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Abstract 
 

The Association of Ozone and Particulate Matter Exposure to Asthma Related 
Hospital Visits in Mississippi  

 
By Gregory J. Schwartz 

 
In 2006, 22.9 million Americans were estimated to have asthma.  This thesis 

looks at the relationship between asthma related hospital visits and exposure to ambient 

concentrations of ozone and particulate matter < 2.5 μm (PM2.5).  Exposure is measured 

remotely via satellite allowing the study to cover entire state of Mississippi. 

A regular network of 1,318 grid cells was overlain the state of Mississippi.  Mean 

daily Ozone and PM2.5 exposure, number of asthma related hospital visits, and 

demographic characteristics were determined for each cell from January 1st, 2003 to 

December 31st, 2005.  Dual-exposure models were built using Generalized Estimating 

Equations (GEE) to determine the association between hospital visits and exposures 

controlling for demographic characteristics.  The study stratified by urban or rural 

designation considering the entire population as well as the black portion of the 

population.  These models were extended with hierarchical Bayesian models to account 

for conditional autoregressive (CAR) spatial and non-spatial exchangeable random 

effects at the grid cell level. 

Significant dual-exposure models were found for both urban and rural regions 

when considering the total population.  A 2-day lag for ozone and 5-day lag for PM2.5 

were used in the urban only model with relative risks of 1.003 (95% CI =  (1.001, 1.006)) 

and 1.004 (95% CI = (1.000, 1.008)) respectively. The rural only model used a 2-day lag 

for ozone and 4-day lag for PM2.5 with respective relative risks of 1.002 (95% CI =  

(1.001, 1.005)) and 1.002 (95% CI = (1.000, 1.004)).  A significant dual-exposure model 

was found for the black only urban area using a 4-day lag for ozone and a 2-day lag for 

PM2.5 with relative risks of 1.004 (95% CI = (1.001, 1.006)) and 1.003 (95% CI = (1.001, 

1.006)) respectively.  The Bayesian analysis found exchangeable random effects in the 

urban region and spatial random effects in the rural region improved the model fit 

allowing for risk estimates to be made at the grid cell level.  
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Introduction 

Background 

Asthma is a serious lung disease characterized by chronic airway inflammation.  

Individuals with the disease experience episodes where airway restriction results in 

difficulty in breathing.  The severity of asthma attacks can range from mild to severe with 

hospitalization and sometimes death resulting from the most severe cases.  In 2006, an 

estimated 22.9 million (77.7 / 1,000 population) Americans had asthma with significant 

differences existing in gender, sex and age specific prevalence.  With 12.8 million (85.7 / 

1,000 population) female and 10.0 million (69.7 / 1,000 population) male asthmatics, 

prevalence in females was 23% higher than in males.  Prevalence in the black population 

was 23.9% greater than that in the white population with 3.7 million (94.2 / 1,000 

population) of the black population being asthmatic and 18.1 million (76.1 / 1,000 

population) of the whites population being asthmatic.  Children less than 18 years old had 

a 27.3% higher prevalence than the adult population.  6.8 million (92.8 / 1,000 

population) children had asthma compared to 16.1 million (70.9 / 1,000 population) 

adults (American Lung Association 2007).   

It is likely that air pollutants in the environment act to increase both the 

prevalence and morbidity of asthma and exacerbate asthma related symptoms.  The Clean 

Air Act of 1970 required that the United States Environmental Protection Agency set 

national standards for the allowable ground level ambient concentrations of six common 

air pollutants referred to as the criteria pollutants.  The pollutants include particulate 

matter, ground-level ozone, carbon monoxide, sulfur oxides, nitrogen oxides, and lead.  
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Each of these pollutants is thought to cause harm to human health or the environment  

(Environmental Protection Agency 2008).   

A large body of clinical and epidemiological studies supports an association 

between ambient air pollution and increased asthmatic events or decreases in other 

measures of lung functions.  The focus of this work is on the effect of increased ozone 

and particulate matter (PM) concentrations on asthma related hospital visitation.  Ozone 

and particulate matter affect the lungs by causing irritation and inflammation which may 

result in decreased lung function and the exacerbation of asthmatic symptoms (Balmes 

1993; Delfino et al. 2002; Koren 1995; Lewis et al. 2005; van Eeden et al. 2001).  

Studies have shown that ozone and PM provide the strongest evidence of an 

association with exacerbation of asthmatic symptoms (Schildcrout et al. 2006).  Lewis et 

al. (2005) looked at single and dual-exposure models to determine the association 

between PM less than 2.5 μm (PM2.5) and ozone exposures and lung function as 

measured by forced expiratory volume.  The study included a population of asthmatic 

children and stratified based on the presence of upper respiratory infection and use of 

maintenance corticosteroids.  Exposure lags of 1 and 2 days along with an averaged 

lagged exposure from 3 to 5 days were considered.  PM2.5 with the 3 to 5 day average lag 

and ozone with a 2 day lag were found to be associated with decreased lung function in 

single exposure models.  Dual-exposure models did not consider different combinations 

of lag times.  In general, models with PM2.5 and ozone tended to show significant effects 

in the longer lag times considered.  Delfino et al. (2002) compared the effect of PM10 on 

asthma symptoms of asthmatic children by looking at 1-hour and 8-hour peak 

measurements compared to the 24-hour mean concentrations using a 0-day lag time while 
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stratifying by the use of anti-inflammatory medication.  The 24-hour mean is the value 

used for regulatory purposes as well as most epidemiological studies.   It was found that 

models using 1-hour maximum concentration had the strongest association with adverse 

asthma events.  The study also found the strongest 24-hour mean lag time association at a 

0-day lag and a 3-day moving average.  A study of asthma-related hospital admissions on 

a nonelderly population (younger than 65 years old) was done by Sheppard et al. (1999).  

Here PM2.5 and ozone were found to be associated with increased rate of asthma related 

hospital visits.  Lag times used for PM2.5 and ozone were 1-day and 3-day respectively.  

PM2.5 and O3 were not found to be jointly significant together in the same model, but 

PM2.5 was found to be jointly significant with carbon monoxide (CO).  Sun et al. (2006) 

performed an analysis of asthma-related emergency department visits that considered 

ozone and PM < 10  μm (PM10) independently.  An association between children 

younger than 16 years of age, PM10 and emergency department visits was found.  A 

relationship was not found between children and ozone and emergency department visits, 

or between adults (as defined as older than 16 years) and asthma or ozone.   

Most studies, including the studies just reviewed, looked at the effect of ambient 

pollution concentrations on individuals who are already asthmatic.  For example, 

emergency department visits likely result from high levels of pollution that have severely 

exacerbated a preexisting asthma condition.  Few prospective studies have been 

performed that look at the association of ambient air pollution and incidence of new 

asthma cases.  Gilmour et al. (2006) reviewed five prospective studies that together lend 

only modest support that increased ambient levels of pollution including PM2.5 and ozone 

may result in increased incidence of asthma in an otherwise healthy and non-asthmatic 
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population.  In general, any prospective study of a chronic disease onset is difficult 

because of the difficulty associated with clear identification of disease onset as well as 

the identification of appropriate exposures and controls. 

Remote sensing of ground based pollution concentrations 

This thesis explores the association between asthma-related hospital visits and 

ambient concentrations of ozone and PM2.5.  Previous research typically relied on 

ground-based monitoring systems to estimate exposure with relatively large scale study 

regions that were generally at the city or metropolitan level.  An approach to modeling 

the association of exposure to ambient air pollution and asthma by utilizing remotely 

sensed ozone and PM2.5 concentrations from satellites to estimate exposure, is developed 

for a small geographical scale study that in this paper covers the entire state of 

Mississippi.  This study design differs markedly from many previous asthma studies by 

considering a regular grid of cells overlain over Mississippi as the “subjects”, or basic 

units of observation, whereas previous works consider the individual.  All data about the 

individual is aggregated in this grid-based design and the outcome is the number of 

individual asthma-related hospitalizations on any one day with respect to a particular grid 

cell.  This study is also unique in its exhaustive search for lag time combinations of ozone 

and PM2.5 in dual exposure models so that it could be determined if their effects are 

differentiable. 

Models for repeated data 
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 The study area was decomposed into the regular grid network as seen in Figure 1.  

Because the outcome is count data, a Poisson process is assumed to describe the 

relationship between grid cell, pollution exposure and outcome.  The properties of the 

Poisson model force a major assumption that the mean and variance of modeling 

residuals are equivalent.  A traditional quasi-likelihood approach to longitudinal 

modeling using generalized estimating equations (GEE) is first implemented under this 

assumption, even though overdispersion in variance likely exists.  The GEE approach 

offers a means to model overdispersion by determining an overdispersion factor greater 

than unity that can be used to inflate the standard error of parameter estimates.   

It also is desirable however to utilize the spatial structure of the study design to 

model overdispersion.  A second set of hierarchical Bayesian models is therefore 

proposed that directly considers spatial residuals.  This is a more robust approach to 

modeling overdispersion as spatial and non-spatial random effects are parameterized to 

directly account for extra variability in an easy and straightforward (albeit 

computationally demanding) way.  Random effects can also be included in various levels 

of the hierarchy as required by the study design adding modeling flexibility.  Inclusion of 

random effects in this way supports a cluster- or subject-specific interpretation of model 

parameters, a shift from the population averaged or marginal interpretation obtained from 

GEE fixed effect estimation.  The generalized linear mixed model (GLMM) approach 

based on pseudo-likelihood estimation (Breslow and Clayton 1993) also supports mixed 

effects modeling.  Because the GLMM class of models is not well suited for the 

specification of spatial random effects this class of models was not considered in this 

work. 
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Methods 

Data Source 

A regular grid of cells each approximately 8.3 km by 10 km was superimposed 

over the state of Mississippi (Figure 1).  Each cell contained spatially aggregated data 

measuring the number of asthma related hospital visits, concentration of ambient ozone 

(O3 ppb), 2.5 micron ambient particulate mater (PM2.5 µg/m3), and demographic 

characteristics.  Each cell had values recorded daily over the three year study period from 

January 1st, 2003 to December 31st, 2005 resulting in 1,096 observations per cell.  The 

1,318 grid cells that fell completely within the state boundary were initially considered.  

Hospital visitation records were georeferenced at the residential level and counts were 

then aggregated to the grid cell level for each day of the study period.   

Raw O3 and PM2.5 concentrations were collected from a satellite producing 

measurements in a grid based format.  The satellite grid was registered to the study grid 

and overlain.  Daily pollution values for each grid cell were derived from a weighted 

average that considered the proportion of satellite grid cells each study grid cell 

intersected.  Multiple pollution concentration values were recorded throughout the day, 

so average daily values were also calculated.  The result is an O3 and PM2.5 value 

aggregated for each day and for each grid cell over the study period.  Demographic 
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characteristics were assigned to the study grid based on United States 2000 census data 

with projections applied for the beginning of each of the three study years1.  

 

Missing Data 

In order to minimize potential bias in defining the strongest temporal lags, only 

counties in Mississippi known to have complete data with respect to asthma related 

hospital visitations were included in this study.  Of the 82 counties within Mississippi, 9 

counties were identified to have incomplete data.  Grid cells inside, or having more than 

50% of their areas within the identified county boundaries were excluded from the study.  

In this way, the number of grid cells used in this study was reduced from 1,318 to 1,045 

with a total of 1,145,320 data points representing a 20% reduction in data.   

The number of missing values generated also depended on the choice of the 

maximum lag time for O3 and PM2.5 and was small relative to the number of observations 

for each grid cell.  For example, if a model used a 2-day and 5-day lag time for O3 and 

PM2.5 exposures, respectively, then each grid cell would have 5 missing values at the 

beginning of the first study year.  Missing data also exists for PM2.5 on October 10th, 

2004 for all grid cells due to satellite measurement errors on that day.  The actual day 

when these data are recorded as missing is dependent on the PM2.5 lag time used in the 

model. 

 

Analytical Methods 

                                                 
1 This is a general description of the data aggregation process.  Data used in this thesis was received in a 
form aggregated to the grid cell level with no identifying information at the individual level. 
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Descriptive Statistics 
 

Descriptive statistics were calculated at the grid cell level to summarize asthma-

related hospital visitation, O3 and PM2.5 levels, and demographic characteristics.  Basic 

demographic characteristics included the percentage of black and female populations, 

with respect to grid cell population, to account for race and gender respectively.  Average 

per capita income (PCI) and the average median household income were also considered.  

Because census projections were applied at the beginning of each study year, summaries 

were calculated for each calendar year of the study.  Two regions were considered for 

modeling that divided the study grid into spatially distinct rural and urban sub-regions.  

The union of these two regions composed the entire study region and defined a third 

modeling region.  Demographic characteristics were also calculated for each of these 

three regions. 

Seasonal fluctuations of Ground level concentrations of O3 and PM2.5 were 

examined to determine a suitable mechanism for controlling for seasonality.  Daily values 

of both pollutant levels and hospital visits were plotted and their variations smoothed 

using loess curves (Cleveland et al. 1992) to better visualize trends throughout the 3 year 

study period.  To control for the seasonal variability in asthma-related hospital visitation, 

a month variable was introduced for every observation.   

In order to investigate potential associations between time-lagged exposure to 

pollutants and asthma-related events, a comprehensive evaluation of lag times was 

conducted for each pollutant ranging from 1 to 14 days. Covariance matrices were also 

generated to assess the degree of collinearity between lagged pollution measurements of 

O3 and PM2.5 both jointly and independently. 
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Longitudinal Models using Generalized Estimating Equations 

 

Poisson regression modeling of the effects of O3 and PM2.5 on the daily counts of 

asthma-related hospital visits was done using generalized estimating equations (GEE) 

(Liang and Zeger 1986).  Spatial correlation was not accounted for in the GEE models 

due to difficulty in specifying this type of correlation within a working correlation matrix.   

To standardize the number of hospital visits by the size of the at-risk population within 

each grid cell, Poisson regression was performed on the rate of visits (total visits / total 

population) where the total population size is used as an offset in the model (McCullagh 

and Nelder 1989).  Within this study each grid cell is considered to be a cluster 

containing exposure and outcome measures repeated daily throughout the study period.  

An autoregressive (AR1) working correlation matrix was used to account for the 

temporal correlation between observations within each grid cell, assuming higher 

correlations in measurements closest in time.  The model takes the form given in 

Equation 1. 

 

Equation 1  

( ), ,

, ,log( ) log( )

(1, 2,..., ) where G is the number of  Grid Cells
(1, 2,..., ) where T are the dates of  each sample

X
     , 
     , 

g t g t

g t g t

y Poisson

n

g G
t T

μ

μ α= + +

∈
∈

T
g,t

∼

β  
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Here yg,t and ,g tμ are the observed and expected number of hospital visits in grid cell g at 

time t respectively, and ng,t is the population at risk in grid cell g on date t.  X includes the 

exposure and demographic variables with values recorded for each grid on each date. 

  

 Two general model types were considered in this analysis.  The first type was 

based on the proportion of all aggregate visits relative to the entire population in each 

grid cell.  The second type represented race-specific models based on the proportion of 

aggregate visits from the black population relative to the total black population in each 

grid cell.  These two types of models differ only in the aggregate visits outcome and the 

total population offset term from Equation 1. The models were applied to each of the 

three geographic regions (urban, rural, and combined urban and rural) previously defined, 

resulting in a total of 6 different models. 

 

Analysis of Lag Times   

Since the data involve grid-based remotely sensed exposure values and 

aggregated case counts, it was not immediately clear whether previous exposure lags for 

either O3 or PM2.5 would apply to our data.  As a result, a comprehensive regression 

analysis was performed to investigate which lag times yielded the strongest associations 

between grid-based outcomes and each exposure, O3 and PM2.5.  Single-exposure models 

were built using all covariates, without consideration of more parsimonious models, to 

generate a set of positive and significant parameter estimates for both O3 and PM2.5 

independent of each other.  These two sets provided a reduced search space for possible 

O3 and PM2.5 combinations.  In this way a comprehensive set of dual-exposure models 
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was generated.  Finally, only dual-exposure models that resulted in positive and 

significant parameter for O3 and PM2.5 having lag times within 5 days of each other were 

considered candidates for a final model.  This process was repeated for each of the 6 

model types considered resulting in a single dual exposure model for each model type.  

The final selection was based on lagged exposure combinations having the greatest 

positive and significant parameter estimates along with the lowest associated standard 

errors. A final model selection was then performed for each model that removed from the 

initial set of control variables any covariates that were found to be insignificant and not 

part of a confounding relationship. 

Hierarchical Bayesian Models 

 Hierarchical Bayesian models were used to extend the results of the GEE models 

and use random effects to model extra variance and more complex correlation structures.  

Parameterizing additional variation within the model this way extends the usual Poisson 

assumption of equality of variance and mean  to allow residual extra-Poisson variation or 

(in our case) spatially structured correlation between neighboring grid cells.  WinBUGS 

(Spiegelhalter et al. 2003) was used to fit all Bayesian models considered in this study.   

The spatial-temporal structure of the data presents many levels where random 

effects may be studied.  In the temporal dimension random effects can be used to test for 

correlation at the year, month and possibly the day level.  Random effects can be inserted 

at the grid level to consider both spatial and non-spatial correlation.  Equation 2 is the 

general mixed effects model used in this study. 

 



     

 

12

Equation 2 

, , , , , ,log( ) log( )

     (1, 2,..., ),  where G is the number of grid cells
     (1, 2,..., ),  where Y is the number of years
     (1, 2,..., ),  where M is the number of mont

g y m d g g g y m dy u n

g G
y Y
m M

α γ= + + +

∈
∈
∈

T
g,y,m,d β +X

hs
     (1, 2,..., ),  where D is the number of daysd D∈

 

 

Here the linear predictor is a linear combination of fixed effects, 2 random effects and the 

offset term.  The fixed effects include the lagged ozone and PM exposure variables as 

well as other demographical covariates as determined by the GEE models.  The random 

effects model  a convolution structure as it includes both spatial and non-spatial random 

effects,  and g gu γ  respectively.  Lower level random effects were not included in this 

model primarily due to computational constraints. 

 

The Bayesian hierarchical model specifies the posterior densities of parameters as 

proportional to the product of the likelihood, prior and hyper-prior distributions.  The 

Bayesian hierarchical form of the joint posterior of the fixed and random effect 

parameters is: 

 

Equation 3 

( , , , , | ) ( | , , ) ( | ) ( | ) ( ) ( ) ( )P G G u P G G G u G P uf u y f y u f u f f f fγ γ γβ γ σ σ β γ σ γ σ β σ σ∝ i i i i i  

 

In Equation 3, the posterior distribution contains P fixed effects parameters as determined 

by the models obtained by GEE.  In addition to the fixed effects, there are two sets of G 

random effects for each grid cell, one defining extra-Poisson variation and the other 
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inducing spatial correlation.  Non-informative prior distributions are placed on each of 

the fixed effects where for each p Pβ β∈ , 2(0, )N ββ σ∼ and 2
βσ  = 10,000 for each fixed 

effect.  Spatially uncorrelated random effects are given the following exchangeable prior 

distribution:  

2

2

(0, ),        g (1,...,G)

~ ( , )

ind

g N

gamma
γ

γ

γ σ

σ α β−

∈∼   

This prior and hyper-prior distribution generates a common normal distribution with 

mean 0 and shared prior variance 2
γσ for each nonspatial random effect. With this 

structure, each random effect, gγ , is independent of  the others and not dependent on 

location g (Waller and Gotway 2004). Spatial correlated random effects are modeled by 

the Conditional Auto Regressive (CAR) distribution (Besag et al. 1991): 
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In this study, the neighborhood of a grid cell is defined by all grid cells that touch 

its boundary.  A single grid cell can then have up to eight neighbors.  Un-normalized, 
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binary weights ( ,g gw ′ ) indicating adjacency are assigned the value 1 for each neighboring 

grid cell.  This results in the conditional distribution of each individual grid cell random 

effect being centered about the simple average of the random effects of its neighbors.  

The overall variance is then scaled by the sum of the weights (in this case the number of 

neighbors).  In this specification the CAR model is improper in that the overall mean of 

the spatial random effect is not defined.  The WinBUGS implementation of the CAR 

normal model handles this by constraining the random effects to sum to zero which 

requires that the intercept term α  in Equation 2 be given an improper and unbounded 

uniform prior distribution ( )( ),uniformα −∞ ∞∼  (Besag and Kooperberg 1995).  The 

same parameters for α  and β  in the gamma distribution for the exchangeable and CAR 

precision parameters are not required.    

The relatively large dataset for this study made running the hierarchical models 

for each candidate GEE model computationally prohibitive.  As a result, focus was 

limited to the full population models with the race-specific models not being considered.  

Limitations on computational resources also forced the urban and combined regional 

models to use subsets of the data that were used for the GEE models (Figure 2).  Data 

subsets were obtained by selecting a contiguous set of grid cells that had similar 

parameter estimates when calculated with the same model as the full dataset using GEE.  

Each of the three models was initially based on Equation 2 and Equation 3 containing the 

convolution prior. The effect on each of these models while including either the spatially 

correlated or uncorrelated random effects independently was also considered. 

 

Bayesian model diagnostics 
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 Diagnostics were performed to determine if the MCMC simulations had 

converged on a stationary distribution, to determine model sensitivity to the specification 

of hyper-prior variance distributions on random effects and to determine the effect of 

spatially correlated and uncorrelated random effects on overall model fit.  Model 

convergence was tested using the Gelman/Rubin R statistic (Gelman and Rubin 1992) to 

measure the within and between variance components of Markov chains. Values close to 

one are achieved when the two measures of variance approach each other, which occurs 

upon convergence.  To support this statistic, two Markov chains were initially run for 

each simulation.  The chains were extended as necessary for convergence.  So that a 

meaningful R statistic could be calculated as the chains converged from different 

locations, initial values for the chains were calculated as either ±1 or ±2 standard errors 

from the parameter estimates as determined by the GEE models.  Initially 2,000 iterations 

were performed for each Markov chain with incremental extensions of 1,000 iterations 

added as required for sufficient convergence (R close to one).  Posterior densities were 

determined from the last 1,000 iterations of each Markov chain.  The Deviance 

Information Criterion (DIC) (Spiegelhalter et al. 2002) was used to determine the best-

fitting model with respect to convolution, CAR or exchangeable random effects for each 

of the three models considered.  The sensitivity of the variance for each of the 

distributions of random effects was evaluated by using DIC to compare the model fit 

resulting from different hyper-prior specifications.  This final analysis was carried out 

only on the model determined to have the best fit for each of the three geographic 

regions. 
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Results 

Descriptive Statistics.  

Descriptive statistics of the grid cells are shown in Table 1.  Comparisons were 

made by geographical region designated as urban and rural, rural only or urban only.  The 

urban & rural region is a superset of grid cells composed of the union of the non-

intersecting urban and rural regions.  There were 1,045 total grid cells of which 933 were 

considered rural and 112 urban.  The descriptive statistics within each region are broken 

down further by the study years 2003 - 2005.  In all regions it is seen that the total 

population and average population per grid cell is increasing.  In the composite urban-

rural region the percentage of black population grew from 37.86% to 38.44% and the 

percentage of females in the population adjusted only slightly from 50.69% to 50.58% 

during the years under study.  This trend is followed closely by the rural region, a likely 

reflection of the higher proportion of rural cells in the composite urban-rural region.  A 

slight decrease in the female population is observed in the urban region ranging from 

51.31% to 51.25% over the 3 year period.  The urban percentage of black population is 

slightly smaller than the rural and composite regions and it increases from 36.66% to 

37.41% over the study period.  Within the composite region there were 19,241 total 

hospital visits in 2003.  This number decreases to 18,021 and then jumps to 22,487 in 

years 2004 and 2005 respectively.  A similar trend exists in the rural and urban regions.  

The average number of hospital visits per grid cell for each study year is much larger in 

the urban areas as would be expected from increased population density.  Here the 

average number of visits ranges from 67.76 per year to 90.57.  This compares to 11.66 – 
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13.23 and 17.24 – 21.52 visits per year in the urban and combined regions respectively.  

A noticeable disparity exists in the proportion of black individuals accounting for hospital 

visits.  Within the composite urban and rural region, the percentage increases from 

66.09% to 67.15% which coincides with a black population of approximately 40% 

throughout the study period.  This disparity is more pronounced in the urban region 

where the percentage increases from 73.37% to 76.58% during the study period.  A 

decreasing trend in the proportion of black hospital visits is seen within the rural region.  

Here the percentage decreases from 61.28% to 59.39%. 

 Figure 3 presents time series plots of the averaged daily values for grid cells 

throughout the duration of the study for O3 and PM2.5 concentrations as well as the 

averaged number of daily hospital visits.  Hospital visits are shown for the whole study 

population over the combined region as well as the visitation from the black population 

over the urban and rural sub-regions.  The O3 and PM2.5 time series are omitted for the 

separate urban and rural regions as their patters are very similar to those seen for the 

entire region.  For each plot, a smooth loess curve generalizes the day to day mean trend 

while the variance in measured values is visible in the background.  General seasonal 

trends are apparent in each plot.  Ozone concentrations have a major peak from March to 

May with a less defined peak around August and September.  PM2.5 concentrations tend 

to peak towards the end of the summer from August to October.  A time series for total 

visits is shown for all regions along with the series for visits by black patients for all 

regions and urban regions.  The seasonal cycle in the number of visits is similar 

throughout with peak visitations taking place around the month of October.  This pattern 

is particularly evident in 2003 and 2005, but appears diminished in 2004 which is 
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consistent with the overall reduced number of hospital visits observed for this year.  

Finally, a valley is observed about the month of July that appears consistent across study 

years. 

 A Pearson’s correlation matrix for O3 and PM2.5 lag times appears in Table 2.  All 

correlation coefficients in the matrix were found to be significant at the 0.05 level.  It is 

apparent that all lagged PM2.5 concentrations are positively correlated with those of O3.  

Each matching lag time for the two pollutants shown has a correlation coefficient of 

about 0.38.  As the time period between the lag times of the pollutants increases, the 

correlation coefficient decreases.  Tables 3-4 show the Pearson’s correlation matrixes for 

the lag times of O3 and PM2.5 independent of each other.  All correlation coefficients in 

both matrixes are significant at the 0.05 level.  In both cases the strongest correlation 

(with the exception of equal lag times) is found between lag times one day apart (r = 0.79 

for O3 and r = 0.74 for PM2.5).  The rate of decrease in r as the time period between lags 

increases is greatest for PM2.5.  

GEE Models 

Single Exposure Models. 

The results of single exposure models by geographic region and by race are 

presented in Table 5.  The models each controlled for per capita income and the 

percentages of each grid cell which are  female or black.  The seasonal variations in 

hospital visits were controlled for by way of a month of observation variable.  The 

parameter estimates in this table are crude in the sense that a full model selection was not 

done for each model type.  As a result, only the parameter estimates for O3 and PM2.5 are 
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shown.  Table 5 only lists the single largest positive and significant parameter estimate 

for both O3 and PM2.5 for both the low and high range lag values for each model type.  

There can be at most 4 values for each model type.  This selection comes from a set of 15 

models for each pollutant looking at lag times of 0 – 14 days and provides a useful 

comparison for the dual-exposure model.   

 

Dual-Exposure Models 
 

Final dual-exposure model results are shown in Tables 6 – 9.  Not all model types 

had a valid model because there were no combinations of O3 and PM2.5 lag times that had 

both positive and significant parameter estimates.  It is also apparent that sets of 

significant covariates varied between model types.  All models shown use the same 

month variable to control for seasonal variations in hospital visitation.  The parameters % 

black Q1 – Q4 and % female Q1 – Q4 are quartile indicator variables for the percentage 

of black and female populations respectively with Q1 being the reference level.   

Table 6 shows results from the all racial models for the lower range of exposure 

lagged combinations.  The composite urban-rural and rural regions both have O3 lag 2 

and PM2.5 lag 4 for lagged exposures.  The parameter estimates for these exposures are 

identical and the models share the same set of covariates.  However, they do differ in the 

non-exposure covariate parameter estimates.  The urban only model in Table 6 also uses 

O3 lag 2 and has a similar parameter estimate as the other two regional models.  This 

model also differs in that gender is not a significant variable and there is a much stronger 

effect from race.  Here grid cells in the highest quartile of the percentage of the black 
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population have a relative risk of 3.7 compared to 1.4 for the rural only region and 2.0 for 

the composite region. 

The models based on the total population for the upper lagged combination range 

are shown in Table 7.  A dual-exposure model with a significant O3 and PM2.5 lag time 

combination was not found for the rural only type.  The combined urban-rural model uses 

O3 lag 12 and PM2.5 lag 10 parameter estimates along with the % black and % female 

covariates.  Again, the urban only model drops the % female covariate and uses the O3 

lag 10 and PM2.5 lag 12 exposure combination. 

The models limited to the black population are shown in Table 8 and Table 9.  In 

the lower range only the urban model has a significant combination and other than 

controlling for month, there are no other significant covariates.  The model uses O3 lag 4 

and PM2.5 lag 2 compared to O3 lag 2 and PM2.5 lag 5 in the all race urban only model.  In 

both cases the parameter estimates are similar.  In the upper range only the composite 

urban-rural and urban only models were found to be valid models.  Both models use the 

same covariate set.  The composite model uses O3 lag 10 and PM2.5 lag 13 compared to 

O3 lag 12 and PM2.5 lag 12 used in the urban only model. 

Hierarchical Bayesian Models 

The parameter estimates from the hierarchical Bayesian analysis are given in 

Table 10.  The urban area estimates are based on the exchangeable prior and the rural and 

combined urban-rural areas are based on the CAR prior.  These estimates along with the 

cell specific random effects were then used to determine the overall risk as well as the 

expected number of hospital visits for each cell.  These values are shown in Figure 6-8.  
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The number and percentage of significant random effects at the 0.05 level were observed 

to be 61% or 447 of 727 for the combined urban-rural region, 71% or 80 of 112 for the 

urban only region, and 61% or 299 of 494 for the rural only region.    

The initial run of each of the 3 models was based on the convolution prior for 

random effects.  These models revealed a general inability of the models to distinguish 

between the spatial and non-spatial random effects.  This is evident in Figure 4 where the 

Markov chains for the CAR and exchangeable random effect variances show a strong 

inverse correlation.  In the case of the rural and urban-rural models the first 750 to 1000 

iterations appear stationary for the CAR variance distribution with a value of about 2.7.  

At the same time the exchangeable variance is close to 0 and shows signs of decreasing 

stability after 500 iterations.  A rapid transition then occurs in how the variance is 

modeled.  This is evident as the CAR variance parameter destabilizes and rapidly 

declines towards 0 as the exchangeable prior rapidly increases towards 1 and appears to 

be in convergence itself during the last iterations of the simulations.  This process is also 

observed for the urban simulation, but with a less abrupt change in how the variances are 

modeled. 

 The results of the convolution prior models required that either the CAR or 

exchangeable random effects be included independently in a final model.  The urban only 

model showed better fit using exchangeable compared to CAR random effects as 

measured by a reduction in the DIC of 21.5.  Both models for the rural and combined 

urban-rural regions were best fit using the CAR random effect compared to the 

exchangeable random effect.  The reduction in the DIC was 269.00 and 206.00 for the 

combined and rural only models respectively.   
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shows how the choice of a CAR or exchangeable prior for the random effects influences 

the expected number of hospital visitations.  The plots show the expected values for 

January 5th 2005 for each of the 3 geographical regions with the yearly mean 

concentrations of O3 and PM2.5 used to calculate the expectations.  If the prior 

distributions have no effect on expectation, then a one-to-one relationship would exist 

between the two expectations and the plotted values would fall on the line with slope 1.  

There is however a general tendency for the exchangeable random effects to be larger 

than the CAR random effects suggesting that they do not follow a one-to-one 

relationship.  This difference becomes most obvious when the expectations are large 

relative to the main mass of points.  For example, the point in the upper right quadrant of 

the urban-rural plot has an expectation of 10.91 and 7.81 from the exchangeable and 

CAR prior respectively.  This difference highlights the utility of the CAR prior in 

adjusting parameter estimates towards the mean value of its neighbors and the capture of 

local deviations. 

The sensitivity of each model to the specification of the hyper-prior inverse-

gamma distribution ( , )  where the mean = Gamma αα β
β

⎛ ⎞
⎜ ⎟
⎝ ⎠

of the random effect precision 

was tested.  Two specifications were compared: ( , )α β  = (0.001, 0.001) and ( , )α β  = 

(0.5, 0.005).  The specification did not have any discernable difference on model fit as 

measured by the DIC.  The model results in Table 10 are based on the .001, .001α β= =  

gamma distribution.  The posterior distributions and traces of the Markov chains for the 

random effects of each model are found in the appendix.  The WinBUGS code for the 

urban and urban-rural regional models is also listed in the appendix.    
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Discussion 

 The GEE and Bayesian models developed in this paper differ markedly from 

previous works both in study design and exposure assessment.  Previous investigations 

have focused on the asthmatic population presenting studies looking at how ambient air 

pollution exacerbates symptoms in a specific population.  By focusing on a population of 

individual asthmatics as the unit of observation, studies have been able to support 

analyses based on specific individual characteristics.  For example the analysis done by 

Delfino et al. (2002) stratifies by use of anti-inflammatory medication, and Tolbert et al. 

(2002) predicts the probability of an emergency room patient being an asthma case.  

These studies have also been performed at the city scale and have used ground based 

pollution monitoring stations to determine exposure levels for individual subjects.   

The analyses in this study contrast with previous works in both the unit of 

observation and the method of exposure assessment.  The study presented in this work 

encompasses the entire state of Mississippi, and the regular network of grid cells overlain 

the state are the units of observation as opposed to the individual.  Because ground-based 

measurements of exposure are not possible in such a small scaled study, satellite 

measurements were used.  As discussed below, the satellites provide an estimate of 

exposure on the ground and these estimated exposure values should be considered as an 

exposure proxy.  The models presented here make no assumptions about who is going to 

the hospital and the entire population within each grid cell is considered to be at risk.  

Risk assessments derived from the modeling results are therefore interpreted with respect 

to the entire population residing within each grid cell. 
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GEE Model Discussion 

The urban-rural combined models appear to be more similar to the rural only 

models than compared to the urban only models.  This is particularly evident for the 

urban only GEE models looking at all races in Table 6 where the rural and urban-rural 

models use the same set of parameters and exposure lag times.  The urban only model did 

not show a significant effect for gender and uses a 5-day lag for PM2.5 instead of the 4-

day lag used for the other two regions.  The urban and urban-rural similarity is most 

likely a result of the relatively small number of grid cells classified in the urban region 

(112) compared to those in the rural region (933).  The urban-rural model is therefore 

influenced mostly by the rural region and can be interpreted as a weighted average of the 

separate urban and rural regions.  In this regard it is more useful to compare the urban 

and rural models directly.  Both models have similar parameter estimates for the O3 and 

PM2.5 exposures and the month of observation with the urban model giving more weight 

to the effect of PM2.5.  The largest difference in parameter estimates is found for grid 

cells being in the 4th quartile for percent black.  In the urban model grid cells in this 

quartile have 3.69 times the risk of grid cells in the lower quartile.  This compares to the 

rural only model were there is only 1.40 times the risk as compared to the lower quartile.  

This difference may be a result of the demographic characteristics of the urban and rural 

regions (
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Table 1).  Considering the 2003 study year in, the percentage of the population that is 

black in each grid cell is similar for both geographical regions.  It is also apparent that the 

black population accounts for a higher proportion of hospital visits.  This is consistent 

with the 2006 national asthma prevalence being 23.9% greater in the black population as 

compared to the white population.  The urban model is picking up on these demographic 

trends by associating more risk on grid cells that have a greater proportion of black in 

their local population.  The fact that gender appears significant in the rural and urban-

rural combined models is also consistent with the 23% greater prevalence of asthma in 

females as compared to males.  The models did consider the proportion of the population 

younger than 18 years old, but this was not found to be a significant variable even though 

this segment of the population as a 27.3% higher prevalence of asthma than the adult 

population.  

It is believed that the black population may be overrepresented in the aggregate 

count of hospital visits for each grid cell.  This of course has the potential to introduce 

bias into the model which could affect the risk adjustments estimated for race in 

particular.  In order to limit this possible source of bias, race-specific models were 

examined that considered the rate of black only visits within the black population.  Only 

the urban region had significant dual-exposure model when limiting consideration to 

black hospital visits in the lower lag range.  This may be a result of the racial differences 

previously discussed between the rural and urban regions.  In comparing the urban-only 

model for the black population in Table 8 to the urban only model for the entire 

population in Table 6 only a small difference is apparent.  The lag combination of O3 lag 

4 and PM2.5 lag 2 is used in the former model compared to O3 lag 2 and PM2.5 lag 5 in the 
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later.  The magnitude of the exposure estimates is however similar for both models.  The 

percent black variable was not a significant covariate in the black-only models including 

those for the upper lag range (Table 9).  This is a likely result of the outcome of the 

models being the ratio of black hospital visits to the black population and therefore the 

use of the real size of the black population is no longer a significant factor within the 

model. 

 Reviewing the single parameter estimates in Table 5 reveals that the parameter 

estimates tend to be larger for single-exposure models as compared to dual-exposure 

models.  For example, the two lower range parameter estimates for the all races urban 

and rural model are 1.004 and 1.005 for O3 lag 3 and PM2.5 lag 5 respectively.  This 

compares to 1.003 and 1.002 in the dual-exposure model for O3 lag 2 and PM2.5 lag 4 

respectively.  The dampening of the respective effects of exposures is likely a result of 

correlation between O3 and PM2.5 lagged exposure times (Table 2).  The positive 

correlation between ozone and PM2.5 implies that the two pollutants likely represent 

competing risks for asthma related hospital visits.  Previous research has also reported 

significant correlations between multiple exposures which in some cases resulted in 

insignificant dual-exposure models (Sheppard et al. 1999; Tolbert et al. 2000).  The 

independent lag time correlation matrixes for O3 and PM2.5 also suggest that because of 

very high correlations observed particularly between 1 day lag times (Table 3- Table 4) 

that the lagged exposure parameters presented in Table 6 - Table 9 may be considered as 

representing a range of effects over time, rather than as definitive lags of highest impact. 

 Interestingly, the actual lag times, ranging from 2 to 5 days, used for the models 

in Table 6 and Table 8 are consistent with those reported in the literature reviewed 
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previously.  The interpretation of these lag times is meaningful in that a high exposure of 

O3 or PM2.5 on a given day has the potential to bring on severe asthmatic symptoms 

resulting in a hospitalization a few days later.  It is more difficult to interpret the lag times 

for the models using the upper lag times (Table 7 and Table 9) that range from 10 to 13 

days.  The process that these models describe is not clearly understood.  It is interesting 

to note that in both the black only and full racial models that a significant model was not 

found for the rural only region.  It is possible that the urban region is what is driving this 

somewhat nebulous process and making the urban-rural model to be significant. 

Hierarchical Bayesian Model Discussion 

The use of a hierarchical Bayesian model allows for correlation between grid cells 

to be modeled with random effects.  By breaking with the assumption in GEE that the 

grid cells are independent, the Bayesian models can “borrow” information from all grid 

cells in calculating parameter estimates.  The resulting parameter estimates are smoothed 

as they are made to shrink towards a mean value and the calculation is based on a much 

larger effective sample size than if the grid cells were considered independently (Agresti 

et al. 2000).  The resulting conditional or subject specific interpretation of the model 

allows risk to vary between grid cells as a result of the cell specific random effects 

(Figure 6 - Figure 8).   

A direct comparison between the population-averaged GEE models and the 

conditional Bayesian model is difficult.  However, it is noted that the parameter estimates 

are similar between the two model classes (Table 6 and Table 10).  Each Bayesian model 

uses a single random effect that is modeled with an exchangeable prior for the urban 
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model and with a CAR prior for the rural and urban-rural models.  The variances for each 

of the random effect distributions are listed in Table 10.  In all cases the variance 

parameter is greater than 0 which implies that residual correlation does exist between grid 

cells and is being accounted for by the random effects.  It follows that the standard errors 

for the parameter estimates in the GEE model are deflated and an over-dispersion 

parameter would be useful to obtain more realistic confidence intervals for the models 

listed in Table 6 - Table 9. The Bayesian model is a particularly useful extension to the 

marginal GEE model in this study as it allows the identification of particular grid cells 

that are associated with a relatively high risk.  The random effects also give a more 

accurate estimate of the expected number of hospital visits.  The display of this 

information on the maps in Figure 6 - Figure 8 further aids in the visual identification of 

areas where extreme values tend to congregate. 

Strengths and Limitations 

Previous studies have focused on summer or warm temperature ozone studies as 

this is the time when ozone is most concentrated due to the photochemical processes that 

are responsible for its generation (Schildcrout et al. 2006; Weisel et al. 1995).  This study 

includes daily ozone data over the entire 3-year study period and models show it is 

significant while controlling for month thus supporting inference of the effect of ozone 

during all seasons.  To the knowledge of the author, this is the first asthma related 

pollution study to be done based on local estimates of exposure over  a large regional 

scale on the order in size of the state of Mississippi.  This was made possible by the use 

of remotely sensed pollution via satellite which supports the inclusion of populated areas 
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where data from ground based sensors is not available.  The satellite data also gives 

flexibility with respect to the scale of the study design.  The study presented in this thesis 

was of relatively small scale covering the entire state of Mississippi with a regular grid 

cell network.  The grid cells were large relative to the pixels resolution of the satellite 

data and so the satellite data resolution was effectively reduced to match that of the study 

grid.  Studies that require a smaller study area defined for example by zip code or 

metropolitan or rural statistical area boundaries can spatially aggregate the satellite data 

to fit their particular needs.   

Inference in this study is based at the grid cell level, with parameter estimates 

affecting the relative risk of hospital visitation.  It is understood that this relative risk is 

based on the assumption of homogeneous risk over the entire population.  This leads to a 

possible problem with the ecological fallacy.  Asthma-related hospital visits within each 

grid cell are assumed to be from individuals with preexisting asthmatic conditions.  

However, the majority of the population within each grid cell is not asthmatic.  It follows 

that inference is based on a population without homogeneous risk.  Because the results of 

this work are similar to those based on individual-level covariates from previous studies, 

it is believed that any bias resulting from assumptions of homogeneous risk is not 

particularly strong.   

The use of the regular network of grid cells was a convenient mechanism by 

which to aggregate hospital visitation, ozone and PM2.5 exposure and demographic 

covariates from various geographic units.  In this way a basis exists for straightforward 

statistical models.  More complex models are possible that explicitly consider misaligned 

spatial data in support of analysis of the various data used in this thesis based on its 
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original spatial scale of collection (Banerjee et al. 2004 ).  In this way it is possible to 

avoid problems associated with bias induced by spatial aggregation as mentioned above. 

The results of the GEE and Bayesian models may also be biased to some degree 

from missing data.  As stated previously, about 20% of the data was missing within the 

rural region of the state.  By not including the hospital visitation rates and demographic 

characteristics of these areas the parameter estimates for the rural and urban-rural models 

may have some bias associated with them.  It is also believed that the aggregated number 

of daily hospital visits for each grid cell may be biased towards the black population.  

This segment of the population is generally believed to be underserved in the healthcare 

system and more likely included in the aggregate visit outcome in this study.  Individuals 

with better access to healthcare are more likely to manage their disease and be less likely 

to suffer from spikes in pollution.  These individuals, assumed to be represented more 

within the white segment of the population, are less likely to be recorded.  Finally, the 

use of the CAR prior in the urban only model did not take into account that the region is 

composed of a number of island or disconnected sub-regions.  Hodges et al. (2003) shows 

that properly accounting for the number of islands may have an important impact on all 

posterior summaries.  It is not known how this would affect the model DIC with respect 

to the urban model using the exchangeable prior listed in Table 10. 

A possible problem with the convergence of the Markov chains was observed for 

the percent black and female categorical variables for the models in Table 10.  The chains 

did not appear to reach full convergence after 3,000 iterations.  The parameter estimates 

for these variables shown in Table 10 may be biased and the 95% credibility intervals too 

wide.  It was observed that upon a second run of both the urban and urban-rural models 
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that this problem with convergence had little to no observable effect on the exposure 

parameter estimates.  The chains and posterior distributions for all fixed effect parameters 

for the simulations are given in the appendix.     
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Conclusion 

Satellites measure pollution concentrations through a column of air from the top 

of the atmosphere to the surface of the earth where a measurement is desired.  Further 

research is required to enhance the quality of this measurement.  PM2.5 measurements 

calculated from satellite data have been shown to have up to a 96% correlation with 

ground level measurement devices.  Satellite measurements of O3 are less reliable 

(Weinhold 2008).  Because the daily value for each grid cell is an average of many 

satellite measurements, it is assumed that much of the variability is smoothed out.  It is 

not known how precise the exposure measurements are in this study, but it is assumed at 

the very least that the models are showing the effects of O3 and PM2.5 on a relative scale.  

Future work with satellite based epidemiological studies, such as the one in this thesis, 

will become more promising as remotely sensed exposure estimates for the criteria air 

pollutants become more accurate. 
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Figure 1: Mississippi Asthma Study area 
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Figure 2: Data Subsets Used for Bayesian Analysis 
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Figure 3: Exposure and Hospital Visit Time Series 
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Figure 4: Inverse Correlation of the Convolution Prior Variances 
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Figure 5: Expectation Plots 
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Figure 6: Spatial Distribution of Risk and Expectation - Urban and Rural 

Hospital Visitation Risk
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Figure 7: Spatial Distribution of Risk and Expectation - Urban 

Hospital Visitation Risk
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Figure 8: Spatial Distribution of Risk and Expectation - Rural 

Risk of a Hospital Visit
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Table 1: Population Characteristics 
           
    Composite Urban & Rural (n = 1045)  
  Characteristic 2003 Mean (SD) 2004 Mean (SD) 2005 Mean (SD)  
  Total Population 1967626* 1973962* 1980706*  
  Avg. Population (individuals) 1882.9 (4215.94) 1888.96 (4229.56) 1895.41 (4244.48)  
  % Black 37.86% (0.24) 38.14% (0.24) 38.44% (0.25)  
  % Female 50.69% (0.04) 50.63% (0.04) 50.58% (0.04)  
  Total Hospital Visits 19241* 18021* 22487*  
 Avg. Hospital Visits 18.41 17.24 21.52 
  % Black 66.09% 66.38% 67.15%  
  Per Capita Income 16548.58 (3412.57) 16547.78 (3413.02) 16546.8 (3413.73)  
  Median Household Income 31499.13 (7447.75) 32251.13 (7633.82) 33021.98 (7827.05)  
       
    Rural Only (n = 933)  
  Characteristic 2003 Mean (SD) 2004 Mean (SD) 2005 Mean (SD)  
  Total Population 1257377* 1257973* 1258772*  
  Avg. Population (individuals) 1347.67 (1966.21) 1348.31 (1963.55) 1349.17 (1961.27)  
  % Black 38.01% (0.24) 38.28% (0.24) 38.57% (0.24)  
  % Female 50.61% (0.04) 50.56% (0.04) 50.50% (0.04)  
  Total Hospital Visits 11581* 10880* 12343*  
 Avg. Hospital Visits 12.41 11.66 13.23 
  % Black 61.28% 60.62% 59.39%  
  Per Capita Income 16126.86 (2682.33) 16125.26 (2681.33) 16123.58 (2680.56)  
  Median Household Income 30342.78 (5234.6) 31062.64 (5334.01) 31800.3 (5436.82)  
       
    Urban Only (n = 112)  
  Characteristic 2003 Mean (SD) 2004 Mean (SD) 2005 Mean (SD)  
  Total Population 710249* 715989* 721934*  
  Avg. Population (individuals) 6341.51 (10594.66) 6392.76 (10628.21) 6445.84 (10665.16)  
  % Black 36.66% (0.26) 37.04% (0.27) 37.41% (0.27)  
  % Female 51.31% (0.02) 51.28% (0.02) 51.25% (0.02)  
  Total Hospital Visits 7660* 7141* 10144*  
 Avg. Hospital Visits 68.39 63.76 90.57 
  % Black 73.37% 75.17% 76.58%  
  Per Capita Income 20061.71 (5930.63) 20067.58 (5932.41) 20072.37 (5935.3)  
  Median Household Income 41131.96 (13666.42) 42151.74 (14086.62) 43198.99 (14524.55)  

  * Total count for all cells for study year      
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Table 2: Exposure lagged correlation matrix 
                                     
    PM 2.5  
    lag 0 lag1 lag 2 lag3 lag4 lag5 lag6 lag7 lag8 lag9 lag10 lag11 lag12 lag13 lag14  
  lag 0 0.375 0.325 0.249 0.197 0.160 0.138 0.122 0.104 0.106 0.105 0.095 0.080 0.066 0.073 0.077  
  lag1 0.330 0.375 0.325 0.248 0.197 0.159 0.138 0.121 0.104 0.107 0.106 0.096 0.080 0.066 0.073  
  lag2 0.272 0.329 0.375 0.325 0.248 0.196 0.158 0.137 0.121 0.104 0.108 0.107 0.096 0.080 0.065  
  lag3 0.238 0.271 0.330 0.375 0.324 0.247 0.195 0.157 0.137 0.121 0.106 0.108 0.107 0.095 0.080  
  lag4 0.222 0.239 0.271 0.330 0.375 0.325 0.248 0.196 0.157 0.136 0.121 0.106 0.108 0.107 0.095  
  lag5 0.226 0.223 0.239 0.272 0.330 0.376 0.325 0.248 0.196 0.157 0.136 0.121 0.106 0.109 0.107  
  lag6 0.211 0.225 0.223 0.238 0.271 0.330 0.375 0.324 0.248 0.196 0.159 0.136 0.121 0.105 0.108  
  lag7 0.176 0.211 0.226 0.223 0.238 0.271 0.329 0.375 0.324 0.248 0.198 0.159 0.136 0.120 0.105  
  lag8 0.138 0.175 0.211 0.225 0.222 0.237 0.270 0.329 0.375 0.324 0.249 0.198 0.159 0.136 0.120  
  lag9 0.121 0.138 0.176 0.211 0.225 0.222 0.237 0.270 0.329 0.375 0.325 0.249 0.198 0.159 0.136  
  lag10 0.104 0.120 0.138 0.175 0.210 0.224 0.222 0.236 0.270 0.330 0.377 0.325 0.249 0.197 0.159  
  lag11 0.091 0.103 0.121 0.137 0.174 0.209 0.224 0.220 0.236 0.271 0.333 0.378 0.326 0.249 0.197  
  lag12 0.087 0.091 0.103 0.120 0.137 0.174 0.209 0.223 0.220 0.236 0.272 0.333 0.378 0.326 0.249  
  lag13 0.100 0.086 0.091 0.102 0.120 0.136 0.173 0.207 0.223 0.221 0.238 0.273 0.333 0.378 0.325  
  

O
zo

ne
 

lag14 0.111 0.099 0.086 0.090 0.102 0.119 0.135 0.172 0.207 0.223 0.223 0.239 0.273 0.333 0.378  
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Table 3: PM 2.5 Lag Time Correlation Matrix 
                                     
    PM 2.5  
  Variable lag 0 lag 1 lag 2 lag 3 lag 4 lag 5 lag 6 lag 7 lag 8 lag 9 lag 10 lag 11 lag 12 lag 13 lag 14  
  lag 0 1 0.74 0.5 0.39 0.32 0.28 0.25 0.19 0.17 0.17 0.15 0.14 0.14 0.15 0.17  
  lag  1 0.74 1 0.74 0.5 0.39 0.32 0.28 0.24 0.19 0.17 0.17 0.15 0.14 0.14 0.15  
  lag 2 0.5 0.74 1 0.74 0.5 0.39 0.32 0.28 0.24 0.19 0.17 0.17 0.15 0.14 0.14  
  lag 3 0.39 0.5 0.74 1 0.74 0.5 0.39 0.32 0.28 0.24 0.2 0.17 0.17 0.15 0.14  
  lag 4 0.32 0.39 0.5 0.74 1 0.74 0.5 0.39 0.32 0.28 0.25 0.2 0.17 0.17 0.15  
  lag 5 0.28 0.32 0.39 0.5 0.74 1 0.74 0.5 0.39 0.32 0.28 0.25 0.2 0.17 0.17  
  lag 6 0.25 0.28 0.32 0.39 0.5 0.74 1 0.74 0.5 0.39 0.32 0.28 0.25 0.2 0.17  
  lag 7 0.19 0.24 0.28 0.32 0.39 0.5 0.74 1 0.74 0.5 0.39 0.32 0.28 0.25 0.19  
  lag 8 0.17 0.19 0.24 0.28 0.32 0.39 0.5 0.74 1 0.74 0.5 0.39 0.32 0.28 0.25  
  lag 9 0.17 0.17 0.19 0.24 0.28 0.32 0.39 0.5 0.74 1 0.74 0.5 0.39 0.32 0.28  
  lag 10 0.15 0.17 0.17 0.2 0.25 0.28 0.32 0.39 0.5 0.74 1 0.74 0.5 0.39 0.32  
  lag 11 0.14 0.15 0.17 0.17 0.2 0.25 0.28 0.32 0.39 0.5 0.74 1 0.74 0.5 0.39  
  lag 12 0.14 0.14 0.15 0.17 0.17 0.2 0.25 0.28 0.32 0.39 0.5 0.74 1 0.74 0.5  
  lag 13 0.15 0.14 0.14 0.15 0.17 0.17 0.2 0.25 0.28 0.32 0.39 0.5 0.74 1 0.74  
  

PM
 2

.5
 

lag 14 0.17 0.15 0.14 0.14 0.15 0.17 0.17 0.19 0.25 0.28 0.32 0.39 0.5 0.74 1  
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Table 4: Ozone Lag Time Correlation Matrix 
                                     
    Ozone  
  Variable lag 0 lag 1 lag 2 lag 3 lag 4 lag 5 lag 6 lag 7 lag 8 lag 9 lag 10 lag 11 lag 12 lag 13 lag 14  
  lag 0 1.00 0.79 0.62 0.54 0.50 0.48 0.46 0.46 0.44 0.43 0.41 0.40 0.38 0.37 0.36  
  lag 1 0.79 1.00 0.79 0.61 0.54 0.50 0.48 0.46 0.46 0.44 0.43 0.41 0.40 0.38 0.37  
  lag 2 0.62 0.79 1.00 0.79 0.62 0.54 0.50 0.48 0.46 0.46 0.44 0.43 0.41 0.40 0.38  
  lag 3 0.54 0.61 0.79 1.00 0.79 0.62 0.54 0.50 0.48 0.46 0.46 0.44 0.43 0.41 0.39  
  lag 4 0.50 0.54 0.62 0.79 1.00 0.79 0.62 0.54 0.50 0.48 0.46 0.46 0.44 0.43 0.41  
  lag 5 0.48 0.50 0.54 0.62 0.79 1.00 0.79 0.62 0.54 0.50 0.48 0.46 0.46 0.44 0.43  
  lag 6 0.46 0.48 0.50 0.54 0.62 0.79 1.00 0.79 0.62 0.54 0.50 0.48 0.46 0.46 0.44  
  lag 7 0.46 0.46 0.48 0.50 0.54 0.62 0.79 1.00 0.79 0.62 0.54 0.50 0.48 0.46 0.46  
  lag 8 0.44 0.46 0.46 0.48 0.50 0.54 0.62 0.79 1.00 0.79 0.62 0.54 0.50 0.48 0.46  
  lag 9 0.43 0.44 0.46 0.46 0.48 0.50 0.54 0.62 0.79 1.00 0.79 0.62 0.54 0.50 0.48  
  lag 10 0.41 0.43 0.44 0.46 0.46 0.48 0.50 0.54 0.62 0.79 1.00 0.79 0.62 0.54 0.50  
  lag 11 0.40 0.41 0.43 0.44 0.46 0.46 0.48 0.50 0.54 0.62 0.79 1.00 0.79 0.62 0.54  
  lag 12 0.38 0.40 0.41 0.43 0.44 0.46 0.46 0.48 0.50 0.54 0.62 0.79 1.00 0.79 0.62  
  lag 13 0.37 0.38 0.40 0.41 0.43 0.44 0.46 0.46 0.48 0.50 0.54 0.62 0.79 1.00 0.79  
  

O
zo

ne
 

lag 14 0.36 0.37 0.38 0.39 0.41 0.43 0.44 0.46 0.46 0.48 0.50 0.54 0.62 0.79 1.00  
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Table 5: PM 2.5 and 03 single exposure model parameter estimates 
                
  All Races     Black Only    
           
  Urban and Rural    Urban and Rural   
  Parameter Relative Risk (95% CI)     Parameter Relative Risk (95% CI)   
  O3 lag 3 1.004 (1.001, 1.006)    O3 lag 4 1.004 (1.002, 1.006)   
  O3 lag10 1.005 (1.003, 1.007)    O3 lag 12 1.004 (1.002, 1.006)   
  PM2.5  5 1.005 (1.001, 1.008)    PM2.5 lag5 1.005 (1.001, 1.009)   
  PM2.5 12 1.008 (1.005, 1.01)    PM2.5 lag12 1.008 (1.004, 1.011)   
           
  Rural only     Rural only   
  Parameter Relative Risk (95% CI)     Parameter Relative Risk (95% CI)   
  O3 lag 2 1.004 (1.002, 1.006)    O3 lag 2 1.004 (1.002, 1.006)   
  O3 lag 10 1.004 (1.002, 1.006)    O3 lag 10 1.004 (1.002, 1.007)   
  PM2.5 lag4 1.003 (1.001, 1.005)        
           
  Urban Only     Urban Only   
  Parameter Relative Risk (95% CI)     Parameter Relative Risk (95% CI)   
  O3 lag 3 1.003 (1.001, 1.005)    O3 lag 3 1.003 (1.001, 1.005)   
  O3 lag 10 1.004 (1.003, 1.006)    O3 lag 10 1.004 (1.002, 1.006)   
  PM2.5 lag4 1.003 (1.001, 1.004)    PM2.5 lag4 1.002 (1.001, 1.004)   
  PM2.5 lag12 1.003 (1.001, 1.005)    PM2.5 lag12 1.004 (1.001, 1.007)   
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Table 6: Parameter Estimates for All Races in Lower Lag Range 
                 

  Urban & Rural Lower Range Urban Only Lower Range  Rural Only Lower Range  

  Parameter 
Relative Risk 
(95% CI) Parameter 

Relative Risk 
(95% CI) Parameter 

Relative Risk 
(95% CI)  

  Intercept 0(0, 0) Intercept 0(0, 0) Intercept 0(0, 0)  
  ozone lag 2 1.003(1.001, 1.005) ozone lag 2 1.003(1.001, 1.006) ozone lag 2 1.003(1.001, 1.005)  
  pm 2.5 lag 4 1.002(1, 1.004) pm 2.5 lag 5 1.004(1, 1.008) pm 2.5 lag 4 1.002(1, 1.004)  
  % black Q4 1.969(1.529, 2.535) % black Q4 3.688(2.688, 5.061) % black Q4 1.402(1.161, 1.694)  
  % black Q3 1.301(1.048, 1.615) % black Q3 1.331(0.949, 1.866) % black Q3 1.242(1.045, 1.477)  
  % black Q2 1.109(0.9, 1.368) % black Q2 1.462(0.987, 2.166) % black Q2 1.141(0.96, 1.357)  
  % black Q1 Reference % black Q1 Reference % black Q1 Reference  
  % female Q4 1.508(1.15, 1.978) Jan 0.926(0.875, 0.98) % female Q4 1.954(1.603, 2.383)  
  % female Q3 1.084(0.825, 1.425) Feb 0.926(0.862, 0.995) % female Q3 1.336(1.106, 1.615)  
  % female Q2 1.321(0.98, 1.781) Mar 0.88(0.817, 0.947) % female Q2 1.313(1.105, 1.56)  
  % female Q1 Reference Apr 0.837(0.785, 0.891) % female Q1 Reference  
  Jan 0.95(0.908, 0.994) May 0.731(0.683, 0.783) Jan 0.97(0.91, 1.034)  
  Feb 0.988(0.939, 1.039) Jun 0.715(0.676, 0.757) Feb 1.017(0.952, 1.087)  
  Mar 0.904(0.855, 0.955) Jul 0.664(0.621, 0.71) Mar 0.907(0.84, 0.98)  
  Apr 0.909(0.863, 0.957) Aug 0.766(0.715, 0.822) Apr 0.932(0.866, 1.004)  
  May 0.773(0.735, 0.813) Sep 0.865(0.811, 0.922) May 0.782(0.73, 0.838)  
  Jun 0.686(0.649, 0.724) Oct 1.071(1.016, 1.129) Jun 0.65(0.602, 0.701)  
  Jul 0.657(0.624, 0.692) Nov 0.991(0.948, 1.035) Jul 0.638(0.59, 0.689)  
  Aug 0.819(0.774, 0.865) Dec Reference Aug 0.836(0.772, 0.906)  
  Sep 0.923(0.882, 0.967)   Sep 0.943(0.884, 1.005)  
  Oct 1.1(1.051, 1.152)   Oct 1.098(1.026, 1.176)  
  Nov 1.06(1.016, 1.105)   Nov 1.099(1.036, 1.166)  
  Dec Reference   Dec Reference  
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Table 7: Parameter Estimates for All Races in Upper Lag Range 
                  

  Urban & Rural Upper Range Urban Only Upper Range  Rural Only Upper Range  

  Parameter 
Relative Risk 
(95% CI) Parameter 

Relative Risk 
(95% CI)  Parameter 

Relative Risk 
(95% CI)  

  Intercept 0(0, 0) Intercept 0(0, 0)  NA NA  
  ozone lag 12 1.002(1, 1.003) ozone lag 10 1.006(1.003, 1.008)     
  pm 2.5 lag 10 1.002(1, 1.004) pm 2.5 lag 12 1.006(1.003, 1.009)     
  % black Q4 1.97(1.531, 2.534) % black Q4 3.682(2.682, 5.055)     
  % black Q3 1.3(1.048, 1.612) % black Q3 1.325(0.945, 1.859)     
  % black Q2 1.109(0.9, 1.366) % black Q2 1.459(0.986, 2.158)     
  % black Q1 Reference % black Q1 Reference     
  % female Q4 1.509(1.152, 1.976) Jan 0.946(0.886, 1.009)     
  % female Q3 1.083(0.826, 1.421) Feb 0.92(0.856, 0.989)     
  % female Q2 1.323(0.984, 1.778) Mar 0.862(0.798, 0.932)     
  % female Q1 Reference Apr 0.804(0.752, 0.86)     
  Jan 0.967(0.922, 1.014) May 0.709(0.659, 0.763)     
  Feb 0.992(0.941, 1.046) Jun 0.694(0.654, 0.736)     
  Mar 0.916(0.867, 0.968) Jul 0.645(0.602, 0.692)     
  Apr 0.92(0.869, 0.975) Aug 0.729(0.677, 0.785)     
  May 0.782(0.741, 0.826) Sep 0.84(0.791, 0.891)     
  Jun 0.69(0.655, 0.727) Oct 1.028(0.97, 1.09)     
  Jul 0.658(0.624, 0.694) Nov 0.973(0.93, 1.019)     
  Aug 0.818(0.768, 0.872) Dec Reference     
  Sep 0.932(0.886, 0.98)       
  Oct 1.098(1.048, 1.15)       
  Nov 1.056(1.012, 1.103)       
  Dec Reference       
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Table 8: Parameter Estimates for Blacks Only in Lower Lag Range 
                   

  Urban & Rural Lower Range  Urban Only Lower Range  Rural Only Lower Range  

  Parameter 
Relative Risk 
(95% CI)  Parameter 

Relative Risk 
(95% CI)  Parameter 

Relative Risk 
(95% CI)  

  NA NA  Intercept 0(0, 0)  NA NA  
     ozone lag 4 1.004(1.001, 1.006)     
     pm 2.5 lag 2 1.003(1.001, 1.005)     
     Jan 0.904(0.835, 0.977)     
     Feb 0.882(0.82, 0.949)     
     Mar 0.869(0.79, 0.956)     
     Apr 0.822(0.754, 0.895)     
     May 0.723(0.659, 0.793)     
     Jun 0.715(0.659, 0.776)     
     Jul 0.676(0.616, 0.741)     
     Aug 0.773(0.708, 0.843)     
     Sep 0.895(0.829, 0.966)     
     Oct 1.127(1.057, 1.2)     
     Nov 1.025(0.972, 1.081)     
     Dec Reference     
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Table 9: Parameter Estimates for Blacks Only in Upper Lag Range 
              

  Urban & Rural Upper Range  Urban Only Upper Range Rural Only Upper Range  

  Parameter 
Relative Risk 
(95% CI)  Parameter 

Relative Risk 
(95% CI) Parameter 

Relative Risk 
(95% CI)  

  Intercept 0(0, 0)  Intercept 0(0, 0) NA NA  
  ozone lag 10 1.003(1.001, 1.005)  ozone lag 12 1.002(1, 1.004)   
  pm 2.5 lag 13 1.003(1.001, 1.005)  pm 2.5 lag 12 1.006(1.003, 1.009)    
  % female Q4 1.709(1.094, 2.672)  % female Q4 0.687(0.399, 1.183)    
  % female Q3 1.087(0.71, 1.665)  % female Q3 0.489(0.287, 0.833)    
  % female Q2 1.439(0.872, 2.372)  % female Q2 0.399(0.201, 0.791)    
  % female Q1 Reference  % female Q1 Reference    
  Jan 0.967(0.911, 1.028)  Jan 0.925(0.845, 1.013)    
  Feb 0.948(0.892, 1.008)  Feb 0.891(0.831, 0.956)    
  Mar 0.887(0.825, 0.955)  Mar 0.876(0.803, 0.955)    
  Apr 0.912(0.85, 0.978)  Apr 0.84(0.776, 0.909)    
  May 0.769(0.719, 0.823)  May 0.734(0.672, 0.801)    
  Jun 0.691(0.646, 0.738)  Jun 0.722(0.67, 0.778)    
  Jul 0.673(0.629, 0.721)  Jul 0.671(0.61, 0.739)    
  Aug 0.835(0.769, 0.907)  Aug 0.757(0.691, 0.83)    
  Sep 0.978(0.91, 1.05)  Sep 0.892(0.82, 0.972)    
  Oct 1.196(1.12, 1.278)  Oct 1.12(1.052, 1.192)    
  Nov 1.104(1.04, 1.171)  Nov 1.015(0.964, 1.068)    
  Dec Reference  Dec Reference    
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Table 10: Bayesian Model Parameter Estimates  
                    
  Urban & Rural  Urban Only  Rural Only   
  Parameter 95% Credible Interval  Parameter 95% Credible Interval  Parameter  95% Credible Interval   
  Intercept 0  (0,0)  Intercept 0  (0, 0)  Intercept 0  (0,0)   
  ozone lag 2 1.004  (1.003,1.006)  ozone lag 2 1.004  (1.002, 1.006)  ozone lag 2 1.004  (1.002,1.006)   
  pm 2.5 lag 4 1.003  (1.001,1.005)  pm 2.5 lag 5 1.004  (1.002, 1.007)  pm 2.5 lag 4 1.003  (1.000,1.006)   
  % black Q4 3.06  (2.505,3.792)  % black Q4 1.419  (1.015, 1.996)  % black Q4 2.987  (2.364,3.888)   
  % black Q3 2.096  (1.614,2.784)  % black Q3 1.185  (0.919, 1.543)  % black Q3 2.214  (1.805,2.773)   
  % black Q2 1.309  (1.089,1.511)  % black Q2 0.928  (0.766, 1.152)  % black Q2 1.529  (1.229,1.892)   
  % black Q1 Reference  % black Q1 Reference  % black Q1 Reference   
  % female Q4 0.677  (0.613,0.759)  Jan 0.925  (0.875, 0.981)  % female Q4 0.671  (0.479,0.827)   
  % female Q3 0.77  (0.675,0.87)  Feb 0.942  (0.888, 1.001)  % female Q3 0.987  (0.763,1.203)   
  % female Q2 1.03  (0.912,1.159)  Mar 0.867  (0.812, 0.926)  % female Q2 1.077  (0.854,1.294)   
  % female Q1 Reference  Apr 0.839  (0.783, 0.9)  % female Q1 Reference   
  Jan 0.952  (0.91,0.995)  May 0.729  (0.681, 0.78)  Jan 0.982  (0.919,1.053)   
  Feb 0.977  (0.935,1.021)  Jun 0.707  (0.661, 0.754)  Feb 1.044  (0.978,1.125)   
  Mar 0.879  (0.84,0.919)  Jul 0.669  (0.63, 0.716)  Mar 0.902  (0.843,0.974)   
  Apr 0.865  (0.822,0.909)  Aug 0.764  (0.714, 0.816)  Apr 0.918  (0.848,0.996)   
  May 0.736  (0.701,0.774)  Sep 0.858  (0.802, 0.915)  May 0.782  (0.725,0.846)   
  Jun 0.676  (0.645,0.708)  Oct 1.079  (1.018, 1.143)  Jun 0.638  (0.589,0.692)   
  Jul 0.641  (0.61,0.673)  Nov 1.001  (0.945, 1.06)  Jul 0.603  (0.557,0.653)   
  Aug 0.79  (0.756,0.827)  Dec Reference  Aug 0.81  (0.755,0.872)   
  Sep 0.896  (0.857,0.937)  σ2 Exchangeable 0.949  (0.811, 1.11)  Sep 0.915  (0.849,0.991)   
  Oct 1.078  (1.033,1.125)     Oct 1.06  (0.991,1.137)   
  Nov 1.059  (1.014,1.105)     Nov 1.098  (1.029,1.178)   
  Dec Reference     Dec Reference   
  σ2 CAR 2.751  (2.573,2.941)     σ2 CAR 2.69  (2.465,2.935)   
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Appendix 1: WinBUGS Model, Urban-Rural region with convolution prior 
 
model{ 
  for(g in 1 : nGrids) { 
      for(y in 1:nYears){ 
        for(m in 1:nMonths){ 
          for(d in 1:daysPerMonth[y,m]){ 
 
 ag_visits[m,d,y,g]~dpois(mu[m,d,y,g]) 
    
            log(mu[m,d,y,g]) <- log(cellPop[g, y]) + alpha0 
               
              + alpha.o3_lag2 * o3_lag2[m,d,y,g] 
              + alpha.pm25_lag4 * pm25_lag4[m,d,y,g] 
               
              + alpha.m1 * m1[m] 
              + alpha.m2 * m2[m] 
              + alpha.m3 * m3[m] 
              + alpha.m4 * m4[m] 
              + alpha.m5 * m5[m] 
              + alpha.m6 * m6[m] 
              + alpha.m7 * m7[m] 
              + alpha.m8 * m8[m] 
              + alpha.m9 * m9[m] 
              + alpha.m10 * m10[m] 
              + alpha.m11 * m11[m] 
               
              + alpha.black_q2 * black_q2[g, y] 
              + alpha.black_q3 * black_q3[g, y] 
              + alpha.black_q4 * black_q4[g, y] 
               
              + alpha.fem_q2 * fem_q2[g,y] 
              + alpha.fem_q3 * fem_q3[g,y] 
              + alpha.fem_q4 * fem_q4[g,y] 
 
              + b_grid[g] 
              + b_CAR[g] 
 
 

} #end day iterator 
        } #end month iterator 
    } #end year iterator 
      
   b_grid[g] ~ dnorm(0.0, tau.b_grid) 
   
  } #end grid iterator and main model spec 
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  #Spatial CAR Random Effect Prior 
  b_CAR[1:nGrids] ~ car.normal(adj[], weights[], numNeigh[], tau.b_CAR) 
  for(k in 1:sumNumNeigh){ 
    weights[k] <- 1 
  } 
   
  # priors: 
  #intercept must be dflat to account for CAR parameterized to sum to 0 
  alpha0 ~ dflat() 
  alpha.o3_lag2 ~ dnorm(0.0,1.0E-4)  
  alpha.pm25_lag4  ~ dnorm(0.0,1.0E-4); 
  alpha.m1 ~ dnorm(0.0,1.0E-4) 
  alpha.m2 ~ dnorm(0.0,1.0E-4) 
  alpha.m3 ~ dnorm(0.0,1.0E-4) 
  alpha.m4 ~ dnorm(0.0,1.0E-4) 
  alpha.m5 ~ dnorm(0.0,1.0E-4) 
  alpha.m6 ~ dnorm(0.0,1.0E-4) 
  alpha.m7 ~ dnorm(0.0,1.0E-4) 
  alpha.m8 ~ dnorm(0.0,1.0E-4) 
  alpha.m9 ~ dnorm(0.0,1.0E-4) 
  alpha.m10 ~ dnorm(0.0,1.0E-4) 
  alpha.m11 ~ dnorm(0.0,1.0E-4) 
   
  alpha.black_q2 ~ dnorm(0.0,1.0E-4) 
  alpha.black_q3 ~ dnorm(0.0,1.0E-4) 
  alpha.black_q4 ~ dnorm(0.0,1.0E-4) 
   
  alpha.fem_q2 ~ dnorm(0.0,1.0E-4) 
  alpha.fem_q3 ~ dnorm(0.0,1.0E-4) 
  alpha.fem_q4 ~ dnorm(0.0,1.0E-4) 
 
  tau.b_grid     ~ dgamma(1.0E-3,1.0E-3); sigma.b_grid  <- sqrt(1.0/tau.b_grid) 
  tau.b_CAR      ~ dgamma(1.0E-3,1.0E-3); sigma.b_CAR  <- sqrt(1.0/tau.b_CAR) 
  
} 
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Appendix 2: Urban – Rural, Selected fixed effect MCMC chains and posterior 
distributions from CAR model 
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Appendix 3: Rural Only, Selected fixed effect MCMC chains and posterior distributions 
from CAR model 
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Appendix 4: Urban Only, Selected fixed effect MCMC chains and posterior distributions 
from Exchangeable model 
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