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Abstract

Improving Biomedical Abstract Screening Using Contrastive Learning
By Tiantian Li

Systematic review is a crucial tool for evidence-based medicine as it identifies
and synthesizes published medical literature to inform prevention and intervention
strategies. However, it requires intensive labor and time to identify relevant arti-
cles to include. While automating the screening process has been proposed using
the abstracts, the performance is still suboptimal. Contrastive learning has achieved
great success in computer vision but has not been used to expedite the systematic
review process. In this thesis, we propose a new method using an autoencoder trained
with contrastive loss to generate vector representation for abstracts. We apply data
augmentation techniques on the abstract and train the autoencoder to generate rep-
resentations for anchor and positive samples that are closer in vector space than those
for anchor and negative samples. Our experiments suggest that contrastive learning
can be used to help filter irrelevant articles during the abstract screening phase.
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Chapter 1

Introduction

Systematic review is the process of identifying, selecting, and critically appraising all
relevant primary research related to a well-formulated research problem. Systematic
review bridges the gap between research and practice by providing all levels of deci-
sion and policy makers with comprehensive and up-to-date information. Specifically,
in medicine, systematic reviews help to identify safer and more effective treatments
for patients by synthesizing resources from a wide range of studies. While the system-
atic review is a crucial tool for evidence-based medicine, it has become increasingly
challenging to conduct a comprehensive systematic review in a reasonable period of
time due to the exponential growth in papers [26].

Abstract screening is one of the most laborious and resource-consuming steps in
the conduction of a systematic review. To preserve the validity of the study and
minimize selection bias, the primary search for relevant articles usually results in
thousands of articles that need to be screened carefully in later steps. During the
abstract and title screening step, researchers examine the abstract and title of each
article and make decisions on whether to include the article or not based on the in-
clusion criteria, which can take up to months. With the exponential growth in new

primary article production, it is essential for a systematic review to be conducted
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Figure 1.1: A simplified illustration of the screening process of a systematic review
by Cohen et al.[5]

effectively and comprehensively in order to maintain timeliness and robustness. Fig-
ure 1.1 shows an example of the article screening process of a systematic review on
angiotensin-converting enzyme inhibitors by Cohen et al.[5]. Only 7.2% of the articles
collected from broad keyword searches passed abstract and title screening and only
1.6% of the total articles passed the full-text screening and were included in the final
systematic review.

Numerous methods have been proposed to expedite the completion of a systematic
review. Some focus on increasing the efficiency of labor workflow through crowdsourc-
ing [26, 32|, while others focus on automating the screening process using text mining
approaches [41]. Under the latter paradigm, a common setup is for a human reviewer
to manually label a subset of the articles to train the machine learning model which

can then classify the unlabeled articles. Although deep learning approaches have be-



come the de-facto architecture in natural language processing (NLP), limited studies
have explored its viability for automating the screening process [16, 40]. Even then,
it remains unclear if such complex models are practical [18].

One of the major disadvantages of a deep learning model is the need for large
amounts of labeled, training data. To overcome this, contrastive learning has been
proposed to generate (self-supervised) augmentations of the input data to learn more
robust representations. Contrastive representation learning is a technique of gener-
ating a useful representation of data by comparing similar and dissimilar samples.
The goal of training a contrastive learning-based model is to learn a mapping such
that representations of similar samples are pushed together in the embedding space
while representations of dissimilar samples are pulled away. Contrastive learning has
achieved great success in computer vision [19], but the benefits of text mining meth-
ods still remain unknown [34]. We posit that contrastive learning can be utilized to
yield better screening automation tools without requiring additional labeled data.

To mitigate the need for labor-intensive manual systematic reviews as well as
minimize the amount of annotated samples needed to train a deep learning model, we
propose CTRL-Screener, a self-supervised contrastive learning-based model. CTRL-
Screener is used to eliminate irrelevant studies based on the abstract only. CTRL-
Screener consists of a pre-trained autoencoder model and a softmax activation layer.
The pre-trained autoencoder model is trained with unlabelled data from a variety
of systematic review topics, and the softmax layer is trained independently for each
systematic review. CTRL-Screener requires a percentage of the data to be manually
labeled to learn to distinguish between relevant and irrelevant samples, then it can be
used in the abstract screening phase of systematic review to reduce the human effort
required.

The main contributions of this thesis are:

1. We propose CTRL-Screener, a self-supervised contrastive learning-based model,



that can be used to expedite the systematic review process. To the best of our
knowledge, we are the first to investigate the use of contrastive learning for

screening articles.

2. We introduce text augmentation techniques that preserve the structural in-
tegrity of the abstract. The resulting article representations improve the pre-

dictive performance of the classifier.

3. We discuss the effect of different variations of the text augmentation techniques

and report the results.

4. We conducted experiments on 19 systematic review topics, demonstrating the
potential of CTRL-Screener towards filtering out irrelevant articles at the ab-
stract screening phase. We compared the performance of CTRL-Screener against

other state-of-the-art language models including fastText and Sentence-BERT.

The rest of this thesis is structured as follows. Chapter 2 introduces some of the
work that has been done in the fields of automating systematic reviews and contrastive
learning. Chapter 3 elaborates on the architecture and the implementation details
of the proposed model CTRL-Screener. Chapter 4 introduces the experiment set-up,
including the datasets used and evaluation methods. Chapter 5 reports and discusses
the results of CTRL-Screener and baseline models. Lastly, Chapter 6 concludes our
contribution to systematic review automation, and discusses future research direc-

tions.



Chapter 2

Background

In this section, we briefly review relevant works for automating systematic reviews

and contrastive learning approaches in NLP.

2.1 Automating Systematic Reviews

Multiple studies have introduced text mining methods to help automate the screening
process (see [41] for a recent systematic review on this topic). Most of the prior work
done on automating the screening process of systematic reviews with supervised or
semi-supervised machine learning models extract features from title and abstract.
Full-text features are often avoided as full-text documents require a lot of natural
language pre-processing steps. Even before that, reliable conversion from pdf to text

is required as most full-text documents are only available in pdf format [40].

2.1.1 Word Embeddings

Existing studies have explored a variety of classifiers such as support vector machines,
Naive Bayes, decision trees, and k-nearest neighbors in conjunction with bag-of-word

representations for text [4, 15, 29]. More recently, word embeddings have emerged as



a popular text representation for automating systematic reviews [20, 22, 31]. Word
embeddings seek to learn a dense, low-dimensional vector representation that simulta-
neously captures the semantic properties of the words. Amongst neural network-based
word embeddings, the three popular models include word2vec [24], Global Vectors for
Word Representation (GloVe) [30], and fastText [3]

While neural network based word embedding models preserve semantic meaning
of words, they do not encode contextual information. Transformer-based word em-
bedding models have been introduced to better capture semantics on sentence level.
BERT[14] was the first model to pre-train deep bidirectional representations (i.e.
conditioning on both previous and latter context), leading to better performance on
tasks such as natural language inference and paraphrasing. Sentence-BERT[33], as a
modification on BERT, generates semantically meaningful sentence embedding where

semantically similar sentences have closer vector representations in the vector space.

2.1.2 Deep Learning Models

Given the impressive performance of deep learning for various natural language pro-
cessing tasks [27], two deep learning algorithms using denoising autoencoders and a
multi-channel convolutional neural network were proposed to automate the systematic
review process [16, 40].

In the work by Kontonatsios et al. [16], the authors proposed a multi-layer, feed-
forward neural network that learns a latent representation of documents that preserves
class-membership information (i.e., the label of the document) through supervised
learning. The generated embeddings from the proposed feature extractor can be
integrated with any classification algorithm to predict whether an unseen document
is relevant to the topic or not. More specifically, the feature extractor in the proposed
model consists of three independently trained denoising autoencoders (DAE) and a

multi-layer, feed forward neural network (FF'). Each DAE is trained independently to



accomplish the task of reconstructing manually corrupted bag-of-word embeddings of
text documents. The purpose of training three DAEs in parallel is to generate different
reconstructions of the same document. The empirical experiments showed that the
combination of different reconstructions led to better results. Then, the reconstructed
vector representations of the DAEs are used to initialize the first three layers ({y, ls, [3)
of the feed forward neural network. [y, [5, and [3 are parallel layers, meaning that there
are no connected units in between. The outputs of l1, [5, [3 are concatenated and fed
to the next layer l4. The final layer of the feed forward network is an activation layer
using softmax function to predict the probability distribution of each class. The feed
forward network is trained in a supervised manner to minimize the cross entropy
between the predicted probability distribution and the true class distribution. After
the supervised training, the output vector of Iy is calculated again and used as the
extracted feature vector, which can be incorporated with any classification models
(i.e. support vector machine) to predict the probability distribution of target classes.

The second study [40] focuses on using a multi-channel convolutional neural net-
work (CNN) to automate the title and abstract screening process. In the data pre-
processing stage, title and abstract of a document are concatenated together and
passed to pre-trained GloVe word embeddings [30] to generate vector representa-
tions. The CNN structure is used as it can obtain important text features from the
document, such as finding keywords and phrases, and is more cost-efficient than Long
Short-Term Memory (LSTM) models. The word embeddings are passed to a series of
CNN blocks of CNN layers followed by global max pooling. The study experimented
with different numbers of channels and different kernel sizes and concluded that a
2-channel CNN with kernel sizes of 2/4 achieved the best performance.

A recent literature review study [18] replicated the experiments performed in the
aforementioned two studies and reported the performance comparison between the

two proposed models. In addition, the paper presented a simpler model using the



average of the fastText word embedding [3] which yields higher performance on 18
out of the 23 datasets than the performance of the replicated model from the second
paper and comparable performance against the replicated model from the first paper.
The fastText model is also, on average, 72 times faster than the multi-channel CNN
model proposed in the second study and 8 times faster than the DAE-FF model

proposed in the first paper.

2.2 Contrastive Representation Learning

Contrastive learning models learn better representations through the comparison pro-
cess. The main goal of contrastive representation learning is to generate representa-
tions of sample documents so that pre-defined ‘similar’ samples are closer together in
vector space while ‘dissimilar’ samples are farther away from each other. The idea
behind contrastive learning is to use similar and dissimilar samples (often generated
by data augmentations) to learn a more robust representation [19]. Depending on
the end goal, the notion of similarity and dissimilarity can be very different from
case to case. In a multi-modal setting, similar samples can be different views of the
same context; in object recognition tasks, similar samples can be different rotations
of images of the same object.

Contrastive learning self-supervised training objectives have yielded state-of-the-
art image representations in computer vision [11, 25]. Yet the benefits of contrastive
learning in NLP are still relatively understudied. Examples of relevant work include
investigating sentence augmentation techniques [23, 46], using back translation [7], or
contrasting text spans [9].

A recent application of contrastive self-supervised learning in NLP field was intro-
duced in [7]. The study proposed a contrastive self-supervised learning model CERT,

which fine-tunes established language representation model (e.g. BERT [14]) to bet-



ter capture sentence-level semantics. Back-translation technique, first introduced in
[6], was used to augment the dataset and generate positive and negative pairs. For
a given sentence s; in English, we can use an English to Spanish translation model
to generate s} in Spanish. Then we pass s} through a Spanish-to-English translation
model and get s{ in English. The choice of intermediate language is arbitrary as long
as there exists a developed translation model between the source language and the in-
termediate language. We can augment the dataset by repeating the back-translation
technique for all sentences in the training set. s; and s7 are a similar pair if and only
if i = j. s; and s} are a dissimilar pair if and only if i # j. The study reported the
performance of CERT, BERT model fine-tuned with contrastive representation learn-
ing, on 11 natural language understanding tasks, and CERT achieved better average
performance than BERT.

The study also experimented with a different data augmentation technique. Easy
Data Augmentation techniques (EDA), first introduced in [45], augments a text
dataset by randomly performing one of the four operations: synonym replacement,
random insertion, random swap, and random deletion. Back translation outperforms
EDA in almost all of the experimental settings except in one case where its per-
formance is 0.1% lower than that of EDA. The study attributes back-translation’s
better results to the fact that it performs augmentation at sentence level while EDA
performs at word/phrase level, thus preserving better global semantics.

A recent survey illustrates that despite the outstanding performance of back trans-
lation compared to EDA it is computationally expensive and non-robust [34]. There
still exist NLP challenges including generating better positive and negative samples

and introducing scalable, high-quality, and robust text augmentations.
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Chapter 3

CTRL-Screener

In this section, we introduce CTRL-Screener, a self-supervised contrastive learning-
based model that can be used to expedite the systematic review process. We present

the model architecture and report the implementation details.

3.1 Problem Formulation

Given the abstract of an input document, D;, which contains n sentences (i.e., D; =
d},d?,...,d"), CTRL-Screener gives a binary classification that predicts whether the

79 )

abstract is related to the given systematic review topic or not.

3.2 Model Architecture

CTRL-Screener consists of three neural network layers: (1) an abstract representa-
tion that is obtained using a sentence embedding, (2) a self-supervised autoencoder
trained with a contrastive loss that further compresses the abstract representation
and learns a more robust abstract representation, and (3) a softmax layer that uses
the autoencoder representation to predict whether the article is relevant to the sys-

tematic review topic. 3.1 shows the training process of CTRL-Screener. A subset of
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Figure 3.1: An illustration of the training process of CTRL-Screener.

documents needs to be manually labeled by the reviewers and is used by the softmax
layer to learn the classification. However, the abstract representation generator and
the autoencoder do not encode class membership information into the representation

and thus can be learned in an unsupervised fashion.

3.2.1 Abstract Representation

Various model architectures have been proposed to learn sentence representations
such as pooling word embeddings [33, 37|, using the CLS token from BERT [14], or
more recently Sentence-BERT, a BERT-based Siamese network architecture [33]. For
the purpose of our experiments, CTRL-Screener uses Sentence-BERT and fastText
[18] but we note any sentence or paragraph embedding can be used. If the abstract
is longer than the supported input length, we truncate from the start of the abstract

until we reach the maximum supported length.

3.2.2 Contrastive Autoencoder

Autoencoders are often used to generate compressed representations from their input

data. First introduced in [35], autoencoder is a type of neural network that has been
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used to generate informative represenatation of data for various applications such as
clustering[2][38]. Although Sentence-BERT already condenses the abstract to a 768-
dimensional numeric vector, an additional autoencoder can potentially yield more
robust abstract representations. Standard autoencoders are pre-trained to reconstruct
the input data using the mean-squared error loss function, shown in Figure 3.2(a).
However, one limitation is that minor semantic modifications of the abstract may yield
drastically different representations. This is important as biomedical abstracts are
generally longer due to a common pre-defined structure that consists of background,
method, results, and conclusion sections. As a result, the abstracts often exceed the
input length supported by convolutional neural networks, recurrent neural networks,
and transformer-based embedding models.

To address this limitation, CTRL-Screener adopts a self-supervised contrastive
loss to train the autoencoder. Let D; denote the document of interest (i.e., anchor
document). Given a positive sample, P;, and a negative sample, N;, associated with

D;, the triplet loss is then defined as:

L= max(||D; = Bl — [|D; — Nil[3,0). (3.1)

=1

The natural question is then how to generate a positive sample that is similar to the
anchor instance and a negative sample that is dissimilar. Although a contrastive learn-
ing framework has been proposed for sentence representation [46], the four sentence
augmentation techniques (word deletion, span deletion, reordering, and synonym)
may not alleviate lengthy abstracts.

Given the pre-defined structure in biomedical documents, we propose two mech-
anisms for generating high-quality positive augmentations, P;. First, we subsample
the sentences d¥ within D; but ensure the order remains fixed. In this fashion, there is

likely at least 1 sentence that reflects each of the structured sections while maintain-
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(a) Baseline (b) Contrastive

Figure 3.2: Comparison between the baseline autoencoder and the contrastive-based
encoder in CTRL-Screener.

ing the overall structure of the abstract. Figure 3.3 shows an example of an abstract
from the dataset in [17]. The abstract consists of 11 sentences with indices from 1
to 11, divided into 5 structured sections. Figure 3.4 illustrates an augmented sample
using the first mechanism. Sentences [1,3,4,5,7,8,10] were randomly sampled and
concatenated together, preserving relative order, as an augmented sample of the ab-
stract shown in Figure 3.3. The second mechanism subsamples sentences df within
D; and shuffles the ordering.

Negative samples are constructed by randomly selecting a subsample of sentences
from any other document within the corpus, D;, such that j # 7. Figure 3.5 illustrates
how positive and negative samples are defined using the augmented datasets. With
respect to the document D1 framed in blue, D’1, framed in green, is the positive
sample since it was generated using D1. Negative sample D2 is framed in red as it
is generated from a different abstract.

As shown in Figure 3.2(b), the contrastive autoencoder will learn to generate
representations that preserve the distance between two abstract representations of the
same document in the new vector space while ensuring that it is somewhat different

from the other abstract representations. Since this representation does not require
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labeled information and can be pre-trained on a larger corpus that may or may not

include articles from the systematic review topic.

3.2.3 Classification

The resulting representation from the contrastive autoencoder is passed to a softmax
layer whose weights are learned using the training data for the systematic review

topic.

3.3 Implementation Details

CTRL-Screener is implemented in PyTorch v1.12.0.> We use Adam as the optimizer
and weights to each layer were initialized using the Xavier Uniform function. Both

the hidden layer and the output layer have input and output dimensions of 768.

3.3.1 Data augmentation

Positive and negative samples are generated by subsampling sentences at different
percentages (50%, 60%, 70%, and 80%) from the original documents. We generated
multiple positive samples, P;, by subsampling from each anchor document and ei-
ther maintaining the relative order of sentences or shuffling the sampled sentences.
A negative sample, NN, is obtained by subsampling the same percentage from an-

other randomly selected document, D;, j # ¢, and either preserving the order in the

generated sample or shuffling the sampled sentences.

1Our code is available at https://drive.google.com/drive/folders/
1z7fpBRCcHNgZidecbS4M1kTAbQF31Rew?usp=sharing.


https://drive.google.com/drive/folders/1z7fpBRCcHNqZidecbS4M1kTAbQF3lRew?usp=sharing
https://drive.google.com/drive/folders/1z7fpBRCcHNqZidecbS4M1kTAbQF3lRew?usp=sharing
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Figure 3.3: An example abstract provided in [17].
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Figure 3.4: An augmented sample generated from abstract shown in Figure 3.3
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Figure 3.5: Illustration of the definition of positive and negative sample with respect
to an anchor sample. In the figure, the anchor sample is framed with a blue square,
positive sample is framed with a green square, and negative sample is framed with a
red square.
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Chapter 4

Experiment setup

4.1 Datasets

We evaluate our model on three datasets: (1) 15 systematic review topics related
to different drug efficacy of medications in several drug classes provided by Cohen
et al. [5], (2) 3 systematic review datasets related to clinical outcomes of various
treatments released by Wallace et al. [42], and (3) 1 systematic review topic on cut-
points of hyperglycemia [10]. Each SR contains the contents of the abstract and the
label which indicates whether the articles are included or excluded after the abstract
screening stage. The number of articles screened ranged from 310 (Antihistamines) to
7043 (Clopidrel) with an abstract screening ratio ranging from 2.07% (SkeletalMus-
cleRelaxants) to 32.49% (Triptans). Table 4.1 summarizes the statistics for the 19
SR topics. For each document, we constructed 4 augmented samples by subsampling
50%, 60%, 70%, and80% of the sentences in the original document while preserving
relative order, and 1 augmented sample by subsampling and shuffling 70% of the
sentences. In chapter 5, we discuss the impact of sample percentage and ordering on
the results. The average number of sentences in the abstract for each SR is between

10 and 13. On average, positive and negative samples contain 2 to 5 fewer sentences
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Table 4.1: Statistics of the systematic review topics used. Abs denotes the number

of articles passing the abstract triage statuses and % shows the percentage.

than the anchor.

SR Abs Total %
ACEInhibitors 183 2544  7.23
ADHD 84 851 9.87
Antihistamines 92 310 29.67
Atypical Antipsychotics 363 1120 32.41
BetaBlockers 302 2072 14.57
CalciumChannelBlocker 279 1218 22.90
Estrogens 80 368 21.74
NSAIDs 88 393 22.39
Opioids 48 1915 2.51
OralHypoglycemics 139 503 27.63
ProtonPumplnhibitors 238 1333 17.85
SkeletalMuscleRelaxants 34 1643 2.56
Statins 173 3465  4.99
Triptans 218 671 3248
UrinaryIncontinence 78 327  23.85
Clopidrel 771 7043 9.29
Anemia 653 4457 11.6
Proton Beam 243 4114 5.12
Hyperglycemia 274 4026 6.81

4.2 Evaluation

4.2.1 Baseline Methods

We compare CTRL-Screener against the 2 baseline embeddings and the baseline em-

beddings with an autoencoder pre-trained using the traditional mean squared error

loss to reconstruct the abstract representations.

1. fastText!: A 100-dimensional representation obtained from averaging the word

embeddings in the abstract. A recent replication study found that a fastText-

based classifier where the shallow neural network was trained based on averaging

the word embedding scores often offered the best performance compared to

'https://fasttext.cc/docs/en/python-module.html
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recent deep neural networks [18].

2. Sentence-BERT?: A 768-dimensional representation generated using the text

from the abstract as an entire sentence.

3. fastText+autoencoder: The averaged 100-dimensional fastText representation

is fed into a pre-trained autoencoder using mean squared error.

4. Sentence-BERT+autoencoder: The 768-dimensional Sentence-BERT represen-

tation is fed into a pre-trained autoencoder using mean squared error.

The resulting embeddings from the above four baseline models are then fed to a

softmax layer.

4.2.2 Metrics

We use work saved over sampling (WSS) and the area under the receiver operating
curve (AUC). WSS measures the work saved over random sampling for a given level

of recall and was introduced by Cohen et al [5]. WSS is defined as

WSS@R = (TN + FN)/N — (1.0 — R) (4.1)

where TN denotes true negatives, FN is false negatives, N is the total number of
articles, and R is the desired level of recall. Based on previous studies, we use recall
at 95% (i.e., WSS@95%).

Figure 4.1 illustrates the basic idea behind WSS metric. We rank the test samples
by the predicted probability of being positive in a descending order. The red square
frames the samples that need to be manually screened in order to achieve a recall at
R (i.e. there should be R - N samples with true positive label within the square), the

samples outside the square can be automatically screened out. WSS measures the

Zhttps://huggingface.co/sentence-transformers/paraphrase-albert-small-v2
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Figure 4.1: An illustration of work saved over sampling metric

21



22

percentage of samples outside the red square, a larger WSS indicates fewer samples

to be screened manually.

4.2.3 Evaluation Strategy

Each systematic review topic is split using the 5-fold cross-validation strategy where
1 fold is used for testing and 1 fold serves as validation for hyperparameter tuning
(e.g., learning rate and the number of epochs). The average result of across 5 folds is

reported.

4.2.4 Hyperparameter tuning of CTRL-Screener

We used Optuna [1] to find the optimal learning rate in the training of autoencoders
and early stopping to prevent the autoencoders from overfitting on the training data.
All the articles across the various systematic review topics are used to train the
autoencoder. For the softmax classification layer, the validation data was used to

find the optimal learning rate and the number of epochs.
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Chapter 5

Results

5.1 Results

Table 5.1 and Table 5.2 summarize the AUC and WSS@95 scores across the 19 system-
atic review topics using fastText and Sentence-Bert as base language models, respec-
tively. In terms of AUC, CTRL-Screener performs the best on 10 of the 19 datasets
using Sentence-Bert and 5 using fastText. Similarly, for WSS@95, our model achieves
the highest on 9 and 5 topics, respectively. These results highlight the added benefit
of designing appropriate text augmentation techniques and utilizing the contrastive
learning based approach to train the autoencoder.

From comparing across 5.1 and 5.2, we observe that Sentence-BERT embeddings
generally yielded better representations than fastText embeddings on 10 of the topics
in terms of AUC. However, with respect to WSS@95, fastText outperforms Sentence-
BERT on 14 of the topics. This suggests state-of-the-art NLP methods may not
always provide the best performance and supports the conclusion by Kusa et al. [18]
that deep learning models do not provide substantial superiority over traditional (e.g.,
shallow neural network) models.

Table 5.1 also shows that passing the embedding through a traditionally trained
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Table 5.1: Average performance results across the 5-folds for each of the SR topics.
FT denotes the fastText-based embedding models, AE is an autoencoder pre-trained
with the mean square error loss. Bold values indicate the highest score overall and
underlined scores indicate the second-highest score.

FT FT + AE CTRL-Screener (FT)
Topic AUC WSS AUC WSS AUC WSS
ACEInhibitors 0.782 0.190 0.738 0.104 0.745 0.118
ADHD 0.837 0.304 0.764 0.190 0.783 0.165
Antihistamines 0.620 0.095 0.547 0.026 0.618 0.060
Atypical Antipsychotics 0.678  0.068 0.639 0.048 0.685 0.071
Beta Blockers 0.709 0.123 0.642 0.092 0.690 0.071
Calcium Channel Blockers 0.744 0.109 0.673 0.091 0.717 0.091
Estrogens 0.755  0.269 0.679 0.135 0.810 0.249
NSAIDs 0.830 0.234 0.763 0.119 0.810 0.233
Opiods 0.727 0.277 0.702 0.209 0.711 0.219
Oral Hypoglycemics 0.630 0.067 0.612 0.033 0.574 0.058
Proton Pumplnhibitors 0.704  0.076 0.667 0.073 0.705 0.102
Skeletal Muscle Relaxants 0.673  0.202 0.616 0.230 0.639 0.295
Statins 0.749 0.168 0.702 0.080 0.740 0.141
Triptans 0.823 0.242 0.742 0.122 0.795 0.2178
Urinary Incontinence 0.815 0.190 0.763 0.117 0.826 0.224
Clopidrel 0.919  0.566 0.850 0.380 0.936 0.597
Anemia 0.939 0.616 0.890 0.438 0.919 0.575
Proton Beam 0.931 0.645 0.918 0.584 0.923 0.619
Hyperglycemia 0.849 0.362 0.791 0.253 0.837 0.301

autoencoder (i.e., mean squared loss) usually leads to a deterioration in performance
for fastText, but can sometimes be beneficial for Sentence-Bert. However, generally
speaking, the autoencoder yields slightly worse performance for abstract screening.
Only in at most 5 of the topics did the contrastive learning-based autoencoder result
in a performance degradation compared to the traditional autoencoder (i.e., Atypical
Antipsychotics and Oral Hypoglycemics for fastText embeddings; ADHD, Opiods,
Proton Pumplnhibitors, Skeletal Muscle Relaxants, and Urinary Incontinence for
Sentence-Bert). These systematic reviews contain a smaller number of articles (<
2000 total) and may suffer from the lack of positive/negative samples to appropriately

train the contrastive learning-based autoencoder.
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Table 5.2: Average performance results across the 5-folds for each of the SR top-
ics. SBERT represents the Sentence-BERT based embedding models, and AE is an
autoencoder pre-trained with the mean square error loss. Bold values indicate the
highest score overall and underlined scores indicate the second-highest score.

SB SB+AE CTRL-Screener (SB)
Topic AUC WSS AUC WSS AUC WSS
ACEInhibitors 0.790 0.188 0.783 0.219 0.795 0.187
ADHD 0.898  0.494 0.913 0.585 0.901 0.466
Antihistamines 0.681 0.074 0.620  0.064 0.694 0.050
Atypical Antipsychotics 0.694 0.083 0.680 0.060 0.695 0.074
Beta Blockers 0.722  0.116 0.690 0.111 0.727 0.143
Calcium Channel Blockers 0.711  0.071 0.692 0.045 0.720 0.116
Estrogens 0.811  0.246 0.803  0.279 0.821 0.346
NSAIDs 0.791 0.217 0.783 0.173 0.787 0.222
Opiods 0.688 0.242 0.674 0.212 0.667 0.166
Oral Hypoglycemics 0.673 0.088 0.631  0.036 0.661 0.121
Proton PumplInhibitors 0.709 0.064 0.694 0.085 0.687 0.079
Skeletal Muscle Relaxants 0.816 0.451 0.784  0.323 0.783 0.389
Statins 0.694 0.117 0.693 0.136 0.753 0.230
Triptans 0.835 0.328 0.808  0.237 0.816 0.297
Urinary Incontinence 0.770 0.172 0.810 0.207 0.770 0.155
Clopidrel 0.910 0.506 0.903  0.500 0.919 0.551
Anemia 0.918 0.553 0.909 0.541 0.927 0.588
Proton Beam 0.931  0.597 0.921  0.606 0.936 0.639
Hyperglycemia 0.831 0.324 0.814 0.338 0.823 0.292

5.2 Effect of Relative Order

We study the effect of the 2 augmented sample generation mechanisms on the con-
trastive learning-based autoencoder: (1) order preservation (or unshuffled) and (2)
random sampling of the sentences (or shuffled). Table 5.3 summarizes the results
for the Sentence-BERT encoding for 4 of the systematic review topics. As the re-
sults illustrate, preserving the sentence order generally yields better performance
both in terms of AUC and WSS@95. The combined column illustrates the results
for training CTRL-Screenerusing both shuffled and unshuffled datasets. We observe
that using both sampling mechanisms and training on a larger dataset, (i.e., CTRL-
Screener (SB)) yields a more robust pre-trained autoencoder. Clopid, Anemia, and

Hyperglycemia show improvements both in terms of AUC and WSS, whereas proton
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Table 5.3: A study of the impact of relative and shuffled ordering of the sentences on
CTRL-Screener.

Unshuffled Shuffled Combined
Topic AUC WSS AUC WSS AUC WSS
Clopidrel 0.917 0.497 0.914 0.499 0.924 0.556
Anemia 0.914 0.524 0.916 0.546 0.917 0.544
Proton Beam 0.928 0.622 0.926 0.611 0.927  0.590
Hyperglycemia  0.827  0.303 0.811  0.265 0.838 0.313

Table 5.4: An AUC comparison of the effect of the sampling percentage on CTRL-

Screener.

Beam experiences a slight degradation from combining the two mechanisms.

5.3 Effect of Sampling Percentage

Topic 50% 60% 0%  80%
Clopidrel 0.911  0.908 0.917 0.908
Anemia 0.923 0.918 0.914 0.918
Proton Beam 0.922 0.934 0928 0.929
Hyperglycemia 0.827 0.814 0.827 0.817

Next, we study the impact of the sampling percentage on CTRL-Screener. Table

5.4 summarizes the results for the Sentence-BERT embedding for 4 of the system-

atic review topics. As the results illustrate, there does not appear to be an obvious

correlation between the percentage of sentences to sample and CTRL-Screener’s per-

formance. Anemia and Hyperglycemia yields better performance using 50% of the

abstract as data augmentation, whereas Clopidrel and Hyperglycemia achieved bet-

ter performance from 70% sampling. In comparison with the results in Table 5.1 and

5.2, we observe that training using all percentages yields a more robust pre-trained

autoencoder.
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Chapter 6

Conclusion

6.1 Conclusion

In this paper, we investigate the use of a contrastive learning approach to improve the
automation of the systematic review screening process. We propose CTRL-Screener,
which introduces a data augmentation technique to generate positive and negative
samples that can yield better abstract representations. Our results on 19 system-
atic review topics demonstrate the potential of contrastive learning to obtain better

predictive results for citation screening.

6.2 Future work

In this section, we discuss some of the limitations of our study, and future work that

can be done to mitigate those limitations.

6.2.1 Additional datasets

Only 19 systematic review datasets were used in the study, and 18 out of the 19

datasets were produced before 2010. We plan to evaluate CTRL-Screener on addi-
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tional and more recent systematic review tasks such as the CLEFT-TAR [13] and the

SWIFT-Review [12] datasets.

6.2.2 Comparison to other data augmentation techniques

We plan to perform empirical experiments to compare the data augmentation tech-
nique proposed in this paper with other existing data augmentation technique in NLP

such as EDA [45].

6.2.3 Different levels of automation

As reported in previous studies|8], Level 2 automation (i.e. tools enabling workflow
prioritization) generally achieves better results than Level 4 automation (i.e. tools
performing tasks to completely eliminate human participation)[28]. We intend to
explore the contrastive learning techniques with existing ranking-based approaches

for systematic review screening [21, 36, 43].

6.2.4 Continual learning

We identify that one potential impediment to efficiently applying CTRL-Screener is
the time and memory required for training the contrastive learning-based autoen-
coder. Currently, this is trained with samples from all systematic review topics in
the corpus. A solution to the problem is to pre-train the autoencoder with the large
corpus of all systematic review and fine-tunes the pre-trained model for each new
systematic review task. To prevent catastrophic forgetting (i.e., poor performance on
sample seen early in the pre-training) and negative transfer (i.e., poorer performance
on most recent tasks due to local adaptation), we plan to adopt the methodology of
efficient life-long learning framework as proposed in [44], which is improved on by the

Memory-Based Parameter Adaptation framework introduced in [39].
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