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Abstract 

 
 
 

Estimating variabilities of toxicological endpoints of concerns to the 
Agency for Toxic Substances and Disease Registry (ATSDR) 

 
 
 

By Ram Siwakoti 
 

 
 
Background: A significant number of chemicals in governmental databases lack 
health guidance values (HGVs) that are essential to protect public during chemical 
emergencies. In public health risk assessments, computational models could be 
used to fill these gaps when better toxicological information are not available. 
HGVs are commonly derived from toxicological endpoints such as benchmark dose 
(BMD) or a no-observed-adverse-effect level (NOAEL) and in absence of them, a 
lowest-observed-adverse-effect level (LOAEL) or median lethal dosage (LD50). 
Because these endpoints are measured quantities, they are expected to carry a 
certain level of natural variability. However, the magnitude of such variability in 
each endpoint is currently unknown.  
 
Objective: In the present study, we assessed variabilities of LOAELs, NOAELs, 
and LD50s using data from ATSDR toxicological profiles of chemicals and other 
publicly available databases.   
 
Methods: We estimated variability of each toxicological endpoint using 
distribution of sample variances of endpoints per chemical in acute, intermediate, 
and chronic exposure durations. The variability estimates were then used to obtain 
scaling factors to derive lower bounds on respective endpoints. Additionally, we 
assessed the influence of experimental test species, target organ systems, and 
availability of Minimum Risk Levels (MRLs) on variability.  
 
Results: Variability of LD50s was approximately half that of LOAELs whereas 
difference in variability of LOAELs and NOAELs was smaller. Matching endpoints 
by test species had no significant impact (except in intermediate duration 
endpoints) whereas matching target systems lowered NOAELs variability across 
all three exposure durations. Additionally, the availability of MRLs did not 
significantly affect variabilities of corresponding endpoints.  
 
Conclusions: The findings from this study provide insight into variabilities of 
toxicological endpoints in ATSDR and other governmental databases, which could 
be useful in public health guidance and risk assessments.   
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Introduction 
 

The Agency for Toxic Substances and Disease Registry (ATSDR) is mandated by 

the United States (US) Congress to prepare toxicological profiles and ascertain safe 

human exposure levels (SHELs) for hazardous substances included in the 

Comprehensive Environmental Response, Compensation, and Liability Act 

(CERCLA) National Priorities List (NPL) [1].  As a response to the mandate, ATSDR 

regularly develops and publishes Minimum Risk Levels (MRLs) for acute (0–14 

days), intermediate (14–365 days), and chronic (365+ days) exposure durations [1]. 

An MRL is an estimate of the daily human exposure to a hazardous substance over 

a specified period of time that is likely to be without appreciable risk of adverse 

non-cancer health effects [1]. These substance-specific estimates are intended to 

serve as screening levels “to identify contaminants and potential health effects that 

may be of concern at hazardous waste sites” [1]. ATSDR uses a point of departure 

(PoD)/uncertainty factor (UF) approach to derive an MRL [1]. A PoD is a point on 

the toxicological dose-response curve that is chosen as a starting point for low dose 

extrapolation, whereas UFs are adjustment factors used to account for various 

types of uncertainties, including variations in inter- or intra-species sensitivity [1][2]. 

ATSDR commonly uses a benchmark dose (BMD) or no observed adverse effect 

level (NOAEL) or, in absence of them, a lowest observed adverse effect level 

(LOAEL) as a PoD [1].  

 

The derivation of MRLs involves a comprehensive literature search and review of 

toxicological information [1]. At times, such information is unavailable and 
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exposure-specific MRLs are not derived. In fact, of 154 chemicals on the current 

MRL list, only 27 (18%) have the complete set of oral MRLs for all exposure 

durations [1]. For acute, intermediate, and chronic exposure durations, 

respectively, only 78, 107, and 65 oral MRLs are on the list [1]. This disparity 

represents a challenge for ATSDR community health investigations, whenever risk 

assessors are dealing with a chemical with limited toxicological information, i.e. 

when an MRL, LOAEL, or NOAEL for the chemical is not readily available.  

 

Recently, it was shown that median oral lethal dosage (LD50) is strongly correlated 

to MRL, LOAEL, or NOAEL [3]. Thus, potentially, an LD50 could be used as a PoD, 

when better toxicological information is not available. However, if several LD50s 

are reported for a chemical, a question emerges: which one is correct? Traditional 

risk assessment assumes the lowest dose that causes an adverse health effect as a 

starting point for risk assessment, thus conducting the most conservative approach 

to public health guidance [1][2]. On the other hand, each measured physical quantity 

has a measurement error associated with it. If only one LD50 is available, the 

experimental measurement error is uncertain. Although, that value itself 

represents the best-known estimate of the average (i.e. the statistical mean), the 

confidence interval (CI) on it is indeterminate [4]. Therefore, it is impossible to 

assert a desired level of risk assessment confidence (e.g. the 95th percentile). 

Similar disconcertment is expected with respect to LOAEL, NOAEL, or any other 

toxicological endpoint. To that extent, even the current practice using the no or 

lowest adverse observed endpoint (i.e. NOAEL or LOAEL) as a PoD begs re-

examination, especially since not all chemicals have equal available quantities of 
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toxicological data (i.e. different empirical percentiles may correspond to the PoD). 

In such scenario, the percentiles from which risk assessment stems are different 

for chemicals with less L(N)OAELs versus chemicals with more L(N)OAELs [1][2].  

 With increasing emphasis on the use of non-animal alternative models for 

toxicological endpoints derivation, governmental agencies are starting to explore 

the feasibility of using LD50s based computational models for risk assessment 

purposes [5]. Hoffmann et al. compiled a database of in-vivo LD50s and conducted 

a statistical analysis to assess their variability and reliability [6].  The median 

standard deviation (SD) of a log transformed LD50 was estimated to be 0.20 [6]. 

Additionally, Karmaus et al. compiled a comprehensive inventory of rat LD50s and 

studied their variability [7].  The “global standard deviation” of log transformed 

LD50s as defined in that study was estimated to be 0.83 whereas ±0.31 log10(LD50 

in mg/kg) was recommended for interval estimation of median of lower quantile 

[7]. In both studies, it was shown that many chemicals had reported LD50s that span 

an orders-of-magnitude range that defies a simplistic range-bound approach to 

LD50 classification, i.e., measured chemical’s LD50s may span several 

categorization bounds (e.g. toxic/non-toxic) [6][7]. Much recently, in April 2018, the 

Interagency Coordinating Committee for the Validation of Alternative Methods 

(ICCVAM) helped to organize a collaborative workshop to discuss and build LD50s 

based computational models for acute oral systemic toxicity [8]. These 

developments highlight the interest as well as a movement towards making sense 

of publicly available oral LD50 data to utilize them in risk assessment purposes.  
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In the current study, we expand on the findings from Hoffmann et al. and Karmaus 

et al. to access uncertainty inherent in any LD50 by estimating its SD. With the use 

of estimated SD, the variability or lower bound on any given endpoint can be 

ascribed. We used carefully curated LD50s sourced from public databases to 

estimate LD50 variability. Additionally, we extended the estimation of variability to 

LOAELs and NOAELs from ATSDR’s toxicological profiles. This will allow us to 

understand the diversity of endpoints within each chemical and, potentially, lead 

to a new model of probabilistic chemical risk assessment.  Finally, whenever 

possible, we assessed the effects of experimental test species, health effects, 

availability of MRLs, and number of available studies on variability.   

 

Methods 
 

Data Compilation 
 

All toxicological endpoints data used in the current study were publicly available. 

The data compilation procedures for LD50s and L(N)OAELs are described below:  

LD50s: LD50s and associated toxicological information for chemicals were 

extracted from the ATSDR’s toxicological profiles, ChemIDplus TOXicology Data 

NETwork (ChemIDplus TOXNET), Registry of Toxic Effects of Chemical 

Substances (RTECS), and Drug Dosage in Laboratory Animals Handbook [11].  

LD50s from different sources were then integrated in a custom-designed Microsoft 

(MS) Access® database for additional data processing. The total number of LD50s 
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and unique CAS Registry Number (CASRN) corresponding to each database are 

presented in Table 1a.  

L(N)OAELs: L(N)OAELs and associated toxicological information were 

extracted from the ATSDR’s  Levels of Significant Exposure (LSE) tables housed in 

a Sybase database system. They were then imported to MS Access® database and 

grouped by exposure durations. The total number of L(N)OAELs and unique 

CASRN corresponding to each exposure durations are presented in Table 1b.  

Data Processing: In a preliminarily quality control assessment, the quality of 

the compiled endpoints was deemed. Following selection criteria were used to 

filter out unreliable records from our databases: 

Route of administration: Only endpoints stemming from oral administration 

experiments were included. Endpoints derived using various kinds of 

extrapolation (for example, route-to-route extrapolation using physiologically-

based pharmacokinetic (PBPK) modeling or an acute oral NOAEL for a chemical 

derived from an acute inhalation NOAEL) were excluded. 

Unit of measurements: Milligram per kilogram of body weight per day (mg/kg-

day) is a common standard for reporting oral mammalian toxicity. Endpoints 

reported in other units were excluded (except for oral endpoints reported in  parts 

per million (ppm) unit, which has a 1-1 conversion with mg/kg). 

Limit dose: Only LD50s listed as a “point estimate” were included. Censored 

LD50s (such as >, < 500 mg/kg-day) were excluded.  

Elemental metals: Usually, the toxicity of a metal is tested using its salt. In 

absence of a complete information related to a compound, the correct molecular 
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weight (MW) cannot be assigned. Hence, all endpoints recorded for CASRN 

corresponding to elemental metals were excluded.  

Availability of at least 3 endpoints: It is not desirable to derive a variance 

using a very small sample. In any dataset, chemicals with less than 3 observations 

for a given endpoint were excluded from analysis for that endpoint.  

Duplicate records: If multiple identical doses were identified for a chemical 

with same experimental species, they were assumed to be duplicates (meaning the 

same dose from the same study is available across different databases) and was 

recorded only once (only relevant to LD50s).  

Unverifiable records: Statistical outliers and other suspicious records were 

verified using the primary literature source. Records with no verifiable primary 

sources were excluded (applies only to LD50s). L(N)OAELs were extracted from the 

LSE tables and were expected to be sufficiently verified during the MRL review 

process.  

Stratification of the data: Stratification of endpoints by multiple factors was 

considered:  

Species and target organ systems: Both LD50s and L(N)OAELs (from acute, 

intermediate, and chronic exposure duration studies) were stratified by the 

experimental species (species matched) used to derive them (Table 2, Table 3a-

3b). In addition, L(N)OAELs were also stratified by the target system (systems 

matched) (Table 3c-3d) used to derive them. A significant number of endpoints 

had “NA” or “NR” listed as their target systems.  Hence, we consulted with a senior 

ATSDR scientist and based on her recommendation, replaced NAs or NRs in the 

system column with non-NA entries from the corresponding category column (LSE 
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tables include columns for both target systems and categories associated with a 

chemical intake. See ATSDR’s Guidance for the Preparation of Toxicological 

Profiles for details [12]). This step of merging health effects was necessary because 

of the way ATSDR classifies health effects in its toxicological profiles.   For full 

(species or target organ mixed) data analysis, we excluded duplicate observations, 

i.e., if an identical dose was listed for multiple target systems, it was included only 

once in our analysis. Based on the availability of data, the impact of test species 

and target organs on variabilities were explored.  

Availability of MRLs:  The scientific rigor and quality of data requirements 

often limits whether or not an MRL can be derived for a chemical [1]. Hence, 

L(N)OAELs were stratified based on the availability of MRLs (Table 3e). This 

allowed us to explore the effect of availability of MRLs on variabilities of 

corresponding endpoints.  

Unit conversion and data preparation: In order to account for the 

biochemical processes involving chemical metabolism and receptor binding at the 

molecular level, all doses were converted from mg/kg-day to mole/kg-day unit. 

MWs of chemical entities matched by their CASRNs were extracted from the 

TOXNET database. Furthermore, all mole-transformed values were log-

transformed and negated (−log10) by analogy with the pH scale of acidity in 

chemistry. Therefore, further in the text they are denoted in a similar fashion, i.e. 

pLD50, pNOAEL, pLOAEL. For instance, for an LD50 reported in mg/kg-day: 

pLD50  =  −log10(
LD50 

MW × 1000
)  
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Log-transformation generally achieves normality of right-skewed data, which is 

important in statistical analysis [13]. Mathematical negation of log-molar doses was 

implemented for reader’s convenience, as all studied values became positive. 

However, based on the implemented unit conversion, a smaller dose in mg/kg unit 

translates to a larger log-molar-converted value, i.e. an endpoint of a more toxic 

substance (small LD50) converts to a large pLD50. In the current study, all analyses, 

unless otherwise specified, were performed on negative-log molar transformed 

values.  

 

Data analysis  
 

Descriptive summary: The frequency distributions of experimental species and 

target organs for all relevant endpoints and exposure durations were summarized. 

Previously, it was shown that toxicological endpoints such as LD50s follow a 

lognormal distribution [6][7]. Hence, the distributions of log-transformed endpoints 

were tested using the normal Q-Q plots and Shapiro-Wilk normality test (SW test). 

Points with outlier characteristics were identified based on Tukey fences 

(Q(1,3) ±  1.5(Q3 − Q1); Q = quantile) and investigated for any discrepancies [14].  

 

Estimation of variability:  In the current study, we explored two different 

methods for the derivation of variances or SDs.   

Method 1 (pooled variance): The derivation of pooled variance of endpoints 

was explored using a method described by Li et al. [15].  This method relies on two 

important assumptions:  
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Assumption 1: k samples are drawn from a normal distribution with a common 

mean, i.e., each sample is drawn from N(μ, σi
2) where i = 1, 2, … k. 

Assumption 2: The SDs for each sample are identical, i.e.  σi  =  …   = σk  

For our problem, each chemical represents an individual sample. The mean 

centering of endpoints (i.e., pLD50s, pLOAELs, pNOAELs) for each chemical was 

expected to result in similar per chemical means. The Levene’s - and F-tests can be 

used to test for the homogeneity of variances across different chemicals. If the 

homogeneity of variances assumption holds, the unbiased pooled variance 

estimate (Spi

2 ) is given by: 

Spk

2 =  
(n1 − 1)S1 

2 +  (n2 − 1)S2
2  +  … + (nk − 1)Sk

2

n1 + n2 +  … +  nk  −  K
 

where n1, n2, … , nk and S1, S2, … , Sk represent the sample size and sample SD of each 

chemical, respectively. However, if the assumption of homogeneity of variances 

does not hold, then the derivation of pooled variances using method 1 is not 

suitable.   

 

Method 2 (distribution of variances): While method 1 relies on the 

distribution of mean-centered endpoints as well as the assumptions of identical 

means and SDs across samples to provide a single pooled variance estimate, 

method 2 relies on the distribution of sample variances. Using this method, we first 

estimated sample variances of endpoints (Si
2), where i = 1,2, , … , k  represent each 

chemical in our dataset: 

Si
2 =  

1

ni−1
∑ (Xij − X̅i)

2n
j=1   where 
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ni = number of data points available per chemical 

 Xij  = pLD50s (j =  1,2, … , m = individual pLD50 for a chemical i) 

X̅i =  
1

ni
∑ Xij

n
j=1  = sample mean of pLD50s for a chemical i 

If Xij = Xi1, Xi2, … , Xim  are observations of a random sample of size ni from a 

normal distribution N(µi, σi
2), as we are assuming in our study, then the 

distribution for each Si
2 can be approximated using the following relationship [16]: 

(ni − 1)Si
2

σi
2  ~ χ2(ni − 1) 

However, the value of σi
2 is currently unknown for all endpoints. In fact, the main 

objective of the current study is to approximate this unknown parameter. Thus, it 

is not possible to ascertain the theoretical distribution of sample variances of 

endpoints at this time. Instead, an empirical distribution of Si
2 for each endpoint 

was used to estimate the best measure of central tendency.  

 

Selection of the best measure of central tendency:  In a symmetric 

distribution, either of the sample mean or median could be used to express the 

central tendency.  However, a distribution of sample variances (Si
2) tends to be 

right skewed, [16] thus, making a choice of the variance measure of central tendency 

obscure. The distribution of sample SDs (Si) is less skewed, but it is an inherently 

biased estimate [17], making the numerical estimation from variances (rather than 

SDs) preferable. Thus, on the one hand, estimation from the variance is preferred, 

but on the other hand, expression of the central tendency from the variance is 
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indeterminate, because valid arguments can be raised in favor of either the mean 

or median. 

Because:  

(1) the goal of present work is to estimate a public-health protective lower 

boundary on the endpoint, which involves Si, not Si
2; 

(2) in the combined distribution of SDs, the difference between mean and median 

is small (as compared to the difference between mean and median in the combined 

distribution of variances); and  

 (3) of the available measures of central tendency, only the median is robust in 

respect to monotonous-function transformations (2nd power);  

we chose the interval estimation of the median from the distribution of variances 

and converted them to SDs as the measure of central tendency in the current study.  

The 95% CIs were approximated using the Bias-corrected & accelerated (BCa) 

method with 10,000 bootstrap replications as implemented in the “boot” package 

in R [18].  For the sake of comparison, we also derived the interval estimates of 

mean, lower, and upper quantiles of SDs.   

 

Assessing test species or target organ specific effects: For both LD50s and 

L(N)OAELs, we explored the effect of test species on variability. For L(N)OAELs, 

we also explored the effect of target systems. The distributions of sample variances 

across different species or systems were compared using the Kolmogorov Smirnov 

test (KS test) and the medians were compared using the Wilcoxon Signed Rank 

Sum test (Wilcox test) as implemented in R (α=0.05).  
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Derivation of scaling factors: If log-molar endpoints are normally distributed, 

the derived SDs could be back transformed to obtain scaling factors in original unit 

of endpoints. Based on these factors, the lower one-sided 95% bound (for 

example, LD50L
, LOAELL, or NOAELL) on a single endpoint or geometric mean 

(GM) of endpoints can be calculated. For example: 

−log10(LD50L
) = −log10 (GM(LD50i

)) + 1.64SD             

log10 (
GM(LD50i

)

LD50L

 )  =  1.64SD →   LD50L
 =  

GM(LD50i
)

101.64SD 
               

 

In the current study, when feasible, we derived estimated scaling factors to derive 

lower bounds on the studied endpoints.  

 

Results 
 

Data description 
 

LD50s: After the application of selection criteria stated in methods section, 306 

chemicals with 1420 LD50s were available for analysis (Table 1a). The most 

common test species used to derive LD50s were rat and mouse (Table 2). The log-

molar distribution of LD50s were approximately symmetric (Figure 1a) but failed 

the normality test (SW test: p < 0.0001; Table 3f). Based on Tukey-fence analysis, 

we identified extreme points possibly contributing to non-normality of data. 

Excluding these points improved symmetry (Figure 1b), however, the distribution 

was still non-normal (SW test: p < 0.05) and were further screened for accuracy.  
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Immediately, no defects were observed, and these points were not excluded.  When 

the experimental species used to derive LD50s were matched, 70 chemicals with 

404 LD50s were available (Table 1a). Similar to species mixed dataset, the log-

transformed endpoints failed the normality test (SW test: p < 0.0001) due to 

outliers at tails (Figure 1a, 1b).  

The normality assumption of log-molar endpoints is necessary while deriving a 

lower bound on an endpoint using a recommended SD based scaling factor (refer 

to Derivation of factors based on SDs section for details). Because previous studies 

have shown the distribution of log-molar endpoints to be normal [6], and Q-Q plots 

improved with the exclusion of few outliers (Figure 1b), we will proceed with the 

normal distribution assumption of log-molar endpoints in the current study. 

 

 L(N)OAELs: Based on the LOAELs datasets, 93, 121, and 58 unique chemicals 

corresponding to 740, 1209, and 368 data points for acute, intermediate, and 

chronic exposure durations, respectively, were available. The NOAELs datasets 

were slightly larger: 104, 132, and 75 chemicals corresponding to 848, 1529, 547 

data points for acute, intermediate, and chronic exposure durations, respectively, 

were available (Table 1b). Similar to LD50s, rat and mouse were the most common 

experimental species (Table 3a, 3b). Among the identified target systems, hepatic, 

neurological, and body weight change were the most common (Table 3c, 3d). 

Additionally, the stratification by the presence of an MRL showed that 

approximately 40 - 50% of endpoints in each exposure duration corresponded to 

chemicals that lacked MRLs (Table 3e).  
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The distributions of both endpoints followed trends similar to LD50s (Table 3f), i.e., 

approximately symmetric with slight deviation from the normal lines at tails 

(Figure 1c, 1d). All L(N)OAELs used in the current study were extracted from the 

ATSDR toxicological profiles that were expected to be vetted before their 

publications. Hence, none of the extreme points were excluded.  

 

Data analysis 
 

Accessing homogeneity of variances assumption 
 

 In the methods section, we presented two approaches to estimate variability of an 

endpoint, of which method 1 relies on the assumption of homogeneity of variances 

across all samples. Hence, we tested that assumption using the Levene’s test (Table 

4a). The sample variances across different chemicals in all datasets (LD50s, 

LOAELs, and NOAELs) were significantly different from each other (Levene’s test: 

p < 0.05), indicating that the assumption was not valid. We further explored the 

homogeneity of variance assumption by conducting a test case: we selected all 

chemicals with more than 15 LD50s from species mixed dataset (n = 4; Malathion, 

Dioxin, Disulfoton, and Parathion-methyl) and conducted 6 (
4!

2!2!
) simultaneous 

multiple F-tests between chemical pairs. The LD50s dataset was chosen because it 

was previously curated and the sample size greater than 15 was chosen so that we 

would have a reasonable balance of sample size and number of chemicals available 

for analyses. Adjusting for the multiple comparison of variances using the 

Bonferroni correction, the sample variances between any pair of chemicals were 

significantly different from each other (p <  α =  0.0083 ) 3 out of 6 times (Table 
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4a). The observed differences based on these tests indicated that the chemical 

specific differences arising either from their physical and chemical properties or 

experimental designs may exist. Given these results, we did not pursue the 

estimation of a pooled variance based on method 1.  Instead, only method 2, i.e., 

the empirical distributions of sample variances, were used to estimate 

uncertainties of both LD50s and L(N)OAELs in the current study.  

 

Variance estimation of LD50s 
 

Using log-molar LD50s from each chemical, the empirical distributions of sample 

variances were drawn.  As expected, the distributions of variances were right 

skewed (Figure 2a, 2b). The distributions of SDs were less skewed, yet still not 

symmetric. 
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Figure 2. Distributions of a. sample variances (S2) and b. SDs (S) of log-molar LD50s. Green and red lines represent 
the median and mean of distributions, respectively. 

a 

b 
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Based on these distributions, several variance estimates were derived and 

converted to SDs (Table 4b).  The median SD estimate of log-molar LD50s was 0.26 

(0.24-0.28). Matching test species did not reduce uncertainty, as the median SD 

remained statistically unchanged at 0.27 (0.23-0.29). Similar trend was observed 

at the 25th and 75th percentiles of distributions. A formal hypothesis test to compare 

SDs from full versus the species matched subset was not performed at this time 

because the species matched dataset is a subset of full dataset, thus violating an 

independent samples assumption required of any such test [19].   Instead, the 95% 

CIs of relevant SDs were used to make necessary inferences.    

 

 

 

 

 

 

 

 

We further explored species-specific influence on variability by comparing the 

distributions of sample variances between rat and mouse. These two species were 

chosen because they had the largest sample size available for comparison. The 

distribution of variances between these species were not significantly different 

from each other (KS test: p > 0.05) (Table 6a, Figure 2c), consistent with our earlier 

findings from species mixed versus species matched datasets. 

 

Table 4b. SD estimates for LD50s for species mixed and species matched datasets. The 95% CIs 

were approximated using the BCa method with 10,000 bootstrap replications as implemented in 

the “boot” package in R. 

Description  

species 

mixed (full) 

species 

matched 

Number of LD50s (n) 1420 404 

Number of unique chemicals (N) 306 70 

   

Standard Deviation (SD)   

25th percentile (95% CI) 0.17 (0.15 - 0.18) 0.17 (0.11 - 0.20) 

Median (95% CI) 0.26 (0.23 - 0.28) 0.27 (0.22 - 0.29) 

Mean (95% CI) 0.34 (0.32 - 0.36) 0.35 (0.30 - 0.41) 

75th percentile (95% CI) 0.37 (0.31 - 0.44) 0.36 (0.31 - 0.45) 
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Variance estimation of L(N)OAELs 
 

 The distributions of sample variances and SDs of L(N)OAELs were similar to that 

of LD50s, i.e., non-symmetric right skewed (Figure 3a, 3b). Hence, the median  

SDs of endpoints in acute, intermediate, and chronic exposure durations were also 

estimated using the empirical distributions of sample variances.  
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Figure 3. Distributions of a.  sample variances (S2) and b. SDs (S) of log-molar LOAELs and NOAELs. Green and red lines represent the median and mean of distributions, respectively. 

 

a 

b 



20 

The median SDs of log-molar LOAELs and NOAELs using full datasets were not 

significantly different from each other (LOAELs: 0.53 (0.46 - 0.60); NOAELs: 0.52 

(0.48 - 0.60)) in acute exposure duration ((Wilcox test: p > 0.05); Table 5a). In 

contrast, the median SDs of NOAELs were higher as compared to the median SDs 

of LOAELs in intermediate (LOAELs: 0.55 (0.50-0.62); NOAELs: 0.62 (0.58-

0.68)) and chronic (LOAELs: 0.49 (0.37-0.58); NOAELs: 0.63 (0.58-0.68)) 

exposure durations (Wilcox test: p < 0.05). These relations were consistent at the 

25th and 75th percentiles of distributions. A specific trend in percentile SDs relative 

to exposure duration (for example, acute duration SD < intermediate duration SD 

< chronic duration SD) was not observed. 
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Table 5a. SD estimates for LOAELs and NOAELs. All available endpoints were used, i.e., distributions were based on full datasets. However, if an identical dose was recorded for multiple 

systems, it was included only once. 

L(N)OAELs – full datasets 

Description 

Acute Intermediate Chronic 

LOAELs NOAELs LOAELs NOAELs LOAELs NOAELs 

Number of endpoints (n) 740 848 1209 1529 368 547 

Number of unique chemicals (N) 93 104 121 132 58 75 

       

Standard deviation       

25th percentile (95% CI) 0.43 (0.33-0.44) 0.35 (0.32-0.44) 0.40 (0.33-0.45) 0.47 (0.43-0.51) 0.32 (0.2-0.38) 0.49 (0.35-0.55) 

Median (95% CI) 0.53 (0.46-0.60) 0.52 0.48-0.60) 0.55 (0.50-0.62) 0.62 (0.58-0.68) 0.49 (0.37-0.58) 0.63 (0.58-0.68) 

Mean (95% CI) 0.73 (0.65-0.84) 0.68 (0.60-0.78) 0.66 (0.61-0.72) 0.73 (0.68-0.78) 0.63 (0.55-0.71) 0.73 (0.66-0.81) 

75th percentile (95% CI) 0.77 (0.65-0.89) 0.71 (0.63-0.84) 0.72 (0.68-0.84) 0.84 (0.77-0.93) 0.77 (0.60-0.91) 0.76 (0.71-0.94) 



22 

In addition to deriving SD estimates based on the species matched subsets, for 

L(N)OAELs, we also derived SD estimates based on the target systems matched 

subsets. Overall, the median SDs of both endpoints derived using the species 

matched subsets were lower as compared to the median SDs derived using full 

datasets, although the differences were not statistically significant in acute and 

chronic exposure durations (Table 5b). When the target systems were matched, the 

median SDs of LOAELs were still similar to those from full datasets whereas the 

median SDs of NOAELs were lower (Table 5c).  

In order to further investigate the test species or target system-specific effect on 

variabilities, we stratified all 6 L(N)OAELs datasets by the test species or target 

systems. From each full dataset, we chose 3 strata with the largest sample size (i.e., 

3 species strata and 3 system strata) and compared their empirical distributions of 

sample variances (Table 6a). The distributions of variances between the compared 

species were not significantly different from each other (KS test: p > 0.05).  Similar 

results were observed when the distributions of variances were compared between 

different target systems, i.e., only 3 comparisons (in chronic LOAELs and NOAELs 

datasets) resulted in significantly different distributions of variances between the 

compared systems (KS test: p < 0.05; Table 6b). These 3 comparisons involved 

body weight change (-versus hepatic or renal system in LOAELs; -versus 

hematological system in NOAELs).   

The species or target system specific comparisons can also be visualized using 

histograms, scatter, or density plots (Figure 4a - 4c). The rat and mouse 

distributions of variances were approximately similar, i.e., the density curves were 
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overlapping. However, based on both chronic LOAELs and NOAELs datasets, the 

distributions of variances based on body weight change system were more skewed.  

Finally, we compared variabilities of endpoints based on the availability of 

corresponding MRLs. The distributions of variances based on the “MRLs present” 

subsets were not significantly different from the distributions of variances derived 

using the “MRLs not present” subsets across all endpoints and exposure durations 

((Table 7a, Figure 4d). As such, the median SDs between two subsets were also 

approximately similar (Table 7b, 7c). These similarities in the distributions of SDs, 

however, do not indicate that the quality of data in compared subsets were similar 

as several factors influence the selection of chemicals for MRLs derivation [12].  

 

Variability versus sample size 
 

Usually, in experimental studies, the precision of an effect is expected to increase 

as the number of repeated measurements increase, i.e. the standard error of the 

mean (SE =
SD

√n−1
) decreases as n increases.  However, in the current study, we 

observed that an increase in number of LD50s or L(N)OAELs per chemical did not 

necessarily translate to corresponding decrease in uncertainty (Figure 5a,5b). In 

fact, SDs exhibited a subtle upward trend with an increase in sample size. The 

reason for this behavior, at present, is unclear although several factors such as 

experimental design, purity of chemicals, strains and age of species might play a 

role. As the number of independent experiments increase, variability in these 

factors may also increase, which disrupts uniformity of the stochastic process of 

endpoint derivation. 
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Derivation of factors based on SDs 
 

 The median SD estimates of LD50s and L(N)OAELs derived in the current study 

were used to obtain scaling factors based on the original unit of endpoints (Table 

8). Based on these factors, lower bound on an endpoint or a geometric mean of 

endpoints can be deduced. For LD50s, the median SDs based on either species 

mixed or matched dataset transformed to a scaling factor of 2.75 (approx.).   

 

Preliminary factors were also derived for LOAELs and NOAELs. For LOAELs, the 

median SDs based on full datasets transformed to a scaling factor of 7 (approx.), 

irrespective of exposure durations. In contrast, when the experimental species or 

target organs were matched, it decreased to 6 (approx.). On the other hand, for 

NOAELs, scaling factors of 7 (approx.) for acute and 10 (approx.) for intermediate 

or chronic exposure durations were obtained. When the experimental species were 

matched, the factors decreased to 6 (approx.) for acute and 8 (approx.) for 

intermediate or chronic exposure durations. Similarly, when the target systems 

Table 8. Scaling factors based on estimated median SDs to derive 95% lower bound on a geometric mean of 

endpoints or a single endpoint.  For example, to obtain a lower bound on an acute LOAEL, a division factor of 7.40 

could be applied. 

Endpoint Duration 

Species  

mixed (full) 

Species 

matched 

Target systems 

matched 

LD50s Acute 2.67 (2.38 - 2.88) 2.77 (2.38 - 2.99) na 

     

LOAELs Acute 7.40 (5.68 - 9.64) 6.13 (5.27 - 7.68) 6.86 (5.07 - 8.29) 

 intermediate 7.98 (6.61 - 10.39) 5.68 (4.88 - 6.86) 6.61 (5.47 - 7.40) 

 Chronic 6.36 (4.04 -   8.94) 5.47 (3.61 - 8.94) 5.27 (4.04 - 7.68) 

     

NOAELs Acute 7.13 (6.13 - 9.64) 6.36 (5.27 - 7.68) 4.70 (3.89 - 5.90) 

 Intermediate 10.39 (8.94 - 13.04) 7.40 (6.61 - 8.94) 6.36 (5.68 - 7.68) 

 Chronic 10.79 (8.94 - 13.04) 8.94 (6.61 - 10.79) 6.36 (5.47 - 7.13) 
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were matched, the factors further decreased to 5 (approx.) for acute and 6 

(approx.) for intermediate or chronic exposure durations. 

 

 

Discussion 
 

Variability of LD50s and comparison to previous studies 
 

 The median SD of a log-molar LD50 based on full dataset was 0.26. This estimate 

was consistent with the range of SDs derived in an earlier study by Hoffmann et al 

[6]. After excluding multiple outliers, Hoffman et al. reported a median SD of 0.20 

with SDs for majority of chemicals smaller than 0.5. In their study, LD50s were only 

log-transformed and not log-molar transformed, which is necessary for 

standardizing effects when chemicals with different MWs are studied together.  

Additionally, some of the data points used in their study could not be 

independently verified. On the other hand, the median SD derived in the current 

study was lower than the “global SD” of 0.81 derived by Karmaus et al, but closer 

to the SD they proposed to derive a 95% CI range (±0.31 log10(mg/kg) units) [7]. 

Similar to Hoffman et al., Karmaus et al. did not standardize LD50s of individual 

chemicals by their MWs. Although, a significantly larger number of chemicals or 

LD50s were used in the Karmaus study, we did not supplement the current study 

with the addition of new chemicals from their database. The data composition in 

the Karmaus study was not clearly understandable as several LD50s indicated as 

“limit values” were present in the database uploaded to their website. In addition, 

the primary sources of LD50s were not provided, making impossible the 
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independent verification of endpoints when necessary. Absent clear knowledge 

regarding the data extraction or reduction processes, we decided to complete our 

analysis based on the in-house LD50s database that we previously developed and 

curated. Furthermore, no species-specific effect on variability of an LD50 was 

observed, consistent with the findings from Hoffman at al. Test species may 

uniquely respond to a chemical with differing levels of sensitivities. However, in 

the present study, the interspecies variation of response did not exceed the 

intraspecies one. Hence, the SDs or the scaling factors estimated in the current 

study can be applied to any LD50 regardless of the test species used to derive it.  

Variability of L(N)OAELs and comparison to LD50s  
 

The median SDs of log-molar LOAELs and NOAELs were similar to each other in 

acute exposure duration whereas the NOAELs SDs were significantly higher in 

intermediate and chronic exposure durations. The observation of higher variability 

in NOAELs is consistent with the toxicological properties based on which these 

endpoints are commonly determined. For instance, both NOAELs and LOAELs 

stem from the same dose-response curve (Figure 6), however, LOAELs are only 

determined when the predetermined level of adverse health effects are observed 

whereas NOAELs are determined when no adverse health effects are observed [12].  

 

 

 

 

Figure 6. An illustration of a dose response 
curve used in toxicological endpoint derivation 
studies. Plot is not drawn to scale. 
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The study design factors such as sample size (i.e., animals used per dose group) 

and dose spacing play important roles in the determination of a LOAEL or NOAEL 

[20]. When a study is conducted with a larger sample size, the researchers are 

likelier to detect significantly different health effects between the treatment and 

the control group at a given dose (thus resulting in a LOAEL). However, with a 

smaller sample size, the differences in health effects between the compared groups 

may not be detected (thus resulting in a NOAEL). Similarly, the dose selection, i.e., 

a priori specific dose selected to test toxicological effects of a chemical plays an 

important role in the endpoint determination [20]. If a study is conducted with a 

large dose spacing, the true LOAEL might lie between the tested doses whereas the 

true NOAEL might lie farther below the lowest tested dose, resulting in an 

increased uncertainty of the reported values.   

In contrast, the issues related to dose spacing and sample size are less severe in 

LD50 studies. The cumulative lethal effect observed for an LD50 is definite; either a 

species is dead or not at a tested dose and no comparison between the treatment 

and control groups is made. These differences possibly explain much lower 

variability of an LD50. In fact, based on full datasets, the median SD of an LD50 was 

approximately half the median SD of either a LOAEL or NOAEL.  

Another important distinction between LD50s and LOAELs or NOAELs is the 

systems affected by a dose. L(N)OAELs are derived for different target organs or 

health effects depending on their sensitivities. In the current study, when the 

distributions of L(N)OAELs variances across target systems with the largest 

sample sizes were compared, only statistically significant differences were 

observed between the body weight change and hepatic or neurological system in 
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chronic LOAELs and between the body weight change and the hematological 

system in chronic NOAELs dataset. The observed difference could be a random 

fluctuation, especially in chronic LOAELs dataset where the sample sizes of the 

compared systems are unbalanced and small. However, the difference could also 

be systematic. Measuring the body weight effect endpoint is a straightforward and 

uniform process, i.e., it is based on the significant difference between the terminal 

body weight of treatment versus control group [12]. The researcher could simply 

weigh the animals and based on the percentage change in weight, decide whether 

an effect exist at a given dose. On the other hand, the measurement of other 

systems effects is not obvious. For example, hematological effect endpoints are 

based on several effects such as anemia, cyanosis, erythrocytopenia, Leukopenia 

and so on [12]. The measurement and analysis procedures for multiple effects could 

vary among different studies, leading to an increased variability.  

 

Scaling factors to derive a lower bound on an endpoint 
 

The median SDs derived in the current study were transformed to scaling factors 

to obtain the lower bound on an endpoint in the original unit. The factor for LD50s 

was smaller than the factors for LOAELs which were equal or smaller than the 

factors for NOAELs. An illustration of an application of a scaling factor is  

shown in Table 9. The geometric mean of all currently available Acrylamide LD50s  

Table 9. LD50s for Acrylamide and the proposed lower bound based on the scaling factor of 2.7  

LD50 1 2 3 4 5 6 7 8 9 10 11 

species rat rat rat rat rat rat rat mouse mouse gn. pig rabbit 

Dose (mg/kg-day) 124 175 180 203 294 316 413 107 195 180 150 
 

GM 196.79           
 𝐋𝐃𝟓𝟎𝐋

 72.89           
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regardless of test species is 196.8. When the scaling factor of 2.7 based on the 

median SD of LD50s is applied, the lower bound is estimated at 73 mg/kg-day, 

which is lower, thus more health protective, than the current minimum LD50 of 107 

mg/kg-day. Based on the risk assessment need, an SD estimate at a higher 

percentile can be applied to derive a higher and more health protective scaling 

factor using a similar protocol. 

The variances estimated in the current study could also be useful in computational 

toxicological studies that seek to derive cross-duration (i.e., acute -> intermediate, 

acute -> chronic, intermediate -> chronic) or cross-endpoints (i.e., LD50 -> LOAEL, 

LD50 -> NOAEL, etc) extrapolation factors. For example, when regression models 

are used to study a possible association between cross-duration endpoints, an 

application of the ordinary least squares (OLS) regression approach is not valid 

since both endpoints are subjected to uncertainty [21]. Hence, an error-in-variable 

model approach of regression analysis is warranted, which requires the estimates 

of sample variances of both endpoints such as the ones derived in this study [21].  

 

Further study  
 

In this study, we extracted toxicological endpoints from the ATSDR and other 

governmental databases to estimate their variabilities. The LD50s variability was 

estimated using previously curated in-house database. While the quality of data 

used was better, the sample size could be improved upon. Recently, ICCVAM has 

published LD50s for thousands of chemicals. However, a careful curation and data 

processing is required before these LD50s could be used. Hence, in the future, 
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attention should be given to curation and possible utilization of these LD50s to 

improve study power and precision. Similarly, for L(N)OAELs, additional data may 

be collected from the Environmental Protection Agency (EPA)’s Integrated Risk 

Information System (IRIS) database.  

Another possible area for further exploration is the use of a pooled variance 

estimation under the assumption of non-homogeneous variances across samples. 

One such method is provided by Li et al.; however, we were not able to use that 

method in the current study. A pooled variance estimate based on theoretical 

distribution of variances, when valid, could provide a useful comparison or 

validation of variances estimated using a non-parametric approach.  

Furthermore, we observed that endpoints variability did not necessarily decrease 

with an increase in number of observations or studies. As mentioned above, several 

factors might affect this behavior and deserves more rigorous exploration. Such 

exploration could be carried out either through increased toxicological and 

experimental data collection, simulation studies, or more robust statistical 

techniques to account for possible confounders.  

Finally, while we estimated scaling factors to derive lower bounds on endpoints, 

we did not formally validate our models due to smaller sample size. For example, 

we did not divide our datasets into testing and training sets to evaluate the 

reliabilities of derived factors. In the future, additional efforts towards systematic 

validation of these factors could be explored.  
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Conclusions  
 

In this study, we characterized and quantified variabilities of publicly available oral 

LD50s as well as LOAELs and NOAELs from the ATSDR’s toxicological profiles. The 

effects of experimental species, target organs, or availability of MRLs were also 

explored. The derived SDs were back-transformed to obtain scaling factors to 

derive lower bounds on respective endpoints.  

The major findings from this study are listed in the form of “take home” points 

below:  

• The variability of LD50s was approximately half the variability of LOAELs or 

NOAELs.  The variability of LOAELs was lower than or similar to that of 

NOAELs. 

• Approximately, the scaling factors to derive lower bounds on an endpoint 

were: 2.7 for LD50s, 7 for LOAELs (all three exposure durations), and 7 

(acute exposure duration) or 10 (intermediate and chronic exposure 

durations) for NOAELs. 

• Test species had no major influence on variability (except intermediate 

duration endpoints) whereas matching target systems lowered NOAELs 

variability.  

• The variability of endpoints did not necessarily decrease with the increase 

in number of studies.  
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Table 1a. Total number of chemicals and corresponding LD50s categorized by their database sources. Highlights in red represent 

the sample sizes used in this study.  
 

Total number of 

 

Source 

LD50s originally 

extracted 

Unique 

CASRN 

Chemicals with 

>=3 LD50s 

LD50s (used 

in the study) 

RTECS 959 349 161  
ChemID 1619 943 95  
LSE Table 689 182 79  

Chemical handbook 30 10 9  

 

  

Total (after applying selection criteria)     

Species mixed (full) dataset 2849 1339 306 1420 

Species matched subset - - 70 404 

 

Table 1b. Total number of unique chemicals and corresponding L(N)OAELs for acute, 

intermediate, and chronic exposure durations after applying selection criteria.  

Exposure Duration Endpoints Unique CASRN Number of endpoints 

Acute LOAELs 93 740 

 NOAELs 104 848 

    

Intermediate LOAELs 121 1209 

 NOAELs 132 1529 

    

Chronic  LOAELs 58 368  

NOAELs 75 547 
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the sample sizes used in this study.  
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Table 3a. Frequencies of experimental species used to derive L(NOAELs) for chemicals with >= 3 respective endpoints. 

 

 

Species 

Acute Intermediate Chronic 

LOAEL 

(n=587) 

NOAEL 

(n=682) 

LOAEL 

(n=1017) 

NOAEL 

(n=1365) 

LOAEL 

(n=26 5) 

NOAEL 

(n=422) 

Dog 3 - 16 42 15 32 

Human 40 28 10 3 3 3 

Mouse 141 149 198 350 49 104 

Other 3 8 20 49 - 7 

Rabbit 5 26 3 5 3 - 

Rat 395 462 751 884 179 265 

Gn pig - 3 - 3 - - 

Hamster - 6 - - - - 

Monkey - - 19 29 16 11 

 

 

 

 

 

Table 2. Frequencies of experimental species used to derive 

LD50s.  aAlthough large number of rabbits are present in species 

mixed dataset, they are not present in species matched subset 

because >= 3 observations for same test species were necessary 

for a chemical to be included.    

Species 

species 

mixed 

(n=1420) 

species 

matched 

(n=404) 

Cat 30 - 

Dog 77 - 

Guinea pig 151 7 

Hamster 16 - 

Monkey 5 - 

Mouse 379 76 

Other  10 - 

Pig 3 - 

Rabbita 158 - 

Rat 591 321 
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Table 3c. Frequency distribution of organ systems used to derive L(NOAELs) for chemicals with >= 3 L(N)OAELs. Systems 

listed as “NA” or “NS” were replaced with non-NA entries from the corresponding category column. If both systems and 

categories were listed as “NA”, “NS”, or “NR”, then those records were excluded. 

 

 

System 

Acute Intermediate Chronic 

LOAEL 

(n=1010) 

NOAEL 

(n=1575) 

LOAEL 

(n=1799) 

NOAEL 

(n=3847) 

LOAEL 

(n=607) 

NOAEL 

(n=2282) 

Body weight change 117 266 243 530 103 221 

Cardiovascular 15 60 23 208 11 185 

Dermal 14 33 31 111 19 133 

Developmental 87 162 131 158 4 7 

Endocrine 50 55 91 200 31 139 

Gastrointestinal 58 67 66 206 35 174 

Hematological 50 73 152 299 52 179 

Hepatic 254 204 383 396 146 221 

Immunological/lymphoreticular 55 54 130 183 23 93 

Metabolic 8 8 19 26 1 7 

Musculoskeletal 9 30 19 133 9 140 

Neurological 134 183 163 307 46 145 

Ocular 10 24 14 111 13 105 

Renal 75 146 171 380 67 203 

Reproductive 46 127 128 401 25 153 

Respiratory 28 82 35 198 22 177 

Genotoxic - 1 - - - - 

 

 

 

Table 3b. Total number of unique CASRN with >= 3 LOAELs or NOAELs when experimental species were matched, 

i.e., a chemical was only included if >= 3 observations were available for a given species. It was possible for a chemical to 

be included more than once if multiple species with >= 3 observations were present. 

 

 

Species 

Acute Intermediate Chronic 

LOAEL 

(n=104) 

NOAEL 

(n=123) 

LOAEL 

(n=148) 

NOAEL 

(n=197) 

LOAEL 

(n=61) 

NOAEL 

(n=93) 

Dog 1 - 4 9 5 9 

Human 7 7 3 1 1 1 

Mouse 29 30 36 60 13 25 

Other 1 1 4 9 - 2 

Rabbit 1 8 1 1 1 - 

Rat 65 75 96 108 39 54 

Gn pig - 1 - 1 - - 

Hamster - 1 - - - - 

Monkey - - 4 8 2 2 
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Table 3d. Total number of unique CASRN with >= 3 LOAELs or NOAELs when target systems were matched, i.e., a chemical 

was only included if >= 3 observations were available for a given system. It was possible for a chemical to be included more 

than once if multiple systems with >= 3 observations were present.  

 

 

 

System 

Acute Intermediate Chronic 

LOAEL 

(n=103) 

NOAEL 

(n=189) 

LOAEL 

(n=219) 

NOAEL 

(n=542) 

LOAEL 

(n=65) 

NOAEL 

(n=322) 

Body weight change 11 39 33 70 14 35 

Dermal 1 2 2 13 1 17 

Developmental 11 19 19 17 - - 

Endocrine  6 5 13 31 1 20 

Gastrointestinal 4 7 4 28 3 21 

Hematological 4 8 20 43 5 29 

Hepatic                                  31 29 51 60 19 33 

Immunological/lymphoreticular 4 3 12 30 2 9 

Metabolic                                   1 - - 3 - 1 

Neurological                             18 29 21 46 7 19 

Renal 7 21 21 57 7 29 

Reproductive  5 12 15 56 1 24 

Cardiovascular - 6 - 30 - 26 

Respiratory - 9 3 30 2 25 

Musculoskeletal - - 3 15 2 18 

Ocular - - 2 13 1 16 

 

 

 

 

 

 

 

 

 

 

 

Table 3e. Total number chemicals categorized by the availability of MRLs (only chemicals with >=3 L(N)OAELs 

were included). 

 

 

 

MRL 

Acute Intermediate Chronic 

LOAEL 

(n=93) 

NOAEL 

(n=104) 

LOAEL 

(n=121) 

NOAEL 

(n=132) 

LOAEL 

(n=58) 

NOAEL 

(n=75) 

present 45 49 71 78 35 43 

not present 48 55 50 54 23 32 
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Table 3f. SW test of normality of endpoints (chemical mean centered log-molar endpoints). aWhen 

extreme points identified by Tukey fence analysis were excluded, p-value increased to 0.0051 for species 

mixed and 0.0175 for species matched datasets. 

Dataset/Duration Dataset/Endpoint W Statistic p-value 

LD50s  Species mixed 0.97 <0.0001a 

 Species matched 0.95 <0.0001a 

    

    

Acute (full) LOAEL 0.97 <0.0001 

 NOAEL 0.96 <0.0001 

    

Intermediate (full) LOAEL 0.97 <0.0001 

 NOAEL 0.97 <0.0001 

    

Chronic (full) LOAEL 0.97 <0.0001 

 NOAEL 0.99 0.0308 

Table 4a. Output from the Levene’s and F-tests for the homogeneity of variances across different samples.  

Description Df F-value Pr(>F) 

Levene's test group    

LD50s species mixed 305; 1112 1.285 0.00238 

Acute LOAELs 92; 647 1.935 <0.0001 

Acute NOAELs 103; 744 1.962 <0.0001 

Intermediate LOAELs 120; 1088 2.098 <0.0001 

Intermediate NOAELs 131; 1397 1.768 <0.0001 

Chronic LOAELs 57; 310 1.505 0.01599 

Chronic NOAELs 74; 472 1.4157 0.01831 

    

F-test groups (LD50s)    

Malathion and Dioxin 24 (num), 18 (denom) 0.369 0.02393 

Malathion and Parathion 24 (num), 16 (denom) 0.724 0.46190 

Malathion and Disulfoton 24 (num), 18 (denom) 4.202 0.00285 

Dioxin and Parathion 18 (num), 16 (denom) 1.958 0.18280 

Dioxin and Disulfoton 18 (num), 18 (denom) 11.365 <0.0001 

Parathion and Disulfoton 16 (num), 18 (denom) 5.805 0.000597 
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Table 4b. SD estimates for LD50s for species mixed and species matched datasets. The 95% 

CIs were approximated using the BCa method with 10,000 bootstrap replications as 

implemented in the “boot” package in R.  

Description 

species 

mixed 

species 

matched 

Number of LD50s (n) 1420 404 

Number of unique chemicals (N) 306 70 

   

Standard Deviation (SD)   

25th percentile (95% CI) 0.17 (0.15-0.18) 0.17 (0.11-0.20) 

Median (95% CI) 0.26 (0.23-0.28) 0.27 (0.22-0.29) 

Mean (95% CI) 0.34 (0.32-0.36) 0.35 (0.30-0.41) 

75th percentile (95% CI) 0.37 (0.31-0.44) 0.36 (0.31-0.45) 
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Table 5a. SD estimates for LOAELs and NOAELs. All available endpoints were used, i.e., distributions were based on full datasets. However, if an identical dose was recorded for multiple systems, it 

was included only once. 

L(N)OAELs – full datasets 

Description 

Acute Intermediate Chronic 

LOAELs NOAELs LOAELs NOAELs LOAELs NOAELs 

Number of endpoints (n) 740 848 1209 1529 368 547 

Number of unique chemicals (N) 93 104 121 132 58 75 

       

Standard deviation       

25th percentile (95% CI) 0.43(0.33-0.44) 0.35(0.32-0.44) 0.40(0.33-0.45) 0.47(0.43-0.51) 0.32(0.2-0.38) 0.49(0.35-0.55) 

Median (95% CI) 0.53(0.46-0.6) 0.52(0.48-0.60) 0.55(0.50-0.62) 0.62(0.58-0.68) 0.49(0.37-0.58) 0.63(0.58-0.68) 

Mean (95% CI) 0.73(0.65-0.84) 0.68(0.60-0.78) 0.66(0.61-0.72) 0.73(0.68-0.78) 0.63(0.55-0.71) 0.73(0.66-0.81) 

75th percentile (95% CI) 0.77(0.65-0.89) 0.71(0.63-0.84) 0.72(0.68-0.84) 0.84(0.77-0.93) 0.77(0.60-0.91) 0.76(0.71-0.94) 

Table 5b. SD estimates for LOAELs and NOAELs. For each chemical, endpoints were categorized by their test species and if >= 3 observations were available for any given species, SD corresponding to 

it was estimated and used in the analysis.  

L(N)OAELs – species matched subsets 

Description 

Acutea Intermediate Chronica 

LOAELs NOAELs LOAELs NOAELs LOAELs NOAELs 

Number of endpoints (n) 587 682 1017 1365 265 422 

Number of unique chemicals (N1) 
73 84 103 123 43 60 

Number of samples (N2) 
104 123 148 197 61 93 

       

Standard deviation       

25th percentile (95% CI) 0.36(0.32-0.41) 0.35(0.31-0.42) 0.34(0.3-0.38) 0.38(0.34-0.43) 0.28(0.21-0.34) 0.34(0.30-0.42) 

Median (95% CI) 0.48(0.44-0.54) 0.49(0.44-0.54) 0.46(0.42-0.51) 0.53(0.50-0.58) 0.45(0.34-0.58) 0.58(0.50-0.63) 

Mean (95% CI) 0.60(0.55-0.66) 0.62(0.56-0.70) 0.59(0.54-0.65) 0.68(0.63-0.74) 0.65(0.55-0.77) 0.67(0.61-0.76) 

75th percentile (95% CI) 0.66(0.59-0.75) 0.67(0.59-0.78) 0.65(0.60-0.71) 0.77(0.68-0.83) 0.67(0.59-0.88) 0.77(0.67-0.84) 



viii 

 

 

 

 

 

 

 

 

 

Table 5c. SD estimates for LOAELs and NOAELs for all three exposure durations. For each chemical, endpoints were categorized by their target systems and if >= 3 observations were available 

for any given system, SD corresponding to it was estimated and used in the analysis.  

L(N)OAELs – target systems matched subsets 

Description 

Acute Intermediate Chronic 

LOAELs NOAELs LOAELs NOAELs LOAELs NOAELs 

Number of endpoints (n) 519 830 1155 2618 278 1275 

Number of unique chemicals (N1) 58 67 83 97 36 54 

Number of samples (N2) 103 189 219 542 65 322 

       

Standard deviation       

25th percentile (95% CI) 0.32(0.26-0.36) 0.25(0.23-0.30) 0.32(0.28-0.35) 0.31(0.27-0.34) 0.25(0.17-0.31) 0.32(0.26-0.35) 

Median (95% CI) 0.51(0.43-0.56) 0.41(0.36-0.47) 0.50(0.45-0.53) 0.49(0.46-0.54) 0.44(0.37-0.54) 0.49(0.45-0.52) 

Mean (95% CI) 0.66(0.58-0.76) 0.56(0.52-0.63) 0.64(0.60-0.70) 0.64(0.61-0.70) 0.62(0.54-0.73) 0.61(0.57-0.65) 

75th percentile (95% CI) 0.74(0.64-0.81) 0.64(0.59-0.70) 0.73(0.65-0.81) 0.67(0.62-0.70) 0.66(0.56-0.89) 0.69(0.65-0.77) 
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Table 6a. Outputs from the KS test for the comparison of distribution of variances between different species. 3 

species with the highest number of observations were selected for comparisons. aNot enough sample size for other 

comparisons.  

Dataset KS test species pairs n D p-value 

LD50s species mixed 
Rat and Mouse 66; 19 0.193 0.5654 

 
    

Acute LOAELs 
Rat and Mouse 65; 29 0.183 0.51261  

Rat and Human 65; 7 0.448 0.11131  

Mouse and Human 29; 7 0.330 0.47801  

    

Acute NOAELs  
Rat and Mouse 75; 30 0.213 0.28362  

Rat and Rabbit 75; 8 0.217 0.88652  

Mouse and Rabbit 30; 8 0.358 0.31335  

    

Intermediate LOAELsa  
Rat and Mouse 96; 36 0.139 0.69341  

    

Intermediate NOAELs 
Rat and Mouse 108; 60 0.267 0.00829  

Rat and Dog 108; 9 0.306 0.41992  

Dog and Mouse 9; 60 0.394 0.17503  

    

Chronic LOAELs 
Rat and Mouse 39; 13 0.231 0.67676  

Rat and Dog 39; 5 0.446 0.24871  

Dog and Mouse 5; 13 0.523 0.21078  

    

Chronic NOAELs  
Rat and Mouse 91; 58 0.208 0.44958  

Rat and Dog 91; 26 0.185 0.93005  

Dog and Mouse 26; 58 0.258 0.65833 
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Table 6b. Outputs from the KS test for the comparison of distribution of variances between different target systems. 3 

systems with the highest number of observations were selected for comparisons. aWhen two largest systems with identical 

sample size were present, both systems were included.  

Dataset KS test groups n D p-value 

Acute LOAELs a Hepatic; Developmental 31; 11 0.139 0.90863 

 Developmental; Neurological 11; 18 0.19 0.76274 

 Hepatic; Neurological 31; 18 0.216 0.42814 

 Hepatic; Body weight change 31; 11 0.237 0.17516 

 Developmental; Body weight change 11; 11 0.26 0.32037 

 Neurological; Body weight change 18; 11 0.29 0.18666 

     

Acute NOAELs  Hepatic; Body weight change 29; 39 0.209 0.46381 

 Hepatic; Neurological 29; 29 0.138 0.95144 

 Body weight change; Neurological 39; 29 0.183 0.55879 

     

Intermediate LOAELsa  Hepatic; Neurological 51; 21 0.216 0.42814 

 Neurological; Body weight change 21; 33 0.29 0.18666 

 Hepatic; Body weight change 51; 33 0.237 0.17516 

 Renal; Hepatic 21; 51 0.249 0.26281 

 Renal; Neurological 21; 21 0.333 0.19631 

 Renal; Body weight change 21; 33 0.152 0.88031 

     

Intermediate NOAELs Hepatic; Body weight change 60; 70 0.233 0.05932 

 Hepatic; Renal 60; 57 0.14 0.61235 

 Body weight change; Renal 70; 57 0.158 0.41575 

     

Chronic LOAELsa Hepatic; Body weight change 19; 14 0.718 0.00016 

 Body weight change; Neurological 14; 7 0.214 0.98119 

 Body weight change; Renal 14; 7 0.643 0.03313 

 Hepatic; Neurological 19; 7 0.504 0.10479 

 Hepatic; Renal 19; 7 0.293 0.65557 

 Neurological; Renal 7;7 0.571 0.21212 

     

Chronic NOAELsa Hepatic; Body weight change 33; 35 0.229 0.33295  

Body weight change; Renal 35; 29 0.139 0.91955  

Hepatic; Renal 33; 29 0.119 0.98083 

 
Hepatic; Hematological 33; 29 0.167 0.78132 

 
Body weight change; Hematological 35; 29 0.335 0.04282 

 
Renal; Hematological 29; 29 0.241 0.36685 
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Table 7a. Outputs from the KS test for the comparison of distribution of variances of endpoints based on the 

availability of their corresponding MRLs.   

Dataset KS test groups n D p-value 

Acute LOAEls MRL present vs. MRL not present 45; 48 0.213 0.24505 

     

Acute NOAELs MRL present vs. MRL not present 49; 55 0.246 0.08685 

     

Intermediate LOAELs MRL present vs. MRL not present 71; 50 0.123 0.76316 

     

Intermediate NOAELs MRL present vs. MRL not present 78; 54 0.127 0.68419 

     

Chronic LOAELs MRL present vs. MRL not present 35; 23 0.125 0.98107 

     

Chronic NOAELs MRL present vs. MRL not present 43; 32 0.152 0.72054 
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Table 7b. SD estimates for LOAELs and NOAELs. Only endpoints from chemicals with corresponding MRLs were included.   

L(N)OAELs – MRLs present subsets 

Description 

Acute Intermediate Chronic 

LOAELs NOAELs LOAELs NOAELs LOAELs NOAELs 

Number of endpoints (n) 404 477 804 1045 249 352 

Number of unique chemicals (N) 45 49 71 78 35 43 

       

Standard deviation       

25th percentile (95% CI) 0.41(0.28-0.43) 0.34(0.27-0.45) 0.38(0.32-0.43) 0.49(0.41-0.52) 0.29(0.17-0.39) 0.51(0.37-0.60) 

Median (95% CI) 0.49(0.43-0.58) 0.51(0.44-0.57) 0.54(0.47-0.62) 0.62(0.55-0.69) 0.50(0.33-0.65) 0.67(0.59-0.72) 

Mean (95% CI) 0.60(0.52-0.68) 0.57(0.51-0.65) 0.61(0.56-0.67) 0.7(0.65-0.76) 0.64(0.53-0.75) 0.75(0.66-0.84) 

75th percentile (95% CI) 0.71(0.58-0.78) 0.62(0.53-0.71) 0.70(0.64-0.82) 0.83(0.72-0.89) 0.82(0.6-0.95) 0.87(0.71-1.03) 

Table 7c. SD estimates for LOAELs and NOAELs. Only endpoints from chemicals without corresponding MRLs were included.   

L(N)OAELs – MRLs not present subsets 

Description 

Acute Intermediate Chronic 

LOAELs NOAELs LOAELs NOAELs LOAELs NOAELs 

Number of endpoints (n) 336 371 405 484 119 195 

Number of unique chemicals (N) 48 55 50 54 23 32 

       

Standard deviation       

25th percentile (95% CI) 0.44(0.33-0.51) 0.42(0.25-0.47) 0.43(0.29-0.5) 0.47(0.37-0.52) 0.36(0.17-0.47) 0.46(0.29-0.56) 

Median (95% CI) 0.59(0.49-0.68) 0.60(0.47-0.67) 0.58(0.5-0.67) 0.63(0.54-0.72) 0.49(0.37-0.55) 0.60(0.50-0.68) 

Mean (95% CI) 0.83(0.70-1.00) 0.76(0.65-0.93) 0.72(0.62-0.85) 0.76(0.68-0.86) 0.61(0.52-0.75) 0.70(0.61-0.87) 

75th percentile (95% CI) 0.89(0.67-1.20) 0.83(0.68-0.86) 0.77(0.64-0.86) 0.89(0.71-1.05) 0.66(0.52-0.97) 0.74(0.64-0.95) 
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Table 8. Scaling factors based on estimated median SDs to derive 95% lower bound on a geometric mean of endpoints or a single 

endpoint.  For example, to obtain a lower bound on an acute LOAEL, a division factor of 7.40 could be applied.  

Endpoint Duration 

Species  

mixed (full) 

Species 

matched 

Target systems 

matched 

LD50s  2.67 (2.38 - 2.88) 2.77 (2.38 - 2.99) na 

     

LOAELs Acute 7.40 (5.68 - 9.64) 6.13 (5.27 - 7.68) 6.86 (5.07 - 8.29) 

 intermediate 7.98 (6.61 - 10.39) 5.68 (4.88 - 6.86) 6.61 (5.47 - 7.40) 

 Chronic 6.36 (4.04 -   8.94) 5.47 (3.61 - 8.94) 5.27 (4.04 - 7.68) 

     

NOAELs Acute 7.13 (6.13 - 9.64) 6.36 (5.27 - 7.68) 4.70 (3.89 - 5.90) 

 Intermediate 10.39 (8.94 - 13.04) 7.40 (6.61 - 8.94) 6.36 (5.68 - 7.68) 

 Chronic 10.79 (8.94 - 13.04) 8.94 (6.61 - 10.79) 6.36 (5.47 - 7.13) 

Table 9. LD50s for Acrylamide and the proposed lower bound based on the scaling factor of 2.7  

LD50 1 2 3 4 5 6 7 8 9 10 11 

species rat rat rat rat rat rat rat mouse mouse gn. pig rabbit 

Dose (mg/kg-day) 124 175 180 203 294 316 413 107 195 180 150 
 

GM 196.79           
 𝐋𝐃𝟓𝟎𝐋

 72.89           
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Appendix B: Figures 
  

Figure 1a. Histograms representing the distributions of LD50s (without removing outliers). Each point represents a 
mean-centered (by chemical specific mean) log-molar LD50. Red curves represent the normal fit.  
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Figure 2b. Normal Q-Q plots for the distributions of LD50s. Each point represents a mean-centered (by chemical specific mean) log-molar LD50.  
Plots before and after removing outliers are provided.  

𝑝𝐿𝐷50 − 𝑝𝐿𝐷50
തതതതതതതത 

𝑝𝐿𝐷50 − 𝑝𝐿𝐷50
തതതതതതതത 



xvi 

  

0

20

40

60

80

100

-2.2 -1.2 -0.2 0.8 1.8 2.8

Acute LOAEL 

0

14

28

42

56

70

84

98

112

126

-3.2 -2.2 -1.2 -0.2 0.8 1.8 2.8

0

19

38

57

76

95

114

133

152

171

-3.4 -2.4 -1.4 -0.4 0.6 1.6 2.6

0

23

46

69

92

115

138

161

184

207

-2.4 -1 0.4 1.8 3.2 4.6

Figure 1c. Histograms representing the distributions of L(N)OAELs. Each point represents a mean-centered (by chemical specific 
mean) log-molar endpoint. The red curves represent the normal fit.  
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Figure 1d. Normal Q-Q plots for the distributions of L(N)OAELs. Each point represents a mean-centered (by 
chemical specific mean) log-molar endpoint.  
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Figure 2a. Distributions of variances (S2) of log-molar LD50s. Green and red lines represent the median and mean 
of distributions, respectively. 

Figure 2b. Distributions of SDs (S) of log-molar LD50s. Green and red lines represent the median and mean of 
distributions, respectively. 



xix 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Sample size 
Mouse: 19 
Rat: 66 

Figure 2c. Histograms and density plots of SDs for the comparison of variability between rat and mouse.  The density plots were 
constructed using the default bandwidths in the R density function. 
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Figure 3a. Distributions of variances (S2) and SDs (S) of log-molar LOAELs. Green and red lines represent 
the median and mean of distributions, respectively. 



xxi 

 

 

 

 

 

 

  

Figure 3b. Distributions of variances (S2) and SDs (S) of log-molar NOAELs. Green and red lines 
represent the median and mean of distributions, respectively. 



xxii 

 

 

 

 

 

 

 

  

Figure 4a. Median SDs corresponding to endpoints based on different target systems. For better 
visualization, only systems >5 observations per endpoint per exposure duration were included. 
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Figure 4b. Histograms and density plots of SDs for the comparison of variability between rat 
and mouse. The density plots were constructed using default bandwidths in the R density 
function.  The table includes the sample size used to construct respective plots. 
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Figure 4c. Histogram and density plots of SDs for the comparison of variability among 
Body weight change, Hematological, Hepatic, and Renal target system in chronic exposure 
duration (significant differences between the distributions of variances were observed in  
these datasets). The density plots were constructed using default bandwidths in the R 
density function.  The table includes the sample size used to construct respective plots. 
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Figure 4d. Histograms and density plots of SDs for the comparison of variability between 
endpoints based on availability of corresponding MRLs. The density plots were constructed using 
default bandwidths in the R density function.  The table includes the sample size used to construct 
respective plots. 
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Figure 5a. Scatterplot of log10(Si) versus sample size (n) of a chemical (using LD50s full dataset). The 
variability of LD50s per chemical did not necessarily decrease relative to the increase in number of studies 
available for that chemical. 

Figure 5b. Scatterplot of log10(Si) versus sample size (n) of a chemical (using L(N)OAELs full datasets). 
Although the trend is less clear as compared to LD50s in Figure 5a, the variability of endpoints per chemical 
did not necessarily decrease relative to the increase in number of studies available for that chemical. 


