
Distribution Agreement

In presenting this thesis or dissertation as a partial fulfillment of the re-
quirements for an advanced degree from Emory University, I hereby grant
to Emory University and its agents the non-exclusive license to archive,
make accessible, and display my thesis or dissertation in whole or in part in
all forms of media, now or hereafter known, including display on the world
wide web. I understand that I may select some access restrictions as part
of the online submission of this thesis or dissertation. I retain all ownership
rights to the copyright of the thesis or dissertation. I also retain the right
to use in future works (such as articles or books) all or part of this thesis or
dissertation.

Signature:

Andrés Celis Date

APPROVAL SHEET

A Stochastic Model for Networks that Arise from Conference Scheduling Problems

By

Andrés Celis

Master of Science

Computer Science

Michelangelo Grigni, PhD

Advisor

James Lu, PhD

Committee Member

Vicki Hertzberg, PhD

Committee Member

Accepted:

Lisa A. Tedesco, Ph.D.

Dean of the James T. Laney School of Graduate Studies

___________________ Date

A Stochastic Model for Networks that Arise from Conference Scheduling Problems

By

Andrés Celis
M.S., Emory University, 2015

Advisor: Michelangelo Grigni, Ph.D.

An abstract of
A thesis submitted to the Faculty of the Graduate School

of Emory University in partial fulfillment
of the requirements for the degree of

Master of Science
in Mathematics and Computer Science

2015

Abstract

A Stochastic Model for Networks that Arise from Conference Scheduling Problems
By Andrés Celis

A conference scheduling problem may be viewed as an undirected graph
whose vertices correspond to the events of the conference, and whose edges
correspond to constraints that prohibit two events from being scheduled at
the same time. In this thesis we propose and analyze a new random graph
model inspired by a series of experimental observations on datasets from the
industry, as well as conversations with a conference scheduler.

Our models di↵ers from existing random graph models in the following:

1. We find that graph models with independently chosen edges do not
result in degree distributions found in conference scheduling problems.
Thus our model’s edges are statistically dependent on each other.

2. Our model introduces new vertices into the graph as time evolves. The
existing models that do this have small, bounded clique and chromatic
numbers and are trivial to color, which is not an accurate representa-
tion of scheduling problems. We show that the expected clique number
of our model has a lower bound of ⌦(T 1/4/(log T)3/4). We also argue
that the expected clique and chromatic numbers of our model are up-
per bounded by O(T 1/4) and O(T 2/5), respectively.

A Stochastic Model for Networks that Arise from Conference Scheduling Problems

By

Andrés Celis
M.S., Emory University, 2015

Advisor: Michelangelo Grigni, Ph.D.

A thesis submitted to the Faculty of the Graduate School
of Emory University in partial fulfillment

of the requirements for the degree of
Master of Science

in Mathematics and Computer Science
2015

Acknowledgments

I wish to express my sincere gratitude to my advisor, Michelangelo
Grigni, whose guidance was invaluable. I am grateful to my family for their
endless love and support, this thesis would not have been possible without
them.

Contents

1 Introduction 1

2 Graph Coloring and Existing Graph Models 3

2.1 Graph Coloring . 3

2.2 Erdős-Rényi Model . 4

2.3 Barabási-Albert Model . 5

2.4 Evolving Copying Model . 5

2.5 Coloring Algorithms . 6

2.5.1 Greedy . 6

2.5.2 DSATUR . 7

2.5.3 RLF . 7

2.5.4 Ex-DSATUR . 8

3 Haws Model 9

3.1 General Description . 9

3.2 Construction Process and Choosing Edges 11

4 Analysis of Haws Model and Future Work 14

4.1 Experimental Results . 14

4.1.1 Degree Distribution Results 14

4.1.2 Clique and Chromatic Number Results 18

4.2 Analysis . 30

4.2.1 The Triangle Model . 30

4.2.2 Degree Estimates . 32

4.2.3 Lower Bounds . 32

4.2.4 Upper Bounds . 33

4.3 Summary and Future Work 34

Appendix 36

5.1 Haws Model Graph Generator 36

5.2 Usage . 40

Bibliography 43

3

List of Figures

3.1 Example constructions. Above left: bipartite graph when T

= 10 and d = 2. Above right: square of bipartite graph on

the vertex set V , when T = 50 and d = 2. 10

4.1 Degree distributions of two of Haws’ datasets, standard axes. . 15

4.2 Degree distributions from our “triangle” model for graphs of

similar size to Haws’ datasets. 16

4.3 Degree distribution averaged over 100 “triangle” model graphs. 17

4.4 The averaged max clique size as T grows from 5,000 to 100,000,

with the x-axis in log scale. 20

4.5 A view of how the degrees of the top 10 celebrities evolve over

time on a loglog scale. 21

4.6 Estimations of the size of the celebrity set. 22

4.7 The number of edges added to the celebrity set, per every

1,000 timesteps as the size of the graph increases from 1,000

to 100,000. 24

4.8 Average left degree in S on normal and loglog scales. 25

4.9 Plot of χ(G) and ω(G), x-axis in log scale. 26

4.10 Accuracy and time performance of coloring algorithms. The

top two figures have the x-axis on a log scale 27

4.11 Colors needed by the greedy coloring approach given vertex or-

dered by generation and by degree. Overlaid with the timestep

that the maximum color was used 28

4.12 Preprocessing figures on loglog scale. 29

List of Tables

4.1 β estimates for Haws graphs of size 10,000 averaged over 200

trials. d defines the number of edges we add at each timestep

of the graph generation and q is the probability of taking a

“speaker” step. Note that the top left estimation is for what

we call the “triangle” model. 18

1

Chapter 1

Introduction

Charles Haws of the Society of Biblical Literature schedules conferences.

For a given conference, he has several hundred talks to schedule in a few

time slots, but he must honor conflict constraints; in particular, pairs of

talks cannot be scheduled together because of a common speaker. There are

multiple speakers per talk and many speakers are involved in multiple talks.

In the worst case, scheduling problems are computationally difficult, but we

observed that Haws’ instances were relatively easy to solve. We propose an

explanation for this in terms of a stochastic social network model and go on

to analyze its properties.

There were several characteristics of Haws’ datasets that stood out to us:

1. The high degree of collaboration between the speakers of these con-

ferences: it is likely they are presenting a talk together because they

coauthored a paper or report.

2. The graphs that arose from Haws’ datasets tended to have a low average

degree, with only a small, high degree “core” of the graph that was

difficult to schedule.

3. The bipartite nature of this problem: a set of talks that have conflict

constraints imposed on them by a set of speakers.

2

We believe that these characteristics are essential to getting an accurate

representation of conference scheduling problems. Reviewing the literature,

we were unable to find a stochastic model that captured these features, so

we propose a stochastic model which we designed with these characteristics

in mind.

3

Chapter 2

Graph Coloring and Existing

Graph Models

2.1 Graph Coloring

In the Graph Coloring Problem (GCP), one is given an undirected graph

G = (V,E), with V being the set of |V | = n vertices and E being the set of

edges. A k-coloring of G is a mapping φ : V → Γ, where Γ = 1, 2, ..., k is the

set of |Γ| = k integers, each one representing a color. We say that a coloring

is valid if for each (u, v) ∈ E we have φ(u) 6= φ(v); otherwise it is invalid.

The chromatic number of a graph, χ(G), is the smallest k for which a valid

k-coloring can be found. If the vertices of a graph represent the events of a

conference, and there is an edge between two vertices if the corresponding

events cannot be scheduled at the same time, then finding a valid coloring

for the graph is equivalent to creating a schedule for the conference, since

each color can be thought of as a timeslot.

Many random graph models have been proposed in order to study and

better understand networks that appear in the real world such as genetic

networks, interbank payment networks, airline networks, radio frequency net-

works, and the World Wide Web. In this section, we overview some of these

4

existing models and discuss why they do not accurately represent conference

scheduling problems.

2.2 Erdős-Rényi Model

An Erdős-Rényi (ER) graph[8], G(n, p) = (V,E), is constructed with |V | = n

vertices, where each of the
(
n
2

)
possible edges have probability p of being

added to the edge set E. The expected number of edges in the graph, G(n, p),

is
(
n
2

)
p, and the ER model has a binomial degree distribution. A clique is

a subset K ⊂ V , such that for all ki, kj ∈ K, there is an edge (ki, kj) ∈ E.

The size of the largest clique in a graph is called the clique number, ω(G).

By definition, ω(G) ≤ χ(G). The ER model is well studied and it has been

shown that, E[ω(G)] ∼ 2 ln(n)
ln(1/p)

[3], and E[χ(G)] ∼ n
2 ln(n)

[2].

We believe this model is an inappropriate representation of a typical con-

ference scheduling problem for several reasons. First, there is no natural way

to introduce scheduling constraints in the ER model, as the only parameter

that influences the structure of the graph is p. Second, it does not capture

the bipartite nature of conference scheduling. Additionally, the average de-

gree in the ER model is proportional to the size of the graph, whereas in

conference scheduling we observe a constant average degree. Although the

model does have a small, high degree “core”, as evidenced by ω(G) being

θ(log(n)), the high average degree of the graph masks the location of the

“core, which makes the graph much harder to schedule. This can be seen

by the large gap between ω(G) and χ(G), as well as the slower performance

of coloring algorithms on the ER model. This contrasts with networks that

arise from conference scheduling problems, where the difficult “core” is easily

identifiable among the low degree vertices.

5

2.3 Barabási-Albert Model

In a Barabási-Albert (BA) graph[1], G(n,m,m0) = (V,E), the construction

process begins with an initial network of m0 ≤ n vertices, usually connected

as a cycle. A new vertex, vt, is then added at each timestep t = m0 +

1,m0 + 2, ..., n, so at the end of the construction n = |V |. Each vertex vi is

connected to m ≤ m0 existing vertices on timestep i, with a probability that

is proportional to the degree of the existing vertices. The probability that a

new vertex is connected to vertex vj is dj/
∑

i di, where di is the degree of

vertex i.

The BA model has a constant average degree, which is desirable for rep-

resenting conference scheduling problems. It also has a power law degree

distribution, which asserts that the number of vertices with degree k is pro-

portional to k−β for some exponent β ≥ 1[10]. This implies that the model

has many low degree vertices, and a small high degree “core”.

The reason we find the BA model inapropiate is that it has a small, bounded

χ(G), and therefore ω(G), and is trivial to color. This is due to the construc-

tion process of the model. Imagine that you are allowed to “observe” the

construction process, and that the intial graph of size m0 has been colored.

We know χ(G) ≤ m0, and at each timestep a vertex is added to the graph

with fixed degree m. Coloring this newly added vertex, with a simple greedy

coloring rule will require no more than m+ 1 colors, so we can conclude that

χ(G) stays constant as the graph grows, and no large clique emerges. This

is an unrealistic setting when it comes to conference scheduling problems.

2.4 Evolving Copying Model

The evolving copying (EC) model[9], has similar characteristics to the BA

model, such as a power law degree distribution and a constant average degree.

6

An EC graph, G(n, p, d) = (V,E), also begins with a small initial graph of

size ≥ d. Then, at each timestep t = d+1, d+2, ..., n a vertex is added to the

graph. Each vertex added selects a “prototype” vertex uniformly at random

from the existing graph. The newly introduced vertex then randomly chooses

d edges to existing vertices, with probability p of choosing a vertex uniformly

at random, and p− 1 of copying an edge from its prototype. The EC model

is inappropriate for reasons similar to the BA model.

2.5 Coloring Algorithms

The GCP has many real world applications such as air traffic flow manage-

ment, register allocation, frequency assignment, timetabling and scheduling.

As such, there has been much work put into finding efficient algorithms for

the GCP. In this section, we overview some of the algorithms presented and

analyzed in Chirandini et al.[6] We go on to measure their performance on

Haws’ datasets and our model.

2.5.1 Greedy

Given a graph G = (V,E), an ordering of V , (v1, v2, ..., vn), and a set of colors

Γ = 1, 2, ..., k, the greedy algorithm has n coloring steps, where at each step

i, it assigns vi the smallest color in Γ that does not cause a conflict with the

already colored graph. The performance of the greedy algorithm depends

heavily on the ordering of the the vertices. For example, when coloring a

complete bipartite graph with the edges of a perfect matching removed, if all

of the vertices in one of the sets appear before all the vertices of the other

set, the greedy approach will find the optimal coloring of 2 colors. However,

if the ordering is an alternation between vertices of the two sets, the greedy

approach will use up to n/2 colors.

7

2.5.2 DSATUR

Similarly to the greedy approach, the DSATUR heuristic uses an ordering

of vertices, however, the ordering of the remaining vertices is recomputed at

the end of each coloring step. The initial ordering of the vertices is found

by sorting the vertices by degree. Afterwards, the order is decided in part

by the partial coloring in the graph. At the end of each coloring step, the

remaining vertices are ordered by the number of distinct colors that their

neighbors have been assigned. Ties are broken by degree in the uncolored

portion of the graph and further ties are broken arbitrarily. The idea behind

this approach is to try to color the most difficult vertices first, and a good

indication of a vertex being “difficult” to color is its degree and the amount

of distinct colors its neighbors are using.

2.5.3 RLF

Given a graph G = (V,E), the Recursive Largest First algorithm recursively

builds the largest independent set in a graph that it can find, given some

heuristic or stochastic local search approach. RLF then assigns the indepen-

dent set a color, removes it from the graph, and repeats the process. An

independent set of a graph is a subset of the vertices in the graph, I ⊂ V ,

where no two vertices in I are adjacent. This definition is complementary to

that of a clique, where all pairs of vertices in a subset have an edge between

them. A common method for building an independent set is to create a set P

of potential vertices to add to the indenpendent set I, and a set U of vertices

which are unavailable to the independent set. I and U begin as the empty

set and P begins as a copy of V . Then the vertex with highest degree to

vertices in U is removed from P and added to I, and all its neighbors are

moved into U . The initial vertex added to I can be a random choice or it

can be motivated by some heuristic. For a more detailed description we refer

8

the reader to [5].

2.5.4 Ex-DSATUR

We use the above algorithms to be able to quickly find upper bounds on the

chromatic number of a graph. However, in order to find χ(G) exactly, we

use Michael Trick’s implementation of Ex-DSATUR. This algorithm uses the

DSATUR heuristic, but explores many vertex orderings. To avoid exploring

unnecessary orderings, it uses the notion of tight colorings to prune the search

tree. For a more technical description, we refer the reader to [11] and [14].

A graph for which ω(G) = χ(G) is called perfect, and if ω(G) is close to χ(G)

the graph is called quasi-perfect. For graphs that are perfect or near perfect,

Ex-DSATUR can effectively prune the search tree and performs well[6].

9

Chapter 3

Haws Model

In this section, we introduce the “Haws” model, which we believe is rep-

resentative of typical conference scheduling instances. It is also based on a

plausible social model for how communities with a high degree of collabora-

tion develop. We model Haws’ conference scheduling problem as a bipartite

graph B = (U, V,E) where U is the set of speakers, V is the set of talks, and

E is the set of edges corresponding to the constraints on the talks by the

speakers.

3.1 General Description

We construct a Haws graph in T steps. At each timestep of the construction

t, from 1, 2, ...T , where T is the number of talks, we introduce a vertex ut to

the set U , and a vertex vt to the set V , and an edge (ut, vt) to the edge set

E. The intuition behind this is that there is a lead speaker for each talk. At

timestep 1, vertex u1 is added to U , v1 to V , and (u1, v1) to E. At timestep

2, u2 is added to U , v2 to V , and (u2, v2), (u2, v1) to E. At timestep j, uj and

vj are introduced with an edge between them, and uj gets minimum(j, d)

additional edges to previously introduced vertices in the set V , where d is a

parameter to the graph. The methods used to choose these additional edges

is discussed in section 4.2. If ui and uj both have an edge to some vk, then

the two speakers (ui, uj) are involved in the same talk (vk).

10

Figure 3.1: Example constructions. Above left: bipartite graph when T =
10 and d = 2. Above right: square of bipartite graph on the vertex set V ,
when T = 50 and d = 2.

While we believe this construction leads to an accurate representation of

Haws’ datasets, this form of the graph does not lend itself to coloring or

schedule-finding algorithms since it includes the speaker set U . However, by

taking the square of B and then restricting it to the talk set V , the resulting

graph G = (B2|V , B[E](2)) has an edge (vi, vj) ∈ B[E](2) if and only if talks

vi and vj have a common speaker (i.e. they cannot be scheduled in the

same timeslot). In other words, the vertex set of the square graph, B2|V , is

simply the set V from the bipartite graph, and the edge set of the square

graph, B[E](2), is comprised of edges between vertices vi and vj when there

is a path of length two between them in the bipartite graph. Note that

G = (B2|U , B[E](2)) would have much larger cliques since some vertices in V

have very high degree.

Alternatively, we can define the bipartite graph as an adjacency matrix A,

of size |U |×|V |, where Ai,j = 1 if ui has an edge to vj, and Ai,j = 0 otherwise,

for i = 1, 2, ..., |U |, j = 1, 2, ..., |V |. The adjacency matrix of the square of

the graph = S, restricted to the talk set, can then be found by the boolean

matrix multiplication S = AAT .

Thus, if we can find a valid k-coloring for G, where k is the number of

11

timeslots available, we have created a schedule for the conference.

3.2 Construction Process and Choosing Edges

In this section we go into more detail of how edges are chosen when introduc-

ing a new vertex ut with it’s corresponding vt, and Algorithm 1 describes

the construction process of the graph based on parameters.

Choosing a vertex “by degree” means that an edge from the graph will be

chosen uniformly at random, and the appropriate endpoint will be selected

(thus the probability of a vertex being selected is proportional to its degree).

We refer to this method of picking the d random edges as the “standard”

model.

This method of choosing edges draws inspiration from the Barabasi Al-

bert model, but our full generator also produces variants of the Haws model

described above. One of the variants contains elements of the EC model,

where on the introduction of each vertex vt for t = 1, 2, ..., T a “parent”

vertex is picked. The parent could be chosen either uniformly at random, or

with probability proportional to its degree. The vertex vt would then have

some probability p of copying edges from its parent, and probability 1 − p
of choosing an edge from the graph. Whether choosing from the graph is

done uniformly or by degree is another variant to consider. We call this the

“copy” model.

Additionally, our generator can also produce graphs for the more realistic

case where |U | > |V | or |U | >> |V |, that is, when there are more speakers

than talks in a conference. We have some probability q of taking a “speaker”

step. That is, of introducing a speaker ut without a corresponding talk vt

at that step. We call this the “speaker” model. The speaker can then be

related to pre-existing talks by one of the methods mentioned above. The

full graph generator for both the standard model and its variants is available

12

in the appendix.

Like the graph models mentioned earlier, BA and EC, our model also has

a power law degree distribution. However, an important difference between

our model and the existing ones is that large cliques can emerge through the

construction process of our model. As discussed above, the other two power

law degree distribution models have a small, bounded χ(G), and are trivial

to color if the generation order of the vertices is known.

We argue that this does not hold true in the Haws model. Suppose we

have an initial graph that is colored. At each timestep we add a new vertex

with fixed degree, but we also add an edge between existing vertices in the

graph. This can cause conflicts, since two vertices that had the same color

could find themselves connected by an edge later in the construction process,

forcing one of them to be recolored. We conjecture that ω(G), and therefore

χ(G), is unbounded as the graph grows. We go on to experimentally and

analytically determine how fast they grow.

13

Algorithm 1 Graph Generator

Parameters:
T - the number of talk vertices, |V | = |U |.
d - the number of random edges each speaker vertex in U gets to V .
// Define a bipartite graph, B = (UB, VB, EB), speaker set UB, talk set VB. EB
// defines the edges of the graph, it is a vector of adjacency lists where each
// entry is indexed by a speaker vertex.
UB ← ∅
VB ← ∅
EB ← vector of size n where every entry is an adjacency list
// For every timestep, from 1 to T
for t < T do

// Add ut, to UB, vt to VB.
UB.add(ut)
VB.add(vt)
// Add edge vt to the adjacency list corresponding to ut.
// This defines the edge (ut, vt).
EB[ut].add(vt)
// Add minimum(d,t-1) distinct, random edges from ut to VB.
i← 0
while |EB[ut]| < minimum(d, t− 1) + 1 do

// Choose a vertex vj from j = 0, 1, ..., t− 1 by degree.
vj = getVertexByDegree()
// Ensure vj is not already adjacent to ut
if vj /∈ EB[ut] then

// Add edge. Since we insist on distinct edges,
// we can add the edge to the graph now, without
// affecting the relative probabilities of the
// vertices being chosen at later steps.
EB[ut].add(vj)

// Now we take the square of the bipartite graph, restricting it to VB. Define
// a squared graph, S = (VS , ES). VS is the vertex set, ES is the new edge set.
VS ← VB.
ES ← ∅.
for each u ∈ UB do

for each pair (vi, vj) ∈ EB[u] do
// Here we use that set operations (automatically throws out duplicates).
Es.add((vi, vj))

14

Chapter 4

Analysis of Haws Model and

Future Work

4.1 Experimental Results

The standard model can be created from the graph generator in the appendix

with the following configuration of parameters: p = 1.0, s = 0.0, uniformPar-

ent = false, and uniformChild = false. The following results, unless stated

otherwise, are conducted on the standard model with d = 2. We call this

variant the “triangle” model, as it adds a 3-clique to the graph at every

timestep in the construction.

4.1.1 Degree Distribution Results

The degree distribution of the vertices in V , after taking the square of the

bipartite graph, is, at least experimentally, a power law distribution. This

is unsurprising given that the probability of a vertex vi ∈ V being selected

as an endpoint of an edge in timestep t > i is proportional to its degree.

This gives preference to high degree vertices and is often called “the rich get

richer.” The power law asserts that the number of vertices with degree k is

proportional to k−β for some exponent β ≥ 1.

15

A power law degree distribution implies that the graph is mostly sparse,

with only a small set of vertices having very high degree. We believe this is

one reason why Haws’ instances are relatively easy to color.

Haws Dataset Distributions

In this section we discuss the degree distributions of the datasets we received

from Haws. We believe our model is a good representation of a realistic

conference scheduling problem for the following reasons:

• The degree sequence roughly approximates that of Haws’ datasets.

• Our generator is based on preferential attachment schemes, which sim-

ulates the social nature of collaborating on papers or reports.

• Through discussions with with Haws and experiments, we noted that

there tended to be many low degree vertices and a small, high degree

“core” of the graph that was difficult to schedule. Both of these at-

tributes come naturally with the power law.

Figure 4.1: Degree distributions of two of Haws’ datasets, standard axes.

We show a degree distribution as a histogram, that is, we split the range

of degrees in a graph into a series of evenly sized intervals, and we count the

number of vertices that appear in each interval. These histograms show that

16

Haws’ datasets have many low degree vertices, which is consistent with the

sparsity of graphs with a power law degree distribution.

Figure 4.2: Degree distributions from our “triangle” model for graphs of
similar size to Haws’ datasets.

Stochastic Model Distribution

Here we show the degree distribution as a loglog plot. We choose this over

a histogram because a consequence of the power law distribution is that it

looks like a straight line when plotted on a loglog scale. This was helpful

in experimentally verifying that our “triangle” model was an example of the

power law.

17

Figure 4.3: Degree distribution averaged over 100 “triangle” model graphs.

Estimated Beta

In a power law distribution, the number of vertices with degree k is propor-

tional to k−β for some exponent β ≥ 1. To help show that Haws graphs have

power law degree sequences, we estimated the exponent β on some of the

variants for our model.

18

q d=2 d=3 d=4 d=5

0.0 1.45 1.50 1.54 1.53

0.1 1.46 1.49 1.53 1.58

0.2 1.47 1.52 1.54 1.59

0.3 1.48 1.52 1.56 1.59

0.4 1.49 1.54 1.58 1.61

0.5 1.49 1.55 1.59 1.65

0.6 1.51 1.58 1.62 1.68

0.7 1.53 1.59 1.69 1.75

0.8 1.57 1.66 1.71 2.04

0.9 1.65 1.70 2.00 2.03

Table 4.1: β estimates for Haws graphs of size 10,000 averaged over 200
trials. d defines the number of edges we add at each timestep of the graph
generation and q is the probability of taking a “speaker” step. Note that the
top left estimation is for what we call the “triangle” model.

In order to find the estimates for β, we use PLFIT, the goodness-of-fit based

method described in Clauset, Shalizi, Newman[12][7]. The fitting procedure

works as follows:

1. Given a vector x, for each possible choice of the minimum value xmin,

they estimate β via the method of maximum likelihood, and calculate

the Kolmogorov-Smirnov goodness-of-fit statistic D.

2. The xmin value that gives the minimum value ofD over all values of xmin

is then selected as the estimate of the true xmin, and the corresponding

β is reported.

4.1.2 Clique and Chromatic Number Results

The chromatic number of a graph, χ(G), is important to study in our model

since it defines the minimum number of timeslots a conference needs in order

19

to create a schedule with no conflicts. We use several algorithms to give us

an idea of the difficulty of scheduling instances from our model, and to help

determine the growth rate of χ(G). In addition to using an exact solver for

χ(G), we also use a clique finding algorithm to find ω(G), which gives a lower

bound on χ(G). To find upper bounds on χ(G), we use approximation and

stochastic local search algorithms. We find that the growth rate of ω(G) is

logarithmic, and that there is little separation between the values of ω(G)

and χ(G), at least within the range of realistic conference sizes.

When running the exact solver, Ex-DSATUR, on the datasets we received

from Haws, the chromatic number was found in under a second. We believe

that this is due in part to the low average degree of the graph and to ω(G)

being close to χ(G), since Ex-DSATUR has been shown to perform well in

such cases.

We also relate our model to the Erdős-Rényi model by defining a subset of

vertices which has a constant fraction of the possible edges in the set. This

makes the subset, S, similar to an ER graph G(|S|, p). Relating our model

to the ER model helps us give analytical bounds on ω(G) in section 6.

Clique Number Growth

In addition to providing a lower bound on the growth rate of χ(G), we want to

study ω(G) to confirm that our model is providing a realistic representation

of typical conference scheduling problems. That is, we wish to have a model

that has a small, high degree core that is more difficult to color. In the plot

below, since the x-axis is on a log scale, we see that a straight line indicates a

logarithmic growth rate of ω(G). We measured ω(G) with the clique finding

program “cliquer”[13].

20

Figure 4.4: The averaged max clique size as T grows from 5,000 to 100,000,
with the x-axis in log scale.

This convex curve is consistent with clique size T 1/4. The growth rate

indicates that there is a high degree core of the graph, which is unsurprising.

We know the average degree of the graphs generated by our model is at most

6 when d = 2 because we add at least 2 edges and at most 3 edges every time

we add a vertex to the graph. However, due to the preferential attachment

scheme of our generator, we know there is a small set of vertices that received

high degree early in the graph generation, and the “rich get richer” process

allowed them to maintain their high degree.

Celebrity Vertices

In this section, we introduce the notion of “celebrity” vertices, those vertices

which have very high degree compared to the rest of the network. We name

them celebrity vertices since at many timesteps, they were “chosen” by other

vertices, and so they are “popular.”

It becomes important to study these vertices when analyzing the growth

rate of ω(G) and χ(G) because they are the most likely vertices to be involved

21

in the part of the graph that is difficult to color. Thinking about it in terms

of trying to color the graph as it is being generated, these vertices are the

most likely to be “chosen” by a later vertex and gain an edge that could

cause a conflict in the current partial coloring and force a recoloring among

the vertices.

Figure 4.5: A view of how the degrees of the top 10 celebrities evolve over
time on a loglog scale.

The figure above shows the growth rate of the top ten celebrity vertices

on a loglog scale. The straight lines indicate that the corresponding vertices

have polynomial degree growth with respect to the size of the graph, and

the fact that the slopes are parallel indicates that the vertices have the same

exponent in their polynomial growth. We define a set S, which holds all the

celebrity vertices of a graph. We would like to know how large the set of

celebrities tends to be.

Size of Celebrity Set An alternative way of thinking about the set of

celebrity vertices is as a set that has a constant fraction of the possible edges

within that set. Only very high degree vertices have a high likelihood of being

22

connected, since the only way for two existing vertices to get connected in

our model is for both to be chosen by a vertex being introduced on a later

timestep, and the likelihood of being chosen is proportional to their degree.

Since a constant fraction of edges are present in S, we can relate it to the

ER model.

We find the size of the celebrity set in two different steps. First, we add

vertices to the celebrity set S in generation order, as those have the best

chance of having high degree. We continue adding the vertices to S as long

as more than 50% of the edges are present in S. The top plot of the three

below shows the average size of S with this construction as a function of the

size of the graph. We plot it on a loglog scale in order to determine whether

the growth rate is polynomial, and if so, to get a estimate on how large the

exponent of the polynomial is.

Figure 4.6: Estimations of the size of the celebrity set.

23

The bottom two figures represent a way of verifying the size of S. We

choose a size for S and see what fraction of the possible edges are present

as a function of the size of the graph. We chose to look at the top 4
√
T

vertices, where T is the size of the graph, because this number was suggested

by the slope of the first plot. In the bottom left plot, we choose the first 4
√
T

introduced by the graph, i.e., in generation order. In the bottom right figure

we choose the same number of vertices but ordered by their degree, so they

are guaranteed to be the highest degree vertices in the graph. As such, there

is a jump in the fraction of possible edges present.

Arrival Rate of Edges to Celebrity Set In order to be able to estimate

at what rate edges are added to S, we partially generate a graph, and identify

the highest degree vertices and add them to S. After building S we no longer

add any more vertices to it as the graph continues to grow. Instead, we keep

track of how many new edges are arriving to S as the graph grows. We found

that edges arrive at a high rate to S initially, and then there is a sharp decline

in incoming edges. Since we do not allow duplicate edges, this is unsurprising

because as the number of edges in S increases, there is a higher chance of an

edge being “rejected”, i.e., the endpoints of an already existing edge being

chosen by the newly introduced vertex.

24

Figure 4.7: The number of edges added to the celebrity set, per every 1,000
timesteps as the size of the graph increases from 1,000 to 100,000.

In the figure above we see that S becomes saturated early in the graph

generation process and afterwards few new edges are added simply because

there is a low percentage of edges that do not already exist in the set.

Left Degree This experiment attempts to measure how large the average

left degree is in the celebrity set S. When the vertices are named by the

timestep they were generated (1, 2, ..., T), the “left degree” of vertex i is the

number of edges that vertex i has to vertices in the set {1, 2, ..., i− 1}. The

left degree of a vertex v does not include the two edges that are introduced

upon the arrival of v.

25

Figure 4.8: Average left degree in S on normal and loglog scales.

The above figure on the left is plotted on a normal scale, but since it was

difficult to distinguish whether the the growth was logarithmic or a small

factional power of T , we additionally plotted the the x-axis on a log scale.

Since the curve is clearly concave up we can see that the growth is greater

than logarithmic. This supports our argument that S becomes saturated as

the size of the graph increases.

Chromatic Number Growth

It is important to note that the chromatic number is experimentally close

to the clique number for the Haws model, i.e. χ(G) ≈ ω(G). Due to this,

Ex-DSATUR performs well since it can effectively prune the search tree.

26

Figure 4.9: Plot of χ(G) and ω(G), x-axis in log scale.

The clique and chromatic number seem to grow at the same rate, with

only a small gap between them. The gap does widen for larger sizes of the

graph, but the average difference between the clique and chromatic numbers

remains less than 1 for sizes up to 10, 000. This indicates that ω(G) ≈ χ(G)

for realistic conference sizes.

Timing and Accuracy Results for Heuristics

We also believe that the instances generated by the Haws model are easy to

color because stochastic local search algorithms such as DSATUR and RLF,

detailed in chapter 2, also perform well on these instances. They find good

approximations of χ(G), and run in a fraction of the time of Ex-DSATUR.

The times for the datasets given to us by Haws are solved in a similar amount

of time as instances of the model of the same size.

27

Figure 4.10: Accuracy and time performance of coloring algorithms. The top
two figures have the x-axis on a log scale

Even the greedy coloring approach, when coloring the vertices by their

generation order, or coloring them in descending degree order, performed

very well. This is due to the small core of the graph that is difficult to color.

When the vertices are ordered by degree or in generation order, the core of

the graph is colored first, and afterwards the rest of the graph is trivial to

color. This can be seen in the below figures, where we plot the approximate

chromatic number found by the greedy approach, and the coloring timestep

that maximum color was needed.

28

Figure 4.11: Colors needed by the greedy coloring approach given vertex
ordered by generation and by degree. Overlaid with the timestep that the
maximum color was used

Note that in the greedy coloring figures, the timestep that the maximum

color was needed often drops dramatically before growing again. The intu-

ition for this is that as the graph develops, more edges are added to the high

degree portion of the graph, which tends to consist of vertices that arrived

early in the generation process. This forces the maximum color to be used

earlier in coloring process, causing the sudden drops. Eventually, however,

enough edges are added to the graph that additional colors are needed, and

the new maximum color is used at a later timestep.

Since this range of sophisticated to simple coloring algorithms ran quickly

and effectively for all instances of reasonable size (conferences do not have

tens of thousands of events), we felt it was unnecessary to formulate the

problem for other solvers such as CPLEX or SAT solvers.

Preprocessing Heuristic

In addition to our analysis of existing coloring algorithms, we wanted to eval-

uate the effectiveness of a preprocessing heuristic for graph coloring. This

experiment uses the preprocessing technique of recursively removing all ver-

tices from a graph whose degree is less than d. We know all the vertices

29

removed can be colored with at most d colors if we add them back to the

graph in reverse order.

We find the point where the number remaining vertices becomes less than

the value of d. This point, which we call d∗, is of interest because it provides

an upper bound on the chromatic number. Additionally, this preprocessing

technique should quickly reveal the hard core of the graph.

Figure 4.12: Preprocessing figures on loglog scale.

In the preprocessing figure on the left, we plot the number of vertices that

remain in the graph for different values of d. The first value of d is 2. Since

we know all vertices have degree ≥ 2, the first point shows the original size

of the graph. Clearly the graph reduces in size dramatically as soon as d ≥ 3

. We mark the point where d is larger than the size of the remaining graph

with a green triangle. The preprocessing figure on the right shows d∗, the

point at which d is larger than the size of the remaining graph, as a function

of the size of the graph. Note that d∗ gives an upper bound on χ(G), and

seems to grow as a fractional power of the size of the graph.

30

4.2 Analysis

Our goal here is to establish simple lower and upper bounds on the expected

clique number and chromatic number in the Haws model. In particular our

analysis shows they are both polynomial (rather than logarithmic).

In Section 4.2.1 we introduce the “triangle model” GT , a simple version of

the Haws model. In Section 4.2.2 we estimate the expected degree of the

kth vertex in GT . In Section 4.2.3 we argue a lower bound, that the clique

number (and hence the chromatic number) is at least Ω(T 1/4/(log T)3/4).

In Section 4.2.4 we argue upper bounds, showing ω(GT) = O(T 1/4) and

χ(GT) = O(T 2/5).

4.2.1 The Triangle Model

Here we specify a version of the Haws-network model that we will analyze,

the “triangle model”. The edges in our network are undirected, but we do

allow self-loops and parallel edges. (Such edges do not increase the clique

or chromatic number.) For T ≥ 3, we present a T -step process producing a

random network GT on vertices v1, v2, v3, . . . , vT .

The first three steps are fixed: in step 1, vertex v1 appears; in step 2, vertex

v2 appears with an edge to v1, and in step 3, vertex v3 appears with edges

to both v1 and v2. So G3 is a triangle, where each vertex has degree 2. After

that, for each time step t ≥ 4, we add one new vertex vt and three new edges

to Gt−1, producing Gt. The three edges are a triangle chosen as follows:

• Among the previous vertices v1, . . . , vt−1, we pick a vertex vi with prob-

ability proportional to its degree in Gt−1. Or in other words: we uni-

formly pick an edge of Gt−1, and then we uniformly pick one of its two

endpoints as vi.

• We pick a second vertex vj from the identical distribution (so possibly

31

we have vj = vi).

• We add the new vertex vt, and the three edges {vi, vt}, {vj, vt}, {vi, vj}.
Note that if vi = vj, we are adding a self-loop and two parallel edges.

If {vi, vj} is already an edge, then we add it again as a parallel edge.

In all cases the total degree increases by six: +2 at vi, +2 at vj, and 2

at the new vertex vt.

Let GT denote this random graph after T steps. We make the following

preliminary observations about GT :

• The network GT has T vertices, 3(T −2) edges, and total degree 6(T −
2).

• In each triangle, the edge {vi, vj} is distinguished because it connects

two existing vertices of Gt−1, we call it the hypotenuse edge of the

triangle. If we omitted these hypotenuse edges from our construction,

then our model would be a version of the Barabási-Albert model. Let

G′T denote GT with all of its hypotenuse edges removed. Then G′T is

3-colorable: as each vt is added, give it a color not already taken by vi

and vj.

• We did not allow vi = vj in our standard Haws network generator,

but it is more convenient for analysis to allow such events. Based on

our degree estimates below, we see that “vi = vj” only occurs Θ(T 1/3)

times during the construction of GT . Such events do not add to the

clique or coloring numbers, since they contribute a trivial hypotenuse

edge.

• For 1 ≤ k ≤ T , let Dk,T be the degree of vertex vk in GT (a random

variable), and let DT be the degree vector (D1,T , . . . , DT,T). If we want

to predict the vector DT+1, then it is sufficient to condition on DT ,

there is no further useful information in the graph GT .

32

4.2.2 Degree Estimates

As above, let Dk,T denote the degree of vertex vk in GT . Initially we have

Dk,k = 2. In step T +1, the probability that vk is chosen as vi is Dk,T/(6(T −
2)). That is also the probability that it is chosen as vj. Either of these

independent events would increase the degree of vk by 2. Let dk,T be its

expectation E[Dk,T]. Then we have this recurrence:

dk,T+1 = dk,T ·
(

1 +
4

6(T − 2)

)
Using (1 + ε) ∼ eε, we derive this estimate:

dk,T = 2 ·
T−1∏
t=k

(
1 +

4

6(t− 2)

)

∼ 2 · exp

(
T−1∑
t=k

4

6(t− 2)

)

∼ 2 · exp

(
2

3
(ln(T − 2)− ln(k − 2))

)
∼ 2 · (T/k)2/3.

The leading constant is accurate for large enough k. We remark that this

degree distribution is consistent with the power law exponent β = 2.5. By

Azuma’s inequality (applied to a Doob martingale for Dk,T) we can also de-

rive a concentration bound ([4], Theorem 1): Pr
[
|Dk,T − dk,T | ≥ α4

√
T
]
≤

exp(−α2/2).

4.2.3 Lower Bounds

Fix T . In this section, we argue that the expected clique number of GT is

Ω(T 1/4/(log T)3/4). This is also a lower bound on its chromatic number.

Consider the graph GT . We let n = T 1/4/(100(lnT)3/4), and we say that

33

vertex vk is a “celebrity” in GT if 1 ≤ k ≤ n. These celebrity vertices have

expected degree dk,T ≥ 2(T/n)2/3 ≥ 40
√
T lnT . Say a celebrity is “good”

if Dk,T ≥ 1
2
dk,T . By the concentration bound above, a celebrity fails to be

good with very small probability (at most e−10
√
lnT). Let n′ be the number

of good celebrities; we expect n′ is at least n/2, if not (which is unlikely) we

give up and start over.

Suppose we generate GT , and pick good celebrities vi and vj: vi has de-

gree at least (T/i)2/3 in GT , and vj has degree at least (T/j)2/3, and these

are both at least 20
√
T lnT . Now continue evolving the graph for T more

steps, arriving at G2T . We want to lower-bound the probability that {vi, vj}
was added as a hypotenuse edge, during these last T steps. We note that

on each step, the probability that we do pick both vi and vj is at least

(T/i)2/3/(12T) · (T/j)2/3/(12T) ≥ (20
√
T lnT)2/(144T 2) ≥ 2.5(lnT)/T . Re-

peating the experiment T times, we see that the probability that the edge

was never added is at most (1−2.5(lnT)/T)T ≤ e−2.5 lnT = T−2.5. Therefore,

of the
(
n′

2

)
potential edges between good celerities, the expected number that

were not added is only
(
n′

2

)
· T−2.5 ≤ T−2, so with high probability we have

a clique of size n′.

4.2.4 Upper Bounds

In this section we consider upper bounds in GT . However, these arguments

are only “plausible” arguments, they are less rigorous than our lower bounds

in the previous section. We argue that the expected chromatic number is

O(T 2/5), and the expected clique number is O(T 1/4).

First we consider the clique number. Let n = T 1/4, and partition the

vertices of GT into two groups: the first n vertices (V0), and the rest (V1).

We suppose that many of the vertices of V0 may belong to a clique. However,

we argue (in the next paragraph) that edges between vertices in V1 occur with

34

probability at most 1/2. Furthermore, these edges are largely independent of

each other, therefore the graph on V1 is dominated by an Erdos-Renyi graph

with p = 1/2. This implies that the largest clique in V1 has size O(log T).

Together with a potential clique on all of V0, the maximum clique size in GT

is at most n+ log T = O(T 1/4).

Now to bound the probability that {i, j} is chosen as an edge, we consider

step t (where j ≤ t ≤ T), and suppose that i and j have degrees near their

expectation. Then the probability that we add {i, j} on step t is at most

(2(t/i)2/3 · 2(t/i)2/3)/(6t)2 ≤ 1/(9t2/3n4/3). Summing this for j ≤ t ≤ T , we

see that the expected number of times that {i, j} was added is at most 1/3.

Second, we consider the chromatic number in GT . Set m = T 2/5. By

our degree estimate, the expected degree of vertex m is 2(T/m)2/3 = 2m.

So for some constant c, we expect GT has at most cm vertices with degree

more than cm. Now we can color GT with cm colors: first assign distinct

colors to all the vertices with degree at least cm, and then for each lower

degree vertex (in whatever order), assign it a color that is not being used by

one of its neighbors. Note that this approach is similar to the upper bound

argument of the preprocessing heuristic, i.e., we expect d∗ to be O(T 2/5).

4.3 Summary and Future Work

We analyzed conference scheduling problems from the industry and, seeing

there was no existing stochastic model that represented the problem accu-

rately, we proposed our own random graph model. We based our model on

insights gathered from conversations with a conference scheduler and from

analysis of his datasets. Our model is also based on a sensible social model of

how conference topics develop. Through experiments, we have argued that

our model has a similar degree distribution as typical conference schedul-

ing problems, and we have measured the performance of several approaches,

35

heuristics, and algorithms for coloring and clique finding, as they have ap-

plications in scheduling.

Analytically we have argued that the degree distribution of our model is a

power law, that E[ω(G)] is Ω(T 1/4/(log T)3/4) and O(T 1/4). We also argue

that E[χ(G)] is upper bounded by O(T 2/5).

There are several directions that require future work. Firstly, we would like

to extend the model to include conflict constraints other than solely speaker

constraints. Ideal conference schedules also consider side constraints such as

avoiding topical overlaps, or the availability of speakers and rooms. Consid-

ering these side constraint moves the problem from the realm of scheduling to

a timetabling problem. Creating a timetabling algorithm that takes advan-

tage of the structural properties of this model is another ambition we wish to

pursue, as well as formulating the timetabling problem for simplex method

optimizers (such as CPLEX) or for SAT solvers. On the analytical side, we

would like to show stronger bounds on ω(G) and χ(G), as we suspect that

they can be improved. In particular, we conjecture that both quantities are

θ(T 1/4), with only a small gap between them. Additionally, we would like to

provide a careful analysis the other variants of our model.

36

Appendix

5.1 Haws Model Graph Generator

"""

This module defines haws(), which generates random graphs

according to several variants of the Haws model. The

graph is returned as an array of adjacency lists. The

arrays and vertex ids are all 0-based. It can generate

a graph when invoked from the command line.

"""

import sys

from random import Random

def haws(N=10000 , # number of vertices , ids 0 to N-1

D=2, # each clique[v] has size min(v,D+1)

C=1.0, # "copy factor", from 0.0 to 1.0

seed=None , # controls random number generator (int)

uniformParent=False , # Pick prototype uniformly (not by degree)

uniformChild=False , # Pick children randomly (not by degree)

verbosity=0, # amount of verbose output for debugging

listener=None , # called after each vertex added

S = 0.0 # "speaker factor", from 0.0 to 1.0

):

Create our random number generator.

gen = Random(seed)

We will return the graph G, once it is populated.

For each vertex v, from 0 to N-1, G[v] is its adjacency list.

Each edge is represented twice (u in G[v] and v in G[u]).

Initially , we create an empty graph.

G = [[] for u in range(N)]

For each vertex v, clique[v] will be the other members of the

clique formed when we add v. It is a list of length min(v,D).

clique = [[] for u in range(N)]

edges is a list of all graph edges: pairs (u,v) with u<v.

We also maintain edgeset , a set of the same edges , to be

37

sure we add each edge only once to the edges list.

edges = []

edgeset = set()

vertex is a list of which numbers between 0 and N-1 are nodes

in the graph. If vertex[u] == -1, we don’t add a vertex

v to the squared graph , instead we just impose edges implied

by the integers in clique[u]. Otherwise , vertex[u] == the id

of the talk vertex that accompanies that speaker.

vertex = [-1]*N

vertex [0] = 0

Note u==0 is easy: we simply leave clique [0]==[].

v denotes the number of "talk" vertices

v = 1

u denotes the number of "speaker" vertices

for u in range(1,N):

S chance of having a "speaker step"

if gen.random () >= S or u <= D:

vertex[u] = v

v = v + 1

Pick a "parent" or "prototype" vertex p.

if uniformParent or u==1:

pick uniformly among previous (0 to u-1)

p = gen.randrange(0, u)

else:

pick by degree (random edge endpoint)

p = gen.choice(gen.choice(edges))

if verbosity > 1:

print "%d copying from prototype %d" % (u, p)

Build clique[vu, initially just a copy of clique[p].

clique[u] = [w for w in clique[p]]

For each entry in clique[u] (inherited from clique[p]), with

probability C we will erase it (replace it with value None).

These None values are later replaced with random vertices.

for i in range(len(clique[u])):

if gen.random () < C:

clique[u][i] = None

Also pad clique[u] to the right length , with None values.

while len(clique[u]) < min(u, D):

clique[u]. append(None)

Now replace each None in clique[u] with a random vertex v,

distinct from the other vertices already in the clique ,

and vertex[v] != -1 to make sure there is a talk.

if verbosity > 2:

print "pre clique [%d] ==" % u, clique[u]

38

for i in range(len(clique[u])):

while clique[u][i] == None:

w = 0

Like "parent" cases (uniform or by degree)

if uniformChild or u==1:

w = gen.randrange(0, u)

else:

w = gen.choice(gen.choice(edges))

if w not in clique[u] and vertex[w] != -1:

w is good , add it (ending while)

clique[u][i] = w

if verbosity > 1:

print "adding clique [%d] ==" % u, clique[u]

At this point , we could sort clique[u]. But better

to preserve the correspondence with clique[p] entries.

Now add all the new edges to G, implied by clique[u].

The edges to u must be new , but the other edges between

members of clique[u] might not be new. Note that G

deals solely with "talk" vertex ids. We keep the edges

and edgeset with the original ids to not affect the

random choices

for w1 in clique[u]:

if vertex[u] != -1:

Not a speaker step , add vertex u.

wu = (w1 , u)

assert vu not in edgeset

edgeset.add(wu)

edges.append(wu)

G[vertex[w1]]. append(vertex[u])

G[vertex[u]]. append(vertex[w1])

Impose edges between vertices in clique[u].

for w2 in clique[u]:

if w1 < w2:

ww = (w1 , w2)

if ww not in edgeset:

edgeset.add(ww)

edges.append(ww)

G[vertex[w1]]. append(vertex[w2])

G[vertex[w2]]. append(vertex[w1])

if verbosity > 0:

print "after clique [%d]: G has %d edges" % (u, len(edges))

if listener:

listener(G=G, u=u, v=v, clique=clique[u], edges=edges ,

39

edgeset=edgeset , speaker=vertex[u])

end outer for

All done! Return the graph.

return G

If invoked as the top -level program , generate a Haws graph

according to command line arguments , and then output the

graph in DIMACS format.

if __name__ == ’__main__ ’:

import getopt

These are default values for the command -line arguments.

All except ’outFile ’ correspond to arguments of haws ().

N = 10000 # -N 1000

C = 1.0 # -C 0.0

D = 2 # -D 4

seed = None # -s 17

uniformParent = False # -p (to toggle)

uniformChild = False # -c (to toggle)

verbosity = 0 # -v (to increment)

outFile = "-" # filename , or "-" for stdout

S = 0.0 # -S 1.0

Parse the command line:

(opts , rest) = getopt.getopt(sys.argv [1:], "pcvN:C:D:s:S:o:")

if len(rest)>0:

print "unexpected arguments:", " ".join(rest)

sys.exit (1)

for (opt , val) in opts:

if opt=="-p": uniformParent = not uniformParent

if opt=="-c": uniformChild = not uniformChild

if opt=="-v": verbosity += 1

if opt=="-N": N=int(val)

if opt=="-C": C=float(val)

if opt=="-D": D=int(val)

if opt=="-s": seed=int(val)

if opt=="-o": outFile=val

if opt=="-S": S=float(val)

Ok, run haws with all the arguments:

G = haws(N=N, C=C, D=D, seed=seed ,

uniformParent=uniformParent ,

uniformChild=uniformChild ,

verbosity=verbosity ,S=S)

Convert G to a DIMACS format string.

We prepend a comment describing the graph parameters.

dimacs = "c haws(N=%d, C=%g, S=%g, D=%d, seed=%s, \

40

uP=%s, uC=%s)\n" % \

(N, C, S, D, str(seed), uniformParent , \

uniformChild)

dimacs += toDimacs(G)

Finally output the string appropriately.

if outFile =="-":

file = sys.stdout

print dimacs

else:

file = open(outFile , "w")

file.write(dimacs)

file.close()

print "wrote graph to", outFile

all done

5.2 Usage

The graph generator outputs the graph in the “.col” format, which is the

standard input used for coloring algorithms. When a line begins with “c”,

that means it is a comment. We use a solitary comment line to indicate

which parameters the graph was generated with. Exactly one line should

begin with “p edge”, and it indicates the number of vertices and edges in

the graph. A line starts with “e” to indicate a specific undirected edge. The

graph generator will output to stdout unless asked to write to a file with the

“-o” option.

Running the graph generator from the terminal:

$ python --version

Python 2.7.3

$ python HawsGenerator.py -N 10

c haws(N=10, C=1, S=0, D=2, seed=None, uP=False, uC=False)

p edge 10 18

e 1 2

e 1 3

41

e 1 4

e 1 5

e 1 6

e 1 7

e 1 9

e 2 3

e 2 5

e 2 6

e 2 7

e 3 4

e 3 8

e 3 7

e 3 10

e 7 8

e 7 9

e 8 10

$ python HawsGenerator.py -p -c -N 10 -C 0.2 -D 4 -s 4789345 -S 0.1

c haws(N=10, C=0.2, S=0.1, D=4, seed=4789345, uP=True, uC=True)

p edge 10 24

e 1 2

e 1 3

e 1 4

e 1 5

e 1 6

e 1 7

e 2 3

e 2 4

e 2 5

42

e 2 6

e 2 7

e 2 8

e 3 4

e 3 5

e 3 6

e 3 7

e 3 8

e 4 5

e 4 6

e 4 8

e 5 6

e 5 7

e 6 7

e 6 8

$ python HawsGenerator.py -p -c -N 10 -D 4 -s 4789345 -o hm.col

wrote graph to hm.col

43

Bibliography

[1] Albert-lászló Barabási and Réka Albert. Emergence of scaling in random

networks. Science, 1999.

[2] B. Bollobás. The chromatic number of random graphs. AMS Combina-

torica, 1987.

[3] B. Bollobás and P. Erdős. Cliques in random graphs. Math. Proc. Camb.

Phil. Soc., 1976.

[4] Spencer J. Bollobás B., Riordan O. and Tusnády G. The degree se-

quence of a scale-free random graph process. Random Structures and

Algorithms, 2001.

[5] Marco Chiarandini, Giulia Galbiati, and Stefano Gualandi. Efficiency

issues in the RLF heuristic for graph coloring, pages 461–469. 2011.

[6] Marco Chiarandini and Thomas Stützle. An analysis of heuristics for

vertex colouring. In Paola Festa, editor, Experimental Algorithms, vol-

ume 6049 of Lecture Notes in Computer Science, pages 326–337. Springer

Berlin Heidelberg, 2010.

[7] Aaron Clauset, Cosma Rohilla Shalizi, and M. E. J. Newman. Power-law

distributions in empirical data. SIAM Review, pages 661–703, 2009.

44

[8] P. Erdős and A. Rényi. On the evolution of random graphs. Publ. Math.

Inst. Hung. Acad. Sci., 1960.

[9] R. Kumar, P. Raghavan, S. Rajagopalan, D. Sivakumar, A. Tomkins,

and E. Upfal. Stochastic models for the web graph. In Proceedings

of the 41st Annual Symposium on Foundations of Computer Science,

FOCS ’00, pages 57–, Washington, DC, USA, 2000. IEEE Computer

Society.

[10] Linyuan Lu and Fan Chung. Complex Graphs and Networks. Cbms Re-

gional Conference Series in Mathematics. American Mathematical Soci-

ety, August 2006.

[11] Anuj Mehrotra and Michael A. Trick. A column generation approach

for graph coloring. INFORMS Journal on Computing, 8:344–354, 1995.

[12] M. E. J. Newman. Random graphs as models of networks. Santa Fe

Institute Working Paper, 2002.

[13] Sampo Niskanen and Patric R. J. Östergärd. Cliquer user’s guide, ver-

sion 1.0, 2003.

[14] Pablo San Segundo. A new dsatur-based algorithm for exact vertex

coloring. Computers and Operations Research, 39(7):1724–1733, 2012.

	part1
	part2
	part3
	thesis

