major concepts behind the parameter estimation

procedure which is relevant to this work. Suppose we have a state variable u which

satisfies a differential equation with some boundary conditions. For instance, suppose

that u satisfies

36

αu′′(x) + u(x) = 0 x ∈ Ω (2.1)

u(x) = 0 x ∈ ∂Ω (2.2)

Here α plays the role of a parameter that we need to estimate. The following

procedure is inspired on the one described in [BDPV14] and [Gun02]. We represent

the boundary value problem with the general abstract notation

F (α, u) = 0

This is called the state equation. We suppose to have observations of u, that

we denote by d. In general, d is available only in some points xi. Here we assume to

have observations for all x ∈ Ω, for sake of simplicity. Generally, we can postulate

that the measures are affected by some noise.

One possible way of estimating the parameter α to explain the observations δ is to

resort to a variational approach. To this aim, we introduce a mismatch functional

defined as

J (α, µ) =
1

2

∫ 1

0

(u(α)− d)2

This functional measures how “far away” a generic solution u is from the reference

d. It is important to emphasize that u depends on α, as taking different values of this

parameter will produce different solutions as the state equation is solved.

In general, the dependence of the state variable u on the parameter is not triv-

ial. However, we can consider the state equation as a constraint in the optimization

process, and recast the parameter identification into the form of a constrained opti-

mization. Should an explicit formula stating the dependence u = u(α) be available,

37

clearly we can proceed with a regular free minimization procedure (like the one con-

sidered in the previous Chapter). In this case, we notice that the functional J is

non-negative (closer to 0 is our functional and better the optimal solution is). How-

ever, in general the dependence of Γonα may be such that J is not convex. This may

impair the theoretical results for a specific minimization. To solve the constrained

minimization, we resort to a Lagrange multiplier approach. However, the constraint

is described by a Boundary Value Problem, and this makes the formalization of the

Lagrange multiplier method quite complicated. As a matter of fact, we define the

Lagrange functional as

L(α, u, λ) = J (α, u)− ⟨λ, F (α, u)⟩ (2.3)

Where λ is the adjoint variable (i.e. the lagrange multiplier) and the notation ⟨, ⟩

represents formally an inner product. In this way, the solutions to the constrained

optimization problem are the critical points of L. In other words, the Gâteaux

derivatives of L with respect of each of the variables is set to zero, and the resulting

system is be solved.

2.2.1 The state equation

Taking the derivative with respect of the adjoint variable leads to the state equation.

DL
Dλ

= 0 =⇒ F (α, u) = 0

Intuitively, this makes sense as we require that the solution of the optimization

problem to be a solution to the state equation.

2.2.2 The adjoint problem

Taking the derivative with respect of the state variable leads to the adjoint problem.

38

DL
Du

= 0 =⇒ DJ
Du

=

〈
λ,
DF
Du

〉
Solving this equations leads to λ, the adjoint variable. This can then be used to

compute DF/Dα using the expression found through the following condition.

2.2.3 The optimality condition

Taking the derivative with respect of the control variable leads to the optimality

condition.

DL
Dα

= 0 =⇒ DJ
Dα

=

〈
λ,
DF
Dα

〉
This is equation is useful as it gives a way to compute the derivative of the mis-

match functional with respect of the control variable. Its specific use will be seen in

the following sections.

Solving this system would, in theory, give us the solution to the constrained op-

timization problem, which would ultimately allow us to find the unknown control

variable α∗. However, this is rarely done. Instead, the derivative of J with respect

of the control variable(s) is used to numerically optimize this function. Nonetheless,

the ideas presented here provide the mathematical foundation of the next sections.

2.2.4 Two test problems

The present work explores two simple parameter estimation problems. In both of

them, a differential equation is given along with a solution corresponding to some pre-

chosen values of the parameters. Reconstructing those values will provide evidence of

the soundness of the mathematical argument as well as the strength of the numerical

procedure. In particular, it will showcase the potential of the DD-CID as a general-

purpose optimization algorithm. This will be shown in the next chapter. Before

39

that, however, it is necessary to explore the mathematics behind the estimation.

Specifically, the next two sections introduce the two test problems, and carefully

detail the derivation of the gradient of J , which is a necessary input for the DD-CID

algorithm.

2.3 One-dimensional problem

2.3.1 Boundary value problem

For the one-dimensional problem, we consider the following differential equation.

−µu′′(x) + βu′(x) = −β x ∈ Ω (2.4)

u(x) = 0 x ∈ ∂Ω (2.5)

Where µ > 0 ∈ R, β ∈ R, and Ω = [0, 1]. The task is to estimate µ and β. The

general solution is

u(x) =
1− eβx/µ

1− eβ/µ
− x

Note that it depends on the ratio β/µ of the parameters rather than their specific

values. If we let µ = β by, for instance, allowing µ∗ = 1 and β∗ = 1, then we have

d(x) =
1− ex

1− e
− x

This is the reference function that we would like to approximate.

40

2.3.2 Function to be optimized

Treating d as known, we try to estimate µ and β that correspond to this function,

i.e. (µ∗, β∗) = (1, 1). For this we consider the following functional that measures the

“mismatch” between d, the reference, and u, the solution to Equation 2.12.

J (µ, β) =
1

2

∫ 1

0

(u− d)2

Note that u depends on the values of (µ, β) that are used to solve the differential

equation. By minimizing J , the mismatch between d and u goes to zero, and the

parameters that correspond to d are found. In other words,

(µ∗, β∗) = argmin
(µ,β)

J (µ, β)

Note that the solution is not unique. In fact, d(x) is always obtained as the state

problem is solved with a pair of parameters such that µ = β, therefore giving the

functional an infinite number of global minima, and the optimization problem an

infinite number of solutions.

2.3.3 Derivation of the gradient

The gradient Let the gradient of J be denoted by

∇J =

(
DJ
Dµ

,
DJ
Dβ

)

Adjoint operator Consider the adjoint operator. Call it

∂F

∂u

∣∣∣∣∗
u

(p)

By definition

41

〈
v,
∂F

∂u

∣∣∣∣∗
u

(p)

〉
=

〈
∂F

∂u

∣∣∣∣
u

(v), p

〉
for any v and p. Here,

F (u) = −µu′′ + βu′ − β = 0

is the functional related to the state problem, and

∂F

∂u

∣∣∣∣
u

(v) = −µv′′ + βv′

is the Fréchet operator of F applied to v. Then, we have

∫ 1

0

p
∂F

∂u

∣∣∣∣∗
u

(v) =

∫ 1

0

(−µv′′ + βv′)p

It is possible to show through integration by parts that

∫ 1

0

(−µv′′ + βv′)p =

∫ 1

0

v(−µp′′ − βp′)

Therefore, the adjoint operator is

∂F

∂u

∣∣∣∣∗
u

(p) = −µp′′ − βp′

Adjoint problem The adjoint problem requires to find p such that

〈
∂F

∂u

∣∣∣∣∗
u

(p), v

〉
=
∂J
∂u

∣∣∣∣
u

(v)

for all v. Given the definition of J , we have

∂J
∂u

∣∣∣∣
u

(v) =

∫ 1

0

(u− d)v

42

which gives the weak formulation of the adjoint problem

∫ 1

0

(−µp′′ − βp′)v =

∫ 1

0

(u− d)v

since this must hold true for any v, this is equivalent to the strong form

−µp′′ − βp′ = u− d x ∈ Ω (2.6)

p(x) = 0 x ∈ ∂Ω (2.7)

which is the problem to be solved in order to find p.

Partial derivatives We use the chain rule to compute the partial derivatives. For

instance, working with β we have

DJ
Dβ

=
∂J
∂u

(
∂u

∂β

)
+
∂J
∂β

Note that

∂J
∂β

= 0

since there is no explicit dependency of J on β. This will not be true if some

terms are added for a regularazing effect. Going back, considering first the adjoint

problem, and then the adjoint definition

DJ
Dβ

=
∂J
∂u

(
∂u

∂β

)
=

〈
∂F

∂u

∣∣∣∣∗
u

(p),
∂u

∂β

〉
=

〈
p,
∂F

∂u

∣∣∣∣
u

(
∂u

∂β

)〉
(2.8)

Note that since

F (u) = 0 (2.9)

43

by chain rule, it is true that

∂F

∂u

(
∂u

∂β

)
+
∂F

∂β
= 0 (2.10)

Therefore, the partial derivative is given by

DJ
Dβ

=

〈
p,
∂F

∂u

∣∣∣∣
u

(
∂u

∂β

)〉
=

〈
p,−∂F

∂β

〉
(2.11)

Finally, considering F , this last term is

∂F

∂β
= u′ − 1

A similar procedure can be followed for µ.

2.3.4 Summary

To optimize J , we need its gradient ∇J evaluated at any value of the parameters

(µ, β). To calculate it, we follow these steps

1. Given values µ and β, find u by solving the state problem

−µu′′(x) + βu′(x) = −β x ∈ Ω

u(x) = 0 x ∈ ∂Ω

This solved numerically - using a finite difference approach.

2. Using the same solver, find p by solving the adjoint problem

44

−µp′′(x)− βp′(x) = u(x)− d(x) x ∈ Ω

p(x) = 0 x ∈ ∂Ω

3. Compute the gradient of J with the formulas

DJ
Dµ

=

∫ 1

0

pu′′ (2.12)

DJ
Dβ

= −
∫ 1

0

p(u′ − 1) (2.13)

The integration is done using the trapezoid rule.

2.4 Multi-dimensional problem

2.4.1 Boundary value problem

For the multi-dimensional problem, we consider the following differential equation.

−µ∆u+ β⃗ · ∇u = f x ∈ Ω (2.14)

u(x) = 0 x ∈ δΩ (2.15)

Where

f = y(y − 1)(30x− 17) + x(x− 1)(40y − 22)

and Ω = [0, 1]× [0, 1], µ > 0 ∈ R, and β⃗ = (βx, βy) ∈ R2. The task is to estimate

µ and β⃗. If we let µ∗ = 25, β⃗∗ = (15, 20), the exact solution reads

45

d(x, y) = x(x− 1)y(y − 1) (2.16)

This is the reference function that we would like to approximate.

2.4.2 Function to be optimized

Treating d as known, we try to estimate µ and β⃗ that correspond to this function, i.e.

(µ∗, β∗
x, β

∗
y) = (25, 15, 20). For this we consider the following functional that measures

the “mismatch” between d, the reference, and u, the solution to Equation 2.14.

J (µ, βx, βy) =
1

2

∫
Ω

(u− d)2 (2.17)

Note that u depends on the values of (µ, βx, βy) that are used to solve the differ-

ential equation. By minimizing J , the mismatch between d and u goes to zero, and

the parameters that correspond to d are found. In other words,

(µ∗, β∗
x, β

∗
y) = (25, 15, 20) = argmin

(µ,β⃗)
J (2.18)

2.4.3 Derivation of the gradient

The gradient Let the gradient of J be denoted by

∇J =

(
DJ
Dµ

,
DJ
Dβx

,
DJ
Dβy

)
(2.19)

Adjoint operator definition Similarly, consider the adjoint operator. Let it be

denoted by it

∂F

∂u

∣∣∣∣∗
u

(p)

By definition

46

〈
v,
∂F

∂u

∣∣∣∣∗
u

(p)

〉
=

〈
∂F

∂u

∣∣∣∣
u

(v), p

〉
for any v and p. Here,

F (u) = −µ∆u+ β⃗ · ∇u− f

is the functional related to the state problem, and

∂F

∂u

∣∣∣∣
u

(v) = F (v) = −µ∆v + β⃗ · ∇v

is the Fréchet operator of F applied to v. Then, we have

∫
Ω

p
∂F

∂u

∣∣∣∣∗
u

(v) =

∫
Ω

(−µ∆v + β⃗ · ∇v)p

Considering that

∇ · (ϕ∇ψ) = ϕ∆ψ +∇ϕ · ∇ψ

∇ · (ψA⃗) = ψ∇ · A⃗+ A⃗ · ∇ψ

∫
Ω

∇ · A⃗ =

∫
δΩ

A⃗ · n̂

and assuming that p(δΩ) = 0, it is possible to show that

∫
Ω

(−µ∆v + β⃗ · ∇v)p =
∫
Ω

v(−µ∆p− β⃗ · ∇p)

Therefore, the adjoint operator is

∂F

∂u

∣∣∣∣∗
u

(p) = −µ∆p− β⃗ · ∇p

47

Adjoint problem Then, the adjoint problem requires to find p such that

〈
∂F

∂u

∣∣∣∣∗
u

(p), v

〉
=
∂J
∂u

∣∣∣∣
u

(v)

for all v. Given the definition of J , we have

∂J
∂u

∣∣∣∣
u

(v) =

∫
Ω

(u− d)v

which gives the weak formulation of the adjoint problem

∫
Ω

(−µ∆p− β⃗ · ∇p)v =

∫
Ω

(u− d)v

since this must hold true for any v, this is equivalent to the strong form

−µ∆p− β⃗ · ∇p = u− d x ∈ Ω

p(x) = 0 x ∈ δΩ

which is the problem to be solved in order to find p.

Partial derivatives To compute the partials, we use the chain rule. For instance,

working with βx we have

DJ
Dβx

=
∂J
∂u

(
∂u

∂βx

)
+
∂J
∂βx

Note that

∂J
∂βx

= 0

since there is no explicit dependency of J on βx. This will not be true if some

48

terms are added for a regularazing effect. Going back, considering first the adjoint

problem, and then the adjoint definition

DJ
Dβx

=
∂J
∂u

(
∂u

∂βx

)
=

〈
∂F

∂u

∣∣∣∣∗
u

(p),
∂u

∂βx

〉
=

〈
p,
∂F

∂u

∣∣∣∣
u

(
∂u

∂βx

)〉
Note that since

F (u) = 0

by chain rule, it is true that

∂F

∂u

(
∂u

∂βx

)
+
∂F

∂βx
= 0

Therefore, the partial derivative is given by

DJ
Dβx

=

〈
p,
∂F

∂u

∣∣∣∣
u

(
∂u

∂βx

)〉
=

〈
p,− ∂F

∂βx

〉
Finally, considering F , this last term is

∂F

∂βx
=
∂u

∂x

A similar procedure can be followed for βy and µ.

2.4.4 Summary

To optimize J , we need its gradient ∇J evaluated at any value of the parameters

(µ, βx, βy). To calculate it, we follow these steps

1. Given values µ, βx, and βy, find u by solving the state problem

−µ∆u+ β⃗ · ∇u = f

49

u(δΩ) = 0

This is done using FEniCS.

2. Using the same FEniCS solver, find p by solving the adjoint problem

−µ∆p− β⃗ · ∇p = u− d

p(δΩ) = 0

3. Compute the gradient of J with the formulas

DJ
Dµ

=

∫
Ω

p∆u (2.20)

DJ
Dβx

= −
∫
Ω

pux (2.21)

DJ
Dβy

= −
∫
Ω

puy (2.22)

The integration is done with FEniCS.

2.5 Numerical Hessian

The DD-CID algorithm requires the capacity to evaluate J , its gradient, J , and its

Hessian, HJ for any value of the parameters. The previous two sections describe how

to compute the first two, and this section briefly discusses the computation of the

Hessian. This is a matrix of second derivatives, and for our two test problems, they

are given by,

HJ =

Jµ,µ Jµ,β

Jβ,µ Jβ,β



50

for the one-variable problem, and

HJ =


Jµ,µ Jµ,βx Jµ,βy

Jβx,µ Jβx,βx Jβx,βx

Jβy ,µ Jβy ,βx Jβy ,βy


Where the double subscript notation represents a second derivative with respect

of the parameters, that is,

Jα1,α2 =
D

Dα2

(
DJ
Dα1

)
This is done numerically, using a simple first-order finite difference formula to

approximate derivative. The formula used for the approximation of the derivative of

a function f evaluated at x is given by

f ′(x) ≈ f(x+ h)− f(x)

h

Therefore, the mixed derivative Jµ,β evaluated at a point (m, b) is

Jµ,β(m, b) ≈
DJ /Dµ(m, b+ h)−DJ /Dµ(m, b)

h

where the derivative DJ /Dµ is known through the computation of the gradient

of J . The rest of second derivatives are computed in a similar way.

51

Chapter 3

Results and Conclusions

3.1 The coding environment: FEniCS

The previous chapter presented the procedure for computing the gradient of the misfit

functional, ∇J . We learned that solving partial differential equations is a fundamen-

tal of this process. In general, such solutions can not be found analytically, and

numerical methods are often required. FEniCS was used for this task, particularly

for the multi-dimensional problem. FEniCS is a computer platform for solving partial

differential equations through finite element methods [ABH+15]. The following is the

code written in Python and shows how FEniCS was used to solve both the state and

the adjoint equations, to ultimately compute ∇J for the problem in two dimensions.

1 # Solves the AD equation , in 2 dimensions , computes J and its

gradient

2 #

3 # Depending on ’option ’, a different value is returned:

4 #

5 # option == ’sol ’: Returns the numerical solution

6 # option == ’J ’: Returns the value J, compared to the

reference fuction

7 # option == ’JGrad ’: Returns the gradient of J

52

8 #

9

10 def solver_gradient(mu , betax , betay , RHS , option):

11

12 # Create mesh and define function space

13 mesh = UnitSquareMesh (12, 12)

14 V = FunctionSpace(mesh , ’P’, 2)

15

16 # Define physical constants

17 mu = Constant(mu)

18 beta = Constant ((betax ,betay))

19

20 # Define Boundary Condition

21 u_D = Constant (0.0) #<-- homogeneous BC

22

23

24 def boundary(x, on_boundary):

25 return on_boundary

26

27 bc = DirichletBC(V, u_D , boundary)

28

29 # Define variational problem

30 u = TrialFunction(V)

31 v = TestFunction(V)

32 f = RHS

33

34 # Bilinear form and functional

35 a = mu*dot(nabla_grad(u), nabla_grad(v))*dx + dot(beta ,

nabla_grad(u))*v*dx

36 L = f*v*dx

37

38 # Compute solution

53

39 # solver_parameters ={" linear_solver ": "cg", "preconditioner ": "

ilu "})

40 u = Function(V)

41 solve(a==L, u, bc)

42 info(parameters ,True)

43

44 if option == ’sol’: # Returns the numerical solution

45

46 return u

47

48 elif option == ’J’: # Returns the value J

49

50 # Get the reference as defined in get_reference () function

51 u_ref = get_reference ()

52

53 # Compute the value of J

54 J = ((l2_error)**2)/2

55 return J

56

57 elif option == ’JGrad’: # Computes the gradient of J through the

adjoint

58

59 # Get the reference as defined in get_reference () function

60 u_ref = get_reference ()

61

62 ########## Solve the adjoint problem ##########

63

64 # Define variational problem

65 p = TrialFunction(V)

66 v = TestFunction(V)

67

68 # Change the RHS

69 f_new = u - u_ref

54

70

71 # Bilinear form and functional

72 a = mu*dot(nabla_grad(p), nabla_grad(v))*dx - dot(beta ,

nabla_grad(p))*v*dx

73 L = f_new*v*dx

74

75 # Compute solution

76 p = Function(V)

77 solve(a==L, p, bc)

78 info(parameters ,True)

79

80 ########## Numerical Integration ##########

81

82 # First partial derivative: with respect to mu

83 J_mu = assemble(p*div(grad(u))*dx)

84

85 # Second partial derivative: with respect to beta_x

86 J_betax = -1*assemble(p*nabla_grad(u)[0]*dx)

87

88 # Third partial derivative: with respect to beta_x

89 J_betay = -1*assemble(p*nabla_grad(u)[1]*dx)

90

91 ########## Gradient ##########

92 G = np.array([J_mu , J_betax , J_betay])

93

94 return G

3.2 From MATLAB to Python

The DD-CID algorithm was originally implemented in MATLAB by its authors. For

this thesis, a Python version was developed so that it could be integrated with the

55

FEniCS environment. The translation was made manually line by line, and all of its

composing functions were individually tested so that the results were similar to those

of the original version. The final code was tested against the following functions:

• Simple test function. This function is taken from [DMZ20]. It is defined

f : R2 → R by

f(x1, x2) = (x21 − 1)2 + (x21 + x2 − 1)2 (3.1)

It has two local minima at (−1, 0), (1, 0), and a saddle point at (0, 1).

The following table contains the global minima found using the Python version.

x1 x2 f(x1, x2)
−1.0 −6.6× 10−12 4.6× 10−14

1.0 −9.6× 10−10 3.00× 10−23

Table 3.1: Global minima - simple test function.

• Rosenbrok function. This function is taken from [JY13]. It is defined f :

Rd → R with d a natural number. It is given by

f(x) =
d−1∑
i=1

[
100(xi+1 − x2i)

2 + (xi − 1)2
]

(3.2)

Its global minimum is f(x) = 0 at x = (1, . . . , 1). Taking d = 3, the following

table contains the global minimum found using the Python version.

x1 x2 x3 f(x1, x2, x3)
1.0 1.0 1.0 6.8× 10−18

Table 3.2: Global minimimum - Rosenbrok.

• Boggs system. This function is taken from [DMZ20]. It is defined f : R2 → R

by

56

f(x1, x2) =
1

2
STS (3.3)

where

S(x1, x2) =

 x21 − x2 + 1

x1 − cos(πx2/2)

 (3.4)

It has 3 global minima at (−1, 2), (0, 1), and (−
√
2/2, 3/2). The following table

contains the global minima found using the Python version.

x1 x2 f(x1, x2)
−0.71 1.5 2.88× 10−20

−1.85× 10−6 1.00 5.82× 10−13

−1.00 2.00 2.00× 10−14

Table 3.3: Global minima - Boggs system with the Python version of DD-CID.

• Shubert function. This function is taken from [JY13]. It is defined f : R2 →

R by

f(x1, x2) =

 5∑
i=1

icos[(i+ 1)x1 + i]

 5∑
i=1

icos[(i+ 1)x2 + i]

 (3.5)

This function has many critical points, including many global minima and sad-

dle points. However, the lowest value achieved by the function is f(xmin) =

−186.7309.

x1 x2 f(x1, x2)
−7.08 −7.71 −186.73

Table 3.4: Global minimum - Shubert function with the Python version of DD-CID.

57

3.3 Visualization of the functionals

The following are the plots of the two functionals.

Figure 3.1: J for the one-dimensional problem.

Note that the global minima appears to be in line µ = β. The gradient at the

point (6, 4) is shown for illustrative purposes.

58

Figure 3.2: J for the multi-dimensional problem.

Note that the global minimum appears to be in line (25, 15, 20). The gradient at

the point (µ, 15, 20) is shown for illustrative purposes.

3.4 Results

The DD-CID algorithm was tested against the two problems described in Chapter 3.

Here we present the results with N = 5 iterations of the main loop of the optimization

algorithm. The two following tables contain the local minima found in each case. All

of these are also global minima, given the nature of the two test problems. These

results are precisely what was expected of the algorithm: in the one-variable case,

different global minima are found along the line µ = β, in the multi-variable case, the

unique global minimum is found at µ = 25, βx = 15, and βy = 20.

59

µ β J(µ, β)
17.4 17.3 7.2× 10−21

27.9 27.9 1.5× 10−22

20.6 20.6 5.9× 10−19

28.2 28.2 7.9× 10−17

31.2 31.2 3.1× 10−16

Table 3.5: Global minima found by the DD-CID algorithm for the one-variable test
problem. Initial point µ = 18.1, β = 16.6

µ βx βy J(µ, βx, βy)
25.0 15.0 20.0 4.39× 10−11

Table 3.6: Global minimum found by the DD-CID algorithm for the multi-variable
test problem. Initial point µ = 19.1, βx = 9.4, and βy = 15.4

3.5 Conclusions

This work achieves two main objectives. First, it provides a working Python version

of the DD-CID algorithm. This is relevant as Python is one the most popular pro-

gramming languages nowadays. We hope that future work finds a Python version of

the algorithm useful, by perhaps allowing its integration with tools only available in

this language. This precisely leads to the second objective: testing the algorithm in a

different setting. While DD-CID algorithm was previously shown to be effective for a

variety of objective functions (see the original paper [DMZ20]), it had never been used

in a parameter-estimation procedure like the one discussed in this work. Specifically,

through the two test problems explored in the previous chapter, it was shown that

the algorithm successfully optimized the the “mismatch functionals” that allowed the

estimation. In this way, this thesis provides further evidence of the strength of the

DD-CID algorithm as a general-purpose optimization method.

The most attractive feature of the DD-CID algorithm in the context of this work

was its ability to determine multiple minima. Most parameter-estimation procedures

that require an optimization step often resort to local algorithms such as Steepest

Descent or Newton’s Method. While these are successful, they are nonetheless local in

60

the sense that they might not detect other minima that the function to be optimized

may have. In other words, since the optimization problem does not have have a

unique solution in general, a global optimization algorithm is highly recommended.

This is was precisely exemplified by the one-variable test problem in the previous

chapter, in which an infinite number of parameters corresponded to the reference

function. The success of DD-CID algorithm in identifying these points allows us

conjecture that it may be successful in real-world parameter-estimation problems. For

instance, in [YV15], data assimilation is used to approximate cardiac conductivities

of heart tissue. The authors point out that the uniqueness of the parameters was not

guaranteed. Therefore, the DDCID algorithm could help us ensure the determination

of the global minimum.

61

Bibliography

[ABH+15] Martin Alnæs, Jan Blechta, Johan Hake, August Johansson, Benjamin

Kehlet, Anders Logg, Chris Richardson, Johannes Ring, Marie E Rognes,

and Garth N Wells. The fenics project version 1.5. Archive of Numerical

Software, 3(100), 2015.

[APS+22] Shikha Agnihotry, Rajesh Kumar Pathak, Dev Bukhsh Singh, Apoorv Ti-

wari, and Imran Hussain. Protein structure prediction. In Bioinformatics,

pages 177–188. Elsevier, 2022.

[BDPV14] Luca Bertagna, Marta D’Elia, Mauro Perego, and Alessandro Veneziani.

Data assimilation in cardiovascular fluid–structure interaction problems:

an introduction. In Fluid-structure interaction and biomedical applica-

tions, pages 395–481. Springer, 2014.

[DMZ20] Luca Dieci, Manuela Manetta, and Haomin Zhou. Double descent and

intermittent color diffusion for landscape exploration. Numerical Algo-

rithms, 85(1):145–169, 2020.

[Gun02] Max D Gunzburger. Perspectives in flow control and optimization. SIAM,

2002.

[JY13] Momin Jamil and Xin-She Yang. A literature survey of benchmark func-

tions for global optimisation problems. International Journal of Mathe-

matical Modelling and Numerical Optimisation, 4(2):150–194, 2013.

62

[Nav09] Ionel M Navon. Data assimilation for numerical weather prediction: a

review. Data assimilation for atmospheric, oceanic and hydrologic appli-

cations, pages 21–65, 2009.

[YV15] Huanhuan Yang and Alessandro Veneziani. Estimation of cardiac conduc-

tivities in ventricular tissue by a variational approach. Inverse Problems,

31(11):115001, 2015.

	Double Descent and Color Intermittent Diffusion for Landscape Exploration
	Global Optimization
	Global Optimization: an introduction through a simple working example
	Numerical solution to the simple working example
	Some difficulties of the global optimization problem

	DD-CID
	Local search
	Local search: saddle point
	Local search: local minimum

	Landscape exploration
	Local minimum to saddle point
	Saddle point to local minimum

	DD-CID at a glance
	DD-CID visualized
	Contour plot and Hessian regions
	Finding an initial minimum through Double Descent
	Escaping the basin of attraction of the minimum through color noise diffusion
	Finding a saddle point through Damped Newton
	Escaping the basin of attraction of the saddle through Diffused Double Descent
	Finding a local minimum point through Double Descent

	Data Assimilation and Global Constrained Optimization
	Data Assimilation: the big picture
	Parameter estimation
	The state equation
	The adjoint problem
	The optimality condition
	Two test problems

	One-dimensional problem
	Boundary value problem
	Function to be optimized
	Derivation of the gradient
	Summary

	Multi-dimensional problem
	Boundary value problem
	Function to be optimized
	Derivation of the gradient
	Summary

	Numerical Hessian

	Results and Conclusions
	The coding environment: FEniCS
	From MATLAB to Python
	Visualization of the functionals
	Results
	Conclusions

	Bibliography

