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Abstract

Improving Biomedical Abstract Screening Using Contrastive Learning
By Tiantian Li

Systematic review is a crucial tool for evidence-based medicine as it identifies
and synthesizes published medical literature to inform prevention and intervention
strategies. However, it requires intensive labor and time to identify relevant arti-
cles to include. While automating the screening process has been proposed using
the abstracts, the performance is still suboptimal. Contrastive learning has achieved
great success in computer vision but has not been used to expedite the systematic
review process. In this thesis, we propose a new method using an autoencoder trained
with contrastive loss to generate vector representation for abstracts. We apply data
augmentation techniques on the abstract and train the autoencoder to generate rep-
resentations for anchor and positive samples that are closer in vector space than those
for anchor and negative samples. Our experiments suggest that contrastive learning
can be used to help filter irrelevant articles during the abstract screening phase.
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Chapter 1

Introduction

Systematic review is the process of identifying, selecting, and critically appraising all

relevant primary research related to a well-formulated research problem. Systematic

review bridges the gap between research and practice by providing all levels of deci-

sion and policy makers with comprehensive and up-to-date information. Specifically,

in medicine, systematic reviews help to identify safer and more effective treatments

for patients by synthesizing resources from a wide range of studies. While the system-

atic review is a crucial tool for evidence-based medicine, it has become increasingly

challenging to conduct a comprehensive systematic review in a reasonable period of

time due to the exponential growth in papers [26].

Abstract screening is one of the most laborious and resource-consuming steps in

the conduction of a systematic review. To preserve the validity of the study and

minimize selection bias, the primary search for relevant articles usually results in

thousands of articles that need to be screened carefully in later steps. During the

abstract and title screening step, researchers examine the abstract and title of each

article and make decisions on whether to include the article or not based on the in-

clusion criteria, which can take up to months. With the exponential growth in new

primary article production, it is essential for a systematic review to be conducted
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HonorsThesisTemplate2022/ACE_screening.png

Figure 1.1: A simplified illustration of the screening process of a systematic review
by Cohen et al.[5]

effectively and comprehensively in order to maintain timeliness and robustness. Fig-

ure 1.1 shows an example of the article screening process of a systematic review on

angiotensin-converting enzyme inhibitors by Cohen et al.[5]. Only 7.2% of the articles

collected from broad keyword searches passed abstract and title screening and only

1.6% of the total articles passed the full-text screening and were included in the final

systematic review.

Numerous methods have been proposed to expedite the completion of a systematic

review. Some focus on increasing the efficiency of labor workflow through crowdsourc-

ing [26, 32], while others focus on automating the screening process using text mining

approaches [41]. Under the latter paradigm, a common setup is for a human reviewer

to manually label a subset of the articles to train the machine learning model which

can then classify the unlabeled articles. Although deep learning approaches have be-
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come the de-facto architecture in natural language processing (NLP), limited studies

have explored its viability for automating the screening process [16, 40]. Even then,

it remains unclear if such complex models are practical [18].

One of the major disadvantages of a deep learning model is the need for large

amounts of labeled, training data. To overcome this, contrastive learning has been

proposed to generate (self-supervised) augmentations of the input data to learn more

robust representations. Contrastive representation learning is a technique of gener-

ating a useful representation of data by comparing similar and dissimilar samples.

The goal of training a contrastive learning-based model is to learn a mapping such

that representations of similar samples are pushed together in the embedding space

while representations of dissimilar samples are pulled away. Contrastive learning has

achieved great success in computer vision [19], but the benefits of text mining meth-

ods still remain unknown [34]. We posit that contrastive learning can be utilized to

yield better screening automation tools without requiring additional labeled data.

To mitigate the need for labor-intensive manual systematic reviews as well as

minimize the amount of annotated samples needed to train a deep learning model, we

propose CTRL-Screener, a self-supervised contrastive learning-based model. CTRL-

Screener is used to eliminate irrelevant studies based on the abstract only. CTRL-

Screener consists of a pre-trained autoencoder model and a softmax activation layer.

The pre-trained autoencoder model is trained with unlabelled data from a variety

of systematic review topics, and the softmax layer is trained independently for each

systematic review. CTRL-Screener requires a percentage of the data to be manually

labeled to learn to distinguish between relevant and irrelevant samples, then it can be

used in the abstract screening phase of systematic review to reduce the human effort

required.

The main contributions of this thesis are:

1. We propose CTRL-Screener, a self-supervised contrastive learning-based model,
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that can be used to expedite the systematic review process. To the best of our

knowledge, we are the first to investigate the use of contrastive learning for

screening articles.

2. We introduce text augmentation techniques that preserve the structural in-

tegrity of the abstract. The resulting article representations improve the pre-

dictive performance of the classifier.

3. We discuss the effect of different variations of the text augmentation techniques

and report the results.

4. We conducted experiments on 19 systematic review topics, demonstrating the

potential of CTRL-Screener towards filtering out irrelevant articles at the ab-

stract screening phase. We compared the performance of CTRL-Screener against

other state-of-the-art language models including fastText and Sentence-BERT.

The rest of this thesis is structured as follows. Chapter 2 introduces some of the

work that has been done in the fields of automating systematic reviews and contrastive

learning. Chapter 3 elaborates on the architecture and the implementation details

of the proposed model CTRL-Screener. Chapter 4 introduces the experiment set-up,

including the datasets used and evaluation methods. Chapter 5 reports and discusses

the results of CTRL-Screener and baseline models. Lastly, Chapter 6 concludes our

contribution to systematic review automation, and discusses future research direc-

tions.
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Chapter 2

Background

In this section, we briefly review relevant works for automating systematic reviews

and contrastive learning approaches in NLP.

2.1 Automating Systematic Reviews

Multiple studies have introduced text mining methods to help automate the screening

process (see [41] for a recent systematic review on this topic). Most of the prior work

done on automating the screening process of systematic reviews with supervised or

semi-supervised machine learning models extract features from title and abstract.

Full-text features are often avoided as full-text documents require a lot of natural

language pre-processing steps. Even before that, reliable conversion from pdf to text

is required as most full-text documents are only available in pdf format [40].

2.1.1 Word Embeddings

Existing studies have explored a variety of classifiers such as support vector machines,

Näıve Bayes, decision trees, and k-nearest neighbors in conjunction with bag-of-word

representations for text [4, 15, 29]. More recently, word embeddings have emerged as
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a popular text representation for automating systematic reviews [20, 22, 31]. Word

embeddings seek to learn a dense, low-dimensional vector representation that simulta-

neously captures the semantic properties of the words. Amongst neural network-based

word embeddings, the three popular models include word2vec [24], Global Vectors for

Word Representation (GloVe) [30], and fastText [3]

While neural network based word embedding models preserve semantic meaning

of words, they do not encode contextual information. Transformer-based word em-

bedding models have been introduced to better capture semantics on sentence level.

BERT[14] was the first model to pre-train deep bidirectional representations (i.e.

conditioning on both previous and latter context), leading to better performance on

tasks such as natural language inference and paraphrasing. Sentence-BERT[33], as a

modification on BERT, generates semantically meaningful sentence embedding where

semantically similar sentences have closer vector representations in the vector space.

2.1.2 Deep Learning Models

Given the impressive performance of deep learning for various natural language pro-

cessing tasks [27], two deep learning algorithms using denoising autoencoders and a

multi-channel convolutional neural network were proposed to automate the systematic

review process [16, 40].

In the work by Kontonatsios et al. [16], the authors proposed a multi-layer, feed-

forward neural network that learns a latent representation of documents that preserves

class-membership information (i.e., the label of the document) through supervised

learning. The generated embeddings from the proposed feature extractor can be

integrated with any classification algorithm to predict whether an unseen document

is relevant to the topic or not. More specifically, the feature extractor in the proposed

model consists of three independently trained denoising autoencoders (DAE) and a

multi-layer, feed forward neural network (FF). Each DAE is trained independently to
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accomplish the task of reconstructing manually corrupted bag-of-word embeddings of

text documents. The purpose of training three DAEs in parallel is to generate different

reconstructions of the same document. The empirical experiments showed that the

combination of different reconstructions led to better results. Then, the reconstructed

vector representations of the DAEs are used to initialize the first three layers (l1, l2, l3)

of the feed forward neural network. l1, l2, and l3 are parallel layers, meaning that there

are no connected units in between. The outputs of l1, l2, l3 are concatenated and fed

to the next layer l4. The final layer of the feed forward network is an activation layer

using softmax function to predict the probability distribution of each class. The feed

forward network is trained in a supervised manner to minimize the cross entropy

between the predicted probability distribution and the true class distribution. After

the supervised training, the output vector of l4 is calculated again and used as the

extracted feature vector, which can be incorporated with any classification models

(i.e. support vector machine) to predict the probability distribution of target classes.

The second study [40] focuses on using a multi-channel convolutional neural net-

work (CNN) to automate the title and abstract screening process. In the data pre-

processing stage, title and abstract of a document are concatenated together and

passed to pre-trained GloVe word embeddings [30] to generate vector representa-

tions. The CNN structure is used as it can obtain important text features from the

document, such as finding keywords and phrases, and is more cost-efficient than Long

Short-Term Memory (LSTM) models. The word embeddings are passed to a series of

CNN blocks of CNN layers followed by global max pooling. The study experimented

with different numbers of channels and different kernel sizes and concluded that a

2-channel CNN with kernel sizes of 2/4 achieved the best performance.

A recent literature review study [18] replicated the experiments performed in the

aforementioned two studies and reported the performance comparison between the

two proposed models. In addition, the paper presented a simpler model using the
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average of the fastText word embedding [3] which yields higher performance on 18

out of the 23 datasets than the performance of the replicated model from the second

paper and comparable performance against the replicated model from the first paper.

The fastText model is also, on average, 72 times faster than the multi-channel CNN

model proposed in the second study and 8 times faster than the DAE-FF model

proposed in the first paper.

2.2 Contrastive Representation Learning

Contrastive learning models learn better representations through the comparison pro-

cess. The main goal of contrastive representation learning is to generate representa-

tions of sample documents so that pre-defined ‘similar’ samples are closer together in

vector space while ‘dissimilar’ samples are farther away from each other. The idea

behind contrastive learning is to use similar and dissimilar samples (often generated

by data augmentations) to learn a more robust representation [19]. Depending on

the end goal, the notion of similarity and dissimilarity can be very different from

case to case. In a multi-modal setting, similar samples can be different views of the

same context; in object recognition tasks, similar samples can be different rotations

of images of the same object.

Contrastive learning self-supervised training objectives have yielded state-of-the-

art image representations in computer vision [11, 25]. Yet the benefits of contrastive

learning in NLP are still relatively understudied. Examples of relevant work include

investigating sentence augmentation techniques [23, 46], using back translation [7], or

contrasting text spans [9].

A recent application of contrastive self-supervised learning in NLP field was intro-

duced in [7]. The study proposed a contrastive self-supervised learning model CERT,

which fine-tunes established language representation model (e.g. BERT [14]) to bet-
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ter capture sentence-level semantics. Back-translation technique, first introduced in

[6], was used to augment the dataset and generate positive and negative pairs. For

a given sentence s1 in English, we can use an English to Spanish translation model

to generate s′1 in Spanish. Then we pass s′1 through a Spanish-to-English translation

model and get s′′1 in English. The choice of intermediate language is arbitrary as long

as there exists a developed translation model between the source language and the in-

termediate language. We can augment the dataset by repeating the back-translation

technique for all sentences in the training set. si and s′′j are a similar pair if and only

if i = j. si and s′′j are a dissimilar pair if and only if i ̸= j. The study reported the

performance of CERT, BERT model fine-tuned with contrastive representation learn-

ing, on 11 natural language understanding tasks, and CERT achieved better average

performance than BERT.

The study also experimented with a different data augmentation technique. Easy

Data Augmentation techniques (EDA), first introduced in [45], augments a text

dataset by randomly performing one of the four operations: synonym replacement,

random insertion, random swap, and random deletion. Back translation outperforms

EDA in almost all of the experimental settings except in one case where its per-

formance is 0.1% lower than that of EDA. The study attributes back-translation’s

better results to the fact that it performs augmentation at sentence level while EDA

performs at word/phrase level, thus preserving better global semantics.

A recent survey illustrates that despite the outstanding performance of back trans-

lation compared to EDA, it is computationally expensive and non-robust [34]. There

still exist NLP challenges including generating better positive and negative samples

and introducing scalable, high-quality, and robust text augmentations.
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Chapter 3

CTRL-Screener

In this section, we introduce CTRL-Screener, a self-supervised contrastive learning-

based model that can be used to expedite the systematic review process. We present

the model architecture and report the implementation details.

3.1 Problem Formulation

Given the abstract of an input document, Di, which contains n sentences (i.e., Di =

d1i , d
2
i , ..., d

n
i ), CTRL-Screener gives a binary classification that predicts whether the

abstract is related to the given systematic review topic or not.

3.2 Model Architecture

CTRL-Screener consists of three neural network layers: (1) an abstract representa-

tion that is obtained using a sentence embedding, (2) a self-supervised autoencoder

trained with a contrastive loss that further compresses the abstract representation

and learns a more robust abstract representation, and (3) a softmax layer that uses

the autoencoder representation to predict whether the article is relevant to the sys-

tematic review topic. 3.1 shows the training process of CTRL-Screener. A subset of
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HonorsThesisTemplate2022/chapters/training.png

Figure 3.1: An illustration of the training process of CTRL-Screener.

documents needs to be manually labeled by the reviewers and is used by the softmax

layer to learn the classification. However, the abstract representation generator and

the autoencoder do not encode class membership information into the representation

and thus can be learned in an unsupervised fashion.

3.2.1 Abstract Representation

Various model architectures have been proposed to learn sentence representations

such as pooling word embeddings [33, 37], using the CLS token from BERT [14], or

more recently Sentence-BERT, a BERT-based Siamese network architecture [33]. For

the purpose of our experiments, CTRL-Screener uses Sentence-BERT and fastText

[18] but we note any sentence or paragraph embedding can be used. If the abstract

is longer than the supported input length, we truncate from the start of the abstract

until we reach the maximum supported length.

3.2.2 Contrastive Autoencoder

Autoencoders are often used to generate compressed representations from their input

data. First introduced in [35], autoencoder is a type of neural network that has been
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used to generate informative represenatation of data for various applications such as

clustering[2][38]. Although Sentence-BERT already condenses the abstract to a 768-

dimensional numeric vector, an additional autoencoder can potentially yield more

robust abstract representations. Standard autoencoders are pre-trained to reconstruct

the input data using the mean-squared error loss function, shown in Figure 3.2(a).

However, one limitation is that minor semantic modifications of the abstract may yield

drastically different representations. This is important as biomedical abstracts are

generally longer due to a common pre-defined structure that consists of background,

method, results, and conclusion sections. As a result, the abstracts often exceed the

input length supported by convolutional neural networks, recurrent neural networks,

and transformer-based embedding models.

To address this limitation, CTRL-Screener adopts a self-supervised contrastive

loss to train the autoencoder. Let Di denote the document of interest (i.e., anchor

document). Given a positive sample, Pi, and a negative sample, Ni, associated with

Di, the triplet loss is then defined as:

L =
n∑

i=1

max(||Di − Pi||22 − ||Di −Ni||22, 0). (3.1)

The natural question is then how to generate a positive sample that is similar to the

anchor instance and a negative sample that is dissimilar. Although a contrastive learn-

ing framework has been proposed for sentence representation [46], the four sentence

augmentation techniques (word deletion, span deletion, reordering, and synonym)

may not alleviate lengthy abstracts.

Given the pre-defined structure in biomedical documents, we propose two mech-

anisms for generating high-quality positive augmentations, Pi. First, we subsample

the sentences dki within Di but ensure the order remains fixed. In this fashion, there is

likely at least 1 sentence that reflects each of the structured sections while maintain-
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(a) Baseline (b) Contrastive

Figure 3.2: Comparison between the baseline autoencoder and the contrastive-based
encoder in CTRL-Screener.

ing the overall structure of the abstract. Figure 3.3 shows an example of an abstract

from the dataset in [17]. The abstract consists of 11 sentences with indices from 1

to 11, divided into 5 structured sections. Figure 3.4 illustrates an augmented sample

using the first mechanism. Sentences [1, 3, 4, 5, 7, 8, 10] were randomly sampled and

concatenated together, preserving relative order, as an augmented sample of the ab-

stract shown in Figure 3.3. The second mechanism subsamples sentences dki within

Di and shuffles the ordering.

Negative samples are constructed by randomly selecting a subsample of sentences

from any other document within the corpus, Dj, such that j ̸= i. Figure 3.5 illustrates

how positive and negative samples are defined using the augmented datasets. With

respect to the document D1 framed in blue, D′1, framed in green, is the positive

sample since it was generated using D1. Negative sample D′2 is framed in red as it

is generated from a different abstract.

As shown in Figure 3.2(b), the contrastive autoencoder will learn to generate

representations that preserve the distance between two abstract representations of the

same document in the new vector space while ensuring that it is somewhat different

from the other abstract representations. Since this representation does not require
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labeled information and can be pre-trained on a larger corpus that may or may not

include articles from the systematic review topic.

3.2.3 Classification

The resulting representation from the contrastive autoencoder is passed to a softmax

layer whose weights are learned using the training data for the systematic review

topic.

3.3 Implementation Details

CTRL-Screener is implemented in PyTorch v1.12.0.1 We use Adam as the optimizer

and weights to each layer were initialized using the Xavier Uniform function. Both

the hidden layer and the output layer have input and output dimensions of 768.

3.3.1 Data augmentation

Positive and negative samples are generated by subsampling sentences at different

percentages (50%, 60%, 70%, and 80%) from the original documents. We generated

multiple positive samples, Pi, by subsampling from each anchor document and ei-

ther maintaining the relative order of sentences or shuffling the sampled sentences.

A negative sample, Nj, is obtained by subsampling the same percentage from an-

other randomly selected document, Dj, j ̸= i, and either preserving the order in the

generated sample or shuffling the sampled sentences.

1Our code is available at https://drive.google.com/drive/folders/

1z7fpBRCcHNqZidecbS4M1kTAbQF3lRew?usp=sharing.

https://drive.google.com/drive/folders/1z7fpBRCcHNqZidecbS4M1kTAbQF3lRew?usp=sharing
https://drive.google.com/drive/folders/1z7fpBRCcHNqZidecbS4M1kTAbQF3lRew?usp=sharing
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Figure 3.3: An example abstract provided in [17].



16

HonorsThesisTemplate2022/chapters/aug.png

Figure 3.4: An augmented sample generated from abstract shown in Figure 3.3
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Figure 3.5: Illustration of the definition of positive and negative sample with respect
to an anchor sample. In the figure, the anchor sample is framed with a blue square,
positive sample is framed with a green square, and negative sample is framed with a
red square.
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Chapter 4

Experiment setup

4.1 Datasets

We evaluate our model on three datasets: (1) 15 systematic review topics related

to different drug efficacy of medications in several drug classes provided by Cohen

et al. [5], (2) 3 systematic review datasets related to clinical outcomes of various

treatments released by Wallace et al. [42], and (3) 1 systematic review topic on cut-

points of hyperglycemia [10]. Each SR contains the contents of the abstract and the

label which indicates whether the articles are included or excluded after the abstract

screening stage. The number of articles screened ranged from 310 (Antihistamines) to

7043 (Clopidrel) with an abstract screening ratio ranging from 2.07% (SkeletalMus-

cleRelaxants) to 32.49% (Triptans). Table 4.1 summarizes the statistics for the 19

SR topics. For each document, we constructed 4 augmented samples by subsampling

50%, 60%, 70%, and80% of the sentences in the original document while preserving

relative order, and 1 augmented sample by subsampling and shuffling 70% of the

sentences. In chapter 5, we discuss the impact of sample percentage and ordering on

the results. The average number of sentences in the abstract for each SR is between

10 and 13. On average, positive and negative samples contain 2 to 5 fewer sentences
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Table 4.1: Statistics of the systematic review topics used. Abs denotes the number
of articles passing the abstract triage statuses and % shows the percentage.

SR Abs Total %

ACEInhibitors 183 2544 7.23
ADHD 84 851 9.87
Antihistamines 92 310 29.67
AtypicalAntipsychotics 363 1120 32.41
BetaBlockers 302 2072 14.57
CalciumChannelBlocker 279 1218 22.90
Estrogens 80 368 21.74
NSAIDs 88 393 22.39
Opioids 48 1915 2.51
OralHypoglycemics 139 503 27.63
ProtonPumpInhibitors 238 1333 17.85
SkeletalMuscleRelaxants 34 1643 2.56
Statins 173 3465 4.99
Triptans 218 671 32.48
UrinaryIncontinence 78 327 23.85

Clopidrel 771 7043 9.29
Anemia 653 4457 11.6
Proton Beam 243 4114 5.12

Hyperglycemia 274 4026 6.81

than the anchor.

4.2 Evaluation

4.2.1 Baseline Methods

We compare CTRL-Screener against the 2 baseline embeddings and the baseline em-

beddings with an autoencoder pre-trained using the traditional mean squared error

loss to reconstruct the abstract representations.

1. fastText1: A 100-dimensional representation obtained from averaging the word

embeddings in the abstract. A recent replication study found that a fastText-

based classifier where the shallow neural network was trained based on averaging

the word embedding scores often offered the best performance compared to

1https://fasttext.cc/docs/en/python-module.html

https://fasttext.cc/docs/en/python-module.html
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recent deep neural networks [18].

2. Sentence-BERT2: A 768-dimensional representation generated using the text

from the abstract as an entire sentence.

3. fastText+autoencoder: The averaged 100-dimensional fastText representation

is fed into a pre-trained autoencoder using mean squared error.

4. Sentence-BERT+autoencoder: The 768-dimensional Sentence-BERT represen-

tation is fed into a pre-trained autoencoder using mean squared error.

The resulting embeddings from the above four baseline models are then fed to a

softmax layer.

4.2.2 Metrics

We use work saved over sampling (WSS) and the area under the receiver operating

curve (AUC). WSS measures the work saved over random sampling for a given level

of recall and was introduced by Cohen et al [5]. WSS is defined as

WSS@R = (TN + FN)/N − (1.0−R) (4.1)

where TN denotes true negatives, FN is false negatives, N is the total number of

articles, and R is the desired level of recall. Based on previous studies, we use recall

at 95% (i.e., WSS@95%).

Figure 4.1 illustrates the basic idea behind WSS metric. We rank the test samples

by the predicted probability of being positive in a descending order. The red square

frames the samples that need to be manually screened in order to achieve a recall at

R (i.e. there should be R ·N samples with true positive label within the square), the

samples outside the square can be automatically screened out. WSS measures the

2https://huggingface.co/sentence-transformers/paraphrase-albert-small-v2

https://huggingface.co/sentence-transformers/paraphrase-albert-small-v2
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HonorsThesisTemplate2022/chapters/wss.png

Figure 4.1: An illustration of work saved over sampling metric
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percentage of samples outside the red square, a larger WSS indicates fewer samples

to be screened manually.

4.2.3 Evaluation Strategy

Each systematic review topic is split using the 5-fold cross-validation strategy where

1 fold is used for testing and 1 fold serves as validation for hyperparameter tuning

(e.g., learning rate and the number of epochs). The average result of across 5 folds is

reported.

4.2.4 Hyperparameter tuning of CTRL-Screener

We used Optuna [1] to find the optimal learning rate in the training of autoencoders

and early stopping to prevent the autoencoders from overfitting on the training data.

All the articles across the various systematic review topics are used to train the

autoencoder. For the softmax classification layer, the validation data was used to

find the optimal learning rate and the number of epochs.
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Chapter 5

Results

5.1 Results

Table 5.1 and Table 5.2 summarize the AUC andWSS@95 scores across the 19 system-

atic review topics using fastText and Sentence-Bert as base language models, respec-

tively. In terms of AUC, CTRL-Screener performs the best on 10 of the 19 datasets

using Sentence-Bert and 5 using fastText. Similarly, for WSS@95, our model achieves

the highest on 9 and 5 topics, respectively. These results highlight the added benefit

of designing appropriate text augmentation techniques and utilizing the contrastive

learning based approach to train the autoencoder.

From comparing across 5.1 and 5.2, we observe that Sentence-BERT embeddings

generally yielded better representations than fastText embeddings on 10 of the topics

in terms of AUC. However, with respect to WSS@95, fastText outperforms Sentence-

BERT on 14 of the topics. This suggests state-of-the-art NLP methods may not

always provide the best performance and supports the conclusion by Kusa et al. [18]

that deep learning models do not provide substantial superiority over traditional (e.g.,

shallow neural network) models.

Table 5.1 also shows that passing the embedding through a traditionally trained
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Table 5.1: Average performance results across the 5-folds for each of the SR topics.
FT denotes the fastText-based embedding models, AE is an autoencoder pre-trained
with the mean square error loss. Bold values indicate the highest score overall and
underlined scores indicate the second-highest score.

FT FT + AE CTRL-Screener (FT)

Topic AUC WSS AUC WSS AUC WSS

ACEInhibitors 0.782 0.190 0.738 0.104 0.745 0.118
ADHD 0.837 0.304 0.764 0.190 0.783 0.165
Antihistamines 0.620 0.095 0.547 0.026 0.618 0.060
Atypical Antipsychotics 0.678 0.068 0.639 0.048 0.685 0.071
Beta Blockers 0.709 0.123 0.642 0.092 0.690 0.071
Calcium Channel Blockers 0.744 0.109 0.673 0.091 0.717 0.091
Estrogens 0.755 0.269 0.679 0.135 0.810 0.249
NSAIDs 0.830 0.234 0.763 0.119 0.810 0.233
Opiods 0.727 0.277 0.702 0.209 0.711 0.219
Oral Hypoglycemics 0.630 0.067 0.612 0.033 0.574 0.058
Proton PumpInhibitors 0.704 0.076 0.667 0.073 0.705 0.102
Skeletal Muscle Relaxants 0.673 0.202 0.616 0.230 0.639 0.295
Statins 0.749 0.168 0.702 0.080 0.740 0.141
Triptans 0.823 0.242 0.742 0.122 0.795 0.2178
Urinary Incontinence 0.815 0.190 0.763 0.117 0.826 0.224

Clopidrel 0.919 0.566 0.850 0.380 0.936 0.597
Anemia 0.939 0.616 0.890 0.438 0.919 0.575
Proton Beam 0.931 0.645 0.918 0.584 0.923 0.619

Hyperglycemia 0.849 0.362 0.791 0.253 0.837 0.301

autoencoder (i.e., mean squared loss) usually leads to a deterioration in performance

for fastText, but can sometimes be beneficial for Sentence-Bert. However, generally

speaking, the autoencoder yields slightly worse performance for abstract screening.

Only in at most 5 of the topics did the contrastive learning-based autoencoder result

in a performance degradation compared to the traditional autoencoder (i.e., Atypical

Antipsychotics and Oral Hypoglycemics for fastText embeddings; ADHD, Opiods,

Proton PumpInhibitors, Skeletal Muscle Relaxants, and Urinary Incontinence for

Sentence-Bert). These systematic reviews contain a smaller number of articles (<

2000 total) and may suffer from the lack of positive/negative samples to appropriately

train the contrastive learning-based autoencoder.
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Table 5.2: Average performance results across the 5-folds for each of the SR top-
ics. SBERT represents the Sentence-BERT based embedding models, and AE is an
autoencoder pre-trained with the mean square error loss. Bold values indicate the
highest score overall and underlined scores indicate the second-highest score.

SB SB+AE CTRL-Screener (SB)

Topic AUC WSS AUC WSS AUC WSS

ACEInhibitors 0.790 0.188 0.783 0.219 0.795 0.187
ADHD 0.898 0.494 0.913 0.585 0.901 0.466
Antihistamines 0.681 0.074 0.620 0.064 0.694 0.050
Atypical Antipsychotics 0.694 0.083 0.680 0.060 0.695 0.074
Beta Blockers 0.722 0.116 0.690 0.111 0.727 0.143
Calcium Channel Blockers 0.711 0.071 0.692 0.045 0.720 0.116
Estrogens 0.811 0.246 0.803 0.279 0.821 0.346
NSAIDs 0.791 0.217 0.783 0.173 0.787 0.222
Opiods 0.688 0.242 0.674 0.212 0.667 0.166
Oral Hypoglycemics 0.673 0.088 0.631 0.036 0.661 0.121
Proton PumpInhibitors 0.709 0.064 0.694 0.085 0.687 0.079
Skeletal Muscle Relaxants 0.816 0.451 0.784 0.323 0.783 0.389
Statins 0.694 0.117 0.693 0.136 0.753 0.230
Triptans 0.835 0.328 0.808 0.237 0.816 0.297
Urinary Incontinence 0.770 0.172 0.810 0.207 0.770 0.155

Clopidrel 0.910 0.506 0.903 0.500 0.919 0.551
Anemia 0.918 0.553 0.909 0.541 0.927 0.588
Proton Beam 0.931 0.597 0.921 0.606 0.936 0.639

Hyperglycemia 0.831 0.324 0.814 0.338 0.823 0.292

5.2 Effect of Relative Order

We study the effect of the 2 augmented sample generation mechanisms on the con-

trastive learning-based autoencoder: (1) order preservation (or unshuffled) and (2)

random sampling of the sentences (or shuffled). Table 5.3 summarizes the results

for the Sentence-BERT encoding for 4 of the systematic review topics. As the re-

sults illustrate, preserving the sentence order generally yields better performance

both in terms of AUC and WSS@95. The combined column illustrates the results

for training CTRL-Screenerusing both shuffled and unshuffled datasets. We observe

that using both sampling mechanisms and training on a larger dataset, (i.e., CTRL-

Screener (SB)) yields a more robust pre-trained autoencoder. Clopid, Anemia, and

Hyperglycemia show improvements both in terms of AUC and WSS, whereas proton
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Table 5.3: A study of the impact of relative and shuffled ordering of the sentences on
CTRL-Screener.

Unshuffled Shuffled Combined

Topic AUC WSS AUC WSS AUC WSS

Clopidrel 0.917 0.497 0.914 0.499 0.924 0.556
Anemia 0.914 0.524 0.916 0.546 0.917 0.544
Proton Beam 0.928 0.622 0.926 0.611 0.927 0.590

Hyperglycemia 0.827 0.303 0.811 0.265 0.838 0.313

Table 5.4: An AUC comparison of the effect of the sampling percentage on CTRL-
Screener.

Topic 50% 60% 70% 80%

Clopidrel 0.911 0.908 0.917 0.908
Anemia 0.923 0.918 0.914 0.918
Proton Beam 0.922 0.934 0.928 0.929

Hyperglycemia 0.827 0.814 0.827 0.817

Beam experiences a slight degradation from combining the two mechanisms.

5.3 Effect of Sampling Percentage

Next, we study the impact of the sampling percentage on CTRL-Screener. Table

5.4 summarizes the results for the Sentence-BERT embedding for 4 of the system-

atic review topics. As the results illustrate, there does not appear to be an obvious

correlation between the percentage of sentences to sample and CTRL-Screener’s per-

formance. Anemia and Hyperglycemia yields better performance using 50% of the

abstract as data augmentation, whereas Clopidrel and Hyperglycemia achieved bet-

ter performance from 70% sampling. In comparison with the results in Table 5.1 and

5.2, we observe that training using all percentages yields a more robust pre-trained

autoencoder.
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Chapter 6

Conclusion

6.1 Conclusion

In this paper, we investigate the use of a contrastive learning approach to improve the

automation of the systematic review screening process. We propose CTRL-Screener,

which introduces a data augmentation technique to generate positive and negative

samples that can yield better abstract representations. Our results on 19 system-

atic review topics demonstrate the potential of contrastive learning to obtain better

predictive results for citation screening.

6.2 Future work

In this section, we discuss some of the limitations of our study, and future work that

can be done to mitigate those limitations.

6.2.1 Additional datasets

Only 19 systematic review datasets were used in the study, and 18 out of the 19

datasets were produced before 2010. We plan to evaluate CTRL-Screener on addi-
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tional and more recent systematic review tasks such as the CLEFT-TAR [13] and the

SWIFT-Review [12] datasets.

6.2.2 Comparison to other data augmentation techniques

We plan to perform empirical experiments to compare the data augmentation tech-

nique proposed in this paper with other existing data augmentation technique in NLP

such as EDA [45].

6.2.3 Different levels of automation

As reported in previous studies[8], Level 2 automation (i.e. tools enabling workflow

prioritization) generally achieves better results than Level 4 automation (i.e. tools

performing tasks to completely eliminate human participation)[28]. We intend to

explore the contrastive learning techniques with existing ranking-based approaches

for systematic review screening [21, 36, 43].

6.2.4 Continual learning

We identify that one potential impediment to efficiently applying CTRL-Screener is

the time and memory required for training the contrastive learning-based autoen-

coder. Currently, this is trained with samples from all systematic review topics in

the corpus. A solution to the problem is to pre-train the autoencoder with the large

corpus of all systematic review and fine-tunes the pre-trained model for each new

systematic review task. To prevent catastrophic forgetting (i.e., poor performance on

sample seen early in the pre-training) and negative transfer (i.e., poorer performance

on most recent tasks due to local adaptation), we plan to adopt the methodology of

efficient life-long learning framework as proposed in [44], which is improved on by the

Memory-Based Parameter Adaptation framework introduced in [39].



29

Bibliography

[1] Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori

Koyama. Optuna: A next-generation hyperparameter optimization framework.

In Proceedings of the 25th ACM SIGKDD International Conference on Knowl-

edge Discovery and Data Mining, 2019.

[2] Dor Bank, Noam Koenigstein, and Raja Giryes. Autoencoders, 2021.

[3] Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. Enrich-

ing word vectors with subword information. arXiv preprint arXiv:1607.04606,

2016.

[4] Aaron M Cohen. Optimizing feature representation for automated systematic

review work prioritization. In AMIA annual symposium proceedings, volume

2008, page 121. American Medical Informatics Association, 2008.

[5] Aaron M Cohen, William R Hersh, Kim Peterson, and Po-Yin Yen. Reducing

workload in systematic review preparation using automated citation classifica-

tion. Journal of the American Medical Informatics Association, 13(2), 2006.

[6] Sergey Edunov, Myle Ott, Michael Auli, and David Grangier. Understanding

back-translation at scale, 2018.

[7] Hongchao Fang, Sicheng Wang, Meng Zhou, Jiayuan Ding, and Pengtao Xie.



30

Cert: Contrastive self-supervised learning for language understanding. arXiv

preprint arXiv:2005.12766, 2020.

[8] Allison Gates, Samantha Guitard, Jennifer Pillay, Sarah A. Elliott, Michele P.

Dyson, Amanda S. Newton, and Lisa Hartling. Performance and usability of

machine learning for screening in systematic reviews: a comparative evaluation

of three tools. Systematic Reviews, 8(1):278, 2019.

[9] John Giorgi, Osvald Nitski, Bo Wang, and Gary Bader. Declutr: Deep con-

trastive learning for unsupervised textual representations. In Proceedings of the

59th Annual Meeting of the Association for Computational Linguistics and the

11th International Joint Conference on Natural Language Processing (Volume 1:

Long Papers), pages 879–895, 2021.

[10] Unjali P Gujral, Ram Jagannathan, Siran He, Minxuan Huang, Lisa R Staimez,

Jingkai Wei, Nanki Singh, and KM Venkat Narayan. Association between varying

cut-points of intermediate hyperglycemia and risk of mortality, cardiovascular

events and chronic kidney disease: a systematic review and meta-analysis. BMJ

Open Diabetes Research and Care, 9(1):e001776, 2021.

[11] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum

contrast for unsupervised visual representation learning. In Proceedings of the

IEEE/CVF conference on computer vision and pattern recognition, pages 9729–

9738, 2020.

[12] Brian E Howard, Jason Phillips, Kyle Miller, Arpit Tandon, Deepak Mav, Mi-

hir R Shah, Stephanie Holmgren, Katherine E Pelch, Vickie Walker, Andrew A

Rooney, et al. Swift-review: a text-mining workbench for systematic review.

Systematic reviews, 5:1–16, 2016.

[13] Evangelos Kanoulas, Dan Li, Leif Azzopardi, and Rene Spijker. Clef 2019 tech-



31

nology assisted reviews in empirical medicine overview. In CEUR workshop

proceedings, volume 2380, 2019.

[14] Jacob Devlin Ming-Wei Chang Kenton and Lee Kristina Toutanova. Bert: Pre-

training of deep bidirectional transformers for language understanding. In Pro-

ceedings of NAACL-HLT, pages 4171–4186, 2019.

[15] Madian Khabsa, Ahmed Elmagarmid, Ihab Ilyas, Hossam Hammady, and

Mourad Ouzzani. Learning to identify relevant studies for systematic reviews

using random forest and external information. Machine Learning, 102(3):465–

482, 2016.

[16] Georgios Kontonatsios, Sally Spencer, Peter Matthew, and Ioannis Korkontzelos.

Using a neural network-based feature extraction method to facilitate citation

screening for systematic reviews. Expert Systems with Applications: X, 6:100030,

2020.

[17] Ioannis Koulouridis, Mansour Alfayez, Thomas A Trikalinos, Ethan M Balk, and

Bertrand L Jaber. Dose of erythropoiesis-stimulating agents and adverse out-

comes in ckd: a metaregression analysis. American Journal of Kidney Diseases,

61(1):44–56, 2013.

[18] Wojciech Kusa, Allan Hanbury, and Petr Knoth. Automation of citation screen-

ing for systematic literature reviews using neural networks: A replicability study.

In European Conference on Information Retrieval, pages 584–598. Springer, 2022.

[19] Phuc H Le-Khac, Graham Healy, and Alan F Smeaton. Contrastive representa-

tion learning: A framework and review. IEEE Access, 8:193907–193934, 2020.

[20] Eric W Lee, Byron C Wallace, Karla I Galaviz, and Joyce C Ho. Mmidas-ae:

multi-modal missing data aware stacked autoencoder for biomedical abstract



32

screening. In Proceedings of the ACM Conference on Health, Inference, and

Learning, pages 139–150, 2020.

[21] Grace E Lee and Aixin Sun. Seed-driven document ranking for systematic reviews

in evidence-based medicine. In The 41st international ACM SIGIR conference

on research & development in information retrieval, pages 455–464, 2018.

[22] Ivan Lerner, Perrine Créquit, Philippe Ravaud, and Ignacio Atal. Automatic

screening using word embeddings achieved high sensitivity and workload reduc-

tion for updating living network meta-analyses. Journal of clinical epidemiology,

108:86–94, 2019.

[23] Yu Meng, Chenyan Xiong, Payal Bajaj, Paul Bennett, Jiawei Han, Xia Song,

et al. Coco-lm: Correcting and contrasting text sequences for language model

pretraining. Advances in Neural Information Processing Systems, 34:23102–

23114, 2021.

[24] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Dis-

tributed representations of words and phrases and their compositionality. Ad-

vances in neural information processing systems, 26, 2013.

[25] Ishan Misra and Laurens van der Maaten. Self-supervised learning of pretext-

invariant representations. In Proceedings of the IEEE/CVF Conference on Com-

puter Vision and Pattern Recognition, pages 6707–6717, 2020.

[26] Nassr Nama, Margaret Sampson, Nicholas Barrowman, Ryan Sandarage, Kusum

Menon, Gail Macartney, Kimmo Murto, Jean-Philippe Vaccani, Sherri Katz,

Roger Zemek, et al. Crowdsourcing the citation screening process for systematic

reviews: validation study. Journal of medical Internet research, 21(4):e12953,

2019.



33

[27] Daniel W Otter, Julian R Medina, and Jugal K Kalita. A survey of the usages

of deep learning for natural language processing. IEEE transactions on neural

networks and learning systems, 32(2):604–624, 2020.

[28] Annette M. O’Connor, Guy Tsafnat, James Thomas, Paul Glasziou, Stephen B.

Gilbert, and Brian Hutton. A question of trust: can we build an evidence base

to gain trust in systematic review automation technologies? Systematic Reviews,

8:143, 2019.

[29] Alison O’Mara-Eves, James Thomas, John McNaught, Makoto Miwa, and Sophia

Ananiadou. Using text mining for study identification in systematic reviews: a

systematic review of current approaches. Systematic reviews, 4(1):1–22, 2015.

[30] Jeffrey Pennington, Richard Socher, and Christopher D. Manning. Glove: Global

vectors for word representation. In Empirical Methods in Natural Language Pro-

cessing (EMNLP), pages 1532–1543, 2014.

[31] Xuan Qin, Jiali Liu, Yuning Wang, Yanmei Liu, Ke Deng, Yu Ma, Kang Zou,

Ling Li, and Xin Sun. Natural language processing was effective in assisting

rapid title and abstract screening when updating systematic reviews. Journal of

clinical epidemiology, 133:121–129, 2021.

[32] John Rathbone, Loai Albarqouni, Mina Bakhit, Elaine Beller, Oyungerel Byam-

basuren, Tammy Hoffmann, Anna Mae Scott, and Paul Glasziou. Expediting

citation screening using pico-based title-only screening for identifying studies in

scoping searches and rapid reviews. Systematic reviews, 6(1):1–7, 2017.

[33] Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using

siamese bert-networks. In Proceedings of the 2019 Conference on Empirical Meth-

ods in Natural Language Processing and the 9th International Joint Conference

on Natural Language Processing (EMNLP-IJCNLP), pages 3982–3992, 2019.



34

[34] Nils Rethmeier and Isabelle Augenstein. A primer on contrastive pretraining in

language processing: Methods, lessons learned & perspectives. ACM Computing

Surveys (CSUR), 2021.

[35] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning Internal Represen-

tations by Error Propagation, page 318–362. MIT Press, Cambridge, MA, USA,

1986.

[36] Harrisen Scells, Guido Zuccon, and Bevan Koopman. A comparison of automatic

boolean query formulation for systematic reviews. Information Retrieval Journal,

24:3–28, 2021.

[37] Dinghan Shen, Guoyin Wang, Wenlin Wang, Martin Renqiang Min, Qinliang

Su, Yizhe Zhang, Chunyuan Li, Ricardo Henao, and Lawrence Carin. Baseline

needs more love: On simple word-embedding-based models and associated pool-

ing mechanisms. In Proceedings of the 56th Annual Meeting of the Association

for Computational Linguistics (Volume 1: Long Papers), pages 440–450, 2018.

[38] Chunfeng Song, Feng Liu, Yongzhen Huang, Liang Wang, and Tieniu Tan. Auto-
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