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Abstract

New Results on Partitions, Prime Numbers, and Moonshine

By Madeline Locus Dawsey

In this thesis, we prove new results in combinatorics, analytic number theory, and rep-

resentation theory. In particular, in combinatorics we prove conjectured inequalities

regarding the Andrews smallest parts partition function by first establishing effective

estimates using new methods from the theory of quadratic forms. In addition, we

provide recurrence relations for the coefficients of conjugacy growth series for wreath

products of finitary permutation groups, which essentially measure the algebraic com-

plexity of these groups. In analytic number theory, we apply the Chebotarev Density

Theorem in order to generalize a theorem of Alladi on the distribution of primes

in arithmetic progressions. More precisely, we reproduce the Chebotarev densities

of certain subsets of prime numbers through an infinite sum involving the Möbius

function, where we sum over only those integers whose smallest prime divisors fall in

the specified subsets. Finally, we refine the theory of moonshine so that the modular

forms associated to the representation theory of all finite groups uniquely determine

those groups up to isomorphism. We obtain this “higher width moonshine” for all

finite groups by employing the classical Frobenius r-characters, which we prove sat-

isfy orthogonality relations analogous to Schur’s orthogonality relations for ordinary

group characters.
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1

Chapter 1

Introduction

In the eighteenth century, Euler played an integral role in the advancement of modern

number theory. Among other important works in the mathematical sciences, he

discovered the formula, now called an Euler product representation, which relates the

Riemann zeta function to the prime numbers. This relationship paved the way for

the development of analytic number theory by Dirichlet, who proved the very first

result on the distribution of primes in arithmetic progressions in 1837. The impetus

for Dirichlet’s Theorem was Gauss’s 1796 conjecture of the most fundamental density

statement regarding the primes: if π(X) counts the number of primes up to X, then

lim
X→∞

π(X) logX

X
= 1.

Riemann’s revolutionary ideas and powerful analytic constructions, published in his

famous 1859 paper on number theory, were crucial to the progress of mathematicians

toward understanding the primes. Gauss’s conjecture, now known as the Prime Num-

ber Theorem, was proven independently a century after its formulation by Hadamard

and de la Vallée Poussin using analysis and special properties of the Riemann zeta

function which built on Riemann’s work.

These examples demonstrate the advantage of using analytic techniques to study
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problems in number theory. Over time, number theory has developed into a multi-

faceted field with branches in many other areas of mathematics. It is clear from the

innovative work of Euler, Dirichlet, Riemann, and many others that this amalgama-

tion of fields provides the potential for a deeper understanding of the integers and

their building blocks, the primes. Although elementary proof methods remain com-

mon, techniques and results from other fields open countless doors in the theory of

numbers. Here we focus on number theoretic problems which require combinatorics,

algebra and analysis, and representation theory.

1.1 Partitions

The most basic construction in combinatorial number theory is a partition of a positive

integer n, which is defined as a non-increasing sequence of positive integers which sum

to n. The partition function p(n) counts the number of partitions of n. For example,

the partitions of 4 are

4, 3 + 1, 2 + 2, 2 + 1 + 1, and 1 + 1 + 1 + 1,

and so p(4) = 5. Euler proved that the generating function for p(n) can be represented

as an infinite product; namely, we have that

∞∑
n=0

p(n)qn =
∞∏
n=1

1

1− qn
, (1.1)

where throughout q := e2πiτ with τ in the upper half of the complex plane H. The

Euler product representation (1.1) follows from the fundamental theorem of arith-

metic, since the coefficients of the right hand side, when expanded as a product of

geometric series, count the number of partitions corresponding to each exponent.

Ramanujan offered groundbreaking theorems on partitions in the early 1900s,
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initially in isolation but eventually at Cambridge with G. H. Hardy. After calculating

several values of p(n) by hand, he discovered many interesting arithmetic properties,

including the well-known Ramanujan congruences [47–50]:

p(5n+ 4) ≡ 0 (mod 5),

p(7n+ 5) ≡ 0 (mod 7),

p(11n+ 6) ≡ 0 (mod 11).

Seeking a general estimate for the size of p(n), Hardy and Ramanujan developed what

is now called the circle method, which allows one to calculate an asymptotic formula

for a sequence by computing residues of its generating function, carefully choosing a

circular contour of integration which avoids singularities at roots of unity. Using this

method, they proved the illustrious Hardy–Ramanujan asymptotic [32]:

p(n) ∼ 1

4n
√

3
eπ
√

2n
3 . (1.2)

A refinement of the circle method by Rademacher in 1937 produced the following

exact formula for p(n) [46], the first term of which gives (1.2):

p(n) =
2π

(24n− 1)3/4

∞∑
c=0

Ac(n)

c
I3/2

(
π
√

24n− 1

6c

)
, (1.3)

where Ac(n) is a Kloosterman sum and Iν is the weight ν I-Bessel function. All of

the above results on partitions depend on the fact that the Euler product (1.1) is

essentially (up to a power of q) a modular form (see Section 2.1).

1.1.1 The Andrews smallest parts partition function

We study these types of problems regarding a different kind of partition function

introduced by Andrews, which he named the smallest parts partition function. This
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function, spt(n), counts the number of smallest parts among all of the partitions of

n. For example, the partitions of 4 with smallest parts underlined are

4, 3 + 1, 2 + 2, 2 + 1 + 1, and 1 + 1 + 1 + 1,

and so spt(4) = 10. Andrews proved [3] in 2008 that the generating function for

spt(n) is given by
∞∑
n=1

spt(n)qn =
∞∑
n=1

qn

(1− qn)2 (qn+1; q)∞
, (1.4)

where (a; q)∞ :=
∏
n≥0

(1− aqn) is the ordinary infinite q-Pochhammer symbol. The

function (1.4) is essentially a mock modular form. In other words, (1.4) is the (non-

modular) holomorphic part of a harmonic Maass form, which is a non-holomorphic

analogue of a modular form (see Section 2.2). Despite this, spt(n) enjoys many prop-

erties similar to those of p(n). For example, spt(n) satisfies Andrews’s Ramanujan-like

congruences [3]:

spt(5n+ 4) ≡ 0 (mod 5),

spt(7n+ 5) ≡ 0 (mod 7),

spt(13n+ 6) ≡ 0 (mod 13).

Also, Bringmann proved the following asymptotic formula [6]:

spt(n) ∼
√

6n

π
p(n) ∼ 1

π
√

8n
eπ
√

2n
3 , (1.5)

and in 2016 Ahlgren and Andersen proved [1] the following Rademacher-type formula:

spt(n) =
π

6
(24n− 1)1/4

∞∑
c=1

Ac(n)

c

(
I1/2 − I3/2

)(π√24n− 1

6c

)
. (1.6)
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Recently, Chen conjectured [11] six inequalities for spt(n) which had already been

proven true for p(n) using Lehmer’s effective bounds [39] of Rademacher’s formula.

Conjecture (Chen).

1. For n ≥ 5, we have that

√
6

π

√
n p(n) < spt(n) <

√
n p(n).

2. For (a, b) 6= (2, 2) or (3, 3), we have that spt(a+ b) < spt(a) spt(b).

3. For n ≥ 36, we have that spt(n− 1) spt(n+ 1) < spt(n)2.

4. For n > m > 1, we have that spt(n−m) spt(n+m) < spt(n)2.

5. For n ≥ 13, we have that spt(n)2 < spt(n− 1) spt(n+ 1)

(
1 +

1

n

)
.

6. For n ≥ 73, we have that spt(n)2 < spt(n− 1) spt(n+ 1)

(
1 +

π√
24n3/2

)
.

In joint work with Masri [19], we prove all of the above inequalities.

Theorem 1.1.1 (D–Masri). All of Chen’s conjectures are true.

In order to prove the conjectures, one must first effectively bound spt(n). The dif-

ficulty of this task stems from the conditional convergence of the Ahlgren–Andersen

formula (1.6) for spt(n), which stands in contrast to Rademacher’s absolutely con-

vergent formula (1.3) for p(n). We prove [19] an effective bound using new methods.

Theorem 1.1.2 (D–Masri). Let λ(n) := π
√

24n−1
6

. Then for all n ≥ 1, we have that

spt(n) =

√
3

π
√

24n− 1
eλ(n) + Es(n),

where

|Es(n)| <
(
3.59× 1022

)
2q(n)(24n− 1)2eλ(n)/2

with

q(n) :=
log(24n− 1)

| log(log(24n− 1))− 1.1714|
.
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1.1.2 Finitary permutation groups

The ordinary partition function also turns out to have a connection with the so-called

infinite finitary permutation groups and their wreath products. For an infinite set X,

the finitary symmetric group Sym(X) is the group of permutations of X with finite

support. The symmetric wreath product of a group H with Sym(X) is defined as the

group H oX Sym(X) := H(X) o Sym(X) with the following properties:

1. The group H(X) is the group of functions from X to H with finite support.

2. The action of permutations f ∈ Sym(X) on functions ψ ∈ H(X) is defined by

ψ 7→ f(ψ) := ψ ◦ f−1.

3. Multiplication in the semidirect product is defined for functions ϕ, ψ ∈ H(X)

and permutations f, g ∈ Sym(X) by (ϕ, f)(ψ, g) = (ϕf(ψ), fg).

The finitary alternating group Alt(X) is the subgroup of Sym(X) of even permuta-

tions, and the alternating wreath product H oX Alt(X) is defined analogously.

We now define some statistics which are used to analytically measure the algebraic

complexity of these groups. Let G be a group generated by a set S. The word length

`G,S(g) of any element g ∈ G is the minimal positive integer n such that there exist

s1, . . . , sn in S ∪ S−1 with g = s1 · · · sn. The conjugacy length κG,S(g) is the minimal

word length appearing in the conjugacy class of g. For any positive integer n, we

define γG,S(n) ∈ Z≥0∪{∞} to be the number of conjugacy classes in G with minimal

word length n. If γG,S(n) is finite for all n, then the conjugacy growth series of G is

CG,S(q) :=
∑

[g]∈Conj(G)

qκG,S(g) =
∞∑
n=0

γG,S(n)qn,

where the first sum is over representatives of conjugacy classes of G.

Bacher and de la Harpe recently proved [4] conjugacy growth series identities for

sufficiently large generating sets (see [4] for details) S of Sym(X), S ′ of Alt(X), and
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S(WS) of the symmetric wreath product WS := HS oX Sym(X) which relate these

groups to the partition function. Explicitly, they obtained the fascinating identities

CSym(X),S(q) =
∞∑
n=0

p(n)qn =
∞∏
n=1

1

1− qn

for the finitary symmetric group,

CAlt(X),S′(q) =

(
∞∑
n=0

p(n)qn

)(
∞∑
m=0

pe(m)qm

)
=

1

2

∞∏
n=1

1

(1− qn)2
+

1

2

∞∏
n=1

1

1− q2n

for the finitary alternating group, where pe(m) denotes the number of partitions of

m into an even number of parts, and

C
WS ,S

(WS)(q) =

(
∞∑
n=0

p(n)qn

)MS

=
∞∏
n=1

1

(1− qn)MS
(1.7)

for wreath products WS = HS oX Sym(X), where MS is the number of conjugacy

classes of HS. Following their method, we prove [17] an analogous conjugacy growth

series identity for alternating wreath products. We omit the proof, since it also

appears in [57].

Theorem 1.1.3 (D and Wagner). Let HA be a finite group with MA conjugacy classes,

X an infinite set, and WA an alternating wreath product of HA generated by a suffi-

ciently large set S(WA). Then we have that

C
WA,S

(WA)(q) =

(
∞∑
n=0

p(n)qn

)MA
(
∞∑
m=0

pe(m)qm

)MA

=

(
1

2

∞∏
n=1

1

(1− qn)2
+

1

2

∞∏
n=1

1

1− q2n

)MA

. (1.8)

From now on, we assume sufficiently large generating sets, so that we may simply

denote the conjugacy growth series for W by CW (q) and its coefficients by γW (n).
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For symmetric wreath products WS = HS oXSym(X) and alternating wreath prod-

ucts WA = HA oX Alt(X), the quantities γWS
(n) and γWA

(n) are naturally functions

of the number of conjugacy classes of HS and HA through (1.7) and (1.8). Using

this relationship, we obtain [17] a recursive formula for these numbers. These results

require the ordinary divisor function

σk(n) :=
∑
d|n

dk (1.9)

and the universal polynomial of partitions F̂n defined for n ≥ 2 by

F̂n(x1, . . . , xn−1)

:=
∑

m1,...,mn−1≥0
m1+···+(n−1)mn−1=n

(−1)m1+···+mn−1 · (m1 + · · ·+mn−1 − 1)!

m1! · · ·mn−1!
· xm1

1 · · ·x
mn−1

n−1 .

Remark. The polynomials F̂n are fairly straightforward to compute using only the

partitions of n. The first three F̂n are listed below.

F̂2(x1) =
1

2
x2

1,

F̂3(x1, x2) = −1

3
x3

1 + x1x2,

F̂4(x1, x2, x3) =
1

4
x4

1 − x2
1x2 +

1

2
x2

2 + x1x3.

Theorem 1.1.4 (D). Let HS be a finite group with MS conjugacy classes, and let

WS be a symmetric wreath product of HS. Then we have that

γWS
(n) = F̂n

(
γWS

(1), . . . , γWS
(n− 1)

)
+
MS

n
· σ1(n).

Theorem 1.1.4 has an application to the Nekrasov-Okounkov hook length formula

(see Section 3.3.2). We also prove [17] a recursion for alternating wreath products.
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Theorem 1.1.5 (D). Let HA be a finite group with MA conjugacy classes, and let

WA be an alternating wreath product of HA. Then we have that

γWA
(n) =

1

2MA

MA∑
k=0

(
MA

k

)(
F̂n
(
ak(1), . . . , ak(n− 1)

)
−
∑
δ|n

δ ·
[
(−1)δ(k −MA)− (k +MA)

])
,

where the ak are defined by their generating function

∞∑
n=0

ak(n)qn :=
∞∏
n=1

1

(1− qn)2k (1− q2n)MA−k
.

In [17], we additionally provide asymptotics for γWS
(n), γWA

(n), and certain ratios

using Ingham’s Tauberian Theorem. These results are not discussed here.

In Chapter 2, we introduce the theory of modular forms and harmonic Maass

forms which is crucial to the proofs in Chapters 3 and 5.

In Chapter 3, we give background information on quadratic forms in Section 3.1.

We prove Theorems 1.1.1 and 1.1.2 in Section 3.2. We then prove Theorems 1.1.4

and 1.1.5 and give an application to hook lengths of partitions in Section 3.3.

1.2 Prime numbers

The prime numbers are intimately related to the Riemann zeta function, which is

defined for Re(s) > 1 by the Dirichlet series ζ(s) :=
∑
n≥1

n−s. Using the Euler product

representation ζ(s) =
∏

p, prime

(1− p−s)−1
, it is straightforward to show that

lim
s→1+

ζ(s)−1 =
∏

p, prime

(
1− 1

p

)
= lim

X→∞

X∑
n=1

µ(n)

n
, (1.10)
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where the Möbius function µ(n) is defined by

µ(n) :=


1 if n = 1,

0 if n is not squarefree,

(−1)r if n = p1 · · · pr for distinct primes p1, . . . , pr.

Since ζ(s) has a pole at s = 1, the relationship (1.10) implies that

lim
X→∞

X∑
n=1

µ(n)

n
= 0. (1.11)

We now subtract the first term from both sides of (1.11) to obtain

− lim
X→∞

X∑
n=2

µ(n)

n
= 1. (1.12)

We may interpret (1.12) as a density statement by summing instead over certain

natural restrictions of the integers n ≥ 2. To make sense of this, let pmin(n)
(
resp.

pmax(n)
)

denote the smallest (resp. largest) prime divisor of n. As usual, let ϕ(k)

denote Euler’s ϕ-function, which counts the number of positive integers up to k that

are relatively prime to k. Alladi proved [2] in 1977 that if gcd(`, k) = 1, then

− lim
X→∞

∑
2≤n≤X

pmin(n)≡` (mod k)

µ(n)

n
=

1

ϕ(k)
. (1.13)

Alladi’s theorem is reminiscent of Dirichlet’s famous theorem on primes in arithmetic

progressions, which guarantees the existence of infinitely many primes in any arith-

metic progression ` (mod k) with gcd(`, k) = 1. More precisely, Dirichlet proved

that a prime is likely to fall in a fixed allowable arithmetic progression modulo k

with probability 1/ϕ(k). Alladi also proved [2] a beautiful duality principle: if f is a
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function defined on integers with f(1) = 0, then by Möbius inversion we have that

∑
d|n

µ(d)f
(
pmax(d)

)
= −f

(
pmin(n)

)
and

∑
d|n

µ(d)f
(
pmin(d)

)
= −f

(
pmax(n)

)
.

(1.14)

Combined with Dirichlet’s Theorem, (1.14) implies that largest prime divisors pmax(n)

are equidistributed in allowable arithmetic progressions modulo k.

We generalize Alladi’s results to reproduce densities of further subsets of the

integers n ≥ 2. To explain, we require some basic algebraic number theory. Suppose

thatK is a Galois extension of Q with ring of integersOK . Let p be a prime unramified

in K, i.e. pOK is a product of distinct prime ideals in OK , and let p ⊆ OK be a

prime ideal lying above p. Then the Artin symbol
[
K/Q
p

]
is defined as the element

σ ∈ Gal(K/Q) which maps every a ∈ K to ap (mod p). We define
[
K/Q
p

]
to be the

set
{[

K/Q
p

]
: p ⊆ OK lies above p

}
. Then

[
K/Q
p

]
is a conjugacy class in Gal(K/Q).

We prove the following density statement [18].

Theorem 1.2.1 (D). Let K be a finite Galois extension of Q with Galois group G,

and let C ⊂ G be a conjugacy class. Then we have that

− lim
X→∞

∑
2≤n≤X[
K/Q

pmin(n)

]
=C

µ(n)

n
=

#C

#G
.

Remark. The sum in Theorem 1.2.1 converges conditionally, and the proof gives an

explicit convergence rate (see (4.6)).

Remark. The set
{
−µ(2)

2
,−µ(3)

3
,−µ(5)

5
,−µ(6)

6
, . . .

}
can be viewed as a “signed prob-

ability measure” to calculate Chebotarev densities (i.e. #C/#G) via smallest prime

divisors of squarefree integers.

Examples. (1) Alladi’s theorem (1.13) is a special case of Theorem 1.2.1 in which

K is a cyclotomic field, i.e. K = Q (ζk) for some primitive kth root of unity ζk.
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(2) Let f(x) = x4 +x+1. Then the Galois group of f is Gal(f) = S4, so in particular

#Gal(f) = 24. Let K be the splitting field of f , and let S be the set of all primes

p unramified in K such that f has no roots in Z/pZ. For primes p ∈ S, f (mod p)

is either an irreducible quartic, which corresponds to the conjugacy class consisting

of six 4-cycles in S4, or a product of two irreducible quadratics, which corresponds

to the conjugacy class consisting of products of two transpositions (three elements)

in S4. Then the probability of an irreducible quartic contributes 6/24 to the sum,

and the probability of a product of irreducible quadratics contributes 3/24, so the

theorem gives

− lim
X→∞

∑
2≤n≤X
pmin(n)∈S

µ(n)

n
=

3

8
= 0.375.

Table 1.1 shows the actual values of the above sum for increasing values of X.

Table 1.1: Illustration of Theorem 1.2.1

X f (mod p) has no roots

20,000 0.3730
40,000 0.3741
60,000 0.3738
80,000 0.3735
100,000 0.3734

In Chapter 4, we explain the Chebotarev Density Theorem [56] in Section 4.1.

In Section 4.2, we state and prove some results which help bound error terms in the

proof of Theorem 1.2.1, and we prove Theorem 1.2.1. Finally, in Section 4.3, we state

a generalization of Theorem 1.2.1 which was proven by Sweeting and Woo in [53].

1.3 Moonshine

Monstrous Moonshine, conjectured by Conway and Norton in 1979 [14], refers to the

unexpected relationship between the monster group M, which is the largest sporadic
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finite simple group, and the normalized modular invariant

J(τ) := j(τ)− 744 = q−1 + 196884q + 21493760q2 +O
(
q3
)
.

Note that J(τ) is the Hauptmodul for SL2(Z), i.e. the unique generator of the modular

function field with Fourier expansion beginning with q−1 + O(q). The relationship

between M and J(τ) was initially observed by McKay, who noticed that certain linear

combinations of the dimensions of the 194 irreducible representations of M reproduce

the first few coefficients of J(τ). For example, if χ1, χ2, χ3 are the first three irreducible

characters of M (ordered by dimension), then we see that

χ1(1) = 1,

χ1(1) + χ2(1) = 1 + 196883 = 196884,

χ1(1) + χ2(1) + χ3(1) = 1 + 196883 + 21296876 = 21493760.

Based on these observations, Thompson conjectured [54,55] more generally that there

exists a graded, infinite-dimensional M-module

V \ =
⊕
n≥−1

V \(n)

such that the graded dimensions dimV \(n) are the Fourier coefficients of J(τ). Con-

way and Norton further conjectured [14] that for each element g ∈M, there is a genus

zero subgroup Γg ⊆ SL2(R) such that the graded trace function

Tg(τ) :=
∑
n≥−1

Tr
(
g|V \(n)

)
qn,

called the McKay–Thompson series, is also magically the unique normalized Haupt-

modul for Γg. The Monstrous Moonshine Conjecture was famously proven in 1992
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by Borcherds [5], who received the Fields Medal in 1998 for this work.

In recent years, many more examples of moonshine have been established for

other distinguished finite groups (for example, see [12, 25–27]). In view of this, it is

natural to explore the extent to which dimensions of irreducible representations of

finite groups are related to Fourier coefficients of modular functions. In 2017, Dehor-

ity, Gonzalez, Vafa, and Van Peski [22] proved that the seemingly rare occurrence of

moonshine actually holds for every single finite group, if we relax certain requirements

on the the graded trace functions. Namely, for every finite group G, there exists an

infinite-dimensional graded G-module

VG =
⊕

n∈{−d}∪Z+

VG(n),

for sufficiently large d > 0, such that the McKay–Thompson series for each g ∈ G is

a weakly holomorphic modular function, i.e. a meromorphic modular function that

is allowed to have poles at cusps. This generalization is now called weak moonshine.

By definition, weak moonshine depends only on the character table of a group.

Since a moonshine module and its graded trace functions encode identifying informa-

tion about a finite group, one would think that different groups should have different

moonshines. However, it is possible for two non-isomorphic groups to have the same

moonshine due to the fact that the character table of a group does not uniquely de-

termine the group. For example, the representation theory of the dihedral group D4

is identical to that of the quaternion group Q8. Therefore, it is natural to ask whether

one can extend weak moonshine so that it distinguishes non-isomorphic groups. To

answer this question, we make use of classical higher dimensional group characters

defined by Frobenius [30] in 1896, which we refer to as Frobenius r-characters.

Let G be a finite group with irreducible representations ρ1, . . . , ρt and correspond-

ing irreducible characters χ1, . . . , χt. Throughout, for r ∈ Z+ we denote by G(r) the
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direct product G× · · ·×G (r copies). If χ is an irreducible character, then its Frobe-

nius r-character generalizations are defined for r = 1 by χ(1)(g) := χ(g), for r = 2 by

χ(2) (g1, g2) := χ (g1)χ (g2)− χ (g1g2) , and for r ≥ 3 by the recursive formula

χ(r)
(
g1, . . . , gr

)
:= χ (g1)χ(r−1) (g2, . . . , gr) (1.15)

− χ(r−1) (g1g2, . . . , gr)− χ(r−1) (g2, g1g3, . . . , gr)− · · · − χ(r−1) (g2, . . . , g1gr) .

For convenience, we denote the 1-character χ(1) by χ.

For many years, determining the extent to which the Frobenius r-characters

uniquely determine groups up to isomorphism remained an open problem. This prob-

lem was solved in the 1990s by Hoehnke and Johnson [34,35], who proved that a group

is uniquely determined by its 1, 2, and 3-characters. Therefore, we aim to construct

an extension of weak moonshine that also makes use of the 2 and 3-characters. With

this goal in mind, we define higher width moonshine as follows.

Definition. We say that G has width s ≥ 1 weak moonshine if the following hold:

1. There exists an infinite-dimensional graded G-module

VG :=
⊕
n�−∞

VG(n),

where each VG(n) is a finite sum of representation spaces arising from the irre-

ducible characters χ1, . . . , χt.

2. If 1 ≤ r ≤ s and g := (g1, . . . , gr) ∈ G(r), then we define the r-Frobenius of g

on V
(r)
G (n) := VG(n)× · · · × VG(n) (r copies) by

Frobr
(
g;n
)

:=
∑

1≤j≤t

mi(n)χ
(r)
i

(
g
)
.

Here mi(n) denotes the number of copies of the representation space for χi in
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the nth graded component VG(n) of VG.

3. For each 1 ≤ r ≤ s and each g ∈ G(r), we define the McKay–Thompson series

T
(
r, g; τ

)
:=

∑
n�−∞

Frobr
(
g;n
)
qn,

which are the generalized graded trace functions for V
(r)
G .

4. Each T
(
r, g; τ

)
is a weakly holomorphic modular function.

We say that width s weak moonshine is complete if for each 1 ≤ i ≤ t, we have

that mi(n) is nonzero for some n (and therefore for infinitely many n).

Remark. When r = 1, we have that Frob1(g;n) = Tr
(
g|VG(n)

)
. In particular, for

the identity element g = e of G, the graded dimensions dimVG(n) agree with the

coefficients of the McKay–Thompson series T (1, e; q).

In joint work with Ono [20], we obtain the following theorem which extends width

1 weak moonshine.

Theorem 1.3.1 (D–Ono). Every finite group has width s weak moonshine for every

s ∈ Z+.

Thanks to Hoehnke and Johnson [34,35], we have the following immediate corol-

lary which refines weak moonshine to be a group isomorphism invariant.

Corollary 1.3.2 (D–Ono). If s ≥ 3, then complete width s weak moonshine uniquely

determines a finite group up to isomorphism.

It is important to understand the algebraic compatibility of the higher width

McKay–Thompson series
(
i.e. T

(
r, g; τ

)
with r ≥ 2

)
under this extension. In partic-

ular, these series should satisfy relations which reveal the structure of the seed module

VG. In short, the multiplicity generating functions must be compatible with all of the
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McKay–Thompson series. The following theorem [20] illustrates the compatibility of

weak moonshine for VG when extended to width s.

Theorem 1.3.3 (D–Ono). Consider width s weak moonshine for a finite group G

with irreducible characters χ1, . . . , χt and McKay–Thompson series T
(
r, g; τ

)
, with

1 ≤ r ≤ s and g ∈ G(r). If 1 ≤ r ≤ s and dimχi ≥ r, then we have that

∑
n�−∞

mi(n)qn =
(dimχi)

r−1

r!|G|r (dimχi − 1) · · · (dimχi − (r − 1))

∑
g∈G(r)

χ
(r)
i

(
g
)
T
(
r, g; τ

)
.

Theorem 1.3.3 follows from a new result on the orthogonality of the Frobenius

r-characters [20]. This result is of independent interest in character theory.

Theorem 1.3.4 (D–Ono). If G is a finite group with irreducible characters χ1, . . . , χt

and 1 ≤ i, j ≤ t, then for any r ≥ 1 we have that

∑
g∈G(r)

χ
(r)
i

(
g
)
χ

(r)
j

(
g
)

=
r!|G|rδij

(dimχi)
r−1 (dimχi − 1) · · · (dimχi − (r − 1)) .

In Chapter 5, we give background on classical representation theory in Section

5.1 and prove Theorem 1.3.4 in Section 5.2. We prove Theorems 1.3.1 and 1.3.3 in

Section 5.3, and we provide an example of higher width moonshine in Section 5.4.
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Chapter 2

Modular Forms and Harmonic

Maass Forms

The notation used here is standard (for example, see [7, 45]).

In order to define modular forms, we must first define the congruence subgroups

of SL2(Z) and their action on the upper half of the complex plane H. For any matrix

γ = ( a bc d ) ∈ SL2(Z), we have that γ acts on H by linear fractional transformations

γτ =
aτ + b

cτ + d
, τ ∈ H.

The fundamental domain of this action is the region

F :=

{
τ ∈ H : −1

2
≤ Re(τ) <

1

2
, |τ | > 1

}
∪
{
τ ∈ H : −1

2
≤ Re(τ) ≤ 0, |τ | = 1

}
,

which contains exactly one element from each SL2(Z)-orbit. For a positive integer N ,

the level N congruence subgroup Γ0(N) is defined by

Γ0(N) :=


a b

c d

 ∈ SL2(Z) : c ≡ 0 (mod N)

 .
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A cusp of a congruence subgroup Γ is then defined to be an equivalence class under

the Γ-action on Q ∪ {∞}. For a cusp x of Γ and a matrix γ ∈ Γ with γx = ∞, the

width of x is the smallest number w such that ( 1 w
0 1 ) ∈ γ−1Γγ.

2.1 Modular forms

Let γ = ( a bc d ) be a matrix with real entries and positive determinant, let k ∈ Z, and

let f : H → C be a meromorphic function. The matrix γ acts on f by the slash

operator |k, which is defined by

(f |kγ) (τ) := (detγ)k/2(cτ + d)−kf(γτ).

If N ∈ Z+ and k ∈ Z, then a weight k meromorphic modular form on Γ0(N) is a

meromorphic function f : H→ C with the following properties:

1. We have that f(γτ) = (cτ + d)kf(τ) for all τ ∈ H and all γ = ( a bc d ) ∈ Γ0(N).

2. For all γ0 ∈ SL2(Z), we have that (f |kγ0) (τ) has the Fourier expansion

(f |kγ0) (τ) =
∑
n≥nγ0

aγ0(n)qn/N ,

where aγ0 (nγ0) 6= 0. In other words, f is meromorphic at the cusps of Γ0(N).

If χ is a Dirichlet character modulo N , then we say that a weight k modular

form f on Γ0(N) has Nebentypus character χ if condition (1) above is replaced by

f(γτ) = χ(d)(cτ + d)kf(τ).

Choosing γ to be the matrices S = ( 0 −1
1 0 ) and T = ( 1 1

0 1 ), condition (2) of the

above definition gives the following transformation properties:

f

(
−1

τ

)
= τ kf(τ) and f(τ + 1) = f(τ). (2.1)
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It is well known that S and T generate the full modular group SL2(Z), and so (2.1)

is actually equivalent to condition (2).

If nγ0 ≥ 0 for each matrix γ0 ∈ SL2(Z), then f is called a holomorphic modular

form since it is holomorphic at the cusps of Γ0(N). If nγ0 is strictly positive, then f

vanishes at the cusps of Γ0(N), and f is called a cusp form. A weakly holomorphic

modular form is a meromorphic modular form whose poles are supported at the cusps.

If f is a weight zero modular form on Γ0(N), then f is actually invariant under the

action of Γ0(N). In this case, we call f a modular function on Γ0(N).

The Fourier expansion of an integer weight meromorphic modular form f at in-

finity has the form

f(τ) =
∑
n≥n0

a(n)qn,

where as usual q := e2πiτ with τ ∈ H.

There are three further modular form operators which are important for under-

standing Chapter 3: Hecke operators, Atkin–Lehner involutions, and Fricke involu-

tions. If f(τ) =
∞∑
n=0

a(n)qn is a weight k holomorphic modular form on Γ0(N) with

Nebentypus χ, then the Hecke operator Tp,k,χ acts on f by

f(τ) | Tp,k,χ :=
∞∑
n=0

(
a(pn) + χ(p)pk−1a

(
n

p

))
qn,

where a(n/p) := 0 if p - a. The Hecke operator preserves spaces of modular forms

and in addition sends cusp forms to cusp forms. A modular form f is called a Hecke

eigenform if f(τ) | Tp,k,χ = λ(p)f(τ) for some λ(p) ∈ C. Now, let p be a prime

dividing N with ordp(N) = `. In other words, ` is the largest integer for which p`
∣∣N .

Then the Atkin–Lehner involution |kW
(
p`
)

acts on the space of weight k modular
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forms on Γ0(N) by any integer matrix of the form

W
(
p`
)

:=

p`α β

Nγ p`δ


with determinant p`, where α, β, γ, δ ∈ Z. We also define the Fricke involution

|kW (N) on weight k modular forms on Γ0(N) by the action of W (N) := ( 0 −1
N 0 ).

It is well known that the Atkin–Lehner and Fricke involutions commute with all of

the Hecke operators.

There is a theory of so-called newforms which describes the relationship between

fixed weight modular forms with trivial Nebentypus on different congruence sub-

groups. A weight k newform on Γ0(N) is a weight k normalized cusp form on Γ0(N)

which is an eigenform of all of the corresponding Hecke operators, Atkin–Lehner

involutions, and Fricke involutions with p|N . Atkin and Lehner characterized the

eigenvalues of weight k newforms f(τ) on Γ0(N) as follows:

1. If p|N is prime, then there is a λp ∈ {±1} for which f |kW
(
p`
)

= λpf(τ).

2. There is a λN ∈ {±1} for which f |kW (N) = λNf(τ), and moreover we have

that λN =
∏
p|N

λp.

Two of the most important examples of modular forms are the Eisenstein series

and the the Dedekind eta-function. Before defining these forms, we require additional

notation. For a positive integer k, the ordinary divisor function σk(n) is given by (1.9),

and the Bernoulli numbers Bk are defined by the equation

∞∑
k=0

Bk ·
tk

k!
=

t

et − 1
.
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If k ≥ 2 is an even integer, then the Eisenstein series Ek(τ) are defined in general by

Ek(τ) := 1− 2k

Bk

∞∑
n=1

σk−1(n)qn.

These series are weight k modular forms (and Hecke eigenforms) for all even k ≥ 4,

but (2.1) fails for k = 2, since τ−2E2(−1/τ) = E2(τ) + 12
2πiτ

. It is known that the

Eisenstein series E4(τ) and E6(τ) generate all modular forms on SL2(Z). The series

E4(τ) is related to the modular j-invariant as follows. The Delta-function (sometimes

called the discriminant function) is the unique normalized weight 12 cusp form on

SL2(Z), and it is given by

∆(τ) :=
E4(τ)3 − E6(τ)2

1728
.

The Delta-function is also a Hecke eigenform. The j-function or j-invariant, which

is a modular function on SL2(Z), is given by

j(τ) :=
E4(τ)3

∆(τ)
.

In fact, every modular function on SL2(Z) is a rational function in j(τ).

In order to define the Dedekind eta-function, we must first define half-integer

weight modular forms. Let
(
c
d

)
be the usual Kronecker symbol, and for d odd we let

εd :=


1 if d ≡ 1 (mod 4),

i if d ≡ 3 (mod 4).

If λ ∈ Z≥0, N ∈ Z+, and χ is a Dirichlet character modulo 4N , then a weight λ + 1
2

meromorphic modular form with Nebentypus χ is a meromorphic function g such that
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condition (1) in the definition of an integral weight modular form is replaced by

g(γτ) = χ(d)
( c
d

)2λ+1

ε−1−2λ
d (cτ + d)λ+ 1

2 g(τ)

for all γ = ( a bc d ) ∈ Γ0(4N). The adjectives holomorphic, weakly holomorphic, and

cusp form have analogous definitions in this setting.

The Dedekind eta-function is defined by

η(τ) := q1/24

∞∏
n=1

(1− qn) ,

and it is a weight 1/2 modular form. In fact, η(τ)24 = ∆(τ) is the weight 12 cusp

form for SL2(Z). The transformation properties analogous to (2.1) for η(τ) are

η(−1/τ) = (−iτ)1/2η(τ) and η(τ + 1) = eπi/12η(τ),

and so η(24τ) is a weight 1/2 cusp form on Γ0(576) with Nebentypus χ12(n) :=
(

12
n

)
.

It turns out that the Eisenstein series E4(τ) and E6(τ) can be expressed as rational

functions in η(τ), η(2τ), and η(4τ), and therefore every modular form on SL2(Z) can

be expressed as a rational function in these three eta-functions.

Define the compact Riemann surface X0(N) to be the compactification of the

quotient Γ0(N)\H, which is obtained by adding suitable cusps. Then X0(N) is called

a modular curve. Modular curves are closely related to spaces of elliptic curves, but

for our purposes we only need to know that the modular function field C (X0(N))

has a single generator, the unique normalized Hauptmodul for Γ0(N), whenever the

genus of X0(N) is zero. For example, the modular curve X0(1) for Γ0(1) = SL2(Z)

has genus zero, and the Hauptmodul for C (X0(1)) is the normalized j-invariant,

J(τ) := j(τ)− 744.
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2.2 Harmonic Maass forms

We now turn to harmonic Maass forms. A smooth function f : H → C is a weight

k ∈ 1
2
Z harmonic Maass form on a congruence subgroup Γ = Γ0(N), where 4|N if

k ∈ 1
2

+ Z, if it has the following properties:

1. For all γ = ( a bc d ) ∈ Γ and all τ ∈ H, we have that

f(γτ) =


(cτ + d)kf(τ) if k ∈ Z,(
c
d

)
ε−2k
d (cτ + d)kf(τ) if k ∈ 1

2
+ Z.

In other words, f transforms like a modular form.

2. We have that ∆k(f) = 0, where the weight k hyperbolic Laplacian operator ∆k

on H is defined for τ = u+ iv by

∆k := −v2

(
∂2

∂u2
+

∂2

∂v2

)
+ ikv

(
∂

∂u
+ i

∂

∂v

)
.

In other words, f is harmonic.

3. There exists a polynomial Pf (τ) ∈ C [q−1] such that f(τ)−Pf (τ) = O (e−εv) as

v →∞ for some ε > 0. Analogous conditions are required at all cusps, and the

polynomial Pf is called the principal part of f at the corresponding cusp.

Condition (1) has an analogous statement for harmonic Maass forms with Neben-

typus χ. If instead f is an eigenfunction of ∆k with nonzero eigenvalue, then f is

called a weak Maass form. If condition (3) above is replaced by the growth condition

f(τ) = O (eεv) as v →∞ for some ε > 0, then we say f has manageable growth.

In order to give the Fourier expansion of a harmonic Maass form, we require

additional notation. The incomplete Gamma function Γ(s, z) for Re(s) > 0 and
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z ∈ C is defined by

Γ(s, z) :=

∫ ∞
z

e−t ts
dt

t
.

This function has an analytic continuation to C, and for x ∈ R it satisfies the asymp-

totic formula Γ(s, x) ∼ xs−1e−x as |x| → ∞.

Now, let k ∈ Z \ {1} and N ∈ Z+. If f is a weight k harmonic Maass form on

Γ0(N), then f has a Fourier expansion of the form

f(τ) =
∑

n�−∞

c+
f (n)qn +

∑
n<0

c−f (n)Γ(1− k,−4πnv)qn,

and similar expansions hold at other cusps. We call the component

f+(τ) :=
∑

n�−∞

c+
f (n)qn

the holomorphic part of f , and

f−(τ) :=
∑
n<0

c−f (n)Γ(1− k,−2πnv)qn

the nonholomorphic part. The holomorphic part of a harmonic Maass form is called

a mock modular form, because it is holomorphic but not quite modular.

To make this precise, we must define the differential operator

ξk := 2ivk
∂

∂τ
.

This operator maps weight 2− k harmonic Maass forms to weight k cusp forms:

ξ2−k : H2−k(Γ0(N))→ Sk(Γ0(N))

f(τ) 7→ −(4π)k−1

∞∑
n=1

c−f (−n)nk−1qn.



26

The image of f under the ξ-operator above is called the shadow of the mock modular

form f+. If f is a weight 2 − k harmonic Maass form on Γ0(N) and f+ has shadow

g(τ) =
∞∑
n=1

cg(n)qn, then the nonholomorphic part f− has the form

f−(τ) = 21−ki

∫ i∞

−τ

g (−τ)

(−i(w + τ))2−k dw.

In other words, f+ is holomorphic but not modular, and adding the above integral

(essentially a period integral) to f+ makes it modular but not holomorphic.
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Chapter 3

Partitions

The most important results related to the partition function p(n) are theorems that

address two questions: what is the size of p(n), and what special arithmetic properties

do the values of this function satisfy? Together with Wagner, we studied arithmetic

properties in the form of congruences for powers of the partition function in [40], but

this work is not included here. In this section, we focus on log concavity and related

results for the smallest parts partition function spt(n) of Andrews, as well as formulas

involving partition functions which measure the algebraic complexity of the finitary

permutation groups and their wreath products. In order to state our results, we must

first introduce the theory of quadratic forms.

3.1 The theory of quadratic forms

Let N ≥ 1 be a positive integer, and let D < 0 be a negative discriminant coprime

to N . Let QD,N be the set of positive definite, integral binary quadratic forms

Q(X, Y ) = [aQ, bQ, cQ](X, Y ) = aQX
2 + bQXY + cQY

2
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of discriminant b2
Q− 4aQcQ = D < 0 with aQ ≡ 0 (mod N). There is a (right) action

of Γ0(N) on QD,N defined by

Q = [aQ, bQ, cQ] 7→ Q ◦ σ =
[
aσQ, b

σ
Q, c

σ
Q

]
,

where for σ =
(
α β
γ δ

)
∈ Γ0(N) we have that

aσQ = aQα
2 + bQαγ + cQγ

2,

bσQ = 2aQαβ + bQ(αδ + βγ) + 2cQγδ,

cσQ = aQβ
2 + bQβδ + cQδ

2.

Given a solution r (mod 2N) of r2 ≡ D (mod 4N), we define the subset of forms

QD,N,r := {Q = [aQ, bQ, cQ] ∈ QD,N : bQ ≡ r (mod 2N)} .

Then the group Γ0(N) also acts on QD,N,r. The number of Γ0(N)-equivalence classes

in QD,N,r is given by the Hurwitz–Kronecker class number H(D).

The preceding facts remain true if we restrict to the subset Qprim
D,N of primitive

forms in QD,N ; i.e. those forms with (aQ, bQ, cQ) = 1. In this case, the number of

Γ0(N) equivalence classes in Qprim
D,N,r is given by the class number h(D).

To each form Q ∈ QD,N , we associate a CM point (also called a Heegner point)

τQ, which is the root of Q (X, 1) in H given by

τQ =
−bQ +

√
D

2aQ
.

The CM points τQ are compatible with the action of Γ0(N): if σ ∈ Γ0(N), then

στQ = τQ◦σ−1 . (3.1)
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3.2 The smallest parts partition function

The smallest parts partition function spt(n) has many arithmetic properties which

resemble those of the ordinary partition function p(n). The most well-known examples

include the Ramanujan-type congruences of Andrews for the moduli 5, 7, and 13

[3], Bringmann’s asymptotic formula [6], and the Rademacher-type exact formula of

Ahlgren and Andersen [1]. Based on extensive numerical calculations, Chen predicted

[11] that the inequalities listed in Section 1.1.1, (2)–(6) of which were proven true for

p(n) in [23] and [10], also hold for spt(n).

In fact, we prove a more precise version of Theorem 1.1.1 regarding Conjecture

(1). Note that this version is a refinement of Bringmann’s asymptotic (1.5).

Theorem 3.2.1 (Refined Theorem 1.1.1 (1), D–Masri). For each ε > 0, there is an

effectively computable constant N(ε) > 0 such that for all n ≥ N(ε), we have that

√
6

π

√
n p(n) < spt(n) <

(√
6

π
+ ε

)
√
n p(n).

Remark. The constant N(ε) of Theorem 3.2.1 can be computed in practice. For

example, by letting ε = 1 −
√

6
π

in Theorem 3.2.1, we obtain Theorem 1.1.1 (1)

for n ≥ N
(

1−
√

6
π

)
with N

(
1−

√
6
π

)
= 5310. We then use a computer to verify

Theorem 1.1.1 (1) in the exceptional range 5 ≤ n < 5310.

To prove Theorems 1.1.1 and 3.2.1, we make use of classic work of Lehmer [39]

which gives effective bounds for the partition function, recent work of Desalvo and

Pak [23] and Chen, Wang, and Xie [10], and a formula different from (1.6) by Ahlgren

and Andersen [1] for spt(n). In order to give an effective bound on the error term for

p(n), Lehmer [39] truncated the absolutely convergent sum (1.3) and applied bounds

for the Kloosterman sum Ac(n). On the other hand, since the formula (1.6) is only

conditionally convergent, bounding spt(n) is a much more delicate matter. In fact, to



30

resolve the difficult problem of proving that (1.6) converges, Ahlgren and Andersen

used advanced methods from the spectral theory of automorphic forms.

There are now different types of formulas for p(n) and spt(n) that are useful in this

situation. For example, Bruinier and Ono [8] proved that the coefficients of certain

weight −1/2 harmonic Maass forms are essentially traces of singular moduli for weak

Maass forms, from which they obtained a formula for the partition function as a finite

sum of algebraic numbers. More precisely, consider the weight zero weak Maass form

for Γ0(6) defined by

P (z) := −
(

1

2πi

d

dz
+

1

2πy

)
g(z), z = x+ iy ∈ H,

where g(z) is the weight −2 weakly holomorphic modular form for Γ0(6) defined by

g(z) :=
1

2

E2(z)− 2E2(2z)− 3E2(3z) + 6E2(6z)(
η(z)η(2z)η(3z)η(6z)

)2 .

Bruinier and Ono [8] proved that for all n ≥ 1, we have that

p(n) =
1

24n− 1

∑
Q∈Q−24n+1,6,1

P (τQ) . (3.2)

Similarly, let f(z) be the weakly holomorphic modular function for Γ0(6) defined by

f(z) :=
1

24

E4(z)− 4E4(2z)− 9E4(3z) + 36E4(6z)(
η(z)η(2z)η(3z)η(6z)

)2 .

Ahlgren and Andersen [1] proved the following analogue of (3.2) for spt(n): for all

n ≥ 1, we have that

spt(n) =
1

12

∑
Q∈Q−24n+1,6,1

(
f (τQ)− P (τQ)

)
. (3.3)
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We prove Theorem 1.1.2 by effectively bounding this finite formula (3.3). The

bound is then used to verify Chen’s conjectured inequalities for sufficiently large n,

and we complete the proofs of Theorems 1.1.1 and 3.2.1 by checking the exceptional

range with a computer.

Before proving Theorem 1.1.2, we must define the Kloosterman sum Ac(n) and

the I-Bessel function which appear in the formula of Ahlgren and Andersen (1.6).

The Kloosterman sum Ac(n) is defined by

Ac(n) :=
∑

d (mod c)

(d,c)=1

eπis(d,c)e−
2πidn
c ,

where s(d, c) is the classical Dedekind sum

s(d, c) :=
c−1∑
r=1

r

c

(
dr

c
−
⌊
dr

c

⌋
− 1

2

)
.

The weight ν I-Bessel function is given by the sum

Iν(x) :=
∞∑
m=0

1

m!Γ(m+ ν + 1)

(x
2

)2m+ν

, (3.4)

where the Gamma-function Γ(z) is defined for Re(z) > 0 by

Γ(z) :=

∫ ∞
0

xz−1e−x dx.

Note that the Gamma-function can be analytically continued to C \ {0,−1,−2, . . . }.
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3.2.1 Effective estimates for spt(n)

Using (3.2), the formula (3.3) can be written as

spt(n) =
1

12
S(n)− 24n− 1

12
p(n), (3.5)

where S(n) is the trace of singular moduli for f(z) given by

S(n) :=
∑
[Q]

f (τQ) .

By applying Lehmer’s effective error bounds for p(n) in (3.5), we reduce the proof

of Theorem 1.1.2 to the following asymptotic formula for the trace S(n) with an

effective bound on the error term.

Theorem 3.2.2 (D–Masri). Let λ(n) := π
√

24n−1
6

, and define q(n) as in Theorem

1.1.2. Then for all n ≥ 1, we have that

S(n) = 2
√

3 eλ(n) + E(n),

where

|E(n)| <
(
4.30× 1023

)
2q(n)(24n− 1)2eλ(n)/2.

In order to prove Theorem 3.2.2, we first must establish some notation and prove

an intermediate lemma. Let Dn := −24n+1 for n ∈ Z+, and define the trace of f(z),

S(n) :=
∑

[Q]∈QDn,6,1/Γ0(6)

f (τQ) .

First, we decompose S(n) as a linear combination of traces involving primitive

forms. Let ∆ < 0 be any discriminant with ∆ ≡ 1 (mod 24), and define the class
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polynomials

Hn(X) :=
∏

[Q]∈QDn,6,1/Γ0(6)

(X − f (τQ)) and Ĥ∆(X) :=
∏

[Q]∈Qprim
∆,6,1

/
Γ0(6)

(X − f (τQ)).

Let {W`}`|6 be the group of Atkin-Lehner involutions for Γ0(6). Since f |0W` = λ`f

with λ` = 1 for ` = 1, 6 and λ` = −1 for ` = 2, 3, arguing exactly as in the proof

of [9, Lemma 3.7] we get the identity

Hn(X) =
∏
u>0
u2|Dn

ε(u)h(Dn/u2)ĤDn/u2(ε(u)X), (3.6)

where ε(u) = 1 if u ≡ ±1 (mod 12) and ε(u) = −1 otherwise. Comparing terms on

both sides of (3.6) yields the class number relation

H(Dn) =
∑
u>0
u2|Dn

h

(
Dn

u2

)

and the decomposition

S(n) =
∑
u>0
u2|Dn

ε(u)Su(n), (3.7)

where

Su(n) :=
∑

[Q]∈Qprim

Dn/u2,6,1

/
Γ0(6)

f (τQ) .

Next, following [24] we express Su(n) as a trace involving primitive forms of level

1. The group Γ0(6) has index 12 in SL2(Z). We choose the following 12 right coset
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representatives:

γ∞ :=

1 0

0 1

 ,

γ1/3,r :=

1 0

3 1


1 r

0 1

 , r = 0, 1;

γ1/2,s :=

1 1

2 3


1 s

0 1

 , s = 0, 1, 2;

γ0,t :=

0 −1

1 0


1 t

0 1

 , t = 0, 1, 2, 3, 4, 5.

We denote this set of coset representatives by C6. Each matrix γ ∈ C6 maps the cusp

∞ to one of the four cusps {∞, 1/3, 1/2, 0} of the modular curve X0(6), which have

widths 1, 2, 3, and 6, respectively. In particular, we have γ∞∞ =∞, γ1/3,r∞ = 1/3,

γ1/2,s∞ = 1/2, and γ0,t∞ = 0.

Recall that a form Q = [aQ, bQ, cQ] ∈ Q∆,1 is reduced if |bQ| ≤ aQ ≤ cQ, and if

either |bQ| = aQ or aQ = cQ, then bQ ≥ 0. Let Q∆ denote a set of primitive, reduced

forms representing the equivalence classes in Qprim
∆,1

/
SL2(Z). For each Q ∈ Q∆, there

is a unique choice of coset representative γQ ∈ C6 such that [Q ◦ γ−1
Q ] ∈ Qprim

∆,6,1

/
Γ0(6).

This induces a bijection

Q∆ −→ Qprim
∆,6,1

/
Γ0(6) (3.8)

Q 7−→ [Q ◦ γ−1
Q ];

see the Proposition on page 505 in [31], or more concretely [24, Lemma 3], for an

explicit list of the matrices γQ ∈ C6. Using the bijection (3.8) and the compatibility
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relation (3.1) for CM points, the trace Su(n) can be expressed as

Su(n) =
∑

[Q]∈Qprim

Dn/u2,6,1

/
Γ0(6)

f (τQ) =
∑

Q∈QDn/u2

f (γQτQ) . (3.9)

Therefore, to study the asymptotic distribution of Su(n), we need the Fourier expan-

sion of f(z) with respect to the matrices γ∞, γ1/3,r, γ1/2,s, and γ0,t.

In [1, Section 4], Ahlgren and Andersen computed the Fourier expansion of f(z)

at the cusp ∞. The basic idea is as follows. The weakly holomorphic modular form

f(z) has a Fourier expansion of the form

f(z) = e(−z) + b(0) +
∞∑
m=1

b(m)e(mz), e(z) := e2πiz

for some integers b(m) for m ≥ 0. One can construct a weight zero weak Maass form

f(z, s) for Γ0(6) with eigenvalue s(1 − s) whose analytic continuation at s = 1 is a

harmonic function on H with the Fourier expansion

f(z, 1) = e(−z) + a(0) +
∞∑
m=1

a(m)√
m
e(mz)− e(−z) +

∞∑
m=1

a(−m)√
m

e(−mz),

where

a(0) = 4π2
∑
`|6

µ(`)

`

∑
0<c≡0 (mod 6/`)

(c,`)=1

S
(
−`, 0; c

)
c2

,

a(m) = 2π
∑
`|6

µ(`)√
`

∑
0<c≡0 (mod 6/`)

(c,`)=1

S
(
−`,m; c

)
c

I1

(
4π
√
m√
`c

)
, m ≥ 1,

a(−m) = 2π
∑
`|6

µ(`)√
`

∑
0<c≡0 (mod 6/`)

(c,`)=1

S
(
−`,−m; c

)
c

J1

(
4π
√
m√
`c

)
, m ≥ 1.
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Here µ(`) is the Möbius function, S(a, b; c) is the Kloosterman sum

S(a, b; c) :=
∑

d (mod c)
(c,d)=1

e

(
ad+ bd

c

)
,

and I1, J1 are the Bessel functions of order 1
(
note that d is the multiplicative inverse

of d (mod c)
)
. The weight ν J-Bessel function is defined by the sum

Jν(x) :=
∞∑
m=0

(−1)m

m!Γ(m+ ν + 1)

(x
2

)2m+ν

.

From these Fourier expansions, one can see that the functions f(z) and f(z, 1) have

the same principal parts at the cusps {∞, 1/3, 1/2, 0}, and hence f(z) − f(z, 1) is

bounded on the compact Riemann surface X0(6). Since a bounded harmonic function

on a compact Riemann surface is constant, the function f(z)− f(z, 1) is constant.

Now, using the Fourier expansions of E4(z) and η(z), we use SageMath to compute

f(z) = q−1 + 12 + 77q + 376q2 + 1299q3 + 4600q4 + 12025q5 + · · · .

In particular, b(0) = 12. On the other hand, in Lemma 3.2.3 we will show by a direct

calculation that a(0) = 12. Since f(z)− f(z, 1) is constant, we have

f(z)− f(z, 1) = b(0)− a(0) = 12− 12 = 0.

Finally, we have that f(z) = f(z, 1), so by uniqueness of Fourier expansions we have

that b(m) = m−1/2a(m) for m ≥ 1, a(−1) = 1, and a(−m) = 0 for m ≥ 2.

We next use the Fourier expansion

f |0γ∞(z) = e(−z) + 12 +
∞∑
m=1

a(m)√
m
e(mz)
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to compute the Fourier expansion of f with respect to γ∞, γ1/3,r, γ1/2,s, γ0,t.

The Atkin-Lehner involutions for Γ0(6) are given by

W1 =

1 0

0 1

 , W2 =
1√
2

2 −1

6 −2

 ,

W3 =
1√
3

3 1

6 3

 , W6 =
1√
6

0 −1

6 0

 .

For each `|6 and v = 6/`, let V` =
√
`W` and

A` =

 1
width of the cusp 1/v

0

0 1

 .

Then we compute the following matrices:

Table 3.1: Evaluations of the Matrices V` and A`

cusp 1/v ∞ ' 1/6 1/3 1/2 0 ' 1
` 1 2 3 6

V`

(
1 0
0 1

) (
2 −1
6 −2

) (
3 1
6 3

) (
0 −1
6 0

)
A`

(
1 0
0 1

) (
1/2 0
0 1

) (
1/3 0
0 1

) (
1/6 0
0 1

)
V`A`

(
1 0
0 1

) (
1 −1
3 −2

) (
1 1
2 3

) (
0 −1
1 0

)

Note that V`A` ∈ SL2(Z) and V`A`(∞) = 1/v. Let γ ∈ SL2(Z) be any matrix

such that γ∞ = 1/v. Then (V`A`)
−1 (γ∞) = ∞, so that (V`A`)

−1 γ ∈ Γ∞, where

Γ∞ := {( 1 n
0 1 ) : n ∈ Z} is the stabilizer of the cusp ∞. In particular, there is an
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integer n ∈ Z such that γ = V`A` ( 1 n
0 1 ) . Solving for n for each cusp, we have that

γ∞ = V1A1, γ1/3,r = V2A2

1 r + 1

0 1

 ,

γ1/2,s = V3A3

1 s

0 1

 , γ0,t = V6A6

1 t

0 1

 .

Now, since f is an eigenfunction of the Atkin-Lehner involutions {W`}`|6, we have

that f(V`z) = f(z) for ` = 1, 6 and f(V`z) = −f(z) for ` = 2, 3. Therefore, we have

f |0γ∞(z) = f(z),

f |0γ1/3,r(z) = f

V2A2

1 r + 1

0 1

 z

 = f

(
V2

(
z + r + 1

2

))
= −f

(
z + r + 1

2

)
,

f |0γ1/2,s(z) = f

V3A3

1 s

0 1

 z

 = f

(
V3

(
z + s

3

))
= −f

(
z + s

3

)
,

f |0γ0,t(z) = f

V6A6

1 t

0 1

 z

 = f

(
V6

(
z + t

6

))
= f

(
z + t

6

)
.

The Fourier expansion of f(z) with respect to the matrices γ1/3,r, γ1/2,s, γ0,t can

now be determined from the Fourier expansion at ∞ using these identities. In par-

ticular, if ζ6 := e(1/6) is a primitive sixth root of unity, then we have that

f |0γ1/3,r(z) = ζ3r
6 e
(
−z

2

)
− 12 +

∞∑
m=1

ζ
3+3m(r+1)
6

a(m)√
m
e
(mz

2

)
,

f |0γ1/2,s(z) = ζ3−2s
6 e

(
−z

3

)
− 12 +

∞∑
m=1

ζ3+2ms
6

a(m)√
m
e
(mz

3

)
,

f |0γ0,t(z) = ζ−t6 e
(
−z

6

)
+ 12 +

∞∑
m=1

ζmt6

a(m)√
m
e
(mz

6

)
.
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Given a quadratic form Q ∈ Q∆ and corresponding coset representative γQ ∈ C6,

let hQ ∈ {1, 2, 3, 6} be the width of the cusp γQ∞, and let ζQ and φm,Q be the sixth

roots of unity defined as follows:

Table 3.2: Roots of Unity

cusp γQ∞ ∞ ' 1/6 1/3 1/2 0 ' 1

ζQ 1 ζ6
3r ζ6

3−2s ζ6
−t

φm,Q 1 ζ6
3+3m(r+1) ζ6

3+2ms ζ6
mt

Then we can write

f |0γQ(z) = ζQe

(
− z

hQ

)
+ 12µ (hQ) +

∞∑
m=1

φm,Q
a(m)√
m
e

(
mz

hQ

)
. (3.10)

In the following lemma, we evaluate a(0) and give effective bounds for the Fourier

coefficients a(m) for m ≥ 1.

Lemma 3.2.3. We have that a(0) = 12 and

|a(m)| ≤ C
√
m exp

(
4π
√
m
)
, m ≥ 1,

where

C := 8
√

6π3/2 + 16π2ζ2

(
3

2

)
.

Proof of Lemma 3.2.3. We first evaluate a(0). Recall that

a(0) = 4π2
∑
`|6

µ(`)

`

∑
0<c≡0 (mod 6/`)

(c,`)=1

S
(
−`, 0; c

)
c2

.
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Since (`, c) = 1, we can evaluate the Kloosterman sum as

S
(
−`, 0; c

)
=

∑
d (mod c)

(c,d)=1

e

(
−`d
c

)
=

∑
d (mod c)

(c,d)=1

e

(
`d

c

)
= µ(c)

where the last equality follows from [36, Equation (3.4)]. Therefore,

a(0) = 4π2
∑
`|6

µ(`)

`

∑
0<c≡0 (mod 6/`)

(c,`)=1

µ(n)

c2
.

Now, if ` = 1, then we have that

∑
0<c≡0 (mod 6/`)

(c,`)=1

µ(n)

c2
=
∞∑
n=1

µ(6n)

(6n)2

=
1

36

∞∑
n=1

(n,6)=1

µ(n)

n2

=
1

36

1

ζ(2)
(1− 2−2)−1(1− 3−2)−1

=
1

24

1

ζ(2)
.

A similar calculation yields

∑
0<c≡0 (mod 6/`)

(c,`)=1

µ(n)

c2
=

1

ζ(2)


−1/6, ` = 2

−3/8, ` = 3

3/2, ` = 6.

Using ζ(2) = π2/6, we get

a(0) = 24

(
1

24
+

1

12
+

1

8
+

1

4

)
= 12.
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We next estimate |a(m)| for m ≥ 1. From (3.4), we have that

|I1(x)| ≤ x for 0 < x < 1. (3.11)

Also, using the asymptotic expansion (see dlmf.nist.gov/10.40.1) and the error

bounds (see dlmf.nist.gov/10.40.(ii)), we have that

|I1(x)| ≤ 1√
2π

1√
x

exp(x) for x ≥ 1. (3.12)

Let M = 4π
√
m
/√

`. Then using the classical Weil bound

|S(a, b; c)| ≤ τ(c)(a, b, c)1/2c1/2

where τ(c) is the number of divisors of c, and the estimates (3.11) and (3.12), we have

|a(m)| ≤ 2π
∑
`|6

|µ(`)|√
`

∑
0<c≡0 (mod 6/`)

(c,`)=1

∣∣S (−`,m; c
)∣∣

c

∣∣∣∣I1

(
M

c

)∣∣∣∣
≤ 1√

2
m−1/4S1 + 8π2m1/2S2,

where

S1 :=
∑
`|6

`−1/4
∑

0<c≤M
(c,`)=1

τ(c) exp

(
4π
√
m√
` c

)

and

S2 :=
∑
`|6

`−1
∑
c>M

(c,`)=1

τ(c)

c3/2
.
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Using the bound (see [43])

τ(n) ≤ n1.538
log(2)

log(log(n)) , n ≥ 2,

which implies that τ(n) ≤
√

3n1/2 for n ≥ 1, we get

|S1| ≤
√

3 exp
(
4π
√
m
)∑

`|6

`−1/4
∑

0<c≤M

c1/2

≤ 2
√

3(4π)3/2m3/4 exp
(
4π
√
m
)
.

Also, we have that

|S2| ≤ 2
∞∑
c=1

τ(c)

c3/2
= 2ζ2

(
3

2

)
.

Then combining estimates yields |a(m)| ≤ Cm1/2 exp (4π
√
m) for m ≥ 1, where

C := 8
√

6π3/2 + 16π2ζ2
(

3
2

)
.

We now turn to the proof of Theorem 3.2.2.

Proof of Theorem 3.2.2. By (3.7), (3.9), and (3.10), we have that

S(n) =
∑
u>0
u2|Dn

ε(u)Su(n)

=
∑
u>0
u2|Dn

ε(u)
∑

Q∈QDn/u2

f |0γQ (τQ)

=
∑
u>0
u2|Dn

ε(u)
∑

Q∈QDn/u2

ζQe

(
− τQ
hQ

)
+ E1(n),
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where

E1(n) := 12µ (hQ)
∑
u>0
u2|Dn

ε(u)h

(
Dn

u2

)
+
∞∑
m=1

a(m)√
m

∑
u>0
u2|Dn

ε(u)
∑

Q∈QDn/u2

φm,Qe

(
mτQ
hQ

)
.

We have that∣∣∣∣∣∣∣∣12µ (hQ)
∑
u>0
u2|Dn

ε(u)h

(
Dn

u2

)∣∣∣∣∣∣∣∣ ≤ 12
∑
u>0
u2|Dn

h

(
Dn

u2

)
= 12H (Dn) .

Next, we observe that

e

(
mτQ
hQ

)
= ζ

−bQm
2aQhQ

exp

(
−
πm
√
|Dn|/u2

aQhQ

)
,

where ζ2aQhQ is the primitive 2aQhQ-th root of unity defined by ζ2aQhQ := e (1/2aQhQ) .

Since Q ∈ QDn/u2 is reduced, the corresponding CM point τQ lies in the standard

fundamental domain F for SL2(Z). In particular, we have that

Im (τQ) =

√
|Dn|/u2

2aQ
≥
√

3

2
,

which implies that

aQ ≤
√
|Dn|/u2

√
3

.

Since hQ ≤ 6, we have that

−
πm
√
|Dn|/u2

aQhQ
≤ − πm

2
√

3
. (3.13)
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Then using (3.13) and Lemma 3.2.3, we obtain

∣∣∣∣∣∣∣∣
∞∑
m=1

a(m)√
m

∑
u>0
u2|Dn

ε(u)
∑

Q∈QDn/u2

φm,Qe

(
mτQ
hQ

)∣∣∣∣∣∣∣∣
≤

∞∑
m=1

|a(m)|√
m

∑
u>0
u2|Dn

∑
Q∈QDn/u2

∣∣∣∣e(mτQhQ

)∣∣∣∣
≤ CH(Dn)

∞∑
m=1

exp

(
4π
√
m− πm

2
√

3

)
.

Combining the preceding estimates yields

|E1(n)| ≤ 12H(Dn) + CH(Dn)
∞∑
m=1

exp

(
4π
√
m− πm

2
√

3

)
.

To estimate the infinite sum, we write

4π
√
m− πm

2
√

3
= −m

(
π

2
√

3
− 4π√

m

)
,

and we observe that π
2
√

3
− 4π√

m
> 0 if and only if m ≥ 193, in which case we have that

−m
(

π

2
√

3
− 4π√

m

)
≤ −m

(
π

2
√

3
− 4π√

193

)
.

We then split the infinite sum into appropriate ranges and use the preceding bound

to obtain

∞∑
m=1

exp

(
4π
√
m− πm

2
√

3

)

≤
192∑
m=1

exp

(
4π
√
m− πm

2
√

3

)
+

∞∑
m=193

exp

(
−m

(
π

2
√

3
− 4π√

193

))
.
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A calculation shows that

192∑
m=1

exp

(
4π
√
m− πm

2
√

3

)
< 2.08× 1020

and

∞∑
m=193

exp

(
−m

(
π

2
√

3
− 4π√

193

))
< 426.

We have now shown that |E1(n)| ≤ C1H(Dn), where

C1 := 12 + C
(
2.08× 1020 + 426

)
< 2.47× 1023.

It remains to analyze the main term. We write the main term as

∑
u>0
u2|Dn

ε(u)
∑

Q∈QDn/u2

ζQe

(
− τQ
hQ

)
=

∑
Q∈QDn

ζQe

(
− τQ
hQ

)
+ E2(n),

where

E2(n) :=
∑
u≥2
u2|Dn

ε(u)
∑

Q∈QDn/u2

ζQe

(
− τQ
hQ

)
.

We observe that for any form Q = [aQ, bQ, cQ] ∈ QDn/u2 , we have that

aQhQ ≡ 0 (mod 6) (3.14)

and

e

(
− τQ
hQ

)
= ζ

bQ
2aQhQ

exp

(
π
√
|Dn|/u2

aQhQ

)
. (3.15)
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Now, by [24, (4.2)] there are exactly four forms Q ∈ QDn with aQhQ = 6, and

these are given by Q1 = [1, 1, 6n], Q2 = [2, 1, 3n], Q3 = [3, 1, 2n], Q4 = [6, 1, n]. The

corresponding coset representatives γQi ∈ C6 such that
[
Qi ◦ γ−1

Qi

]
∈ Qprim

Dn,6,1

/
Γ0(6)

are given by γQ1 = γ0,1, γQ2 = γ1/2,−1, γQ3 = γ1/3,0, γQ4 = γ∞.. We may now write

∑
Q∈QDn

ζQe

(
− τQ
hQ

)
=

4∑
i=1

ζQie

(
− τQi
hQi

)
+ E3(n),

where

E3(n) :=
∑

Q∈QDn
Q 6=Qi

ζQe

(
− τQ
hQ

)
.

By (3.14), we have that aQhQ ≥ 12 for all Q 6= Qi. Therefore, using (3.15), we get

|E3(n)| ≤
∑

Q∈QDn
Q 6=Qi

exp

(
π
√
|Dn|

aQhQ

)

≤ h (Dn) exp

(
π
√
|Dn|

12

)
.

Similarly, by (3.14) we have that aQhQ ≥ 6 for all Q ∈ QDn/u2 , and therefore for

u ≥ 2 we have that

√
|Dn|/u2

aQhQ
≤
√
|Dn|
12

.

Then by (3.15) we have

|E2(n)| ≤
∑
u≥2
u2|Dn

∑
Q∈QDn/u2

exp

(
π
√
|Dn|/u2

aQhQ

)

≤ H(Dn) exp

(
π
√
|Dn|

12

)
.
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Since aQihQi = 6 and bQi = 1 for i = 1, 2, 3, 4, using (3.15) we get

4∑
i=1

ζQie

(
− τQi
hQi

)
= exp

(
πi

6

) 4∑
i=1

ζQi · exp

(
π
√
|Dn|
6

)
.

Also, from the Fourier expansion of f(z) with respect to γ0,1, γ1/2,−1, γ1/3,0, and γ∞

given previously, we have that ζQ1 = ζ−1
6 , ζQ2 = ζ

3−2(−1)
6 , ζQ3 = ζ0

6 , ζQ4 = 1. Hence,

exp

(
πi

6

) 4∑
i=1

ζQi = 2
√

3.

By combining the preceding results, we get

S(n) = 2
√

3 exp

(
π
√
|Dn|
6

)
+ E(n),

where E(n) := E1(n) + E2(n) + E3(n) with

|E(n)| ≤ |E1(n)|+ |E2(n)|+ |E3(n)|

< 2H(Dn) exp

(
π
√
|Dn|

12

)
+
(
2.47× 1023

)
H (Dn)

<
(
2.48× 1023

)
H (Dn) exp

(
π
√
|Dn|

12

)
.

To complete the proof, we require only a crude effective upper bound for the

Hurwitz–Kronecker class number H (Dn).

Write Dn = dnf
2
n, with dn < 0 a fundamental discriminant and fn ∈ Z+. Then

we have the class number relation

H(Dn) =
∑
u>0
u2|Dn

h

(
Dn

u2

)
=
∑
u>0
u|fn

h
(
u2dn

)
. (3.16)
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Inserting the formula (see e.g. [13, p. 233])

h(u2dn) = u
∏
p|u

(
1− χdn(p)

p

)
h(dn)

into (3.16) yields H(Dn) = δ(n)h(dn), where

δ(n) :=
∑
u>0
u|fn

u
∏
p|u

(
1− χdn(p)

p

)
.

Now, a simple estimate gives |δ(n)| ≤
√
|Dn| τ(|Dn|)2ω(|Dn|), where ω(|Dn|) is the

number of prime divisors of |Dn|. We have that τ(|Dn|) <
√

3
√
|Dn|, and by [51,

Théorème 13], we have that

ω(|Dn|) ≤ max

{
1,

log(|Dn|)
log(log(|Dn|))− 1.1714

}
≤ log(|Dn|)
| log(log(|Dn|))− 1.1714|

=: q(n).

Therefore, |δ(n)| ≤
√

3 2q(n)|Dn|. Using the class number formula

h(dn) =

√
|dn|
π

L(1, χdn),

where the L-function L(s, χ) is defined by L(s, χ) :=
∞∑
n=1

χ(n)n−s, and the evaluation

L(1, χdn) = − π

|dn|3/2

|dn|−1∑
t=1

χdn(t)t,

another simple estimate yields h(dn) ≤ |dn|. Then combining the preceding estimates

gives H(Dn) ≤
√

3 2q(n)|Dn|2.

Finally, using the above class number bound, we obtain

|E(n)| <
(
4.30× 1023

)
2q(n)|Dn|2 exp

(
π
√
|Dn|

12

)
.
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This completes the proof.

Now, we must apply an effective bound for p(n) in order to prove Theorem 1.1.2.

Using Rademacher’s formula (1.3), Lehmer [39] proved the following result.

Theorem 3.2.4 (Lehmer). For all n ≥ 1, we have that

p(n) =

√
12

24n− 1

N∑
c=1

Ac(n)√
c

{(
1− c

λ(n)

)
eλ(n)/c +

(
1 +

c

λ(n)

)
e−λ(n)/c

}
+R2(n,N),

where

|R2(n,N)| < N−2/3π2

√
3

{
N3

2λ(n)3

(
eλ(n)/N − e−λ(n)/N

)
+

1

6
− N2

λ(n)2

}
.

We use Theorem 3.2.4 to deduce the following effective bound.

Lemma 3.2.5. For all n ≥ 1, we have that

p(n) =
2
√

3

24n− 1

(
1− 1

λ(n)

)
eλ(n) + Ep(n),

where |Ep(n)| ≤ 1313 eλ(n)/2.

Proof of Lemma 3.2.5. Using the identity

I3/2(x) =
1

2

√
2

πx

[(
1− 1

x

)
ex +

(
1 +

1

x

)
e−x
]
, (3.17)

we may write Theorem 3.2.4 (with the choice N = 2) as

p(n) =
2π

(24n− 1)3/4

2∑
c=1

Ac(n)

c
I3/2

(
λ(n)

c

)
+R2(n, 2), (3.18)
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where

|R2(n, 2)| < π2

√
3 22/3

[(
2

λ(n)

)3{
eλ(n)/2 − e−λ(n)/2)

2

}
+ 1/6−

(
2

λ(n)

)2
]
.

Now, using (3.17) and (3.18), we have that

p(n) =
2π

(24n− 1)3/4
I3/2 (λ(n)) +

2π

(24n− 1)3/4

A2(n)

2
I3/2

(
λ(n)

2

)
+R2(n, 2)

=
2
√

3

24n− 1

(
1− 1

λ(n)

)
eλ(n) + Ep(n),

where

Ep(n) :=
2π

(24n− 1)3/4

[
1

2

√
2

πλ(n)

(
1 +

1

λ(n)

)
e−λ(n) +

A2(n)

2
I3/2

(
λ(n)

2

)]

+R2(n, 2).

Using (3.17), we have the bound

I3/2(x) < x−1/2ex, x ≥ 1. (3.19)

Then an estimate using the trivial bound |Ac(n)| < c and (3.19) yields

∣∣∣∣ 2π

(24n− 1)3/4

A2(n)

2
I3/2

(
λ(n)

2

)∣∣∣∣ ≤ eλ(n)/2.

Similarly, two straightforward estimates yield

∣∣∣∣∣ 2π

(24n− 1)3/4

1

2

√
2

πλ(n)

(
1 +

1

λ(n)

)
e−λ(n)

∣∣∣∣∣ ≤ 16 eλ(n)/2

and |R2(n, 2)| < 1296 eλ(n)/2. Therefore, |Ep(n)| ≤ 1313 eλ(n)/2.

Using all of the tools established above, the proof of Theorem 1.1.2 is immediate.
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Proof of Theorem 1.1.2. Using (3.2), the formula (3.3) can be written as

spt(n) =
1

12
[S(n)− (24n− 1)p(n)] . (3.20)

Then using (3.20), Theorem 3.2.2, and Lemma 3.2.5, a straightforward calculation

yields

spt(n) =

√
3

π
√

24n− 1
eλ(n) + Es(n),

where the error term

Es(n) :=
E(n)

12
− 24n− 1

12
Ep(n)

satisfies the bound

|Es(n)| <
(
3.59× 1022

)
2q(n)(24n− 1)2eλ(n)/2.

3.2.2 Inequalities satisfied by spt(n)

We begin by proving the refined version of Theorem 1.1.1 (1).

Proof of Theorem 3.2.1. By Theorem 1.1.2 and Lemma 3.2.5, we may write

spt(n) = α(n)eλ(n) + Es(n) (3.21)

and

p(n) = β(n)eλ(n) + Ep(n), (3.22)
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where

α(n) :=

√
3

π
√

24n− 1
and β(n) :=

2
√

3

24n− 1

(
1− 6

π
√

24n− 1

)
.

Also, for ε > 0 we define

γ(n) :=

√
6

π

√
n and γ(n, ε) :=

(√
6

π
+ ε

)
√
n.

We must prove that there exists an effectively computable positive constant N(ε) > 0

such that for all n ≥ N(ε), we have that

γ(n)p(n) < spt(n) < γ(n, ε)p(n). (3.23)

Using (3.21) and (3.22) we find that the lower bound in (3.23) is equivalent to

c1(n)eλ(n) > γ(n)Ep(n)− Es(n), (3.24)

where c1(n) := α(n)−β(n)γ(n). Now, the error bounds in Theorem 1.1.2 and Lemma

3.2.5 imply that

|γ(n)Ep(n)− Es(n)| ≤ c2(n)eλ(n)/2,

where

c2(n) := 1313 γ(n) +
(
3.59× 1022

)
2q(n)(24n− 1)2.

Then, noting that c1(n) > 0 for all n ≥ 1, we find that (3.24) follows from the bound

eλ(n)/2 > c3(n) :=
c2(n)

c1(n)
,
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or equivalently, the bound

n >
1

24

[(
12

π
log(c3(n))

)2

+ 1

]
. (3.25)

A calculation shows that (3.25) holds for all n ≥ N := 5310.

Similarly, using (3.21) and (3.22), we find that the upper bound in (3.23) is equiv-

alent to

c4(n, ε)eλ(n) > Es(n)− γ(n, ε)Ep(n), (3.26)

where c4(n, ε) := β(n)γ(n, ε)−α(n). The error bounds in Theorem 1.1.2 and Lemma

3.2.5 imply that

|Es(n)− γ(n, ε)Ep(n)| ≤ c5(n, ε)eλ(n)/2,

where

c5(n, ε) := 1313 γ(n, ε) +
(
3.59× 1022

)
2q(n)(24n− 1)2.

Moreover, there exists an effectively computable positive constant N1(ε) > 0 such

that c4(n, ε) > 0 for all n ≥ N1(ε). Arguing as above, we find that if n ≥ N1(ε), the

bound (3.26) follows from the bound

n >
1

24

[(
12

π
log(c6(n, ε))

)2

+ 1

]
, (3.27)

where c6(n, ε) := c5(n, ε)/c4(n, ε). Clearly, there exists an effectively computable

positive constant N2(ε) ≥ N1(ε) such that (3.27) holds for all n ≥ N2(ε). Define

N(ε) := max{N,N2(ε)}. Then the inequalities (3.23) hold for all n ≥ N(ε).
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We require a preliminary lemma before we can prove Theorem 1.1.1. As pointed

out by Bessenrodt and Ono [8], it is straightforward to see from Theorem 3.2.4 that

√
3

12n

(
1− 1√

n

)
eλ(n) < p(n) <

√
3

12n

(
1 +

1√
n

)
eλ(n)

for all n ≥ 1.

We will use Theorem 1.1.2 to prove the following analogous statement for spt(n),

where
√
n is replaced by any positive integral power of n.

Lemma 3.2.6. For each α ∈ Z+ and k ∈ Z+, there is an effectively computable

positive integer Bk(α) such that for all n ≥ Bk(α), we have that

√
3

π
√

24n− 1

(
1− 1

αnk

)
eλ(n) < spt(n) <

√
3

π
√

24n− 1

(
1 +

1

αnk

)
eλ(n).

Proof of Lemma 3.2.6. By Theorem 1.1.2, we have the bounds

√
3

π
√

24n− 1
eλ(n) − |Es(n)| < spt(n) <

√
3

π
√

24n− 1
eλ(n) + |Es(n)| ,

where

|Es(n)| <
(
3.59× 1022

)
2q(n)(24n− 1)2eλ(n)/2.

Clearly, there is an effectively computable positive integer Bk(α) such that

(
3.59× 1022

)
2q(n)(24n− 1)2eλ(n)/2 <

√
3

π
√

24n− 1
· 1

αnk
eλ(n)

holds for all n ≥ Bk(α). For instance, if α = k = 1, then B1(1) = 5729. This

completes the proof.

We may now prove Theorem 1.1.1 (1) and (2).

Proof of Theorem 1.1.1 (1). Let ε = 1−
√

6
π

in Theorem 3.2.1. We need to determine
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the constant N
(

1−
√

6
π

)
. A calculation shows that c4

(
n, 1−

√
6
π

)
> 0 holds if n ≥

N1

(
1−

√
6
π

)
, where N1

(
1−

√
6
π

)
= 4. Next, we need to find the smallest positive

integer N2

(
1−

√
6
π

)
≥ 4 such that the bound

n >
1

24

(12

π
log

(
c6

(
n, 1−

√
6

π

)))2

+ 1


holds for all n ≥ N2

(
1−

√
6
π

)
. A calculation shows that this constant is given by

N2

(
1−

√
6
π

)
= 4845. We now have

N

(
1−
√

6

π

)
:= max

{
N,N2

(
1−
√

6

π

)}
= max{5310, 4845} = 5310.

Therefore, the inequalities

√
6

π

√
np(n) < spt(n) <

√
np(n)

hold for all n ≥ 5310. Finally, one can verify with a computer that these inequalities

also hold for 5 ≤ n < 5310.

Proof of Theorem 1.1.1 (2). We follow closely the proof of [8, Theorem 2.1]. By tak-

ing α = k = 1 in Theorem 3.2.6 (recall that B1(1) = 5729), we find that

√
3

π
√

24n− 1

(
1− 1

n

)
eλ(n) < spt(n) <

√
3

π
√

24n− 1

(
1 +

1

n

)
eλ(n) (3.28)

holds for all n ≥ 5729. One can verify with a computer that (3.28) also holds for

1 ≤ n < 5729.

Now, assume that 1 < a ≤ b, and let b = Ca where C ≥ 1. From (3.28) we have

spt(a)spt(Ca) >
3

π2
√

24a− 1
√

24Ca− 1

(
1− 1

a

)(
1− 1

Ca

)
eλ(a)+λ(Ca)



56

and

spt(a+ Ca) <

√
3

π
√

24(a+ Ca)− 1

(
1 +

1

a+ Ca

)
eλ(a+Ca).

Therefore, for all but finitely many cases, it suffices to find conditions on a > 1 and

C ≥ 1 such that

eλ(a)+λ(Ca)−λ(a+Ca) >
π
√

24a− 1
√

24Ca− 1√
3
√

24(a+ Ca)− 1
·

(
1 + 1

a+Ca

)(
1− 1

a

) (
1− 1

Ca

) . (3.29)

For convenience, we define

Ta(C) := λ(a) + λ(Ca)− λ(a+ Ca) and Sa(C) :=

(
1 + 1

a+Ca

)(
1− 1

a

) (
1− 1

Ca

) .
Then by taking logarithms, we find that (3.29) is equivalent to

Ta(C) > log

(
π
√

24a− 1
√

24Ca− 1√
3
√

24(a+ Ca)− 1

)
+ log(Sa(C)). (3.30)

As functions of C, it can be shown that Ta(C) is increasing and Sa(C) is decreasing

for C ≥ 1, and thus Ta(C) ≥ Ta(1) and log(Sa(1)) ≥ log(Sa(C)). Hence, it suffices to

show that

Ta(1) > log

(
π
√

24a− 1
√

24Ca− 1√
3
√

24(a+ Ca)− 1

)
+ log(Sa(1)).

Moreover, since √
24Ca− 1√

24(a+ Ca)− 1
≤ 1

for all C ≥ 1 and all a > 1, it suffices to show that

Ta(1) > log

(
π
√

24a− 1√
3

)
+ log(Sa(1)). (3.31)

By computing the values Ta(1) and Sa(1), we find that (3.31) holds for all a ≥ 6.



57

To complete the proof, we assume that 2 ≤ a ≤ 5. For each such integer a, we

calculate the real number Ca for which

Ta (Ca) = log

(
π
√

24a− 1√
3

)
+ log(Sa (Ca)).

The values Ca are listed in the table below.

Table 3.3: Exceptional Cases of Theorem 1.1.1 (2)

a Ca

2 27.87. . .
3 3.54. . .
4 1.79. . .
5 1.20. . .

By the discussion above, if b = Ca ≥ a is an integer for which C > Ca, then

(3.30) holds, which in turn gives the theorem in these cases. Only finitely many cases

remain: namely, the pairs of integers where 2 ≤ a ≤ 5 and 1 ≤ b/a ≤ Ca. We

compute spt(a), spt(b), and spt(a+ b) in these cases to complete the proof.

We require some results analogous to those of Desalvo and Pak [23] in order to

prove the remaining conjectures. The following is [23, Lemma 2.1]; we omit the proof.

Lemma 3.2.7. Suppose h(x) is a positive, increasing function with two continuous

derivatives for all x > 0, and that h′(x) > 0 is decreasing, and h′′(x) < 0 is increasing

for all x > 0. Then for all x > 0, we have that

h′′(x− 1) < h(x+ 1)− 2h(x) + h(x− 1) < h′′(x+ 1).

By Theorem 1.1.2, we may write spt(n) = f(n) + Es(n), where

f(n) :=

√
3

π
√

24n− 1
eλ(n) (3.32)
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and

|Es(n)| <
(
3.59× 1022

)
2q(n)(24n− 1)2eλ(n)/2.

Lemma 3.2.8. Let F (n) := 2 log(f(n))− log(f(n+ 1))− log(f(n− 1)). Then for all

n ≥ 4, we have that

24π(
24(n+ 1)− 1

)3/2
− 1

n2
< F (n) <

24π(
24(n− 1)− 1

)3/2
− 288(

24(n+ 1)− 1
)2 .

Proof of Lemma 3.2.8. We can write f(n) from (3.32) as

f(n) =
1

2
√

3λ(n)
eλ(n),

so that log(f(n)) = λ(n)− log(λ(n))− log
(
2
√

3
)
. Then we have that

F (n) = 2λ(n)− λ(n+ 1)− λ(n− 1)− 2 log(λ(n)) + log(λ(n+ 1)) + log(λ(n− 1)).

Since the functions λ(x) and λ̃(x) := log(λ(x)) satisfy the hypotheses of Lemma 3.2.7,

we obtain −λ′′(n + 1) + λ̃′′(n − 1) < F (n) < −λ′′(n − 1) + λ̃′′(n + 1). Computing

derivatives gives

24π(
24(n+ 1)− 1

)3/2
− 288(

24(n− 1)− 1
)2 < F (n)

and

F (n) <
24π(

24(n− 1)− 1
)3/2
− 288(

24(n+ 1)− 1
)2
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for all n ≥ 2, from which we deduce that

24π(
24(n+ 1)− 1

)3/2
− 1

n2
< F (n) <

24π(
24(n− 1)− 1

)3/2
− 288(

24(n+ 1)− 1
)2

for all n ≥ 4.

Lemma 3.2.9. Define the functions yn := |Es(n)| /f(n),

M(n) := 2
√

3
(
3.59× 1022

)
λ(n)2q(n)(24n− 1)2e−λ(n)/2,

and g(n) := M(n)/(1−M(n)). Then for all n ≥ 2, we have that

log

[
(1− yn)2

(1 + yn+1) (1 + yn−1)

]
> −2g(n)−M(n+ 1)−M(n− 1),

log

[
(1 + yn)2

(1− yn+1) (1− yn−1)

]
< 2M(n) + g(n+ 1) + g(n− 1).

Proof of Lemma 3.2.9. First, we observe that for all n ≥ 1, we have

0 < yn =
|Es(n)|
f(n)

<
(3.59× 1022) 2q(n)(24n− 1)2eλ(n)/2

1
2
√

3λ(n)
eλ(n)

= M(n). (3.33)

The bound M(n) < 1 is equivalent to the bound

2
√

3
(
3.59× 1022

)
λ(n)2q(n)(24n− 1)2 < eλ(n)/2. (3.34)

Clearly, there is an effectively computable positive integer M0 such that the inequality

(3.34) holds for all n ≥M0. A calculation shows that (3.34) holds for all n ≥M0 with

M0 = 4698. On the other hand, one can verify with a computer that max
1≤n<4698

yn < 1.

Hence yn < 1 for all n ≥ 1. Then using (3.33) and the inequalities

log(1− x) ≥ − x

1− x
for 0 < x < 1
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and log(1 + x) < x for x > 0, we obtain

log

[
(1− yn)2

(1 + yn+1) (1 + yn−1)

]
= 2 log (1− yn)− log (1 + yn+1)− log (1 + yn−1)

> − 2yn
1− yn

− yn+1 − yn−1

> −2g(n)−M(n+ 1)−M(n− 1)

for all n ≥ 2. Similarly, for all n ≥ 2 we obtain

log

[
(1 + yn)2

(1− yn+1) (1− yn−1)

]
= 2 log(1 + yn)− log(1− yn+1)− log(1− yn−1)

< 2yn +
yn+1

1− yn+1

+
yn−1

1− yn−1

< 2M(n) + g(n+ 1) + g(n− 1).

Proposition 3.2.10. Let

spt2(n) := 2 log(spt(n))− log(spt(n+ 1))− log(spt(n− 1)).

Then we have spt2(n) > 1
(24n)3/2 for all n ≥ 6553 and spt2(n) < 2

n3/2 for all n ≥ 6445.

Proof of Proposition 3.2.10. We first bound spt(n) by

f(n)

(
1− |Es(n)|

f(n)

)
< spt(n) < f(n)

(
1 +
|Es(n)|
f(n)

)
.

Then, using F (n) := 2 log(f(n))−log(f(n+1))−log(f(n−1)) and yn := |Es(n)| /f(n),

we take logarithms in the preceding inequalities to get

F (n) + log

[
(1− yn)2

(1 + yn+1) (1 + yn−1)

]
< spt2(n) < F (n) + log

[
(1 + yn)2

(1− yn+1) (1− yn−1)

]
.
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It follows immediately from Lemmas 3.2.8 and 3.2.9 that for all n ≥ 4, we have that

spt2(n) >
24π(

24(n+ 1)− 1
)3/2
− 1

n2
− 2g(n)−M(n+ 1)−M(n− 1)

and

spt2(n) <
24π(

24(n− 1)− 1
)3/2
− 288(

24(n+ 1)− 1
)2 + 2M(n) + g(n+ 1) + g(n− 1).

(3.35)

Then a calculation shows that

24π(
24(n+ 1)− 1

)3/2
− 1

n2
− 2g(n)−M(n+ 1)−M(n− 1) >

1

(24n)3/2

for all n ≥ 6553 and

24π(
24(n− 1)− 1

)3/2
− 288(

24(n+ 1)− 1
)2 + 2M(n) + g(n+ 1) + g(n− 1) <

2

n3/2

for all n ≥ 6445. This completes the proof.

We now prove the remaining conjectures.

Proof of Theorem 1.1.1 (3). To prove Theorem 1.1.1 (3), we must show that the in-

equality spt(n)2 > spt(n−1)spt(n+1) holds for all n ≥ 36. Taking logarithms, we see

that this is equivalent to spt2(n) > 0, where spt2(n) is defined as in Proposition 3.2.10.

By the lower bound in Proposition 3.2.10, we have spt2(n) > 0 for all n ≥ 6553. Fi-

nally, one can verify with a computer that spt2(n) > 0 for all 36 ≤ n < 6553. This

completes the proof.

Proof of Theorem 1.1.1 (4). We follow closely the proof of [23, Theorem 5.1]. It is

known that log-concavity implies strong log-concavity a(`− i)a(k + i) ≥ a(k)a(`) for



62

all 0 ≤ k ≤ ` ≤ n and 0 ≤ i ≤ `− k (see e.g. [52]).

Now, we have proved that spt(n)2 > spt(n−1)spt(n+1) for all n ≥ 36. Therefore,

if we take k = n −m, ` = n + m, and i = m, then spt(n)2 > spt(n −m)spt(n + m)

for all n > m > 1 with n−m > 36.

We next consider the case n > m > 1 with 1 ≤ n−m ≤ 36. We will prove that

spt(n)2 ≥ spt(m+ 1)2 > spt(36)spt(36 + 2m) ≥ spt(n−m)spt(n+m) (3.36)

for all 1 ≤ n − m ≤ 36 with m ≥ 6244. On the other hand, one can verify with a

computer that spt(n)2 > spt(n−m)spt(n+m) for all 1 ≤ n−m ≤ 36 with m < 6244.

This completes the proof of Conjecture (4), subject to verifying the inequalities (3.36).

Since n ≥ m+1, we have that spt(n)2 ≥ spt(m+1)2.Moreover, since n−m ≤ 36 we

have that spt(n−m) < spt(36), and thus spt(36)spt(36+2m) ≥ spt(n−m)spt(n+m).

This verifies the first and third inequalities in (3.36).

It remains to prove that

spt(m+ 1)2 > spt(36)spt(36 + 2m) (3.37)

for all m ≥ 6244. Taking logarithms in (3.37), we see that it suffices to prove

2 log(spt(m+ 1))− log(spt(36))− log(spt(36 + 2m)) > 0 (3.38)

for all m ≥ 6244. By [32, Section 2] and [28, (4)], respectively, we have the bounds

e2
√
m

2πme1/6m
< p(m) < eπ

√
2m
3

for all m ≥ 1. Then by the inequality in Theorem 1.1.1 (1), we have

√
6

π

√
m

e2
√
m

2πme1/6m
< spt(m) <

√
meπ
√

2m
3 (3.39)



63

for all m ≥ 5. Using the inequalities (3.39) and spt(36) < 90000, we see that the left

hand side of (3.38) is bounded below by the function

2 log

( √
6(m+ 1)

2π2(m+ 1)e1/6(m+1)

)
+ 4
√
m+ 1− log(90000)

− log
(√

36 + 2m
)
−
π
√

2(36 + 2m)√
3

for all m ≥ 4. A calculation shows that this function is positive for all m ≥ 6244.

Proof of Theorem 1.1.1 (5). Taking logarithms, we find that Theorem 1.1.1 (5) is

equivalent to

spt2(n) < log

(
1 +

1

n

)
for all n ≥ 13. By the upper bound in Proposition 3.2.10 and some straightforward

estimates, we have that

spt2(n) <
2

n3/2
<

1

n+ 1
< log

(
1 +

1

n

)

for all n ≥ 6445. Finally, one can verify with a computer that the conjectured

inequality holds for all 13 ≤ n < 6445. This completes the proof.

Proof of Theorem 1.1.1 (6). We follow closely the proof of [10, Conjecture 1.3]. Tak-

ing logarithms, we find that Theorem 1.1.1 (6) is equivalent to

spt2(n) < log

(
1 +

π√
24n3/2

)

for all n ≥ 73. By (3.35), we have that

spt2(n) <
24π(

24(n− 1)− 1
)3/2
− 288(

24(n+ 1)− 1
)2 + 2M(n) + g(n+ 1) + g(n− 1)
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for all n ≥ 4. On the other hand, by [10, (2.3)], we have that

24π(
24(n+ 1)− 1

)3/2
<

24π

(24n)3/2
−
(

24π

(24n)3/2

)2

+
3

2n5/2

for all n ≥ 50, and by [10, (2.23)], we have that

− 288(
24(n+ 1)− 1

)2 <
1

6n5/2
− 1

2n2

for all n ≥ 50. Therefore, for all n ≥ 50, we have that

spt2(n) <
24π

(24n)3/2
−
(

24π

(24n)3/2

)2

+
5

3n5/2
− 1

2n2
+ 2M(n) + g(n+ 1) + g(n− 1).

Now, a calculation shows that

5

3n5/2
− 1

2n2
+ 2M(n) + g(n+ 1) + g(n− 1) < 0

for all n ≥ 7211. Hence,

spt2(n) <
24π

(24n)3/2
−
(

24π

(24n)3/2

)2

=
24π

(24n)3/2

(
1− 24π

(24n)3/2

)

for all n ≥ 7211. Then using the inequality x(1−x) < log(1+x) for x > 0, we obtain

spt2(n) < log

(
1 +

24π

(24n)3/2

)
= log

(
1 +

π√
24n3/2

)

for all n ≥ 7211. Finally, one can verify with a computer that this inequality also

holds for all 73 ≤ n < 7211. This completes the proof.
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3.3 Conjugacy growth series for finitary permuta-

tion groups

The coefficients of the conjugacy growth series corresponding to an infinite group G

generated by a set S reveal some information about the algebraic complexity of G. In

particular, they measure the number of elements of S required to fully generate the

various conjugacy classes of G. Bacher and de la Harpe discovered [4] that the values

of the partition function determine this information for the finitary symmetric group

Sym(X) on an infinite set X. This relationship may not come as a surprise, since it

is well known that the number of partitions of a positive integer n agrees with the

number of conjugacy classes of the ordinary finite symmetric group Sn. It is more

interesting that the complexity of the finitary alternating group Alt(X) is determined

by products of values of the usual partition function p(n) with values of the function

pe(n) that counts partitions into an even number of parts. The most intriguing of

the q-series identities in [4] is the identity that relates wreath products of Sym(X)

to powers of the partition function. It is natural to seek an analogous statement for

wreath products of Alt(X). This statement is given by Theorem 1.1.3, and the proof

is omitted here (see [17] and [57]).

It turns out that the coefficients of the conjugacy growth series for symmetric

and alternating wreath products actually satisfy recursive formulas depending on the

number of conjugacy classes. These formulas are the content of Theorems 1.1.4 and

1.1.5, and they give another measure of the complexity of these groups.

3.3.1 Recurrence relations

Here we prove recurrence relations for the coefficients of the conjugacy growth series

for symmetric and alternating wreath products.
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Proof of Theorem 1.1.4. Define the q-series identity

Fr(q) :=
∞∑
n=0

pn(r)qn :=
∞∏
n=1

(1− qn)r,

so that pn(r) = γWS
(n) and r = −MS. We take logarithms of both sides to obtain

log

(
1 +

∞∑
n=1

pn(r)qn

)
=
∞∑
n=1

r log(1− qn) = −
∞∑
n=1

∞∑
k=1

rqkn

k
.

Taking the derivatives of both sides, we see that

∞∑
n=1

npn(r)qn−1

1 +
∞∑
n=1

pn(r)qn
= −

∞∑
n=1

∑
d|n

rdqn−1 = −
∞∑
n=1

rσ1(n)qn−1,

and so we have that

∞∑
n=1

npn(r)qn =

(
−
∞∑
n=1

rσ1(n)qn

)(
1 +

∞∑
n=1

pn(r)qn

)
.

For convenience, we define b(n) := rσ1(n). Equating coefficients, we see that

0 = b(n) + b(n− 1)p1(r) + b(n− 2)p2(r) + · · ·+ b(1)pn−1(r) + npn(r).

The symmetric power functions si := X i
1 + · · · + X i

n and the elementary symmetric

functions σi =
∑

1≤j1≤···≤ji≤n
Xj1 · · ·Xji exhibit a similar relationship; namely, we have

the identity

0 = sn − sn−1σ1 + sn−2σ2 − · · ·+ (−1)n−1s1σn−1 + (−1)nσn. (3.40)

Evaluating equation (3.40) at (X1, . . . , Xn) = (`(1, n), . . . , `(n, n)), where `(j, n) are

the roots of the polynomial Xn + p1(r)Xn−1 + · · ·+ pn−1(r)X + pn(r), we have that
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pn(r) = σn for n ≥ 1, and so b(n) = (−1)nsn. Using the classical fact that

sn = n
∑

m1,...,mn≥0
m1+···+nmn=i

(−1)m2+m4+··· · (m1 + · · ·+mn − 1)!

m1! · · ·mn!
· σm1

1 · · ·σmnn ,

we arrive at the desired recursion: pn(r) = F̂n
(
p1(r), . . . , pn−1(r)

)
− r

n
σ1(n).

Proof of Theorem 1.1.5. Define the q-series identity

FMA
(q) :=

∞∑
n=0

Pn(MA)qn :=

(
1

2

∞∏
n=1

1

(1− qn)2 +
1

2

∞∏
n=1

1

1− q2n

)MA

,

so that Pn(MA) = γWA
(n). By the binomial theorem, we have that

∞∑
n=0

Pn(MA)qn =
1

2MA

MA∑
k=1

(
MA

k

) ∞∏
n=1

1

(1− qn)2k (1− q2n)MA−k
.

It suffices to find recurrence relations for each summand. Define

FMA,k(q) :=
∞∑
n=0

ak(n)qn :=
∞∏
n=1

1

(1− qn)2k (1− q2n)MA−k
.

We take the logarithmic derivative as above and simplify to obtain

∞∑
n=1

nak(n)qn =

− ∞∑
n=1

∑
d|n

d ·
[
(−1)

n
d (k −MA)− (k +MA)

]
qn

(1 +
∞∑
n=1

ak(n)qn

)
,

and then we equate coefficients and use (3.40) as in the proof of Theorem 1.1.4 to

obtain the desired recursion:

ak(n) = F̂n
(
ak(1), . . . , ak(n− 1)

)
−
∑
δ|n

δ ·
[
(−1)δ(k −MA)− (k +MA)

]
.
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3.3.2 An application to hook lengths

We now discuss an application to hook lengths of partitions. The hook length of a

partition λ = (λ1, . . . , λn) of a positive integer L, i.e. λ1 + · · · + λn = L, is defined

using a Ferrers diagram. For example, Figure 3.1 below is a Ferrers diagram of the

partition λ = (6, 4, 3, 1, 1) of 15, Figure 3.2 shows a hook of length 4, and Figure 3.3

shows all hook lengths associated to λ.

Figure 3.1: Partition Figure 3.2: Hook

10 7 6 4 2 1

7 4 3 1

5 2 1

2

1

Figure 3.3: Hook Lengths

More generally, for each box v in the Ferrers diagram of a partition λ, its hook

length hv(λ) is defined as the number of boxes u such that

1. u = v,

2. u is in the same column as v and below v, or

3. u is in the same row as v and to the right of v.

The hook length multi-set H(λ) is the set of all hook lengths of λ.

Consider the more general infinite product
∏
n≥1

(1− qn)r for any r ∈ C. In recent

work, Nekrasov and Okounkov obtained a different formula for this type of infinite

product in terms of hook lengths [42]:

∑
λ∈P

x|λ|
∏

h∈H(λ)

(
1− z

h2

)
=
∏
k≥1

(
1− xk

)z−1
, (3.41)

where P denotes the set of all partitions and |λ| denotes the sum of the parts of λ.

Theorem 1.1.4 applies to the coefficients of the Nekrasov–Okounkov formula (3.41)
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if we make the following changes of variable: z 7→ 1 + r and x 7→ q := e2πiτ with

τ ∈ H. The coefficients
∏

h∈H(λ)

(
1− 1+r

h2

)
of the product

∏
n≥1

(1− qn)r then satisfy the

recurrence relation

∏
h∈H(λ)

(
1− 1 + r

h2

)
= γWS

(n) = F̂n
(
γWS

(1), . . . , γWS
(n− 1)

)
− r

n
σ1(n).

Although for r ∈ C \ Z+ we can no longer observe the relationship between the

number of conjugacy classes and the coefficients of the conjugacy growth series of

HS oX Sym(X), we do obtain a simple recursion for the famous Nekrasov–Okounkov

hook length formula which is independent of complex analysis and hook lengths.
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Chapter 4

Prime Numbers

The density of the set of prime numbers within the set of all positive integers is

given by the Prime Number Theorem. Namely, if π(X) := #{p ≤ X : p is prime}

denotes the prime counting function, then we have that π(X) ∼ X/ logX. It is

then natural to study densities of subsets of prime numbers within the set of all

prime numbers. Dirichlet’s Theorem on primes in arithmetic progressions was the

first result in this area: if ` and k are relatively prime integers, then the density

of the set of primes p ≡ ` (mod k) within the set of all primes is 1/ϕ(k), where

ϕ(k) := #{1 ≤ a ≤ k : gcd(a, k) = 1} is Euler’s ϕ-function. In other words, the

primes are equidistributed in allowable arithmetic progressions modulo any given

integer k. One can view Dirichlet’s Theorem as the special case of the more general

Chebotarev Density Theorem corresponding to a cyclotomic extension K = Q (ζk),

where ζk is some primitive kth root of unity.

Inspired by work of Alladi [2], we reproduce Chebotarev densities of certain subsets

of prime numbers through an infinite sum involving the Möbius function. In order to

prove this result, we first recall the Chebotarev Density Theorem.
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4.1 Some algebraic number theory

Our main result on prime numbers depends on the Chebotarev Density Theorem,

which we carefully state here. We must first give all of the machinery required to

define the most general form of the Artin symbol. Let L/K be a finite Galois extension

of number fields with Galois group G := Gal(L/K), and let OL and OK be the

corresponding rings of integers. Let p be any nonzero prime (maximal) ideal in OK .

The ideal generated in OL by p uniquely splits into distinct maximal ideals Pj lying

over p in the following way: there exists an integer g ≥ 1 such that pOL =
g∏
j=1

P
ej
j . We

say the ideal p is unramified in L if ej = 1 for all 1 ≤ j ≤ g, which occurs for all but

finitely many prime ideals. We must also define the absolute norm of a nonzero ideal

a of the ring of integers OF of some number field F by Nm(a) := [OF : a] = |OF/a| .

For any prime ideal P lying over p, the Artin symbol
[
L/K
P

]
is defined as the unique

element σ ∈ G such that σ(α) = αNm(p) (mod P) for all α ∈ L. All of the prime ideals

Pj lying over p are isomorphic by elements of G, and
[
L/K
τ(Pj)

]
= τ

[
L/K
Pj

]
τ−1 for τ ∈ G,

so there exists a conjugacy class C associated to p such that each
[
L/K
Pj

]
lies in C. We

define the Artin symbol
[
L/K
p

]
to be the conjugacy class C =

{[
L/K
Pj

]
: 1 ≤ j ≤ g

}
.

We now define density. Let K be a number field. Let Q(K) be some set of prime

ideals of OK , and let P (K) be the set of all prime ideals of OK . The natural density

of Q(K) is defined by

lim
X→∞

#{p ∈ Q(K) : Nm(p) ≤ X}
#{p ∈ P (K) : Nm(p) ≤ X}

,

provided the limit exists.

For a conjugacy class C ⊂ G, we define PC to be the set of prime ideals defined

by PC :=
{
p ∈ P (K) : p is unramified in L,

[
L/K
p

]
= C

}
. For convenience, we define
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the prime ideal counting function

πC(X,L/K) := #{p ∈ PC : Nm(p) ≤ X}.

In other words, πC(X,L/K) counts the number of prime ideals p ⊆ OK unramified

in L which have Artin symbol C and bounded norm Nm(p) ≤ X.

We now recall the Chebotarev Density Theorem [56]. Let L/K be a finite Galois

extension of number fields, and let C be a conjugacy class of G := Gal(L/K). Then,

as X →∞, we have that

πC(X,L/K) =
#C

#G
· X

logX
+ o

(
X

logX

)
.

Specifically, the density of PC within the set of all unramified prime ideals of OK

exists and equals #C/#G. For this reason, a density of the form #C/#G is referred

to as Chebotarev density.

We require a more precise formulation of the Chebotarev Density Theorem which

was proven by Lagarias and Odlyzko [38, Theorems 1.3 and 1.4].

Theorem 4.1.1 (Lagarias–Odlyzko). For sufficiently large X ≥ c1 (DL, nL), where

the constant c1 depends on both the discriminant DL and the degree nL of L, we have

∣∣∣∣πC(X,L/K)− #C

#G
Li(X)

∣∣∣∣ ≤ 2c2X exp
{
−c3 (nL)−1/2

√
logX

}

for constants c2 and c3.

Note that Li(X) :=
∫ X

2
dt/ log t, and that Li(X) = X

logX
+ o

(
X

logX

)
.

Remark. The constant c1 can be made explicit using Theorems 1.3 and 1.4 of [38].
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4.2 Chebotarev densities of subsets of primes

We require several tools in order to prove Theorem 1.2.1. We must first give estimates

for relevant counting functions.

4.2.1 Intermediate estimates

We first prove an intermediate theorem about largest prime divisors of integers.

Theorem 4.2.1 (D). Let K be a finite Galois extension of Q with Galois group G,

and let C ⊂ G be a conjugacy class. Then we have that

∑
2≤n≤X

[ K/Q
pmax(n) ]=C

1 =
#C

#G
·X +O

(
X exp

{
−k(logX)1/3

})
, (4.1)

where k is a positive constant.

To set up the proofs of Theorems 1.2.1 and 4.2.1, we define the function

Ψ(X, Y ) :=
∑
n≤X

pmax(n)≤Y

1,

which counts the number of integers n ≤ X with largest prime divisor pmax(n) ≤ Y .

Let S(X, Y ) denote the set of such integers n ≤ X with pmax(n) ≤ Y , so that clearly

|S(X, Y )| = Ψ(X, Y ).

We now state a theorem of Hildebrand [33] which improves an asymptotic bound

for Ψ(X, Y ) given by de Bruijn [21]. We must first define the Dickman function ρ(β)

as the continuous solution of the system

ρ(β) = 1 for 0 ≤ β ≤ 1,

−βρ′(β) = ρ(β − 1) for β > 1.
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Theorem 4.2.2 (Hildebrand). We have that

Ψ(X, Y ) = Xρ(β)

(
1 +Oε

(
β log(β + 1)

logX

))

uniformly in the range X ≥ 3, 1 ≤ β ≤ logX/(log logX)5/3+ε, for any fixed ε > 0.

The following unpublished theorem of Maier [41] can be recognized as a corollary

of Hildebrand’s Theorem, and this corollary will be sufficient to prove our results.

Corollary 4.2.3 (Maier). If β = logX
log Y

, then for X sufficiently large (where β varies

with X) we have that Ψ(X, Y ) ∼ Xρ(β) uniformly in the range 1 ≤ β ≤ (logX)1−ε

for any fixed ε > 0.

It turns out that for 1 ≤ β ≤ (logX)1−ε, we have that

Ψ(X, Y ) = Oε (X exp {−β log β/2}) . (4.2)

The O-constant depends on ε, and we choose ε = 2/3 in the proof of Theorem 4.2.1.

To obtain (4.2), we require Norton’s upper bound ρ(β) ≤ 1
Γ(β+1)

[44, Lemma 4.7].

Applying Stirling’s formula, we see that

ρ(β) ∼ 1√
2πβ

exp {−β log β/e} . (4.3)

From (4.3) and Corollary 4.2.3, it is straightforward to see that (4.2) holds.

These estimates will be useful in bounding error terms in the proof of Theorem

1.2.1. The following lemma will also be useful in obtaining estimates.

Lemma 4.2.4. For a ≤ X and S(X, Y ) defined as above, we have that

∫ X

a

 ∑
n∈S(X/t,t)

1

 dt =
∑

1≤n≤X/a
pmax(n)≤X/n

∫ X/n

max
{
pmax(n),a

} dt.
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Proof. Looking at the (Stieltjes) integral on the left hand side, a given integer n

occurs whenever t is in the range t ≥ a, t ≥ pmax(n), and t ≤ X/n. Therefore, the

integer n contributes to the integral the length of the interval from max
{
pmax(n), a

}
to X/n, provided that max

{
pmax(n), a

}
≤ X/n. This is precisely the contribution of

n to the sum on the right hand side.

We now turn to the proof of Theorem 4.2.1. The proof closely follows the proof

of the corresponding theorem in [2]. Note that c4, . . . , c9 are positive constants which

will not be specified in the following proof.

Proof of Theorem 4.2.1. We first rewrite the desired sum in terms of the function

Ψ(X, Y ), for which we have asymptotic bounds.

∑
2≤n≤X

[ K/Q
pmax(n) ]=C

1 =
∑
p≤X

[K/Qp ]=C

∑
n≤X

pmax(n)=p

1 =
∑
p≤X

[K/Qp ]=C

Ψ

(
X

p
, p

)
.

Notice that this sum can be broken up into a sum over small primes and a sum over

large primes, so that

∑
2≤n≤X

[ K/Q
pmax(n) ]=C

1 =
∑

p≤exp{(logX)2/3}
[K/Qp ]=C

Ψ

(
X

p
, p

)
+

∑
exp{(logX)2/3}<p≤X

[K/Qp ]=C

Ψ

(
X

p
, p

)
.

Let

S1 :=
∑

p≤exp{(logX)2/3}
[K/Qp ]=C

Ψ

(
X

p
, p

)
and S2 :=

∑
exp{(logX)2/3}<p≤X

[K/Qp ]=C

Ψ

(
X

p
, p

)
.

We now estimate S1 and show that it is much smaller than S2. This implies that S1

is not the main term in the asymptotic formula (4.1), so we only need to obtain an
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upper bound. We see that

S1 =
∑

p≤exp{(logX)2/3}
[K/Qp ]=C

Ψ

(
X

p
, p

)
≤

∑
p≤exp{(logX)2/3}

Ψ

(
X

p
, p

)
.

Let Y = exp
{

(logX)2/3
}
. Then we have that S1 ≤ Ψ(X, Y ) − 1. If Y = X1/β for

some β, then β = (logX)1/3. Thus, by (4.2) we have that

S1 = O
(
X exp

{
−(logX)1/3 log logX

})
.

We now estimate S2, which will provide the main term in the asymptotic formula

(4.1). To obtain the main term, it will be convenient to define

S3 :=
∑

exp{(logX)2/3}<p≤X
[K/Qp ]=C

Ψ

(
X

p
, p

)
− #C

#G

∫ X

exp{(logX)2/3}
Ψ

(
X

t
, t

)
dt

log t
,

which means that

S2 =
#C

#G

∫ X

exp{(logX)2/3}
Ψ

(
X

t
, t

)
dt

log t
− S3.

Our goal now is to show that S3 is small compared to S2. By the definition of Ψ
(
X
t
, t
)
,

we replace it with a function counting elements of S
(
X
t
, t
)

to obtain

S3 =
∑

exp{(logX)2/3}<p≤X
[K/Qp ]=C

 ∑
n∈S(X/p,p)

1

− #C

#G

∫ X

exp{(logX)2/3}

 ∑
n∈S(X/t,t)

1

 dt

log t
.

Applying Lemma 4.2.4 and switching the order of summation in the first term, we
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then have that

S3 =
∑

1≤n≤X exp{−(logX)2/3}
pmax(n)≤X/n


∑

pmax(n)≤p≤X/n
p>exp{(logX)2/3}

[K/Qp ]=C

1− #C

#G

∫ X/n

max{pmax(n),exp{(logX)2/3}}
dt

log t


=

∑
1≤n≤X exp{−(logX)2/3}

pmax(n)≤X/n

(
πC

(
X

n
,K/Q

)

− πC
(
max

{
pmax(n), exp

{
(logX)2/3

}}
, K/Q

)
− #C

#G
Li

(
X

n

)
+

#C

#G
Li
(
max

{
pmax(n), exp

{
(logX)2/3

}}))
.

Here we apply the explicit reformulation of the Chebotarev Density Theorem by

Lagarias and Odlyzko [38] to obtain

|S3| ≤
∑

1≤n≤X exp{−(logX)2/3}
pmax(n)≤X/n

c4

(
X

n

)
exp

{
−c5

√
log

(
X

n

)}
.

Since each summand satisfies

c4

(
X

n

)
exp

{
−c5

√
log

(
X

n

)}
≤ c4

(
X

n

)
exp

{
−c6(logX)1/3

}
,

we have that

S3 = O
(
X exp

{
−c7(logX)1/3

})
.

We have used the fact that an absolute value upper bound of the remainder term in

the Chebotarev Density Theorem is an increasing function of X, so we have replaced

the terms pmax(n) and exp
{

(logX)2/3
}

by X/n. In order to get the main term of the
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asymptotic formula from S2, we must show that the integral

∫ X

exp{(logX)2/3}
Ψ

(
X

t
, t

)
dt

log t

contributes a factor of X. Let [X] denote the largest integer part of X. We see that

[X]− 1 =
∑

2≤n≤X

1 =
∑
p≤X

Ψ

(
X

p
, p

)
,

which we break up into a sum over small primes and a sum over large primes so that

[X]− 1 =
∑

p≤exp{(logX)2/3}
Ψ

(
X

p
, p

)
+

∑
exp{(logX)2/3}<p≤X

Ψ

(
X

p
, p

)
.

Let

S1
′ :=

∑
p≤exp{(logX)2/3}

Ψ

(
X

p
, p

)
and S2

′ :=
∑

exp{(logX)2/3}<p≤X
Ψ

(
X

p
, p

)
.

By similar estimates, we have that

S1
′ = O

(
X exp

{
−(logX)1/3(log logX)

})
and

S2
′ =

∫ X

exp{(logX)2/3}
Ψ

(
X

t
, t

)
dt

log t
+ S3

′,

where

S3
′ = O

(
X exp

{
−c8(logX)1/3

})
.

Combining these estimates gives

∫ X

exp{(logX)2/3}
Ψ

(
X

t
, t

)
dt

log t
= [X] +O(S1

′ + S3
′).
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Thus, we obtain the desired asymptotic formula

∑
2≤n≤X

[ K/Q
pmax(n) ]=C

1 =
#C

#G
·X +O (S1 + S3 + S1

′ + S3
′)

=
#C

#G
·X +O

(
X exp

{
−c9(logX)1/3

})
.

As a consequence of Theorem 4.2.1, we have the following lemma.

Lemma 4.2.5. Assume the notation and hypotheses from Theorem 1.2.1. Then we

have that ∑
2≤n≤X

[ K/Q
pmax(n) ]=C

1

n
=

#C

#G
· logX +O

(
exp

{
−k(logX)1/3

})

where k is a positive constant.

Proof of Lemma 4.2.5. Define the function f by

f(n) :=

 1 if
[
K/Q
p

]
= C, n = p > 1,

0 otherwise,
(4.4)

and set

ψf (X) :=
∑
n≤X

f
(
pmax(n)

)
.

Then ψf (X) counts the number of integers n ≤ X such that
[

K/Q
pmax(n)

]
= C, so by

Theorem 4.2.1 we have that

ψf (X) =
#C

#G
·X + ef (X),

where ef (X) = O
(
X exp

{
−k(logX)1/3

})
. The function ψf (X) is a type of stair-step

function, meaning it oscillates as (the integral part of) X increases depending on the
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values of pmax(n) for n ≤ X. Then we can rewrite

∑
2≤n≤X

[ K/Q
pmax(n) ]=C

1

n
=

∫ X

1

dψf (t)

t
,

which by Theorem 4.2.1 is

∫ X

1

dψf (t)

t
=

#C

#G

∫ X

1

dt

t
+

∫ X

1

def (t)

t

=
#C

#G
· logX +

ef (t)

t

∣∣∣∣X
1

+

∫ X

1

ef (t) dt

t2

=
#C

#G
· logX + c1 −

∫ ∞
X

ef (t) dt

t2
+
ef (X)

X
,

where

c1 =
−ef (1)

1
+

∫ ∞
1

ef (t) dt

t2
.

Note that the number c1 exists by Theorem 4.2.1, and that Lemma 4.2.5 now follows

because

ef (X)

X
= O

(
exp

{
−k(logX)1/3

})
,

where k is a positive constant.

4.2.2 Densities of subsets of smallest prime divisors

We now prove Theorem 1.2.1 using all of the above tools. Again, the proof closely

follows the proof of the analogous theorem in [2]. Note that c10, c11, and c12 are

positive constants which will not be specified.

Proof of Theorem 1.2.1. Let f be defined as in (4.4). By Alladi’s duality principle
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(1.14), we have that

∑
n≤X[
K/Q

pmin(n)

]
=C

µ(n)

n
=

∑
n≤X

µ(n)f(pmin(n))

n

= −
∑
n≤X

1

n

∑
d|n

µ
(n
d

)
f(pmax(d))

= −
∑
n≤X

∑
d|n

µ(n/d)

n/d
· f(pmax(d))

d
.

To more easily obtain estimates, we delicately split the double sum into two double

sums by introducing the variable m := n/d. For each such m, the allowed values of

d with dm = n < X are exactly 1 ≤ d ≤ X/m, so we have that

−
∑
n≤X

∑
d|n

µ(n/d)

n/d
· f(pmax(d))

d

= −
∑

1≤m≤
√
X

µ(m)

m

∑
d≤X/m

f(pmax(d))

d
−

∑
√
X<m≤X

µ(m)

m

∑
d≤X/m

f(pmax(d))

d
.

Now we change the order of summation in the second sum. We use the fact that

m >
√
X and md = n ≤ X implies d <

√
X to obtain

−
∑
n≤X

∑
d|n

µ(n/d)

n/d
· f(pmax(d))

d

= −
∑

1≤m≤
√
X

µ(m)

m

∑
d≤X/m

f(pmax(d))

d
−
∑
d<
√
X

f(pmax(d))

d

∑
√
X<m≤X/d

µ(m)

m
.

We estimate the two sums separately, reverting back to the variable n. Let

S6 := −
∑
n≤
√
X

µ(n)

n

∑
d≤X/n

f(pmax(d))

d
and S7 := −

∑
n<
√
X

f(pmax(n))

n

∑
√
X<d≤X/n

µ(d)

d
.

We will show that S6 gives the main term of the desired asymptotic formula, and we
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will bound S7. By Lemma 4.2.5, we have that

S6 = −
∑
n≤
√
X

µ(n)

n

[
#C

#G
· log

(
X

n

)
+O

(
exp

{
−k
(

log

(
X

n

))1/3
})]

= −
(

#C

#G
· logX

) ∑
n≤
√
X

µ(n)

n
+

#C

#G

∑
1≤n≤

√
X

µ(n) log n

n

+O
(
exp

{
−k(logX)1/3

})
.

We now apply well-known bounds for

∑
n≤
√
X

µ(n)

n
and

∑
1≤n≤

√
X

µ(n) log n

n

which are consequences of the standard zero-free region for ζ(s) (for example, see [16,

Chapter 13]). Namely, we have that

∑
n≤
√
X

µ(n)

n
= O

(
exp

{
−c10(logX)1/2

})
(4.5)

and ∑
1≤n≤

√
X

µ(n) log n

n
= −1 +O

(
exp

{
−c11(logX)1/2

})
.

Therefore, we have that

S6 = −#C

#G
+O

(
exp

{
−k(logX)1/3

})
for some positive constant k. By equation (4.5), we also have that

S7 = O

 ∑
n≤
√
X

1

n
exp

{
−c10

(
log

(
X

n

))1/2
} = O

(
exp

{
−c12(logX)1/2

})
.



83

Now we see that ∑
2≤n≤X[
K/Q

pmin(n)

]
=C

µ(n)

n
= −#C

#G
+ S6 + S7,

and therefore we have that

∑
2≤n≤X[
K/Q

pmin(n)

]
=C

µ(n)

n
= −#C

#G
+O

(
exp

{
−k(logX)1/3

})
. (4.6)

As X →∞, the error term 1/exp
{
k(logX)1/3

}
→ 0. This completes the proof.

4.3 Generalization to arbitrary number field ex-

tensions

Since the Chebotarev Density Theorem applies to arbitrary number field extensions,

it is natural to extend Theorem 1.2.1 to this more general setting. In order to state

the generalization of Theorem 1.2.1 in [53], we must establish some notation. Let

L/K be a finite Galois extension of number fields with Galois group G := Gal(L/K).

One can define a Möbius-type function for ideals I of OK by

µK(I) :=


1 if I = OK ,

0 if I ⊂ p2 for some prime ideal p ⊂ OK ,

(−1)k if I = p1 · · · pk for distinct prime ideals p1, . . . , pk.

The function µK(I) satisfies a duality principle analogous to (1.14). An ideal I ⊂ OK

is called salient if it has a unique prime divisor of smallest norm, which is denoted

pmin(I). For a conjugacy class C ⊂ G, we define the set S(L/K;C) by

S(L/K;C) :=

{
I ⊂ OK salient : pmin(I) is unramified,

[
L/K

pmin(I)

]
= C

}
.
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Then we have the following theorem [53].

Theorem 4.3.1 (Sweeting–Woo). Let L/K be a finite Galois extension of number

fields with Galois group G := Gal(L/K). If C is a conjugacy class of G, then we have

that

− lim
X→∞

∑
2≤Nm(I)≤X
I∈S(L/K;C)

µK(I)

Nm(I)
=

#C

#G
.
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Chapter 5

Moonshine

The beautiful theory of moonshine guarantees a deep connection between the repre-

sentation theory of finite groups and the Fourier coefficients of modular functions. The

recent generalization of moonshine to all finite groups by Dehority, Gonzalez, Vafa,

and Van Peski [22] raises the natural question of whether moonshine can be refined to

distinguish non-isomorphic groups. Since character tables do not uniquely determine

groups, one solution to this problem is to use the classical higher dimensional Frobe-

nius r-characters in the construction of the moonshine module. It is known from the

1990s [34, 35, 37] that 1, 2, and 3-characters uniquely determine groups up to iso-

morphism. Therefore, a refinement of moonshine which takes into account 1, 2, and

3-character tables would suffice to distinguish groups. Here we prove a more general

refinement, which is the content of Theorem 1.3.1. In addition, we prove Theorem

1.3.4 on new orthogonality relations for r-characters. These relations are required to

prove Theorem 1.3.3, which guarantees the compatibility of the higher width graded

trace functions with the multiplicity generating functions of the original moonshine

module.
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5.1 Classical representation theory

Let G be a finite group, and let ρ1, . . . , ρt be the irreducible representations of G. In

particular, each ρi is a group homomorphism ρi : G→ GL(V ) for some C-vector space

V . Let χ1, . . . , χt be the irreducible characters of G, which are the class functions

χi : G → C defined by χi(g) := Tr (ρi(g)) for all g ∈ G. Classical work of Schur (for

example, see [15]) asserts that if χ is nontrivial, then

∑
g∈G

χ(g) = 0, (5.1)

and offers the following orthogonality relations:

∑
g∈G

χi(g)χj(g) = |G|δij, (5.2)

where δij is the usual Kronecker delta function.

We require the following auxiliary orthogonality relations to prove Theorem 1.3.4.

Lemma 5.1.1. Let χi be an irreducible character of G, and fix elements h1, h2 ∈ G.

Then the following are true.

1. We have that ∑
g∈G

χi
(
gh1g

−1h−1
2

)
=
χi (h1)χi (h2)|G|

dimχi
.

2. If χj is an irreducible character of G, then we have that

∑
g∈G

χi (h1g)χj (gh2) =
χi
(
h1h

−1
2

)
|G|δij

dimχi
.

Lemma 5.1.1 (1) was proved by Feit [29, (5.5)]. We now recall a classical result of

Schur which will aid in the proof of Lemma 5.1.1 (2). For each 1 ≤ i ≤ t, let mi be

the dimension of the representation ρi. Namely, for each 1 ≤ i ≤ t and each g ∈ G,
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the matrix corresponding to ρi is

ρi(g) =:
[
a

(i)
jk (g)

]
1≤j,k≤mi

.

In particular, the image of the character χi for all g ∈ G is the trace

χi(g) =
∑

1≤j≤mi

a
(i)
jj (g).

The following famous result of Schur (see, for example, Chapter 5 of [15]) gives

an important relationship between two representations which ultimately leads to all

of the orthogonality relations between two characters.

Lemma 5.1.2 (Schur’s Lemma). Let G be a finite group, and let V and W be vector

spaces over C with corresponding irreducible representations ρV and ρW of G. If

f : V → W is a G-linear map, then f is a scalar multiple of the identity map if

V ∼= W and f = 0 if V 6∼= W .

Returning to the proof of Lemma 5.1.1 (2), we let χi and χj be irreducible char-

acters of G, and we let C be an arbitrary mi ×mj matrix. We define the matrix

BC :=
∑
g∈G

ρi(g)Cρj
(
g−1
)
. (5.3)

Since ρi and ρj are homomorphisms, it follows easily from (5.3) that for all h ∈ G,

we have ρi(h)BC = BCρj(h). Therefore, by Schur’s Lemma we have that

BC =


0, if i 6= j,

bi(C) · I if i = j,

.

where bi(C) ∈ C, and I is the identity matrix of rank dimχi.

Proof of Lemma 5.1.1 (2). To prove the claim, we shall make repeated use of (5.3).
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Given a matrix C := [cst], we observe that the (w, z) entry of (5.3) is

∑
g∈G

∑
1≤s≤mi

∑
1≤t≤mj

a(i)
ws(g)csta

(j)
tz

(
g−1
)

= bi(C)δijδwz.

Since BC is diagonal, if x ≤ mi, y ≤ mj and C = Cx,y is chosen so that cst := δsxδty,

then we have that ∑
g∈G

a(i)
wx(g)a(j)

yz

(
g−1
)

= bi (Cx,y) δijδwz. (5.4)

Obviously, if i 6= j, then this expression vanishes. We consider the case where i = j,

and this becomes ∑
g∈G

a(i)
wx(g)a(i)

yz

(
g−1
)

= bi (Cx,y) δwz.

The constant bi (Cx,y) seems to depend on the choice of x and y. However, notice

that by replacing g by h−1, this gives

∑
h∈G

a(i)
yz (h)a(i)

wx

(
h−1
)

= bi (Cx,y) δwz = bi (Cw,z) δxy,

which holds for all x, y, w, and z. Therefore, it follows that bi(C) is a constant which

depends only on χi.

We now return to the general case where i might not equal j. Since ρi is a

homomorphism, it is clear that

a(i)
sx (h1g) =

∑
1≤w≤mi

a(i)
sw (h1) a(i)

wx(g). (5.5)

We multiply (5.4) by a
(i)
sw (h1) and sum on w to obtain

∑
g∈G

a(j)
yz

(
g−1
) ∑

1≤w≤mi

a(i)
sw (h1) a(i)

wx(g) = bi(C)δijδxy
∑

1≤w≤mi

δwza
(i)
sw (h1) ,
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which by (5.5) gives

∑
g∈G

a(i)
sx (h1g) a(j)

yz

(
g−1
)

= a(i)
sz (h1) bi(C)δijδxy. (5.6)

Similarly, we observe that

a
(j)
tz

(
h−1

2 g−1
)

=
∑

1≤y≤mj

a
(j)
ty

(
h−1

2

)
a(j)
yz

(
g−1
)
,

so we multiply (5.6) by a
(j)
ty

(
h−1

2

)
and sum on y to obtain

∑
g∈G

a(i)
sx (h1g) a

(j)
tz

(
h−1

2 g−1
)

= a(i)
sz (h1) a

(j)
tx

(
h−1

2

)
bi(C)δij.

Now we choose x = s and z = t so that we have

∑
g∈G

a(i)
ss (h1g) a

(j)
tt

(
h−1

2 g−1
)

= a
(i)
st (h1) a

(j)
ts

(
h−1

2

)
bi(C)δij.

It is apparent that this becomes a statement about the group characters if we sum

on both s and t to obtain

∑
1≤s≤mi
1≤t≤mj

∑
g∈G

a(i)
ss (h1g) a

(j)
tt

(
h−1

2 g−1
)

=
∑
g∈G

[ ∑
1≤s≤mi

a(i)
ss (h1g)

] ∑
1≤t≤mj

a
(j)
tt

(
h−1

2 g−1
)

on the left hand side and

∑
1≤s≤mi
1≤t≤mj

a
(i)
st (h1) a

(j)
ts

(
h−1

2

)
bi(C)δij = bi(C)δij

∑
1≤s≤mi

 ∑
1≤t≤mj

a
(i)
st (h1) a

(j)
ts

(
h−1

2

)
= bi(C)δij

∑
1≤s≤mi

a(i)
ss

(
h1h

−1
2

)



90

on the right. By definition, since χ(g)−1 = χ(g), we obtain

∑
g∈G

χi (h1g)χj (gh2) = χi
(
h1h

−1
2

)
bi(C)δij. (5.7)

Finally, we determine the value of bi(C). If i 6= j, then bi(C) = 0 by Schur’s Lemma.

If i = j, then we set h1 = h2 = 1 in (5.7) and apply (5.2) to obtain

|G| =
∑
g∈G

χi(g)χi(g) = bi(C)mi.

Therefore bi(C) = |G|/dimχi, and this completes the proof.

5.2 Orthogonality of r-characters

It is a natural problem to determine the complete orthogonality relations of the

Frobenius r-characters for r > 1. Frobenius, Hoehnke, and Johnson [30, 34, 35, 37]

obtained some parts of this theory. In particular, they proved the vanishing relation

analogous to (5.2) for distinct r-characters χ
(r)
i 6= χ

(r)
j . Here we obtain the remaining

relations in the case where χ
(r)
i = χ

(r)
j , which provide what one can think of as the

norms of the Frobenius r-characters. These results are of independent interest in

character theory.

If r ≥ 2, then (1.15) offers a recursive formula for r-characters. For r = 2 and 3,

if χ is an irreducible character, then we find that

χ(2) (g1, g2) = χ (g1)χ (g2)− χ (g1g2) ,

χ(3) (g1, g2, g3) = χ (g1)χ (g2)χ (g3)− χ (g1)χ (g2g3)− χ (g3)χ (g1g2)

− χ (g2)χ (g1g3) + χ (g1g2g3) + χ (g2g1g3) .

For dimension r ≥ 2, these characters can be trivial (see [35, p. 244]).
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Lemma 5.2.1. Let G be a finite group. If χ is an irreducible character of G and

r > dimχ, then χ(r)
(
g
)

= 0 for all g ∈ G(r).

Generalizing (5.1), we obtain the following lemma.

Lemma 5.2.2. Let G be a finite group. If χ is a nontrivial irreducible character of

G, then for any integer r ≥ 1, we have that

∑
g∈G(r)

χ(r)
(
g
)

= 0.

Proof of Lemma 5.2.2. We prove Lemma 5.2.2 by induction. When r = 1, the result

is simply (5.1). Now, assume for r ≥ 1 that

∑
g1,...,gr∈G

χ
(r)
i (g1, . . . , gr) = 0.

Since G(r+1) = G×G(r), (1.15) implies that

∑
(g1,...,gr+1)∈G(r+1)

χ
(r+1)
i (g1, . . . , gr+1) =

∑
g1∈G

χi (g1)
∑

(g2,...,gr+1)∈G(r)

χ
(r)
i (g2, . . . , gr+1)

−
∑
g1∈G

[ ∑
(g2,...,gr+1)∈G(r)

χ
(r)
i (g1g2, g3, . . . , gr+1)−

∑
(g2,...,gr+1)∈G(r)

χ
(r)
i (g2, g1g3, . . . , gr+1)

− · · · −
∑

(g2,...,gr+1)∈G(r)

χ
(r)
i (g2, g3, . . . , g1gr+1)

]
.

The bracketed expression inside the sum over g1 is the sequential shift of the location

of g1 through the elements g2, . . . , gr+1. The result then follows from the induction

hypothesis and the observation that g1gj varies over G as gj varies over G.

We now prove the general orthogonality relations in Theorem 1.3.4.

Proof of Theorem 1.3.4. If i 6= j, then it follows from [37, Theorem 2.1] that the sum

is zero. Also, if G is abelian, then G has only one-dimensional characters, so the sum
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is zero for all r > 1 by Lemma 5.2.1.

For the remainder of the proof, we assume that G is non-abelian and that i = j.

We prove Theorem 1.3.4 by writing the r-character χ(r) in terms of the action of the

symmetric group Sr on products of χ-values. For σ ∈ Sr, let n(σ) be the number of

disjoint cycles in σ, including 1-cycles, and denote

σ = (aσ1 (1), . . . , aσ1 (kσ1 )) (aσ2 (1), . . . , aσ2 (kσ2 )) · · ·
(
aσn(σ)(1), . . . , aσn(σ)

(
kσn(σ)

))
. (5.8)

The cycles have order kσ1 , k
σ
2 , . . . , k

σ
n(σ), and as sets we have that

{1, 2, . . . , r} =
{
aσ1 (1), . . . , aσ1 (kσ1 ) , aσ2 (1), . . . , aσ2 (kσ2 ) , . . . , aσn(σ)(1), . . . , aσn(σ)

(
kσn(σ)

)}
.

With this notation, it is easy to see that (1.15) can be iterated to obtain the following

formulas for values of r-characters as products of χ-values. We abuse notation and

write a for ga in the formula below.

χ(r) (g1, . . . , gr) =
∑
σ∈Sr

sgn(σ)χ (aσ1 (1) · · · aσ1 (kσ1 )) · · ·χ
(
aσn(σ)(1) · · · aσn(σ)

(
kσn(σ)

))
.

Using the notation in (5.8), the sum in Theorem 1.3.4 can now be rewritten as

Ω :=
∑
g∈G(r)

χ(r)
(
g
)
χ(r)

(
g
)

=
∑

g=(g1,...,gr)∈G(r)

χ(r) (g1, . . . , gr)χ(r) (g1, . . . , gr)

=
∑
σ,τ∈Sr

sgn(σ)sgn(τ)
∑
g∈G(r)

χ (aσ1 (1) · · · aσ1 (kσ1 )) · · ·χ
(
aσn(σ)(1) · · · aσn(σ)

(
kσn(σ)

))
× χ (aτ1(1) · · · aτ1 (kτ1)) · · ·χ

(
aτn(τ)(1) · · · aτn(τ)

(
kτn(τ)

))
.

Next, we observe that without loss of generality we may order the cycles so that gr ap-

pears in the last cycles
(
aσn(σ)(1), . . . , aσn(σ)

(
kσn(σ)

))
and

(
aτn(τ)(1), . . . , aτn(τ)

(
kτn(τ)

))
.
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It follows that

Ω =
∑
σ,τ∈Sr

sgn(σ)sgn(τ)

×
∑

g1,...,gr−1∈G

[
χ (aσ1 (1) · · · aσ1 (kσ1 )) · · ·χ

(
aσn(σ)−1(1) · · · aσn(σ)−1

(
kσn(σ)−1

))
× χ (aτ1(1) · · · aτ1 (kτ1)) · · ·χ

(
aτn(τ)−1(1) · · · aτn(τ)−1

(
kτn(τ)−1

))]
×
∑
gr∈G

χ
(
aσn(σ)(1) · · · aσn(σ)

(
kσn(σ)

))
χ
(
aτn(τ)(1) · · · aτn(τ)

(
kτn(τ)

))
.

This last inner sum on gr can be evaluated by either (5.2) or Lemma 5.1.1 (2). If gr

is the only element of G which appears in the sum over gr, then we apply (5.2) to

eliminate gr from the sum and to get a factor of |G|. If not, then we assume without

loss of generality that the sum over gr is of the form
∑

gr
χ (A(σ) · gr)χ (gr · A(τ)).

We use A(σ), A(τ) to denote the products of the remaining elements of G in this

particular sum, which of course depend on σ and τ (respectively). Lemma 5.1.1

(2) then eliminates gr from the sum and results in χ (A(σ) · A(τ)−1) multiplied by

|G|/dimχ. This leaves a sum on g1, . . . , gr−1, where each of these elements appears

in exactly one χ and exactly one χ, before possible cancellations. If applying Lemma

5.1.1 results in the cancellation of a group element
(
for example, if the rightmost

element of A(σ) is the inverse of the leftmost element of A(τ)−1
)
, then the sum

over that group element is simply the sum of 1 over all elements in the group, so

it contributes |G|. Repeating this process by applying the appropriate 1-character

orthogonality relation for each of the remaining inner sums, we find that if we write

the product στ−1 = x1x2x3 · · · as a product of disjoint cycles, and if we define

m(σ, τ) :=
∑

1≤j≤n(στ−1)

[ordSr (xj)− 1] ,
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where ordSr (xj) denotes the length of the cycle xj, then we have that

Ω =
∑
σ,τ∈Sr

sgn(σ)sgn(τ)
|G|r

(dimχ)m(σ,τ)
.

It remains to show that

∑
σ,τ∈Sr

sgn(σ)sgn(τ)
|G|r

(dimχ)m(σ,τ)
=

r!|G|r

(dimχ)r−1
(dimχ− 1) · · ·

(
dimχ− (r − 1)

)
by a simple counting argument. If 1 ≤ i ≤ r, then it is straightforward to see that

the coefficient of (dimχ)r−i on the right hand side is

(−1)i−1 · r!|G|r

(dimχ)r−1
· r(r − 1) · · · (r − (i− 1))

i
.

We will now show that the left hand sum gives the same coefficient. Clearly, if we fix

an element g ∈ Sr, then {gh : h ∈ Sr} = Sr as sets. Then the number of i-cycles in

{στ−1 : σ, τ ∈ Sr} equals the product of the number of i-cycles in Sr with the total

number of elements in Sr. Since sgn(σ)sgn(τ) contributes (−1)i−1 for each i-cycle

appearing in στ−1, and since

1

(dimχ)i−1
=

1

(dimχ)r−1
· (dimχ)r−i,

we see that the coefficient of (dimχ)r−i on the left hand side is

(−1)i−1 · r!|G|r

(dimχ)r−1
· r(r − 1) · · · (r − (i− 1))

i
.

This completes the proof.
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5.3 Higher width moonshine

We now prove Theorems 1.3.1 and 1.3.3. Theorem 1.3.1 guarantees that weak moon-

shine can be extended to width s ≥ 1. Theorem 1.3.3 shows that the general or-

thogonality relations for Frobenius r-characters are compatible with width s weak

moonshine. Namely, we show how to determine the multiplicity generating functions

for the representation space for each nontrivial χi in the graded G-module VG using

the higher width McKay–Thompson series.

Proof of Theorem 1.3.1. By the Schur orthogonality relations for 1-characters, the

multiplicity generating functions Mi(τ) :=
∑

n�−∞
mi(n)qn are given by

Mi(τ) =
∑

n�−∞

1

|G|
∑
g∈G

χi(g)Frob1(g;n)qn =
1

|G|
∑
g∈G

χi(g)T (1, g; τ). (5.9)

It follows from [22] that width 1 weak moonshine exists for all finite groups, so

that the G-module VG =
⊕

n VG(n) exists, the graded trace functions T (1, g; τ) are

modular functions for all g ∈ G, and the multiplicities mi(n) are positive integers

for infinitely many n � −∞ for each 1 ≤ i ≤ t. We build the McKay–Thompson

series for V
(r)
G for r > 1 as follows. By the definitions of the generalized graded trace

functions and the r-Frobenius of g ∈ G(r) at V
(r)
G (n), for each 1 ≤ r ≤ s we have that

T
(
r, g; τ

)
=
∑

n�−∞

Frobr
(
g;n
)
qn

=
∑

n�−∞

∑
1≤j≤t

mj(n)χ
(r)
j

(
g
)
qn

=
∑

1≤j≤t

χ
(r)
j

(
g
)
Mj(τ).

Since all of theMj(τ) are modular functions by (5.9), we must have that the T
(
r, g; τ

)
are modular functions as well for each g ∈ G(r).
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Proof of Theorem 1.3.3. We now compute the multiplicity generating functionsMi(τ)

in terms of the McKay–Thompson series T
(
r, g; τ

)
for each possible r > 1 using the

r-character orthogonality relations. By Theorem 1.3.4, we have that

Mi(τ) =
∑

n�−∞

mi(n)qn

=
∑

n�−∞

(dimχi)
r−1

r!|G|r (dimχi − 1) · · · (dimχi − (r − 1))

∑
g∈G(r)

χ
(r)
i

(
g
) ∑

1≤j≤t

mj(n)χ
(r)
j

(
g
)
qn

=
∑

n�−∞

(dimχi)
r−1

r!|G|r (dimχi − 1) · · · (dimχi − (r − 1))

∑
g∈G(r)

χ
(r)
i

(
g
)
Frobr

(
g;n
)
qn

=
(dimχi)

r−1

r!|G|r (dimχi − 1) · · · (dimχi − (r − 1))

∑
g∈G(r)

χ
(r)
i

(
g
)
T
(
r, g; τ

)
.

Therefore, the number of copies of the representation space for χi in all of the graded

components V
(r)
G (n) for all 1 ≤ r ≤ dimχi are given as the Fourier coefficients of the

above linear combination of the modular McKay–Thompson series.

5.4 An example of higher width moonshine

The common character table of D4 and Q8 is displayed below, with the following

presentations of the groups in question:

D4 =
{

1, r, r2, r3, s, rs, r2s, r3s
}

and Q8 = {1,−1, i,−i, j,−j, k,−k} .

We abuse notation and let C1, C2, C3, C4, and C5 denote the five conjugacy classes of

both D4 and Q8, as indicated by the table below.
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Table 5.1: Character Table of D4 and Q8

D4 {1} {r2} {r, r3} {s, r2s} {rs, r3s}
Q8 {1} {−1} {i,−i} {j,−j} {k,−k}

C1 C2 C3 C4 C5

χ1 1 1 1 1 1
χ2 1 1 −1 1 −1
χ3 1 1 −1 −1 1
χ4 1 1 1 −1 −1
χ5 2 −2 0 0 0

The McKay–Thompson series for both D4 and Q8 are the Hauptmoduln f1, f2,

and f4 for Γ0(1), Γ0(2), and Γ0(4) (respectively) given by

f1(τ) := J(τ) = q−1 + 196884q + 21493760q2 +O
(
q3
)
,

f2(τ) :=

(
η(τ)

η(2τ)

)24

= q−1 + 276q − 2048q2 + 11202q3 − 49152q4 +O
(
q5
)
,

f4(τ) :=

(
η(τ)

η(4τ)

)8

= q−1 + 20q − 62q3 + 216q5 − 641q7 + 1636q9 +O
(
q11
)
.

The multiplicity generating functions for both D4 and Q8 are

M1(τ) = q−1 + 24788q + 2685440q2 + 108044482q3 +O
(
q4
)
,

M2(τ) = 26460q + 2686464q2 + 108038912q3 +O
(
q4
)
,

M3(τ) = 24640q + 2686464q2 + 108038912q3 +O
(
q4
)
,

M4(τ) = 24512q + 2687488q2 + 108033280q3 +O
(
q4
)
,

M5(τ) = 49152q + 5373952q2 + 216072192q3 +O
(
q4
)
.

Therefore, D4 and Q8 have the same width 1 weak moonshine.

To illustrate Theorem 1.3.1, we extend to width 2 weak moonshine. All of the
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2-character values of D4 and Q8 are identical except eight corresponding pairs:

χ
(2)
5 (s, r2s) = 2, χ

(2)
5 (j,−j) = −2,

χ
(2)
5 (s, s) = −2, χ

(2)
5 (j, j) = 2,

χ
(2)
5 (r2s, s) = 2, χ

(2)
5 (−j, j) = −2,

χ
(2)
5 (r2s, r2s) = −2, χ

(2)
5 (−j,−j) = 2,

χ
(2)
5 (rs, r3s) = 2, χ

(2)
5 (k,−k) = −2,

χ
(2)
5 (rs, rs) = −2, χ

(2)
5 (k,−k) = 2,

χ
(2)
5 (r3s, rs) = 2, χ

(2)
5 (k,−k) = −2,

χ
(2)
5 (r3s, r3s) = −2, χ

(2)
5 (k,−k) = 2.

Consider, for example, the corresponding pairs of elements (r3s, rs) ∈ D
(2)
4 and

(−k, k) ∈ Q(2)
8 . The McKay–Thompson series for V

(2)
D4

is given by

T
(
2,
(
r3s, rs

)
; τ
)

= 98304q + 10747904q2 + 432144384q3 +O
(
q4
)
,

while the McKay–Thompson series for V
(2)
Q8

is given by

T (2, (−k, k); τ) = −98304q − 10747904q2 − 432144384q3 +O
(
q4
)
.

Therefore, width 2 weak moonshine distinguishes D4 and Q8.

The theory of Brauer pairs, i.e. non-isomorphic groups with isomorphic character

tables including equivalent power maps, guarantees infinitely many examples of non-

isomorphic groups whose width 1 and width 2 moonshines are equal. Therefore, the

extension of weak moonshine to width 3 is required in order to uniquely determine

all groups up to isomorphism.
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