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Abstract 

Large scale neuronal type classification using graph neural networks 

By Allen Zhang 

Neuron classification is an important task in contemporary neuroscience, providing a deeper 

understanding of the intricate structure-function relationships of the brain. As more and more 

data are collected with advancements across domains, machine learning has emerged as an 

essential tool for automated data handling and analysis. While recent machine learning and 

traditional approaches to neuron classification have often relied on morphological or 

electrophysiological features, graph neural networks (GNNs) have not been extensively explored 

despite their effectiveness in analyzing complex and irregularly structured data. In this study, we 

show that supervised classification with GNNs on primary brain regions and cell types performs 

remarkably well across four large datasets. Our findings indicate that GNNs offer a distinctive 

and promising approach to neuron classification, with numerous potential avenues for future 

research. 
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Chapter 1 

Introduction 

 

The task of neuron classification underlies one of the fundamental questions of neuroscience: the 

connection between structure and function. Understanding neuron types is directly related to a 

more complete description of how they can affect behavior and cognition, but this is no easy task 

considering the sheer diversity of cell types in the brain [1]. The continued growth of big data in 

neuroscience, accelerated through key advances in data collection in recent years [2], has also 

quickly rendered manual classification efforts impractical. 

Computer science and machine learning methodologies are at the forefront to tackle this 

problem, with many studies in the past decade leveraging different forms of machine learning to 

develop methods to automate classification of neurons [1] [3]. These methods have varied 

greatly, but they often revolve around either the comparison of morphometric features or 

alignment of neuronal structures [4] [5]. These studies have offered crucial information regarding 

the functionality of neuron morphology, but methodologies that are closely tied to user-selected 

morphological features carry inherent drawbacks of potential bias or limited power in 

representing a global structure [6]. As such, it is worth examining the potential graph neural 

networks (GNNs) could provide in neuronal classification given they are largely feature-

agnostic, which is an area that has not seen much investigation despite robust advances in the 

efficiency and accuracy of such models in recent years [7] [8]. 
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GNNs are a type of neural network designed to operate on data structured as graphs. In 

contrast to traditional neural networks such as multi-layer perceptrons or convolutional neural 

networks that typically operate on vector or grid-like data, including images and text, GNNs take 

data represented as a set of nodes and connecting edges. A node represents an entity of interest, 

and an edge represents a relationship between two nodes. Additionally, nodes may be positioned 

in dimensional space, enabling graphs to encode spatial information. For example, in the case of 

neurons, a node can correspond to a neuronal compartment of the cell located in three-

dimensional space, while an edge can correspond to the physical connection between two 

compartments, which together form a three-dimensional graph representation of a neuron. The 

key idea behind GNNs is to propagate feature information between nodes in the graph by 

iteratively aggregating information from a node’s neighboring nodes and using it to update the 

node’s own representation [9]. This process is repeated multiple times for each node and its 

neighbors to capture information across the whole graph. Graphs can differ greatly in structure 

and size, making it challenging to apply traditional neural networks. However, the flexibility of 

graphs in representing data with a non-Euclidean structure is what also lends GNNs their 

applicability; indeed, GNNs have been successful in a wide range of settings, including node 

classification [10] [11], chemical molecule analysis [12], and traffic forecasting [13] [14]. 

In this work, we examine the performance of supervised deep learning models applied to 

three-dimensional neuron reconstructions as graphs. Rather than categorizing and clustering 

neurons based on morphological features, the proposed approach using GNNs aims to predict a 

neuron’s anatomy, such as its cell type or brain region of origin, based solely on its graph 

structure and information contained in a standardized neuron morphology file. This 

standardization is part of the public online database of digital neuron reconstructions 
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NeuroMorpho.org, which consists of a collection of over 240,000 neural cell reconstructions and 

counting contributed by hundreds of laboratories around the world [15]. Each neuron 

reconstruction in NeuroMorpho.org has a standardized morphology file in the SWC file format 

and is associated with detailed metadata, including animal subject, anatomy, experiment details, 

and source [16]. To investigate the efficacy of GNNs on the supervised classification of neurons, 

several different models of varying methodologies were trained on over 220,000 of the available 

neuronal cell reconstructions on NeuroMorpho.org, split across the four main species of animal 

subjects in the repository. The five models trained to classify the primary brain region and 

primary cell type of neurons demonstrated impressive classification accuracy across the large, 

variable datasets, indicating that GNN models hold great promise as a powerful tool for better 

understanding neurons and the complex biological systems they form. 
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Chapter 2 

Methodology 

 

2.1 Dataset and Preprocessing 

The 3D morphological reconstructions of neuronal cells used in this work were obtained from 

NeuroMorpho.org. Due to apparent restrictions with downloading extremely large numbers of 

files using NeuroMorpho.org’s web-based download functionality, the requisite neuron 

morphology files were instead acquired through direct requests to the URLs of the files. To 

obtain the list of all neuron reconstructions linked with a specific animal species, NeuroMorpho’s 

“Browse” feature was first used for filtering based on animal species. The resultant HTML of the 

filtered list was then scraped to generate a list of all the names of the neuron reconstructions. We 

developed a Python script to create the URLs of the neuron reconstruction morphology files from 

this list of names and download the file data. This process was performed for four species—

human, drosophila melanogaster (drosophila), rat, and mouse—which constitute the majority of 

the neurons in the NeuroMorpho.org database. After excluding data that either could not be 

downloaded or preprocessed into a usable format, the resulting dataset comprised n = 220,433 

total neural cells. Neuron data was separated by the four species: n = 10,659 human, n = 35,496 

drosophila, n = 52,411 rat, and n = 121,867 mouse neurons. The code used can be accessed at the 

supplementary GitHub respository. 

https://github.com/theJokerEvoker/neuromorpho_GNN
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 NeuroMorpho.org uses a standardized format for representing neuron morphology called 

SWC [17]. As explained in the FAQ of NeuroMorpho.org: 

Each line [in an SWC file] has 7 fields encoding data for a single neuronal compartment: 

• an integer number as compartment identifier 

• type of neuronal compartment 

o 0 - undefined 

o 1 - soma 

o 2 - axon 

o 3 - basal dendrite 

o 4 - apical dendrite 

o 5 - custom (user-defined preferences) 

o 6 - unspecified neurites 

o 7 - glia processes 

• x coordinate of the compartment 

• y coordinate of the compartment 

• z coordinate of the compartment 

• radius of the compartment 

• parent compartment 

Every compartment has only one parent and the parent compartment for the first point in 

each file is always -1. [18] 

To process these SWC files into a usable representation, we used another Python script, which 

can also be accessed at GitHub. One neuron reconstruction—that is, one SWC file—is 

equivalent to one graph, and each line in the SWC file is equivalent to one node in the graph: x, 

https://github.com/theJokerEvoker/neuromorpho_GNN


6 
 

y, and z coordinates and parent compartment information translate to position and edge 

connectivity, respectively, and neuronal compartment type and radius are included as node 

features. 

       

Figure 2.1: Images of example neural cell reconstruction from NeuroMorpho.org, which depict 

the neural cell reconstruction for the cell with NeuroMorpho.org ID NMO_86952 [19] [20]. The 

left image is a screenshot of the cell as viewed in the “Animation” feature on the cell’s 

corresponding NeuroMorpho.org page, and the right image is the cell’s representative image in 

the database. 

 

To complete the conversion into a graph representation of a neuron morphology SWC 

file, first, within each species, the metadata of all files are accessed through the 

NeuroMorpho.org API [15]. The metadata are parsed iteratively to count the class occurrences, 

such as “hippocampus” or “neocortex,” of the desired classification category, such as “primary 

brain region,” throughout each species dataset, resulting in a list of the class counts. The list of n 

classes in the dataset is then numbered and set as the graph-level target to train against for each 
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graph representation, depending on the known class of the neuron. For instance, if 

“hippocampus” is encoded as “5” in the class list, a neuron with a known primary brain region of 

“hippocampus” would be assigned the graph-level label “5.” 

 

2.2 GNN Models 

In this study, we assessed the performance of five different GNN models, each designed to 

capture distinct types of information for representation learning. Specifically, the models can be 

broadly categorized into three groups: GNNs that utilize graph information, GNNs that utilize 

spatial information, and GNNs that leverage both types of information. 

 Graph Convolutional Networks (GCNs), a type of GNN that uses graph structure 

information, utilize feature information from a given node’s one-hop neighbors to compute the 

node’s new representation. GCNs can be considered as learning filters, or convolutions, that 

transform the feature information of a node and its neighbors to produce a new, more informative 

node representation [10]. 

 Graph Isomorphism Networks (GINs) also use graph information, but instead of using 

node feature information, GINs use a learnable graph-level aggregation function to generate 

node representations [21]. This aggregation function is permutation-invariant, meaning that it 

processes the neighbors of a node irrespective of their ordering. 

 In contrast, PointNet is a model that primarily operates on spatial information in the form 

of point cloud data, which is unstructured data consisting of a set of three-dimensional points in 

space where each point is represented as a vector of features. PointNet applies a series of layers 

that operate on each point independently, followed by max pooling over all points to generate a 
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global feature vector that represents the entire point cloud [7]. Similar to GINs, PointNet is also 

permutation-invariant. 

 The remaining two models belong to the category of GNNs that use both graph and 

spatial information. The first is a modified version of PointNet, referred to as SpatialPoint. 

SpatialPoint jointly considers graph and spatial information by treating the coordinates of nodes 

and their neighbors as messages passed along their connecting edges. It is included in Zhang and 

Zhao [8] as a variation of PointNet. 

 Finally, Spatial Graph Convolutional Networks (SGCNs) apply a convolution operation, 

similar to GCNs, to learn spatial and graph information by using the relative coordinates between 

nodes and their neighbors [22]. 

 

2.3 Experiments and Procedure 

All experiments were performed on a 64-bit Linux machine with NVIDIA GPUs (RTX A4000, 

16GB GDDR6). GNN models were implemented using PyTorch Geometric, a Python library for 

deep learning on graphs, point clouds, and other irregular structure data types [23] [24]. 

 After preprocessing the neuron morphology files into a graph format compatible with the 

PyTorch Geometric library, the files from each species dataset were aggregated and utilized as 

input for the GNN models. All four species datasets were subjected to each of the five GNN 

models. On each run, the datasets were randomly divided into training, validation, and test sets 

with an 80%:10%:10% ratio, and identical hyperparameters were employed across all trials, 

except for the random seed that was responsible for the data split. To reduce the variance of 

random data splits, each GNN model was run five times on each dataset, and metrics were 

averaged across the five runs. Subsequently, the GNN models were used to preprocess and 
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analyze each dataset twice: once for “primary brain region” and once for “primary cell type.” 

Details on usage can be seen on GitHub. 

  

https://github.com/theJokerEvoker/neuromorpho_GNN
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Chapter 3 

Results 

 

Table 3.1 summarizes the file counts for the four datasets used, as well as the number of files 

used for the random training-validation-test splits. Table 3.2 summarizes the class counts for the 

primary cell types of the four datasets. For the most part, the primary cell type classes are 

reasonably well-balanced with relatively robust numbers to train on, save for the “long-range 

non-principal GABAergic” and “null” classes, which are by far the minority classes. Given the 

small sizes, it is difficult to draw conclusions about these classes, particularly the “null” class, 

considering this designation is related to a lack of metadata information rather than specific 

attributes. As a note, detailed class counts for the primary brain regions are not provided here, as 

they involve many more classes that differ between datasets. These class counts will be provided 

on GitHub instead. 

 

 Training Validation Test Total 

human 8527 1065 1067 10659 

drosophila 28396 3549 3551 35496 

rat 41928 5241 5242 52411 

mouse 97493 12186 12188 121867 

 

Table 3.1: Dataset file counts, training-validation-test split counts 

 

 

https://github.com/theJokerEvoker/neuromorpho_GNN
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glia interneuron 

long-range non-

principal GABAergic 

null principal 

cell 

sensory 
Total 

human 490 269 0 3 9385 512 10659 

drosophila 160 9005 0 11 21661 4659 35496 

rat 8985 5989 0 142 36869 426 52411 

mouse 53905 10144 11 105 52215 5487 121867 

 

Table 3.2: Primary cell type class counts 

 

3.1 Accuracy and ROC AUC 

Tables 3.3-3.8 summarize the mean accuracies and mean ROC AUC scores for each of the GNN 

model performances on the four datasets when classifying for primary brain region and primary 

cell type. Each table represents mean accuracies and ROC AUC scores for the training, 

validation, or test splits. 

 Accuracy in classification tasks is a simple metric that describes the percentage of correct 

predictions made and is calculated by dividing the number of correct predictions by the total 

number of predictions. On the other hand, ROC AUC, short for area under the curve (AUC) of a 

receiver operating characteristic (ROC) curve, is a measure of how well a model is able to 

distinguish between positive and negative classes. The ROC curve is a plot of true positive rate 

(TPR)—correct positive results among all positive samples—against false positive rate (FPR)—

incorrect positive results among all negative samples—at different classification thresholds. 

Calculating the AUC of this curves yields the ROC AUC, which acts as a summary of the curve. 

An ROC AUC score of 0.5 means the model is no better than random chance guessing and gets 

just as many incorrect as correct positive and negative classifications. 

 ROC AUC only works on binary classification problems, but it can be extended to 

multiclass classification with an approach called “one versus one” (OVO). In OVO, a binary 

classifier is trained for every pair of classes, with one class designated as the positive class and 
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the other as the negative class. An ROC AUC score is calculated for every individual pair of 

classes, and the overall ROC AUC for the multiclass classification is calculated by averaging 

these ROC AUC values [25]. OVO contrasts with the “one versus rest” (OVR) method, which 

instead calculates ROC AUC scores using one class as the positive class and all other classes as 

the negative class, repeating for and averaging over all individual classes. Comparatively, OVO 

is more computationally expensive, but it can be more accurate in cases where there are many 

classes or classes are not balanced in number. Given the number of classes and varying class 

counts in the four datasets used, we calculated the ROC AUC scores using OVO. 
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 human drosophila rat mouse 

GNN 

Model 
Accuracy 

ROC 

AUC 
Accuracy 

ROC 

AUC 
Accuracy 

ROC 

AUC 
Accuracy 

ROC 

AUC 

GCN 0.8590 0.8076 0.4679 0.8239 0.8012 0.7254 0.5174 0.7398 

GIN 0.8898 0.8343 0.5107 0.8562 0.8637 0.7371 0.6078 0.7378 

PointNet 0.9056 0.8181 0.5525 0.8663 0.8429 0.7205 0.5697 0.7476 

SpatialPoint 0.9361 0.8577 0.5731 0.8799 0.9306 0.7647 0.6863 0.6966 

SGCN 0.9461 0.8801 0.5978 0.8692 0.9494 0.7491 0.7182 0.7218 

 

Table 3.3: Mean training accuracies and ROC AUC scores, primary brain region classification 

 

 

 human drosophila rat mouse 

GNN 

Model 
Accuracy 

ROC 

AUC 
Accuracy 

ROC 

AUC 
Accuracy 

ROC 

AUC 
Accuracy 

ROC 

AUC 

GCN 0.8753 0.7762 0.4673 0.7906 0.8078 0.6632 0.5208 0.6607 

GIN 0.8935 0.7843 0.5137 0.8426 0.8653 0.6663 0.6054 0.6343 

PointNet 0.8918 0.8000 0.5445 0.8390 0.8223 0.6470 0.5623 0.6578 

SpatialPoint 0.9102 0.8088 0.5468 0.8432 0.8920 0.6839 0.6603 0.6387 

SGCN 0.9459 0.8295 0.5670 0.8458 0.9368 0.6694 0.7084 0.6155 

 

Table 3.4: Mean validation accuracies and ROC AUC scores, primary brain region classification 

 

 

 human drosophila rat mouse 

GNN 

Model 
Accuracy 

ROC 

AUC 
Accuracy 

ROC 

AUC 
Accuracy 

ROC 

AUC 
Accuracy 

ROC 

AUC 

GCN 0.8337 0.7270 0.4639 0.8132 0.8019 0.6544 0.5112 0.6264 

GIN 0.8905 0.7474 0.5103 0.8406 0.8652 0.6546 0.5932 0.6128 

PointNet 0.8722 0.7646 0.5360 0.8361 0.8207 0.6369 0.5534 0.6219 

SpatialPoint 0.8982 0.7558 0.5456 0.8407 0.8972 0.6879 0.6518 0.6091 

SGCN 0.9275 0.8129 0.5709 0.8466 0.9349 0.6489 0.7071 0.6140 

 

Table 3.5: Mean test accuracies and ROC AUC scores, primary brain region classification 
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 human drosophila rat mouse 

GNN 

Model 
Accuracy 

ROC 

AUC 
Accuracy 

ROC 

AUC 
Accuracy 

ROC 

AUC 
Accuracy 

ROC 

AUC 

GCN 0.9784 0.9120 0.7280 0.8881 0.9257 0.9172 0.9254 0.7801 

GIN 0.9790 0.9006 0.7278 0.8773 0.9327 0.9124 0.9423 0.8114 

PointNet 0.9729 0.8944 0.7901 0.8755 0.9368 0.9417 0.9378 0.8515 

SpatialPoint 0.9750 0.8962 0.8014 0.8719 0.9622 0.9631 0.9378 0.8322 

SGCN 0.9865 0.9651 0.7966 0.9187 0.9781 0.9766 0.9662 0.9034 

 

Table 3.6: Mean training accuracies and ROC AUC scores, primary cell type classification 

 

 

 human drosophila rat mouse 

GNN 

Model 
Accuracy 

ROC 

AUC 
Accuracy 

ROC 

AUC 
Accuracy 

ROC 

AUC 
Accuracy 

ROC 

AUC 

GCN 0.9630 0.9119 0.7200 0.8882 0.9252 0.9095 0.9228 0.7789 

GIN 0.9793 0.9151 0.7205 0.8827 0.9313 0.9028 0.9386 0.7963 

PointNet 0.9822 0.9148 0.7798 0.7935 0.9255 0.9249 0.9329 0.8501 

SpatialPoint 0.9822 0.9224 0.7712 0.8075 0.9506 0.9409 0.9324 0.8211 

SGCN 0.8922 0.8850 0.7647 0.9285 0.9665 0.9608 0.9598 0.8918 

 

Table 3.7: Mean validation accuracies and ROC AUC scores, primary cell type classification 

 

 

 human drosophila rat mouse 

GNN 

Model 
Accuracy 

ROC 

AUC 
Accuracy 

ROC 

AUC 
Accuracy 

ROC 

AUC 
Accuracy 

ROC 

AUC 

GCN 0.9816 0.9146 0.7204 0.8318 0.9254 0.9219 0.9255 0.8494 

GIN 0.9816 0.9066 0.7213 0.8449 0.9320 0.9052 0.9166 0.8388 

PointNet 0.9681 0.8786 0.7752 0.8405 0.9259 0.9332 0.9284 0.8694 

SpatialPoint 0.9699 0.8717 0.7647 0.8738 0.9484 0.9378 0.9280 0.8733 

SGCN 0.9829 0.9438 0.7639 0.9127 0.9651 0.9619 0.9250 0.8337 

 

Table 3.8: Mean test accuracies and ROC AUC scores, primary cell type classification 
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3.2 Confusion Matrices 

Tables 3.9-3.16 provide examples of confusion matrices for runs of the GCN and SGCN 

models—the generally weakest and strongest performing models out of the five, respectively—

on primary cell type classification for the four datasets. A confusion matrix summarizes the 

predicted and actual classes in a tabular format, where each row corresponds to a true class and 

each column corresponds to a predicted class. The diagonal of the matrix represents the number 

of observations that were correctly classified for each class, while the off-diagonal elements 

represent the number of misclassifications. Since a single confusion matrix can only represent 

one run of one model on one dataset, we opted to select several runs to demonstrate the observed 

patterns. Furthermore, in the case of the primary brain region classification task, the high number 

of classes made a confusion matrix impractical to show in text; however, example confusion 

matrices are also available on GitHub. 

 

  

https://github.com/theJokerEvoker/neuromorpho_GNN
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  Predicted class 

total   glia interneuron null principal cell sensory 

True 

class 

glia 56 0 0 1 0 57 

interneuron 0 12 0 14 0 26 

null 0 0 0 0 0 0 

principal cell 0 1 0 929 0 930 

sensory 0 0 0 5 49 54 

 

Table 3.9: Sample confusion matrix, primary cell type (GCN, human, test split) 

 

 

  Predicted class 

total   glia interneuron null principal cell sensory 

True 

class 

glia 57 0 0 0 0 57 

interneuron 0 13 0 12 1 26 

null 0 0 0 0 0 0 

principal cell 0 2 0 927 1 930 

sensory 0 0 0 3 51 54 

 

Table 3.10: Sample confusion matrix, primary cell type (SGCN, human, test split) 

 

 

  Predicted class 

total   glia interneuron null principal cell sensory 

True 

class 

glia 21 0 0 2 0 23 

interneuron 0 39 0 863 22 924 

null 0 0 0 0 0 0 

principal cell 0 18 0 2116 20 2154 

sensory 0 1 0 63 386 450 

 

Table 3.11: Sample confusion matrix, primary cell type (GCN, drosophila, test split) 

 

 

  Predicted class 

total   glia interneuron null principal cell sensory 

True 

class 

glia 21 0 0 2 0 23 

interneuron 0 307 0 615 2 924 

null 0 0 0 0 0 0 

principal cell 0 172 0 1973 9 2154 

sensory 0 1 0 23 426 450 

 

Table 3.12: Sample confusion matrix, primary cell type (SGCN, drosophila, test split) 
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  Predicted class 

total   glia interneuron null principal cell sensory 

True 

class 

glia 905 0 0 9 0 914 

interneuron 0 422 0 162 0 584 

null 0 10 0 11 0 21 

principal cell 34 134 0 3507 2 3676 

sensory 2 0 0 6 38 46 

 

Table 3.13: Sample confusion matrix, primary cell type (GCN, rat, test split) 

 

 

  Predicted class 

total   glia interneuron null principal cell sensory 

True 

class 

glia 911 0 0 3 0 914 

interneuron 0 505 0 79 0 584 

null 0 8 1 12 0 21 

principal cell 35 32 0 3609 1 3676 

sensory 2 1 0 3 40 46 

 

Table 3.14: Sample confusion matrix, primary cell type (SGCN, rat, test split) 
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   Predicted class 

total   glia interneuron GABAergic null principal cell sensory 

True 

class 

glia 5445 2 0 0 14 1 5462 

interneuron 0 744 0 0 259 0 1003 

long-range 

non-principal 

GABAergic 

0 0 0 0 0 0 0 

null 0 8 0 0 4 0 12 

principal cell 12 86 0 0 5603 14 5715 

sensory 2 2 0 0 19 513 536 

 

Table 3.15: Sample confusion matrix, primary cell type (GCN, mouse, test split) 

 

 

   Predicted class 

total   glia interneuron GABAergic null principal cell sensory 

True 

class 

glia 5446 2 0 0 13 1 5462 

interneuron 1 755 0 0 239 8 1003 

long-range 

non-principal 

GABAergic 

0 0 0 0 0 0 0 

null 0 7 0 1 4 0 12 

principal cell 15 130 0 0 5003 25 5715 

sensory 1 9 0 0 27 499 536 

 

Table 3.16: Sample confusion matrix, primary cell type (SGCN, mouse, test split) 
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3.3 Data Analysis 

Broadly speaking, GNN performance on the neuron classification tasks ranged from moderate to 

exceptionally strong. Generally, the GNN models also showed a pattern of performance 

compared against each other: GCN usually had the weakest performance in both accuracy and 

ROC AUC metrics, followed by GIN, PointNet, SpatialPoint, and finally SGCN usually having 

the best performance. This falls in line with the idea that GNN models that utilize both spatial 

and graph information can capture a graph’s representation more accurately than only spatial or 

only graph information could. 

 Regarding the primary brain region classification task, performance across the four 

datasets varied greatly. The human and rat datasets showed strong performance with 83.37% to 

92.75% and 80.19% to 93.49% mean test accuracy respectively, as well as respective mean test 

ROC AUC scores ranging from 0.7270 to 0.8129 and 0.6544 to 0.6879. The drosophila and 

mouse datasets, however, had significantly worse performance, with 46.39% to 57.09% and 

51.12% to 70.71% mean test accuracy respectively, and respective mean test ROC AUC scores 

from 0.8132 to 0.8466 and 0.6128 to 0.6264. 

 Comparatively, the primary cell type classification task showed better performance across 

the board for the four datasets. The human, rat, and mouse datasets all had remarkable mean test 

accuracies in the 90% range: 96.81% to 98.29% for human, 92.54% to 96.51% for rat, and 

91.66% to 92.84% for mouse. This was paired with likewise extremely strong mean test ROC 

AUC scores: 0.8717 to 0.9438 for human, 0.9052 to 0.9619 for rat, and 0.8337 to 0.8733 for 

mouse. Drosophila was the outlier, with lower mean test accuracies ranging from 72.04% to 

77.52% but comparable mean test ROC AUC scores from 0.8318 to 0.9127. 
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 Observing the exemplar confusion matrices for the primary cell type classification task 

shows several of the same patterns seen previously, such as SGCN’s generally better 

performance than GCN. Of note is that among the six classes seen in the primary cell type 

classification task, interneurons seem to result in the largest proportional number of mistakes. On 

the human, drosophila, rat, and mouse datasets, respectively, SGCN incorrectly identified 

interneurons 13 times out of 26, 617 out of 924, 79 out of 584, and 239 out of 1003, while GCN 

incorrectly identified interneurons 14 out of 26, a whopping 885 out of 924, 162 out of 584, and 

259 out of 1003. 
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Chapter 4 

Discussion 

 

The field of neuroscience has long been interested in understanding the complex interactions 

between the brain’s cells and networks and how they give rise to cognitive functions and 

behavior. Classification of neurons is one of the fundamental steps in progressing towards this 

goal, and with the increasing availability of high-throughput data acquisition techniques, the 

amount of data and information that is being created to further our understanding is always 

increasing. To extract meaningful insights from this growing amount of data, however, there is 

also a greater need for advanced computational techniques such as machine learning to aid and 

handle analysis where manual efforts would be far too time-consuming and labor-intensive. 

Indeed, machine learning has shown immense potential in neuroscience for the classification of 

neurons based on their morphology or electrophysiology, such as the supervised and 

unsupervised classification of neurons from morphological features in Bijari et al. [26] and the 

classification of mouse visual cortex neurons based on electrophysiological and morphological 

properties in Gouwens et al. [4]. 

A relatively underexplored avenue of machine learning in neuron classification, however, 

lies in graph neural networks, which offer powerful potential for analyzing irregular and complex 

data structures. The branching nature of neurons naturally lends itself to a graph representation, 

which can be effectively analyzed using GNNs. The present study aimed to explore the efficacy 
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of GNNs in the context of neuron classification, utilizing the publicly available database at 

NeuroMorpho.org to construct datasets comprising over 220,000 neurons. The results 

demonstrate that supervised classification with GNNs hold considerable potential for 

identification of neurons, with generally high classification accuracies and ROC AUC scores 

using OVO across the four datasets used. On the high end, the models were able to achieve 

91.66% to 98.29% mean test accuracies and 0.8337 to 0.9619 mean test ROC AUC scores on the 

human, rat, and mouse datasets for the primary cell type classification task. On the lower end, 

however, the models were able to garner 46.39% to 70.71% mean test accuracies and 0.6091 to 

0.8466 mean test ROC AUC scores on the drosophila and mouse datasets for the primary brain 

region classification task. 

From the results, it seems apparent that primary brain region classification seems to be a 

harder task than primary cell type classification, at least through the analysis of spatial and graph 

information through GNNs. For each of the four datasets, performance on both accuracy and 

ROC AUC metrics was worse for the primary brain region classification task than the primary 

cell type classification task. This could possibly be explained by the increased number of classes 

in each dataset for primary brain region classification, which ranged from 25 to 45 classes, 

compared to the 5 or 6 classes for primary cell type classification. A sizable portion of these 

primary brain region classes do not have many samples and are thus difficult to classify from the 

start, yet deciding whether to prune or otherwise modify these classifications poses operational 

complexities. 

That being said, the performance of the GNNs on the human and rat datasets for the 

primary brain region classification task is still worth noting. Despite potential unknown 

difficulties with the primary brain region classification task, the GNN models on average were 
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still able to consistently achieve mean test accuracies above 85% and ROC AUC scores from 

0.63 in the worst case to 0.81 in the best. This provides evidence that GNNs are capable of 

classifying primary brain region of origin for neural cells, though more targeted investigation of 

any patterns in the classification by the GNN models is needed to elucidate findings. 

While the performance of GNNs on primary brain region classification ranged merely 

from moderate to strong, performance on primary cell type classification was exceptional. As 

highlighted, the GNN models were consistently able to achieve greater than 90% mean test 

accuracies and greater than 0.85 mean test ROC AUC scores on the human, rat, and mouse 

datasets for primary cell type classification. Even on the drosophila dataset, which saw 

comparatively lower mean test accuracies from 72% to 77%, ROC AUC scores were still high, 

from 0.83 to 0.91, indicating the lower accuracies may be due to some specific problem classes, 

such as the interneuron class, as evidenced in the sample confusion matrices. 

This performance pairs well with the results in Akram et al. [3], which used a novel 

morphometric parameter to distinguish neurons from glia with an overall high accuracy of 

around 97%, depending on certain parameters. If we isolate the classification results seen from 

the GNN models in the primary cell type classification task to just glia, the performance is on 

par, if not slightly better: as seen in the confusion matrices in Tables 3.9, 3.11, 3.13, and 3.15, 

even GCN, the consistently weakest model among the five used, was still able to correctly 

identify glia in the testing samples with 98.25% (56 out of 57), 91.30% (21 out of 23), 99.01% 

(905 out of 914), and 99.69% (5445 out of 5462) accuracy for the human, drosophila, rat, and 

mouse datasets respectively. Other classes, such as principal cells, which form the majority of the 

four datasets, likewise show remarkable performance, with interneurons generally posing the 

largest issue, as mentioned previously. Considering these metrics are from 10% testing samples, 
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it stands to reason that these impressive metrics would extend on average to the full datasets, 

which also collectively make up a much larger pool of data than, to our knowledge, has ever 

been seen before. The performance of the GNNs on primary cell type classification provide 

compelling evidence that GNNs are a robust way to automatically categorize cell types based on 

structure and spatial information and are worth using to further explore the distinctions between 

different neural cell types. 

With regards to the lower performance observed on both classification tasks for the 

drosophila dataset, the reason for the discrepancy compared to the other datasets remains unclear. 

Judging from the confusion matrix in Table 11, drosophila interneurons may pose a particular 

issue for classification, but this does not necessarily explain why performance is significantly 

worse on primary brain region classification as well. It is possible that the rapid development of 

drosophila brains after hatching results in substantially different neural cell structures [27], which 

might render classification efforts without more specific curation difficult. However, more 

investigation is needed to substantiate this conjecture. 

The findings of this study contribute to the existing literature on neuronal classification 

techniques, which have thus far primarily relied on explicit morphological or 

electrophysiological attributes. For example, Guerra et al. [28] distinguished between 128 

pyramidal cells and 199 interneurons using 65 measured morphological features and multiple 

traditional machine learning models, such as hierarchical clustering, Naïve Bayes, and multilayer 

perceptrons; the best model was able to obtain mean accuracies up to about 91% in the best case. 

The aforementioned work Akram et al. [3] achieved exceptionally high accuracy in 

distinguishing neurons from glia using a novel morphometric parameter across around 23,000 

neural cells. Li et al. [5] employed persistence diagram summaries, which, like GNNs, use graph 



25 
 

and spatial information of neurons, but are generated with descriptor functions that are still based 

on morphological or electrophysiological properties. These persistence diagram summaries 

attained strong classification accuracy across three datasets of 379, 114, and 1268 neuron cells, 

ranging from 67 to 98% accuracy in the best cases. 

Compared to many of these existing studies, the results of the current study with GNNs 

demonstrate comparable, if not better, performance on a significantly larger pool of data, though 

more so with certain datasets and tasks than others, as exemplified in the wide range of mean test 

accuracies from 46% with the worst case worst model to 98% with the best case best model. That 

being said, drawing direct numbers comparisons between the results of these past studies and 

those of the current study is not entirely informative, as much of the existing work tends to be 

more narrow in scope with both tasks and datasets than the current study, which aims to serve as 

an exploratory investigation into the application of an underutilized tool in neuron classification. 

Perhaps more importantly, on a more fundamental level, the GNN methodology is 

distinct in that it does not heavily rely on user-selected features, but instead utilizes almost 

exclusively spatial and graph information with limited node features—neuronal compartment 

type and radius—that are present in standardized morphology files. Not only does this make the 

GNN methodology remarkably accessible in terms of ease of understanding and use, but this 

agnostic approach may also reduce the potential for selection bias or other model selection issues 

while also achieving solid performance that can match known methods on certain tasks like cell 

type classification. 

Finally, a noteworthy aspect to consider is the inherent variability present in the large 

dataset utilized, such as differences in anatomical details and developmental stages among 

species, which is a trait that is inevitable in a database as large as NeuroMorpho.org with 
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contributions from hundreds of labs with differing research interests. The utilization of, to the 

best of our knowledge, one of the largest datasets in neuron classification research thus far 

renders careful manual adjustment and cleaning extremely difficult without extensive expertise 

and time. Despite these challenges, the robust results obtained from the GNN models in this 

current study are highly compelling, suggesting that performance on a more tailored dataset, 

such as those selected in other studies for specific purposes, could be even more impressive. 

Akram et al. [3] notes that a “breadth-than-depth” approach to neuron classification, by 

exploring large datasets first then examining potentially useful observed patterns or phenomena 

after, may be a particularly powerful framework for finding new areas of interest in the hunt to 

connect structure with function. In this work, GNNs have shown significant promise in 

successfully classifying neurons, and the future directions for research using GNNs in this 

domain are manifold, ranging from further classification of secondary and tertiary brain regions 

and cell types to a closer examination of the results of classification for fundamental structural 

differences among neuron types. Moreover, the field of GNNs itself is continuously evolving as 

well with new techniques and architectures that may offer even more powerful and efficient 

methods. The future for neuroscience is bright, with new avenues ever advancing our 

understanding of the complex structure-function relationships of the brain. 
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