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Abstract

On Chorded Cycles
By Megan Cream

Historically, there have been many results concerning sufficient conditions for
implying certain sets of cycles in graphs. My thesis aims to extend many of
these well known results to similar results on sets of chorded (and sometimes
even doubly chorded) cycles. In particular, we consider the minimum degree,
δ(G) and a Ore-type degree sum condition, σ2(G) of a graph G, sufficient to
guarantee the existence of k vertex disjoint chorded cycles, often containing
specified elements of the graph, such as certain vertices or edges. Further,
we extend a result on vertex disjoint cycles and chorded cycles to an anal-
ogous result on vertex disjoint cycles and doubly chorded cycles. We define
a new graph property called chorded pancyclicity, and investigate a density
condition and forbidden subgraphs in claw-free graphs that imply this new
property. Specifically, we forbid certain paths and triangles with pendant
paths. This is joint work with Dongqin Cheng, Ralph Faudree, Ron Gould,
and Kazuhide Hirohata.
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Chapter 1

Introduction

1.1 History

In the field of extremal graph theory, we are interested in the way that
local graph properties can affect global properties of the graph. We often
investigate how far we can push certain properties of a graph before we
can guarantee the existence of some other property, or even some specific
structure in the graph. In the past, there have been many results concerning
sufficient conditions for graphs containing certain types of cycles, such as
hamiltonian cycles, or certain sets of cycles. In particular, there has been
a large focus on sets of vertex disjoint cycles that contain specified graph
elements including certain sets of vertices, or sets of independent edges, for
example. Arguably one of the most famous such results is due to Corrádi
and Hajnal [6].

Theorem 1.1. [6] Let G be a graph of order n ≥ 3k for an integer k ≥ 1

and suppose the minimum degree of G, δ(G) ≥ 2k. Then G contains a set of
k vertex disjoint cycles.

Enomoto proved a stronger result in [10] for the Ore-type degree sum con-
dition, σ2(G) as follows.
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Theorem 1.2. [10] Suppose G is a graph of order n ≥ 3k for an integer
k ≥ 1. If σ2(G) ≥ 4k − 1, then G contains a set of k vertex disjoint cycles.

A type of cycle that was largely ignored until relatively recently is a chorded
cycle, that is a cycle with an edge between two vertices that are nonadjacent
on the cycle. In this thesis, we turn our attention to chorded cycles and we
extend many well-known results on cycles or vertex disjoint sets of cycles
to analogous results on chorded cycles and sometimes even doubly chorded
cycles. Admittedly, we were not the first to focus on chorded cycles. Back
in 1960, Posa [25] asked the question: which graph properties imply the
existence of a cycle with a chord? The first answer was due to Czipzer (see
Problem 10.2 in [25]) in 1963; he found that any graph with minimum degree
at least three must contain a chorded cycle. However, it was not until 45
years later in 2008, that the interest in chorded cycles began to pick up
steam. That year, Finkel [16] extended the Corrádi-Hajnal theorem to a
chorded cycle version.

Theorem 1.3. [16] Let G be a graph of order n ≥ 4k for an integer k ≥ 1

and suppose the minimum degree of G, δ(G) ≥ 3k. Then G contains a set of
k vertex disjoint chorded cycles.

Further, this result is sharp as can be easily seen from the complete bipartite
graph K3k−1,n−3k+1. (Note that the smallest chorded cycle in a complete
bipartite graph is a 6-cycle.) In 2005, Faudree and Gould [12] found the best
lower bound for the order of neighborhood unions of nonadjacent vertices
that implies the existence of k disjoint cycles in a graph. This result was
extended to chorded cycles in 2012 by Gould, Hirohata, and Horn [21] and
independently Gao, Li, and Yan [17]. They proved the following result.

Theorem 1.4. [21], [17] For an integer k ≥ 1, le G be a graph of order
n ≥ 4k such that for any pair of nonadjacent vertices x and y, |N(x) ∪
N(y)| ≥ 4k + 1. Then G contains at least k vertex disjoint chorded cycles.
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Inspired by these extensions of theorems on sets of cycles to theorems on
sets of chorded cycles, we consider other cycle results to extend similarly.
These results are stated in §2.2, 3.1, and 4.2.

1.2 Some Basics (Definitions and Notation)

In this thesis, we assume a working knowledge of graph theory. For a thor-
ough background on the subject, see [20]. We consider only finite sim-
ple graphs, that is, graphs with no loops or multiple edges. Let G =

(V (G), E(G)) be a finite simple graph. We denote the degree of a vertex
v ∈ V (G) as degG(v) which is the number of edges incident to v in G. For a
set of vertices {u1, u2, . . . , uk} and a subgraphH ofG, let degH(u1, u2, . . . , uk)

be the sum of the degrees of the vertices ui (for 1 ≤ i ≤ k) to the subgraph
H. The set of vertices adjacent to v in the graph G is called the neighbor-
hood of v in G and is denoted NG(v). The minimum degree of a graph is the
smallest degree over all the vertices in G and is denoted δ(G). Similarly, the
maximum degree of G is denoted ∆(G). The independence number, α(G) of
a graph is the largest number of vertices in a mutually nonadjacent set of
vertices in G. For a noncompete graph G, we define the following Ore-type
degree sum condition

σ2(G) = min{degG(x) + degG(y)|xy 6∈ E(G)}.

If G is a complete graph, then by convention σ2(G) :=∞.
Let G be a graph and Pt be a path on t vertices. In Chapter 3, a path

P is denoted P = 〈u1, u2, . . . , um〉 for u1, u2, . . . , um ∈ V (G), otherwise it is
denoted as simply u1, u2, . . . , um. Next we define two terms crucial to this
thesis on chorded cycles.

Definition 1.5. Given a cycle C, an edge e = v1v2 is called a chord of C
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if its end-vertices, v1 and v2, are not adjacent on C. We then say that C is
a chorded cycle.

Further, a doubly chorded cycle is a cycle with at least two chords. Next we
define two important concepts for the study of forbidden subgraphs, which
we will investigate in Chapter 4.

Definition 1.6. A vertex-induced subgraph, which we will simply refer to as
an induced subgraph, is a subset of the vertices of a graph G together with
any edges whose end-vertices are both in the subset of V (G). For a subset
S ⊆ V (G), we denote the subgraph of G induced by the vertices of S as G[S].

Definition 1.7. Given a subgraph H of a graph G, we say G is H-free if G
does not contain a subgraph isomorphic to H.

In Chapter 4, we consider only K1,3-free (or claw-free) graphs, and we will
forbid certain paths and triangles with pendant paths. Let Zi be a triangle
with a pendant Pi adjacent to one of the vertices of the triangle. In particular,
we will focus on the graphs Z1 and Z2, shown below (Figure 1a).

Figure 1a.

We will also use the following terms in Chapter 4.

Definition 1.8. A graph G is called traceable if it contains a path consisting
of every vertex in V (G).

Definition 1.9. The diameter of a graph G, denoted d(G), is the longest
shortest path between any two vertices in V (G).

For any terms not defined here, see [20].
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1.3 Known Results for Sets of Cycles Contain-

ing Specified Graph Elements

In Chapter 2, we consider minimum degree conditions δ(G) and degree sum
conditions σ2(G). Our goal is to find sufficient such conditions to imply the
existence of vertex disjoint sets of chorded cycles, often containing specific
graph elements. In particular, we extend some well-known results for sets
of cycles much like Gould, Hirohata, and Horn’s [21] extension of Gould’s
previous result with Faudree on neighborhood unions in [12]. One source of
our inspiration came about in 2000, when Egawa, Faudree, Gyori, Ishigami,
Schelp, and Wang [9] proved the following result for vertex disjoint cycles.

Theorem 1.10. [9] Let G be a graph on n ≥ 4k vertices for an integer k ≥ 1

and let {e1, e2, . . . , ek} be a set of k independent edges in G. If the minimum
degree

δ(G) ≥ n+ 2k − 2

2
,

then G contains k vertex disjoint cycles {C1, C2, . . . , Ck} such that ei ∈ E(Ci)

and 3 ≤ |V (Ci)| ≤ 4 for all 1 ≤ i ≤ k.

This result can be extended in multiple ways, as shown in Chapter 2, §2.2.2.
Next, we note a similar known result about placing specified vertices on
vertex disjoint cycles.

Theorem 1.11. [8] For an integer k ≥ 1, let G be a graph of order n ≥ 6k−3.
If the minimum degree

δ(G) ≥ n

2
,

then for any set of k vertices {v1, v2, . . . , vk} in G, there exists a set of k vertex
disjoint cycles {C1, C2, . . . , Ck} such that vi ∈ V (Ci) and 3 ≤ |V (Ci)| ≤ 5

for all 1 ≤ i ≤ k.
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In Chapter 2, we extend this result to chorded cycles. Further, we consider
the basic question of when a set of k independent edges can be chords for
k vertex disjoint cycles, one per cycle. We also investigate under which
conditions the k vertex disjoint chorded cycles can be extended to span the
entire vertex set of a graph.

1.4 Known Results for Vertex Disjoint Cycles

and Chorded Cycles

The motivation for the results in Chapter 3 comes from a natural conjecture
based on Theorems 1.1 and 1.2 proposed by Bialostocki, Finkel, and Gyárfás,
in [3].

Conjecture 1.12. [3] Let r, s ≥ 0 be two integers and let G with a graph of
order n ≥ 3r + 4s and minimum degree

δ(G) ≥ 2r + 3s.

Then G contains a collection of r + s vertex disjoint cycles such that s of
them are chorded cycles.

This minimum degree bound is sharp, and its sharpness is shown in [17].
The r = 0, s = 2 case and the s = 1 cases were shown to be true in [3]. The
r = 0 case was completed by Finkel [16] in the aforementioned Theorem 1.3.
The general conjecture was proved to be true by Babu and Diwan [1],

and Chiba and Fujita [5], independently. In particular, the authors in [1, 5]
generalized the minimum degree condition to a degree sum condition, and
proved the following theorem.

Theorem 1.13 ([1, 5]). Let r ≥ 0, s ≥ 0 be two integers and G be a graph
with |V (G)| ≥ 3r + 4s and

σ2(G) ≥ 4r + 6s− 1,
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then G contains r + s vertex disjoint cycles such that s of them are chorded
cycles.

Balister, Li, and Schelp [2] improved on Theorem 1.13 under a minimum
degree condition in the following result.

Theorem 1.14 ([2]). If G is a simple graph on |V (G)| ≥ 3r + 4s vertices
with minimum degree

δ(G) ≥ 2r + 3s,

then G contains r+s vertex disjoint cycles, each of s of them with two chords,
or a C4 with one chord.

Qiao and Zhang [26] proved that |V (G)| ≥ 4k and δ(G) ≥ d7k/2e can
ensure k vertex disjoint doubly chorded cycles in any graph G. Gould, Hi-
rohata and Horn [21] improved the degree condition in [26] to a degree sum
condition and proved the following result.

Theorem 1.15 ([21]). If G is a graph with |V (G)| ≥ 6k and

σ2(G) ≥ 6k − 1,

then G contains k vertex disjoint doubly chorded cycles.

Motivated by the above theorems, in Chapter 3 our goal is to guarantee
a collection of r + s vertex disjoint cycles, such that s of them are doubly
chorded cycles.

1.5 Known Results for Pancyclic Graphs

Forbidden subgraphs for hamiltonian properties in graphs have been widely
studied (for an overview, see [13]). A property even stronger than hamil-
tonicity is pancyclicity in a graph G, which is the property of containing a
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cycle of every possible length i = 3, 4, . . . , |V (G)|. Pancyclicity only arises
in 2-connected graphs and is one of the well-studied cycle properties in
graphs. In Chapter 4, we extend this property and study the notion of
chorded pancyclicity, that is, containing a chorded cycle of every possible
length i = 4, 5, . . . , |V (G)|. We study the density sufficient to guarantee this
property in a graph. There are also many known forbidden subgraph results
for pancyclicity. We take the natural step of extending some of these results
from pancyclicity to chorded pancyclicity.
In Chapter 4, we extend the following theorem to a similar result on chorded

pancyclicity, with slight variations in some conditions.

Theorem 1.16. Let R, S be connected graphs and let G (G 6= Cn) be a 2-
connected graph of order n ≥ 10. Then if G is {R, S}-free then G is pancyclic
for R = K1,3 and S is either P4, P5, P6, Z1, or Z2.

The proof of a theorem in [18] yields the following result.

Theorem 1.17. [18] If G is a 2-connected graph of order n ≥ 10 that con-
tains no induced subgraph isomorphic to K1,3 or Z1, then G is either a cycle
or G is pancyclic.

Gould and Jacobson proved a similar result for Z2 in [24].

Theorem 1.18. [24] If G is a 2-connected graph of order n ≥ 10 that con-
tains no induced subgraph isomorphic to K1,3 or Z2, then G is either a cycle
or G is pancyclic.

Faudree, Ryjacek, and Schiermeyer proved a similar result for certain paths
in [15].

Theorem 1.19. [15] If G is a 2-connected graph of order n ≥ 6 that is
{K1,3, P5}-free, then G is either a cycle or G is pancyclic.
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Theorem 1.20. [15] If G is a 2-connected graph of order n ≥ 10 that is
{K1,3, P6}-free, then G is either a cycle or G is pancyclic.

Theorem 1.19 implies the following result for P4.

Theorem 1.21. If G is a 2-connected graph of order n ≥ 6 that is {K1,3, P4}-
free, then G is either a cycle or G is pancyclic.

In Chapter 4, §4.2.3 of this thesis, we extend each of these results to similar
results on chorded pancyclicity.
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Chapter 2

Vertex Disjoint Chorded Cycles

Containing Specified Graph

Elements

This chapter explores minimum degree and degree sum conditions for graphs
sufficient to imply that the graph contains k vertex disjoint chorded (or some-
times doubly chorded) cycles which contain specific elements of the graph.
In particular, sets of specific chords, sets of specific edges, and sets of specific
vertices are all considered. We also investigate degree sum and minimum
degree conditions sufficient to imply that a set of independent edges are the
chords of vertex disjoint cycles. The results in this chapter are joint with
Ralph Faudree, Ron Gould, and Kazuhide Hirohata.

2.1 Introduction

The study of cycles and systems of vertex disjoint cycles in graphs is well
established. Recently, there have been numerous papers considering cycles
with additional properties such as containing a specific set of vertices, or
containing a specific set of edges, or even containing a set of vertex disjoint
paths (for a good overview, see the survey [19]). Another natural property
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for cycles is that of containing at least one chord or at least some number
t ≥ 1 of chords. The study of chorded cycles has been increasing recently (see
for example [3], [16], [22] and [23]). In this chapter, we extend several well-
known results on sets of vertex disjoint cycles containing specific elements
such as edges or vertices to results on sets of vertex disjoint chorded cycles
containing these elements.
As described in §1.2, we consider only finite simple graphs. Again, we let

G be a graph and Pt be a path on t vertices. In particular, we will focus
on minimum degree and degree sum conditions in this chapter. Recall that
δ(G) is the minimum degree of a graph G, and for a non-complete graph G,
we define the following degree sum condition:

σ2(G) = min {degG(u) + degG(v) | u and v are nonadjacent}.

By convention we say σ2(G) = 2 if G is a complete graph. For terms not
defined here see [20].
As one source of inspiration, we note the following well-known result on

cycles containing independent, i.e. vertex disjoint, edges from a given set.

Theorem 2.1. [9] Let {e1, e2, . . . , ek} be a set of independent edges in G, a
graph of order n ≥ 4k such that

δ(G) ≥
⌈n

2

⌉
+ k − 1,

for 2 ≤ k ≤ n
3
, then G contains a set of k vertex disjoint cycles {C1, C2, . . . , Ck},

such that 3 ≤ |V (Ci)| ≤ 4 and ei ∈ E(Ci) for all 1 ≤ i ≤ k. Further, there
exists a set of k vertex disjoint cycles {D1, D2, . . . , Dk} such that ei ∈ E(Di)

for all 1 ≤ i ≤ k, and V (G) =
⋃k

i=1 V (Di).

We also note a similar known result about placing vertices on cycles.

Theorem 2.2. [8] Let G be a graph of order n ≥ 6k − 3 for some integer
k ≥ 1. If

δ(G) ≥ n

2
,
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then for any set of k vertices {v1, v2, . . . , vk} there exists a set of k vertex
disjoint cycles {C1, C2, . . . , Ck} such that vi ∈ V (Ci) and |V (Ci)| ≤ 5 for all
1 ≤ i ≤ k.

In this chapter, we extend each of the last two results to chorded cycles,
and in one case, doubly chorded cycles. In addition, we consider the basic
question of when a set of k independent edges can be chords for k vertex
disjoint cycles, one per cycle. We also show when the k vertex disjoint cycles
can be extended to span the entire vertex set of the graph.

2.2 Results

2.2.1 Placing Edges as Chords on Cycles

We begin with a natural question: When can a set of k independent edges
be the set of chords for k vertex disjoint cycles of a graph, one per cycle?

Theorem 2.3. Let G be a graph of order n ≥ 6k + 1 for an integer k ≥ 2.
If

σ2(G) ≥ n+ 3k − 2 and δ(G) ≥ 6k − 3,

then for any k independent edges {e1, e2, . . . , ek} there exists a set of k ver-
tex disjoint cycles {C1, C2, . . . , Ck} such that ei is a chord of Ci and 4 ≤
|V (Ci)| ≤ 6 for all 1 ≤ i ≤ k.

Sharpness: To see that σ2(G) ≥ n+ 3k − 2 is needed, consider the
following graph, G: place the chosen set of edges E = {e1, e2, . . . , ek} in a
clique, which is completely adjacent to a clique on 2k − 1 vertices, which is
completely adjacent to a clique on the remaining n− 4k + 1 vertices. In
addition, exactly one end-vertex from each edge of E is adjacent to every
vertex in the Kn−4k+1 (see Figure 2a below).
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Figure 2a.

To find σ2(G) we must consider all pairs of non-adjacent vertices in G. The
only type of non-adjacent pair of vertices in G is an end-vertex of an edge
in E, say x, and a vertex in the Kn−4k+1, say y, as illustrated above in
Figure 2a. Then

σ2(G) = degG(x) + degG(y)

= (2k − 1 + 2k − 1) + (n− 4k + 2k − 1 + k)

= n+ 3k − 3.

For any ei ∈ E to be a chord of a cycle requires using two neighbors in the
K2k−1, so there are at most k − 1 vertex disjoint cycles with the desired
edges as chords. This proves the necessity of σ2(G) ≥ n+ 3k − 2.

Before proving Theorem 2.3, we first prove the following lemma and
theorem.
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Lemma 2.4. Let G be a graph of order n ≥ 4 with σ2(G) ≥ n+ 1. Then
any edge of G lies either on a triangle or on a 4-cycle.

Proof. Let e = ab be any edge of G. If e lies on a triangle we are done, so
assume e does not lie on any triangle. Since σ2(G) ≥ n+ 1, we know G is
2-connected. Let x be any vertex adjacent to an end-vertex of e. Without
loss of generality, say x is adjacent to a. Then b is not adjacent to x,
otherwise e would lie on a triangle. Now degG(x) + degG(b) ≥ n+ 1, which
implies that b and x have at least three common neighbors. Thus there is a
vertex y 6= a such that by and xy ∈ E(G). Then the cycle a, x, y, b, a is a
4-cycle containing e as an edge.

Example: Consider the graph G on n vertices that is a copy of Kn−2

together with another edge e = xz. Let x be adjacent to exactly two
vertices of Kn−2 and let z be adjacent to all of the vertices in
V (G)−NG(x). Then σ2(G) ≥ degG(x) + degG(y) = 3 + n− 2 = n+ 1, and
the shortest cycle to have e as a chord in G is a 6-cycle. Thus, 6-cycles are
necessary in the following result: the k = 1 case of Theorem 2.3.

Theorem 2.5. Let G be a graph of order n ≥ 6 with σ2(G) ≥ n+ 1, Then
any edge of G is the chord of a cycle C with 4 ≤ |V (C)| ≤ 6.

Proof. Let e be any edge in the graph G. Then by Lemma 2.4, we know
that e lies on either a triangle or a 4-cycle.

Case 1. Suppose e lies on a triangle, say T = {a, b, c}.
Let e = ab. Note that the degree-sum condition implies that G is at least
2-connected, thus at least two of the vertices in the set {a, b, c} must have
neighbors outside of T . Without loss of generality, assume a has such a
neighbor. Let R = G− {a, b, c} and consider some x ∈ V (R) such that
ax ∈ E(G). If xb ∈ E(G), then c, a, x, b, c is a 4-cycle with e as a chord, so
suppose xb 6∈ E(G). Then degT (b) = 2 and degT (x) ≤ 2, so from the
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degree-sum condition, x and b share at least three neighbors. Thus, there
exists some y ∈ V (R) with y 6= x such that both b and x are adjacent to y.
Now c, a, x, y, b, c is a 5-cycle with e as a chord.

Case 2. Suppose e lies on a 4-cycle, F = a, b, c, d, a, but lies on no triangle.
Let e = ab. Since no vertex in R = G− F can be adjacent to both a and b,
consider the following disjoint sets of vertices: Ra, the neighborhood of a in
R and Rb, the neighborhood of b in R. If δ(G) = 2 then by the degree-sum
condition, there is a vertex in R of degree n− 1 which implies that e is on a
triangle. Since δ(G) ≥ 3, the neighborhoods Ra and Rb are both
non-empty. If there are no edges between Ra and Rb then for any x ∈ Ra,
the degree sum of the non-adjacent pair of vertices x and b is at most

degG(x)+degG(b) ≤ |V (R)|−|Rb|−1+3+|Rb|+2 = |V (R)|+4 = (n−4)+4 = n

a contradiction of the assumed σ2(G). Thus there is an edge from some
x ∈ Ra to some y ∈ Rb and hence d, a, x, y, b, c, d is a 6-cycle containing e as
a chord, as desired.

Proof. (of Theorem 2.3). Assume the result fails and let G be an edge
maximal counterexample. Then adding any new edge e to G will yield the
desired set of k chorded cycles with ei a chord of Ci for i = 1, 2, . . . , k.
Therefore, there must be at least one set of k − 1 cycles
C = {C1, C2, . . . , Ck−1} with ei as a chord of Ci and 4 ≤ |V (Ci)| ≤ 6 for
1 ≤ i ≤ k − 1. Further, note that in G− C there is a 3, 4, or 5-cycle, C,
containing the edge ek and with an adjacency to a vertex not in C or C
from at least one end-vertex of ek. This follows as G+ e contains the
desired cycle system of chorded 4, 5, and two different types of chorded
6-cycles, which are defined and shown below in Figure 2b. No matter where
e falls on these cycles, we obtain C as described.
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Figure 2b.

Over all possible edge maximal counterexamples and over all possible such
cycles sets C, choose C such that:

(1) ∪k−1i=1 |V (Ci)| is a minimum.

(2) Subject to (1), |V (C)| is a minimum.

(3) Subject to (1) and (2), the number of Type I chorded 6-cycles is a
maximum.

In C assume there are r 4-cycles, s 5-cycles, and t 6-cycles as shown in
Figure 2c. Let ek = ab be an edge of C and let R = G− C − C. Now we
place some bounds on degrees of nonadjacent vertices. Without loss of
generality, we assume a is the end-vertex of ek with an adjacency, say x,
off of C and not in C (i.e. x ∈ V (R)). Note that b is not adjacent to x,
otherwise we would complete the desired cycle system, a contradiction.

Figure 2c.
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Note that b has at most two adjacencies in the cycle C, otherwise there
would be a contradiction to (2). Also, since b has at most 6(k − 1)

adjacencies to C, by the minimum degree condition b must have at least one
neighbor in R. Thus, there is some y ∈ V (R) such that b is adjacent to y
and a is not adjacent to y (or the desired cycle system would be
completed). Consider the nonadjacent pairs of vertices (a, y) and (b, x).
Once again, we examine the adjacencies from these pairs to the cycles of C.

Claim 1. For a 3-cycle C = a, b, c, a, the nonadjacent pairs (a, y) and (b, x)

may have at most 14 edges to any chorded 4-cycle Ci ∈ C, 16 edges to any
chorded 5-cycle Ci ∈ C, and 18 edges to any chorded 6-cycle Ci ∈ C.

Proof. If a and b have a common neighbor on Ci, a 4-cycle, other than the
end-vertices of the chord ei, then both x and y cannot be adjacent to both
ends of the chord ei otherwise there are two cycles containing the desired
chords, a contradiction. Thus, in this case the total number of edges to Ci

is at most 8 from a and b, and at most 6 from x and y. If a and b have no
such common neighbor in Ci, then they send at most 6 edges to Ci and x
and y can both be adjacent to every vertex in Ci. Therefore, in either case
we have degCi

(a, b, x, y) ≤ 14.

If a and b have a common neighbor in Ci, a 5-cycle, that is not an
end-vertex of the chord ei, then there exists a chorded 4-cycle containing
the chord ek, contradicting the minimality of C. Therefore, a and b have at
most 7 edges to Ci. If either x or y is adjacent to both end-vertices of the
chord of Ci, then there exists a chorded 4-cycle containing that same chord,
which contradicts the minimality of the cycle set C. Thus, x and y can have
at most 8 edges to the chorded 5-cycle, Ci. In total, we have
degCi

(a, b, x, y) ≤ 7 + 8 ≤ 16.

If a and b have a common neighbor in Ci, a 6-cycle, other than the
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end-vertices of ei, then there exists a 4-cycle with ek as a chord, a
contradiction of the minimality of C. Thus, together a and b can send at
most 8 edges to Ci. If x or y are adjacent to both end-vertices of the chord
ei then there exists a 4 or 5-cycle (depending on where the chord of Ci is)
containing ei as a chord, again contradicting the minimality of C. Thus,
together x and y can send at most 10 edges to Ci. So in total, we have
degCi

(a, b, x, y) ≤ 18.

Suppose C is a 3-cycle. Note that a and b cannot share any neighbors in R,
otherwise there would be a 4-cycle containing ek as a chord, which would
complete the desired cycle set, a contradiction. Thus, the maximum
possible number of edges from a and b together to R is |V (R)|. Note that x
cannot be adjacent to y or any neighbor of y in R, otherwise there exists a
5-cycle or a 6-cycle, respectively, containing ek as a chord, again a
contradiction. So together x and y can have at most |V (R)| − 2 adjacencies
in R. By Claim 1, we can bound the number of adjacencies from {a, b, x, y}
to C. These bounds together with the maximum number of possible
adjacencies from {a, b, x, y} to the vertices of the triangle {a, b, c} yield

2(n+ 3k − 2) ≤ 2σ2(G) ≤ degG(a) + degG(b) + degG(x) + degG(y)

≤ |V (R)|+ (|V (R)| − 2) + 14r + 16s+ 18t+ 8

= 2(n− 4r − 5s− 6t− 3− 1) + 14r + 16s+ 18t+ 8

= 2n+ 6r + 6s+ 6t

=⇒ 6k − 4 ≤ 6r + 6s+ 6t = 6(k − 1) = 6k − 6, a contradiction.

Claim 2. For a 4-cycle C = a, b, c, d, a, the nonadjacent pairs (a, y) and
(b, x) have at most 14 edges to any chorded 4-cycle Ci ∈ C, 16 edges to any
chorded 5-cycle Ci ∈ C, and 18 edges to any chorded 6-cycle Ci ∈ C.
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Proof. First suppose Ci is a chorded 4-cycle. Without loss of generality, if
either degCi

(x) ≤ 2 or degCi
(y) ≤ 2, or if degCi

(x) ≤ 3 and degCi
(y) ≤ 3

then we are done. So assume x (or y) is adjacent to all of Ci. If a and b
have a common neighbor on Ci other than an end-vertex of the chord ei,
say vi, then vi completes a 5-cycle with ek as a chord and x can replace vi
on Ci, which completes the desired cycle set, a contradiction. Therefore,
degCi

(a, b) ≤ 6 and degCi
(a, b, x, y) ≤ 14.

If Ci is a 5-cycle, note that x (and similarly, y) is not adjacent to both ai
and bi otherwise a 4-cycle with ei as a chord would exist, contradicting (1).
Thus, degCi

(x, y) ≤ 8. Also note that if a and b have a common neighbor
wi (or vi), then there exists a 5-cycle with ek as a chord and ei is left on a
triangle, contradicting (2). Thus degCi

(a, b) ≤ 8, which implies
degCi

(a, b, x, y) ≤ 16.

If Ci is a 6-cycle (of either type), then again x (and similarly, y) cannot be
adjacent to both ai and bi otherwise there would exist a 4 or 5-cycle
(depending on the Type of Ci) containing ei as a chord, contradicting (1).
Therefore we have degCi

(x, y) ≤ 10. Also, if a and b have a common
neighbor in {vi, wi, yi, zi} then a chorded 5-cycle with ek as a chord exists,
contradicting (1). Thus, degCi

(a, b, x, y) ≤ 18.

Now suppose C is a 4-cycle. Note that a and b cannot share any neighbors
in R, otherwise there would be a 5-cycle containing ek as a chord, which
would complete the desired cycle set, a contradiction. So the neighborhoods
NR(a) and NR(b) must be disjoint sets. Further, note that no neighbor of a
in R can be adjacent to any neighbor b in R, otherwise there exists a
6-cycle with ek as a chord, which is a contradiction as it completes the
desired cycle set. Therefore, since x cannot be adjacent to itself nor any
vertex in NR(b), we have degR(x) ≤ |V (R)| − 1− |NR(b)|. Similarly,
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degR(y) ≤ |V (R)| − 1− |NR(a)|. Now we have

degR(a, b, x, y) ≤ |NR(a)|+ |NR(b)|+ (|V (R)| − 1− |NR(b)|)

+ (|V (R)| − 1− |NR(a)|)

= 2|V (R)| − 2.

By Claim 2, we can bound the number of adjacencies from {a, b, x, y} to C.
These bounds together with the maximum number of possible adjacencies
from {a, b, x, y} to the vertices of the 4-cycle {a, b, c, d} yield

2(n+ 3k − 2) ≤ 2σ2(G)

≤ degG(a) + degG(b) + degG(x) + degG(y)

≤ 2|V (R)| − 2 + 14r + 16s+ 18t+ 10

= 2(n− 4r − 5s− 6t− 4− 1) + 14r + 16s+ 18t+ 10

= 2n+ 6r + 6s+ 6t

=⇒ 6k − 4 ≤ 6r + 6s+ 6t = 6(k − 1) = 6k − 6, a contradiction.

Claim 3. For a 5-cycle C = a, b, c, d, e, a, the nonadjacent pairs (a, y) and
(b, x) have at most 14 edges to any chorded 4-cycle in C, 16 edges to any
chorded 5-cycle in C, and 18 edges to any chorded 6-cycle in C.

Proof. First assume Ci is a 4-cycle. If either x or y is adjacent to both ends
of ei, then we can rebuild Ci, again a 4-cycle, by replacing either wi or yi
with either x or y. Further, if a and b have a common neighbor in {wi, yi},
then there exists a triangle with ek as an edge, contradicting (2). Therefore
either degCi

(a, b) ≤ 6 or degCi
(x, y) ≤ 6, and in either case, we have

degCi
(a, b, x, y) ≤ 14.

Now suppose Ci is a 5-cycle. Neither x nor y can be adjacent to both
end-vertices of ei, otherwise there exists a 4-cycle containing ei as a chord,
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contradicting (1), so degCi
(x) ≤ 4 and degCi

(y) ≤ 4. If degCi
(x) ≤ 3 and

degCi
(y) ≤ 3, then we are done. So without loss of generality, suppose

degCi
(x) = 4 and degCi

(y) ≤ 3. Again without loss of generality, assume x
is not adjacent to ai. If a and b are both adjacent to vi then vi can be used
to complete a 6-cycle with ek as a chord, and x can replace vi on the 5-cycle
Ci with chord ei, thus completing the desired cycle set, a contradiction.
Therefore degCi

(a, b) ≤ 9, so degCi
(a, b, x, y) ≤ 16. Now suppose

degCi
(x) = 4 = degCi

(y). If x and y each are adjacent to a different
end-vertex of ei, then either wi or vi can be replaced (by x or y) on Ci and
thus a and b cannot both be adjacent to either wi or vi. Therefore
degCi

(a, b) ≤ 8, so degCi
(a, b, x, y) ≤ 16. Instead suppose x and y are

adjacent to the same end-vertex of ei, without loss of generality, say bi.
Then vi can be replaced by either x or y on the 5-cycle Ci with chord ei.
Note that if both a and b are adjacent to vi, then there exists a 6-cycle
containing ek as a chord, thus completing the desired cycle set, a
contradiction. If both a and b are not adjacent to vi then we are done. So
suppose, without loss of generality, that a is adjacent to vi. Now if a and b
are both adjacent to wi then a, vi, y, b, wi, a is a 5-cycle containing ek as a
chord and ei is left on a triangle, contradicting (2). Therefore, a and b
cannot both be adjacent to wi, so degCi

(a, b) ≤ 8 and thus
degCi

(a, b, x, y) ≤ 16.

Now assume Ci is a Type I 6-cycle. If a and b have a common neighbor in
{vi, wi, yi, zi}, then a new chorded 6-cycle with chord ek is formed, which
leaves ei on a 4-cycle, contradicting (2). Thus, degCi

(a, b) ≤ 8. As above, x
and y each must be nonadjacent to one of {ai, bi}, otherwise there is a
shorter cycle with ei as a chord (which contradicts (1)), so degCi

(x, y) ≤ 10

and therefore degCi
(a, b, x, y) ≤ 18 holds.

Lastly, instead suppose Ci is a Type II 6-cycle. If a and b have a common
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neighbor in {vi, wi, zi} then there exists a new 6-cycle with ek as a chord,
and ei is left on a 3-cycle, contradicting (2). Therefore, degCi

(a, b) ≤ 9.
Neither x nor y can be adjacent to both end-vertices of ei, otherwise there
exists a 4-cycle with ei as a chord, contradicting (1). If degCi

(x, y) = 10

then either x and y are adjacent to the same end-vertex of ei, or x and y
are adjacent to different end-vertices of ei. First, without loss of generality,
suppose both x and y are adjacent to all of Ci except for bi. Then
ai, y, yi, bi, zi, x, ai is a Type I 6-cycle with ei as a chord, which contradicts
(3). Now, without loss of generality, assume x is adjacent to all of Ci except
bi and y is adjacent to all of Ci except ai. Then bi, yi, x, ai, wi, y, bi is a Type
II 6-cycle with ei as a chord, again contradicting (3). Thus
degCi

(a, b, x, y) ≤ 9 + 9 = 18.

Now suppose C is a 5-cycle. Note that a and b cannot share any neighbors
in R, otherwise there would be a 6-cycle containing ek as a chord, which
would complete the desired cycle set, a contradiction. So the neighborhoods
NR(a) and NR(b) must be disjoint sets. Further, note that no neighbor of a
in R can be adjacent to any neighbor b in R, otherwise there exists a 4-cycle
containing ek, contradicting (2). Therefore, since x cannot be adjacent to
itself nor any vertex in NR(b), we have degR(x) ≤ |V (R)| − 1− |NR(b)|.
Similarly, degR(y) ≤ |V (R)| − 1− |NR(a)|. Now we have

degR(a, b, x, y) ≤ |NR(a)|+ |NR(b)|+ (|V (R)| − 1− |NR(b)|)

+ (|V (R)| − 1− |NR(a)|)

= 2|V (R)| − 2.

By Claim 3, we can bound the number of adjacencies from {a, b, x, y} to C.
These bounds together with the maximum number of possible adjacencies
from {a, b, x, y} to the vertices of the 5-cycle {a, b, c, d, e} yield
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2(n+ 3k − 2) ≤ 2σ2(G)

≤ degG(a) + degG(b) + degG(x) + degG(y)

≤ 2|V (R)| − 2 + 14r + 16s+ 18t+ 12

= 2(n− 4r − 5s− 6t− 5− 1) + 14r + 16s+ 18t+ 12

= 2n+ 6r + 6s+ 6t

=⇒ 6k − 4 ≤ 6r + 6s+ 6t = 6(k − 1) = 6k − 6, a contradiction.

This completes the proof.

Corollary 2.6. Let G be a graph of order n ≥ 9k − 4 for an integer k ≥ 2.
If

δ(G) ≥ n+ 3k − 2

2

then for any k independent edges {e1, e2, . . . , ek} there exists a set of k
vertex disjoint cycles {C1, C2, . . . , Ck} such that ei is a chord of Ci and
4 ≤ |V (Ci)| ≤ 6 for all 1 ≤ i ≤ k.

Based on Theorem 2.3 and Corollary 2.6, we make the following stronger
conjecture.

Conjecture 2.7. Let G be a graph of order n ≥ 6k + 1 for some integer
k ≥ 1. If

σ2(G) ≥ n+ 3k − 2

then for any k independent edges {e1, e2, . . . , ek} there exists a set of k
vertex disjoint cycles {C1, C2, . . . , Ck} such that ei is a chord of Ci and
4 ≤ |V (Ci)| ≤ 6 for all 1 ≤ i ≤ k.

Now we will focus on a minimum degree condition that will allow us to
place edges along chorded cycles.
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2.2.2 Placing Edges on Chorded Cycles

Before stating our next result, we describe notation used in upcoming
theorems.

Notation: If c is a chord of the cycle Ci then we denote this cycle with a
chord as Cc

i . Further, note that E(Cc
i ) = E(Ci) ∪ {c}. We will also use the

notation C∗i to denote a cycle Ci with two chords.

Next we establish a useful lemma.

Lemma 2.8. Let G be a graph of order n ≥ 18k − 2 (or n ≥ 18k + 1) for
an integer k ≥ 1 with minimum degree

δ(G) ≥ n+ 2k − 2

2
.

If G contains a set of k vertex disjoint cycles C = {C1, C2, . . . , Ck}
containing a total of at most 6k − 1 (or 6k) vertices, then for any triple of
vertices {v1, v2, v3} on any cycle C ∈ C, at least one pair of these vertices
has a common neighbor in A = G− C.

Proof. We have that b = |V (C)| ≤ 6k − 1. Suppose for the vertices v1, v2
and v3 in some cycle C of C, no pair of them has a common neighbor in A.
Then

3

(
n+ 2k − 2

2

)
− 3(b− 1) ≤ 3δ(G)− 3(b− 1)

≤ degA(v1) + degA(v2) + degA(v3) ≤ n− b,

n ≤ 4b− 6k

≤ 4(6k − 1)− 6k

= 18k − 4, a contradiction.
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Hence, some pair of the set {v1, v2, v3} has a common neighbor in A. A
similar argument holds when n ≥ 18k + 1 and |V (C)| ≤ 6k.

We are now ready to extend Theorem 2.1 to chorded cycles. In our first
such result, the specified edges are either chords or cycle-edges on the
vertex disjoint chorded cycles.

Theorem 2.9. Let G be a graph of order n ≥ 18k − 2 for an integer k ≥ 2

and let {e1, e2, . . . , ek} be a set of k independent edges in G. If

δ(G) ≥ n+ 2k − 2

2
,

then there exists a system of k vertex disjoint chorded cycles
{Cc1

1 , C
c2
2 , . . . , C

ck
k } such that ei ∈ E(Cci

i ) and |V (Cci
i )| ≤ 6 for all

1 ≤ i ≤ k.

Proof. Theorem 2.1 implies that in G there is a set of k vertex disjoint
cycles C = {C1, C2, . . . , Ck}, such that ei ∈ E(Ci) and |Ci| ≤ 4 for all
1 ≤ i ≤ k. Let A = G− C. Note that for any three vertices of Ci, some pair
of these vertices must have a common neighbor in A by Lemma 2.8.

Case 1: Suppose ei = v1v3 is an edge of a 3-cycle Ci = v1, v2, v3, v1. If v2 and
v3 or v1 and v2 share a common neighbor in A then there exists a chorded
4-cycle C∗i with ei ∈ E(Cci

i ) such that Cci
i has a chord, ci = v2v3 or v1v2. If

v1 and v3 have a common neighbor in A then ei is the chord of a 4-cycle.

Case 2: Now suppose ej = v1v2 is an edge of a 4-cycle Cj = v1, v2, v3, v4, v1.
Consider the vertex set {v1, v3, v4}. By Lemma 2.8, the set of vertices
{v1, v3, v4} contains a pair of vertices with a common neighbor in A. If v1
and v4 or v3 and v4 have a common neighbor in A then there is a chorded
5-cycle C∗j with ej ∈ E(C∗j ). If v1, v3 is the pair with a common neighbor in
A, say u, then we repeat the argument using the set of vertices {v2, v3, v4}:



26

if either v2, v3 or v3, v4 is the pair that has a common adjacency in A then
we have a chorded 5-cycle with ej as an edge of the cycle. If v2, v4 is the
pair with the common neighbor in A, say v, then v1, v4, v, v2, v3, u, v1 is a
6-cycle with ej as a chord.

By applying Lemma 2.8 repeatedly for each Ci, we obtain the desired
system of k vertex disjoint chorded cycles with ei as an edge or chord of Ci

for all 1 ≤ i ≤ k.

Using a similar technique, we obtain a stronger result where each ei is a
cycle-edge, not a chord.

Theorem 2.10. Let G be a graph of order n ≥ 18k − 2 for an integer
k ≥ 2 and let {e1, e2, . . . , ek} be a set of independent edges in G. If

δ(G) ≥ n+ 2k − 2

2
,

then there exists a set of k vertex disjoint chorded cycles {Cc1
1 , C

c2
2 , . . . , C

ck
k }

with ei ∈ E(Ci), ei 6= ci, and |V (Ci)| ≤ 6 for all 1 ≤ i ≤ k.

Proof. Again Theorem 2.1 implies that there exists a set of k vertex
disjoint cycles {C1, C2, . . . , Ck} in G with |V (Ci)| ≤ 4 and ei ∈ E(Ci) for all
1 ≤ i ≤ k. Let A = G−

⋃k
i=1 V (Ci).

Case 1: Suppose Ci = v1, v2, v3, v1 and ei = v1v3. By Lemma 2.8, we know
that either the pair {v1, v2},{v2, v3}, or {v1, v3} must share a common
neighbor in A, say x. If v1 and v2 or v2 and v3 have a common neighbor in
A then there is a chorded 4-cycle with ei as an edge on the cycle. If v1 and
v3 share the common neighbor x ∈ A, then x, v1, v2, v3, x is a chorded
4-cycle with ei as a chord. Now consider the triple {x, v2, v3}. Again by
Lemma 2.8, either x and v2, x and v3, or v2 and v3 must share a common
neighbor, say y ∈ A. If x and v2 are both adjacent to y ∈ A then
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x, v1, v3, v2, y, x is a chorded 5-cycle with ei as an edge of the cycle and v1v2
as a chord. Either of the remaining pairs yields the same case, so without
loss of generality if x and v3 are both adjacent to some y ∈ A then
x, y, v3, v1, x is a chorded 4-cycle with ei as an edge of the cycle and xv3 as
a chord. So if Ci is a 3-cycle, we can always find a chorded 4 or 5-cycle with
ei as an edge of the cycle, provided the common neighbor exists in A.

Case 2: Suppose Cj = v1, v2, v3, v4, v1 and ej = v1v2. Consider the triple
{v2, v3, v4}. By Lemma 2.8, one of the pairs in the triple shares a common
neighbor, say x ∈ A. If v2 and v3 are both adjacent to x then
v1, v2, x, v3, v4, v1 is a chorded 5-cycle with ej as an edge of the cycle and
v2v3 as a chord. If v3 and v4 are both adjacent to x ∈ A then
v1, v2, v3, x, v4, v1 is a chorded 5-cycle with ej as a cycle edge and v3v4 as a
chord. If v2 and v4 share a neighbor x ∈ A then we need to consider the
pairs of another triple: {x, v2, v3}. We have already checked the case where
v2 and v3 share a neighbor in A. If x and v2 are both adjacent to some
y ∈ A then v1, v2, y, x, v4, v1 is a chorded 5-cycle with ej as a cycle edge and
xv2 as a chord. If instead x and v3 share a neighbor y ∈ A then
v1, v2, v3, y, x, v4, v1 is a chorded 6-cycle with ej as a cycle edge and v3v4 as
a chord. So if Cj is a 4-cycle then there exists a chorded 5 or 6-cycle with ej
as a cycle edge, provided the common neighbor exists in A.

By applying Lemma 2.8 repeatedly to each Ci, we have the desired system
of vertex disjoint chorded cycles.

Note: If n is even, the two preceding results are sharp. To see this,
consider the graph G, of the set of edges E = {e1, . . . , ek−1} and two
Kn−2k+2

2
cliques, each of which is completely adjacent to all vertices V (E)

and the edge ek has one end-vertex in each of the cliques. In this graph, the
minimum degree δ(G) = n−2k+2

2
− 1 + 2(k− 1) = n

2
+ k− 2. However, ek lies
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on no chorded cycle disjoint from the edges of E.

We can extend the process used in the proofs of Theorems 2.9 and 2.10 to
prove the following result.

Theorem 2.11. Let G be a graph of order n ≥ 18k − 2 for an integer
k ≥ 2 and let {e1, e2, . . . , ek} be a set of independent edges in G. If

δ(G) ≥ n+ 2k − 2

2
,

then there exists a set of k vertex disjoint doubly chorded cycles
C∗1 , C

∗
2 , . . . , C

∗
k with ei ∈ E(Ci) and |V (Ci)| ≤ 6 for all i.

Proof. From Theorem 2.1, we know we can place each edge ei on a 3-cycle
or 4-cycle. By the degree condition, for any set of three vertices we know
from Lemma 2.8 that at least one pair of vertices in that set must have a
common neighbor not in any other cycle. We must consider the following
three cases: ei is a cycle-edge of a chorded 4-cycle, a chord of a 4-cycle, or
an edge of a chordless 4-cycle. Let C = {C1, C2, . . . , Ck} be this collection of
cycles, and let A = G− C.

Case 1: Suppose ei ∈ E(G) is a non-chord of the chorded 4-cycle
v1, v2, v3, v4, v1. Without loss of generality, assume ei = v1v2 and v1v3 is a
chord. Now consider the set of vertices {v2, v3, v4}. Some pair in this set
must have a common neighbor in A, say x. If x is a common neighbor of v2
and v3 then v1, v2, x, v3, v4, v1 is a doubly chorded 5-cycle with ei as an edge
and v1v3 and v2v3 as chords. If instead v3 and v4 have a common neighbor
x, then v1, v2, v3, x, v4, v1 is a 5-cycle with ei as an edge and v1v3 and v3v4 as
chords. If v2 and v4 have the common neighbor x, then x, v2, v1, v3, v4, x is a
5-cycle containing ei as a cycle edge and v2v3 and v1v4 as chords.

Case 2: Suppose ei = v1v3 is the chord of a 4-cycle, v1, v2, v3, v4, v1. Again



29

consider the set of vertices {v2, v3, v4}. One pair of this set must share a
common neighbor in A, say x.

Case 2a: If x is a common neighbor of v2 and v3 (or, by symmetry, v3 and
v4), then v1, v2, x, v3, v4, v1 is a C5 containing ei = v1v3 and v2v3 as chords.
Since there is no doubly chorded cycle with ei as a cycle edge, consider the
set {v1, v2, x}. If v1 and v2 have a common neighbor y, then
v1, y, v2, x, v3, v1 is a 5-cycle containing ei as a cycle edge and v1v2 and v2v3
as chords. If v2 and x share y as a neighbor, then v1, v2, y, x, v3, v1 is a
5-cycle with ei as a cycle edge and v2x and v2v3 as chords. If v1 and x share
y as a neighbor, then v1, y, x, v2, v3, v1 is a 5-cycle with ei as an edge and
v1v2 and v3x as chords.

Case 2b: If instead v2 and v4 have a common neighbor x, then
x, v2, v3, v1, v4, x is a doubly chorded 5-cycle with ei as an edge and v1v2 and
v3v4 as chords. This completes the cases when ei is the chord of a chorded
4-cycle.

Next we suppose we start with ei as an edge of a 4-cycle without a chord.

Case 3: Suppose ei = v1v2 is initially an edge of the chordless 4-cycle
v1, v2, v3, v4, v1. Consider the set {v2, v3, v4}. Then one of the following
must occur: v2 and v3 share a common neighbor x in A or v3 and v4 share a
common neighbor x, or v2 and v4 share x as a neighbor.

Case 3a: Suppose v2 and v3 share x as a neighbor. There is no doubly
chorded cycle, so consider the set {v3, v4, x}. At least one pair in that set
must have a common neighbor in A, say y. If v3 and v4 share y as a
common neighbor, then v1, v2, x, v3, y, v4, v1 is a 6-cycle containing ei as an
edge and v2v3 and v3v4 as chords. If v4 and x share y as a neighbor, then
v1, v2, v3, x, y, v4, v1 is a 6-cycle containing ei as an edge and v2x and v3v4 as
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chords. If v3 and x have y as a common neighbor, then v1, v2, x, y, v3, v4, v1
is a 6-cycle containing ei as an edge and v2v3 and v3x as chords.

Case 3b: Suppose v3 and v4 share x as a neighbor. Again there is no doubly
chorded cycle yet. Consider the set of vertices {v2, v3, x}. By Lemma 2.8, at
least one pair in the set must have a common neighbor in A, say y. If v2
and v3 have y as a common neighbor, then v1, v2, y, v3, x, v4, v1 is a 6-cycle
with ei as an edge and v2v3 and v3v4 as chords. If v3 and x share y as a
common neighbor, then v1, v2, v3, y, x, v4, v1 is a 6-cycle containing ei as an
edge and v3v4 and v3x as chords. If v2 and x share y as a neighbor, then
v1, v2, y, x, v3, v4, v1 is a 6-cycle containing ei as an edge and v2v3 and v4x as
chords.

Case 3c: Suppose v2 and v4 share x as a neighbor. Since there are no
doubly chorded cycles, consider the vertex set {v2, v3, x}. Again, at least
one pair in this triple must have a common neighbor in A, say y.

If v2 and v3 share y as a neighbor, there are still no doubly chorded cycles,
so consider the set {v3, v4, y}. If v3 and v4 have a common neighbor z in A,
then, v1, v2, y, v3, z, v4, v1 is a 6-cycle with ei as an edge and v2v3 and v3v4 as
chords. If v4 and y share z as a neighbor, then v1, v2, v3, y, z, v4, v1 is a
6-cycle containing ei as an edge and v2y and v3v4 as chords. If z is a
common neighbor of v3 and y then v1, v2, y, z, v3, v4, v1 is a 6-cycle with ei
as an edge and v2v3 and v3y as chords. This completes the case when v2
and v3 are adjacent to y.

If v3 and x share y as a neighbor, then v1, v2, x, y, v3, v4, v1 is a 6-cycle with
ei as en edge and v2v3 and v4x as chords.

If instead v2 and x share y as a neighbor, then there are still no doubly
chorded cycles containing ei as an edge, so consider the set of vertices
{v1, v4, x}. At least one pair of these vertices must have a common
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neighbor, say z in A. If z is a common neighbor of v1 and v4, then
v1, v2, y, x, v4, z, v1 is a 6-cycle with ei as an edge and v1v4 and v2x as
chords. If v4 and x have z as a common neighbor, then v1, v2, y, x, z, v4, v1 is
a 6-cycle containing ei as an edge and v2x and v4x as chords. If v1 and x
share z as a neighbor, then v1, v2, v3, v4, x, z, v1 is a 6-cycle containing ei as
a cycle edge and v1v4 and v2x as chords.

By applying Lemma 2.8 repeatedly to each Ci, we have the desired system
of vertex disjoint doubly chorded cycles. This completes the proof.

This concludes our results on placing edges on chorded cycles. In the
following section, we place vertices on chorded cycles instead of edges.

2.2.3 Placing Vertices on Chorded Cycles

Next, we extend Theorem 2.2 to chorded cycles.

Theorem 2.12. Let G be a graph of order n ≥ 16k − 12 for an integer
k ≥ 1. If

δ(G) ≥ n

2
,

then for any set of k vertices in G, {v1, v2, . . . , vk}, there exists a collection
of k vertex disjoint chorded cycles {C1, C2, . . . , Ck} such that vi ∈ V (Ci)

and |V (Ci)| ≤ 6 for 1 ≤ i ≤ k.

Proof. For the sake of contradiction, suppose not. Let {v1, v2, . . . , vk} be a
set of vertices in the graph G, a maximal counterexample. Choose an
admissible collection of k − 1 vertex disjoint chorded cycles in G,
C = {C1, C2, . . . , Ck−1}, such that vk 6∈ ∪k−1i=1 V (Ci) with:

(1)
k−1∑
i=1

|V (Ci)| is a minimum, and

(2) vi ∈ V (Ci), for i = 1, 2, . . . , k − 1.



32

Let H = G− C.
Note:

|H| = |G| − |C|

≥ n− 6(k − 1), since each cycle is at most a 6-cycle

≥ (16k − 12)− 6k + 6

= 10k − 6

≥ 4, since k ≥ 1.

Thus there are at least 4 vertices in H.

Lemma 2.13. For any h ∈ V (H), degCi
(h) ≤ 4 for all i.

Proof. For the sake of contradiction, suppose degCi
(h) = 5 for some i and

some h ∈ V (H).

Case 1: Suppose Ci = w1, w2, w3, w4, w5, w6, w1 is a 6-cycle and h ∈ V (H)

such that h 6= vk. Without loss of generality, let h be adjacent to
w1, w2, w3, w4, and w5. First suppose vi = wj for some j ∈ {1, 2, 3, 4, 5}. If
j = 1, then the 5-cycle h,w1, w2, w3, w4, h contains vi = w1 and has the
chord hw2, contradicting the choice of C, specifically the minimality of∑k−1

i=1 |V (Ci)|. Similarly, if j = 2, 3, 4, or 5 then the 5-cycle
h,w2, w3, w4, w5, h contains vi = wj and has the chord hw3, again
contradicting the choice of C. Now suppose j = 6, that is, vi = w6. Then
h,w5, w6, w1, w2, h is a 5-cycle containing vi with the chord hw1,
contradicting the choice of C.

Case 2: Again suppose Ci = w1, w2, w3, w4, w5, w6, w1 is a 6-cycle, but now
suppose h = vk. Without loss of generality, assume h = vk is adjacent to
w1, w2, w3, w4, and w5. If vi = w1, w2, or w6, then h,w3, w4, w5, h is a 4-cycle
containing vk with w4h as a chord. This contradicts the minimality of the
size of the cycles in C. If vi = w4 or w5 then h,w1, w2, w3, h is a 4-cycle
containing vk with w2h as a chord. Again, this contradicts the choice of C.
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If vi = w3, then h,w4, w5, w6, w1, h is a 5-cycle containing vk and not
containing vi, with w5h as a chord, again contradicting the choice of C.

Case 3: Suppose Ci = w1, w2, w3, w4, w5, w1 is a 5-cycle and h 6= vk. Then h
must be adjacent to all of V (Ci). Without loss of generality, assume
vi = w1. Then h,w5, w1, w2, h is a 4-cycle containing vi that has w1h as a
chord. This chorded 4-cycle contradicts the minimality of the order of the
chosen collection of cycles, C.

Case 4: Suppose Ci = w1, w2, w3, w4, w5, w1 is a 5-cycle and h = vk. Again,
h must be adjacent to all of V (Ci). Without loss of generality, assume
vi = w1. Then h,w2, w3, w4, h is a 4-cycle containing the vertex vk and the
chord w3h. This chorded 4-cycle contradicts the minimality of the order of
the chosen collection of cycles, C.

This completes the proof of the lemma.

Now, δ(G) ≥ n
2
≥ 8k− 1 and degC(vk) ≤ 4(k− 1), so degH(vk) ≥ 4k + 3 > 3

for all k ≥ 1. Consider u1, u2, u3 ∈ NH(vk). Then Lemma 2.13 implies

3∑
m=1

degCi
(um) ≤ 12, for 1 ≤ i ≤ k − 1,

which implies
3∑

m=1

degL(um) ≤ 12(k − 1).

Let rj be the number of cycles, Ci, such that degCi
(vk) = j. Then

r0 + r1 + r2 + r3 + r4 = k − 1.

degL(vk) = 4r4 + 3r3 + 2r2 + r1

= (k − 1) + 3r4 + 2r3 + r2 − r0.
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We know that

degH(vk) ≥ δ(G)− [(k − 1) + 3r4 + 2r3 + r2 − r0]. (2.2.1)

For any u ∈ V (H), degL(u) ≤ 4(k − 1). So on average,

d̄H(u) ≥ δ(G)− 4(k − 1). (2.2.2)

Now consider u1, u2, u3 ∈ NH(vk). There is at most one edge among these
vertices, otherwise there is a chorded 4-cycle containing vk in H and we’re
done. So we will consider the different possible neighborhoods of
{u1, u2, u3} in H − {vk}.

Case 1: Suppose vk has at least two neighbors in {u1, u2, u3} with disjoint
neighborhoods in H − {vk}. Therefore Equations (1) and (2) yield that the
order of H is

|V (H)| ≥ degH(vk) + 1 + 2(δ(G)− 4(k − 1))− 2

≥ δ(G)− k + 1− 3r4 + 2r3 − r2 + r0 + 1 + 2δ(G)− 8k + 8− 2

= 3δ(G)− 9k + 8− 3r4 − 2r3 − r2 + r0

≥ 3δ(G)− 9k + 8− 3r4 − 2r3 − r2
≥ 3δ(G)− 9k + 8− 3(r4 + r3 + r2 + r1 + r0)

= 3δ(G)− 9k + 8− 3(k − 1).

Hence, |V (H)| ≥ 3δ(G)− 12k + 11.
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Similarly, we have that the order of G is

n = |V (H)|+ |V (L)|

≥ 3δ(G)− 12k + 11 + 4(k − 1)

≥ 3
(n

2

)
+ 12k + 11 + 4k − 4

=

(
3

2

)
n− 8k + 7.

Thus, 0 ≥
(

1

2

)
n− 8k + 7, and hence,

n ≤ 16k − 14, a contradiction of the order of G.

Case 2: Suppose there is one edge in the graph induced by {u1, u2, u3} and
at least two pairs from {u1, u2}, {u2, u3}, and {u1, u3} share a distinct
common neighbor in H − {vk}. Without loss of generality, one of the
following scenarios must occur. There is either a chorded 4-cycle or a
chorded 5-cycle in H containing vk, and we’re done.

Case 3: Suppose the pairs {u1, u2}, {u2, u3}, and {u1, u3} each have at least
one distinct common neighbor in H − {vk}. Then we have
There is a chorded 6-cycle in H containing vk, and we’re done.

Case 4: Suppose the vertices u1, u2, and u3 all share exactly one common
neighbor in H − {vk}. Then the order of H is

|V (H)| ≥ degH(vk) + 1 + 3(δ(G)− 4(k − 1))− 1− 3

= δ(G)− k + 1− 3r4 − 2r3 − r2 + r0 + 3δ(G)− 12k + 12− 1 + 3

= 4δ(G)− 13k + 9− 3r4 − 2r3 − r2 + r0

≥ 4δ(G)− 13k + 9− 3r4 − 2r3 − r2
≥ 4δ(G)− 13k + 9− 3(r4 + r3 + r2 + r1 + r0)

= 4δ(G)− 13k + 9− 3(k − 1)

= 4δ(G)− 16k + 12.
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Similarly, the order of G is

n = |V (H)|+ |V (L)|

≥ 4δ(G)− 16k + 12 + 4(k − 1)

≥ 4
(n

2

)
− 16k + 12 + 4k − 4.

Hence n = 2n− 12k + 8, and thus,

n ≤ 12k − 8, a contradiction of the order of G.

This completes the proof of the theorem.

Next we will show that under sufficient minimum degree conditions, the
disjoint cycle systems in some of the previous theorems can be extended to
a 2-factor of the graph, that is, a set of vertex disjoint cycles that spans
V (G). First, we need the following lemma.

Lemma 2.14. If G is a graph of order n ≥ 2k + 2 for an integer k ≥ 1,
and δ(G) ≥ n+ 2k − 2

2
, then G is at least 2k-connected.

Proof. Consider two vertices x and y ∈ V (G) and let H = G− {x, y}. If x
and y are nonadjacent, then by the minimum degree condition we have

|NH(x) ∩NH(y)| ≥
(
n+ 2k − 2

2

)
+

(
n+ 2k − 2

2

)
− (n− 2) = 2k.

So there are at least 2k paths of length two between x and y in G. If
instead, x and y are adjacent, then

|NH(x) ∩NH(y)| ≥
(
n+ 2k − 2

2
− 1

)
+

(
n+ 2k − 2

2
− 1

)
− (n− 2)

= 2k − 2.
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So there are at least 2k − 2 paths of length two between x and y in G.
Consider the following vertex sets in H

X = {v ∈ NH(x)|v 6∈ vH(y)}

Y = {v ∈ NH(y)|v 6∈ vH(x)}.

If X or Y = ∅ then |NH(x) ∩NH(y)| ≥ n+2k−2
2
≥ (2k+2)+2k−2

2
= 2k and we

are done. So consider x′ ∈ X and y′ ∈ Y . If x′y′ ∈ E(G) then
κ(G) ≥ (2k − 2) + 2 = 2k and if x′y′ 6∈ E(G) then we are in the same case
as the case where xy 6∈ E(G). Therefore, κ(G) ≥ 2k.

Theorem 2.15. Let G be a graph of order n ≥ 18k − 2 for an integer
k ≥ 2, such that

δ(G) ≥ n+ 2k − 2

2
,

and G contains a set of k vertex disjoint chorded cycles
C = {C1, C2, . . . , Ck}. Then the cycle system can be extended to span the
vertices of G.

Proof. Let C be the set of k vertex disjoint cycles and let R = G− C.
Assume C has been chosen with |V (C)| as large as possible. If |V (C)| = n,
we are done, so assume not.

First suppose |V (R)| < k. Then for any v ∈ R,
degC v ≥ n+2k−2

2
− (k − 2) = n+2

2
. Also note that

|C| = n− |V (R)| ≥ n− (k − 1) = n− k + 1. However, since k ≥ 2,
n− k + 1 < n. This implies that degC v ≥ |C|

2
. Thus, on some cycle C ∈ C

there must be at least two consecutive vertices that are both neighbors of v.
By adding v between its two such neighbors, we can extend C, a
contradiction of the maximality of C.

Now suppose |V (R)| ≥ k. Since C is as large as possible, no vertex of R can
be adjacent to any two consecutive vertices in any cycle of C. Thus, for any
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vertex v ∈ R, we know degC v ≤ |C|
2
. Since n = |C|+ |V (R)| and for k ≥ 2,

δ(G) > n
2
, degR v > |V (R)|

2
and hence R is hamiltonian connected. Thus, for

any adjacency of a vertex in R, to a vertex in a cycle Ci ∈ C there cannot
be any adjacencies to the next |V (R)| vertices from any other vertex in R,
otherwise we could insert all of R and extend the cycle, thus extending C, a
contradiction.

By Lemma 2.2.3, κ(G) ≥ 2k, there is a 2k matching between R and C.
Therefore, the cycles can be broken up into at least 2k intervals with
separate end-vertices. Out of all of these intervals, k of them could contain
the specified edges ei for 1 ≤ i ≤ k. Therefore, there are at least k other
intervals, each as large as R, otherwise we could insert R and get a larger
cycle system, contradicting the maximality of |V (C)|. Hence

|V (R)|(k + 1) ≤ n, thus,

|V (R)| ≤ n

k + 1
.

So each vertex in R has at least n+2k−2
2
− n

k+1
adjacencies into C. However,

n+ 2k − 2

2
− n

k + 1
=
n

2
− n

k + 1
+ k − 1 =

k − 1

2(k + 1)
n+ k − 1.

Hence, a pair of vertices in V (R) will form at least
(

k−1
2k+2

)
n+ k intervals in

the cycles of C. Therefore, there are k−1
2k+2

intervals that do not contain any
edge ei for 1 ≤ i ≤ k. Thus we have

|V (R)|
(
k − 1

2k + 2

)
n ≤ |C| = n− |V (R)|.

Therefore, |V (R)| ≤ 2k + 2

k − 1
.

So we have k ≤ |V (R)| ≤ 2k+2
k−1 , and this inequality holds for 2 ≤ k ≤ 3.

Now suppose k = 3 and assume we cannot extend C. Then δ(G) ≥ n+4
2

and
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|V (R)| ≤ 4. If |V (R)| = 1, then |C| = n− 1 and the vertex v ∈ R must have
n+4
2

edges to C. Since v is adjacent to more than half of vertices in C, it
must be adjacent to at least two consecutive vertices on some cycle C ∈ C.
The cycle set C can be extended by adding v between its two neighbors on
C, a contradiction.
If R = 2, 3, or 4, then for any v ∈ R degC v ≥ n−2

2
and |C| ≥ n− 4. Thus

for 1 ≤ |V (R)| ≤ 4, we have n− 4 ≤ |C| ≤ n− 1 and
δ(G) ≥ n+4

2
− (|V (R)| − 1) = n+6

2
− |V (R)| > |C|

2
, so we can always extend C

by inserting a vertex, a contradiction.

Suppose k = 2. Then δ(G) ≥ n+2
2

and |V (R)| ≤ 6. If |V (R)| = 1,
|C| = n− 1 and δ(G) ≥ n+2

2
> |C|

2
, and we are done. If |V (R)| = 2, then

|C| = n− 2 and for any v ∈ R, degG v ≥ 1 + n+2
2

= n
2
> C

2
. If |V (R)| = 3,

then |C| = n− 3 and for any v ∈ R, degG v ≥ n+2
2
− 2 = n−2

2
> C

2
= n−3

2
, a

contradiction. When |V (R)| ≥ 4, degR v ≥ n+2
2
− (|V (R)| − 1), and we can

no longer guarantee this is strictly larger than |C|
2
. However,

degG v = degC v + degR v > n
2
, so if degG v ≤ C

2
then degR v > |V (R)|

2
.

Therefore, R is hamiltonian connected.

Let v1, v2, . . . , vm, v1 be a cycle in R, where m = |V (R)|. Further, every
vertex in R is adjacent to at most every other vertex on each cycle of C,
otherwise we could extend at least one of the cycles, a contradiction. If v1
and v2 are adjacent vertices in R that are adjacent to different sets of
alternating vertices on some Ci, then if v1 is adjacent to x on Ci and v2 is
adjacent to y on Ci such that x is adjacent to y, then clearly Ci may be
extended, a contradiction. Therefore, v1 and v2 must have essentially the
same neighbors in C. But then, by the degree condition, on some Ci there
will exist vertices x, a, and y such that a is between x and y on the cycle,
with v1 adjacent to x and v2 adjacent to y. Then by deleting a and adding
v1 and v2 we can extend Ci, a contradiction.
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This completes the proof.

Corollary 2.16. The sets of vertex disjoint cycles in Theorems 2.3 and
2.12 can be extended to span V (G).

Proof. Theorem 2.3 follows directly. For Theorem 2.12, when k = 1 note
that δ(G) ≥ n

2
so G is hamiltonian and the hamiltonian cycle must be

chorded and must include the specified vertex, as desired.

Definition 2.17. A linear forest is a set of vertex disjoint paths.

Given a set of vertex disjoint paths {Pr1 , Pr2 , . . . , Prk} where ri ≥ 2 is the
order of the path Pri , let r =

∑k
i=1 ri. Then the number of interior vertices

in the path system is given by r − 2k.

Theorem 2.18. Let Pr1 , Pr2 , . . . , Prk be a linear forest in a G of order
n ≥ 16k + r − 2. If the minimum degree

δ(G) ≥ n

2
+ r − 1− k,

then there exists a system of k chorded cycles {C1, C2, . . . , Ck} such that the
path Pri lies on the cycle Ci and |V (Ci)| ≤ ri + 4 for all 1 ≤ i ≤ k.

Proof. Consider the graph G′ produced by replacing each path Pri in G by
an edge ei. Then the order of G′ is

|V (G′)| = n− (r − 2k) ≥ 16k + r − 2− r + 2k = 18k − 2.

Also, the minimum degree

δ(G′) ≥ n

2
+ r − 1− k − (r − 2k) =

n

2
+ k − 1.
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Then by Theorem 2.10, there exists a set of k vertex disjoint chorded cycles
Cc1

1 , C
c2
2 , . . . , C

ck
k such that ei ∈ E(Ci) and ei 6= ci for all i. Now replace the

edge ei by the path Pri for all i, i.e. insert the set of interior vertices of each
path back into G′ to form the original graph G. Then the path Pri now lies
on the cycle Ci and each Ci is still a chorded cycle since the addition of the
interior vertices of Pri does not affect the end-vertices of any chord.
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Chapter 3

A Result on Vertex Disjoint

Cycles and Doubly Chorded

Cycles

In this chapter, we prove a result on vertex disjoint cycles and doubly
chorded cycles. Recall that a cycle is doubly chorded if it contains at least
two chords (which may share at most one end-vertex). The results in this
chapter differ from the results in the Chapter 2, in that the cycles in these
results are not required to contain any specific elements of the graph. First,
let r and s be nonnegative integers and let G be a graph with
|V (G)| ≥ 4r + 6s and σ2(G) ≥ 4r + 6s− 1. In this chapter, we prove that
such a graph G contains a collection of r+ s vertex disjoint cycles such that
s of them are doubly chorded. This is an extension of earlier results. This
chapter is joint work with Dongqin Cheng and Ron Gould.

3.1 Introduction

As always, we let G be a simple graph and Pt (respectively, Ct) be a path
(respectively, cycle) with t vertices. In this chapter, a path P is denoted
P = 〈u1, u2, . . . , un〉. Recall that the set of neighbors of x in the subgraph
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H ⊆ G is denoted NH(x). Again, we will focus on minimum degree and
degree sum conditions. Let δ(G) denote the minimum degree of V (G) and
let

σ2(G)= min {degG(u) + degG(v) | u and v are nonadjacent}.

For terms not defined here, see [20].

As seen in Chapters 1 and 2, the study of vertex disjoint cycles and chorded
cycles in graphs has attracted much attention over the past few decades. In
1963, Corrádi and Hajnal [6] proved that for an integer r ≥ 1, any graph G
with |V (G)| ≥ 3r and minimum degree δ(G) ≥ 2r contains r vertex disjoint
cycles. In 2008, Finkel [16] proved the following extension of the
Corrádi-Hajnal theorem for chorded cycles.

Theorem 3.1 ([16]). For an integer k ≥ 1, let G be graph with |V (G)| ≥ 4k

and δ(G) ≥ 3k. Then G contains k vertex disjoint chorded cycles.

Using Theorem 3.1 as inspiration, Bialostocki, Finkel, and Gyárfás [3]
proposed the following conjecture.

Conjecture 3.2 ([3]). Let s ≥ 0, t ≥ 0 be two integers and G be a graph
with at least 3r + 4s vertices. If

δ(G) ≥ 2r + 3s,

then G contains r + s vertex disjoint cycles such that s of them are chorded
cycles.

They also proved that the conjecture is true for r = 0, s = 2 and for s = 1.
Their conjecture was proved to be true by Babu and Diwan [1], and Chiba
and Fujita [5]. In particular, the authors in [1, 5] generalized the minimum
degree condition to a degree sum condition, and proved the following
theorem.
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Theorem 3.3 ([1, 5]). Let r ≥ 0, s ≥ 0 be two integers and let G be a
graph of order n ≥ 3r + 4s. If

σ2(G) ≥ 4r + 6s− 1,

then G contains r + s vertex disjoint cycles such that s of them are chorded
cycles.

Balister, Li and Schelp [2] improved on Theorem 3.3 under a minimum
degree condition.

Theorem 3.4 ([2]). For integers r, s ≥ 0, let G be a graph of order
n ≥ 3r + 4s. If the minimum degree of G

δ(G) ≥ 2r + 3s,

then G contains r + s vertex disjoint cycles, such that s of them are either
doubly chorded or 4-cycles with one chord.

Qiao and Zhang [26] proved that |V (G)| ≥ 4k and δ(G) ≥ d7k/2e can
ensure k vertex disjoint doubly chorded cycles in any graph G. Gould,
Hirohata and Horn [21] improved the degree condition in [26] to a degree
sum condition and proved the following result.

Theorem 3.5 ([21]). For an integer k ≥ 1, let G is a graph of order
|V (G)| ≥ 6k. If

σ2(G) ≥ 6k − 1,

then G contains k vertex disjoint doubly chorded cycles.

Using the aforementioned theorems as motivation, our goal for this chapter
is to guarantee a collection of r + s vertex disjoint cycles, such that s of
them are doubly chorded cycles. Specifically, we prove the following
theorem.
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Theorem 3.6. Let r ≥ 0, s ≥ 0 be two integers and let G be a graph with
|V (G)| ≥ 4r + 6s. If

σ2(G) ≥ 4r + 6s− 1,

then G contains r + s vertex disjoint cycles such that s of them are doubly
chorded cycles.

3.2 Some Lemmas

The following lemmas are useful to our main proof.

In [21], Gould, Hirohata, and Horn proved the following Exchange Lemma.

Lemma 3.7 ([21]). Let G be a graph containing a doubly chorded cycle Q.
Suppose x, y ∈ V (G−Q) are nonadjacent vertices with degQ(x) ≥ 4 and
degQ(y) ≥ 3. Then there exist vertices zx, zy ∈ V (Q) such that zx is
adjacent to x and zy is adjacent to y and both (Q− zx) ∪ {y} and
(Q− zy) ∪ {x} induce doubly chorded cycles.

Chiba et al. [5] proved the following lemma.

Lemma 3.8 ([5]). For an integer p ≥ 4, let P = 〈x1, x2, . . . , xp〉 be a path
and let C be a cycle of order at least four in G such that P and C are
vertex disjoint. Consider the vertex set S = {x1, x2, xp−1, xp}. If∑

x∈S degC(x) ≥ 8, then either G[V (C) ∪ V (P )] contains a cycle of length
less than |V (C)| or G[V (C) ∪ V (P )] contains two disjoint cycles.

There are two kinds of doubly chorded 5-cycles, denoted by C∧5 and C×5 , see
Figure 3a. Qiao and Zhang [26] proved the following lemma.
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Figure 3a: The two doubly chorded cycles of C5.

Lemma 3.9 ([26]). Let C be a cycle of a graph G with at least two chords,
and let u be a vertex in G− C. If degC(u) ≥ 4, then either G[V (C) ∪ u]

contains a cycle C ′ with at least two chords and |V (C ′)| < |V (C)|, or
|V (C)| ≤ 5 and G[V (C) ∪ u] contains K4 or C∧5 as a subgraph.

We prove the following lemma.

Lemma 3.10. Let C be a cycle. If u, v ∈ V (G− C) and
degC(u) + degC(v) ≥ 5 and each vertex has at least one adjacent vertex on
C, then there exists a vertex zu ∈ V (C) such that zuu ∈ E(G) and
G[V (C − zu) ∪ v] contains a cycle.

Proof. We only need to consider degC(u) + degC(v) = 5. Let
C = 〈x1, x2, x3, . . . , xn−1, xn, x1〉. Consider the following cases according to
the value of n.

Case 1: Suppose n = 3.

Since degC(u) + degC(v) = 5, we see that degC(u) = 3 or degC(v) = 3.
Without loss of generality, we may assume that degC(u) = 3, and so
NC(u) = {x1, x2, x3}. By symmetry, we only need to consider
NC(v) = {x2, x3}. Then zu = x1 and C ′ = 〈v, x2, x3, v〉 is a cycle in
G[V (C − zu) ∪ v].
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Case 2: Suppose n = 4.

Case 2.1: Suppose degC(v) = 4 or degC(u) = 4.

Without loss of generality, we may assume that degC(v) = 4, then
degC(u) = 1. By symmetry, we only need to consider NC(u) = {x2}. Then
zu = x2 and C ′ = 〈v, x1, x4, v〉 is a cycle in G[V (C − zu) ∪ v].

Case 2.2: Suppose degC(u) = 3 or degC(v) = 3.

Without loss of generality, assume that degC(u) = 3, then degC(v) = 2. By
symmetry, we only need to consider NC(u) = {x1, x3, x4}. Note that
NC(v) = {x3, x4} is symmetric to NC(v) = {x1, x4}; NC(v) = {x2, x3} is
symmetric to NC(v) = {x1, x2}. In both cases, we only need to consider the
former case. The desired vertices and cycles can be found in Table A.

Table A: The desired edges and cycles in C4.

NC(v) zu C ′

{x3, x4} x1 〈v, x3, x4, v〉
{x1, x3} x4 〈v, x1, x2, x3, v〉
{x2, x3} x1 〈v, x2, x3, v〉
{x2, x4} x3 〈v, x2, x1, x4, v〉

Case 3: Suppose n ≥ 5.

If degC(u) = 4 or degC(v) = 4, we may assume that degC(v) = 4, then
degC(u) = 1. Assume that NC(u) = {x}. Then zu = x and
G[V (C − zu) ∪ v] contains a cycle. Hence, we only need to consider
degC(u) = 3 or degC(v) = 3. Without loss of generality, we may assume
that degC(u) = 3. Let NC(u) = {xa, xb, xc} and NC(v) = {xm, xn}, where
xi ∈ V (C) for i ∈ {a, b, c,m, n}. We consider the following cases according
to the distribution of the vertices in NC(u) and NC(v).
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Let the path between xm and xn on C be denoted by P1, and the path
C − P1 be denoted by P2, where m < n. Now degC(u) = 3, so u has an
adjacent vertex, say xu, on C other than xm and xn. It does not matter
which path this adjacent vertex lies on, so without loss of generality, say
xu ∈ P2, then xu = zu and v along with P1 induces a cycle.

By the above cases, the proof is complete.

3.3 Proof of Theorem 3.6

In this section, we will prove our main result, Theorem 3.6.

Proof. We prove the following stronger inductive statement. Assume there
exist k + s vertex disjoint cycles, s of them doubly chorded, 0 ≤ k < r and
with at least 4(r − k) ≥ 4 vertices remaining off the cycles. If r = 0 and
s ≥ 1, then by Theorem 3.5 the result is true. If s = 0 and r ≥ 1, then by
Theorem 3.1 the result is also true.

Now suppose that r ≥ 1 and s > 0 and the result holds for k < r. Since
|V (G)| ≥ 4r + 6s > 4k + 6s and σ2(G) ≥ 4r + 6s− 1 > 4k + 6s− 1, by the
induction hypothesis, G contains k + s vertex disjoint cycles such that s of
them are doubly chorded cycles. Without loss of generality, we let
{C1, C2, . . . , Ck} be the k vertex disjoint cycles and {Q1, Q2, . . . , Qs} be the
s vertex disjoint doubly chorded cycles. Let

H = G−
k⋃

i=1

Ci −
s⋃

j=1

Qj.

Let H1 = {C1, C2, . . . , Ck}, H2 = {Q1, Q2, . . . , Qs}. Obviously,
|H| ≥ 4(r − k) ≥ 4 for k < r and H contains no cycles, or else we are done.
Hence, H is a forest. We consider a tree R ⊆ H as follows. Let
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P = 〈u1, u2, u3, . . . , up〉 be a longest path in R. We assume that the cycles
C1, C2, . . . , Ck, Q1, Q2, . . . , Qs are chosen in G such that

(i)
∑k

i=1 |V (Ci)|+
∑s

j=1 |V (Qj)| is as small as possible;

(ii) the number of C∧5 in H2 is as large as possible, subject to
(i);

(iii) P is as long as possible, subject to (i) and (ii).

First, we need the following lemma and claim.

Lemma 3.11. Let P = 〈x1, x2, . . . , xp−1, xp〉 be a path and Q ∈ H2 such
that P and Q are vertex disjoint. Consider the vertex set
S = {x1, x2, xp−1, xp}. If

∑
x∈S degQ(x) ≥ 13, then either there are two

vertex disjoint cycles such that one is a cycle and the other is a doubly
chorded cycle in G[V (P ) ∪ V (Q)], or there exists a doubly chorded cycle
that is shorter than Q.

We postpone the proof of Lemma 3.11 until after the proof of Theorem 3.6.
First we will prove the following claim.

Claim 1. |V (P )| ≥ 4.

Proof. For the sake of contradiction, assume that |V (P )| < 3. Let x and y
be the end-vertices of P , then |NH(x)| = 1 and |NH(y)| = 1. Hence,

degG−H(x) + degG−H(y) ≥ (4r+ 6s−1)−2 = 4r+ 6s−3 = 4(r−1) + 6s+ 1.

Then there exists a cycle Ci with 1 ≤ i ≤ k such that either
degCi

(x) + degCi
(y) ≥ 5, or there exists a doubly chorded cycle Qj with

1 ≤ j ≤ s such that degQj
(x) + degQj

(y) ≥ 7.

We first consider the case where degCi
(x) + degCi

(y) ≥ 5. If degCi
(x) ≥ 4 or

degCi
(y) ≥ 4 (without loss of generality, we may assume that the former is

true), then |V (Ci)| ≥ 4 and the neighbors of x, say x1, x2, x3 and x4 in
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order, partition Ci into four paths, , say P ′1, P ′2, P ′3 and P ′4, such that each
path has one end-vertex which is a neighbor of x. Obviously,
G[V (P ′j) ∪ {x, xj+1}] contains a cycle C ′j for each j ∈ {1, 2, 3, 4} such that
|V (C ′j)| = |V (P ′j)|+ 2. Since there is a cycle C ′k for some k ∈ {1, 2, 3, 4}
such that |V (C ′k)| = |V (P ′k)|+ 2 ≤

⌈
|V (Ci)|

4

⌉
+ 2 < |V (Ci)| for |V (Ci)| ≥ 4,

we can find a cycle C ′k shorter than Ci in G[V (P ) ∪ V (C)], which is a
contradiction to the choice of (i). Hence degCi

(x) ≥ 3 or degCi
(y) ≥ 3.

Without loss of generality, we may assume that degCi
(x) ≥ 3, then

degCi
(y) ≥ 2. By Lemma 3.10, there exists a vertex zx ∈ V (Ci) such that

zxx ∈ E(G) and G[(C − zx) ∪ y] contains a cycle. Then we can find a path
longer than P , which is a contradiction to the choice of P .

We next consider the case where degQj
(x) + deg (y,Qj) ≥ 7. If degQj

(x) ≥ 5

or degQj
(y) ≥ 5 (without loss of generality, we may assume that the former

is true), then |V (Qj)| ≥ 5 and, similar to above, the neighbors of x partition
Qj into five paths, say P ′′1 , P ′′2 , P ′′3 , P ′′4 and P ′′5 in order. Then every four
consecutive adjacent vertices of x on Qj along with x induce a doubly
chorded cycle Q′t such that |V (Q′t)| = |V (P ′′j )|+ |V (P ′′k )|+ |V (P ′′l )|+ 2 for
three consecutive integers j, k, l ∈ {1, 2, 3, 4, 5}, where t ∈ {1, 2, 3, 4, 5}. If
|V (Qj)| > 5, then there exists a doubly chorded cycle Q′t for some
t ∈ {1, 2, 3, 4, 5} such that |V (Q′t)| ≤

⌈
3|V (Qj)|

5

⌉
+ 2 < |V (Qj)|; if

|V (Qj)| = 5, then we can find a K4 in G[V (Qj) ∪ {x}]. In both cases, we
can find a doubly chorded cycle shorter than Qj, which is a contradiction to
(i). Hence, either degQj

(x) ≥ 3 and degQj
(y) ≥ 4, or degQj

(x) ≥ 4 and
degQj

(y) ≥ 3. Without loss of generality, we may assume that the former is
true. By Lemma 3.7, there exist vertices zx, zy ∈ V (Qj) such that zx is
adjacent to x and zy is adjacent to y and (Qj − zx) ∪ y induces a doubly
chorded cycle. Then P ∪ {zxx} is a path longer than P , which is a
contradiction to the choice of P . Thus, we conclude that |V (P )| ≥ 4.
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This completes the proof of the Claim.

By Claim 1, |V (P )| = p ≥ 4. Obviously, degP (u1) = degP (up) = 1 and
u1up−1, u2up 6∈ E(G), otherwise a cycle would result. We then have that∑

(x,y)∈{(1,p−1),(2,p)}

deg (ux, H) + deg (uy, H) ≤ 6.

By the degree sum condition, we have

∑
(x,y)∈{(1,p−1),(2,p)}

degG−H(ux) + degG−H(uy)

≥ 2(4r + 6s− 1)− 6

= 8r + 12s− 8

= 8(r − 1) + 12s.

Recall that s > 0 and r > 1. If any cycle Ci with 1 ≤ i ≤ k has∑
(x,y)∈{(1,p−1),(2,p)}

degCi
(ux) + degCi

(uy) ≥ 8,

then by Lemma 3.8 either there exists a cycle in G[V (C) ∪ V (P )] that is
shorter than C, which is a contradiction; or G[V (C) ∪ V (P )] contains two
disjoint cycles, in which case there are (k + 1) + s vertex disjoint cycles in
G such that s of them are doubly chorded cycles. Then by induction, the
result follows.

Therefore, {x1, x2, xp−1, xp} must send at most seven edges to each cycle Ci

for 1 ≤ i ≤ k. However, now there must be a doubly chorded cycle Qj with
1 ≤ j ≤ s such that ∑

(x,y)∈{(1,p−1),(2,p)}

degQj
(ux) + degQj

(uy) ≥ 13.
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Note that in this case, there is a vertex x ∈ {x1, x2, xp−1, xp} such that
degQj

(x) ≥ 4. By Lemma 3.9 and the choices of (i) and (ii), we must have
Q = K4 or Q = C∧5 . Then by Lemma 3.11, there exist two vertex disjoint
cycles such that one is a cycle and the other is a doubly chorded cycle in
G[V (Qj) ∪ V (P )]. Hence, there exist (k + 1) + s vertex disjoint cycles in G
such that s of them are doubly chorded cycles, and again by induction, the
result follows.

Proof of Lemma 3.11

Proof. Since
∑

x∈S degQ(x) ≥ 13, there exists a vertex x ∈ S such that
degQ(x) ≥ 4. By Lemma 3.9, either G[V (C) ∪ u] contains a doubly chorded
cycle Q′ shorter than Q, then we are done; or we may assume that Q = K4

or Q = C∧5 . We need to examine the following two cases.

Case 1: Suppose Q = K4 with 4-cycle 〈y1, y2, y3, y4, y1〉 and two chords
y1y3 and y2y4. By symmetry, we need to consider the following two cases.

Case 1.1: Suppose degQ(x1) = 4. (Note that the case where degQ(xp) = 4

is symmetric to the degQ(x1) = 4 case.)

Then NQ(x1) = {y1, y2, y3, y4}. Note that there is at most one vertex, say
x ∈ {x2, xp−1, xp}, such that |NQ(x)| ≤ 2. For x′, x′′ ∈ {x2, xp−1, xp}\{x},
|NQ(x′)| ≥ 3 and |NQ(x′′)| ≥ 3. Let P ∗ be the sub-path of P from x′ to x′′.
(Note this path may be just one edge.) Without loss of generality, we may
assume that y3 ∈ NQ(x′) ∩NQ(x′′). Then C ′ = 〈y3, x′, P ∗, x′′, y3〉 and
Q′ = 〈x1, y2, y1, y4, x1〉 with two chords y2y4 and x1y1 are the desired cycles.

Case 1.2: Suppose degQ(x2) = 4. (Note that the case where
degQ(xp−1) = 4 is symmetric to the degQ(x2) = 4 case.)

Then NQ(x2) = {y1, y2, y3, y4}. Note that there is at most one vertex, say
x ∈ {x1, xp−1, xp}, such that |N(x,Q)| ≤ 2. For x′, x′′ ∈ {x1, xp−1, xp}\{x},
|NQ(x′)| ≥ 3 and |NQ(x′′)| ≥ 3. Hence, there exists a vertex y ∈ V (Q) such
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that y ∈ NQ(xp−1) ∩NQ(xp). It can be easily seen that 〈y, xp−1, xp, y〉 is a
cycle and G[V (Q− y) ∪ x2] is a K4.

Case 2: Suppose Q = C∧5 with cycle 〈y1, y2, y3, y4, y5, y1〉 and with two
chords y1y3 and y1y4.

For any vertex xi ∈ S, if {y1, y4, y5} ⊂ NQ(xi) (respectively,
{y1, y2, y3} ⊂ NQ(xi)), then G[{xi, y1, y4, y5}] (respectively,
G[{xi, y1, y2, y3}]) induces a K4, which is a contradiction to the choice of
(i). Hence, we only need to consider NQ(xi) = {y2, y3, y4, y5}. By
symmetry, we need only to consider the following two cases.

Case 2.1: Suppose degQ(x1) = 4. (Note that the case where degQ(xp) = 4

is symmetric to the degQ(x1) = 4 case.) For any vertex x ∈ {x2, xp−1, xp},
we need to consider the following three cases.

Case 2.1.1: Suppose NQ(x) = NQ(x1) = {y2, y3, y4, y5}.

If x = x2, then G[{x1, x, y4, y5}] induces a K4, which is a contradiction to
(i). Suppose x = xp−1. Now if xp has a common neighbor, say y, with xp−1
on C∧5 , then these three vertices form a K3 and G[(C∧5 − y) ∪ x1] contains a
doubly chorded cycle. If xp is only adjacent to y1 on C∧5 , then x2 must have
4 neighbors and we are done by an argument similar to the case where
x = x2.

Now assume x = xp. Now since x2 or xp−1 has a common neighbor, say y,
with xp, then y and the path between x2 (or xp−1) and xp induce a cycle
and again G[(C∧5 − y) ∪ x1] contains a doubly chorded cycle.

Case 2.1.2: Suppose degQ(x) = 4 and NQ(x) 6= NQ(x1) for
x ∈ {x2, xp, xp−1}.

In this case, y1 ∈ NQ(x) and three other vertices from {y2, y3, y4, y5}. No
matter which three vertices are chosen, a K4 exists, which is a contradiction.
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Case 2.1.3: Suppose |NQ(x)| = 3.

In this case, any two vertices of {x2, xp−1, xp}, say x′ and x′′, have a
common neighbor, say y. If y = y1, then C ′ = 〈y1, x′, x′′, y1〉 and
Q′ = 〈x1, y2, y3, y4, y5, x1〉 with two chords x1y4 and x1y3 are the desired
cycles. If y = y2, then C ′ = 〈y2, x′, x′′, y2〉 and Q′ = 〈x1, y4, y3, y1, y5, x1〉
with two chords y1y4 and y5y4 are the desired cycles. If y = y3, then
C ′ = 〈y3, x′, x′′, y3〉 and Q′ = 〈x1, y5, y4, y1, y2, x1〉 with two chords y1y5 and
x1y4 are the desired cycles. If y = y4, then C ′ = 〈y1, y2, y3, y1〉 and
Q′ = 〈x1, y5, y4, x′′, x′, x1〉 with two chords x1y4 and x′y4 are the desired
cycles. If y = y5, then C ′ = 〈y1, y2, y3, y1〉 and Q′ = 〈x1, y4, y5, x′′, x′, x1〉
with two chords x1y5 and x′y5 are the desired cycles. See Figure 3b.

Figure 3b: |N(x,Q)| = 3
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Case 2.2: Suppose degQ(x2) = 4. (Note that the case where
degQ(xp−1) = 4 is symmetric to the degQ(x2) = 4 case.)

By substituting x2 for x1 in Case 2.1, it can be checked that this case also
follows.

This completes the proof.

By Lemma 3.11, we directly obtain the following corollary.

Corollary 3.12. Let P be a path with |V (P )| = 3 and Q ∈ H2 such that P
and Q are vertex disjoint. If

∑
x∈V (P ) degQ(x) ≥ 10, then there are two

vertex disjoint cycles such that one is a cycle and the other is a doubly
chorded cycle in G[V (P ) ∪ V (Q)].
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Chapter 4

Forbidden Subgraphs for Chorded

Pancyclicity

We call a graph G pancyclic if it contains at least one cycle of every possible
length m, for 3 ≤ m ≤ |V (G)|. In this chapter, we focus on a new property
we call chorded pancyclicity. We explore both an edge-density condition and
forbidden subgraphs in claw-free graphs sufficient to imply that the graph
contains at least one chorded cycle of every possible length 4, 5, . . . , |V (G)|.
In particular, certain paths and triangles with pendant paths are forbidden
along with K1,3. The results in this chapter are joint work with Ron Gould.

4.1 Introduction

In the past, forbidden subgraphs for hamiltonian properties in graphs have
been widely studied (for an overview, see [13]). A graph containing a cycle
of every possible length from three to the order of the graph is called
pancyclic and it is one of the well-studied cycle properties in graphs. In this
chapter, we define the notion of chorded pancyclicity, and study the density
necessary to guarantee this property in a graph. We also extend some
forbidden subgraph results for pancyclicity to analogous results for chorded
pancyclicity. We consider only K1,3-free (or claw-free) graphs, and we forbid
certain paths and triangles with pendant paths.
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In this chapter, we extend the following theorem to analogous results on
chorded pancyclicity. Recall these results that were stated earlier in §1.5.

Theorem 4.1. Let R, S be connected graphs and let G (G 6= Cn) be a
2-connected graph of order n ≥ 10. Then if G is {R, S}-free then G is
pancyclic for R = K1,3 and S is either P4, P5, P6, Z1, or Z2.

The proof of a theorem in [18] yields the following result.

Theorem 4.2. [18] If G is a 2-connected graph of order n ≥ 10 that
contains no induced subgraph isomorphic to K1,3 or Z1, then G is either a
cycle or G is pancyclic.

Gould and Jacobson proved a similar result for Z2 in [24].

Theorem 4.3. [24] If G is a 2-connected graph of order n ≥ 10 that
contains no induced subgraph isomorphic to K1,3 or Z2, then G is either a
cycle or G is pancyclic.

Faudree, Gould, Ryjacek, and Schiermeyer proved a similar result for
certain paths in [15].

Theorem 4.4. [15] If G is a 2-connected graph of order n ≥ 6 that is
{K1,3, P5}-free, then G is either a cycle or G is pancyclic.

Theorem 4.5. [15] If G is a 2-connected graph of order n ≥ 10 that is
{K1,3, P6}-free, then G is either a cycle or G is pancyclic.

Theorem 4.4 implies the following result for P4.

Theorem 4.6. [15] If G is a 2-connected graph of order n ≥ 6 that is
{K1,3, P4}-free, then G is either a cycle or G is pancyclic.

In this chapter, we extend each of these results to chorded pancyclicity,
which sometimes requires added or altered conditions.
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4.2 Results

4.2.1 Introduction to Chorded Pancyclicity

Definition 4.7. A graph G of order n is called chorded pancyclic if it
contains a chorded cycle of every length i, 4 ≤ i ≤ n.

Note: not all pancyclic graphs are chorded pancyclic. The graph in Figure
4a below is pancyclic, but contains no chorded 5-cycle. Further, the graph
in Figure 4b represents an infinite family of pancyclic graphs that do not
contain a chorded 4-cycle.

Figure 4a.

Figure 4b.

Before stating our results, we note particular notation that will be used
throughout the proofs. For vertices v1, v2, v3, v4, the notation v1–v2v3v4
represents the K1,3 graph where v1 is adjacent to the three other vertices
and the set {v2, v3, v4} is an independent set. To represent Z1, we will use
the notation v1v2v3–v4, where v1, v2, v3 is a triangle and v4 is adjacent to v3.
Similarly, v1v2v3–v4v5 will be used to represent Z2. The graphs K1,3, Z1,
and Z2 with the aforementioned notation are shown below (Figure 4c).



59

Figure 4c.

4.2.2 Edge Density and Chorded Pancyclicity

Following a similar idea from Chapters 2 and 3, it is natural to expect
enough density in a graph will imply chorded pancyclicity. We show that
this is true in the following theorem.

Theorem 4.8. Let G is a graph on n ≥ 5 vertices. If σ2(G) ≥ n+ 1, then
G is chorded pancyclic and further, this degree sum condition is best
possible.

Example: The complete bipartite graph on n vertices G = Kn
2
,n
2
, has

σ2(G) = n and only contains cycles of even length. Therefore G is not
pancyclic and hence clearly not chorded pancyclic either. Thus, the bound
in Theorem 4.8 is sharp.

Proof. Consider a graph G of order n ≥ 4 with σ2(G) ≥ n+ 1. By Ore’s
Theorem, G is hamiltonian and by σ2(G), any cycle of order n in G must
be chorded. According to a result of Bondy in [4], if |E(G)| ≥ n2/4 then G
is either pancyclic or G is the balanced complete bipartite graph Kn

2
,n
2
.

Since σ2(G) ≥ n+ 1, |E(G)| > n2/4 and thus G must be pancyclic. Let m
be the largest number with 4 ≤ m < n such that all of the m-cycles in G
are nonchorded.
Claim 1. G contains a chorded 4-cycle.
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Proof. Let x and y be a pair of nonadjacent vertices chosen to have the
smallest number m ≥ 3 of common neighbors in G. Partition V (G) into the
following sets:

N = {common neighbors of x and y},

N∗(x) = {vertices adjacent to x but not y},

N∗(y) = {vertices adjacent to y but not x},

D = {vertices not adjacent to both x and y}.

Let |N∗(x)| = X, |N∗(y)| = Y , and |D| = d.
Claim 1.1. If |N | = m ≥ 3 + r, then |D| ≤ r.

Proof. Suppose not, say |D| = r + t for some t ≥ 1. Then from the
partition of V (G), we have

X + Y +m+ d = n− 2, or

X + Y +m = n− 2− d.

Then σ2(G) ≤ n− 2− (r + t) + r + 3.

Hence, σ2(G) ≤ n+ 1− t < n+ 1, a contradiction.

Now consider a, b ∈ N . If ab ∈ E(G), then x, a, y, b, x is a chorded 4-cycle
with chord ab. If ab 6∈ E(G), then a and b must have at least m common
neighbors (with x and y being two of them). Now a and b must send no
edges into N , otherwise we would have a chorded 4-cycle. But now the
common neighbors of a and b (other than x and y) cannot all lie in D,
otherwise a and b would have at most 2 + r < m common neighbors, a
contradiction. Hence, a and b have at least one common neighbor in either
N∗(x) or N∗(y). Without loss of generality, suppose a and b share a
neighbor z ∈ N∗(X). Then a, z, b, x, a is a 4-cycle with chord xz. Thus G
must contain a chorded 4-cycle.
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Claim 2. If G contains a chorded 4-cycle, then G also contains a chorded
5-cycle.

Proof. Consider a chorded 4-cycle in G, say C = v1, v2, v3, v4, v1 with chord
v1v3. If v2v4 6∈ E(G) then since σ2(G) ≥ n+ 1, v2 and v4 must have a
common neighbor x 6∈ V (C) and then v1, v3, v2, x, v4, v1 is a 5-cycle with
chord v1v2. Now suppose C is the complete graph K4. Without loss of
generality, if x 6∈ V (C) is adjacent to v1 but not to v2, then x and v2 must
share a common neighbor, y 6= v1. If y is any vertex in C then there clearly
exists a chorded 5-cycle. If y 6∈ V (C), then v1, x, y, v2, v4, v1 is a 5-cycle with
chord v1v2. Thus, when n ≥ 4 the existence of a chorded 4-cycle implies the
existence of a chorded 5-cycle in G.

Claim 3. G contains a chorded k-cycle, for all k ≥ 6.

Proof. Suppose m ≥ 6. Consider a chordless m-cycle C = v1, v2, . . . , vm, v1

in G. Since C is chordless, v1 and v3 are nonadjacent and must have a
common neighbor x 6∈ V (C). Similarly v2 and v6 are nonadjacent and must
have a neighbor y 6∈ V (C) such that x 6= y. Now v1, x, v3, v2, y, v6, . . . , vm, v1

is an m-cycle with chord v1v2, a contradiction.

Claims 1, 2, and 3 imply that there must be at least one chorded 4-cycle in
G, and thus at least one chorded 5-cycle in G, as well as at least one
chorded m-cycle in G for 6 ≤ m ≤ n. Therefore, G is chorded pancyclic.

4.2.3 Forbidden Subgraphs

We now turn our attention to forbidden subgraphs for chorded pancyclicity.
We will use Theorem 4.1 as a guide for the following results.
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Theorem 4.9. Let G be a 2-connected graph of order n ≥ 10. If G is
{K1,3, Z1}-free, then if G 6= Cn, G is chorded pancyclic.

Proof. From Theorem 4.2, we know that G must be pancyclic. Now suppose
G is not chorded pancyclic. Then there exists at least one i with 4 ≤ i < n,
such that every i-cycle in G does not contain a chord. Consider the largest
such i, and let G be such a pancyclic graph with no chorded i-cycles. Note
that i 6= n, otherwise G = Cn, a contradiction. Consider an i-cycle,
C = v1, v2, . . . , vi−1, vi, v1. Since i < n, there exists some vertex x 6∈ V (C).
By our assumption, G is 2-connected, so there must be an edge xy in E(G)

such that y ∈ V (C). Without loss of generality, suppose v1x ∈ E(G). Then
v1 − xv2vi is a claw, so one of {viv2, vix, v2x} must be an edge in G.
If viv2 ∈ E(G) then viv2 is a chord of C and thus G contains a chorded
i-cycle, a contradiction. By symmetry, the case where vix ∈ E(G) and the
case where v2x ∈ E(G) are equivalent, so without loss of generality, suppose
v2x is an edge in G. Then xv1v2–v3 is a Z1 subgraph of G, therefore either
v1v3 or xv3 must be an edge in G. If v1v3 ∈ E(G) then C is a chorded
i-cycle with chord v1v3, a contradiction. If xv3 ∈ E(G) then x can replace
v1 on C and C becomes a chorded i-cycle with chord xv3, again a
contradiction. Therefore, G always contains a chorded i-cycle, so G must be
chorded pancyclic.

To prove our next lemma, we will use the following theorem from Duffus,
Gould, and Jacobson, on net-free graphs. The net graph is shown below.

Figure 4d.
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Theorem 4.10. [7] Any connected, net-free, claw-free graph G contains a
Hamiltonian path (i.e. is traceable).

Lemma 4.11. Let G be claw-free. For any x ∈ V (G), the neighborhood of
x, NG(x) is either connected and traceable, or two disjoint cliques.

Proof. First note that the independence number of the neighborhood of any
vertex in a claw-free graph must be at most two, otherwise G contains an
induced claw. Let G be a claw-free graph and consider a vertex x ∈ V (G).
If NG(x) is disconnected, then it must be two cliques in order to have
independence number two. If the neighborhood of a vertex contains an
induced net, then it has independence number at least three (the
independence number of the net graph). Therefore, the neighborhood of
any vertex in a claw-free graph cannot contain an induced net subgraph. So
if NG(x) is connected, then it is also net-free, claw-free and therefore, by
Theorem 4.10, must be traceable.

Example: The graph shown below is 2-connected, {K1,3, Z2}-free,
pancyclic, and has maximum degree ∆(G) = 4, but it does not contain a
chorded 4-cycle so it is not chorded pancyclic. However, adding any edge
yields a chorded 4-cycle, thus making the graph chorded pancyclic.

Figure 4e.

Theorem 4.12. Let G be a 2-connected graph of order n ≥ 10 with
∆(G) ≥ 5. If G is {K1,3, Z2}-free, then if G 6= Cn, G is chorded pancyclic.
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Proof. By Theorem 4.3, we know such a graph G must be pancyclic. For
the sake of contradiction, suppose there is some m with 4 ≤ m < n such
that every m-cycle in G does not contain a chord.

Case 1. Suppose m ≥ 5.
Consider an m-cycle C = v1, v2, v3, . . . , vm, v1 in G. Since G is

2-connected and of order at least 10, there exists a vertex x ∈ V (G)− V (C)

such that xv ∈ E(G) for some v ∈ V (C). Without loss of generality,
suppose xv1 ∈ E(G). Then v1–xv2vm is an induced claw in G. To eliminate
this induced claw, either xv2, xvm or v2vm must be added as an edge. If
v2vm is added then C is a chorded m-cycle and we are done. By symmetry,
adding either xv2 or xvm as an edge is equivalent, so without loss of
generality, suppose xv2 ∈ E(G). Then xv1v2–v3v4 is an induced Z2 in G.
The only two edges that would eliminate this induced Z2 and would not
add a chord to the m-cycle C are xv3 and xv4.

First suppose xv3 ∈ E(G). Then xv2v3–v4v5 is an induced Z2 in G. The
only edges that will eliminate the induced Z2, but will not yield a chorded
m-cycle are xv4 and xv5. If xv4 ∈ E(G) then v1, v2, x, v4, v5, . . . , vm, v1 is an
m-cycle with chord xv1. If instead xv5 ∈ E(G), then
v1, v2, v3, x, v5, . . . , vm, v1 is an m-cycle with chord xv1. This completes the
case where xv3 ∈ E(G). Now suppose instead that xv4 ∈ E(G). Then
v1, v2, x, v4, v5, . . . , vm, v1 is an m-cycle with chord v1x. This completes the
case where xv4 ∈ E(G) and thus completes the proof of Case 1.

Case 2. Suppose m = 4.
Since ∆(G) ≥ 5 there must be some vertex x ∈ V (G) such that
|NG(x)| ≥ 5. Consider such a vertex x and let |NG(x)| = l ≥ 5. By Lemma
4.11, NG(x) is either connected and traceable, or two disjoint cliques. If
NG(x) is connected and traceable, say v1, v2, . . . , vl is a hamiltonian path in
NG(x). Then x, v1, v2, v3, x is a 4-cycle with xv2 as a chord. If NG(x) is two
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disjoint cliques, then the one of the cliques is of order at least three. Three
vertices from this clique together with the vertex x yield a chorded 4-cycle.
So no matter what the neighborhood of x looks like, there is always a
chorded 4-cycle in G. This completes the proof of Case 2 and we are
done.

Conjecture 4.13. Let G be a 2-connected graph of order n ≥ 10. If G is
{K1,3, Z2}-free, then if G 6= Cn, G is chorded pancyclic.

A proof of this conjecture was done using a straightforward case analysis,
similar to the proof of Theorem 4.9, but resulted in very, very many cases.
Consequently, the proof has been omitted here.

Theorem 4.14. Let G be a 2-connected graph of order n ≥ 10. If G is
{K1,3, P4}-free, then if G 6= Cn, G is chorded pancyclic.

Proof. By Theorem 4.6, we know that G is pancyclic. Suppose, for the sake
of contradiction, that G is not chorded pancyclic. Let m be the largest
number with 4 ≤ m ≤ n such that every m-cycle in G is chordless.

Case 1. Suppose m = 4.
Consider a 4-cycle C = v1, v2, v3, v4, v1 in G. Since n ≥ 10 and G is

2-connected, there exists a vertex x 6∈ V (C) such that xv ∈ E(G) for some
v ∈ V (G). Without loss of generality suppose v1x ∈ E(G). Then x, v1, v2, v3
is an induced P4 in G. Since G must be P4-free, v1v3, v2x, or v3x must be in
E(G). If v1v3 ∈ E(G) then the cycle C is a chorded 4-cycle, a contradiction.
If v2x ∈ E(G) then x, v1, v4, v3 is an induced P4 subgraph of G, therefore

G must contain either v1v3, v3x, or v4x as an edge. The edge v1v3 creates a
chord of the 4-cycle C, a contradiction. The edge v3x yields the 4-cycle
v1, x, v3, v2, v1 with chord v2x, a contradiction. Similarly, the edge v4x yields
the 4-cycle v1, v2, x, v4, v1 with chord v1x, again a contradiction.
If v3x ∈ E(G) then v1–xv2v4 is an induced claw in G, therefore G must

contain either xv2, xv4, or v2v4 as an edge. The edge xv2 forms the 4-cycle
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v1, v2, v3, x, v1 with chord xv2, a contradiction. The edge xv4 yields the
4-cycle v1, v4, v3, x, v1 with chord xv4, a contradiction. The edge v2v4 is a
chord of the 4-cycle C, again a contradiction. Thus, every 4-cycle in G
must be chorded.

Case 2. Suppose m > 4.
Any chordless m-cycle contains at least one induced P4 subgraph, for

m > 4. Therefore, all m-cycles must contain at least one chord to ensure
that G is P4-free, for 4 < m ≤ n. Now we can conclude that G is chorded
pancyclic.

Theorem 4.15. Let G be a 2-connected graph of order n ≥ 10. If G 6= Cn

is {K1,3, P5}-free, then G is chorded pancyclic.

Proof. From Theorem 4.4 we know G must be pancyclic. Suppose, for the
sake of contradiction, that G is not chorded pancyclic. Let m be the largest
number with 4 ≤ m ≤ n such that every m-cycle in G is not chorded.

Case 1. Suppose m = 4.

Consider a 4-cycle C = a, b, c, d, a in G. Since G is 2-connected and of
order at least 10, there is a vertex x1 6∈ V (C) such that x1v ∈ E(G) for some
v ∈ V (C). Without loss of generality, suppose x1a ∈ E(G). Then a–x1bd is
an induced claw in G, so either x1b, x1d, or bd must be an edge in G.
Adding the edge bd makes C into a chorded 4-cycle. By symmetry, adding
x1b or x1d is equivalent, so without loss of generality, suppose x1b ∈ E(G).

Now there are no induced P5 or K1,3 subgraphs in G, but again since G is
2-connected and of order at least 10, there must be some vertex x2 6∈ V (C)

such that x1 6= x2 and x2v ∈ E(G) for some v ∈ V (C).

If x2a (or, by symmetry, x2b) is an edge in G, then a–x2bd is an induced
claw. Then either x2b, x2d, or bd must be an edge. If either bd or x2b is an
edge, then there exists a chorded 4-cycle in G. So suppose x2d ∈ E(G).



67

There is some vertex x3 6∈ V (C) such that x3 6= x2 or x1 and x3v ∈ E(G)

for some v ∈ V (C) ∪ {x1}.

Now we must consider all of the possible adjacencies of x3: a, b (same
case as d), c, and x1. If x3a ∈ E(G) then a–x3bd is an induced claw. Any
edge added to eliminate the claw will result in a chorded 4-cycle.

If x3b (or similarly x3d) ∈ E(G) then b–x3ac is a claw. Adding either one
of the edges ac or x3a to eliminate the claw, will result in a chorded 4-cycle.
Adding x3c to eliminate the claw does not yield a chorded 4-cycle or any
induced P5 or K1,3 subgraphs. However, following an earlier argument,
there is a vertex x4 6∈ V (C) ∪ {x1, x2, x3} such that x4v ∈ E(G) for some
v ∈ V (C) ∪ {x1, x2}. Now we must consider all of the possible adjacencies
of x4.

If x4a (or similarly x4b) ∈ E(G) then a-x4bd is an induced claw. Adding
any edge to eliminate the claw yields a chorded 4-cycle. If x4c (or similarly
x4d) ∈ E(G) then c–x4bd is an induced claw. Adding either bd or x4b to
eliminate the claw, yields a chorded 4-cycle. Adding x4d to eliminate the
claw does not result in any chorded 4-cycles or induced P5 or K1,3

subgraphs. There must exist another vertex x5 6∈ V (C) ∪ {x1, x2, x3, x4}
such that x5v ∈ E(G) for some v ∈ V (C) ∪ {x1, x2, x3}.

If x5 is adjacent to any of the original vertices in C, then an induced claw
in each of those cases will yield a chorded 4-cycle. The remaining possible
adjacencies to x5 are all symmetric: x1, x2, and x3. So without loss of
generality suppose x1x5 ∈ E(G). Then x5, x1, a, d, c is an induced P5.
Adding any edge that eliminates the induced P5 will either yield a chorded
4-cycle or an induced claw that will yield a chorded 4-cycle.

If x4x1 ∈ E(G), then x4, x1, a, d, c is an induced P5. Adding any one of
four of the six edges that eliminate the induced P5 results in a chorded
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4-cycle. However, adding either x4d or x4c will not produce a chorded
4-cycle. By symmetry, adding either edge is equivalent so without loss of
generality suppose x4d ∈ E(G). Then d–x4ac is an induced claw and x4c is
the only claw-eliminating edge whose addition will not yield a chorded
4-cycle. In fact, adding x4c does not yield any induced P5 or K1,3 subgraphs
either. There exists a vertex x5 6∈ V (C) ∪ {x1, x2, x3, x4} such that
v5v ∈ E(G) for some v ∈ V (C) ∪ {x1, x2, x3}. The addition of either x5a or
x5b yields an induced claw that results in a chorded 4-cycle. The addition
of x5c or x5d results in an induced claw that yields either a chorded 4-cycle
or a previously considered case, depending on which edge is added to
eliminate the induced claw.

If x5x1 ∈ E(G), then x1–x5x4a is an induced claw and adding either x5a
or x4a to eliminate the claw, yields a chorded 4-cycle. If x5x4 is added to
eliminate the claw then x5, x1, a, d, c is an induced P5 and any edge added
to eliminate the induced P5 results in a chorded 4-cycle.

If x5x2 ∈ E(G) then x5, x2, a, b, c is an induced P5. To eliminate the
induced P5, adding either x5a, x1d, x1c, or ac yields a chorded 4-cycle.
Adding x5b to eliminate the induced P5 produces the induced b–x5ac claw.
The only claw-eliminating edge that will not yield a chorded 4-cycle is x5c,
so suppose x5c ∈ E(G). Now b–x5x3a is an induced claw and the addition
of any claw-eliminating edge yields a chorded 4-cycle. If x5c ∈ E(G) (and
x5b 6∈ E(G)) then c–x5bd is an induced claw and any added
claw-eliminating edge results in either a chorded 4-cycle or a previously
checked case. If x2x4 ∈ E(G) (and x1x4 6∈ E(G)) then x4, x2, a, b, c is an
induced P5 and any induced-P5-eliminating edge yields a chorded 4-cycle,
except the edge x4c. If x4c ∈ E(G) then c–x4bd is an induced claw and the
addition of any induced-claw-eliminating edge will yield a chorded 4-cycle.
If x1, x3 ∈ E(G) (and x3c 6∈ E(G)) then x3, x1, b, c, d is an induced P5 and
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any edge that will eliminate the induced P5 except for x3c or x3d will result
in a chorded 4-cycle.

If x3c ∈ E(G) then c–x3bd is an induced claw. To eliminate the induced
claw, the addition of either x3b or bd yields a chorded 4-cycle, but the
addition of x3d does not. There exists a vertex x4 6∈ V (C) ∪ {v1, x2, x3}
such that x4v ∈ E(G) for some v ∈ V (C) ∪ {x1, x2}. Considering the
possible adjacencies of x4, if x4a, x4b, x4c, or x4d ∈ E(G) then an induced
claw forces the existence of a chorded 4-cycle or a previously checked case.
If x4x1 is added to eliminate the induced P5 then x1–x4x3b is an induced
claw and the only induced claw-eliminating edge that does not yield a
chorded 4-cycle is x3x4. So if x3x4 ∈ E(G), then x4, x1, a, d, c is an induced
P5 and adding any edge to eliminate this induced P5 yields a chorded
4-cycle. If x4x2 ∈ E(G) (and x1x4 6∈ E(G)) then x4, x2, a, b, c is an induced
P5. Adding any edge to eliminate this induced P5 results in a chorded
4-cycle, except for the addition of either x4b or x4c. If x4b ∈ E(G) then
b–x4ac is an induced claw. Adding any edge except for x4c to eliminate this
induced claw will result in a chorded 4-cycle. If x4c is added to eliminate
the claw, then x4, x2, , x1, x3 is an induced P5 and adding any edge to
eliminate this induced P5 yields a chorded 4-cycle. If x4c was added first
instead of x4b, then c–x4x3b is an induced claw. To eliminate the claw,
adding the edge x3b yields a chorded 4-cycle and adding the edge x4b
results in a previously checked case. Adding x3x4 results in a x3–x1x4d
induced claw. Any edge added to eliminate this claw yields a chorded
4-cycle. This completes the case where x2a ∈ E(G).

If x2c (or, by symmetry, x2d) is an edge in G, then c–x2bd is an induced
claw, which can be eliminated by adding x2b, x2d, or bd as an edge. If bd is
added then C is a chorded 4-cycle. Adding x2b as an edge yields a
previously considered structure. So suppose x2d ∈ E(G). There are no
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chorded 4-cycles or induced claws or P5 subgraphs. There exists a vertex
x3 6∈ V (C) ∪ {x1, x2} such that x3v ∈ E(G) for some v ∈ V (C) ∪ {x1}. Now
consider all of the possible adjacencies of x3. By symmetry, adding the edge
x3a is equivalent to adding any one of the edges x3b, x3c, or x3d. Without
loss of generality, suppose x3a ∈ E(G). Then a–x3bd is an induced claw.
The addition of any one of the edges needed to eliminate this induced claw
results in either a previously checked case, or a chorded 4-cycle. So instead
suppose x3 is adjacent to x1 (the only other possibly adjacency of x3).
Then x3, x1, a, d, c is an induced P5 in G. If any one of the edges needed to
eliminate the induced P5 is added, then there is a chorded 4-cycle, except
when x3d (or by symmetry, x3c is added. Without loss of generality,
suppose x3d ∈ E(G). Then d–x3ac is an induced claw in G. Adding any
one of the edges needed to eliminate the induced claw, results in a chorded
4-cycle. This completes the case where x2c ∈ E(G).

Case 2. Suppose m = 5.

Consider a 5-cycle C = a, b, c, d, e, a in G. Since n ≥ 10 and G is
2-connected, there exists a vertex x1 6∈ V (C) such that x1v ∈ E(G) for
some v ∈ V (C). Without loss of generality, say ax1 ∈ E(G). Then a–x1, b, e
is an induced claw in G, thus either x1b, x1e, or be must be an edge in G. If
be is an edge then C is a chorded 5-cycle and we are done with this case.
By symmetry, adding x1b or x1e as an edge is equivalent, so without loss of
generality assume x1b ∈ E(G).

Now x1, b, c, d, e is an induced P5, so either x1c, x1d, x1e, bd, be, or ce
must be an edge in G. The edges bd, be, and ce make C a chorded 5-cycle,
and we are done. If x1d ∈ E(G) then x1, b, a, e, d, x1 is a 5-cycle with chord
x1a and we are done. By symmetry, adding the edge x1c or adding x1e is
equivalent, so assume x1c ∈ E(G).There are no chorded C5’s nor induced
P5’s or K1,3’s, but since n ≥ 10 and G is 2-connected there must be some
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vertex x2 6∈ V (C) such that x2 6= x1 and x2v ∈ E(G) for some v ∈ V (C).

If x2a (or x2c, by symmetry) ∈ E(G), then a–x2be is an induced claw
subgraph in G so x2b, x2e, or be must be an edge of G. Adding be as an
edge makes C a chorded 5-cycle. If x2b ∈ E(G), then b, c, x1, a, x2, b is a
5-cycle with chord ab. If x2e ∈ E(G) then x2, a, b, c, d is an induced P5, so
either x2b, x2c, x2d, ac, ad, or bd must be an edge in G. Adding any of the
edges except x2d will yield a chorded 5-cycle. So suppose x2d ∈ E(G).
There are no induced P5 or K1,3 subgraphs, but since G is 2-connected and
of order at least 10, there must be some vertex x3 6∈ V (C) such that
x3 6= x1 or x2 and x3v ∈ E(G) for some v ∈ V (C) ∪ {x1}. If x3a ∈ E(G),
then a–x3be is an induced claw so x3b, x3e, or be must be an edge in G.
Adding any of these edges yields a chorded 5-cycle. If x3b (or, similarly x3e)
is an edge, then b–x3ac is an induced claw so either x3a, x3c, or ac ∈ E(G).
Adding any of these edges yields a chorded 5-cycle. If x3c (or, similarly
x3d) is an edge then c–x3bd is an induced claw so either x3b, x3d, or
bd ∈ E(G). Adding x3b or bd yields a chorded 5-cycle. If x3d ∈ E(G) then
x3, d, e, a, b is an induced P5. Adding any of the edges to eliminate this P5

either creates a chorded 5-cycle or results in a previously considered case
(which all yielded chorded 5-cycles). If x1x3 ∈ E(G), then x1–x3ac is an
induced claw so either x3a, x3c, or ac ∈ E(G). Adding any of these edges
yields a chorded 5-cycle in G. This completes the case where x2a ∈ E(G).

If x2b ∈ E(G), then b–x2ac is an induced claw so either x2a, x2c or
ac ∈ E(G). Adding any of these edge will create a chorded 5-cycle in G.
This completes the case where x2b ∈ E(G).

If x2d (or x2e, by symmetry) ∈ E(G), then d–x2ce is an induced claw so
either x2c, x2e, or ce ∈ E(G). The edge ce is a chord of C. If x2c ∈ E(G),
then x2, c, b, a, e is an induced P5. To eliminate this P5, adding either x2a,
x2b, ca, be, or ce creates a chorded 5-cycle. The final edge that would
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eliminate the P5 is x2e. Adding x2e creates a structure symmetric to L,
which has been previously considered. If x2e is an edge instead of x2c then
x2, e, a, b, c is an induced P5 in G. Adding either edge x2a or x2c yields a
structure symmetric to L. Adding any one of the remaining edges to
eliminate the P5 yields a chorded 5-cycle. This completes the case where
x2d ∈ E(G) and thus concludes the m = 5 case.

Case 3. Suppose m ≥ 6.

There is an induced P5 subgraph in every non-chorded m-cycle for m ≥ 6,
so every such m-cycle must contain at least one chord. The three cases
together show that there is a chorded cycle of every possible length m, for
4 ≤ m ≤ n, in G.

Unlike the straightforward case analysis method used to prove Theorems
4.14 and 4.15, we took a different approach when forbidding P6 from
claw-free graphs, as otherwise the number of cases was problematic. We use
Lemma 4.11 along with the following results to prove the P6 result for
sufficiently large graphs.

Lemma 4.16. Let G be a K1,3-free graph. For any x ∈ V (G) and any
k > 2 ∈ Z, if degG(x) ≥ 2k − 1 then there is a chorded (k + 1)-cycle in G.

Proof. Consider a vertex x ∈ V (G) such that degG(x) ≥ 2k − 1. Lemma
4.11 implies that NG(x) is either connected and traceable, or two disjoint
cliques.

Case 1: Suppose NG(x) is connected and traceable.
Let v1, v2, . . . , v2k−1 be a Hamiltonian path in NG(x). Then
x, v1, v2, . . . , vk, x is a chorded (k + 1)-cycle in G with chord xv2 (in fact,
there are k − 2 chords in this (k + 1)-cycle).

Case 2: NG(x) is two disjoint cliques.
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Partitioning the 2k − 1 vertices into two cliques, the smallest order that the
larger of the two sets can be is k (the k and k − 1 case). Say the vertices
{v1, v2, . . . , vk} form a clique in NG(x), then x, v1, v2 . . . , vk, x is a chorded
(k + 1) cycle in G with chord xv2.

Theorem 4.17. [11] Let f = Fd(p,∆) be the smallest integer such that
every graph on p vertices with at least f edges has maximum degree ∆ and
diameter at most d. Then:

f = Fd(p,∆) ≥
(
p

2

)
∆− 2

(∆− 1)d − 1
.

Theorem 4.18. Let G be a 2-connected graph of order n > 3201. If G is
{K1,3, P6}-free and G 6= Cn, then G is chorded pancyclic.

Proof. By Theorem 4.5, G must be pancyclic, so now we must show G

contains a chorded cycle of every possible length m for 4 ≤ m ≤ n. Note
that for m ≥ 7, every m-cycle must be chorded, otherwise it contains an
induced P6 subgraph. Now we need to show there exists a chorded 4-cycle,
chorded 5-cycle, and chorded 6-cycle in G.
For some x ∈ V (G), if dG(x) ≥ 5 then there exists a chorded 4-cycle by

Lemma 4.16 (k = 3 case). If dG(x) ≥ 7 then there exists a chorded 5-cycle
in G by Lemma 4.16 (k = 4 case). If dG(x) ≥ 9 then there exists a chorded
6-cycle in G by Lemma 4.16 (k = 5 case). Therefore, if G contains a vertex
of degree at least nine, then G contains at least one chorded 4-cycle,
chorded 5-cycle, and chorded 6-cycle by Lemma 4.16 and is thus chorded
pancyclic.
Suppose that G is 8-regular (i.e. adding any edge will yield a vertex of

degree nine and hence the desired result). Then G has maximum degree
∆ = 8 and G contains 8n

2
= 4n edges. Note that d is the diameter of G if
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and only if G is Pl-free for l > d+ 2. So since G is P6-free, the diameter of
G is d ≥ 4. By Theorem 4.17, we have

4n ≥
(
n

2

)
8− 2

(8− 1)4 − 1

4n ≥ 6n(n− 1)

2(74 − 1)

4 ≥ 3(n− 1)

2400
,

Hence, n ≤ 3201.

Therefore, if G is a 2-connected {K1,3, P6}-free graph of order n > 3201,
then G contains a vertex of degree at least nine and thus is chorded
pancyclic.

We feel the bound given on n in Theorem 4.18 is sufficient but not
necessary, so we make the following conjecture.

Conjecture 4.19. Let G be a 2-connected graph of order n ≥ 10. If G is
{K1,3, P6}-free and G 6= Cn, then G is chorded pancyclic.
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