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Abstract 

 

Investigation of predictability of photo images from different anatomic regions for 

detecting anemia among preterm infants 

By Chenxi Du 

Background: Anemia is a global health issue affecting people of all ages, with the highest 

prevalence among preschool-age children. Traditional diagnosis methods for neonatal anemia 

involve frequent blood sampling, which can lead to blood loss-induced anemia and the 

development of complications. Therefore, a non-invasive method for diagnosing anemia for 

preterm infants is needed. One potential solution is developing a smartphone application that 

captures videos and images through the camera and predicts Hgb levels based on RGB values. 

Several smartphone applications have been developed for monitoring hemoglobin levels in 

adults, but there is no evidence regarding their efficacy in infants.  

Objective: The purpose of this study is to develop a method for predicting neonatal anemia 

among preterm infants using RGB values and metadata extracted from smartphone images of 

various body regions, including the fingernail, toenail, and palm. Furthermore, we aim to 

determine which body region that can predict anemia with better degree of accuracy. 

Method: PCA was conducted on RGB data extracted from body region images for dimension 

reduction. Four logistic regression models were built to examine for the best region for 

predicting anemia. Stepwise model selection was employed to select the proper predictors among 

image metadata (PCs of RGB value, brightness value, exposure time) and infants’ demographic 

data (age, gender, race, ethnicity, birth weight, and gestational age). Cross-validation was used to 

test accuracy and AUC is the main criterion.  

Result: 65 infants and 1000 images from 6 body regions were included in the analysis. Principal 

component analysis was used to include image data in the models, and four principal 

components were selected. Logistic regressions were fitted separately for the whole dataset and 

regional datasets. The Palm model reported the highest AUC comparing with all other models 

with cross validation AUC as 0.726, while the Fingernail Model has the lowest AUC (0.663).  

Conclusion: The palm region images gave a slightly better result comparing with other anatomic 

regions. However, in practice, there are difficulties for nurses taking pictures in this vulnerable 

population. Given that there is no large difference in the AUC, in practice, any region can be 

chosen. 
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1. Introduction  

Anemia is a significant global health issue that affects individuals across various regions, age 

groups, and genders. According to the World Health Organization (WHO), approximately 1.62 

billion people worldwide (24.8% of the global population) are affected by anemia [1]. The 

prevalence of anemia is highest among preschool-age children, with 47.4% affected [1]. Anemia 

can have a severe impact on neonates if left untreated [2]. Neonatal anemia can result in reduced 

oxygen-carrying capacity of the blood, leading to hypoxia, tissue damage and complications such 

as respiratory distress, developmental delays, impaired cognitive function, and even death in 

severe cases [3]. Traditional diagnosis methods for neonatal anemia include blood tests such as 

hemoglobin (Hgb) and hematocrit, complete blood count (CBC), peripheral smear, and iron 

studies. However, frequent blood sampling for diagnosis can lead to blood loss-induced anemia 

and the development of both Necrotizing Enterocolitis (NEC) and Bronchopulmonary dysplasia 

(BPD) [4]. Besides, preterm infants’ hematopoietic system is underdeveloped [11], thus frequent 

blood draw can cause much severe consequences comparing with infants with normal gestational 

age. Therefore, there is a need for a non-invasive method for diagnosing anemia for preterm 

infants. Such a method would be a valuable addition to clinical diagnosis, as it would reduce the 

risks associated with frequent blood sampling, while providing accurate and reliable results for 

neonatal anemia diagnosis. 

Traditional physical diagnosis considers pallor of the conjunctivae, nail beds, face, palms as 

signs for anemia [10]. Pallor can be easily identified with color intensity drawn from image of 

these anatomic regions. RGB value, which indicates red, green, and blue intensity, is one of the 

widely indices to quantify color intensity and could thus be adopted as an index to evaluate 

hemoglobin level accordingly. Therefore, developing a smartphone application that captures 
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videos and images of relevant anatomic regions through the camera, extract their RGB values, 

and predicts Hgb levels based on these values could be a non-invasive method for anemia 

diagnosis. 

Smartphone has been proved to be an efficient device for heart rate monitoring [5], 

ophthalmopathy diagnosis [6], skin diagnosis [6], and telemedicine. In addition, several 

smartphone applications have been developed for monitoring hemoglobin levels.  

One such application is HemaApp (Wang et al, 2016), which utilizes the smartphone's 

camera to monitor blood hemoglobin concentration in patients ranging from 6 to 77 years of age 

[7]. The application records a 15-second RGB video, which is then analyzed using both SVM 

regression and linear regression models to calculate the hemoglobin level and detect anemia. The 

hemoglobin concentration estimated by HemaApp yields a 0.82 Spearman correlation with CBC 

Hgb level (gold standard), with a sensitivity and precision of 0.857 and 0.765 of predicting 

anemia, respectively. Mannino et al (2018) developed another application for predicting Hgb 

level and detecting anemia among adult patients based on their fingernail images[8]. The 

algorithm of this application uses a robust multi-linear regression model with bisquare 

weighting, which includes average RGB value and image metadata as predictor variables. The 

study reported MAE (mean absolute error) of 0.82between its predictions and the CBC Hgb 

levels , suggesting that the application may provide promising result for monitoring hemoglobin 

concentration on adults.  

It is worth noting that previous studies have primarily focused on adult populations, and there 

is no known study on the efficacy of current smartphone applications for monitoring hemoglobin 

levels in infants. Besides, preterm infants are more likely to be anemic compared to healthy 

infants, and frequent blood draw can cause more severe consequences [12]. Additionally, due to 
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their smaller fingernail size, it may be more challenging to extract accurate image data from the 

fingernail region in infants. Therefore, the development of an algorithm specifically designed for 

preterm infants is necessary, and alternative photograph body regions other than the fingernail 

should be considered to improve accuracy and reliability. 

The purpose of this study is to develop a method for predicting neonatal anemia among 

preterm infants using RGB values and metadata extracted from smartphone images of various 

anatomic regions, including the fingernail, toenail, and palm. Furthermore, we aim to determine 

which body region predicts anemia with better degree of accuracy.  
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2. Method 

2.1   Data Source 

2.1.1 Cohort Selection 

The infant cohort was recruited by Dr. Cassandra Josephson at Emory University for a 

prospective, multicenter, observational birth-cohort study focusing on the effects of red blood 

cell transfusion on digestive tract oxygenation in preterm infants. Preterm infants (gestational 

week < 37 weeks) at 3 level III neonatal intensive care units (NICUs) in Atlanta are eligible to 

participate in the study. The hospitals with NICUs in Atlanta are Grady Memorial Hospital, 

Emory University Hospital Midtown, and Northside Hospital, in which the first two are 

academically affiliated.  

The study obtained written consent from the parents or legal guardians of the infants before 

they could participate in the research. Infants with birthweight greater than 1250 grams and 

postnatal age greater than 7 days were excluded. Infants were also excluded if they were unlikely 

to survive past 7 days, had severe congenital abnormality, had received transfusion before 

enrollment, or if their mothers decided not to participate.  

Until March 15, 2023, 66 eligible infants were enrolled in the study. All enrolled infants were 

followed for 90 days or until they were discharged from hospital, transfer to another hospital, or 

death. Their demographic data (including age, gender, race, ethnicity, gestational age, and so on) 

were collected upon enrollment. Their hemoglobin levels were monitored and recorded through a 

weekly blood test, along with the test date. 

2.1.2 Image Data Collection 

A Samsung S21 model was used to collect photos from different anatomic regions (left 

fingernail, right fingernail, left toenail, right toenail, left palm, right palm) of each enrolled 
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infant, with default camera settings, auto-focus and adjust brightness by tapping on the focus 

region chose by nurses. The photos were taken at a shooting distance of 0.5 meters from the 

target region, adjusted by nurses. The pictures were captured in consistent lighting conditions 

and stable illumination. The picture time was within 24 hours of the Hgb blood test date, so 

theoretically, each picture is attached with a corresponding CBC Hgb level. It is worth noticing 

that, not all body regions were pictured, limited regions were selected based on nurses’ 

convenience.  

After all the pictures were collected, each image was manually processed using the 

MATLAB code, which is the same code as that used in AnemoCheck Mobile App developed by 

Dr. Robert Mannio. Then, on a rectangle region was selected for each image, three 5151 pixel 

matrices that contain RGB (red, green, blue) color intensity values were generated, along with 

the imagemeta variables including brightness value and exposure time (Figure 1). Each of the 

5151 pixel matrices of RGB values was converted to a 2601-dimensional vector. To achieve 

consistency and retain interpretability of the converted RGB vectors across different subjects, 

their elements were rearranged in a descending order based on the red color intensity.  

Figure 1. Sample image for demonstrate the process of extracting RGB value and image meta data. 
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To examine the data reproducibility, two other image data processers are included to process 

a same subset of images (N=71). Concordance Correlation Coefficient (CCC) and Intraclass 

Correlation Coefficient (ICC) was calculated pairwise between three processors on RGB (red, 

green, blue) vectors separately to evaluate reproducibility of pixel specified intensity. Estimated 

CCC and ICC were all relatively high, indicating high agreement across processors (Table A.1 in 

Appendix).  

2.2   Statistical Analysis 

2.2.1 Principal Component Analysis 

Principal component analysis was applied to RGB vectors after combining all the RGB 

values.  

Consider a dataset with n observations and p numerical variables, which can define a np 

data matrix . We want to find a set of linear combination of the columns of matrix X that can 

account for most of the variance in X. The linear combination can be written as Xa, while weight 

matrix a has a dimension of pp, or define as a p-dimensional vectors a1, …, ap. Xaj is considered 

as jth principal component (PC).  

To find the weight matrix a, the variance-covariance matrix of across p numerical variables 

is needed, as follows:   

[

𝑉𝑎𝑟(𝑋1) ⋯ 𝐶𝑜𝑣(𝑋1, 𝑋𝑝)

⋮ ⋱ ⋮
𝐶𝑜𝑣(𝑋𝑝, 𝑋1) ⋯ 𝑉𝑎𝑟(𝑋𝑝)

] 

The corresponding eigenvectors of the variance-covariance matrix is the weight matrix a. 

The eigenvector with the highest eigenvalue is the principal component that captures the most 

significant amount of variance in X. By sorting the eigenvalues in descending order, we can 

determine the percentage of variance explained by each principal component, which is calculated 
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as the ratio of the eigenvalue to the sum of all eigenvalues. We can select the first few 

eigenvectors with the largest eigenvalues and use them to calculate the principal components. 

These components can account for most of the data variation while having a lower dimension 

than the original dataset. 

2.2.2 Logistic Regression Model 

After selecting the proper numbers of PCs for the RGB variables, multiple logistic regression 

models were built using the derived PC scores to predict the binary anemia outcome (1 = anemia; 

0 = no anemia).   

In the study, infants with CBC Hgb levels lower than 10 g/dL were classified as anemic [9]. 

In addition to the PC scores that represent the RGB values, other potential covariates were also 

considered for inclusion in the logistic regression models, including image metadata (brightness 

value and exposure time) and demographic data (age, gender, race, ethnicity, birth weight, and 

gestational age). Gender, race, and ethnicity were treated as categorical variables, while the other 

demographic variables (age, birth weight and gestational age) were included as continuous 

variables. To maintain consistency in scale with the other continuous variables, exposure time 

was rescaled by a factor of 10,000. Stepwise variable selection was used to choose the best 

prediction model based on AIC as the selection criterion. 

To evaluate images from which body region can better represent infants’ anemia condition, 

logistic regression models for different body regions were built. The regression models were 

built based on different dataset: whole dataset, fingernail photos only, toenail photos only, and 

palm photos only. The four logistic regression models can be referred as Whole Model, 

Fingernail Model, Toenail Model, and Palm Model respectively. Aside from all the potential 

covariates mentioned previously, the Whole Model also include body regions as one of the 
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potential predictors. Stepwise model selection process for each model was conduct separately 

using the dataset. K-fold cross-validation was employed to evaluate the accuracy of the models 

with AUC (Area Under the ROC curve) as evaluation criterion. Due to limited sample size, 

splitting data method was not employed to build and evaluate the model.  
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3. Result 

3.1   Preliminary Analysis 

By March 15, 2023, 66 infants were enrolled in the study with corresponding 1065 

photos collected. Given the problem that several image data are missing when CBC Hgb levels 

were measured, and the CBC Hgb values are missing for some photos, only 65 infants and 1000 

images across 6 body regions (left fingernail, right fingernail, left toenail, right toenail, left palm, 

right palm) were included in the analysis. On average, each infant had 15.4 pictures taken (with a 

standard deviation of 8.5) (Table 2). Fingernail is the body region that got the most photos taken 

with 415 pictures for 65 infants across time (41.5%), followed by palm with 395 pictures for 64 

infants (39.5%) and toenail with 190 images for 59 infants (19.0%) (Table 2). 

 Regarding the demographic information, gender, ethnicity, race, age (week), birth weight 

(g), and gestational age (week) were summarized and considered to be included in the models. 

On the individual level, the majority of infants are female (63.1%), and Hispanic participants are 

scarce with only 6 infants included (9.2%). All the infants had low birth weight (maximum 1240 

grams) and were premature (maximum gestational age 31 weeks) (Table 1). 268 times CBC Hgb 

measurements from 33 infants were tested as anemia. The average proportion of getting test as 

anemia across time for each infants was 24.3% with standard deviance as 30.5% (Table 2).  

Univariate analysis was performed to preliminarily examine the association between 

demographic covariates and anemia without adjustment of any other variables. For the dataset 

that includes all images, age (p-value<0.001), gender (p-value<0.001), race (p-value<0.001), 

birth weight (p-value<0.001) and gestational age (week) (p-value<0.001) all showed a significant 

relationship with anemia (Table 3). For the dataset that only includes pictures taken from 

fingernails, gender, race, age and gestational age (week) showed significance (Table 4.1). For the 
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dataset only includes pictures taken from toenails, only age and birth weight showed a significant 

association with anemia (Table 4.2). For the dataset that only includes palm region pictures, race, 

gender, age and gestational age (week) showed an association with anemia outcome (Table 4.3). 

To include image data in the models, was performed on RGB vector data. The first four 

PCs explained 98.24% of the variance of the original RGB dataset, with PC1 explaining 80.53% 

of the variance, PC2 explaining 13.18%, PC3 explaining 2.53%, and PC4 explaining 2.00% 

(Figure A.1 in Appendix). The variance explained by the first four PCs are reasonably large 

(98.24%). Thus, the PCs can be good representative for RGB values, and the corresponding PC 

scores were included in the models as predictors along with brightness value and exposure time.  

RGB PC scores showed significant association with anemia in whole dataset, fingernail 

dataset and palm dataset, while in toenail dataset, RGB PC scores were marginally significant 

association with outcome (Table 3, Table 4.1-4.3). Besides, brightness value and exposure time 

were also significantly associated with anemia in all datasets (Table 3, Table 4.1-4.3). 

3.2   Prediction results 

After eliminating missing values, four logistic regressions were fitted separately using whole 

dataset and regional datasets (fingernail dataset, toenail dataset and palm dataset), with outcome 

as anemia (CBC Hgb < 10 g/dL), and covariates were selected using stepwise model selection 

method.  

The Whole Model built on full dataset (N=874) included PC scores of RGB value, gender, 

race, age, gestational age, brightness value, exposure time, and body region as covariates (Table 

5.1). AUC for the Whole Model was 0.721. The Fingernail Model built on fingernail photos only 

(N=357) included PCs of RGB value, gender, race, age, gestational age, brightness value, and 

exposure time as covariates (Table 5.2). The corresponding AUC for Fingernail Model was 
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0.717. While the PC scores for RGB showed a significant association with outcome in Fingernail 

data when evaluated independently, the PCs turned to have marginal significant association with 

anemia (p-value=0.057) after adjusted for other covariates. The Toenail Model built based on 

toenail images only (N=175) included PC scores of RGB values, race, birth weight and 

brightness value only (Table 5.3), while the AUC for Toenail Model was 0.784. In contrast to 

Fingernail Model, after adjusting for covariates, the association between PC scores of RGB value 

became significant in Toenail Model (p-value<0.001). The Palm Model built based on palm 

images only (N=342) included PCs of RGB values, gender, race, gestational age, and exposure 

time (Table 5.4). The AUC for Palm Model was 0.760. The association between anemia and 

RGB PC scores kept consistent for univariate analysis and multivariate analysis (both p-

value<0.001). The predicted probabilities of having anemia calculated with above four models 

showed some but not perfect separation between anemia group and healthy group (Figure A.2 in 

Appendix).  

After selected out the proper covariates for the four logistic regression models (Whole 

Model, Fingernail Model, Toenail Model, Palm Model), 5-fold cross-validation was conducted 

on all the models to evaluate the prediction accuracy on anemia. The results were summarized in 

Table 6. Overall, the four models all show reasonably high prediction accuracy. The Palm model 

reported the highest AUC comparing with all other models with cross validation AUC as 0.726, 

while the Fingernail Model has the lowest AUC (0.663).  

To evaluate the capability of image data, models without image variables were fit.  

Comparing with the models without image variables (brightness value, exposure time, and PC 

scores of RGB values) included, all four model with image variable included show improvement 

in AUC, which suggests that the image data helps to improve the prediction models. The Palm 
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Model also has the highest improvement on AUC (from 0.603 to 0.726) comparing with the 

model without image data. Thus, palm images can give a relatively better prediction on anemia 

among preterm infants comparing with other body regions (fingernail or toenail) in this study.   
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4. Discussion 

In this study, several logistic regression models were fit to predict anemia based on images 

taken from preterm infants’ anatomic regions. The primary predictor of interest is the RGB 

values extracted from photos. principal component analysis was conducted on RGB values to 

reduce dimension and four PCs were selected to account for 98.24% of the data variation. Four 

logistic regression models building on fingernail images, toenail images, and palm images were 

fit. AUC (Area Under the ROC curve) was calculated after cross validation to evaluate the 

prediction performance.  

Overall, all the models had relatively good prediction on anemia. All four models produced 

high AUC value under 5-fold cross validation, with Palm Model had the highest AUC (0.726) 

and Fingernail Model had the lowest AUC (0.663). The palm region images gave a slightly 

better result comparing with other anatomic regions. Thus, the palm may be the best region to 

take photos for prediction anemia among preterm infants according to the result. But this 

accuracy difference may be minimal. In practice, there are difficulties for nurses taking pictures 

in this vulnerable population, including hard to focus, hard to select the color region. Given that 

there is no large difference in the AUC, in practice, any region can be chosen.  

Although the study results look promising, there are several limitations that need further 

examine. First of all, since the dataset is inherently longitudinal, the current logistic regressions 

analysis does not account for the potential correlation due to the repeated measurements of the 

same infants. Fail to count for correlation can lead to variation increase in prediction outcome. 

Thus, in the future study, mixed-effect models can be considered to adjust for the correlation. 

Besides, as the dataset is relatively small, current study did not have test samples to examine for 

evaluating the prediction models. Even though cross-validation was conducted for evaluation, 
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the applicability of employing current model on new data is still unknown. And also the images 

from different anatomic regions are unbalanced, the model built on smaller dataset could be less 

trained. Recruiting more eligible participants and balancing the images distribution by taking 

photo on every anatomic regions for each infants can greatly help to improve prediction results. 

Furthermore, currently principal component analysis method does not take the spatial association 

among RGB values into account. A high dimensional principal component analysis method 

would be desired for RGB value dimension reduction.  
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5. Tables: 

Table 1. Descriptive statistics of demographic information for enrolled infants (n=65). 

 

 

Overall 

(n=65) 

Gender  

Male 24 (36.9%) 

Female 41 (63.1%) 

Ethnicity  

Yes 6 (9.23%) 

No 59 (90.8%) 

Race  

White 26 (49.1%) 

Black 20 (37.7%) 

Other 7 (13.2%) 

Missing 12 

Age (week)  

Mean (SD) 2.31 (1.79) 

Median [Min, Max] 2.00 [0, 8.00] 

Birth Weight  

Mean (SD) 905 (212) 

Median [Min, Max] 890 [406, 1240] 

Gestational Age (week)  

Mean (SD) 27.4 (2.09) 

Median [Min, Max] 27.0 [22.0, 31.0] 

* n indicates number of infants.  
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Table 2. Descriptive statistics of number of pictures taken for each infants (n=65).  

 
 All pictures Fingernail pictures Palm pictures Toenail pictures 

Number of infants with 

certain regional pictures 
(n=65) (n=65) (n=64) (n=59) 

Number of pictures     

Mean (SD) 15.4 (8.54) 6.38 (3.53) 6.17 (3.43) 3.22 (1.96) 

Median [Min, Max] 15.0 [1.00, 32.0] 6.00 [1.00, 15.0] 
6.00 [1.00, 

13.0] 
3.00 [1.00, 8.00] 

Probability of developing 

anemia (%) 
    

Mean (SD) 24.3 (30.5) - - - 

Median [Min, Max] 9.38 [0, 100] - - - 

* n indicates number of infants. 
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Table 3. Descriptive statistics of demographic information and image data for overall pictures 

(N=1000). 

 

 

Overall Anemia No Anemia 
P-value 

(N=1000) (N=268) (N=732) 

Demographic Variables    

Gender    < 0.001 

Male 379 (37.9%) 75 (28.0%) 304 (41.5%)  

Female 621 (62.1%) 193 (72.0%) 428 (58.5%)  

Ethnicity    0.699 

Yes 113 (11.3%) 32 (11.9%) 81 (11.1%)  

No 887 (88.7%) 236 (88.1%) 651 (88.9%)  

Race    < 0.001 

White 476 (54.5%) 97 (41.8%) 379 (59.0%)  

Black 299 (34.2%) 105 (45.3%) 194 (30.2%)  

Other 99 (11.3%) 30 (12.9%) 69 (10.7%)  

Missing 126 36 90  

Age (week)    < 0.001 

Median [Q1, Q3] 5.00 [2.00, 8.00] 6.00 [4.00, 8.25] 4.00 [2.00, 8.00]  

Birth Weight (g)    < 0.001 

Median [Q1, Q3] 860 [694, 1080] 815 [694, 1070] 890 [739, 1080]  

Gestational Age (week)   < 0.001 

Median [Q1, Q3] 27.0 [26.0, 28.0] 26.0 [25.0, 28.0] 27.0 [26.0, 28.0]  

Image Meta Data     

Brightness Value    < 0.001 

Median [Q1, Q3] 7.57 [6.71, 8.21] 7.83 [7.12, 8.36] 7.47 [6.59, 8.11]  

Exposure Time (10-4 s)   < 0.001 

Median [Q1, Q3] 8.45 [5.42, 15.4] 7.05 [4.88, 11.5] 9.14 [5.81, 16.7]  

RGB Principal Component    < 0.001 

PC1 0.591 [-53.1, 54.6] -10.9 [-54.2, 40.6] 7.64 [-51.2, 59.8]  

PC2 -3.24 [-21.8, 15.6] -6.93 [-26.7, 11.8] -1.81 [-19.6, 15.9]  

PC3 3.55 [-5.85, 9.64] 4.43 [-3.20, 10.6] 2.67 [-7.02, 9.21]  

PC4 0.444 [-7.20, 8.17] -1.98 [-8.35, 3.81] 1.42 [-6.98, 9.55]  

* N indicates number of observations. 

* P-values were calculated using Chi-square test for categorical variables; Wilcoxon rank sum test for continuous 

variables. 

* P-value for PCs was calculated using likelihood ratio test 
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Table 4.1. Descriptive statistics of demographic information and image data for fingernail 

pictures only (N=415). 

 

 Fingernail Photos N=415 

 

Anemia No Anemia 
P-value 

(N=44) (N=371) 

Demographic Variables   

Gender   0.016 

Male 31 (27.0%) 119 (39.7%)  

Female 84 (73.0%) 181 (60.3%)  

Ethnicity   0.774 

Yes 13 (11.3%) 31 (10.3%)  

No 102 (88.7%) 269 (89.7%)  

Race   0.012 

White 40 (41.7%) 153 (58.6%)  

Black 45 (46.9%) 81 (31.0%)  

Other 11 (11.5%) 27 (10.3%)  

Missing 19 39  

Age (week)   < 0.001 

Median [Q1, Q3] 6.00 [4.00, 8.00] 4.00 [2.00, 8.00]  

Birth Weight (g)   0.080 

Median [Q1, Q3] 815 [694, 1070] 879 [699, 1080]  

Gestational Age (week)  < 0.001 

Median [Q1, Q3] 26.0 [25.0, 28.0] 27.0 [26.0, 28.0]  

Image Meta Data    

Brightness Value   0.002 

Median [Q1, Q3] 7.80 [6.85, 8.42] 7.34 [6.55, 8.03]  

Exposure Time (10-4 s)   0.002 

Median [Q1, Q3] 7.18 [4.66, 13.9] 9.92 [6.15, 17.2]  

RGB Principal Component   < 0.001 

PC1 -19.5 [-70.2, 28.5] -19.8 [-69.8, 38.6]  

PC2 -18.5 [-31.5, 3.56] -9.90 [-26.6, 5.92]  

PC3 0.598 [-7.73, 7.70] -1.85 [-13.9, 6.91]  

PC4 -3.17 [-11.3, 3.58] -0.208 [-8.93, 7.83]  

* N indicates number of observations. 

* P-values were calculated using Chi-square test for categorical variables; Wilcoxon rank sum test for continuous 

variables.  

* P-value for PCs was calculated using likelihood ratio test 
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Table 4.2. Descriptive statistics of demographic information and image data for toenail pictures 

only (N=190). 

 

 Toenail Photos N=190 

 

Anemia No Anemia 
P-value 

(N=46) (N=144) 

Demographic Variables   

Gender   0.069 

Male 15 (32.6%) 69 (47.9%)  

Female 31 (67.4%) 75 (52.1%)  

Ethnicity   0.768 

Yes 5 (10.9%) 18 (12.5%)  

No 41 (89.1%) 126 (87.5%)  

Race   0.079 

White 17 (39.5%) 78 (59.1%)  

Black 18 (41.9%) 39 (29.5%)  

Other 8 (18.6%) 15 (11.4%)  

Missing 3 12  

Age (week)   0.006 

Median [Q1, Q3] 6.00 [4.00, 8.00] 4.00 [2.00, 8.00]  

Birth Weight (g)  0.005 

Median [Q1, Q3] 739 [693, 977] 954 [790, 1080]  

Gestational Age (week)  0.092 

Median [Q1, Q3] 26.5 [25.0, 28.0] 27.0 [26.0, 28.0]  

Image Meta Data   

Brightness Value  0.021 

Median [Q1, Q3] 8.05 [7.60, 8.38] 7.68 [6.96, 8.41]  

Exposure Time (10-4 s)  0.021 

Median [Q1, Q3] 6.07 [4.83, 8.29] 7.81 [4.69, 12.8]  

RGB Principal Component  0.089 

PC1 -12.9 [-54.9, 40.2] -0.629 [-66.5, 57.7]  

PC2 -23.5 [-38.5, 6.64] -8.66 [-24.8, 14.0]  

PC3 3.81 [-5.15, 9.71] 0.280 [-6.21, 6.79]  

PC4 -2.80 [-9.38, 3.46] 0.342 [-8.28, 7.74]  

* N indicates number of observations. 

* P-values were calculated using Chi-square test for categorical variables; Wilcoxon rank sum test for continuous 

variables. 

* P-value for PCs was calculated using likelihood ratio test 
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Table 4.3. Descriptive statistics of demographic information and image data for palm pictures 

only (N=395). 

 

 Palm Photos N=395 

 

Anemia No Anemia 
P-value 

(N=107) (N=288) 

Demographic Variables   

Gender   0.016 

Male 29 (27.1%) 116 (40.3%)  

Female 78 (72.9%) 172 (59.7%)  

Ethnicity   0.587 

Yes 14 (13.1%) 32 (11.1%)  

No 93 (86.9%) 256 (88.9%)  

Race   0.017 

White 40 (43.0%) 148 (59.4%)  

Black 42 (45.2%) 74 (29.7%)  

Other 11 (11.8%) 27 (10.8%)  

Missing 14 39  

Age (week)   < 0.001 

Median [Q1, Q3] 7.00 [4.00, 9.00] 4.00 [2.00, 8.00]  

Birth Weight (g)  0.166 

Median [Q1, Q3] 825 [694, 1070] 890 [729, 1080]  

Gestational Age (week)  < 0.001 

Median [Q1, Q3] 26.0 [26.0, 28.0] 27.0 [26.0, 28.0]  

Image Meta Data   

Brightness Value  0.005 

Median [Q1, Q3] 7.63 [7.10, 8.32] 7.43 [6.52, 8.07]  

Exposure Time (10-4 s)  0.003 

Median [Q1, Q3] 8.06 [5.02, 11.7] 9.58 [5.95, 17.6]  

RGB Principal Component  < 0.001 

PC1 -3.19 [-36.4, 50.3] 25.4 [-20.2, 75.5]  

PC2 3.32 [-10.1, 22.8] 10.1 [-5.01, 22.6]  

PC3 8.69 [3.85, 12.2] 6.95 [0.203, 11.8]  

PC4 0.184 [-5.73, 4.57] 4.34 [-3.19, 11.2]  

* N indicates number of observations. 

* P-values were calculated using Chi-square test for categorical variables; Wilcoxon rank sum test for continuous 

variables. 

* P-value for PCs was calculated using likelihood ratio test 
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Table 5.1. Logistic regression model built based on all photos (Whole Model) using stepwise 

model selection method (N=874). 

 

 Coefficients Estimator 95% Confidence Interval P-value 

Intercept 3.218 (-0.739, 7.197) 0.110 

RGB PC1 0.004 (0.002, 0.006) 0.001 

RGB PC2 0.001 (-0.005, 0.006) 0.803 

RGB PC3 -0.002 (-0.018, 0.013) 0.773 

RGB PC4 0.024 (0.009, 0.038) 0.001 

Gender (ref: Male)    

Female -0.501 (-0.857, -0.151) 0.005 

Race (ref: White)    

Black -0.689 (-1.052, -0.328) < 0.001 

Other -0.734 (-1.25, -0.205) 0.006 

Age (week) -0.055 (-0.107, -0.004) 0.035 

Gestational Age (week) 0.159 (0.056, 0.263) 0.003 

Brightness Value -0.678 (-1.008, -0.351) <0.001 

Exposure Time (*10^-4 s) -0.025 (-0.052, 0.003) 0.045 

Body Region (ref: Fingernail)    

Toenail 0.192 (-0.257, 0.652) 0.406 

Palm -0.339 (-0.768, 0.087) 0.120 

* N indicates number of observations. 
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Table 5.2. Logistic regression model built based on fingernail photos only (Fingernail Model) 

using stepwise model selection method (N=357). 

 

 Coefficients Estimator 95% Confidence Interval P-value 

Intercepet 4.172 (-2.394, 11.901) 0.250 

RGB PC1 0.001 (-0.003, 0.005) 0.490 

RGB PC2 0.001 (-0.008, 0.01) 0.795 

RGB PC3 -0.004 (-0.026, 0.017) 0.702 

RGB PC4 0.019 (-0.001, 0.04) 0.063 

Gender (ref: Male)    

Female -0.460 (-1.03, 0.094) 0.107 

Race (ref: White)    

Black -0.624 (-1.194, -0.056) 0.031 

Other -0.593 (-1.418, 0.278) 0.167 

Age (week) -0.068 (-0.149, 0.013) 0.097 

Gestational Age (week) 0.174 (0.011, 0.341) 0.038 

Brightness Value -0.834 (-1.544, -0.289) 0.009 

Exposure Time (*10^-4 s) -0.047 (-0.118, -0.008) 0.118 

* N indicates number of observations. 

 

 

 

Table 5.3. Logistic regression model built based on toenail photos only (Toenail Model) using 

stepwise model selection method (N=175). 

 

 Coefficients Estimator 95% Confidence Interval P-value 

Intercepet 4.995 (0.391, 9.89) 0.038 

RGB PC1 0.007 (0.002, 0.013) 0.015 

RGB PC2 0.007 (-0.005, 0.02) 0.244 

RGB PC3 0.017 (-0.025, 0.06) 0.414 

RGB PC4 0.019 (-0.015, 0.054) 0.281 

Race (ref: White)    

Black -0.875 (-1.739, -0.034) 0.043 

Other -1.780 (-3.02, -0.577) 0.004 

Birth weight 0.004 (0.002, 0.006) 0.001 

Brightness Value -0.828 (-1.435, -0.265) 0.005 

* N indicates number of observations. 
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Table 5.4. Logistic regression model built based on palm photos only (Palm Model) using 

stepwise model selection method (N=342). 

 

 Coefficients Estimator 95% Confidence Interval P-value 

Intercepet -5.414 (-10.079, -0.925) 0.020 

RGB PC1 0.008 (0.004, 0.012) <0.001 

RGB PC2 0.001 (-0.008, 0.01) 0.818 

RGB PC3 -0.013 (-0.044, 0.014) 0.368 

RGB PC4 0.040 (0.013, 0.069) 0.005 

Gender (ref: Male)    

Female -0.556 (-1.133, 0.005) 0.055 

Race (ref: White)    

Black -0.915 (-1.53, -0.311) 0.003 

Other -0.873 (-1.745, 0.032) 0.052 

Gestational Age (week) 0.232 (0.07, 0.401) 0.006 

Exposure Time (*10^-4 s) 0.067 (0.031, 0.108) 0.001 

* N indicates number of observations. 

 

 

 

 

Table 6. Prediction accuracy evaluated for Whole Model, Fingernail Model, Toenail Model, 

Palm Model using 5-fold cross validation. 

 

 AUC AUC without Image variables included 

Whole Model 0.698 (0.043) 0.636 (0.051) 

Fingernail Model 0.663 (0.072) 0.626 (0.075) 

Toenail Model 0.721 (0.063) 0.627 (0.080) 

Palm Model 0.726 (0.061) 0.603 (0.076) 

*Report as Estimator (standard deviance) 
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6. Appendix: 

Table A. 1. Descriptive statistics for CCC and ICC for pairwise processors (N=71).  

 

 

Processor 1 & 

Processor 2 

Processor 1 & 

Processor 3 

Processor 2 & 

Processor 3 

Coefficient of Concordance (CCC)    

Red 0.95 [0.94, 0.96] 0.94 [0.93, 0.94] 0.96 [0.96, 0.96]  

Green 0.91 [0.90, 0.92] 0.88 [0.87, 0.89] 0.92 [0.91, 0.92] 

Blue 0.91 [0.90, 0.92] 0.90 [0.89, 0.90] 0.93 [0.92, 0.93] 

Intraclass Correlation (ICC)    

Red 0.95 [0.94, 0.96] 0.96 [0.96, 0.96] 0.94 [0.93, 0.94] 

Green 0.91 [0.90, 0.92] 0.92 [0.91, 0.92] 0.88 [0.88, 0.89] 

Blue 0.92 [0.90, 0.92] 0.93 [0.92, 0.93] 0.90 [0.89, 0.90] 

* N indicates number of observations. 

* The CCC and ICC were summarized with Median [Q1, Q3].  

 

 

Figure A. 1. Cumulative percentage of the variance explained by the first 10 Principal 

Components.  
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Figure A. 2. Evaluation of separating anemia and health group using predicted anemia 

probability.  
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