Distribution Agreement

In presenting this thesis or dissertation as a partial fulfillment of the requirements for an advanced degree from Emory University, I hereby grant to Emory University and its agents the non-exclusive license to archive, make accessible, and display my thesis or dissertation in whole or in part in all forms of media, now or hereafter known, including display on the world wide web. I understand that I may select some access restrictions as part of the online submission of this thesis or dissertation. I retain all ownership rights to the copyright of the thesis or dissertation. I also retain the right to use in future works (such as articles or books) all or part of this thesis or dissertation.

Signature:

Megan Cream

On Chorded Cycles

By
 Megan Cream
 Doctor of Philosophy

Mathematics

Ron Gould
Advisor
\qquad
Dwight Duffus
Committee Member

Vojtech Rodl
Committee Member
Accepted:

Lisa A. Tedesco, Ph.D.
Dean of the James T. Laney School of Graduate Studies

Date

On Chorded Cycles

By

Megan Cream

Advisor: Ron Gould, Ph.D.

An abstract of
A dissertation submitted to the Faculty of the
James T. Laney School of Graduate Studies of Emory University in partial fulfillment of the requirements for the degree of Doctor of Philosophy
in Mathematics
2015

Abstract

On Chorded Cycles
By Megan Cream

Historically, there have been many results concerning sufficient conditions for implying certain sets of cycles in graphs. My thesis aims to extend many of these well known results to similar results on sets of chorded (and sometimes even doubly chorded) cycles. In particular, we consider the minimum degree, $\delta(G)$ and a Ore-type degree sum condition, $\sigma_{2}(G)$ of a graph G, sufficient to guarantee the existence of k vertex disjoint chorded cycles, often containing specified elements of the graph, such as certain vertices or edges. Further, we extend a result on vertex disjoint cycles and chorded cycles to an analogous result on vertex disjoint cycles and doubly chorded cycles. We define a new graph property called chorded pancyclicity, and investigate a density condition and forbidden subgraphs in claw-free graphs that imply this new property. Specifically, we forbid certain paths and triangles with pendant paths. This is joint work with Dongqin Cheng, Ralph Faudree, Ron Gould, and Kazuhide Hirohata.

On Chorded Cycles

By
Megan Cream
Advisor: Ron Gould, Ph.D.

A dissertation submitted to the Faculty of the
James T. Laney School of Graduate Studies of Emory University in partial fulfillment of the requirements for the degree of Doctor of Philosophy
in Mathematics
2014

Contents

1 Introduction 1
1.1 History 1
1.2 Some Basics (Definitions and Notation) 3
1.3 Known Results for Sets of Cycles Containing Specified Graph Elements 5
1.4 Known Results for Vertex Disjoint Cycles and Chorded Cycles 6
1.5 Known Results for Pancyclic Graphs 7
2 Vertex Disjoint Chorded Cycles Containing Specified Graph Elements 10
2.1 Introduction 10
2.2 Results 12
2.2.1 Placing Edges as Chords on Cycles 12
2.2.2 Placing Edges on Chorded Cycles 24
2.2.3 Placing Vertices on Chorded Cycles 31
3 A Result on Vertex Disjoint Cycles and Doubly Chorded Cycles 42
3.1 Introduction 42
3.2 Some Lemmas 45
3.3 Proof of Theorem 3.6 48
4 Forbidden Subgraphs for Chorded Pancyclicity 56
4.1 Introduction 56
4.2 Results 58
4.2.1 Introduction to Chorded Pancyclicity 58
4.2.2 Edge Density and Chorded Pancyclicity 59
4.2.3 Forbidden Subgraphs 61
Bibliography 75

Chapter 1

Introduction

1.1 History

In the field of extremal graph theory, we are interested in the way that local graph properties can affect global properties of the graph. We often investigate how far we can push certain properties of a graph before we can guarantee the existence of some other property, or even some specific structure in the graph. In the past, there have been many results concerning sufficient conditions for graphs containing certain types of cycles, such as hamiltonian cycles, or certain sets of cycles. In particular, there has been a large focus on sets of vertex disjoint cycles that contain specified graph elements including certain sets of vertices, or sets of independent edges, for example. Arguably one of the most famous such results is due to Corrádi and Hajnal [6].

Theorem 1.1. [6] Let G be a graph of order $n \geq 3 k$ for an integer $k \geq 1$ and suppose the minimum degree of $G, \delta(G) \geq 2 k$. Then G contains a set of k vertex disjoint cycles.

Enomoto proved a stronger result in [10] for the Ore-type degree sum condition, $\sigma_{2}(G)$ as follows.

Theorem 1.2. [10] Suppose G is a graph of order $n \geq 3 k$ for an integer $k \geq 1$. If $\sigma_{2}(G) \geq 4 k-1$, then G contains a set of k vertex disjoint cycles.

A type of cycle that was largely ignored until relatively recently is a chorded cycle, that is a cycle with an edge between two vertices that are nonadjacent on the cycle. In this thesis, we turn our attention to chorded cycles and we extend many well-known results on cycles or vertex disjoint sets of cycles to analogous results on chorded cycles and sometimes even doubly chorded cycles. Admittedly, we were not the first to focus on chorded cycles. Back in 1960, Posa [25] asked the question: which graph properties imply the existence of a cycle with a chord? The first answer was due to Czipzer (see Problem 10.2 in [25]) in 1963; he found that any graph with minimum degree at least three must contain a chorded cycle. However, it was not until 45 years later in 2008, that the interest in chorded cycles began to pick up steam. That year, Finkel [16] extended the Corrádi-Hajnal theorem to a chorded cycle version.

Theorem 1.3. [16] Let G be a graph of order $n \geq 4 k$ for an integer $k \geq 1$ and suppose the minimum degree of $G, \delta(G) \geq 3 k$. Then G contains a set of k vertex disjoint chorded cycles.

Further, this result is sharp as can be easily seen from the complete bipartite graph $K_{3 k-1, n-3 k+1}$. (Note that the smallest chorded cycle in a complete bipartite graph is a 6 -cycle.) In 2005, Faudree and Gould [12] found the best lower bound for the order of neighborhood unions of nonadjacent vertices that implies the existence of k disjoint cycles in a graph. This result was extended to chorded cycles in 2012 by Gould, Hirohata, and Horn [21] and independently Gao, Li, and Yan [17]. They proved the following result.

Theorem 1.4. [21], [17] For an integer $k \geq 1$, le G be a graph of order $n \geq 4 k$ such that for any pair of nonadjacent vertices x and $y, \mid N(x) \cup$ $N(y) \mid \geq 4 k+1$. Then G contains at least k vertex disjoint chorded cycles.

Inspired by these extensions of theorems on sets of cycles to theorems on sets of chorded cycles, we consider other cycle results to extend similarly. These results are stated in $\S 2.2,3.1$, and 4.2 .

1.2 Some Basics (Definitions and Notation)

In this thesis, we assume a working knowledge of graph theory. For a thorough background on the subject, see [20]. We consider only finite simple graphs, that is, graphs with no loops or multiple edges. Let $G=$ $(V(G), E(G))$ be a finite simple graph. We denote the degree of a vertex $v \in V(G)$ as $\operatorname{deg}_{G}(v)$ which is the number of edges incident to v in G. For a set of vertices $\left\{u_{1}, u_{2}, \ldots, u_{k}\right\}$ and a subgraph H of G, let $\operatorname{deg}_{H}\left(u_{1}, u_{2}, \ldots, u_{k}\right)$ be the sum of the degrees of the vertices u_{i} (for $1 \leq i \leq k$) to the subgraph H. The set of vertices adjacent to v in the graph G is called the neighborhood of v in G and is denoted $N_{G}(v)$. The minimum degree of a graph is the smallest degree over all the vertices in G and is denoted $\delta(G)$. Similarly, the maximum degree of G is denoted $\Delta(G)$. The independence number, $\alpha(G)$ of a graph is the largest number of vertices in a mutually nonadjacent set of vertices in G. For a noncompete graph G, we define the following Ore-type degree sum condition

$$
\sigma_{2}(G)=\min \left\{\operatorname{deg}_{G}(x)+\operatorname{deg}_{G}(y) \mid x y \notin E(G)\right\}
$$

If G is a complete graph, then by convention $\sigma_{2}(G):=\infty$.
Let G be a graph and P_{t} be a path on t vertices. In Chapter 3, a path P is denoted $P=\left\langle u_{1}, u_{2}, \ldots, u_{m}\right\rangle$ for $u_{1}, u_{2}, \ldots, u_{m} \in V(G)$, otherwise it is denoted as simply $u_{1}, u_{2}, \ldots, u_{m}$. Next we define two terms crucial to this thesis on chorded cycles.

Definition 1.5. Given a cycle C, an edge $e=v_{1} v_{2}$ is called a chord of C
if its end-vertices, v_{1} and v_{2}, are not adjacent on C. We then say that C is a chorded cycle.

Further, a doubly chorded cycle is a cycle with at least two chords. Next we define two important concepts for the study of forbidden subgraphs, which we will investigate in Chapter 4.

Definition 1.6. A vertex-induced subgraph, which we will simply refer to as an induced subgraph, is a subset of the vertices of a graph G together with any edges whose end-vertices are both in the subset of $V(G)$. For a subset $S \subseteq V(G)$, we denote the subgraph of G induced by the vertices of S as $G[S]$.

Definition 1.7. Given a subgraph H of a graph G, we say G is H-free if G does not contain a subgraph isomorphic to H.

In Chapter 4, we consider only $K_{1,3}$-free (or claw-free) graphs, and we will forbid certain paths and triangles with pendant paths. Let Z_{i} be a triangle with a pendant P_{i} adjacent to one of the vertices of the triangle. In particular, we will focus on the graphs Z_{1} and Z_{2}, shown below (Figure 1a).

Figure 1a.
We will also use the following terms in Chapter 4.
Definition 1.8. A graph G is called traceable if it contains a path consisting of every vertex in $V(G)$.

Definition 1.9. The diameter of a graph G, denoted $d(G)$, is the longest shortest path between any two vertices in $V(G)$.

For any terms not defined here, see [20].

1.3 Known Results for Sets of Cycles Containing Specified Graph Elements

In Chapter 2, we consider minimum degree conditions $\delta(G)$ and degree sum conditions $\sigma_{2}(G)$. Our goal is to find sufficient such conditions to imply the existence of vertex disjoint sets of chorded cycles, often containing specific graph elements. In particular, we extend some well-known results for sets of cycles much like Gould, Hirohata, and Horn's [21] extension of Gould's previous result with Faudree on neighborhood unions in [12]. One source of our inspiration came about in 2000, when Egawa, Faudree, Gyori, Ishigami, Schelp, and Wang [9] proved the following result for vertex disjoint cycles.

Theorem 1.10. [9] Let G be a graph on $n \geq 4 k$ vertices for an integer $k \geq 1$ and let $\left\{e_{1}, e_{2}, \ldots, e_{k}\right\}$ be a set of k independent edges in G. If the minimum degree

$$
\delta(G) \geq \frac{n+2 k-2}{2}
$$

then G contains k vertex disjoint cycles $\left\{C_{1}, C_{2}, \ldots, C_{k}\right\}$ such that $e_{i} \in E\left(C_{i}\right)$ and $3 \leq\left|V\left(C_{i}\right)\right| \leq 4$ for all $1 \leq i \leq k$.

This result can be extended in multiple ways, as shown in Chapter 2, §2.2.2. Next, we note a similar known result about placing specified vertices on vertex disjoint cycles.

Theorem 1.11. [8] For an integer $k \geq 1$, let G be a graph of order $n \geq 6 k-3$. If the minimum degree

$$
\delta(G) \geq \frac{n}{2}
$$

then for any set of k vertices $\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$ in G, there exists a set of k vertex disjoint cycles $\left\{C_{1}, C_{2}, \ldots, C_{k}\right\}$ such that $v_{i} \in V\left(C_{i}\right)$ and $3 \leq\left|V\left(C_{i}\right)\right| \leq 5$ for all $1 \leq i \leq k$.

In Chapter 2, we extend this result to chorded cycles. Further, we consider the basic question of when a set of k independent edges can be chords for k vertex disjoint cycles, one per cycle. We also investigate under which conditions the k vertex disjoint chorded cycles can be extended to span the entire vertex set of a graph.

1.4 Known Results for Vertex Disjoint Cycles and Chorded Cycles

The motivation for the results in Chapter 3 comes from a natural conjecture based on Theorems 1.1 and 1.2 proposed by Bialostocki, Finkel, and Gyárfás, in [3].
Conjecture 1.12. [3] Let $r, s \geq 0$ be two integers and let G with a graph of order $n \geq 3 r+4 s$ and minimum degree

$$
\delta(G) \geq 2 r+3 s
$$

Then G contains a collection of $r+s$ vertex disjoint cycles such that s of them are chorded cycles.
This minimum degree bound is sharp, and its sharpness is shown in [17]. The $r=0, s=2$ case and the $s=1$ cases were shown to be true in [3]. The $r=0$ case was completed by Finkel [16] in the aforementioned Theorem 1.3.
The general conjecture was proved to be true by Babu and Diwan [1], and Chiba and Fujita [5], independently. In particular, the authors in [1, 5] generalized the minimum degree condition to a degree sum condition, and proved the following theorem.

Theorem 1.13 ([1, 5]). Let $r \geq 0, s \geq 0$ be two integers and G be a graph with $|V(G)| \geq 3 r+4 s$ and

$$
\sigma_{2}(G) \geq 4 r+6 s-1
$$

then G contains $r+s$ vertex disjoint cycles such that s of them are chorded cycles.

Balister, Li, and Schelp [2] improved on Theorem 1.13 under a minimum degree condition in the following result.

Theorem 1.14 ([2]). If G is a simple graph on $|V(G)| \geq 3 r+4 s$ vertices with minimum degree

$$
\delta(G) \geq 2 r+3 s
$$

then G contains $r+s$ vertex disjoint cycles, each of s of them with two chords, or a C_{4} with one chord.

Qiao and Zhang [26] proved that $|V(G)| \geq 4 k$ and $\delta(G) \geq\lceil 7 k / 2\rceil$ can ensure k vertex disjoint doubly chorded cycles in any graph G. Gould, Hirohata and Horn [21] improved the degree condition in [26] to a degree sum condition and proved the following result.

Theorem 1.15 ([21]). If G is a graph with $|V(G)| \geq 6 k$ and

$$
\sigma_{2}(G) \geq 6 k-1
$$

then G contains k vertex disjoint doubly chorded cycles.
Motivated by the above theorems, in Chapter 3 our goal is to guarantee a collection of $r+s$ vertex disjoint cycles, such that s of them are doubly chorded cycles.

1.5 Known Results for Pancyclic Graphs

Forbidden subgraphs for hamiltonian properties in graphs have been widely studied (for an overview, see [13]). A property even stronger than hamiltonicity is pancyclicity in a graph G, which is the property of containing a
cycle of every possible length $i=3,4, \ldots,|V(G)|$. Pancyclicity only arises in 2-connected graphs and is one of the well-studied cycle properties in graphs. In Chapter 4, we extend this property and study the notion of chorded pancyclicity, that is, containing a chorded cycle of every possible length $i=4,5, \ldots,|V(G)|$. We study the density sufficient to guarantee this property in a graph. There are also many known forbidden subgraph results for pancyclicity. We take the natural step of extending some of these results from pancyclicity to chorded pancyclicity.
In Chapter 4, we extend the following theorem to a similar result on chorded pancyclicity, with slight variations in some conditions.

Theorem 1.16. Let R, S be connected graphs and let $G\left(G \neq C_{n}\right)$ be a 2connected graph of order $n \geq 10$. Then if G is $\{R, S\}$-free then G is pancyclic for $R=K_{1,3}$ and S is either $P_{4}, P_{5}, P_{6}, Z_{1}$, or Z_{2}.

The proof of a theorem in [18] yields the following result.
Theorem 1.17. [18] If G is a 2-connected graph of order $n \geq 10$ that contains no induced subgraph isomorphic to $K_{1,3}$ or Z_{1}, then G is either a cycle or G is pancyclic.

Gould and Jacobson proved a similar result for Z_{2} in [24].
Theorem 1.18. [24] If G is a 2-connected graph of order $n \geq 10$ that contains no induced subgraph isomorphic to $K_{1,3}$ or Z_{2}, then G is either a cycle or G is pancyclic.

Faudree, Ryjacek, and Schiermeyer proved a similar result for certain paths in [15].

Theorem 1.19. [15] If G is a 2-connected graph of order $n \geq 6$ that is $\left\{K_{1,3}, P_{5}\right\}$-free, then G is either a cycle or G is pancyclic.

Theorem 1.20. [15] If G is a 2-connected graph of order $n \geq 10$ that is $\left\{K_{1,3}, P_{6}\right\}$-free, then G is either a cycle or G is pancyclic.

Theorem 1.19 implies the following result for P_{4}.
Theorem 1.21. If G is a 2-connected graph of order $n \geq 6$ that is $\left\{K_{1,3}, P_{4}\right\}$ free, then G is either a cycle or G is pancyclic.

In Chapter 4, §4.2.3 of this thesis, we extend each of these results to similar results on chorded pancyclicity.

Chapter 2

Vertex Disjoint Chorded Cycles Containing Specified Graph Elements

This chapter explores minimum degree and degree sum conditions for graphs sufficient to imply that the graph contains k vertex disjoint chorded (or sometimes doubly chorded) cycles which contain specific elements of the graph. In particular, sets of specific chords, sets of specific edges, and sets of specific vertices are all considered. We also investigate degree sum and minimum degree conditions sufficient to imply that a set of independent edges are the chords of vertex disjoint cycles. The results in this chapter are joint with Ralph Faudree, Ron Gould, and Kazuhide Hirohata.

2.1 Introduction

The study of cycles and systems of vertex disjoint cycles in graphs is well established. Recently, there have been numerous papers considering cycles with additional properties such as containing a specific set of vertices, or containing a specific set of edges, or even containing a set of vertex disjoint paths (for a good overview, see the survey [19]). Another natural property
for cycles is that of containing at least one chord or at least some number $t \geq 1$ of chords. The study of chorded cycles has been increasing recently (see for example [3], [16], [22] and [23]). In this chapter, we extend several wellknown results on sets of vertex disjoint cycles containing specific elements such as edges or vertices to results on sets of vertex disjoint chorded cycles containing these elements.
As described in $\S 1.2$, we consider only finite simple graphs. Again, we let G be a graph and P_{t} be a path on t vertices. In particular, we will focus on minimum degree and degree sum conditions in this chapter. Recall that $\delta(G)$ is the minimum degree of a graph G, and for a non-complete graph G, we define the following degree sum condition:

$$
\sigma_{2}(G)=\min \left\{d e g_{G}(u)+d e g_{G}(v) \mid u \text { and } v \text { are nonadjacent }\right\}
$$

By convention we say $\sigma_{2}(G)=2$ if G is a complete graph. For terms not defined here see [20].
As one source of inspiration, we note the following well-known result on cycles containing independent, i.e. vertex disjoint, edges from a given set.

Theorem 2.1. [9] Let $\left\{e_{1}, e_{2}, \ldots, e_{k}\right\}$ be a set of independent edges in G, a graph of order $n \geq 4 k$ such that

$$
\delta(G) \geq\left\lceil\frac{n}{2}\right\rceil+k-1
$$

for $2 \leq k \leq \frac{n}{3}$, then G contains a set of k vertex disjoint cycles $\left\{C_{1}, C_{2}, \ldots, C_{k}\right\}$, such that $3 \leq\left|V\left(C_{i}\right)\right| \leq 4$ and $e_{i} \in E\left(C_{i}\right)$ for all $1 \leq i \leq k$. Further, there exists a set of k vertex disjoint cycles $\left\{D_{1}, D_{2}, \ldots, D_{k}\right\}$ such that $e_{i} \in E\left(D_{i}\right)$ for all $1 \leq i \leq k$, and $V(G)=\bigcup_{i=1}^{k} V\left(D_{i}\right)$.

We also note a similar known result about placing vertices on cycles.
Theorem 2.2. [8] Let G be a graph of order $n \geq 6 k-3$ for some integer $k \geq 1$. If

$$
\delta(G) \geq \frac{n}{2}
$$

then for any set of k vertices $\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$ there exists a set of k vertex disjoint cycles $\left\{C_{1}, C_{2}, \ldots, C_{k}\right\}$ such that $v_{i} \in V\left(C_{i}\right)$ and $\left|V\left(C_{i}\right)\right| \leq 5$ for all $1 \leq i \leq k$.

In this chapter, we extend each of the last two results to chorded cycles, and in one case, doubly chorded cycles. In addition, we consider the basic question of when a set of k independent edges can be chords for k vertex disjoint cycles, one per cycle. We also show when the k vertex disjoint cycles can be extended to span the entire vertex set of the graph.

2.2 Results

2.2.1 Placing Edges as Chords on Cycles

We begin with a natural question: When can a set of k independent edges be the set of chords for k vertex disjoint cycles of a graph, one per cycle?

Theorem 2.3. Let G be a graph of order $n \geq 6 k+1$ for an integer $k \geq 2$. If

$$
\sigma_{2}(G) \geq n+3 k-2 \text { and } \delta(G) \geq 6 k-3
$$

then for any k independent edges $\left\{e_{1}, e_{2}, \ldots, e_{k}\right\}$ there exists a set of k vertex disjoint cycles $\left\{C_{1}, C_{2}, \ldots, C_{k}\right\}$ such that e_{i} is a chord of C_{i} and $4 \leq$ $\left|V\left(C_{i}\right)\right| \leq 6$ for all $1 \leq i \leq k$.

Sharpness: To see that $\sigma_{2}(G) \geq n+3 k-2$ is needed, consider the following graph, G : place the chosen set of edges $E=\left\{e_{1}, e_{2}, \ldots, e_{k}\right\}$ in a clique, which is completely adjacent to a clique on $2 k-1$ vertices, which is completely adjacent to a clique on the remaining $n-4 k+1$ vertices. In addition, exactly one end-vertex from each edge of E is adjacent to every vertex in the $K_{n-4 k+1}$ (see Figure 2a below).

Figure 2a.
To find $\sigma_{2}(G)$ we must consider all pairs of non-adjacent vertices in G. The only type of non-adjacent pair of vertices in G is an end-vertex of an edge in E, say x, and a vertex in the $K_{n-4 k+1}$, say y, as illustrated above in Figure 2a. Then

$$
\begin{aligned}
\sigma_{2}(G) & =\operatorname{deg}_{G}(x)+\operatorname{deg}_{G}(y) \\
& =(2 k-1+2 k-1)+(n-4 k+2 k-1+k) \\
& =n+3 k-3 .
\end{aligned}
$$

For any $e_{i} \in E$ to be a chord of a cycle requires using two neighbors in the $K_{2 k-1}$, so there are at most $k-1$ vertex disjoint cycles with the desired edges as chords. This proves the necessity of $\sigma_{2}(G) \geq n+3 k-2$.

Before proving Theorem 2.3, we first prove the following lemma and theorem.

Lemma 2.4. Let G be a graph of order $n \geq 4$ with $\sigma_{2}(G) \geq n+1$. Then any edge of G lies either on a triangle or on a 4 -cycle.

Proof. Let $e=a b$ be any edge of G. If e lies on a triangle we are done, so assume e does not lie on any triangle. Since $\sigma_{2}(G) \geq n+1$, we know G is 2 -connected. Let x be any vertex adjacent to an end-vertex of e. Without loss of generality, say x is adjacent to a. Then b is not adjacent to x, otherwise e would lie on a triangle. Now $\operatorname{deg}_{G}(x)+\operatorname{deg}_{G}(b) \geq n+1$, which implies that b and x have at least three common neighbors. Thus there is a vertex $y \neq a$ such that by and $x y \in E(G)$. Then the cycle a, x, y, b, a is a 4 -cycle containing e as an edge.

Example: Consider the graph G on n vertices that is a copy of K_{n-2} together with another edge $e=x z$. Let x be adjacent to exactly two vertices of K_{n-2} and let z be adjacent to all of the vertices in $V(G)-N_{G}(x)$. Then $\sigma_{2}(G) \geq \operatorname{deg}_{G}(x)+\operatorname{deg}_{G}(y)=3+n-2=n+1$, and the shortest cycle to have e as a chord in G is a 6 -cycle. Thus, 6 -cycles are necessary in the following result: the $k=1$ case of Theorem 2.3.

Theorem 2.5. Let G be a graph of order $n \geq 6$ with $\sigma_{2}(G) \geq n+1$, Then any edge of G is the chord of a cycle C with $4 \leq|V(C)| \leq 6$.

Proof. Let e be any edge in the graph G. Then by Lemma 2.4, we know that e lies on either a triangle or a 4-cycle.

Case 1. Suppose e lies on a triangle, say $T=\{a, b, c\}$.
Let $e=a b$. Note that the degree-sum condition implies that G is at least 2 -connected, thus at least two of the vertices in the set $\{a, b, c\}$ must have neighbors outside of T. Without loss of generality, assume a has such a neighbor. Let $R=G-\{a, b, c\}$ and consider some $x \in V(R)$ such that $a x \in E(G)$. If $x b \in E(G)$, then c, a, x, b, c is a 4-cycle with e as a chord, so suppose $x b \notin E(G)$. Then $\operatorname{deg}_{T}(b)=2$ and $\operatorname{deg}_{T}(x) \leq 2$, so from the
degree-sum condition, x and b share at least three neighbors. Thus, there exists some $y \in V(R)$ with $y \neq x$ such that both b and x are adjacent to y. Now c, a, x, y, b, c is a 5 -cycle with e as a chord.

Case 2. Suppose e lies on a 4-cycle, $F=a, b, c, d, a$, but lies on no triangle. Let $e=a b$. Since no vertex in $R=G-F$ can be adjacent to both a and b, consider the following disjoint sets of vertices: R_{a}, the neighborhood of a in R and R_{b}, the neighborhood of b in R. If $\delta(G)=2$ then by the degree-sum condition, there is a vertex in R of degree $n-1$ which implies that e is on a triangle. Since $\delta(G) \geq 3$, the neighborhoods R_{a} and R_{b} are both non-empty. If there are no edges between R_{a} and R_{b} then for any $x \in R_{a}$, the degree sum of the non-adjacent pair of vertices x and b is at most

$$
\operatorname{deg}_{G}(x)+\operatorname{deg}_{G}(b) \leq|V(R)|-\left|R_{b}\right|-1+3+\left|R_{b}\right|+2=|V(R)|+4=(n-4)+4=n
$$

a contradiction of the assumed $\sigma_{2}(G)$. Thus there is an edge from some $x \in R_{a}$ to some $y \in R_{b}$ and hence d, a, x, y, b, c, d is a 6-cycle containing e as a chord, as desired.

Proof. (of Theorem 2.3). Assume the result fails and let G be an edge maximal counterexample. Then adding any new edge e to G will yield the desired set of k chorded cycles with e_{i} a chord of C_{i} for $i=1,2, \ldots, k$. Therefore, there must be at least one set of $k-1$ cycles $\mathcal{C}=\left\{C_{1}, C_{2}, \ldots, C_{k-1}\right\}$ with e_{i} as a chord of C_{i} and $4 \leq\left|V\left(C_{i}\right)\right| \leq 6$ for $1 \leq i \leq k-1$. Further, note that in $G-\mathcal{C}$ there is a 3,4 , or 5 -cycle, C, containing the edge e_{k} and with an adjacency to a vertex not in C or \mathcal{C} from at least one end-vertex of e_{k}. This follows as $G+e$ contains the desired cycle system of chorded 4,5 , and two different types of chorded 6 -cycles, which are defined and shown below in Figure 2b. No matter where e falls on these cycles, we obtain C as described.

Figure 2b.
Over all possible edge maximal counterexamples and over all possible such cycles sets \mathcal{C}, choose \mathcal{C} such that:
(1) $\cup_{i=1}^{k-1}\left|V\left(C_{i}\right)\right|$ is a minimum.
(2) Subject to (1), $|V(C)|$ is a minimum.
(3) Subject to (1) and (2), the number of Type I chorded 6-cycles is a maximum.

In \mathcal{C} assume there are $r 4$-cycles, $s 5$-cycles, and $t 6$-cycles as shown in Figure 2c. Let $e_{k}=a b$ be an edge of C and let $R=G-\mathcal{C}-C$. Now we place some bounds on degrees of nonadjacent vertices. Without loss of generality, we assume a is the end-vertex of e_{k} with an adjacency, say x, off of C and not in \mathcal{C} (i.e. $x \in V(R)$). Note that b is not adjacent to x, otherwise we would complete the desired cycle system, a contradiction.

Figure 2c.

Note that b has at most two adjacencies in the cycle C, otherwise there would be a contradiction to (2). Also, since b has at most $6(k-1)$ adjacencies to \mathcal{C}, by the minimum degree condition b must have at least one neighbor in R. Thus, there is some $y \in V(R)$ such that b is adjacent to y and a is not adjacent to y (or the desired cycle system would be completed). Consider the nonadjacent pairs of vertices (a, y) and (b, x). Once again, we examine the adjacencies from these pairs to the cycles of \mathcal{C}.

Claim 1. For a 3-cycle $C=a, b, c, a$, the nonadjacent pairs (a, y) and (b, x) may have at most 14 edges to any chorded 4 -cycle $C_{i} \in \mathcal{C}, 16$ edges to any chorded 5-cycle $C_{i} \in \mathcal{C}$, and 18 edges to any chorded 6-cycle $C_{i} \in \mathcal{C}$.

Proof. If a and b have a common neighbor on C_{i}, a 4-cycle, other than the end-vertices of the chord e_{i}, then both x and y cannot be adjacent to both ends of the chord e_{i} otherwise there are two cycles containing the desired chords, a contradiction. Thus, in this case the total number of edges to C_{i} is at most 8 from a and b, and at most 6 from x and y. If a and b have no such common neighbor in C_{i}, then they send at most 6 edges to C_{i} and x and y can both be adjacent to every vertex in C_{i}. Therefore, in either case we have $\operatorname{deg}_{C_{i}}(a, b, x, y) \leq 14$.

If a and b have a common neighbor in C_{i}, a 5 -cycle, that is not an end-vertex of the chord e_{i}, then there exists a chorded 4-cycle containing the chord e_{k}, contradicting the minimality of \mathcal{C}. Therefore, a and b have at most 7 edges to C_{i}. If either x or y is adjacent to both end-vertices of the chord of C_{i}, then there exists a chorded 4 -cycle containing that same chord, which contradicts the minimality of the cycle set \mathcal{C}. Thus, x and y can have at most 8 edges to the chorded 5 -cycle, C_{i}. In total, we have $d e g_{C_{i}}(a, b, x, y) \leq 7+8 \leq 16$.

If a and b have a common neighbor in C_{i}, a 6 -cycle, other than the
end-vertices of e_{i}, then there exists a 4-cycle with e_{k} as a chord, a contradiction of the minimality of \mathcal{C}. Thus, together a and b can send at most 8 edges to C_{i}. If x or y are adjacent to both end-vertices of the chord e_{i} then there exists a 4 or 5 -cycle (depending on where the chord of C_{i} is) containing e_{i} as a chord, again contradicting the minimality of \mathcal{C}. Thus, together x and y can send at most 10 edges to C_{i}. So in total, we have $d e g_{C_{i}}(a, b, x, y) \leq 18$.

Suppose C is a 3 -cycle. Note that a and b cannot share any neighbors in R, otherwise there would be a 4-cycle containing e_{k} as a chord, which would complete the desired cycle set, a contradiction. Thus, the maximum possible number of edges from a and b together to R is $|V(R)|$. Note that x cannot be adjacent to y or any neighbor of y in R, otherwise there exists a 5 -cycle or a 6-cycle, respectively, containing e_{k} as a chord, again a contradiction. So together x and y can have at most $|V(R)|-2$ adjacencies in R. By Claim 1, we can bound the number of adjacencies from $\{a, b, x, y\}$ to \mathcal{C}. These bounds together with the maximum number of possible adjacencies from $\{a, b, x, y\}$ to the vertices of the triangle $\{a, b, c\}$ yield

$$
\begin{aligned}
2(n+3 k-2) \leq 2 \sigma_{2}(G) & \leq \operatorname{deg}_{G}(a)+\operatorname{deg}_{G}(b)+\operatorname{deg}_{G}(x)+\operatorname{deg}_{G}(y) \\
& \leq|V(R)|+(|V(R)|-2)+14 r+16 s+18 t+8 \\
& =2(n-4 r-5 s-6 t-3-1)+14 r+16 s+18 t+8 \\
& =2 n+6 r+6 s+6 t \\
\Longrightarrow 6 k-4 & \leq 6 r+6 s+6 t=6(k-1)=6 k-6, \text { a contradiction. }
\end{aligned}
$$

Claim 2. For a 4 -cycle $C=a, b, c, d, a$, the nonadjacent pairs (a, y) and (b, x) have at most 14 edges to any chorded 4 -cycle $C_{i} \in \mathcal{C}, 16$ edges to any chorded 5-cycle $C_{i} \in \mathcal{C}$, and 18 edges to any chorded 6-cycle $C_{i} \in \mathcal{C}$.

Proof. First suppose C_{i} is a chorded 4 -cycle. Without loss of generality, if either $\operatorname{deg}_{C_{i}}(x) \leq 2$ or $\operatorname{deg}_{C_{i}}(y) \leq 2$, or if $\operatorname{deg}_{C_{i}}(x) \leq 3$ and $\operatorname{deg}_{C_{i}}(y) \leq 3$ then we are done. So assume x (or y) is adjacent to all of C_{i}. If a and b have a common neighbor on C_{i} other than an end-vertex of the chord e_{i}, say v_{i}, then v_{i} completes a 5 -cycle with e_{k} as a chord and x can replace v_{i} on C_{i}, which completes the desired cycle set, a contradiction. Therefore, $\operatorname{deg}_{C_{i}}(a, b) \leq 6$ and $\operatorname{deg}_{C_{i}}(a, b, x, y) \leq 14$.

If C_{i} is a 5 -cycle, note that x (and similarly, y) is not adjacent to both a_{i} and b_{i} otherwise a 4-cycle with e_{i} as a chord would exist, contradicting (1). Thus, $\operatorname{deg}_{C_{i}}(x, y) \leq 8$. Also note that if a and b have a common neighbor w_{i} (or v_{i}), then there exists a 5 -cycle with e_{k} as a chord and e_{i} is left on a triangle, contradicting (2). Thus $\operatorname{deg}_{C_{i}}(a, b) \leq 8$, which implies $\operatorname{deg}_{C_{i}}(a, b, x, y) \leq 16$.

If C_{i} is a 6 -cycle (of either type), then again x (and similarly, y) cannot be adjacent to both a_{i} and b_{i} otherwise there would exist a 4 or 5 -cycle (depending on the Type of C_{i}) containing e_{i} as a chord, contradicting (1). Therefore we have $\operatorname{deg}_{C_{i}}(x, y) \leq 10$. Also, if a and b have a common neighbor in $\left\{v_{i}, w_{i}, y_{i}, z_{i}\right\}$ then a chorded 5 -cycle with e_{k} as a chord exists, contradicting (1). Thus, $\operatorname{deg}_{C_{i}}(a, b, x, y) \leq 18$.

Now suppose C is a 4 -cycle. Note that a and b cannot share any neighbors in R, otherwise there would be a 5 -cycle containing e_{k} as a chord, which would complete the desired cycle set, a contradiction. So the neighborhoods $N_{R}(a)$ and $N_{R}(b)$ must be disjoint sets. Further, note that no neighbor of a in R can be adjacent to any neighbor b in R, otherwise there exists a 6 -cycle with e_{k} as a chord, which is a contradiction as it completes the desired cycle set. Therefore, since x cannot be adjacent to itself nor any vertex in $N_{R}(b)$, we have $\operatorname{deg}_{R}(x) \leq|V(R)|-1-\left|N_{R}(b)\right|$. Similarly,

$$
\begin{aligned}
& \operatorname{deg}_{R}(y) \leq|V(R)|-1-\left|N_{R}(a)\right| . \text { Now we have } \\
& \begin{aligned}
\operatorname{deg}_{R}(a, b, x, y) \leq\left|N_{R}(a)\right| & +\left|N_{R}(b)\right|+\left(|V(R)|-1-\left|N_{R}(b)\right|\right) \\
& +\left(|V(R)|-1-\left|N_{R}(a)\right|\right) \\
& =2|V(R)|-2
\end{aligned}
\end{aligned}
$$

By Claim 2, we can bound the number of adjacencies from $\{a, b, x, y\}$ to \mathcal{C}. These bounds together with the maximum number of possible adjacencies from $\{a, b, x, y\}$ to the vertices of the 4 -cycle $\{a, b, c, d\}$ yield

$$
\begin{aligned}
2(n+3 k-2) & \leq 2 \sigma_{2}(G) \\
& \leq \operatorname{deg}_{G}(a)+\operatorname{deg}_{G}(b)+\operatorname{deg}_{G}(x)+\operatorname{deg}_{G}(y) \\
& \leq 2|V(R)|-2+14 r+16 s+18 t+10 \\
& =2(n-4 r-5 s-6 t-4-1)+14 r+16 s+18 t+10 \\
& =2 n+6 r+6 s+6 t \\
\Longrightarrow 6 k-4 & \leq 6 r+6 s+6 t=6(k-1)=6 k-6, \text { a contradiction. }
\end{aligned}
$$

Claim 3. For a 5 -cycle $C=a, b, c, d, e, a$, the nonadjacent pairs (a, y) and (b, x) have at most 14 edges to any chorded 4 -cycle in $\mathcal{C}, 16$ edges to any chorded 5 -cycle in \mathcal{C}, and 18 edges to any chorded 6 -cycle in \mathcal{C}.

Proof. First assume C_{i} is a 4-cycle. If either x or y is adjacent to both ends of e_{i}, then we can rebuild C_{i}, again a 4 -cycle, by replacing either w_{i} or y_{i} with either x or y. Further, if a and b have a common neighbor in $\left\{w_{i}, y_{i}\right\}$, then there exists a triangle with e_{k} as an edge, contradicting (2). Therefore either $\operatorname{deg}_{C_{i}}(a, b) \leq 6$ or $\operatorname{deg}_{C_{i}}(x, y) \leq 6$, and in either case, we have $\operatorname{deg}_{C_{i}}(a, b, x, y) \leq 14$.

Now suppose C_{i} is a 5 -cycle. Neither x nor y can be adjacent to both end-vertices of e_{i}, otherwise there exists a 4 -cycle containing e_{i} as a chord,
contradicting (1), so $\operatorname{deg}_{C_{i}}(x) \leq 4$ and $\operatorname{deg}_{C_{i}}(y) \leq 4$. If $\operatorname{deg}_{C_{i}}(x) \leq 3$ and $\operatorname{deg}_{C_{i}}(y) \leq 3$, then we are done. So without loss of generality, suppose $\operatorname{deg}_{C_{i}}(x)=4$ and $\operatorname{deg}_{C_{i}}(y) \leq 3$. Again without loss of generality, assume x is not adjacent to a_{i}. If a and b are both adjacent to v_{i} then v_{i} can be used to complete a 6 -cycle with e_{k} as a chord, and x can replace v_{i} on the 5 -cycle C_{i} with chord e_{i}, thus completing the desired cycle set, a contradiction. Therefore $\operatorname{deg}_{C_{i}}(a, b) \leq 9$, so $\operatorname{deg}_{C_{i}}(a, b, x, y) \leq 16$. Now suppose $\operatorname{deg}_{C_{i}}(x)=4=\operatorname{deg}_{C_{i}}(y)$. If x and y each are adjacent to a different end-vertex of e_{i}, then either w_{i} or v_{i} can be replaced (by x or y) on C_{i} and thus a and b cannot both be adjacent to either w_{i} or v_{i}. Therefore $\operatorname{deg}_{C_{i}}(a, b) \leq 8$, so $\operatorname{deg}_{C_{i}}(a, b, x, y) \leq 16$. Instead suppose x and y are adjacent to the same end-vertex of e_{i}, without loss of generality, say b_{i}. Then v_{i} can be replaced by either x or y on the 5 -cycle C_{i} with chord e_{i}. Note that if both a and b are adjacent to v_{i}, then there exists a 6 -cycle containing e_{k} as a chord, thus completing the desired cycle set, a contradiction. If both a and b are not adjacent to v_{i} then we are done. So suppose, without loss of generality, that a is adjacent to v_{i}. Now if a and b are both adjacent to w_{i} then a, v_{i}, y, b, w_{i}, a is a 5 -cycle containing e_{k} as a chord and e_{i} is left on a triangle, contradicting (2). Therefore, a and b cannot both be adjacent to w_{i}, so $\operatorname{deg}_{C_{i}}(a, b) \leq 8$ and thus $\operatorname{deg}_{C_{i}}(a, b, x, y) \leq 16$.

Now assume C_{i} is a Type I 6 -cycle. If a and b have a common neighbor in $\left\{v_{i}, w_{i}, y_{i}, z_{i}\right\}$, then a new chorded 6 -cycle with chord e_{k} is formed, which leaves e_{i} on a 4-cycle, contradicting (2). Thus, $\operatorname{deg}_{C_{i}}(a, b) \leq 8$. As above, x and y each must be nonadjacent to one of $\left\{a_{i}, b_{i}\right\}$, otherwise there is a shorter cycle with e_{i} as a chord (which contradicts (1)), ${\operatorname{so~} \operatorname{deg}_{C_{i}}(x, y) \leq 10 ~}_{\text {a }}$ and therefore $\operatorname{deg}_{C_{i}}(a, b, x, y) \leq 18$ holds.

Lastly, instead suppose C_{i} is a Type II 6-cycle. If a and b have a common
neighbor in $\left\{v_{i}, w_{i}, z_{i}\right\}$ then there exists a new 6 -cycle with e_{k} as a chord, and e_{i} is left on a 3 -cycle, contradicting (2). Therefore, $\operatorname{deg}_{C_{i}}(a, b) \leq 9$. Neither x nor y can be adjacent to both end-vertices of e_{i}, otherwise there exists a 4 -cycle with e_{i} as a chord, contradicting (1). If $\operatorname{deg}_{C_{i}}(x, y)=10$ then either x and y are adjacent to the same end-vertex of e_{i}, or x and y are adjacent to different end-vertices of e_{i}. First, without loss of generality, suppose both x and y are adjacent to all of C_{i} except for b_{i}. Then $a_{i}, y, y_{i}, b_{i}, z_{i}, x, a_{i}$ is a Type I 6 -cycle with e_{i} as a chord, which contradicts (3). Now, without loss of generality, assume x is adjacent to all of C_{i} except b_{i} and y is adjacent to all of C_{i} except a_{i}. Then $b_{i}, y_{i}, x, a_{i}, w_{i}, y, b_{i}$ is a Type II 6-cycle with e_{i} as a chord, again contradicting (3). Thus $\operatorname{deg}_{C_{i}}(a, b, x, y) \leq 9+9=18$.

Now suppose C is a 5 -cycle. Note that a and b cannot share any neighbors in R, otherwise there would be a 6 -cycle containing e_{k} as a chord, which would complete the desired cycle set, a contradiction. So the neighborhoods $N_{R}(a)$ and $N_{R}(b)$ must be disjoint sets. Further, note that no neighbor of a in R can be adjacent to any neighbor b in R, otherwise there exists a 4-cycle containing e_{k}, contradicting (2). Therefore, since x cannot be adjacent to itself nor any vertex in $N_{R}(b)$, we have $\operatorname{deg}_{R}(x) \leq|V(R)|-1-\left|N_{R}(b)\right|$. Similarly, $\operatorname{deg}_{R}(y) \leq|V(R)|-1-\left|N_{R}(a)\right|$. Now we have

$$
\begin{aligned}
& \operatorname{deg}_{R}(a, b, x, y) \leq\left|N_{R}(a)\right|+\left|N_{R}(b)\right|+\left(|V(R)|-1-\left|N_{R}(b)\right|\right) \\
&+\left(|V(R)|-1-\left|N_{R}(a)\right|\right) \\
&=2|V(R)|-2
\end{aligned}
$$

By Claim 3, we can bound the number of adjacencies from $\{a, b, x, y\}$ to \mathcal{C}. These bounds together with the maximum number of possible adjacencies from $\{a, b, x, y\}$ to the vertices of the 5-cycle $\{a, b, c, d, e\}$ yield

$$
\begin{aligned}
2(n+3 k-2) & \leq 2 \sigma_{2}(G) \\
& \leq \operatorname{deg}_{G}(a)+\operatorname{deg}_{G}(b)+\operatorname{deg}_{G}(x)+\operatorname{deg}_{G}(y) \\
& \leq 2|V(R)|-2+14 r+16 s+18 t+12 \\
& =2(n-4 r-5 s-6 t-5-1)+14 r+16 s+18 t+12 \\
& =2 n+6 r+6 s+6 t \\
\Longrightarrow 6 k-4 & \leq 6 r+6 s+6 t=6(k-1)=6 k-6, \text { a contradiction. }
\end{aligned}
$$

This completes the proof.
Corollary 2.6. Let G be a graph of order $n \geq 9 k-4$ for an integer $k \geq 2$. If

$$
\delta(G) \geq \frac{n+3 k-2}{2}
$$

then for any k independent edges $\left\{e_{1}, e_{2}, \ldots, e_{k}\right\}$ there exists a set of k vertex disjoint cycles $\left\{C_{1}, C_{2}, \ldots, C_{k}\right\}$ such that e_{i} is a chord of C_{i} and $4 \leq\left|V\left(C_{i}\right)\right| \leq 6$ for all $1 \leq i \leq k$.

Based on Theorem 2.3 and Corollary 2.6, we make the following stronger conjecture.

Conjecture 2.7. Let G be a graph of order $n \geq 6 k+1$ for some integer $k \geq 1$. If

$$
\sigma_{2}(G) \geq n+3 k-2
$$

then for any k independent edges $\left\{e_{1}, e_{2}, \ldots, e_{k}\right\}$ there exists a set of k vertex disjoint cycles $\left\{C_{1}, C_{2}, \ldots, C_{k}\right\}$ such that e_{i} is a chord of C_{i} and $4 \leq\left|V\left(C_{i}\right)\right| \leq 6$ for all $1 \leq i \leq k$.

Now we will focus on a minimum degree condition that will allow us to place edges along chorded cycles.

2.2.2 Placing Edges on Chorded Cycles

Before stating our next result, we describe notation used in upcoming theorems.

Notation: If c is a chord of the cycle C_{i} then we denote this cycle with a chord as C_{i}^{c}. Further, note that $E\left(C_{i}^{c}\right)=E\left(C_{i}\right) \cup\{c\}$. We will also use the notation C_{i}^{*} to denote a cycle C_{i} with two chords.

Next we establish a useful lemma.

Lemma 2.8. Let G be a graph of order $n \geq 18 k-2$ (or $n \geq 18 k+1$) for an integer $k \geq 1$ with minimum degree

$$
\delta(G) \geq \frac{n+2 k-2}{2}
$$

If G contains a set of k vertex disjoint cycles $\mathcal{C}=\left\{C_{1}, C_{2}, \ldots, C_{k}\right\}$ containing a total of at most $6 k-1$ (or $6 k$) vertices, then for any triple of vertices $\left\{v_{1}, v_{2}, v_{3}\right\}$ on any cycle $C \in \mathcal{C}$, at least one pair of these vertices has a common neighbor in $A=G-\mathcal{C}$.

Proof. We have that $b=|V(\mathcal{C})| \leq 6 k-1$. Suppose for the vertices v_{1}, v_{2} and v_{3} in some cycle C of \mathcal{C}, no pair of them has a common neighbor in A. Then

$$
\begin{aligned}
3\left(\frac{n+2 k-2}{2}\right)-3(b-1) & \leq 3 \delta(G)-3(b-1) \\
& \leq \operatorname{deg}_{A}\left(v_{1}\right)+\operatorname{deg}_{A}\left(v_{2}\right)+\operatorname{deg}_{A}\left(v_{3}\right) \leq n-b \\
n & \leq 4 b-6 k \\
& \leq 4(6 k-1)-6 k \\
& =18 k-4, \text { a contradiction. }
\end{aligned}
$$

Hence, some pair of the set $\left\{v_{1}, v_{2}, v_{3}\right\}$ has a common neighbor in A. A similar argument holds when $n \geq 18 k+1$ and $|V(\mathcal{C})| \leq 6 k$.

We are now ready to extend Theorem 2.1 to chorded cycles. In our first such result, the specified edges are either chords or cycle-edges on the vertex disjoint chorded cycles.

Theorem 2.9. Let G be a graph of order $n \geq 18 k-2$ for an integer $k \geq 2$ and let $\left\{e_{1}, e_{2}, \ldots, e_{k}\right\}$ be a set of k independent edges in G. If

$$
\delta(G) \geq \frac{n+2 k-2}{2}
$$

then there exists a system of k vertex disjoint chorded cycles $\left\{C_{1}^{c_{1}}, C_{2}^{c_{2}}, \ldots, C_{k}^{c_{k}}\right\}$ such that $e_{i} \in E\left(C_{i}^{c_{i}}\right)$ and $\left|V\left(C_{i}^{c_{i}}\right)\right| \leq 6$ for all $1 \leq i \leq k$.

Proof. Theorem 2.1 implies that in G there is a set of k vertex disjoint cycles $\mathcal{C}=\left\{C_{1}, C_{2}, \ldots, C_{k}\right\}$, such that $e_{i} \in E\left(C_{i}\right)$ and $\left|C_{i}\right| \leq 4$ for all $1 \leq i \leq k$. Let $A=G-\mathcal{C}$. Note that for any three vertices of C_{i}, some pair of these vertices must have a common neighbor in A by Lemma 2.8.

Case 1: Suppose $e_{i}=v_{1} v_{3}$ is an edge of a 3 -cycle $C_{i}=v_{1}, v_{2}, v_{3}, v_{1}$. If v_{2} and v_{3} or v_{1} and v_{2} share a common neighbor in A then there exists a chorded 4-cycle C_{i}^{*} with $e_{i} \in E\left(C_{i}^{c_{i}}\right)$ such that $C_{i}^{c_{i}}$ has a chord, $c_{i}=v_{2} v_{3}$ or $v_{1} v_{2}$. If v_{1} and v_{3} have a common neighbor in A then e_{i} is the chord of a 4-cycle.

Case 2: Now suppose $e_{j}=v_{1} v_{2}$ is an edge of a 4 -cycle $C_{j}=v_{1}, v_{2}, v_{3}, v_{4}, v_{1}$. Consider the vertex set $\left\{v_{1}, v_{3}, v_{4}\right\}$. By Lemma 2.8, the set of vertices $\left\{v_{1}, v_{3}, v_{4}\right\}$ contains a pair of vertices with a common neighbor in A. If v_{1} and v_{4} or v_{3} and v_{4} have a common neighbor in A then there is a chorded 5 -cycle C_{j}^{*} with $e_{j} \in E\left(C_{j}^{*}\right)$. If v_{1}, v_{3} is the pair with a common neighbor in A, say u, then we repeat the argument using the set of vertices $\left\{v_{2}, v_{3}, v_{4}\right\}$:
if either v_{2}, v_{3} or v_{3}, v_{4} is the pair that has a common adjacency in A then we have a chorded 5 -cycle with e_{j} as an edge of the cycle. If v_{2}, v_{4} is the pair with the common neighbor in A, say v, then $v_{1}, v_{4}, v, v_{2}, v_{3}, u, v_{1}$ is a 6 -cycle with e_{j} as a chord.

By applying Lemma 2.8 repeatedly for each C_{i}, we obtain the desired system of k vertex disjoint chorded cycles with e_{i} as an edge or chord of C_{i} for all $1 \leq i \leq k$.

Using a similar technique, we obtain a stronger result where each e_{i} is a cycle-edge, not a chord.

Theorem 2.10. Let G be a graph of order $n \geq 18 k-2$ for an integer $k \geq 2$ and let $\left\{e_{1}, e_{2}, \ldots, e_{k}\right\}$ be a set of independent edges in G. If

$$
\delta(G) \geq \frac{n+2 k-2}{2}
$$

then there exists a set of k vertex disjoint chorded cycles $\left\{C_{1}^{c_{1}}, C_{2}^{c_{2}}, \ldots, C_{k}^{c_{k}}\right\}$ with $e_{i} \in E\left(C_{i}\right), e_{i} \neq c_{i}$, and $\left|V\left(C_{i}\right)\right| \leq 6$ for all $1 \leq i \leq k$.

Proof. Again Theorem 2.1 implies that there exists a set of k vertex disjoint cycles $\left\{C_{1}, C_{2}, \ldots, C_{k}\right\}$ in G with $\left|V\left(C_{i}\right)\right| \leq 4$ and $e_{i} \in E\left(C_{i}\right)$ for all $1 \leq i \leq k$. Let $A=G-\bigcup_{i=1}^{k} V\left(C_{i}\right)$.

Case 1: Suppose $C_{i}=v_{1}, v_{2}, v_{3}, v_{1}$ and $e_{i}=v_{1} v_{3}$. By Lemma 2.8, we know that either the pair $\left\{v_{1}, v_{2}\right\},\left\{v_{2}, v_{3}\right\}$, or $\left\{v_{1}, v_{3}\right\}$ must share a common neighbor in A, say x. If v_{1} and v_{2} or v_{2} and v_{3} have a common neighbor in A then there is a chorded 4 -cycle with e_{i} as an edge on the cycle. If v_{1} and v_{3} share the common neighbor $x \in A$, then $x, v_{1}, v_{2}, v_{3}, x$ is a chorded 4 -cycle with e_{i} as a chord. Now consider the triple $\left\{x, v_{2}, v_{3}\right\}$. Again by Lemma 2.8, either x and v_{2}, x and v_{3}, or v_{2} and v_{3} must share a common neighbor, say $y \in A$. If x and v_{2} are both adjacent to $y \in A$ then
$x, v_{1}, v_{3}, v_{2}, y, x$ is a chorded 5 -cycle with e_{i} as an edge of the cycle and $v_{1} v_{2}$ as a chord. Either of the remaining pairs yields the same case, so without loss of generality if x and v_{3} are both adjacent to some $y \in A$ then x, y, v_{3}, v_{1}, x is a chorded 4 -cycle with e_{i} as an edge of the cycle and $x v_{3}$ as a chord. So if C_{i} is a 3 -cycle, we can always find a chorded 4 or 5 -cycle with e_{i} as an edge of the cycle, provided the common neighbor exists in A.

Case 2: Suppose $C_{j}=v_{1}, v_{2}, v_{3}, v_{4}, v_{1}$ and $e_{j}=v_{1} v_{2}$. Consider the triple $\left\{v_{2}, v_{3}, v_{4}\right\}$. By Lemma 2.8, one of the pairs in the triple shares a common neighbor, say $x \in A$. If v_{2} and v_{3} are both adjacent to x then $v_{1}, v_{2}, x, v_{3}, v_{4}, v_{1}$ is a chorded 5 -cycle with e_{j} as an edge of the cycle and $v_{2} v_{3}$ as a chord. If v_{3} and v_{4} are both adjacent to $x \in A$ then $v_{1}, v_{2}, v_{3}, x, v_{4}, v_{1}$ is a chorded 5 -cycle with e_{j} as a cycle edge and $v_{3} v_{4}$ as a chord. If v_{2} and v_{4} share a neighbor $x \in A$ then we need to consider the pairs of another triple: $\left\{x, v_{2}, v_{3}\right\}$. We have already checked the case where v_{2} and v_{3} share a neighbor in A. If x and v_{2} are both adjacent to some $y \in A$ then $v_{1}, v_{2}, y, x, v_{4}, v_{1}$ is a chorded 5 -cycle with e_{j} as a cycle edge and $x v_{2}$ as a chord. If instead x and v_{3} share a neighbor $y \in A$ then $v_{1}, v_{2}, v_{3}, y, x, v_{4}, v_{1}$ is a chorded 6 -cycle with e_{j} as a cycle edge and $v_{3} v_{4}$ as a chord. So if C_{j} is a 4 -cycle then there exists a chorded 5 or 6 -cycle with e_{j} as a cycle edge, provided the common neighbor exists in A.

By applying Lemma 2.8 repeatedly to each C_{i}, we have the desired system of vertex disjoint chorded cycles.

Note: If n is even, the two preceding results are sharp. To see this, consider the graph G, of the set of edges $E=\left\{e_{1}, \ldots, e_{k-1}\right\}$ and two $K_{\frac{n-2 k+2}{2}}$ cliques, each of which is completely adjacent to all vertices $V(E)$ and the edge e_{k} has one end-vertex in each of the cliques. In this graph, the minimum degree $\delta(G)=\frac{n-2 k+2}{2}-1+2(k-1)=\frac{n}{2}+k-2$. However, e_{k} lies
on no chorded cycle disjoint from the edges of E.
We can extend the process used in the proofs of Theorems 2.9 and 2.10 to prove the following result.

Theorem 2.11. Let G be a graph of order $n \geq 18 k-2$ for an integer $k \geq 2$ and let $\left\{e_{1}, e_{2}, \ldots, e_{k}\right\}$ be a set of independent edges in G. If

$$
\delta(G) \geq \frac{n+2 k-2}{2}
$$

then there exists a set of k vertex disjoint doubly chorded cycles $C_{1}^{*}, C_{2}^{*}, \ldots, C_{k}^{*}$ with $e_{i} \in E\left(C_{i}\right)$ and $\left|V\left(C_{i}\right)\right| \leq 6$ for all i.

Proof. From Theorem 2.1, we know we can place each edge e_{i} on a 3-cycle or 4 -cycle. By the degree condition, for any set of three vertices we know from Lemma 2.8 that at least one pair of vertices in that set must have a common neighbor not in any other cycle. We must consider the following three cases: e_{i} is a cycle-edge of a chorded 4-cycle, a chord of a 4-cycle, or an edge of a chordless 4-cycle. Let $\mathcal{C}=\left\{C_{1}, C_{2}, \ldots, C_{k}\right\}$ be this collection of cycles, and let $A=G-\mathcal{C}$.

Case 1: Suppose $e_{i} \in E(G)$ is a non-chord of the chorded 4-cycle $v_{1}, v_{2}, v_{3}, v_{4}, v_{1}$. Without loss of generality, assume $e_{i}=v_{1} v_{2}$ and $v_{1} v_{3}$ is a chord. Now consider the set of vertices $\left\{v_{2}, v_{3}, v_{4}\right\}$. Some pair in this set must have a common neighbor in A, say x. If x is a common neighbor of v_{2} and v_{3} then $v_{1}, v_{2}, x, v_{3}, v_{4}, v_{1}$ is a doubly chorded 5 -cycle with e_{i} as an edge and $v_{1} v_{3}$ and $v_{2} v_{3}$ as chords. If instead v_{3} and v_{4} have a common neighbor x, then $v_{1}, v_{2}, v_{3}, x, v_{4}, v_{1}$ is a 5 -cycle with e_{i} as an edge and $v_{1} v_{3}$ and $v_{3} v_{4}$ as chords. If v_{2} and v_{4} have the common neighbor x, then $x, v_{2}, v_{1}, v_{3}, v_{4}, x$ is a 5-cycle containing e_{i} as a cycle edge and $v_{2} v_{3}$ and $v_{1} v_{4}$ as chords.

Case 2: Suppose $e_{i}=v_{1} v_{3}$ is the chord of a 4 -cycle, $v_{1}, v_{2}, v_{3}, v_{4}, v_{1}$. Again
consider the set of vertices $\left\{v_{2}, v_{3}, v_{4}\right\}$. One pair of this set must share a common neighbor in A, say x.

Case 2a: If x is a common neighbor of v_{2} and v_{3} (or, by symmetry, v_{3} and v_{4}), then $v_{1}, v_{2}, x, v_{3}, v_{4}, v_{1}$ is a C_{5} containing $e_{i}=v_{1} v_{3}$ and $v_{2} v_{3}$ as chords. Since there is no doubly chorded cycle with e_{i} as a cycle edge, consider the set $\left\{v_{1}, v_{2}, x\right\}$. If v_{1} and v_{2} have a common neighbor y, then $v_{1}, y, v_{2}, x, v_{3}, v_{1}$ is a 5 -cycle containing e_{i} as a cycle edge and $v_{1} v_{2}$ and $v_{2} v_{3}$ as chords. If v_{2} and x share y as a neighbor, then $v_{1}, v_{2}, y, x, v_{3}, v_{1}$ is a 5 -cycle with e_{i} as a cycle edge and $v_{2} x$ and $v_{2} v_{3}$ as chords. If v_{1} and x share y as a neighbor, then $v_{1}, y, x, v_{2}, v_{3}, v_{1}$ is a 5 -cycle with e_{i} as an edge and $v_{1} v_{2}$ and $v_{3} x$ as chords.

Case 2b: If instead v_{2} and v_{4} have a common neighbor x, then $x, v_{2}, v_{3}, v_{1}, v_{4}, x$ is a doubly chorded 5 -cycle with e_{i} as an edge and $v_{1} v_{2}$ and $v_{3} v_{4}$ as chords. This completes the cases when e_{i} is the chord of a chorded 4-cycle.

Next we suppose we start with e_{i} as an edge of a 4-cycle without a chord.

Case 3: Suppose $e_{i}=v_{1} v_{2}$ is initially an edge of the chordless 4-cycle $v_{1}, v_{2}, v_{3}, v_{4}, v_{1}$. Consider the set $\left\{v_{2}, v_{3}, v_{4}\right\}$. Then one of the following must occur: v_{2} and v_{3} share a common neighbor x in A or v_{3} and v_{4} share a common neighbor x, or v_{2} and v_{4} share x as a neighbor.

Case 3a: Suppose v_{2} and v_{3} share x as a neighbor. There is no doubly chorded cycle, so consider the set $\left\{v_{3}, v_{4}, x\right\}$. At least one pair in that set must have a common neighbor in A, say y. If v_{3} and v_{4} share y as a common neighbor, then $v_{1}, v_{2}, x, v_{3}, y, v_{4}, v_{1}$ is a 6 -cycle containing e_{i} as an edge and $v_{2} v_{3}$ and $v_{3} v_{4}$ as chords. If v_{4} and x share y as a neighbor, then $v_{1}, v_{2}, v_{3}, x, y, v_{4}, v_{1}$ is a 6-cycle containing e_{i} as an edge and $v_{2} x$ and $v_{3} v_{4}$ as
chords. If v_{3} and x have y as a common neighbor, then $v_{1}, v_{2}, x, y, v_{3}, v_{4}, v_{1}$ is a 6 -cycle containing e_{i} as an edge and $v_{2} v_{3}$ and $v_{3} x$ as chords.

Case 3b: Suppose v_{3} and v_{4} share x as a neighbor. Again there is no doubly chorded cycle yet. Consider the set of vertices $\left\{v_{2}, v_{3}, x\right\}$. By Lemma 2.8, at least one pair in the set must have a common neighbor in A, say y. If v_{2} and v_{3} have y as a common neighbor, then $v_{1}, v_{2}, y, v_{3}, x, v_{4}, v_{1}$ is a 6 -cycle with e_{i} as an edge and $v_{2} v_{3}$ and $v_{3} v_{4}$ as chords. If v_{3} and x share y as a common neighbor, then $v_{1}, v_{2}, v_{3}, y, x, v_{4}, v_{1}$ is a 6-cycle containing e_{i} as an edge and $v_{3} v_{4}$ and $v_{3} x$ as chords. If v_{2} and x share y as a neighbor, then $v_{1}, v_{2}, y, x, v_{3}, v_{4}, v_{1}$ is a 6-cycle containing e_{i} as an edge and $v_{2} v_{3}$ and $v_{4} x$ as chords.

Case 3c: Suppose v_{2} and v_{4} share x as a neighbor. Since there are no doubly chorded cycles, consider the vertex set $\left\{v_{2}, v_{3}, x\right\}$. Again, at least one pair in this triple must have a common neighbor in A, say y.

If v_{2} and v_{3} share y as a neighbor, there are still no doubly chorded cycles, so consider the set $\left\{v_{3}, v_{4}, y\right\}$. If v_{3} and v_{4} have a common neighbor z in A, then, $v_{1}, v_{2}, y, v_{3}, z, v_{4}, v_{1}$ is a 6 -cycle with e_{i} as an edge and $v_{2} v_{3}$ and $v_{3} v_{4}$ as chords. If v_{4} and y share z as a neighbor, then $v_{1}, v_{2}, v_{3}, y, z, v_{4}, v_{1}$ is a 6 -cycle containing e_{i} as an edge and $v_{2} y$ and $v_{3} v_{4}$ as chords. If z is a common neighbor of v_{3} and y then $v_{1}, v_{2}, y, z, v_{3}, v_{4}, v_{1}$ is a 6 -cycle with e_{i} as an edge and $v_{2} v_{3}$ and $v_{3} y$ as chords. This completes the case when v_{2} and v_{3} are adjacent to y.

If v_{3} and x share y as a neighbor, then $v_{1}, v_{2}, x, y, v_{3}, v_{4}, v_{1}$ is a 6 -cycle with e_{i} as en edge and $v_{2} v_{3}$ and $v_{4} x$ as chords.

If instead v_{2} and x share y as a neighbor, then there are still no doubly chorded cycles containing e_{i} as an edge, so consider the set of vertices $\left\{v_{1}, v_{4}, x\right\}$. At least one pair of these vertices must have a common
neighbor, say z in A. If z is a common neighbor of v_{1} and v_{4}, then $v_{1}, v_{2}, y, x, v_{4}, z, v_{1}$ is a 6 -cycle with e_{i} as an edge and $v_{1} v_{4}$ and $v_{2} x$ as chords. If v_{4} and x have z as a common neighbor, then $v_{1}, v_{2}, y, x, z, v_{4}, v_{1}$ is a 6-cycle containing e_{i} as an edge and $v_{2} x$ and $v_{4} x$ as chords. If v_{1} and x share z as a neighbor, then $v_{1}, v_{2}, v_{3}, v_{4}, x, z, v_{1}$ is a 6-cycle containing e_{i} as a cycle edge and $v_{1} v_{4}$ and $v_{2} x$ as chords.

By applying Lemma 2.8 repeatedly to each C_{i}, we have the desired system of vertex disjoint doubly chorded cycles. This completes the proof.

This concludes our results on placing edges on chorded cycles. In the following section, we place vertices on chorded cycles instead of edges.

2.2.3 Placing Vertices on Chorded Cycles

Next, we extend Theorem 2.2 to chorded cycles.
Theorem 2.12. Let G be a graph of order $n \geq 16 k-12$ for an integer $k \geq 1$. If

$$
\delta(G) \geq \frac{n}{2}
$$

then for any set of k vertices in $G,\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$, there exists a collection of k vertex disjoint chorded cycles $\left\{C_{1}, C_{2}, \ldots, C_{k}\right\}$ such that $v_{i} \in V\left(C_{i}\right)$ and $\left|V\left(C_{i}\right)\right| \leq 6$ for $1 \leq i \leq k$.

Proof. For the sake of contradiction, suppose not. Let $\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$ be a set of vertices in the graph G, a maximal counterexample. Choose an admissible collection of $k-1$ vertex disjoint chorded cycles in G, $\mathcal{C}=\left\{C_{1}, C_{2}, \ldots, C_{k-1}\right\}$, such that $v_{k} \notin \cup_{i=1}^{k-1} V\left(C_{i}\right)$ with:
(1) $\sum_{i=1}^{k-1}\left|V\left(C_{i}\right)\right|$ is a minimum, and
(2) $v_{i} \in V\left(C_{i}\right)$, for $i=1,2, \ldots, k-1$.

Let $H=G-\mathcal{C}$.
Note:

$$
\begin{aligned}
|H| & =|G|-|\mathcal{C}| \\
& \geq n-6(k-1), \text { since each cycle is at most a } 6 \text {-cycle } \\
& \geq(16 k-12)-6 k+6 \\
& =10 k-6 \\
& \geq 4, \text { since } k \geq 1 .
\end{aligned}
$$

Thus there are at least 4 vertices in H.
Lemma 2.13. For any $h \in V(H)$, $\operatorname{deg}_{C_{i}}(h) \leq 4$ for all i.
Proof. For the sake of contradiction, suppose $\operatorname{deg}_{C_{i}}(h)=5$ for some i and some $h \in V(H)$.

Case 1: Suppose $C_{i}=w_{1}, w_{2}, w_{3}, w_{4}, w_{5}, w_{6}, w_{1}$ is a 6 -cycle and $h \in V(H)$ such that $h \neq v_{k}$. Without loss of generality, let h be adjacent to $w_{1}, w_{2}, w_{3}, w_{4}$, and w_{5}. First suppose $v_{i}=w_{j}$ for some $j \in\{1,2,3,4,5\}$. If $j=1$, then the 5 -cycle $h, w_{1}, w_{2}, w_{3}, w_{4}, h$ contains $v_{i}=w_{1}$ and has the chord $h w_{2}$, contradicting the choice of \mathcal{C}, specifically the minimality of $\sum_{i=1}^{k-1}\left|V\left(C_{i}\right)\right|$. Similarly, if $j=2,3,4$, or 5 then the 5 -cycle $h, w_{2}, w_{3}, w_{4}, w_{5}, h$ contains $v_{i}=w_{j}$ and has the chord $h w_{3}$, again contradicting the choice of \mathcal{C}. Now suppose $j=6$, that is, $v_{i}=w_{6}$. Then $h, w_{5}, w_{6}, w_{1}, w_{2}, h$ is a 5 -cycle containing v_{i} with the chord $h w_{1}$, contradicting the choice of \mathcal{C}.

Case 2: Again suppose $C_{i}=w_{1}, w_{2}, w_{3}, w_{4}, w_{5}, w_{6}, w_{1}$ is a 6 -cycle, but now suppose $h=v_{k}$. Without loss of generality, assume $h=v_{k}$ is adjacent to $w_{1}, w_{2}, w_{3}, w_{4}$, and w_{5}. If $v_{i}=w_{1}, w_{2}$, or w_{6}, then $h, w_{3}, w_{4}, w_{5}, h$ is a 4 -cycle containing v_{k} with $w_{4} h$ as a chord. This contradicts the minimality of the size of the cycles in \mathcal{C}. If $v_{i}=w_{4}$ or w_{5} then $h, w_{1}, w_{2}, w_{3}, h$ is a 4 -cycle containing v_{k} with $w_{2} h$ as a chord. Again, this contradicts the choice of \mathcal{C}.

If $v_{i}=w_{3}$, then $h, w_{4}, w_{5}, w_{6}, w_{1}, h$ is a 5 -cycle containing v_{k} and not containing v_{i}, with $w_{5} h$ as a chord, again contradicting the choice of \mathcal{C}.

Case 3: Suppose $C_{i}=w_{1}, w_{2}, w_{3}, w_{4}, w_{5}, w_{1}$ is a 5 -cycle and $h \neq v_{k}$. Then h must be adjacent to all of $V\left(C_{i}\right)$. Without loss of generality, assume $v_{i}=w_{1}$. Then $h, w_{5}, w_{1}, w_{2}, h$ is a 4 -cycle containing v_{i} that has $w_{1} h$ as a chord. This chorded 4-cycle contradicts the minimality of the order of the chosen collection of cycles, \mathcal{C}.

Case 4: Suppose $C_{i}=w_{1}, w_{2}, w_{3}, w_{4}, w_{5}, w_{1}$ is a 5 -cycle and $h=v_{k}$. Again, h must be adjacent to all of $V\left(C_{i}\right)$. Without loss of generality, assume $v_{i}=w_{1}$. Then $h, w_{2}, w_{3}, w_{4}, h$ is a 4 -cycle containing the vertex v_{k} and the chord $w_{3} h$. This chorded 4 -cycle contradicts the minimality of the order of the chosen collection of cycles, \mathcal{C}.

This completes the proof of the lemma.

Now, $\delta(G) \geq \frac{n}{2} \geq 8 k-1$ and $\operatorname{deg}_{\mathcal{C}}\left(v_{k}\right) \leq 4(k-1)$, so $\operatorname{deg}_{H}\left(v_{k}\right) \geq 4 k+3>3$ for all $k \geq 1$. Consider $u_{1}, u_{2}, u_{3} \in N_{H}\left(v_{k}\right)$. Then Lemma 2.13 implies

$$
\sum_{m=1}^{3} \operatorname{deg}_{C_{i}}\left(u_{m}\right) \leq 12, \text { for } 1 \leq i \leq k-1
$$

which implies

$$
\sum_{m=1}^{3} \operatorname{deg}_{L}\left(u_{m}\right) \leq 12(k-1)
$$

Let r_{j} be the number of cycles, C_{i}, such that $\operatorname{deg}_{C_{i}}\left(v_{k}\right)=j$. Then $r_{0}+r_{1}+r_{2}+r_{3}+r_{4}=k-1$.

$$
\begin{aligned}
\operatorname{deg}_{L}\left(v_{k}\right) & =4 r_{4}+3 r_{3}+2 r_{2}+r_{1} \\
& =(k-1)+3 r_{4}+2 r_{3}+r_{2}-r_{0}
\end{aligned}
$$

We know that

$$
\begin{equation*}
\operatorname{deg}_{H}\left(v_{k}\right) \geq \delta(G)-\left[(k-1)+3 r_{4}+2 r_{3}+r_{2}-r_{0}\right] \tag{2.2.1}
\end{equation*}
$$

For any $u \in V(H), \operatorname{deg}_{L}(u) \leq 4(k-1)$. So on average,

$$
\begin{equation*}
\bar{d}_{H}(u) \geq \delta(G)-4(k-1) \tag{2.2.2}
\end{equation*}
$$

Now consider $u_{1}, u_{2}, u_{3} \in N_{H}\left(v_{k}\right)$. There is at most one edge among these vertices, otherwise there is a chorded 4 -cycle containing v_{k} in H and we're done. So we will consider the different possible neighborhoods of $\left\{u_{1}, u_{2}, u_{3}\right\}$ in $H-\left\{v_{k}\right\}$.

Case 1: Suppose v_{k} has at least two neighbors in $\left\{u_{1}, u_{2}, u_{3}\right\}$ with disjoint neighborhoods in $H-\left\{v_{k}\right\}$. Therefore Equations (1) and (2) yield that the order of H is

$$
\begin{aligned}
|V(H)| & \geq \operatorname{deg}_{H}\left(v_{k}\right)+1+2(\delta(G)-4(k-1))-2 \\
& \geq \delta(G)-k+1-3 r_{4}+2 r_{3}-r_{2}+r_{0}+1+2 \delta(G)-8 k+8-2 \\
& =3 \delta(G)-9 k+8-3 r_{4}-2 r_{3}-r_{2}+r_{0} \\
& \geq 3 \delta(G)-9 k+8-3 r_{4}-2 r_{3}-r_{2} \\
& \geq 3 \delta(G)-9 k+8-3\left(r_{4}+r_{3}+r_{2}+r_{1}+r_{0}\right) \\
& =3 \delta(G)-9 k+8-3(k-1) .
\end{aligned}
$$

Hence, $|V(H)| \geq 3 \delta(G)-12 k+11$.

Similarly, we have that the order of G is

$$
\begin{aligned}
n & =|V(H)|+|V(L)| \\
& \geq 3 \delta(G)-12 k+11+4(k-1) \\
& \geq 3\left(\frac{n}{2}\right)+12 k+11+4 k-4 \\
& =\left(\frac{3}{2}\right) n-8 k+7 . \\
\text { Thus, } 0 & \geq\left(\frac{1}{2}\right) n-8 k+7, \text { and hence, } \\
n & \leq 16 k-14, \text { a contradiction of the order of } G .
\end{aligned}
$$

Case 2: Suppose there is one edge in the graph induced by $\left\{u_{1}, u_{2}, u_{3}\right\}$ and at least two pairs from $\left\{u_{1}, u_{2}\right\},\left\{u_{2}, u_{3}\right\}$, and $\left\{u_{1}, u_{3}\right\}$ share a distinct common neighbor in $H-\left\{v_{k}\right\}$. Without loss of generality, one of the following scenarios must occur. There is either a chorded 4-cycle or a chorded 5 -cycle in H containing v_{k}, and we're done.

Case 3: Suppose the pairs $\left\{u_{1}, u_{2}\right\},\left\{u_{2}, u_{3}\right\}$, and $\left\{u_{1}, u_{3}\right\}$ each have at least one distinct common neighbor in $H-\left\{v_{k}\right\}$. Then we have There is a chorded 6 -cycle in H containing v_{k}, and we're done.

Case 4: Suppose the vertices u_{1}, u_{2}, and u_{3} all share exactly one common neighbor in $H-\left\{v_{k}\right\}$. Then the order of H is

$$
\begin{aligned}
|V(H)| & \geq \operatorname{deg}_{H}\left(v_{k}\right)+1+3(\delta(G)-4(k-1))-1-3 \\
& =\delta(G)-k+1-3 r_{4}-2 r_{3}-r_{2}+r_{0}+3 \delta(G)-12 k+12-1+3 \\
& =4 \delta(G)-13 k+9-3 r_{4}-2 r_{3}-r_{2}+r_{0} \\
& \geq 4 \delta(G)-13 k+9-3 r_{4}-2 r_{3}-r_{2} \\
& \geq 4 \delta(G)-13 k+9-3\left(r_{4}+r_{3}+r_{2}+r_{1}+r_{0}\right) \\
& =4 \delta(G)-13 k+9-3(k-1) \\
& =4 \delta(G)-16 k+12 .
\end{aligned}
$$

Similarly, the order of G is

$$
\begin{aligned}
n & =|V(H)|+|V(L)| \\
& \geq 4 \delta(G)-16 k+12+4(k-1) \\
& \geq 4\left(\frac{n}{2}\right)-16 k+12+4 k-4 .
\end{aligned}
$$

Hence $n=2 n-12 k+8$, and thus,

$$
n \leq 12 k-8, \text { a contradiction of the order of } G \text {. }
$$

This completes the proof of the theorem.

Next we will show that under sufficient minimum degree conditions, the disjoint cycle systems in some of the previous theorems can be extended to a 2-factor of the graph, that is, a set of vertex disjoint cycles that spans $V(G)$. First, we need the following lemma.

Lemma 2.14. If G is a graph of order $n \geq 2 k+2$ for an integer $k \geq 1$, and $\delta(G) \geq \frac{n+2 k-2}{2}$, then G is at least $2 k$-connected.

Proof. Consider two vertices x and $y \in V(G)$ and let $H=G-\{x, y\}$. If x and y are nonadjacent, then by the minimum degree condition we have

$$
\left|N_{H}(x) \cap N_{H}(y)\right| \geq\left(\frac{n+2 k-2}{2}\right)+\left(\frac{n+2 k-2}{2}\right)-(n-2)=2 k .
$$

So there are at least $2 k$ paths of length two between x and y in G. If instead, x and y are adjacent, then

$$
\begin{aligned}
\left|N_{H}(x) \cap N_{H}(y)\right| & \geq\left(\frac{n+2 k-2}{2}-1\right)+\left(\frac{n+2 k-2}{2}-1\right)-(n-2) \\
& =2 k-2
\end{aligned}
$$

So there are at least $2 k-2$ paths of length two between x and y in G.
Consider the following vertex sets in H

$$
\begin{aligned}
& X=\left\{v \in N_{H}(x) \mid v \notin v_{H}(y)\right\} \\
& Y=\left\{v \in N_{H}(y) \mid v \notin v_{H}(x)\right\} .
\end{aligned}
$$

If X or $Y=\emptyset$ then $\left|N_{H}(x) \cap N_{H}(y)\right| \geq \frac{n+2 k-2}{2} \geq \frac{(2 k+2)+2 k-2}{2}=2 k$ and we are done. So consider $x^{\prime} \in X$ and $y^{\prime} \in Y$. If $x^{\prime} y^{\prime} \in E(G)$ then $\kappa(G) \geq(2 k-2)+2=2 k$ and if $x^{\prime} y^{\prime} \notin E(G)$ then we are in the same case as the case where $x y \notin E(G)$. Therefore, $\kappa(G) \geq 2 k$.

Theorem 2.15. Let G be a graph of order $n \geq 18 k-2$ for an integer $k \geq 2$, such that

$$
\delta(G) \geq \frac{n+2 k-2}{2}
$$

and G contains a set of k vertex disjoint chorded cycles $\mathcal{C}=\left\{C_{1}, C_{2}, \ldots, C_{k}\right\}$. Then the cycle system can be extended to span the vertices of G.

Proof. Let \mathcal{C} be the set of k vertex disjoint cycles and let $R=G-\mathcal{C}$.
Assume \mathcal{C} has been chosen with $|V(\mathcal{C})|$ as large as possible. If $|V(\mathcal{C})|=n$, we are done, so assume not.

First suppose $|V(R)|<k$. Then for any $v \in R$,
$d e g_{\mathcal{C}} v \geq \frac{n+2 k-2}{2}-(k-2)=\frac{n+2}{2}$. Also note that $|\mathcal{C}|=n-|V(R)| \geq n-(k-1)=n-k+1$. However, since $k \geq 2$, $n-k+1<n$. This implies that $\operatorname{deg}_{\mathcal{C}} v \geq \frac{|\mathcal{C}|}{2}$. Thus, on some cycle $C \in \mathcal{C}$ there must be at least two consecutive vertices that are both neighbors of v. By adding v between its two such neighbors, we can extend C, a contradiction of the maximality of \mathcal{C}.

Now suppose $|V(R)| \geq k$. Since \mathcal{C} is as large as possible, no vertex of R can be adjacent to any two consecutive vertices in any cycle of \mathcal{C}. Thus, for any
vertex $v \in R$, we know $\operatorname{deg}_{\mathcal{C}} v \leq \frac{|\mathcal{C}|}{2}$. Since $n=|\mathcal{C}|+|V(R)|$ and for $k \geq 2$, $\delta(G)>\frac{n}{2}, \operatorname{deg}_{R} v>\frac{|V(R)|}{2}$ and hence R is hamiltonian connected. Thus, for any adjacency of a vertex in R, to a vertex in a cycle $C_{i} \in \mathcal{C}$ there cannot be any adjacencies to the next $|V(R)|$ vertices from any other vertex in R, otherwise we could insert all of R and extend the cycle, thus extending \mathcal{C}, a contradiction.

By Lemma 2.2.3, $\kappa(G) \geq 2 k$, there is a $2 k$ matching between R and \mathcal{C}. Therefore, the cycles can be broken up into at least $2 k$ intervals with separate end-vertices. Out of all of these intervals, k of them could contain the specified edges e_{i} for $1 \leq i \leq k$. Therefore, there are at least k other intervals, each as large as R, otherwise we could insert R and get a larger cycle system, contradicting the maximality of $|V(C)|$. Hence

$$
\begin{aligned}
|V(R)|(k+1) & \leq n, \text { thus } \\
|V(R)| & \leq \frac{n}{k+1}
\end{aligned}
$$

So each vertex in R has at least $\frac{n+2 k-2}{2}-\frac{n}{k+1}$ adjacencies into \mathcal{C}. However,

$$
\frac{n+2 k-2}{2}-\frac{n}{k+1}=\frac{n}{2}-\frac{n}{k+1}+k-1=\frac{k-1}{2(k+1)} n+k-1 .
$$

Hence, a pair of vertices in $V(R)$ will form at least $\left(\frac{k-1}{2 k+2}\right) n+k$ intervals in the cycles of \mathcal{C}. Therefore, there are $\frac{k-1}{2 k+2}$ intervals that do not contain any edge e_{i} for $1 \leq i \leq k$. Thus we have

$$
\begin{aligned}
|V(R)|\left(\frac{k-1}{2 k+2}\right) n & \leq|\mathcal{C}|=n-|V(R)| \\
\text { Therefore, }|V(R)| & \leq \frac{2 k+2}{k-1}
\end{aligned}
$$

So we have $k \leq|V(R)| \leq \frac{2 k+2}{k-1}$, and this inequality holds for $2 \leq k \leq 3$.
Now suppose $k=3$ and assume we cannot extend \mathcal{C}. Then $\delta(G) \geq \frac{n+4}{2}$ and
$|V(R)| \leq 4$. If $|V(R)|=1$, then $|\mathcal{C}|=n-1$ and the vertex $v \in R$ must have $\frac{n+4}{2}$ edges to \mathcal{C}. Since v is adjacent to more than half of vertices in \mathcal{C}, it must be adjacent to at least two consecutive vertices on some cycle $C \in \mathcal{C}$. The cycle set \mathcal{C} can be extended by adding v between its two neighbors on C, a contradiction.
If $R=2,3$, or 4 , then for any $v \in R \operatorname{deg}_{\mathcal{C}} v \geq \frac{n-2}{2}$ and $|\mathcal{C}| \geq n-4$. Thus for $1 \leq|V(R)| \leq 4$, we have $n-4 \leq|\mathcal{C}| \leq n-1$ and $\delta(G) \geq \frac{n+4}{2}-(|V(R)|-1)=\frac{n+6}{2}-|V(R)|>\frac{|\mathcal{C}|}{2}$, so we can always extend \mathcal{C} by inserting a vertex, a contradiction.

Suppose $k=2$. Then $\delta(G) \geq \frac{n+2}{2}$ and $|V(R)| \leq 6$. If $|V(R)|=1$, $|\mathcal{C}|=n-1$ and $\delta(G) \geq \frac{n+2}{2}>\frac{|\mathcal{C}|}{2}$, and we are done. If $|V(R)|=2$, then $|\mathcal{C}|=n-2$ and for any $v \in R, \operatorname{deg}_{G} v \geq 1+\frac{n+2}{2}=\frac{n}{2}>\frac{\mathcal{C}}{2}$. If $|V(R)|=3$, then $|\mathcal{C}|=n-3$ and for any $v \in R, \operatorname{deg}_{G} v \geq \frac{n+2}{2}-2=\frac{n-2}{2}>\frac{\mathcal{C}}{2}=\frac{n-3}{2}$, a contradiction. When $|V(R)| \geq 4, \operatorname{deg}_{R} v \geq \frac{n+2}{2}-(|V(R)|-1)$, and we can no longer guarantee this is strictly larger than $\frac{|\mathcal{C}|}{2}$. However, $\operatorname{deg}_{G} v=\operatorname{deg}_{\mathcal{C}} v+\operatorname{deg}_{R} \quad v>\frac{n}{2}$, so if $\operatorname{deg}_{G} \quad v \leq \frac{\mathcal{C}}{2}$ then $\operatorname{deg}_{R} \quad v>\frac{|V(R)|}{2}$. Therefore, R is hamiltonian connected.

Let $v_{1}, v_{2}, \ldots, v_{m}, v_{1}$ be a cycle in R, where $m=|V(R)|$. Further, every vertex in R is adjacent to at most every other vertex on each cycle of \mathcal{C}, otherwise we could extend at least one of the cycles, a contradiction. If v_{1} and v_{2} are adjacent vertices in R that are adjacent to different sets of alternating vertices on some C_{i}, then if v_{1} is adjacent to x on C_{i} and v_{2} is adjacent to y on C_{i} such that x is adjacent to y, then clearly C_{i} may be extended, a contradiction. Therefore, v_{1} and v_{2} must have essentially the same neighbors in \mathcal{C}. But then, by the degree condition, on some C_{i} there will exist vertices x, a, and y such that a is between x and y on the cycle, with v_{1} adjacent to x and v_{2} adjacent to y. Then by deleting a and adding v_{1} and v_{2} we can extend C_{i}, a contradiction.

This completes the proof.

Corollary 2.16. The sets of vertex disjoint cycles in Theorems 2.3 and 2.12 can be extended to span $V(G)$.

Proof. Theorem 2.3 follows directly. For Theorem 2.12, when $k=1$ note that $\delta(G) \geq \frac{n}{2}$ so G is hamiltonian and the hamiltonian cycle must be chorded and must include the specified vertex, as desired.

Definition 2.17. A linear forest is a set of vertex disjoint paths.

Given a set of vertex disjoint paths $\left\{P_{r_{1}}, P_{r_{2}}, \ldots, P_{r_{k}}\right\}$ where $r_{i} \geq 2$ is the order of the path $P_{r_{i}}$, let $r=\sum_{i=1}^{k} r_{i}$. Then the number of interior vertices in the path system is given by $r-2 k$.

Theorem 2.18. Let $P_{r_{1}}, P_{r_{2}}, \ldots, P_{r_{k}}$ be a linear forest in a G of order $n \geq 16 k+r-2$. If the minimum degree

$$
\delta(G) \geq \frac{n}{2}+r-1-k
$$

then there exists a system of k chorded cycles $\left\{C_{1}, C_{2}, \ldots, C_{k}\right\}$ such that the path $P_{r_{i}}$ lies on the cycle C_{i} and $\left|V\left(C_{i}\right)\right| \leq r_{i}+4$ for all $1 \leq i \leq k$.

Proof. Consider the graph G^{\prime} produced by replacing each path $P_{r_{i}}$ in G by an edge e_{i}. Then the order of G^{\prime} is

$$
\left|V\left(G^{\prime}\right)\right|=n-(r-2 k) \geq 16 k+r-2-r+2 k=18 k-2 .
$$

Also, the minimum degree

$$
\delta\left(G^{\prime}\right) \geq \frac{n}{2}+r-1-k-(r-2 k)=\frac{n}{2}+k-1
$$

Then by Theorem 2.10, there exists a set of k vertex disjoint chorded cycles $C_{1}^{c_{1}}, C_{2}^{c_{2}}, \ldots, C_{k}^{c_{k}}$ such that $e_{i} \in E\left(C_{i}\right)$ and $e_{i} \neq c_{i}$ for all i. Now replace the edge e_{i} by the path $P_{r_{i}}$ for all i, i.e. insert the set of interior vertices of each path back into G^{\prime} to form the original graph G. Then the path $P_{r_{i}}$ now lies on the cycle C_{i} and each C_{i} is still a chorded cycle since the addition of the interior vertices of $P_{r_{i}}$ does not affect the end-vertices of any chord.

Chapter 3

A Result on Vertex Disjoint Cycles and Doubly Chorded Cycles

In this chapter, we prove a result on vertex disjoint cycles and doubly chorded cycles. Recall that a cycle is doubly chorded if it contains at least two chords (which may share at most one end-vertex). The results in this chapter differ from the results in the Chapter 2, in that the cycles in these results are not required to contain any specific elements of the graph. First, let r and s be nonnegative integers and let G be a graph with $|V(G)| \geq 4 r+6 s$ and $\sigma_{2}(G) \geq 4 r+6 s-1$. In this chapter, we prove that such a graph G contains a collection of $r+s$ vertex disjoint cycles such that s of them are doubly chorded. This is an extension of earlier results. This chapter is joint work with Dongqin Cheng and Ron Gould.

3.1 Introduction

As always, we let G be a simple graph and P_{t} (respectively, C_{t}) be a path (respectively, cycle) with t vertices. In this chapter, a path P is denoted $P=\left\langle u_{1}, u_{2}, \ldots, u_{n}\right\rangle$. Recall that the set of neighbors of x in the subgraph
$H \subseteq G$ is denoted $N_{H}(x)$. Again, we will focus on minimum degree and degree sum conditions. Let $\delta(G)$ denote the minimum degree of $V(G)$ and let

$$
\sigma_{2}(G)=\min \left\{\operatorname{deg}_{G}(u)+\operatorname{deg}_{G}(v) \mid u \text { and } v \text { are nonadjacent }\right\}
$$

For terms not defined here, see [20].
As seen in Chapters 1 and 2, the study of vertex disjoint cycles and chorded cycles in graphs has attracted much attention over the past few decades. In 1963, Corrádi and Hajnal [6] proved that for an integer $r \geq 1$, any graph G with $|V(G)| \geq 3 r$ and minimum degree $\delta(G) \geq 2 r$ contains r vertex disjoint cycles. In 2008, Finkel [16] proved the following extension of the Corrádi-Hajnal theorem for chorded cycles.

Theorem 3.1 ([16]). For an integer $k \geq 1$, let G be graph with $|V(G)| \geq 4 k$ and $\delta(G) \geq 3 k$. Then G contains k vertex disjoint chorded cycles.

Using Theorem 3.1 as inspiration, Bialostocki, Finkel, and Gyárfás [3] proposed the following conjecture.

Conjecture 3.2 ([3]). Let $s \geq 0, t \geq 0$ be two integers and G be a graph with at least $3 r+4 s$ vertices. If

$$
\delta(G) \geq 2 r+3 s
$$

then G contains $r+s$ vertex disjoint cycles such that s of them are chorded cycles.

They also proved that the conjecture is true for $r=0, s=2$ and for $s=1$. Their conjecture was proved to be true by Babu and Diwan [1], and Chiba and Fujita [5]. In particular, the authors in [1, 5] generalized the minimum degree condition to a degree sum condition, and proved the following theorem.

Theorem 3.3 ([1, 5]). Let $r \geq 0, s \geq 0$ be two integers and let G be a graph of order $n \geq 3 r+4 s$. If

$$
\sigma_{2}(G) \geq 4 r+6 s-1
$$

then G contains $r+s$ vertex disjoint cycles such that s of them are chorded cycles.

Balister, Li and Schelp [2] improved on Theorem 3.3 under a minimum degree condition.

Theorem 3.4 ([2]). For integers $r, s \geq 0$, let G be a graph of order $n \geq 3 r+4 s$. If the minimum degree of G

$$
\delta(G) \geq 2 r+3 s
$$

then G contains $r+s$ vertex disjoint cycles, such that s of them are either doubly chorded or 4-cycles with one chord.

Qiao and Zhang [26] proved that $|V(G)| \geq 4 k$ and $\delta(G) \geq\lceil 7 k / 2\rceil$ can ensure k vertex disjoint doubly chorded cycles in any graph G. Gould, Hirohata and Horn [21] improved the degree condition in [26] to a degree sum condition and proved the following result.

Theorem 3.5 ([21]). For an integer $k \geq 1$, let G is a graph of order $|V(G)| \geq 6 k$. If

$$
\sigma_{2}(G) \geq 6 k-1
$$

then G contains k vertex disjoint doubly chorded cycles.
Using the aforementioned theorems as motivation, our goal for this chapter is to guarantee a collection of $r+s$ vertex disjoint cycles, such that s of them are doubly chorded cycles. Specifically, we prove the following theorem.

Theorem 3.6. Let $r \geq 0, s \geq 0$ be two integers and let G be a graph with $|V(G)| \geq 4 r+6 s$. If

$$
\sigma_{2}(G) \geq 4 r+6 s-1
$$

then G contains $r+s$ vertex disjoint cycles such that s of them are doubly chorded cycles.

3.2 Some Lemmas

The following lemmas are useful to our main proof.
In [21], Gould, Hirohata, and Horn proved the following Exchange Lemma.
Lemma 3.7 ([21]). Let G be a graph containing a doubly chorded cycle Q. Suppose $x, y \in V(G-Q)$ are nonadjacent vertices with $\operatorname{deg}_{Q}(x) \geq 4$ and $\operatorname{deg}_{Q}(y) \geq 3$. Then there exist vertices $z_{x}, z_{y} \in V(Q)$ such that z_{x} is adjacent to x and z_{y} is adjacent to y and both $\left(Q-z_{x}\right) \cup\{y\}$ and $\left(Q-z_{y}\right) \cup\{x\}$ induce doubly chorded cycles.

Chiba et al. [5] proved the following lemma.
Lemma 3.8 ([5]). For an integer $p \geq 4$, let $P=\left\langle x_{1}, x_{2}, \ldots, x_{p}\right\rangle$ be a path and let C be a cycle of order at least four in G such that P and C are vertex disjoint. Consider the vertex set $S=\left\{x_{1}, x_{2}, x_{p-1}, x_{p}\right\}$. If $\sum_{x \in S} \operatorname{deg}_{C}(x) \geq 8$, then either $G[V(C) \cup V(P)]$ contains a cycle of length less than $|V(C)|$ or $G[V(C) \cup V(P)]$ contains two disjoint cycles.

There are two kinds of doubly chorded 5 -cycles, denoted by C_{5}^{\wedge} and C_{5}^{\times}, see Figure 3a. Qiao and Zhang [26] proved the following lemma.

Figure 3a: The two doubly chorded cycles of C_{5}.
Lemma 3.9 ([26]). Let C be a cycle of a graph G with at least two chords, and let u be a vertex in $G-C$. If $\operatorname{deg}_{C}(u) \geq 4$, then either $G[V(C) \cup u]$ contains a cycle C^{\prime} with at least two chords and $\left|V\left(C^{\prime}\right)\right|<|V(C)|$, or $|V(C)| \leq 5$ and $G[V(C) \cup u]$ contains K_{4} or C_{5}^{\wedge} as a subgraph.

We prove the following lemma.
Lemma 3.10. Let C be a cycle. If $u, v \in V(G-C)$ and $\operatorname{deg}_{C}(u)+\operatorname{deg}_{C}(v) \geq 5$ and each vertex has at least one adjacent vertex on C, then there exists a vertex $z_{u} \in V(C)$ such that $z_{u} u \in E(G)$ and $G\left[V\left(C-z_{u}\right) \cup v\right]$ contains a cycle.

Proof. We only need to consider $\operatorname{deg}_{C}(u)+\operatorname{deg}_{C}(v)=5$. Let $C=\left\langle x_{1}, x_{2}, x_{3}, \ldots, x_{n-1}, x_{n}, x_{1}\right\rangle$. Consider the following cases according to the value of n.

Case 1: Suppose $n=3$.
Since $\operatorname{deg}_{C}(u)+\operatorname{deg}_{C}(v)=5$, we see that $\operatorname{deg}_{C}(u)=3$ or $\operatorname{deg}_{C}(v)=3$.
Without loss of generality, we may assume that $\operatorname{deg}_{C}(u)=3$, and so $N_{C}(u)=\left\{x_{1}, x_{2}, x_{3}\right\}$. By symmetry, we only need to consider
$N_{C}(v)=\left\{x_{2}, x_{3}\right\}$. Then $z_{u}=x_{1}$ and $C^{\prime}=\left\langle v, x_{2}, x_{3}, v\right\rangle$ is a cycle in $G\left[V\left(C-z_{u}\right) \cup v\right]$.

Case 2: Suppose $n=4$.
Case 2.1: Suppose $\operatorname{deg}_{C}(v)=4$ or $\operatorname{deg}_{C}(u)=4$.
Without loss of generality, we may assume that $\operatorname{deg}_{C}(v)=4$, then $\operatorname{deg}_{C}(u)=1$. By symmetry, we only need to consider $N_{C}(u)=\left\{x_{2}\right\}$. Then $z_{u}=x_{2}$ and $C^{\prime}=\left\langle v, x_{1}, x_{4}, v\right\rangle$ is a cycle in $G\left[V\left(C-z_{u}\right) \cup v\right]$.

Case 2.2: Suppose $\operatorname{deg}_{C}(u)=3$ or $\operatorname{deg}_{C}(v)=3$.
Without loss of generality, assume that $\operatorname{deg}_{C}(u)=3$, then $\operatorname{deg}_{C}(v)=2$. By symmetry, we only need to consider $N_{C}(u)=\left\{x_{1}, x_{3}, x_{4}\right\}$. Note that $N_{C}(v)=\left\{x_{3}, x_{4}\right\}$ is symmetric to $N_{C}(v)=\left\{x_{1}, x_{4}\right\} ; N_{C}(v)=\left\{x_{2}, x_{3}\right\}$ is symmetric to $N_{C}(v)=\left\{x_{1}, x_{2}\right\}$. In both cases, we only need to consider the former case. The desired vertices and cycles can be found in Table A.

Table A: The desired edges and cycles in C_{4}.

$N_{C}(v)$	z_{u}	C^{\prime}
$\left\{x_{3}, x_{4}\right\}$	x_{1}	$\left\langle v, x_{3}, x_{4}, v\right\rangle$
$\left\{x_{1}, x_{3}\right\}$	x_{4}	$\left\langle v, x_{1}, x_{2}, x_{3}, v\right\rangle$
$\left\{x_{2}, x_{3}\right\}$	x_{1}	$\left\langle v, x_{2}, x_{3}, v\right\rangle$
$\left\{x_{2}, x_{4}\right\}$	x_{3}	$\left\langle v, x_{2}, x_{1}, x_{4}, v\right\rangle$

Case 3: Suppose $n \geq 5$.
If $\operatorname{deg}_{C}(u)=4$ or $\operatorname{deg}_{C}(v)=4$, we may assume that $\operatorname{deg}_{C}(v)=4$, then $\operatorname{deg}_{C}(u)=1$. Assume that $N_{C}(u)=\{x\}$. Then $z_{u}=x$ and $G\left[V\left(C-z_{u}\right) \cup v\right]$ contains a cycle. Hence, we only need to consider $\operatorname{deg}_{C}(u)=3$ or $\operatorname{deg}_{C}(v)=3$. Without loss of generality, we may assume that $\operatorname{deg}_{C}(u)=3$. Let $N_{C}(u)=\left\{x_{a}, x_{b}, x_{c}\right\}$ and $N_{C}(v)=\left\{x_{m}, x_{n}\right\}$, where $x_{i} \in V(C)$ for $i \in\{a, b, c, m, n\}$. We consider the following cases according to the distribution of the vertices in $N_{C}(u)$ and $N_{C}(v)$.

Let the path between x_{m} and x_{n} on C be denoted by P_{1}, and the path $C-P_{1}$ be denoted by P_{2}, where $m<n$. Now $\operatorname{deg}_{C}(u)=3$, so u has an adjacent vertex, say x_{u}, on C other than x_{m} and x_{n}. It does not matter which path this adjacent vertex lies on, so without loss of generality, say $x_{u} \in P_{2}$, then $x_{u}=z_{u}$ and v along with P_{1} induces a cycle.

By the above cases, the proof is complete.

3.3 Proof of Theorem 3.6

In this section, we will prove our main result, Theorem 3.6.
Proof. We prove the following stronger inductive statement. Assume there exist $k+s$ vertex disjoint cycles, s of them doubly chorded, $0 \leq k<r$ and with at least $4(r-k) \geq 4$ vertices remaining off the cycles. If $r=0$ and $s \geq 1$, then by Theorem 3.5 the result is true. If $s=0$ and $r \geq 1$, then by Theorem 3.1 the result is also true.

Now suppose that $r \geq 1$ and $s>0$ and the result holds for $k<r$. Since $|V(G)| \geq 4 r+6 s>4 k+6 s$ and $\sigma_{2}(G) \geq 4 r+6 s-1>4 k+6 s-1$, by the induction hypothesis, G contains $k+s$ vertex disjoint cycles such that s of them are doubly chorded cycles. Without loss of generality, we let $\left\{C_{1}, C_{2}, \ldots, C_{k}\right\}$ be the k vertex disjoint cycles and $\left\{Q_{1}, Q_{2}, \ldots, Q_{s}\right\}$ be the s vertex disjoint doubly chorded cycles. Let

$$
H=G-\bigcup_{i=1}^{k} C_{i}-\bigcup_{j=1}^{s} Q_{j}
$$

Let $\mathcal{H}_{1}=\left\{C_{1}, C_{2}, \ldots, C_{k}\right\}, \mathcal{H}_{2}=\left\{Q_{1}, Q_{2}, \ldots, Q_{s}\right\}$. Obviously, $|H| \geq 4(r-k) \geq 4$ for $k<r$ and H contains no cycles, or else we are done. Hence, H is a forest. We consider a tree $R \subseteq H$ as follows. Let
$P=\left\langle u_{1}, u_{2}, u_{3}, \ldots, u_{p}\right\rangle$ be a longest path in R. We assume that the cycles $C_{1}, C_{2}, \ldots, C_{k}, Q_{1}, Q_{2}, \ldots, Q_{s}$ are chosen in G such that
(i) $\sum_{i=1}^{k}\left|V\left(C_{i}\right)\right|+\sum_{j=1}^{s}\left|V\left(Q_{j}\right)\right|$ is as small as possible;
(ii) the number of C_{5}^{\wedge} in \mathcal{H}_{2} is as large as possible, subject to (i);
(iii) P is as long as possible, subject to (i) and (ii).

First, we need the following lemma and claim.
Lemma 3.11. Let $P=\left\langle x_{1}, x_{2}, \ldots, x_{p-1}, x_{p}\right\rangle$ be a path and $Q \in \mathcal{H}_{2}$ such that P and Q are vertex disjoint. Consider the vertex set $S=\left\{x_{1}, x_{2}, x_{p-1}, x_{p}\right\}$. If $\sum_{x \in S} \operatorname{deg}_{Q}(x) \geq 13$, then either there are two vertex disjoint cycles such that one is a cycle and the other is a doubly chorded cycle in $G[V(P) \cup V(Q)]$, or there exists a doubly chorded cycle that is shorter than Q.

We postpone the proof of Lemma 3.11 until after the proof of Theorem 3.6.
First we will prove the following claim.
Claim 1. $|V(P)| \geq 4$.
Proof. For the sake of contradiction, assume that $|V(P)|<3$. Let x and y be the end-vertices of P, then $\left|N_{H}(x)\right|=1$ and $\left|N_{H}(y)\right|=1$. Hence,

$$
\operatorname{deg}_{G-H}(x)+\operatorname{deg}_{G-H}(y) \geq(4 r+6 s-1)-2=4 r+6 s-3=4(r-1)+6 s+1
$$

Then there exists a cycle C_{i} with $1 \leq i \leq k$ such that either $\operatorname{deg}_{C_{i}}(x)+\operatorname{deg}_{C_{i}}(y) \geq 5$, or there exists a doubly chorded cycle Q_{j} with $1 \leq j \leq s$ such that $\operatorname{deg}_{Q_{j}}(x)+\operatorname{deg}_{Q_{j}}(y) \geq 7$.

We first consider the case where $\operatorname{deg}_{C_{i}}(x)+\operatorname{deg}_{C_{i}}(y) \geq 5$. If $\operatorname{deg}_{C_{i}}(x) \geq 4$ or $\operatorname{deg}_{C_{i}}(y) \geq 4$ (without loss of generality, we may assume that the former is true), then $\left|V\left(C_{i}\right)\right| \geq 4$ and the neighbors of x, say x_{1}, x_{2}, x_{3} and x_{4} in
order, partition C_{i} into four paths, , say $P_{1}^{\prime}, P_{2}^{\prime}, P_{3}^{\prime}$ and P_{4}^{\prime}, such that each path has one end-vertex which is a neighbor of x. Obviously, $G\left[V\left(P_{j}^{\prime}\right) \cup\left\{x, x_{j+1}\right\}\right]$ contains a cycle C_{j}^{\prime} for each $j \in\{1,2,3,4\}$ such that $\left|V\left(C_{j}^{\prime}\right)\right|=\left|V\left(P_{j}^{\prime}\right)\right|+2$. Since there is a cycle C_{k}^{\prime} for some $k \in\{1,2,3,4\}$ such that $\left|V\left(C_{k}^{\prime}\right)\right|=\left|V\left(P_{k}^{\prime}\right)\right|+2 \leq\left\lceil\frac{\left|V\left(C_{i}\right)\right|}{4}\right]+2<\left|V\left(C_{i}\right)\right|$ for $\left|V\left(C_{i}\right)\right| \geq 4$, we can find a cycle C_{k}^{\prime} shorter than C_{i} in $G[V(P) \cup V(C)]$, which is a contradiction to the choice of (i). Hence $\operatorname{deg}_{C_{i}}(x) \geq 3$ or $\operatorname{deg}_{C_{i}}(y) \geq 3$. Without loss of generality, we may assume that $\operatorname{deg}_{C_{i}}(x) \geq 3$, then $\operatorname{deg}_{C_{i}}(y) \geq 2$. By Lemma 3.10, there exists a vertex $z_{x} \in V\left(C_{i}\right)$ such that $z_{x} x \in E(G)$ and $G\left[\left(C-z_{x}\right) \cup y\right]$ contains a cycle. Then we can find a path longer than P, which is a contradiction to the choice of P.

We next consider the case where $\operatorname{deg}_{Q_{j}}(x)+\operatorname{deg}\left(y, Q_{j}\right) \geq 7$. If $\operatorname{deg}_{Q_{j}}(x) \geq 5$ or $\operatorname{deg}_{Q_{j}}(y) \geq 5$ (without loss of generality, we may assume that the former is true), then $\left|V\left(Q_{j}\right)\right| \geq 5$ and, similar to above, the neighbors of x partition Q_{j} into five paths, say $P_{1}^{\prime \prime}, P_{2}^{\prime \prime}, P_{3}^{\prime \prime}, P_{4}^{\prime \prime}$ and $P_{5}^{\prime \prime}$ in order. Then every four consecutive adjacent vertices of x on Q_{j} along with x induce a doubly chorded cycle Q_{t}^{\prime} such that $\left|V\left(Q_{t}^{\prime}\right)\right|=\left|V\left(P_{j}^{\prime \prime}\right)\right|+\left|V\left(P_{k}^{\prime \prime}\right)\right|+\left|V\left(P_{l}^{\prime \prime}\right)\right|+2$ for three consecutive integers $j, k, l \in\{1,2,3,4,5\}$, where $t \in\{1,2,3,4,5\}$. If $\left|V\left(Q_{j}\right)\right|>5$, then there exists a doubly chorded cycle Q_{t}^{\prime} for some $t \in\{1,2,3,4,5\}$ such that $\left|V\left(Q_{t}^{\prime}\right)\right| \leq\left[\frac{3\left|V\left(Q_{j}\right)\right|}{5}\right]+2<\left|V\left(Q_{j}\right)\right|$; if $\left|V\left(Q_{j}\right)\right|=5$, then we can find a K_{4} in $G\left[V\left(Q_{j}\right) \cup\{x\}\right]$. In both cases, we can find a doubly chorded cycle shorter than Q_{j}, which is a contradiction to (i). Hence, either $\operatorname{deg}_{Q_{j}}(x) \geq 3$ and $\operatorname{deg}_{Q_{j}}(y) \geq 4$, or $\operatorname{deg}_{Q_{j}}(x) \geq 4$ and $\operatorname{deg}_{Q_{j}}(y) \geq 3$. Without loss of generality, we may assume that the former is true. By Lemma 3.7, there exist vertices $z_{x}, z_{y} \in V\left(Q_{j}\right)$ such that z_{x} is adjacent to x and z_{y} is adjacent to y and $\left(Q_{j}-z_{x}\right) \cup y$ induces a doubly chorded cycle. Then $P \cup\left\{z_{x} x\right\}$ is a path longer than P, which is a contradiction to the choice of P. Thus, we conclude that $|V(P)| \geq 4$.

This completes the proof of the Claim.

By Claim 1, $|V(P)|=p \geq 4$. Obviously, $\operatorname{deg}_{P}\left(u_{1}\right)=\operatorname{deg}_{P}\left(u_{p}\right)=1$ and $u_{1} u_{p-1}, u_{2} u_{p} \notin E(G)$, otherwise a cycle would result. We then have that

$$
\sum_{(x, y) \in\{(1, p-1),(2, p)\}} \operatorname{deg}\left(u_{x}, H\right)+\operatorname{deg}\left(u_{y}, H\right) \leq 6 .
$$

By the degree sum condition, we have

$$
\begin{aligned}
& \quad \sum_{(x, y) \in\{(1, p-1),(2, p)\}} \operatorname{deg}_{G-H}\left(u_{x}\right)+\operatorname{deg}_{G-H}\left(u_{y}\right) \\
& \geq 2(4 r+6 s-1)-6 \\
& =8 r+12 s-8 \\
& =8(r-1)+12 s .
\end{aligned}
$$

Recall that $s>0$ and $r>1$. If any cycle C_{i} with $1 \leq i \leq k$ has

$$
\sum_{(x, y) \in\{(1, p-1),(2, p)\}} \operatorname{deg}_{C_{i}}\left(u_{x}\right)+\operatorname{deg}_{C_{i}}\left(u_{y}\right) \geq 8
$$

then by Lemma 3.8 either there exists a cycle in $G[V(C) \cup V(P)]$ that is shorter than C, which is a contradiction; or $G[V(C) \cup V(P)]$ contains two disjoint cycles, in which case there are $(k+1)+s$ vertex disjoint cycles in G such that s of them are doubly chorded cycles. Then by induction, the result follows.

Therefore, $\left\{x_{1}, x_{2}, x_{p-1}, x_{p}\right\}$ must send at most seven edges to each cycle C_{i} for $1 \leq i \leq k$. However, now there must be a doubly chorded cycle Q_{j} with $1 \leq j \leq s$ such that

$$
\sum_{(x, y) \in\{(1, p-1),(2, p)\}} \operatorname{deg}_{Q_{j}}\left(u_{x}\right)+\operatorname{deg}_{Q_{j}}\left(u_{y}\right) \geq 13 .
$$

Note that in this case, there is a vertex $x \in\left\{x_{1}, x_{2}, x_{p-1}, x_{p}\right\}$ such that $\operatorname{deg}_{Q_{j}}(x) \geq 4$. By Lemma 3.9 and the choices of (i) and (ii), we must have $Q=K_{4}$ or $Q=C_{5}^{\wedge}$. Then by Lemma 3.11, there exist two vertex disjoint cycles such that one is a cycle and the other is a doubly chorded cycle in $G\left[V\left(Q_{j}\right) \cup V(P)\right]$. Hence, there exist $(k+1)+s$ vertex disjoint cycles in G such that s of them are doubly chorded cycles, and again by induction, the result follows.

Proof of Lemma 3.11

Proof. Since $\sum_{x \in S} \operatorname{deg}_{Q}(x) \geq 13$, there exists a vertex $x \in S$ such that $\operatorname{deg}_{Q}(x) \geq 4$. By Lemma 3.9, either $G[V(C) \cup u]$ contains a doubly chorded cycle Q^{\prime} shorter than Q, then we are done; or we may assume that $Q=K_{4}$ or $Q=C_{5}^{\wedge}$. We need to examine the following two cases.

Case 1: Suppose $Q=K_{4}$ with 4-cycle $\left\langle y_{1}, y_{2}, y_{3}, y_{4}, y_{1}\right\rangle$ and two chords $y_{1} y_{3}$ and $y_{2} y_{4}$. By symmetry, we need to consider the following two cases.

Case 1.1: Suppose $\operatorname{deg}_{Q}\left(x_{1}\right)=4$. (Note that the case where $\operatorname{deg}_{Q}\left(x_{p}\right)=4$ is symmetric to the $\operatorname{deg}_{Q}\left(x_{1}\right)=4$ case.)
Then $N_{Q}\left(x_{1}\right)=\left\{y_{1}, y_{2}, y_{3}, y_{4}\right\}$. Note that there is at most one vertex, say $x \in\left\{x_{2}, x_{p-1}, x_{p}\right\}$, such that $\left|N_{Q}(x)\right| \leq 2$. For $x^{\prime}, x^{\prime \prime} \in\left\{x_{2}, x_{p-1}, x_{p}\right\} \backslash\{x\}$, $\left|N_{Q}\left(x^{\prime}\right)\right| \geq 3$ and $\left|N_{Q}\left(x^{\prime \prime}\right)\right| \geq 3$. Let P^{*} be the sub-path of P from x^{\prime} to $x^{\prime \prime}$. (Note this path may be just one edge.) Without loss of generality, we may assume that $y_{3} \in N_{Q}\left(x^{\prime}\right) \cap N_{Q}\left(x^{\prime \prime}\right)$. Then $C^{\prime}=\left\langle y_{3}, x^{\prime}, P^{*}, x^{\prime \prime}, y_{3}\right\rangle$ and $Q^{\prime}=\left\langle x_{1}, y_{2}, y_{1}, y_{4}, x_{1}\right\rangle$ with two chords $y_{2} y_{4}$ and $x_{1} y_{1}$ are the desired cycles.

Case 1.2: Suppose $\operatorname{deg}_{Q}\left(x_{2}\right)=4$. (Note that the case where $\operatorname{deg}_{Q}\left(x_{p-1}\right)=4$ is symmetric to the $\operatorname{deg}_{Q}\left(x_{2}\right)=4$ case.)
Then $N_{Q}\left(x_{2}\right)=\left\{y_{1}, y_{2}, y_{3}, y_{4}\right\}$. Note that there is at most one vertex, say $x \in\left\{x_{1}, x_{p-1}, x_{p}\right\}$, such that $|N(x, Q)| \leq 2$. For $x^{\prime}, x^{\prime \prime} \in\left\{x_{1}, x_{p-1}, x_{p}\right\} \backslash\{x\}$, $\left|N_{Q}\left(x^{\prime}\right)\right| \geq 3$ and $\left|N_{Q}\left(x^{\prime \prime}\right)\right| \geq 3$. Hence, there exists a vertex $y \in V(Q)$ such
that $y \in N_{Q}\left(x_{p-1}\right) \cap N_{Q}\left(x_{p}\right)$. It can be easily seen that $\left\langle y, x_{p-1}, x_{p}, y\right\rangle$ is a cycle and $G\left[V(Q-y) \cup x_{2}\right]$ is a K_{4}.

Case 2: Suppose $Q=C_{5}^{\wedge}$ with cycle $\left\langle y_{1}, y_{2}, y_{3}, y_{4}, y_{5}, y_{1}\right\rangle$ and with two chords $y_{1} y_{3}$ and $y_{1} y_{4}$.

For any vertex $x_{i} \in S$, if $\left\{y_{1}, y_{4}, y_{5}\right\} \subset N_{Q}\left(x_{i}\right)$ (respectively, $\left.\left\{y_{1}, y_{2}, y_{3}\right\} \subset N_{Q}\left(x_{i}\right)\right)$, then $G\left[\left\{x_{i}, y_{1}, y_{4}, y_{5}\right\}\right]$ (respectively, $\left.G\left[\left\{x_{i}, y_{1}, y_{2}, y_{3}\right\}\right]\right)$ induces a K_{4}, which is a contradiction to the choice of (i). Hence, we only need to consider $N_{Q}\left(x_{i}\right)=\left\{y_{2}, y_{3}, y_{4}, y_{5}\right\}$. By symmetry, we need only to consider the following two cases.

Case 2.1: Suppose $\operatorname{deg}_{Q}\left(x_{1}\right)=4$. (Note that the case where $\operatorname{deg}_{Q}\left(x_{p}\right)=4$ is symmetric to the $\operatorname{deg}_{Q}\left(x_{1}\right)=4$ case.) For any vertex $x \in\left\{x_{2}, x_{p-1}, x_{p}\right\}$, we need to consider the following three cases.

Case 2.1.1: Suppose $N_{Q}(x)=N_{Q}\left(x_{1}\right)=\left\{y_{2}, y_{3}, y_{4}, y_{5}\right\}$.
If $x=x_{2}$, then $G\left[\left\{x_{1}, x, y_{4}, y_{5}\right\}\right]$ induces a K_{4}, which is a contradiction to (i). Suppose $x=x_{p-1}$. Now if x_{p} has a common neighbor, say y, with x_{p-1} on C_{5}^{\wedge}, then these three vertices form a K_{3} and $G\left[\left(C_{5}^{\wedge}-y\right) \cup x_{1}\right]$ contains a doubly chorded cycle. If x_{p} is only adjacent to y_{1} on C_{5}^{\wedge}, then x_{2} must have 4 neighbors and we are done by an argument similar to the case where $x=x_{2}$.

Now assume $x=x_{p}$. Now since x_{2} or x_{p-1} has a common neighbor, say y, with x_{p}, then y and the path between x_{2} (or x_{p-1}) and x_{p} induce a cycle and again $G\left[\left(C_{5}^{\wedge}-y\right) \cup x_{1}\right]$ contains a doubly chorded cycle.

Case 2.1.2: Suppose $\operatorname{deg}_{Q}(x)=4$ and $N_{Q}(x) \neq N_{Q}\left(x_{1}\right)$ for $x \in\left\{x_{2}, x_{p}, x_{p-1}\right\}$.

In this case, $y_{1} \in N_{Q}(x)$ and three other vertices from $\left\{y_{2}, y_{3}, y_{4}, y_{5}\right\}$. No matter which three vertices are chosen, a K_{4} exists, which is a contradiction.

Case 2.1.3: Suppose $\left|N_{Q}(x)\right|=3$.
In this case, any two vertices of $\left\{x_{2}, x_{p-1}, x_{p}\right\}$, say x^{\prime} and $x^{\prime \prime}$, have a common neighbor, say y. If $y=y_{1}$, then $C^{\prime}=\left\langle y_{1}, x^{\prime}, x^{\prime \prime}, y_{1}\right\rangle$ and $Q^{\prime}=\left\langle x_{1}, y_{2}, y_{3}, y_{4}, y_{5}, x_{1}\right\rangle$ with two chords $x_{1} y_{4}$ and $x_{1} y_{3}$ are the desired cycles. If $y=y_{2}$, then $C^{\prime}=\left\langle y_{2}, x^{\prime}, x^{\prime \prime}, y_{2}\right\rangle$ and $Q^{\prime}=\left\langle x_{1}, y_{4}, y_{3}, y_{1}, y_{5}, x_{1}\right\rangle$ with two chords $y_{1} y_{4}$ and $y_{5} y_{4}$ are the desired cycles. If $y=y_{3}$, then $C^{\prime}=\left\langle y_{3}, x^{\prime}, x^{\prime \prime}, y_{3}\right\rangle$ and $Q^{\prime}=\left\langle x_{1}, y_{5}, y_{4}, y_{1}, y_{2}, x_{1}\right\rangle$ with two chords $y_{1} y_{5}$ and $x_{1} y_{4}$ are the desired cycles. If $y=y_{4}$, then $C^{\prime}=\left\langle y_{1}, y_{2}, y_{3}, y_{1}\right\rangle$ and $Q^{\prime}=\left\langle x_{1}, y_{5}, y_{4}, x^{\prime \prime}, x^{\prime}, x_{1}\right\rangle$ with two chords $x_{1} y_{4}$ and $x^{\prime} y_{4}$ are the desired cycles. If $y=y_{5}$, then $C^{\prime}=\left\langle y_{1}, y_{2}, y_{3}, y_{1}\right\rangle$ and $Q^{\prime}=\left\langle x_{1}, y_{4}, y_{5}, x^{\prime \prime}, x^{\prime}, x_{1}\right\rangle$ with two chords $x_{1} y_{5}$ and $x^{\prime} y_{5}$ are the desired cycles. See Figure 3b.

Figure 3b: $|N(x, Q)|=3$

Case 2.2: Suppose $\operatorname{deg}_{Q}\left(x_{2}\right)=4$. (Note that the case where $\operatorname{deg}_{Q}\left(x_{p-1}\right)=4$ is symmetric to the $\operatorname{deg}_{Q}\left(x_{2}\right)=4$ case.)

By substituting x_{2} for x_{1} in Case 2.1, it can be checked that this case also follows.

This completes the proof.

By Lemma 3.11, we directly obtain the following corollary.
Corollary 3.12. Let P be a path with $|V(P)|=3$ and $Q \in \mathcal{H}_{2}$ such that P and Q are vertex disjoint. If $\sum_{x \in V(P)} \operatorname{deg}_{Q}(x) \geq 10$, then there are two vertex disjoint cycles such that one is a cycle and the other is a doubly chorded cycle in $G[V(P) \cup V(Q)]$.

Chapter 4

Forbidden Subgraphs for Chorded Pancyclicity

We call a graph G pancyclic if it contains at least one cycle of every possible length m, for $3 \leq m \leq|V(G)|$. In this chapter, we focus on a new property we call chorded pancyclicity. We explore both an edge-density condition and forbidden subgraphs in claw-free graphs sufficient to imply that the graph contains at least one chorded cycle of every possible length $4,5, \ldots,|V(G)|$. In particular, certain paths and triangles with pendant paths are forbidden along with $K_{1,3}$. The results in this chapter are joint work with Ron Gould.

4.1 Introduction

In the past, forbidden subgraphs for hamiltonian properties in graphs have been widely studied (for an overview, see [13]). A graph containing a cycle of every possible length from three to the order of the graph is called pancyclic and it is one of the well-studied cycle properties in graphs. In this chapter, we define the notion of chorded pancyclicity, and study the density necessary to guarantee this property in a graph. We also extend some forbidden subgraph results for pancyclicity to analogous results for chorded pancyclicity. We consider only $K_{1,3}$-free (or claw-free) graphs, and we forbid certain paths and triangles with pendant paths.

In this chapter, we extend the following theorem to analogous results on chorded pancyclicity. Recall these results that were stated earlier in $\S 1.5$.

Theorem 4.1. Let R, S be connected graphs and let $G\left(G \neq C_{n}\right)$ be a 2-connected graph of order $n \geq 10$. Then if G is $\{R, S\}$-free then G is pancyclic for $R=K_{1,3}$ and S is either $P_{4}, P_{5}, P_{6}, Z_{1}$, or Z_{2}.

The proof of a theorem in [18] yields the following result.
Theorem 4.2. [18] If G is a 2-connected graph of order $n \geq 10$ that contains no induced subgraph isomorphic to $K_{1,3}$ or Z_{1}, then G is either a cycle or G is pancyclic.

Gould and Jacobson proved a similar result for Z_{2} in [24].
Theorem 4.3. [24] If G is a 2-connected graph of order $n \geq 10$ that contains no induced subgraph isomorphic to $K_{1,3}$ or Z_{2}, then G is either a cycle or G is pancyclic.

Faudree, Gould, Ryjacek, and Schiermeyer proved a similar result for certain paths in [15].

Theorem 4.4. [15] If G is a 2-connected graph of order $n \geq 6$ that is $\left\{K_{1,3}, P_{5}\right\}$-free, then G is either a cycle or G is pancyclic.

Theorem 4.5. [15] If G is a 2-connected graph of order $n \geq 10$ that is $\left\{K_{1,3}, P_{6}\right\}$-free, then G is either a cycle or G is pancyclic.

Theorem 4.4 implies the following result for P_{4}.
Theorem 4.6. [15] If G is a 2-connected graph of order $n \geq 6$ that is $\left\{K_{1,3}, P_{4}\right\}$-free, then G is either a cycle or G is pancyclic.

In this chapter, we extend each of these results to chorded pancyclicity, which sometimes requires added or altered conditions.

4.2 Results

4.2.1 Introduction to Chorded Pancyclicity

Definition 4.7. A graph G of order n is called chorded pancyclic if it contains a chorded cycle of every length $i, 4 \leq i \leq n$.

Note: not all pancyclic graphs are chorded pancyclic. The graph in Figure 4a below is pancyclic, but contains no chorded 5-cycle. Further, the graph in Figure 4 b represents an infinite family of pancyclic graphs that do not contain a chorded 4-cycle.

Figure 4a.

Figure 4b.
Before stating our results, we note particular notation that will be used throughout the proofs. For vertices $v_{1}, v_{2}, v_{3}, v_{4}$, the notation $v_{1}-v_{2} v_{3} v_{4}$ represents the $K_{1,3}$ graph where v_{1} is adjacent to the three other vertices and the set $\left\{v_{2}, v_{3}, v_{4}\right\}$ is an independent set. To represent Z_{1}, we will use the notation $v_{1} v_{2} v_{3}-v_{4}$, where v_{1}, v_{2}, v_{3} is a triangle and v_{4} is adjacent to v_{3}. Similarly, $v_{1} v_{2} v_{3}-v_{4} v_{5}$ will be used to represent Z_{2}. The graphs $K_{1,3}, Z_{1}$, and Z_{2} with the aforementioned notation are shown below (Figure 4c).

Figure 4c.

4.2.2 Edge Density and Chorded Pancyclicity

Following a similar idea from Chapters 2 and 3, it is natural to expect enough density in a graph will imply chorded pancyclicity. We show that this is true in the following theorem.

Theorem 4.8. Let G is a graph on $n \geq 5$ vertices. If $\sigma_{2}(G) \geq n+1$, then G is chorded pancyclic and further, this degree sum condition is best possible.

Example: The complete bipartite graph on n vertices $G=K_{\frac{n}{2}, \frac{n}{2}}$, has $\sigma_{2}(G)=n$ and only contains cycles of even length. Therefore G is not pancyclic and hence clearly not chorded pancyclic either. Thus, the bound in Theorem 4.8 is sharp.

Proof. Consider a graph G of order $n \geq 4$ with $\sigma_{2}(G) \geq n+1$. By Ore's Theorem, G is hamiltonian and by $\sigma_{2}(G)$, any cycle of order n in G must be chorded. According to a result of Bondy in [4], if $|E(G)| \geq n^{2} / 4$ then G is either pancyclic or G is the balanced complete bipartite graph $K_{\frac{n}{2}, \frac{n}{2}}$. Since $\sigma_{2}(G) \geq n+1,|E(G)|>n^{2} / 4$ and thus G must be pancyclic. Let m be the largest number with $4 \leq m<n$ such that all of the m-cycles in G are nonchorded.
Claim 1. G contains a chorded 4-cycle.

Proof. Let x and y be a pair of nonadjacent vertices chosen to have the smallest number $m \geq 3$ of common neighbors in G. Partition $V(G)$ into the following sets:

$$
\begin{aligned}
N & =\{\text { common neighbors of } x \text { and } y\} \\
N^{*}(x) & =\{\text { vertices adjacent to } x \text { but not } y\}, \\
N^{*}(y) & =\{\text { vertices adjacent to } y \text { but not } x\}, \\
D & =\{\text { vertices not adjacent to both } x \text { and } y\} .
\end{aligned}
$$

Let $\left|N^{*}(x)\right|=X,\left|N^{*}(y)\right|=Y$, and $|D|=d$.
Claim 1.1. If $|N|=m \geq 3+r$, then $|D| \leq r$.
Proof. Suppose not, say $|D|=r+t$ for some $t \geq 1$. Then from the partition of $V(G)$, we have

$$
\begin{aligned}
X+Y+m+d & =n-2, \text { or } \\
X+Y+m & =n-2-d \\
\text { Then } \sigma_{2}(G) & \leq n-2-(r+t)+r+3 . \\
\text { Hence, } \sigma_{2}(G) & \leq n+1-t<n+1, \text { a contradiction. }
\end{aligned}
$$

Now consider $a, b \in N$. If $a b \in E(G)$, then x, a, y, b, x is a chorded 4 -cycle with chord $a b$. If $a b \notin E(G)$, then a and b must have at least m common neighbors (with x and y being two of them). Now a and b must send no edges into N, otherwise we would have a chorded 4 -cycle. But now the common neighbors of a and b (other than x and y) cannot all lie in D, otherwise a and b would have at most $2+r<m$ common neighbors, a contradiction. Hence, a and b have at least one common neighbor in either $N^{*}(x)$ or $N^{*}(y)$. Without loss of generality, suppose a and b share a neighbor $z \in N^{*}(X)$. Then a, z, b, x, a is a 4 -cycle with chord $x z$. Thus G must contain a chorded 4-cycle.

Claim 2. If G contains a chorded 4-cycle, then G also contains a chorded 5-cycle.

Proof. Consider a chorded 4-cycle in G, say $C=v_{1}, v_{2}, v_{3}, v_{4}, v_{1}$ with chord $v_{1} v_{3}$. If $v_{2} v_{4} \notin E(G)$ then since $\sigma_{2}(G) \geq n+1, v_{2}$ and v_{4} must have a common neighbor $x \notin V(C)$ and then $v_{1}, v_{3}, v_{2}, x, v_{4}, v_{1}$ is a 5 -cycle with chord $v_{1} v_{2}$. Now suppose C is the complete graph K_{4}. Without loss of generality, if $x \notin V(C)$ is adjacent to v_{1} but not to v_{2}, then x and v_{2} must share a common neighbor, $y \neq v_{1}$. If y is any vertex in C then there clearly exists a chorded 5 -cycle. If $y \notin V(C)$, then $v_{1}, x, y, v_{2}, v_{4}, v_{1}$ is a 5 -cycle with chord $v_{1} v_{2}$. Thus, when $n \geq 4$ the existence of a chorded 4 -cycle implies the existence of a chorded 5 -cycle in G.

Claim 3. G contains a chorded k-cycle, for all $k \geq 6$.
Proof. Suppose $m \geq 6$. Consider a chordless m-cycle $C=v_{1}, v_{2}, \ldots, v_{m}, v_{1}$ in G. Since C is chordless, v_{1} and v_{3} are nonadjacent and must have a common neighbor $x \notin V(C)$. Similarly v_{2} and v_{6} are nonadjacent and must have a neighbor $y \notin V(C)$ such that $x \neq y$. Now $v_{1}, x, v_{3}, v_{2}, y, v_{6}, \ldots, v_{m}, v_{1}$ is an m-cycle with chord $v_{1} v_{2}$, a contradiction.

Claims 1,2 , and 3 imply that there must be at least one chorded 4 -cycle in G, and thus at least one chorded 5 -cycle in G, as well as at least one chorded m-cycle in G for $6 \leq m \leq n$. Therefore, G is chorded pancyclic.

4.2.3 Forbidden Subgraphs

We now turn our attention to forbidden subgraphs for chorded pancyclicity. We will use Theorem 4.1 as a guide for the following results.

Theorem 4.9. Let G be a 2-connected graph of order $n \geq 10$. If G is $\left\{K_{1,3}, Z_{1}\right\}$-free, then if $G \neq C_{n}, G$ is chorded pancyclic.

Proof. From Theorem 4.2, we know that G must be pancyclic. Now suppose G is not chorded pancyclic. Then there exists at least one i with $4 \leq i<n$, such that every i-cycle in G does not contain a chord. Consider the largest such i, and let G be such a pancyclic graph with no chorded i-cycles. Note that $i \neq n$, otherwise $G=C_{n}$, a contradiction. Consider an i-cycle, $C=v_{1}, v_{2}, \ldots, v_{i-1}, v_{i}, v_{1}$. Since $i<n$, there exists some vertex $x \notin V(C)$. By our assumption, G is 2-connected, so there must be an edge $x y$ in $E(G)$ such that $y \in V(C)$. Without loss of generality, suppose $v_{1} x \in E(G)$. Then $v_{1}-x v_{2} v_{i}$ is a claw, so one of $\left\{v_{i} v_{2}, v_{i} x, v_{2} x\right\}$ must be an edge in G. If $v_{i} v_{2} \in E(G)$ then $v_{i} v_{2}$ is a chord of C and thus G contains a chorded i-cycle, a contradiction. By symmetry, the case where $v_{i} x \in E(G)$ and the case where $v_{2} x \in E(G)$ are equivalent, so without loss of generality, suppose $v_{2} x$ is an edge in G. Then $x v_{1} v_{2}-v_{3}$ is a Z_{1} subgraph of G, therefore either $v_{1} v_{3}$ or $x v_{3}$ must be an edge in G. If $v_{1} v_{3} \in E(G)$ then C is a chorded i-cycle with chord $v_{1} v_{3}$, a contradiction. If $x v_{3} \in E(G)$ then x can replace v_{1} on C and C becomes a chorded i-cycle with chord $x v_{3}$, again a contradiction. Therefore, G always contains a chorded i-cycle, so G must be chorded pancyclic.

To prove our next lemma, we will use the following theorem from Duffus, Gould, and Jacobson, on net-free graphs. The net graph is shown below.

Figure 4d.

Theorem 4.10. [7] Any connected, net-free, claw-free graph G contains a Hamiltonian path (i.e. is traceable).

Lemma 4.11. Let G be claw-free. For any $x \in V(G)$, the neighborhood of $x, N_{G}(x)$ is either connected and traceable, or two disjoint cliques.

Proof. First note that the independence number of the neighborhood of any vertex in a claw-free graph must be at most two, otherwise G contains an induced claw. Let G be a claw-free graph and consider a vertex $x \in V(G)$. If $N_{G}(x)$ is disconnected, then it must be two cliques in order to have independence number two. If the neighborhood of a vertex contains an induced net, then it has independence number at least three (the independence number of the net graph). Therefore, the neighborhood of any vertex in a claw-free graph cannot contain an induced net subgraph. So if $N_{G}(x)$ is connected, then it is also net-free, claw-free and therefore, by Theorem 4.10, must be traceable.

Example: The graph shown below is 2-connected, $\left\{K_{1,3}, Z_{2}\right\}$-free, pancyclic, and has maximum degree $\Delta(G)=4$, but it does not contain a chorded 4 -cycle so it is not chorded pancyclic. However, adding any edge yields a chorded 4-cycle, thus making the graph chorded pancyclic.

Figure 4e.
Theorem 4.12. Let G be a 2-connected graph of order $n \geq 10$ with $\Delta(G) \geq 5$. If G is $\left\{K_{1,3}, Z_{2}\right\}$-free, then if $G \neq C_{n}, G$ is chorded pancyclic.

Proof. By Theorem 4.3, we know such a graph G must be pancyclic. For the sake of contradiction, suppose there is some m with $4 \leq m<n$ such that every m-cycle in G does not contain a chord.

Case 1. Suppose $m \geq 5$.
Consider an m-cycle $C=v_{1}, v_{2}, v_{3}, \ldots, v_{m}, v_{1}$ in G. Since G is 2-connected and of order at least 10 , there exists a vertex $x \in V(G)-V(C)$ such that $x v \in E(G)$ for some $v \in V(C)$. Without loss of generality, suppose $x v_{1} \in E(G)$. Then $v_{1}-x v_{2} v_{m}$ is an induced claw in G. To eliminate this induced claw, either $x v_{2}, x v_{m}$ or $v_{2} v_{m}$ must be added as an edge. If $v_{2} v_{m}$ is added then C is a chorded m-cycle and we are done. By symmetry, adding either $x v_{2}$ or $x v_{m}$ as an edge is equivalent, so without loss of generality, suppose $x v_{2} \in E(G)$. Then $x v_{1} v_{2}-v_{3} v_{4}$ is an induced Z_{2} in G. The only two edges that would eliminate this induced Z_{2} and would not add a chord to the m-cycle C are $x v_{3}$ and $x v_{4}$.

First suppose $x v_{3} \in E(G)$. Then $x v_{2} v_{3}-v_{4} v_{5}$ is an induced Z_{2} in G. The only edges that will eliminate the induced Z_{2}, but will not yield a chorded m-cycle are $x v_{4}$ and $x v_{5}$. If $x v_{4} \in E(G)$ then $v_{1}, v_{2}, x, v_{4}, v_{5}, \ldots, v_{m}, v_{1}$ is an m-cycle with chord $x v_{1}$. If instead $x v_{5} \in E(G)$, then $v_{1}, v_{2}, v_{3}, x, v_{5}, \ldots, v_{m}, v_{1}$ is an m-cycle with chord $x v_{1}$. This completes the case where $x v_{3} \in E(G)$. Now suppose instead that $x v_{4} \in E(G)$. Then $v_{1}, v_{2}, x, v_{4}, v_{5}, \ldots, v_{m}, v_{1}$ is an m-cycle with chord $v_{1} x$. This completes the case where $x v_{4} \in E(G)$ and thus completes the proof of Case 1 .

Case 2. Suppose $m=4$.
Since $\Delta(G) \geq 5$ there must be some vertex $x \in V(G)$ such that $\left|N_{G}(x)\right| \geq 5$. Consider such a vertex x and let $\left|N_{G}(x)\right|=l \geq 5$. By Lemma 4.11, $N_{G}(x)$ is either connected and traceable, or two disjoint cliques. If $N_{G}(x)$ is connected and traceable, say $v_{1}, v_{2}, \ldots, v_{l}$ is a hamiltonian path in $N_{G}(x)$. Then $x, v_{1}, v_{2}, v_{3}, x$ is a 4 -cycle with $x v_{2}$ as a chord. If $N_{G}(x)$ is two
disjoint cliques, then the one of the cliques is of order at least three. Three vertices from this clique together with the vertex x yield a chorded 4-cycle. So no matter what the neighborhood of x looks like, there is always a chorded 4-cycle in G. This completes the proof of Case 2 and we are done.

Conjecture 4.13. Let G be a 2 -connected graph of order $n \geq 10$. If G is $\left\{K_{1,3}, Z_{2}\right\}$-free, then if $G \neq C_{n}, G$ is chorded pancyclic.

A proof of this conjecture was done using a straightforward case analysis, similar to the proof of Theorem 4.9, but resulted in very, very many cases. Consequently, the proof has been omitted here.

Theorem 4.14. Let G be a 2-connected graph of order $n \geq 10$. If G is $\left\{K_{1,3}, P_{4}\right\}$-free, then if $G \neq C_{n}, G$ is chorded pancyclic.

Proof. By Theorem 4.6, we know that G is pancyclic. Suppose, for the sake of contradiction, that G is not chorded pancyclic. Let m be the largest number with $4 \leq m \leq n$ such that every m-cycle in G is chordless.

Case 1. Suppose $m=4$.
Consider a 4 -cycle $C=v_{1}, v_{2}, v_{3}, v_{4}, v_{1}$ in G. Since $n \geq 10$ and G is 2-connected, there exists a vertex $x \notin V(C)$ such that $x v \in E(G)$ for some $v \in V(G)$. Without loss of generality suppose $v_{1} x \in E(G)$. Then x, v_{1}, v_{2}, v_{3} is an induced P_{4} in G. Since G must be P_{4}-free, $v_{1} v_{3}, v_{2} x$, or $v_{3} x$ must be in $E(G)$. If $v_{1} v_{3} \in E(G)$ then the cycle C is a chorded 4 -cycle, a contradiction.

If $v_{2} x \in E(G)$ then x, v_{1}, v_{4}, v_{3} is an induced P_{4} subgraph of G, therefore G must contain either $v_{1} v_{3}, v_{3} x$, or $v_{4} x$ as an edge. The edge $v_{1} v_{3}$ creates a chord of the 4 -cycle C, a contradiction. The edge $v_{3} x$ yields the 4 -cycle $v_{1}, x, v_{3}, v_{2}, v_{1}$ with chord $v_{2} x$, a contradiction. Similarly, the edge $v_{4} x$ yields the 4 -cycle $v_{1}, v_{2}, x, v_{4}, v_{1}$ with chord $v_{1} x$, again a contradiction.

If $v_{3} x \in E(G)$ then $v_{1}-x v_{2} v_{4}$ is an induced claw in G, therefore G must contain either $x v_{2}, x v_{4}$, or $v_{2} v_{4}$ as an edge. The edge $x v_{2}$ forms the 4 -cycle
$v_{1}, v_{2}, v_{3}, x, v_{1}$ with chord $x v_{2}$, a contradiction. The edge $x v_{4}$ yields the 4 -cycle $v_{1}, v_{4}, v_{3}, x, v_{1}$ with chord $x v_{4}$, a contradiction. The edge $v_{2} v_{4}$ is a chord of the 4 -cycle C, again a contradiction. Thus, every 4 -cycle in G must be chorded.

Case 2. Suppose $m>4$.
Any chordless m-cycle contains at least one induced P_{4} subgraph, for $m>4$. Therefore, all m-cycles must contain at least one chord to ensure that G is P_{4}-free, for $4<m \leq n$. Now we can conclude that G is chorded pancyclic.

Theorem 4.15. Let G be a 2-connected graph of order $n \geq 10$. If $G \neq C_{n}$ is $\left\{K_{1,3}, P_{5}\right\}$-free, then G is chorded pancyclic.

Proof. From Theorem 4.4 we know G must be pancyclic. Suppose, for the sake of contradiction, that G is not chorded pancyclic. Let m be the largest number with $4 \leq m \leq n$ such that every m-cycle in G is not chorded.

Case 1. Suppose $m=4$.
Consider a 4 -cycle $C=a, b, c, d, a$ in G. Since G is 2-connected and of order at least 10, there is a vertex $x_{1} \notin V(C)$ such that $x_{1} v \in E(G)$ for some $v \in V(C)$. Without loss of generality, suppose $x_{1} a \in E(G)$. Then $a-x_{1} b d$ is an induced claw in G, so either $x_{1} b, x_{1} d$, or $b d$ must be an edge in G. Adding the edge $b d$ makes C into a chorded 4 -cycle. By symmetry, adding $x_{1} b$ or $x_{1} d$ is equivalent, so without loss of generality, suppose $x_{1} b \in E(G)$.

Now there are no induced P_{5} or $K_{1,3}$ subgraphs in G, but again since G is 2 -connected and of order at least 10 , there must be some vertex $x_{2} \notin V(C)$ such that $x_{1} \neq x_{2}$ and $x_{2} v \in E(G)$ for some $v \in V(C)$.

If $x_{2} a$ (or, by symmetry, $x_{2} b$) is an edge in G, then $a-x_{2} b d$ is an induced claw. Then either $x_{2} b, x_{2} d$, or $b d$ must be an edge. If either $b d$ or $x_{2} b$ is an edge, then there exists a chorded 4 -cycle in G. So suppose $x_{2} d \in E(G)$.

There is some vertex $x_{3} \notin V(C)$ such that $x_{3} \neq x_{2}$ or x_{1} and $x_{3} v \in E(G)$ for some $v \in V(C) \cup\left\{x_{1}\right\}$.

Now we must consider all of the possible adjacencies of $x_{3}: a, b$ (same case as d), c, and x_{1}. If $x_{3} a \in E(G)$ then $a-x_{3} b d$ is an induced claw. Any edge added to eliminate the claw will result in a chorded 4-cycle.

If $x_{3} b$ (or similarly $\left.x_{3} d\right) \in E(G)$ then $b-x_{3} a c$ is a claw. Adding either one of the edges $a c$ or $x_{3} a$ to eliminate the claw, will result in a chorded 4-cycle. Adding $x_{3} c$ to eliminate the claw does not yield a chorded 4 -cycle or any induced P_{5} or $K_{1,3}$ subgraphs. However, following an earlier argument, there is a vertex $x_{4} \notin V(C) \cup\left\{x_{1}, x_{2}, x_{3}\right\}$ such that $x_{4} v \in E(G)$ for some $v \in V(C) \cup\left\{x_{1}, x_{2}\right\}$. Now we must consider all of the possible adjacencies of x_{4}.

If $x_{4} a$ (or similarly $\left.x_{4} b\right) \in E(G)$ then $a-x_{4} b d$ is an induced claw. Adding any edge to eliminate the claw yields a chorded 4 -cycle. If $x_{4} c$ (or similarly $\left.x_{4} d\right) \in E(G)$ then $c-x_{4} b d$ is an induced claw. Adding either $b d$ or $x_{4} b$ to eliminate the claw, yields a chorded 4 -cycle. Adding $x_{4} d$ to eliminate the claw does not result in any chorded 4 -cycles or induced P_{5} or $K_{1,3}$ subgraphs. There must exist another vertex $x_{5} \notin V(C) \cup\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$ such that $x_{5} v \in E(G)$ for some $v \in V(C) \cup\left\{x_{1}, x_{2}, x_{3}\right\}$.

If x_{5} is adjacent to any of the original vertices in C, then an induced claw in each of those cases will yield a chorded 4-cycle. The remaining possible adjacencies to x_{5} are all symmetric: x_{1}, x_{2}, and x_{3}. So without loss of generality suppose $x_{1} x_{5} \in E(G)$. Then x_{5}, x_{1}, a, d, c is an induced P_{5}. Adding any edge that eliminates the induced P_{5} will either yield a chorded 4 -cycle or an induced claw that will yield a chorded 4 -cycle.

If $x_{4} x_{1} \in E(G)$, then x_{4}, x_{1}, a, d, c is an induced P_{5}. Adding any one of four of the six edges that eliminate the induced P_{5} results in a chorded

4-cycle. However, adding either $x_{4} d$ or $x_{4} c$ will not produce a chorded 4-cycle. By symmetry, adding either edge is equivalent so without loss of generality suppose $x_{4} d \in E(G)$. Then $d-x_{4} a c$ is an induced claw and $x_{4} c$ is the only claw-eliminating edge whose addition will not yield a chorded 4-cycle. In fact, adding $x_{4} c$ does not yield any induced P_{5} or $K_{1,3}$ subgraphs either. There exists a vertex $x_{5} \notin V(C) \cup\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$ such that $v_{5} v \in E(G)$ for some $v \in V(C) \cup\left\{x_{1}, x_{2}, x_{3}\right\}$. The addition of either $x_{5} a$ or $x_{5} b$ yields an induced claw that results in a chorded 4 -cycle. The addition of $x_{5} c$ or $x_{5} d$ results in an induced claw that yields either a chorded 4 -cycle or a previously considered case, depending on which edge is added to eliminate the induced claw.

If $x_{5} x_{1} \in E(G)$, then $x_{1}-x_{5} x_{4} a$ is an induced claw and adding either $x_{5} a$ or $x_{4} a$ to eliminate the claw, yields a chorded 4 -cycle. If $x_{5} x_{4}$ is added to eliminate the claw then x_{5}, x_{1}, a, d, c is an induced P_{5} and any edge added to eliminate the induced P_{5} results in a chorded 4-cycle.

If $x_{5} x_{2} \in E(G)$ then x_{5}, x_{2}, a, b, c is an induced P_{5}. To eliminate the induced P_{5}, adding either $x_{5} a, x_{1} d, x_{1} c$, or $a c$ yields a chorded 4 -cycle. Adding $x_{5} b$ to eliminate the induced P_{5} produces the induced $b-x_{5} a c$ claw. The only claw-eliminating edge that will not yield a chorded 4 -cycle is $x_{5} c$, so suppose $x_{5} c \in E(G)$. Now $b-x_{5} x_{3} a$ is an induced claw and the addition of any claw-eliminating edge yields a chorded 4-cycle. If $x_{5} c \in E(G)$ (and $\left.x_{5} b \notin E(G)\right)$ then $c-x_{5} b d$ is an induced claw and any added claw-eliminating edge results in either a chorded 4 -cycle or a previously checked case. If $x_{2} x_{4} \in E(G)$ (and $\left.x_{1} x_{4} \notin E(G)\right)$ then x_{4}, x_{2}, a, b, c is an induced P_{5} and any induced- P_{5}-eliminating edge yields a chorded 4-cycle, except the edge $x_{4} c$. If $x_{4} c \in E(G)$ then $c-x_{4} b d$ is an induced claw and the addition of any induced-claw-eliminating edge will yield a chorded 4-cycle. If $x_{1}, x_{3} \in E(G)\left(\right.$ and $\left.x_{3} c \notin E(G)\right)$ then x_{3}, x_{1}, b, c, d is an induced P_{5} and
any edge that will eliminate the induced P_{5} except for $x_{3} c$ or $x_{3} d$ will result in a chorded 4-cycle.

If $x_{3} c \in E(G)$ then $c-x_{3} b d$ is an induced claw. To eliminate the induced claw, the addition of either $x_{3} b$ or $b d$ yields a chorded 4-cycle, but the addition of $x_{3} d$ does not. There exists a vertex $x_{4} \notin V(C) \cup\left\{v_{1}, x_{2}, x_{3}\right\}$ such that $x_{4} v \in E(G)$ for some $v \in V(C) \cup\left\{x_{1}, x_{2}\right\}$. Considering the possible adjacencies of x_{4}, if $x_{4} a, x_{4} b, x_{4} c$, or $x_{4} d \in E(G)$ then an induced claw forces the existence of a chorded 4 -cycle or a previously checked case. If $x_{4} x_{1}$ is added to eliminate the induced P_{5} then $x_{1}-x_{4} x_{3} b$ is an induced claw and the only induced claw-eliminating edge that does not yield a chorded 4-cycle is $x_{3} x_{4}$. So if $x_{3} x_{4} \in E(G)$, then x_{4}, x_{1}, a, d, c is an induced P_{5} and adding any edge to eliminate this induced P_{5} yields a chorded 4-cycle. If $x_{4} x_{2} \in E(G)$ (and $\left.x_{1} x_{4} \notin E(G)\right)$ then x_{4}, x_{2}, a, b, c is an induced P_{5}. Adding any edge to eliminate this induced P_{5} results in a chorded 4 -cycle, except for the addition of either $x_{4} b$ or $x_{4} c$. If $x_{4} b \in E(G)$ then $b-x_{4} a c$ is an induced claw. Adding any edge except for $x_{4} c$ to eliminate this induced claw will result in a chorded 4 -cycle. If $x_{4} c$ is added to eliminate the claw, then $x_{4}, x_{2},, x_{1}, x_{3}$ is an induced P_{5} and adding any edge to eliminate this induced P_{5} yields a chorded 4 -cycle. If $x_{4} c$ was added first instead of $x_{4} b$, then $c-x_{4} x_{3} b$ is an induced claw. To eliminate the claw, adding the edge $x_{3} b$ yields a chorded 4 -cycle and adding the edge $x_{4} b$ results in a previously checked case. Adding $x_{3} x_{4}$ results in a $x_{3}-x_{1} x_{4} d$ induced claw. Any edge added to eliminate this claw yields a chorded 4 -cycle. This completes the case where $x_{2} a \in E(G)$.

If $x_{2} c$ (or, by symmetry, $x_{2} d$) is an edge in G, then $c-x_{2} b d$ is an induced claw, which can be eliminated by adding $x_{2} b, x_{2} d$, or $b d$ as an edge. If $b d$ is added then C is a chorded 4 -cycle. Adding $x_{2} b$ as an edge yields a previously considered structure. So suppose $x_{2} d \in E(G)$. There are no
chorded 4-cycles or induced claws or P_{5} subgraphs. There exists a vertex $x_{3} \notin V(C) \cup\left\{x_{1}, x_{2}\right\}$ such that $x_{3} v \in E(G)$ for some $v \in V(C) \cup\left\{x_{1}\right\}$. Now consider all of the possible adjacencies of x_{3}. By symmetry, adding the edge $x_{3} a$ is equivalent to adding any one of the edges $x_{3} b, x_{3} c$, or $x_{3} d$. Without loss of generality, suppose $x_{3} a \in E(G)$. Then $a-x_{3} b d$ is an induced claw. The addition of any one of the edges needed to eliminate this induced claw results in either a previously checked case, or a chorded 4-cycle. So instead suppose x_{3} is adjacent to x_{1} (the only other possibly adjacency of x_{3}). Then x_{3}, x_{1}, a, d, c is an induced P_{5} in G. If any one of the edges needed to eliminate the induced P_{5} is added, then there is a chorded 4-cycle, except when $x_{3} d$ (or by symmetry, $x_{3} c$ is added. Without loss of generality, suppose $x_{3} d \in E(G)$. Then $d-x_{3} a c$ is an induced claw in G. Adding any one of the edges needed to eliminate the induced claw, results in a chorded 4 -cycle. This completes the case where $x_{2} c \in E(G)$.

Case 2. Suppose $m=5$.
Consider a 5 -cycle $C=a, b, c, d, e, a$ in G. Since $n \geq 10$ and G is 2-connected, there exists a vertex $x_{1} \notin V(C)$ such that $x_{1} v \in E(G)$ for some $v \in V(C)$. Without loss of generality, say $a x_{1} \in E(G)$. Then $a-x_{1}, b, e$ is an induced claw in G, thus either $x_{1} b, x_{1} e$, or be must be an edge in G. If $b e$ is an edge then C is a chorded 5 -cycle and we are done with this case. By symmetry, adding $x_{1} b$ or $x_{1} e$ as an edge is equivalent, so without loss of generality assume $x_{1} b \in E(G)$.

Now x_{1}, b, c, d, e is an induced P_{5}, so either $x_{1} c, x_{1} d, x_{1} e, b d, b e$, or ce must be an edge in G. The edges $b d, b e$, and ce make C a chorded 5 -cycle, and we are done. If $x_{1} d \in E(G)$ then x_{1}, b, a, e, d, x_{1} is a 5 -cycle with chord $x_{1} a$ and we are done. By symmetry, adding the edge $x_{1} c$ or adding $x_{1} e$ is equivalent, so assume $x_{1} c \in E(G)$.There are no chorded C_{5} 's nor induced P_{5} 's or $K_{1,3}$'s, but since $n \geq 10$ and G is 2 -connected there must be some
vertex $x_{2} \notin V(C)$ such that $x_{2} \neq x_{1}$ and $x_{2} v \in E(G)$ for some $v \in V(C)$.
If $x_{2} a$ (or $x_{2} c$, by symmetry) $\in E(G)$, then $a-x_{2} b e$ is an induced claw subgraph in G so $x_{2} b, x_{2} e$, or be must be an edge of G. Adding be as an edge makes C a chorded 5 -cycle. If $x_{2} b \in E(G)$, then b, c, x_{1}, a, x_{2}, b is a 5 -cycle with chord $a b$. If $x_{2} e \in E(G)$ then x_{2}, a, b, c, d is an induced P_{5}, so either $x_{2} b, x_{2} c, x_{2} d, a c, a d$, or $b d$ must be an edge in G. Adding any of the edges except $x_{2} d$ will yield a chorded 5 -cycle. So suppose $x_{2} d \in E(G)$. There are no induced P_{5} or $K_{1,3}$ subgraphs, but since G is 2 -connected and of order at least 10 , there must be some vertex $x_{3} \notin V(C)$ such that $x_{3} \neq x_{1}$ or x_{2} and $x_{3} v \in E(G)$ for some $v \in V(C) \cup\left\{x_{1}\right\}$. If $x_{3} a \in E(G)$, then $a-x_{3} b e$ is an induced claw so $x_{3} b, x_{3} e$, or be must be an edge in G. Adding any of these edges yields a chorded 5 -cycle. If $x_{3} b$ (or, similarly $x_{3} e$) is an edge, then $b-x_{3} a c$ is an induced claw so either $x_{3} a, x_{3} c$, or $a c \in E(G)$. Adding any of these edges yields a chorded 5 -cycle. If $x_{3} c$ (or, similarly $\left.x_{3} d\right)$ is an edge then $c-x_{3} b d$ is an induced claw so either $x_{3} b, x_{3} d$, or $b d \in E(G)$. Adding $x_{3} b$ or $b d$ yields a chorded 5 -cycle. If $x_{3} d \in E(G)$ then x_{3}, d, e, a, b is an induced P_{5}. Adding any of the edges to eliminate this P_{5} either creates a chorded 5 -cycle or results in a previously considered case (which all yielded chorded 5 -cycles). If $x_{1} x_{3} \in E(G)$, then $x_{1}-x_{3} a c$ is an induced claw so either $x_{3} a, x_{3} c$, or $a c \in E(G)$. Adding any of these edges yields a chorded 5 -cycle in G. This completes the case where $x_{2} a \in E(G)$.

If $x_{2} b \in E(G)$, then $b-x_{2} a c$ is an induced claw so either $x_{2} a, x_{2} c$ or $a c \in E(G)$. Adding any of these edge will create a chorded 5-cycle in G. This completes the case where $x_{2} b \in E(G)$.

If $x_{2} d$ (or $x_{2} e$, by symmetry) $\in E(G)$, then $d-x_{2} c e$ is an induced claw so either $x_{2} c, x_{2} e$, or $c e \in E(G)$. The edge $c e$ is a chord of C. If $x_{2} c \in E(G)$, then x_{2}, c, b, a, e is an induced P_{5}. To eliminate this P_{5}, adding either $x_{2} a$, $x_{2} b, c a, b e$, or $c e$ creates a chorded 5 -cycle. The final edge that would
eliminate the P_{5} is $x_{2} e$. Adding $x_{2} e$ creates a structure symmetric to L, which has been previously considered. If $x_{2} e$ is an edge instead of $x_{2} c$ then x_{2}, e, a, b, c is an induced P_{5} in G. Adding either edge $x_{2} a$ or $x_{2} c$ yields a structure symmetric to L. Adding any one of the remaining edges to eliminate the P_{5} yields a chorded 5-cycle. This completes the case where $x_{2} d \in E(G)$ and thus concludes the $m=5$ case.

Case 3. Suppose $m \geq 6$.
There is an induced P_{5} subgraph in every non-chorded m-cycle for $m \geq 6$, so every such m-cycle must contain at least one chord. The three cases together show that there is a chorded cycle of every possible length m, for $4 \leq m \leq n$, in G.

Unlike the straightforward case analysis method used to prove Theorems 4.14 and 4.15 , we took a different approach when forbidding P_{6} from claw-free graphs, as otherwise the number of cases was problematic. We use Lemma 4.11 along with the following results to prove the P_{6} result for sufficiently large graphs.

Lemma 4.16. Let G be a $K_{1,3}$-free graph. For any $x \in V(G)$ and any $k>2 \in \mathbb{Z}$, if $\operatorname{deg}_{G}(x) \geq 2 k-1$ then there is a chorded $(k+1)$-cycle in G.

Proof. Consider a vertex $x \in V(G)$ such that $\operatorname{deg}_{G}(x) \geq 2 k-1$. Lemma 4.11 implies that $N_{G}(x)$ is either connected and traceable, or two disjoint cliques.

Case 1: Suppose $N_{G}(x)$ is connected and traceable.
Let $v_{1}, v_{2}, \ldots, v_{2 k-1}$ be a Hamiltonian path in $N_{G}(x)$. Then $x, v_{1}, v_{2}, \ldots, v_{k}, x$ is a chorded $(k+1)$-cycle in G with chord $x v_{2}$ (in fact, there are $k-2$ chords in this ($k+1$)-cycle).

Case 2: $N_{G}(x)$ is two disjoint cliques.

Partitioning the $2 k-1$ vertices into two cliques, the smallest order that the larger of the two sets can be is k (the k and $k-1$ case). Say the vertices $\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$ form a clique in $N_{G}(x)$, then $x, v_{1}, v_{2} \ldots, v_{k}, x$ is a chorded $(k+1)$ cycle in G with chord $x v_{2}$.

Theorem 4.17. [11] Let $f=F_{d}(p, \Delta)$ be the smallest integer such that every graph on p vertices with at least f edges has maximum degree Δ and diameter at most d. Then:

$$
f=F_{d}(p, \Delta) \geq\binom{ p}{2} \frac{\Delta-2}{(\Delta-1)^{d}-1}
$$

Theorem 4.18. Let G be a 2-connected graph of order $n>3201$. If G is $\left\{K_{1,3}, P_{6}\right\}$-free and $G \neq C_{n}$, then G is chorded pancyclic.

Proof. By Theorem 4.5, G must be pancyclic, so now we must show G contains a chorded cycle of every possible length m for $4 \leq m \leq n$. Note that for $m \geq 7$, every m-cycle must be chorded, otherwise it contains an induced P_{6} subgraph. Now we need to show there exists a chorded 4 -cycle, chorded 5-cycle, and chorded 6 -cycle in G.

For some $x \in V(G)$, if $d_{G}(x) \geq 5$ then there exists a chorded 4-cycle by Lemma 4.16 ($k=3$ case). If $d_{G}(x) \geq 7$ then there exists a chorded 5 -cycle in G by Lemma 4.16 ($k=4$ case). If $d_{G}(x) \geq 9$ then there exists a chorded 6 -cycle in G by Lemma 4.16 ($k=5$ case). Therefore, if G contains a vertex of degree at least nine, then G contains at least one chorded 4-cycle, chorded 5 -cycle, and chorded 6 -cycle by Lemma 4.16 and is thus chorded pancyclic.

Suppose that G is 8 -regular (i.e. adding any edge will yield a vertex of degree nine and hence the desired result). Then G has maximum degree $\Delta=8$ and G contains $\frac{8 n}{2}=4 n$ edges. Note that d is the diameter of G if
and only if G is P_{l}-free for $l>d+2$. So since G is P_{6}-free, the diameter of G is $d \geq 4$. By Theorem 4.17, we have

$$
\begin{aligned}
4 n & \geq\binom{ n}{2} \frac{8-2}{(8-1)^{4}-1} \\
4 n & \geq \frac{6 n(n-1)}{2\left(7^{4}-1\right)} \\
4 & \geq \frac{3(n-1)}{2400},
\end{aligned}
$$

Hence, $n \leq 3201$.

Therefore, if G is a 2-connected $\left\{K_{1,3}, P_{6}\right\}$-free graph of order $n>3201$, then G contains a vertex of degree at least nine and thus is chorded pancyclic.

We feel the bound given on n in Theorem 4.18 is sufficient but not necessary, so we make the following conjecture.

Conjecture 4.19. Let G be a 2 -connected graph of order $n \geq 10$. If G is $\left\{K_{1,3}, P_{6}\right\}$-free and $G \neq C_{n}$, then G is chorded pancyclic.

Bibliography

[1] C.S. Babu and A.A. Diwan. Disjoint cycles with chords in graphs. J. Graph Theory, 60:87-98, 2009.
[2] P. Balister, H. Li, and R. Schelp. Decompositions of graphs with cycles with chords. preprint.
[3] A. Bialostocki, D. Finkel, and A. Gyárfás. Disjoint chorded cycles in graphs. Discrete Math., 308:5886-5890, 2008.
[4] J.A. Bondy. Pancyclic graphs i. J. Combin. Theory, 11:80-84, 1971.
[5] S. Chiba, S. Fujita, Y. Gao, and G. Li. On a sharp degree sum condition for disjoint chorded cycles in graphs. Graphs and Combin., 26:173-186, 2010.
[6] K. Corradi and A. Hajnal. On the maximal number of independent circuits in a graph. Acta Math. Acad. Sci. Hungar., 14:423-439, 1963.
[7] D. Duffus, R.J. Gould, and M.S. Jacobson. Forbidden subgraphs and the hamiltonian theme. In G. Chartrand, Y. Alavi, D.L. Goldsmith, L. Lesniak-Foster, and D.R. Dick, editors, The Theory and Application of Graphs: Proceedings of the Fourth International Conference on the Theory and Applications of Graphs, page 299. John Wiley and Sons, 1980.
[8] Y. Egawa, H. Enomoto, R.J. Faudree, H. Li, and I. Schiermeyer. Two-factors each component of which contains a specified vertex. J. Graph Theory, 43(3):188-198, 2003.
[9] Y. Egawa, R.J. Faudree, E. Gyori, Y. Ishigami, R. Schelp, and H. Wang. Vertex-disjoint cycles containing specified edges. Graphs and Combinatorics, 16(81-92), 2000.
[10] H. Enomoto. On the existence of disjoint cycles in a graph. Combinatorica, 18(4):487-492, 1998.
[11] P. Erdös, A. Renyi, and V.T. Sos. On a problem of graph theory. Studia Sci. Math. Hungar., 1:13-32, 1966.
[12] J.R. Faudree and R.J. Gould. A note on neighborhood unions and independent cycles. Ars Combin., 76:29-31, 2005.
[13] R.J. Faudree and R.J. Gould. Characterizing forbidden pairs for hamiltonian properties. Discrete Math., 173:45-60, 1997.
[14] R.J. Faudree, R.J. Gould, Z. Ryjacek, and I. Schiermeyer. Forbidden subgraphs and pancyclicity. Congress Numer., 109:13-32, 1995.
[15] R.J. Faudree, Z. Ryjacek, and I. Schiermeyer. Forbidden subgraphs and cycle extendability. J. Combin. Math. Combin. Comput., 19:109-128, 1995.
[16] D. Finkel. On the number of independent chorded cycles in a graph. Discrete Math., 308:5265-5268, 2008.
[17] Y. Gao, G. Li, and J. Yan. Neighborhood unions for the existence of disjoint chorded cycles in graphs. Graphs and Combin., 29:1337-1345, 2013.
[18] S. Goodman and S. Hedetniemi. Sufficient conditions for a graph to be hamiltonian. J. Combin. Theory (B), 16:175-180, 1974.
[19] R.J. Gould. A look at cycles containing specified elements of a graph. Discrete Math., 309(21):6299-6311, 2009.
[20] R.J. Gould. Graph Theory. Dover Publications Inc., 2012.
[21] R.J. Gould, K. Hirohata, and P. Horn. On independent doubly chorded cycles. preprint.
[22] R.J. Gould, K. Hirohata, and P. Horn. Independent cycles and chorded cycles in graphs. J. Comb., 4(1):105-122, 2013.
[23] R.J. Gould, P. Horn, and C. Magnant. Multiply chorded cycles. SIAM J. Discrete Math., 28(1):160-172, 2014.
[24] R.J. Gould and M.S. Jacobson. Forbidden subgraphs and hamiltonian properties of graphs. Discrete Math., 42:189-196, 1982.
[25] L. Lovasz. Combinatorial Problems and Exercises. North-Holland Publishing Co., 1993.
[26] S. Qiao and S. Zhang. Vertex-disjoint chorded cycles in a graph. Oper. Res. Lett., 38:564-566, 2010.

