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Abstract

Local-global principles for norm one tori and multinorm tori over
semi-global fields

By

Sumit Chandra Mishra

Let K be a complete discretely valued field with the residue field κ. Let F
be the function field of a smooth, projective, geometrically integral curve
over K and X be a regular proper model of F such that the reduced
special fibre X is a union of regular curves with normal crossings. Suppose
that the graph associated to X is a tree (e.g. F = K(t)). Let L/F be a
Galois extension of degree n such that n is coprime to char(κ). Suppose
that κ is an algebraically closed field or a finite field containing a primitive
nth root of unity. Then we show that the local-global principle holds for the
norm one torus associated to the extension L/F with respect to discrete
valuations on F , i.e., an element in F× is a norm from the extension L/F
if and only if it is a norm from the extensions L⊗F Fν/Fν for all discrete
valuations ν of F . We also prove that such a local-global principle holds
for multinorm tori over F associated to two cyclic extensions each of
degree p for a prime p if the residue field κ is algebraically closed or a finite
field. We prove that for finitely many quadratic cyclic extensions, the
local-global principle holds for the associated multinorm tori if the residue
field κ is algebraically closed, char(κ) 6= 2 and the graph associated to a
regular proper model X is a tree.
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Chapter 1

Introduction

Let F be a field and ΩF be the set of all discrete valuations on F . For
ν ∈ ΩF , let Fν denote the completion of F at ν. Let G be a linear
algebraic group over F . One says that the local-global principle holds
for G if for any G-torsor X, X has a rational point over F if and only
if it has a rational point over Fν for all ν ∈ ΩF . If F is a number field,
we also consider the completions at archimedean places while discussing
local-global principles for algebraic groups. If F is a number field, then it
is known that the local-global principle holds for various classes of linear
algebraic groups ([PRR93, Chapter 6]), including semisimple simply con-
nected groups. In particular, it is well-known that if TL/F is the norm one
torus associated to a cyclic extension L/F, then the local-global principle
holds for TL/F , i.e., an element λ ∈ F× is a norm from the extension
L/F if and only if λ is a norm from F ⊗F Fν/Fν for all ν ∈ ΩF ([CF67,
Chapter 11]). However, very little is known for general fields.

Let K be a complete discretely valued field with residue field κ. Let F be
the function field of a smooth, projective, geometrically integral curve over
K. Such a field F is called semi-global field. Let G be a linear algebraic
group over F . Harbater, Hartmann and Krashen ([HHK15a]) developed
patching techniques to study G-torsors over F and proved that if G is
connected and F -rational, then a G-torsor over F has a rational point
over F if and only if it has a rational point over certain overfields of F
which are defined using patching (see Section 3.1). As a consequence of
this result, Colliot-Thélène, Parimala and Suresh ([CTPS08, Theorem
4.3.]) showed that if G is reductive, F -rational and defined over the
ring of integers of K, then the local-global principle holds for G. Similar
local-global principles are proved for various linear algebraic groups G
over F if the residue field of K is either finite or algebraically closed field;
e.g. see [CTPS08], [CTPS16], [Hu12], [Pre13], and [PPS18].

1



The first example of a linear algebraic group G over F where such a
local-global principle fails was given by Colliot-Thélène, Parimala and
Suresh ([CTPS16, Section 3.1. & Proposition 5.9.]). In their example,
the residue field of K is the field of complex numbers, G is the norm one
torus of a Galois extension L/F with Galois group Z/2Z×Z/2Z and the
field F has a regular proper model with the associated graph not a tree.
Suppose that F has a regular proper model with the associated graph
a tree. If L/F is a Galois extension with Galois group Z/2Z × Z/2Z
and κ is algebraically closed, then they also proved that the local-global
principle holds for the norm one torus TL/F ([CTPS16, Section 3.1. &
Corollary 6.2.]).

The main aim of this thesis is to prove the following theorem (see Corol-
lary 4.4.4) :

Theorem 1.0.1. Let K be a complete discretely valued field with residue
field κ and F be the function field of a smooth, projective, geometrically
integral curve over K. Let X be a regular proper model of F with reduced
special fibre X a union of regular curves with normal crossings. Let
L/F be a Galois extension over F of degree n with Galois group G. Sup-
pose that the graph associated to X is a tree and κ is one of the following :

• κ is an algebraically closed field of characteristic coprime to n, or

• κ is a finite field of characteristic coprime to n and contains a primitive
nth root of unity.

Then the local-global principle holds for the norm one torus TL/F , i.e., an
element λ ∈ F is a norm from the extension L/F if and only if λ is a
norm from the extensions L⊗F Fν/Fν for all ν ∈ ΩF .

For a finite separable extension L/F , let TL/F denote the norm one torus
associated to L/F . For any extension N/F , let RTL/F (N) be the subgroup
of TL/F (N) consisting of R-trivial elements (see Section 2.4). The above
theorem follows from the following more general theorem (see Theorem
4.4.3), where we allow more general residue fields κ.

Theorem 1.0.2. Let K be a complete discretely valued field with residue
field κ and F be the function field of a smooth, projective, geometrically
integral curve over K. Let X0 be a regular proper model of F with reduced
special fibre X0 a union of regular curves with normal crossings. Let
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L/F be a Galois extension over F of degree n. Suppose that the graph
associated to X0 is a tree, and :

• char(κ) is coprime to n,

• κ contains a primitive nth root of unity ρ, and

• for all finite extensions κ′/κ and for all finite Galois extensions l/κ′ of
degree d dividing n,

Tl/κ′(κ
′) = RTl/κ′(κ

′)〈ρn/d〉.

Then the local-global principle holds for the norm one torus TL/F .

Remark 1.0.3. In fact one can restrict to divisorial discrete valuations in
the above theorems.

We now briefly describe the strategy of the proof of Theorem 1.0.2. Let
K be a complete discretely valued field with residue field κ and F be the
function field of a smooth, projective, geometrically integral curve over
K. Let X be a regular proper model of F with reduced special fibre X a
union of regular curves with normal crossings. For any point P ∈ X, let
FP be the fraction field of the completion of the local ring at P on X .

For a linear algebraic group G over F , let us define:

•XX(F,G) := ker

(
H1(F,G)→

∏
P∈X

H1(FP , G)

)

•X(F,G) := ker

(
H1(F,G)→

∏
ν∈ΩF

H1(Fν , G)

)
.

It is known that XX(F,G) ⊆X(F,G) ([HHK15a, Proposition 8.2.]).

In general, XX(F,G) and X(F,G) are just pointed sets, but they are
abelian groups if G is abelian. The pointed sets XX(F,G) and X(F,G)
measure the obstruction to the local-global principle for the group G
with respect to points on X and with respect to discrete valuations on F
respectively.
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First we prove the following (see Corollary 4.4.2) in which the notion of
R-equivalence and R-trivial elements play an important role.

Theorem 1.0.4. Let K be a complete discretely valued field with residue
field κ and F be the function field of a smooth, projective, geometrically
integral curve over K. Let X be a regular proper model of F with reduced
special fibre X a union of regular curves with normal crossings. Let L/F
be a Galois extension over F of degree n. Suppose that

• n is coprime to char(κ),

• κ contains a primitive nth root of unity ρ,

• for all finite extensions κ′/κ and for all finite Galois extensions l/κ′ of
degree d dividing n,

Tl/κ′(κ
′) = RTl/κ′(κ

′)〈ρn/d〉,

• the graph associated to X is a tree.

Then XX(F, TL/F ) = 0.

We conclude our main theorem (Theorem 1.0.2), by proving that for K,

F and L as in Theorem 1.0.4, X(F, TL/F ) =
⋃
X

XX(F, TL/F ) (Theorem

4.3.1), where X runs over the reduced special fibres of regular proper
models X of F which are obtained as a sequence of blow-ups of X0

centered at closed points of X0.

We also study local-global principle for multinorm tori associated to
finite Galois extensions over semi-global fields with respect to discrete
valuations.

Over number fields, this has been studied more generally for separable
extensions quite extensively, in particular by Hürlimann ([Hür84]), Colliot-
Thélène and Sansuc (unpublished), Platonov and Rapinchuk ([PRR93,
Section 6.3.]), Prasad and Rapinchuk ([PR08, Section 4]), Pollio and Rap-
inchuk ([PR12]), Demarche and Wei ([DW14]), Pollio ([Pol14]), Bayer-
Fluckiger, Lee and Parimala([BFLP19]). Let F be a number field. Let L
be a product of m (m ≥ 2) many non-isomorphic quadratic field exten-
sions. Let TL/F be the associated multinorm torus. Then the local-global
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principle holds for TL/F if m = 2 ([Hür84, Prop. 3.3.]). However, the
local-global principle does not hold in general for m = 3 ([CT14]). It is a
recent result of Bayer-Fluckiger, Lee and Parimala ([BFLP19, Thm 8.3.])
that the local-global principle holds if m ≥ 4. In the same paper, they
have results for more general multinorm tori which includes product of
non-isomorphic degree p extensions, where p is any prime number.

Over semi-gobal fields, again using the patching technique of Harbater,
Hartmann and Krashen ([HHK15a]), we prove the following theorems
(see Theorem 5.2.8 and Theorem 5.2.24) :

Theorem 1.0.5. Let K be a complete discretely valued field with residue
field κ. Let F be the function field of a smooth, projective, geometrically
integral curve over K. Assume that κ is either algebraically closed or a
finite field. Let L1, L2 be two degree p cyclic extensions of F . Assume
that p 6= char(κ). Let L = L1 × L2. Then X(F, TL/F ) = 0.

Remark 1.0.6. It is important to note here that we do not need any
condition on the associated graph in Theorem 1.0.5.

Theorem 1.0.7. Let K be a complete discretely valued field with residue
field κ algebraically closed. Let F be the function field of a smooth,
projective, geometrically integral curve over K. Let Li/F, 1 ≤ i ≤ m, be

quadratic cyclic extensions. Assume that char(κ) 6= 2. Let L =
m∏
i=1

Li. If

the graph associated to F is a tree then X(F, TL/F ) = 0.

We begin by first proving the following result (see Theorem 5.1.3) :

Theorem 1.0.8. Let K be a complete discretely valued field with residue
field κ. Let F be the function field of a smooth, projective, geometrically
integral curve over K. Let Li/F be Galois field extensions of degrees

coprime to char(κ) for i = 1, 2, . . . ,m. Let L =
m∏
i=1

Li. Let X0 be a

regular proper model of F . Then

X(F, TL/F ) =
⋃
X

XX(F, TL/F ),

where X runs over the reduced special fibres of regular proper models X
of F which are obtained as a sequence of blow-ups of X0 centered at closed
points of X0.
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We conclude Theorem 1.0.5 and Theorem 1.0.7 by proving that for these
multinorm tori TL/F , XX(F, TL/F ) = 0 for appropriate choices of X
(see Corollary 5.2.7 and Theorem 5.2.23). Here again, the notion of
R-equivalence and R-trivial elements play an important role.

In the last chapter (Chapter 6), we also give counterexamples to the
local-global principles for certain norm one tori and multinorm tori over
a semi-global field.

Some parts of Chapter 2 and Chapter 3 and the whole of Chapter 4
and Chapter 6 are excerpted from the author’s paper titled ‘Local-global
principle for norm one tori’ ([Mis19]).
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Chapter 2

Prerequisites

2.1 Linear algebraic groups

We recall the notion of a linear algebraic group G over a field F below.
We refer the reader to [Hum75], [Mil17], [MT11], and [Sza06] for thorough
expositions.

Let F be a field. A linear algebraic group is an affine algebraic variety
with a group structure which is compatible with the variety structure.
More precisely, we define:

Definition 2.1.1. (Linear algebraic group) A linear algebraic group de-
fined over F is an affine algebraic variety G over F endowed with the
structue of a group such that the following two maps :

µ : G×G→ G; µ(x, y) = xy

and
ι : G→ G; ι(x) = x−1

are morphisms of varieties.

Examples :

• The additive group Ga over F is the affine line A1
F endowed with

the group law µ(x, y) = x+ y. Here 0 is the identity element and
the inverse map is given by ι(x) = −x.

• The multipilcative group Gm over F is the affine open set F× ⊂ A1

with the group law µ(x, y) = xy. Here 1 is the identity element and
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the inverse map is given by ι(x) = x−1.

• The general linear group GLn over F consists of invertible n by
n matrices over F with the usual matrix multiplication as group
law. Here the n by n identity matrix serves as the identity and the
inverse of an element A is the inverse A−1 (the inverse matrix of
the matrix A).

• The nth roots of unity µn over F for (n, char(F )) = 1 with the
group law µ(x, y) = xy. Here 1 is the identity and the inverse map
is given by ι(x) = x−1.

A different but equivalent definition of linear algebraic group is as follows :

Definition 2.1.2. A linear algebraic group over F is a functor G from
the category of F -algebras to the category of groups such that there exists
a reduced finitely generated F -algebra A with F ' Hom(A, ) as functors
to category of sets.

Let G1 and G2 be two linear algebraic groups.

Definition 2.1.3. A map φ : G1 → G2 is called a morphism of linear
algebraic groups if it is a group homomorphism as well as a morphism of
varieties.

Example : The determinant map

det : GLn → Gm; A 7→ det(A)

is a morphism of linear algebraic groups.

Lemma 2.1.4. A closed subgroup of a (linear) algebraic group is again
a (linear) algebraic group.

Proposition 2.1.5. ([Hum75, Prop 1.5.]) Kernels and images of mor-
phisms of (linear) algebraic groups are closed.

8



Hence we see that kernels and images of morphisms of linear algebraic
groups is again a linear algebraic group.

Short exact sequence of algebraic groups
Let G,G′, G′′ be linear algebraic groups defined over a field F . Let Fsep/F
be a fixed separable closure of F .

We say that we have a short exact sequence of linear algebraic groups

1→ G′ → G→ G′′ → 1

if we have the following short exact sequence of Gal(Fsep/F )-modules :

1→ G′(Fsep)→ G(Fsep)→ G′′(Fsep)→ 1.

Definition 2.1.6. (Torus) An algebraic group G defined over F is called
a torus if G(Fsep) ' Gn

m for some positive integer n.

Some examples of tori :

• Gn
m for any positive integer n.

• Weil restriction of Gm correponding to finite separable extensions as
defined below (see Definition 2.1.7).

• Norm one tori correponding to finite separable extensions as defined
below (see Definition 2.1.8).

Let F be any field and L/F be a finite separable extension. Let X be a va-
riety defined over F . For any ring R, we denote by R× the set of units in R.

Definition 2.1.7. (Weil restriction) The Weil restriction of X, denoted
by ResL/FX is a variety such that for any F -algebra A, the A-points of
ResL/FX are given by

[ResL/FX](A) = X(A⊗F L).

Actually, ResL/F is a functor from the category of varieties over F to the
category of varieties over L sending a variety X over F to the variety
ResL/FX. This functor is right adjoint to the base-change functor ×F L

9



from the category of varieties over L to the category of varieties over F .
Also, for a linear algebraic group G, RL/FG is again a linear algebraic
group.

Next we define the norm one torus associated to the extension L/F . The
norm map NL/F : L× → F× extends to a morphism from RL/FGm to Gm,
which we also denote by NL/F .

Definition 2.1.8. (Norm one torus) We define the norm one torus
for the extension L/F , denoted by TL/F , to be the kernel of the map

RL/FGm

NL/F−−−→ Gm, i.e.,

TL/F = ker

(
RL/FGm

NL/F−−−→ Gm

)
.

Thus, by definition, we have the following short exact sequence of linear
algebraic groups :

1→ TL/F → RL/FGm → Gm → 1.

For any F -algebra A, the A-points of TL/F are given by

TL/F (A) = ker

(
(A⊗F L)×

NL/F⊗FA−−−−−−→ A×
)
,

where NL/F ⊗F A is induced from the norm map NL/F .

In particular, the F -points of TL/F are given by

TL/F (F ) = {a ∈ L× | NL/F (a) = 1}.

Next, we define multinorm tori over a field F .

Let F be a field and L1, L2, . . . , Lm be finite Galois extensions of F . Let

L =
m∏
i=1

Li.

10



We denote by TL/F the multinorm torus corresponding to the extensions
Li/F , 1 ≤ i ≤ m, and define it as

TL/F = ker


m∏
i=1

RLi/FGm

m∏
i=1

NLi/F

−−−−−−−→ Gm

 ,

where NLi/F are the maps induced from the usual norm maps from Li to F .

2.2 Galois cohomology and torsors

We refer the readers to [Ser97] for detailed expositions on these topics.

We start with the definition of inverse systems of groups and inverse limits.

Definition 2.2.1. A (filtered) inverse system of groups (Γi, φij)I consists
of the following data :

• a partially ordered set (I,≤) which is directed, i.e., for all i, j ∈ I, there
exists a k ∈ I with i ≤ k and j ≤ k;

• for each i ∈ I, there is a group Γi;

• for each i ≤ j, there is a homomorphism φij : Γj → Γi such that we
have φik = φij ◦ φjk for i ≤ j ≤ k.

For an inverse system, we define the inverse limit as follows:

Definition 2.2.2. For an inverse system (Γi, φij)I , we define the inverse

system, denoted by lim
←

Γi, to be the subgroup of the direct product
∏
i

Γi

consisting of sequences (gi) such that φij(gj) = gi whenever i ≤ j.

Definition 2.2.3. A profinite group is a topological group which is the
inverse limit of finite groups, where the finite groups are considered with
the discrete topology.

11



Example : (Galois groups)

Let L/F be a finite or infinite Galois extension of fields. Then the
Galois group Gal(L/F ) is the inverse limit of the finite Galois groups
Gal(K/F ), where K varies over all the finite Glaois extensions K/F
which are contained in L/F . Hence Gal(L/F ) is a profinite group.

2.2.1 Profinite Cohomology

Let Γ be a profinite group.

Definition 2.2.4. We say a group G(not necessarily abelian) is a Γ-group
if :

• Γ acts continuously on G, which is equivalent to saying that G = ∪GU(
the subgroup of G consisiting of elements fixed under Γ), where U runs
over all the open subgroups of Γ; and

• the action of Γ is compatible with the group structure of G, i.e., γ(gh) =
γaγb for all γ ∈ Γ and g, h ∈ G.

Definition of H0 and H1

For a profinite group Γ and Γ-group G, one defines one defines H0(Γ, G) =
GΓ, the set of elements of G fixed under Γ. This is a subgroup of Γ.

A 1-cocycle of Γ in G is defined as a continuous map from Γ to G sending
γ to gγ such that gγγ′ = gγ

γgγ′ for all γ, γ′ ∈ Γ. Let 1G be the identity
element in G. The set of 1-cocycles is denoted by Z1(Γ, G). The map
from Γ to G given by sending every γ in Γ to 1A is a 1-cocycle, called the
trivial cocycle.

We say two cocycles g and g′ are cohomologous if there exists h ∈ G
such that g

′
γ = h−1gγ

γh. Being cohomologous is an equivalence relation in
Z1(Γ, G). We define H1(Γ, G) to be the quotient of Z1(Γ, G) under this
equivalence relation and call it the first cohomology set of Γ in G. The set
H1(Γ, G) is a pointed set, i.e., a set equipped with a distinguished element
coming from the trivial cocycle.

The cohomology sets H0(Γ, G) and H1(Γ, G) are functorial in G.
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2.2.2 The Long exact sequence associated to a short
exact sequence of Γ-groups

If f : H → G is a morphism of Γ-groups then it induces a canonical map
from H i(Γ, H) to H i(Γ, G) for i = 0, 1.

For a short exact sequence of Γ-groups, we get a long exact sequence :

Proposition 2.2.5. [Ser97, Chapter I, Proposition 38]
Let 1→ H → G→ J → 1 be a short exact sequence of Γ-groups. Then
there exists a connecting morphism δ : JΓ → H1(Γ, H) such that the
sequence of pointed sets

1→ HΓ → GΓ → JΓ δ−→ H1(Γ, H)→ H1(Γ, G)→ H1(Γ, J)

is exact.

Galois cohomology

Let F be a field. We fix a separable closure Fsep of F . Let Γ = Gal(Fsep/F )
be the absolute Galois group of F . Then Γ is a profinite group. For a
Γ-group G, the profinite cohomology is also called the Galois cohomology.

Galois cohomology of the additive and the multiplicative groups

Proposition 2.2.6 (Hilbert 90). [GS06, Lemma 4.3.7]
The Galois cohomology group H1(Γ, F×sep) is trivial.

Proposition 2.2.7. [GS06, Lemma 4.3.11]
The Galois cohomology group H1(Γ, Fsep) is trivial.

In this thesis, we are interested in the case when G is a linear algebraic
group defined over F .

Next we define torsors under linear algebraic groups.

Let F be any field and G be a linear algebraic group over F .

Definition 2.2.8. We say a F -variety X is a G-torsor over F if there
is an action G × X → X such that for every field extension L/F , the
induced action of G(L) on X(L) is simply transitive.

13



Let X, Y be G-torsors over F .

Definition 2.2.9. (Morphism of G-torsors) A morphism of G-torsors
over F is a morphism f : X → Y of varieties compatible with the action
of G.

Definition 2.2.10. (Trivial torsor) A G-torsor X over F is called a
trivial G-torsor if it is isomorphic to G considered as a G-torsor under
left multiplication. A G-torsor X over F is trivial if and only if X(F ) 6= ∅.

A G-torsor is trivial if and only if it has a rational point over F .

Proposition 2.2.11. There is a canonical bijection between the H1(Γ, G)
and the set of isomorphism classes of G-torsors over F .

Proof. Let X be a G-torsor over F . Let us fix a x0 ∈ X(Fsep). Then for
any γ ∈ Γ, there exists a unique cγ in G(Fsep) such that γx0 = x0 · cγ.
We have γ1γ2x0 = x0 · cγ1γ2 . Also, γ1γ2x0 = γ1(γ2x0) = γ1(x0 · cγ2) =
γ1x0 · γ1cγ2 = x0 · (cγ1γ1cγ2). Hence cγ1γ2 = cγ1

γ1cγ2 . So the map γ 7→ cγ
defines a cocycle. Also, the class of cocycle c does not choice of x0 ∈ X.
Let y0 ∈ X. Then there exists a unique go ∈ G(Fsep) with yo = xo · g0.
We have : γyo = γ(xo · g0) = γxo · γgo = x0 · cγ · γg0 = yo · (g−1

0 cγ)
γg0). As

(g−1
0 cγ)

γg0) and cγ represent the same class in H1(Γ, G), we actually get
a well-defined map from the set of isomorphism classes of G-torsors over
F to H1(Γ, G). Clearly, this map takes the equivalence class of trivial
G-torsors to the identity element in H1(Γ, G).

Conversely, let c ∈ Z1(Γ, G) be a cocycle. We consider G ×F Fsep and
define a Γ action by γ(x) = cγ

γx. This defines a variety over F , which
is isomorphic to G over Fsep. Hence Xc is a G-torsor over F . If we
choose some other cocycle representative for the equivalence class of
c in H1(Γ, G), say d with dγ = g−1cγ

γg for some g ∈ G(Fsep). Then
Xd is isomorphic to Xc as a G-torsor via left translation by g since
g(dγ

γx) = g(g−1cγ
γgγx) = cγ

γ(gx). Hence we get a map from H1(Γ, G)
to the set of equivalence classes of G-torsors over F .

One checks that the two maps defined above are inverses of each other.
Hence we get the desired bijection.
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Example- (Torsors under norm one tori and multinorm tori)

Let L/F be a Galois extension. By definition of norm one torus TL/F , we
have the short exact sequence :

1→ TL/F → RL/FGm

NL/F−−−→ Gm → 1.

By taking Galois cohomology, we get :

1→ TL/F (F )→ L×
NL/F−−−→ F× → H1(F, TL/F )→ 1

since H1(F,RL/FGm) = {1} (by Hilbert 90 and Shapiro’s lemma).

Hence H1(F, TL/F ) ' F×/NL/F (L×). Thus, the isomorphism classes of
TL/F -torsors correspond to the equivalence classes of F×/NL/F (L×), with
the trivial torsor corresponding to the equivalence class of 1. For any
λ ∈ F×, we can define Xλ to be the variety defined by NL/F (Z) = λ. The
varieties Xλ are TL/F -torsors over F . And, these are all TL/F -torsors
over F upto isomorphism.

Similarly, let TL/F be the multinorm torus corresponding to the extensions
Li/F, 1 ≤ i ≤ m. Then we have :

1→ TL/F →

(
m∏
i=1

RLi/FGm

) m∏
i=1

NLi/F

−−−−−−−→ Gm → 1.

By taking Galois cohomology, we get :

1→ TL/F (F )→

(
m∏
i=1

(L×i )

) m∏
i=1

NLi/F

−−−−−−−→ F× → H1(F, TL/F )→ 1

since H1(F,RL/FGm) = {1} (by Hilbert 90 and Shapiro’s lemma).

Hence H1(F, TL/F ) ' F×/NL/F (L×). Thus, the isomorphism classes of

TL/F -torsors correspond to the equivalence classes of F×/
m∏
i=1

NLi/F (L×i ),

with the trivial torsor corresponding to the equivalence class of 1. For any
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λ ∈ F×, we can define Xλ to be the variety defined by
m∏
i=1

NLi/F (Zi) = λ.

The varieties Xλ are TL/F -torsors over F . And, these are all TL/F -torsors
over F upto isomorphism.

2.3 Local-global principles for linear alge-

braic groups

Let F be any field and ΩF be the set of discrete valuations on F . Let G
be a linear algebraic group defined over F .

We say that the local-global principle holds for G if for all G-torsors X,
we have : X has a rational point over F if and only if X has a rational
point over Fν for all ν ∈ ΩF .

We define the group X(F,G) as

X(F,G) := ker

(
H1(F,G)→

∏
ν∈ΩF

H1(Fν , G)

)
.

Since a G-torsor is trivial if and only if it has a rational point over F ,
the local-global principle holds for G if and only if X(F,G) is trivial.

When F is a number field, the local-global principle holds for various classes
of linear algebraic groups ([PRR93, Chapter6]), including semisimple sim-
ply connected algebraic groups. Here we also consider the completions
at archimedean places while discussing local-global principles. Sansuc
([San81]) proved that the failure of the local-global principle for connected
linear algebraic groups over number fields can be explained by the Brauer-
Manin obstruction. However, not much is known for general fields. In
this thesis, we are exploring local-global principles for norm one tori over
semi-global fields.

2.4 R-equivalence and flasque tori

We refer the reader to [CTS77] and [CTS87] for more details about R-
equivalence and flasque tori.
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Notation 2.4.1. Let F be a field and L be an étale algeba over F.
Throughout this thesis, we will denote the norm 1 torus R1

L/FGm by TL/F .

Let X be a variety over a field F. For a field extension L of F, let X(L)
be the set of L-points of X. We say that two points x0, x1 ∈ X(L) are
elementary R-equivalent, denoted by x0 ∼ x1, if there is a rational map
f : P1(L) 99K X(L) such that f(0) = x0 and f(1) = x1. The equiva-
lence relation generated by ∼ is called R-equivalence. When X = G is
an algebraic group defined over F with the identity element e, we de-
fine RG(L) = { x ∈ G(L) | x is R-equivalent to e}. The elements of
RG(L) are called R-trivial elements. It is well-known that RG(L) is
a normal subgroup of G(L) (cf. [Gil10, p-1]) Sometimes, we denote
G(L)/RG(L) by G(L)/R. Let L/F be a Galois extension with Galois
group G, and TL/F be the norm 1 torus associated to the extension L/F.
Then for any extension N/F, RTL/F (N) is the subgroup generated by the
set {a−1σ(a) | a ∈ (L⊗F N)×, σ ∈ G} ([CTS77, Proposition 15]).

We note a well-known fact here:

Lemma 2.4.2. Let F be a field and L/F be a finite cyclic extension.
Then TL/F (F ) = RTL/F (F ).

Proof. By [CTS77, Proposition 15], we know that RTL/F (F ) is generated
by the set {a−1σ(a) | a ∈ (L)×, σ ∈ Gal(L/F )}. Hence by Hilbert 90
theorem, we conclude that TL/F (F ) = RTL/F (F ).

Now we discuss few basic results about R-equivalence on norm one tori
and multinorm tori.

Proposition 2.4.3. Let F be a field and L0/F be a finite separable
extension. Let L be the product of m copies of L0. Then the homomorphism
TL/F → TL0/F given by (a1, . . . , am) 7→ a1 · · · am induces an isomorphism

TL/F (F )/RTL/F (F )→ TL0/F (F )/RTL0/F (F ).

Proof. In fact the isomorphism (RL0/F (Gm))m → (RL0/F (Gm))m given
by sending (b1, . . . , bm) to (b1, . . . , bm−1, b1b2 · · · bm) induces an isomor-
phism of algebraic groups TL/F → (RL0/F (Gm))m−1 × TL0/F ([BFLP19,
Lemma 1.1.]). Since RL0/F (Gm) is rational, RL0/F (Gm)/R = {1} ([Gil10,
Corollary 1.6.]). Hence the homomorphism TL/F → TL0/F given by
(a1, . . . , am) 7→ a1 · · · am induces an isomorphism TL/F (F )/RTL/F (F )→
TL0/F (F )/RTL0/F (F ).
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Corollary 2.4.4. Let F be a field and L0/F be a finite separable extension
of degree d and L be the product of m copies of L0. Suppose that F contains
ρ, a primitive (dm)th root of unity. If

TL0/F (F ) = RTL0/F (F )〈ρm〉,

then
TL/F (F ) = RTL/F (F )〈ρ〉.

Proof. Since (ρ, ρ, . . . , ρ) ∈ TL/F maps to ρm under the isomorphism given
in Proposition 2.4.3, the corollary follows from Proposition 2.4.3).

The following proposition is a generalisation of Proposition 2.4.3.

Proposition 2.4.5. Let F be a field and let L1, L2, . . . , Lm be finite

separable extensions of F where m is a natural number. Let L =
m∏
i=1

Li.

Let ri be positive integers for i, 1 ≤ i ≤ m. Let L′ =
m∏
i=1

(
ri∏
Li

)
. Then

TL/F (F )/R ' TL′/F (F )/R.

Proof. By induction, it is enough to consider the case when r1 = 2 and
ri = 1 for 2 ≤ i ≤ m. Let us consider the map

f : RL1/FGm ×
m∏
i=1

RLi/FGm → RL1/FGm ×
m∏
i=1

RLi/FGm

which sends (a0, a1, . . . , am) to (ao, a0a1, a2, . . . , am). Then f is an isomor-
phism of algebraic groups. This induces an isomorphism from TL′/F →
RL1/FGm × TL/F . Since RL1/F (Gm) is rational, RL1/F (Gm)/R = {1}
([Gil10, Corollary 1.6.]). Hence by ([Gil10, p-1]), the isomorphism above
induces an isomorphism TL′/F (F )/R→ TL/F (F )/R.

Lemma 2.4.6. Let F be a field and Li, 1 ≤ i ≤ m, be finite separable
extensions of F and let L = F ×

∏m
i=1 Li. Then TL/F (F ) = RTL/F (F ).

Proof. Let us consider the map f :
m∏
i=1

RLi/FGm → TL/F which sends

(a1, . . . , am) to (
m∏
i=1

NLi/F (ai)
−1, a1, . . . , am). Then f is an isomorphism of

18



algebraic groups. Since RLi/F (Gm) are rational, RLi/F (Gm)(F )/R = {1}
([Gil10, Corollary 1.6.]) and consequently, by ([Gil10, p-1]),(

m∏
i=1

RLi/FGm(F )

)
/R = {1} = TL/F (F )/R.

Lemma 2.4.7. Let L/F be a finite Galois extension of degree n and
N/F be any field extension. If α ∈ (L⊗F N)×, then NL⊗FN/N(α)−1αn ∈
RTL/F (N).

Proof. Let G be the Galois group of L/F. Since NL⊗FN/N (α) =
∏
σ∈G

σ(α),

we have

NL⊗FN/N(α)−1αn = [
∏
σ∈G

σ(α)]
−1
αn =

∏
σ∈G

(
[σ(α)]−1α

)
.

Hence NL⊗FN/N(α)−1αn ∈ RTL/F (N).

Next, we define character group of a torus, quasitrivial torus, flasque torus
and flasque resolution of a torus.

Let F be a field and Fsep be a separable closure of F . For a torus T

over F , we define its character group T̂ as the group of homomorphisms
of Fsep-algebraic groups from T ×F Fsep to Gm,Fsep. The group T̂ has
a natural action of the Galois group Gal(Fsep/F ) which makes it into

a Gal(Fsep/F )-lattice. In other words, T̂ is free and finitely generated
abelian group with a continuous, discrete action of Gal(Fsep/F ). This
lattice determines the F -torus T and there is anti-equivalence between the
category of F -tori and the category of Gal(Fsep/F )-lattices.

Definition 2.4.8. A quasitrivial F -torus E is a F -torus which is F -

isomorphic to a finite product
m∏
i=1

RLi/FGm, where Li/F are finite separa-

ble extensions and RLi/F denote Weil restrictions.

The group
m∏
i=1

RLi/FGm is an open subset of
m∏
i=1

RLi/FGa, which is F -

isomorphic to An
F for some n. Thus quasitrivial tori are rational linear

algebraic groups.
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Definition 2.4.9. A flasque F -torus S is a F -torus for which

H1(H,HomZ(Ŝ,Z)) = 0

for all closed subgroups H of Gal(Fsep/F ).

Definition 2.4.10. A flasque resolution of a F -torus T is a short exact
sequence of F -tori

1→ S
f−→ E

g−→ T → 1

with E quasitrivial and S flasque.

The important fact here, due to Colliot-Thélène and Sansuc ([CTS77]),
is the following :

For any F -torus T , there always exists a flasque resolution

1→ S
f−→ E

g−→ T → 1

and it is unique upto taking a direct product of S and E with the same
quasitrivial torus, respectively.

Lemma 2.4.11. Let T be a torus defined over a semi-global field F . Then
for any αP,U ∈ RT (FP,U), there exists αP ∈ RT (FP ) and αU ∈ RT (FU)
such that αP,U = αPαU in RT (FP,U).

Proof. We consider a flasque resolution of T over F given by

1→ S
f−→ E

g−→ T → 1,

where E is a quasitrivial torus and S is a flasque torus. Consider-
ing the above sequence over FP,U and by [CTS77, Théorème 2, p-199],
g(E(FP,U)) = RT (FP,U). Let βP,U ∈ E(FP,U) with g(βP,U) = αP,U . Then
since E is quasitrivial, it is also rational. Hence by [HHK09, Theorem
3.7.], there exists βP ∈ E(FP ) and βU ∈ E(FU) with βP,U = βPβU
in E(FP,U). Thus, applying g, we get that αP,U = g(βP )g(βU), where
g(βP ) ∈ RT (FP ) ⊆ RT (FP,U) and g(βU) ∈ RT (FU) ⊆ RT (FP,U). Hence
we are done.
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Chapter 3

Semi-global fields and
Patching

Let F be a field and ΩF be the set of all equivalence classes of discrete
valuations ν on F. For ν ∈ ΩF , let Fν denote the completion of F at ν
and κ(ν) the residue field at ν. For an algebraic group G over F, let

X(F,G) := ker

(
H1(F,G)→

∏
ν∈ΩF

H1(Fν , G)

)
.

In this thesis, we are concerned with a special class of fields called semi-
global fields.

Definition 3.0.1. (Semi-global field) A semi-global field is the function
field of a smooth, projective, geometrically integral curve over a complete
discretely valued field.

Example : Some examples of semi-global fields are: C((t))(x), Qp(x),

Fp((t))(x) and
C((t))(x)[y]

〈xy(x+ y − 1)− t〉
.

Let T be a complete discretely valued ring with fraction field K and residue
field κ. Let t ∈ T be a parameter. Let F be a function field of a smooth,
projective, geometrically integral curve over K. Thus F is a semi-global
field. Then there exists a regular 2-dimensional integral scheme X which
is proper over T with function field F. We call such a scheme X a regu-
lar proper model of F. Further there exists a regular proper model of F
with the reduced special fibre a union of regular curves with only normal
crossings. Let X be a regular proper model of F with the reduced special
fibre X a union of regular curves with only normal crossings.
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3.1 Overfields of a semi-global field

For a semi-global field F and a regular proper model X of F , one can
associate three different kinds of overfields of F . We describe them below
and discuss how they are related to each other.

For any point x of X , let Rx be the local ring at x on X , R̂x the comple-
tion of the local ring Rx, Fx the fraction field of R̂x and κ(x) the residue
field at x.

For any subset U of X that is contained in an irreducible component of
X, let RU be the subring of F consisting of the rational functions which
are regular at every point of U. Let R̂U be the t-adic completion of RU

and FU the fraction field of R̂U .

Let η ∈ X be a codimension zero point and P ∈ X a closed point such
that P is in the closure Xη of η. Such a pair (P, η) is called a branch. For
a branch (P, η), we define FP,η to be the completion of FP at the discrete
valuation of FP associated to η. We call such fields branch fields. If η is
a codimension zero point of X, U ⊂ Xη an open subset and P ∈ Xη a
closed point, then we will use (P,U) to denote the branch (P, η) and FP,U
to denote the field FP,η.

With P,U, η as above, there are natural inclusions of FP , FU and Fη into
FP,η = FP,U . Also, there is a natural inclusion of FU into Fη.

Let P be a nonempty finite set of closed points of X that contains all the
closed points of X, where distinct irreducible components of X meet. Let
U be the set of connected components of the complement of P in X and
let B be the set of branches (P,U) with P ∈ P and U ∈ U with P in the
closure of U .

3.2 Tate-Shafarevich groups

Let G be a linear algebraic group over F. Let us define

XX ,P(F,G) := ker

(
H1(F,G)→

∏
ξ∈P∪U

H1(Fξ, G)

)
.

If X is understood, we will just use the notation XP(F,G).
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Similarly, let us define

XX ,X(F,G) := ker

(
H1(F,G)→

∏
P∈X

H1(FP , G)

)
.

Again, if X is understood, we will just use the notation XX(F,G).

We have a bijection([HHK15a, Corollary 3.6.]) :

∏
U∈U

G(FU)\ ∏
(P,U)∈B

G(FP,U)/
∏
P∈P

G(FP )→XP(F,G)

This is a very useful result since the double coset mentioned above is
usually more manageable to work with.

By [HHK15a, Corollary 5.9.], we have XX(F,G) =
⋃

XP(F,G), where

union ranges over all finite subsets P of closed points of X which con-
tain all the singular points of X. We also have XX(F,G) ⊆ X(F,G)
([HHK15a, Proposition 8.2.]).

3.3 The associated graph

We start with basic facts about finite bipartite trees.

Lemma 3.3.1. Let Γ be a finite bipartite graph and G be an abstract
group. Let V be the set of vertices with parts V1 and V2. For each edge θ
of Γ, let gθ ∈ G. If Γ is a tree, then for every v ∈ V, there exists gv ∈ G
such that if e is an edge joining two vertices vi ∈ Vi, then ge = gv1gv2 .

Proof. Suppose that Γ is a tree. Without loss of generality, we may as-
sume that Γ is a connected graph. We prove the lemma by the induction
on number of vertices. Suppose that Γ has one one vertex. Then there is
nothing to prove.

Suppose that Γ has more than one vertex. Since Γ is a connected tree,
there exists a vertex v0 ∈ V with exactly one edge θ at v0. Without loss
of generality, we may assume v0 ∈ V1. Let Γ′ be the graph obtained from
Γ by removing the vertex v0 and the edge θ. Then Γ′ is again a finite
bipartite graph which is a tree. Then by induction hypothesis, for every
vertex v of Γ′, there exists gv ∈ G such that if e is an edge in Γ′ joining
v1 ∈ V1 \ {v0} and v2 ∈ V2, then ge = gv1gv2 . Let v′0 ∈ V2 be the other
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vertex of the edge θ. Let gv0 = gθg
−1
v′0
. Then it follows that gv have the

required property.

We can generalize the above lemma as follows :

Lemma 3.3.2. Let Γ be a finite bipartite tree. Let V be the set of
vertices with parts V1 and V2 and E be the set of edges. Suppose that
for every edge e ∈ E, we have an abstract group Ge and for every vertex
v ∈ V , we have an abstract group Gv such that for all v ∈ V and edges e
with v as one of the vertex, we have a surjective group homomorphism

fv,e : Gv → Ge. Then for every tuple (ge)e∈E ∈
∏
e∈E

Ge, there exists a tuple

(gv)v∈V ∈
∏
v∈V

Gv such that if e is the edge joining the vertices v1 and v2,

ge = fv1,e(gv1) · fv2,e(gv2).

Proof. Without loss of generality, we may assume that Γ is a connected
tree. We prove the lemma by induction on the number of vertices of Γ.
Suppose Γ has only one vertex. Then there is nothing to prove.

Suppose Γ has n vertices, where n > 1. Let (ge)e∈E ∈
∏
e∈E

Ge. Since Γ

is a finite connected tree, there exists a vertex v0 with exactly one edge
θ at v0. Without loss of generality, we may assume that v0 ∈ V1. Let
Γ′ denote the graph obtained by deleting the vertex v0 and the edge θ.
Then Γ′ is again a finite bipartite tree with n − 1 vertices. Thus, by

induction hypothesis, there exists a tuple (gv)v∈V \{v0} ∈
∏

v∈V \{v0}

Gv such

that whenever e ∈ E \ {θ} is an edge between some vertices v1 and v2 in
V \ {v0}, we have ge = fv1,e(gv1) · fv2,e(gv2).

Let v′0 ∈ V2 be the other vertex of the edge θ. Choosing gv0 to be an
element in f−1

v0,θ
(gθ · fv′0,θ(gv′0)), we see that (gv)v∈V satisfies the required

property. Hence we are done.

Let T be a complete discretely valued ring with fraction field K, and
residue field κ. Let t ∈ T be a parameter. Let F be the function field
of a smooth, projective, geometrically integral curve over K and X be
a regular proper model of F with the reduced special fibre X a union of
regular curves with only normal crossings. Let P be a nonempty finite
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set of closed points of X that contains all the closed points of X, where
distinct irreducible components of X meet. Let U be the set of connected
components of the complement of P in X and let B be the set of branches
(P,U) with P ∈ P and U ∈ U with P in the closure of U .

We have a graph Γ(X ,P) associated to X and P whose vertices are
elements of P ∪ U and edges are elements of B. Since there are no edges
between any vertices which are in P (resp. U), Γ(X ,P) is a finite bi-
partite graph with parts P and U . If P ′ is another finite set of closed
points of X containing all the closed points of X where distinct irreducible
components of X meet, then Γ(X ,P) is a tree is and only if Γ(X ,P ′) is
a tree ([HHK15a, Remark 6.1(b)]). Hence if Γ(X ,P) is a tree for some
P as above, then we say that the graph Γ(X ) associated to X is a tree.

Now we have the following result as a corollary to Lemma 3.3.1 and
Lemma 3.3.2.

Corollary 3.3.3. Let F, X , X, P , U and B be as above. Let G be an
abstract group and for each branch b ∈ B, let gb ∈ G. Suppose that the
graph Γ(X ) associated to X is a tree. Then for every ζ ∈ U ∪ P , there
exists gζ ∈ G such that if b = (P,U) ∈ B, then gb = gPgU .

Proof. The proof immediately follows from Lemma 3.3.1.

Corollary 3.3.4. Let K be a complete discretely valued field with residue
field κ and F be the function field of a smooth, projective, geometrically
integral curve over K. Let X be a regular proper model of F and X be
the reduced special fibre. Let T be a torus defined over F . Let P be a
finite set of closed points of X containing all the nodal points .
Assume that :

• the graph associated to F is a tree,

• the natural map T (FU) → T (FP,U)/R is surjective for all possible U
and branches (P,U), where U is one of the components of X \ P

• the natural map T (FP ) → T (FP,U)/R is surjective for all possible P
and branches (P,U).

Then XP(F, T ) = 0.
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Proof. We have a finite bipartite tree with V1 = P, V2 = U and E = B,
where (P,U) ∈ B is the edge joining P ∈ P and U ∈ V2. We get the
result by considering GP,U = T (FP,U)/R, GP = T (FP ) and GU = T (FU)
and applying Lemma 3.3.2.
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Chapter 4

Local-global principle for
norm one tori over
semi-global fields

4.1 Norm one elements - complete discretely

valued fields

Let F be a complete discretely valued field with residue field κ. Let L/F be
a Galois extension. Let l denote the residue field of L. In this section, we
investigate the relationship between the groups TL/F (F )/RTL/F (F ) and
Tl/κ(κ)/RTl/κ(κ). This allows us to transfer our assumptions from the
residue fields to the branch fields (see Section 3.1), which is crucial for
proving local-global principles for norm one tori for semi-global fields (see
Lemma 4.4.1).

Lemma 4.1.1. Let F be a complete discretely valued field with residue
field κ and L/F be a finite Galois extension of degree n with residue field
l. Suppose that n is coprime to char(κ). Let z ∈ TL/F (F ). If the image of
z in l is 1, then z ∈ RTL/F (F ).

Proof. Let S be the integral closure of R in L. Then S is a complete
discrete valuation ring with residue field l. Let z ∈ TL/F (F ) with the
image of z in l is 1. Since n is coprime to char(κ), by Hensel’s lemma, there
is a w ∈ S with w = 1 and z = wn. Since NL/F (z) = 1, NL/F (w)n = 1

and hence ρ = NL/F (w) is an nth root of unity. Since w = 1, NL/F (w) =
Nl/κ(w)e = 1, where e is the ramification index of the extension L/F.
Hence ρ = 1. Since n is coprime to char(κ), by Hensel’s lemma, the
quotient map S → l induces a bijection from the set of nth roots of unity
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in S to the set of nth roots of unity in l. Hence ρ = 1 and w ∈ TL/F (F ).
Since z = wn, z ∈ RTL/F (F ) by Lemma 2.4.7.

Lemma 4.1.2. Let F be a complete discretely valued field with residue
field κ. Let L/F be a Galois extension of degree n. Suppose that (n, char(κ)) =
1. Suppose that F contains a primitive nth root of unity ρn. Let l be the
residue field of L and f = [l : κ]. If

Tl/κ(κ) = RTl/κ(κ)〈ρn/fn 〉,

then
TL/F (F ) = RTL/F (F )〈ρn〉.

Proof. Let R be the discrete valuation ring of F and S be the integral
closure of R in L. Let e be the ramification index of the extension L/F.
Then n = ef. For any element y ∈ S(resp. R), we will use y to denote its
image in the residue field l(resp. κ).

Let x ∈ L with NL/F (x) = 1. Then Nl/κ(x)e = NL/F (x) = 1. Hence
Nl/κ(x) = ρfin for some i with 0 ≤ i < e. Let y = ρ−in x. Then NL/F (y) = 1
and Nl/κ(y) = Nl/κ(ρ

−i
n )Nl/κ(x) = ρ−fin ρfin = 1. Thus y ∈ Tl/κ(κ) and

hence, by the assumption, y = θρejn for some θ ∈ RTl/κ(κ) and j an
integer. We write

θ =
∏

σ∈Gal(l/κ)

(aσ)−1σ(aσ)

for some aσ ∈ l×. Since Gal(l/κ) is a quotient of Gal(L/F ), for every
σ ∈ Gal(l/κ) we choose a lift σ̃ ∈ Gal(L/F ) of σ. Let bσ ∈ S with bσ = aσ
and

z = y−1ρejn
∏

σ∈Gal(l/κ)

(bσ)−1σ̃(bσ).

Then z ∈ TL/F (F ) and z = 1. Thus, by Lemma 4.1.1, z ∈ RTL/F (F ).
Therefore y ∈ RTL/F (F )〈ρn〉 and hence x ∈ RTL/F (F )〈ρn〉.

Definition 4.1.3. A complete discretely valued field K with finite residue
field is called a 1-local field. For m ≥ 1, a complete discretely valued field
K with m-local residue field k is called a (m + 1)-local field. If K is a
1-local field, the residue field of K is called the first residue field of K. If
K is a (m+ 1)-local field with residue field k, then the first residue field
of k is called the first residue field of K.
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Corollary 4.1.4. Let K be an m-local field with first residue field κ or
an iterated Laurent series in m variables over an algebraically closed field
κ. Let L/K be a finite Galois extension of degree n. If n is coprime to
char(κ) and K contains a primitive nth root of unity ρn, then

TL/K(K) = RTL/K(K)〈ρn〉.

Proof. Every finite extension l/κ is cyclic and by Hilbert 90, Tl/κ(κ) =
RTl/κ(κ). Thus, by Lemma 4.1.2, TL/K(F ) = RTL/K(K)〈ρn〉. The corol-
lary follows by induction on m and by Lemma 4.1.2.

4.2 Two dimensional complete fields

Let F be a field with a discrete valuation v. Let κ(v) be the residue field
of v. Let L/F be a finite separable extension and w be a discrete valuation
on L extending v. Let e(w/v) be the ramification index of w over v. For
any field E, a ∈ E× and n ≥ 1, let E( n

√
a) denote the field generated by

E and n
√
a in a fixed algebraic closure of E.

Lemma 4.2.1. Let F be a field with a discrete valuation v, π ∈ F× with
v(π) = 1. Let L/F be a finite separable extension of degree coprime to
char(κ(v)) and w be a discrete valuation of L extending v. Let ` be a
prime not equal to char(κ(v)). Then there is a unique discrete valuation ṽ
on F (

√̀
π) extending v. Let w̃ on L(

√̀
π) be a discrete valuation extending

w. If ` divides e(w/v), then e(w̃/ṽ) = e(w/v)/`.

Proof. Since v(π) = 1, v is totally ramified in F (
√̀
π) and hence there is

a unique extension ṽ of v to F (
√̀
π).

For the ramification index calculations, we can replace F by Fv, the com-
pletion of F with respect to the valuation v and hence may assume that
F is complete. Let Lnr be the maximal unramified subextension of L/F .
Since the ramification index of L/Lnr is same as the ramification index
of L/F , replacing F by Lnr, we may assume that L/F is totally ramified.
Since n = e = [L : F ] is coprime to char(κ(v)), we have L = F ( n

√
uπ) for

some u ∈ F with v(u) = 0 ([CF67, Proposition 1, p-32]).

By hypothesis, we have that ` divides n. Suppose that u ∈ F×`. Then
F (
√̀
π) ⊆ L and hence L/F (

√̀
π) is a totally ramified extension of degree

n/`. Now suppose that u 6∈ F×`. Then L(
√̀
π) = F (

√̀
π)(
√̀
u)( n/

√̀√̀
uπ).

Hence the ramification index of the extension L(
√̀
π)/F (

√̀
π) is n/`.
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Notation 4.2.2. Let A be a complete regular local ring of dimension 2
with residue field κ and fraction field F . Let m = (π1, π2) ⊂ A be the

maximal ideal of A. For i = 1, 2, we denote by Â(πi) be the completion of
the local ring A(πi) with respect to the ideal (πi) and by Fπi the fraction

field of Â(πi).

We are studying these fields since the fields FP appearing in the patching
setup (see Section 3.1) are fraction fields of complete regular local rings
of dimension 2 and the branch fields are obtained as completions of the
fields FP as discussed above.

4.2.1 Structure of extensions of two dimensional com-
plete fields

Let F be as in Notation 4.2.2. In this subsection, we study finite Galois
extensions of F .

In the following lemma, we prove that under some assumptions, a field
extension L over F remains a field after base change to the completion
Fπi for i = 1, 2:

Lemma 4.2.3. Let A be a complete regular local ring of dimension 2 with
residue field κ and fraction field F . Let L/F be a separable field extension
of degree n, where n is coprime to char(κ). Let m = (π1, π2) ⊂ A be the
maximal ideal of A. Suppose that L/F is unramified on A except possibly
at π1 and π2 ∈ A. Then L⊗F Fπi is a field for i = 1, 2.

Proof. Let vi be the discrete valuation of F given by πi, for i = 1, 2. To
show that L⊗F Fπi is a field, it is enough to show that there is a unique
extension of vi to a discrete valuation on L.

Let wji be the extensions of the valuations vi to L. Let m be the maximum
of e(wjii /vi) for i = 1, 2, where 1 ≤ ji ≤ ni for some positive integers
n1 and n2. Since each e(wjii /vi) ≥ 1, m ≥ 1. We prove the result by
induction on m.

Suppose that m = 1. Then e(wjii /vi) = 1 for for i = 1, 2 and 1 ≤ ji ≤ ni.
Hence L/F is unramified at πi for i = 1, 2. Since L/F is unramified
on A except possibly at π1, π2, L/F is unramified on A. Let Ã be the
integral closure of A in L. Then Ã is again a complete regular local ring
of dimension 2 with (π1, π2) as maximal ideal and fraction field L. Thus
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πi remains a prime over Ã. Hence there is a unique extension of vi to a
discrete valuation of L. Hence L⊗F Fπi ∼= Lπi is a field.

Now suppose that m > 1. Let ` be a prime which divides m. Let
E = F (

√̀
π1,
√̀
π2) and M = L(

√̀
π1,
√̀
π2). Let B be the integral closure

of A in E. Then by [PS14, Corollary 3.3.], B is a regular local ring with
maximal ideal (π′1, π

′
2), where π′1 =

√̀
π1 and π′2 =

√̀
π2. Then M/E is

unramified onB except possibly at π′1 and π′2. Since (π1, π2) is the maximal
ideal of A, it follows that there is a unique extension of vi to E, which we
denote by ṽi. Let ω be a discrete valuation of M extending ṽi for some i.
Then the restriction of ω to L is equal to wjii for some ji. Let Ei = F (

√̀
πi)

and Mi = L(
√̀
πi). Let ω′ and v′i be the restrictions of ω and ṽi to Mi

and Ei respectively. Suppose that e(wjii /vi) = m. Then by Lemma 4.2.1,
e(ω′/v′i) = e(wjii /vi)/` and e(ω/ṽi) ≤ e(ω′/v′i) = e(wjii /vi)/`. Hence, by
induction hypothesis, for each i = 1, 2, there is a unique extension of ṽi
to M . Since L is a subfield of M , there is a unique extension of vi to L.
Hence L⊗F Fπi is a field.

The next lemma describes the structure of finite Galois extensions L/F
which are unramified on A except possibly at π1 and π2 ∈ A and totally
ramified at π2.

Lemma 4.2.4. Let A be a complete regular local ring of dimension 2
with residue field κ and fraction field F . Let L/F be a Galois extension
of degree n, where n is coprime to char(κ). Let m = (π1, π2) ⊂ A be the
maximal ideal of A. Suppose that L/F is unramified on A except possibly
at π1 and π2 ∈ A and totally ramified at π2. Then L = F ( n

√
uπm1 π2) for

some u ∈ A a unit and some integer m.

Proof. Let G be the Galois group of L/F . Since the degree of L/F is co-
prime to char(κ) and L/F is unramified on A except possibly at π1 and π2,
by Lemma 4.2.3, L⊗F Fπ2 is a field. Since L⊗F Fπ2/Fπ2 is a totally tamely
ramified extension, Fπ2 contains a primitive nth root of unity and we have
L⊗F Fπ2 = Fπ2(

n
√
θπ2) for some θ ∈ Fπ2 which is a unit in the discrete

valuation ring of Fπ2 by [CF67, Proposition 1, p-32]. In particular G is a
cyclic group. Since Fπ2 contains a primitive nth root of unity, the residue
field κ(π2) of Fπ2 contains a primitive nth root of unity. Since κ is the
residue field of κ(π2), κ also contains a primitive nth root of unity. Since
A is complete, by Hensel’s lemma, F contains a primitive nth root of unity.

Hence L = F ( n
√
a) for some a ∈ F . Since L/F is unramified on A except

possibly at π1, π2, we can choose a = uπm1 π
d
2 for some u ∈ A a unit and
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integers m, d. Since L/F is totally ramified at π2, d is coprime to n and
hence we can assume that d = 1.

Next we consider finite Galois extensions L/F which are unramified on
A except possibly at π1.

Lemma 4.2.5. Let A be a complete regular local ring of dimension 2
with residue field κ and fraction field F . Let L/F be a Galois extension
of degree coprime to char(κ). Let m = (π1, π2) ⊂ A be the maximal ideal
of A. Suppose that L/F is unramified on A except possibly at π1. Then
there exists a subextension L1/F of L/F such that :

• L1/F is unramified on A, and

• L = L1( e
√
uπ1) for some unit u in the integral closure of A in L1.

Proof. Let G be the Galois group of L/F . Since L ⊗F Fπ1/Fπ1 is a
field extension by Lemma 4.2.3, the Galois group Gal(L⊗F Fπ1/Fπ1) is
isomorphic to G. We will identify these two groups. We consider the
inertia group H of the extension L⊗F Fπ1/Fπ1 which is a subgroup of G.
Let L1 = LH . Then (L⊗F Fπ1)H = L1 ⊗F Fπ1 is unramified over Fπ1 by
[CF67, Theorem 2, p-27]. Hence (L1)π1

∼= L1 ⊗F Fπ1 is unramified over
Fπ1 and L1/F is unramified at π1. Since L/F is unramified on A except
possibly at π1, L1/F is unramified on A. Then the integral closure B of A
in L1 is a regular local ring with maximal ideal (π1, π2). Let e = [L : L1].
Since L/F is unramified on A except possibly at π1, L/L1 is unramified
on B except possibly at π1. Hence by Lemma 4.2.4, with the roles of π1

and π2 interchanged, we have L = L1( e
√
uπm2 π1) for some u ∈ B a unit.

Since L/L1 is unramified on B except possibly at π1, m is divisibly by e
and hence L = L1( e

√
uπ1).

The next lemma describes the structure of finite Galois extensions L/F
unramified on A except possibly at π1 and π2 ∈ A, hence generalising
Lemma 4.2.4 and Lemma 4.2.5.

Theorem 4.2.6. Let A be a complete regular local ring of dimension 2
with residue field κ and fraction field F . Let L/F be a Galois extension
of degree coprime to char(κ). Let m = (π1, π2) ⊂ A be the maximal ideal
of A. Suppose that L/F is unramified on A except possibly at π1 and
π2 ∈ A. Then there exists subfields L1 and L2 of L such that :
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• F ⊆ L1 ⊆ L2 ⊆ L,

• L1/F is unramified on A,

• L2 = L1( d1
√
uπ1) for some unit u in the integral closure of A in L1, and

• L = L2( d2

√
v( d1
√
uπ1)iπ2) for some unit v in the integral closure of A in

L2.

Proof. Let G be the Galois group of L/F . Since L ⊗F Fπ2/Fπ2 is a
field extension by Lemma 4.2.3, the Galois group Gal(L⊗F Fπ2/Fπ2) is
isomorphic to G. We identify these two groups. We consider the inertia
group H of the extension L ⊗F Fπ2/Fπ2 which is a subgroup of G. Let
L2 = LH . Then as in Lemma 4.2.5, L2/F is unramified on A except
possibly at π1. Hence, by Lemma 4.2.5, there exists a sub extension L1/F
of L2/F such that L1/F is unramified on A and L2 = L1( d1

√
uπ1) for

some unit u in the integral closure of A in L1. Let B be the integral
closure of A in L2. Then B is a regular local ring with maximal ideal
( d1
√
uπ1, π2) by [PS14, Lemma 3.2.]. Since L/L2 is unramified on B

except possibly at d1
√
uπ1, π2 and totally ramified at π2, by Lemma 4.2.4,

L = L2( d2

√
v( d1
√
uπ1)iπ2) for some unit v ∈ B.

4.2.2 Norms over two dimensional complete fields

Let A, F , π1, π2 be as in Notation 4.2.2. Let λ = uπr1π
s
2 for some unit

u ∈ A and integers r, s. In this subsection, we show that if λ is a norm
from the extension L⊗FFπ1/Fπ1 , then λ is a norm from the extension L/F.

We begin by describing the elements of F×πi/F
×n
πi
.

Lemma 4.2.7. Let A be a complete regular local ring of dimension 2
with residue field κ and fraction field F. Let m = (π1, π2) be the maximal
ideal of A. Let m ≥ 1 be an integer coprime to char(κ). Let Fπ1 be the
completion of F at the discrete valuation of F given by π1. Then every
element in Fπ1 can be written as uπs1π

t
2a
m for some u ∈ A a unit, a ∈ Fπ1

and integers s, t.

Proof. Let Â(π1) be the completion of the local ring A(π1). Then Fπ1 is

the fraction field of Â(π1). Let x ∈ Fπ1 . Then x = vπ1
s for some unit

v ∈ Â(π1) and integer s. Let v be the image of v in the residue field κ(π1)
of Fπ1 . Since κ(π1) is the fraction field of A/(π1) and A/(π1) is a discrete
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valuation ring with the image π2 as a parameter, we can write v = zπ2
t

for some unit z ∈ A/(π1) and integer t. Let u ∈ A with u = z ∈ A/(π1).
Since z is a unit in A/(π1), u is a unit in A. Hence x−1uπs1π

t
2 maps to 1 in

κ(π1). Since m is coprime to char(κ), by Hensel’s lemma, x = uπ1
sπ2

tam

for some a ∈ Fπ1 .

Lemma 4.2.8. Let A be a complete regular local ring of dimension 2 with
residue field κ and fraction field F. Let L/F be a Galois field extension of
degree n, where n is coprime to char(κ). Let m = (π1, π2) be the maximal
ideal of A. Suppose that L/F is unramified on A except possibly at π1.
Let λ = uπr1π

s
2 for some unit u ∈ A and integers r, s. If λ is a norm from

the extension L⊗F Fπ1/Fπ1 , then λ is a norm from the extension L/F.

Proof. Let µ ∈ L⊗F Fπ1 be such that NL⊗FFπ1/Fπ1 (µ) = λ. Since L/F is a
Galois extension which is unramified on A except possibly at π1, by Lemma
4.2.5, we have a subfield F ⊆ L1 ⊆ L such that L1/F is unramified on A
and L = L1( e

√
vπ1), where e = [L : L1] and v is a unit in the integral clo-

sure of A in L1. Let B be the integral closure of A in L. Then B is a regular
local ring with maximal ideal ( e

√
vπ1, π2) by [PS14, Lemma 3.2.]. Hence,

by Lemma 4.2.7, µ = w e
√
vπ1

iπj2b
n for some integers i, j, b ∈ L ⊗F Fπ1

and w a unit in B. Let θ = w e
√
vπ1

iπj2 ∈ L. Since NL⊗FFπ1/Fπ1 (µ) = λ,
we have NL/F (θ−1)λ = NL⊗FFπ1/Fπ1 (bn) ∈ F×nπ1 . Since NL/F (θ−1)λ =

[NL/F (w)vπ1
ni/eπnj2 ]−1uπr1π

s
2 = [u(NL/F (w))−1]π

r−ni/e
1 πs−nj2 and u(NL/F (w))−1

is a unit in A, by [PPS18, Corollary 5.5.], NL/F (θ−1)λ ∈ F×n. In particu-
lar NL/F (θ−1)λ is a norm from the extension L/F and hence λ is a norm
from L/F .

Theorem 4.2.9. Let A be a complete regular local ring of dimension
2 with residue field κ and fraction field F. Let L/F be a Galois field
extension of degree n, where n is coprime to char(κ). Let m = (π1, π2)
be the maximal ideal of A. Suppose that L/F is unramified on A except
possibly at π1, π2. Let λ = uπr1π

s
2 for some unit u ∈ A and integers r, s. If

λ is a norm from the extension L⊗F Fπ1/Fπ1 , then λ is a norm from the
extension L/F.

Proof. Let µ ∈ L⊗F Fπ1 be such that NL⊗FFπ1/Fπ1 (µ) = λ. We show by
induction on the degree of the field extension L/F that λ is a norm from
the extension L/F .

Since L/F is a Galois extension which is unramified on A except possibly
at π1and π2, we have subfields L1 and L2 as in Theorem 4.2.6. Let B
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be the integral closure of A in L2. Then B is a complete regular local
ring with maximal ideal ( d1

√
vπ1, π2) by ([PS14, Lemma 3.2.]). By Lemma

4.2.7, we have NL⊗FFπ1/L2⊗FFπ1 (µ) = w d1
√
vπ1

iπj2b
n for some integers i, j,

b ∈ L2 ⊗F Fπ1 and w a unit in B. Then θ = w d1
√
vπ1

iπj2 is a norm from
L⊗F Fπ1/L2 ⊗F Fπ1 .

Suppose that F 6= L2. Then [L : L2] < [L : F ] and by induction, θ is a
norm from L/L2. Write θ = NL/L2(θ

′). Then

λ = NL⊗FFπ1/Fπ1 (µ)
= NL2⊗FFπ1/Fπ1 (NL⊗FFπ1/L2⊗FFπ1 (µ))
= NL2⊗FFπ1/Fπ1 (θbn)
= NL2⊗FFπ1/Fπ1 (θ)NL2⊗FFπ1/Fπ1 (bn)
= NL2/F (θ)NL2⊗FFπ1/Fπ1 (b)n

= NL2/F (NL/L2(θ
′)NL2⊗FFπ1/Fπ1 (b)n

= NL/F (θ′)NL2⊗FFπ1/Fπ1 (b)n

Since NL/F (θ′) = NL2/F (θ) = NL2/F (w d1
√
vπ1

iπj1), NL/F (θ′)−1λ is a prod-
uct of a unit in A with a power of π1 and a power of π2. Since
NL/F (θ′)−1λ = NL2⊗FFπ1/Fπ1 (b)n ∈ F n

π1
, by [PPS18, Corollary 5.5.], we

conclude that NL/F (θ′)−1λ is a nth power in F and hence a norm from L
to F . Hence λ is also a norm from L to F .

Now suppose F = L2. Then L = F ( n
√
vπ2), where v is a unit in A.

Hence L/F is a cyclic extension of degree n. Let σ be a generator of the
Galois group of L/F and C be the cyclic algebra (L, σ, λ). Since L/F is
unramified on A except at π2, C is a unramified on A except possibly at
π1 and π2. Since λ is a norm from L⊗F Fπ1 , C ⊗F Fπ1 is a split algebra.
Thus, by [PPS18, Corollary 5.5.], C is a split algebra and hence λ is a
norm from the extension L/F by [Alb39, Theorem 6, p-95].

4.3 X vs XX

In this section, we compare the groups XX(F, TL/F ) and X(F, TL/F )
for a semi-global field F and a finite Galois extension L/F of degree
coprime to the characteristic of the residue field. The proof uses Theorem
4.2.9. This allows us to use patching techniques to prove the local-global
principle for norm one tori TL/F over F with respect to discrete valuations.
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Theorem 4.3.1. Let K be a complete discretely valued field with residue
field κ. Let F be the function field of a smooth, projective, geometrically
integral curve over K and X0 a regular proper model of F with reduced
special fibre X0. Let L/F be a Galois field extension of degree coprime

to char(κ). Then X(F, TL/F ) =
⋃
X

XX(F, TL/F ), where X runs over the

reduced special fibres of regular proper models X of F which are obtained
as a sequence of blow-ups of X0 centered at closed points of X0.

Proof. Let x be an element in X(F, TL/F ) ⊆ H1(F, TL/F ). Since we have
H1(F, TL/F ) ' F×/NL/F (L×), we can choose λ ∈ F× a lift of x. For a
regular proper model X of F, let suppX (λ) denote the support of λ
in X and ramX (L/F ) denote the ramification locus for the extension
L/F with respect to X . By [Lip75, p-193], there exists a sequence of
blow-ups X →X0 centered at closed points of X0 such that the union of
suppX (λ), ramX (L/F ) and the reduced special fibre X of X is a union
of regular curves with normal crossings. We show that x ∈XX(F, TL/F ).

Let P ∈ X. First suppose P is a generic point of X. Then P gives a
discrete valuation ν of F with Fν = FP . Since x ∈X(F, TL/F ), x maps
to 0 in H1(FP , TL/F ).

Next suppose that P is a closed point. Let η1 be the generic point of an
irreducible component of X containing P. Let OX ,P be the local ring at P
and mX ,P be its maximal ideal. Then by our choice of X ,mX ,P = (π1, π2),
where π1 is a prime defining η1 at P, λ = uπr1π

s
2 for some unit u ∈ OX ,P

and integers r, s, and L⊗F FP/FP is unramified on OX ,P except possibly
at π1, π2. Since L/F is a Galois extension, L ⊗F FP =

∏
LP for some

Galois extension LP/FP . Since L⊗F FP/FP is unramified on OX ,P except
possibly at π1, π2, LP/FP is unramified on OX ,P except possibly at π1, π2.
Since λ is a lift of x ∈ XX(F, TL/F ), λ is a norm from L ⊗F Fη1/Fη1 .
Since Fη1 ⊂ FP,η1 , λ is a norm from L⊗F FP,η1/FP,η1 . Hence λ is a norm
from LP ⊗FP FP,η1/FP,η1 . Thus, by Theorem (4.2.9), λ is a norm from
LP/FP and x maps to 0 in H1(FP , TL/F ). Therefore x ∈XX(F, TL/F ).

By [HHK15a, Proposition 8.2.], we have
⋃
X

XX(F, TL/F ) = X(F, TL/F ),

where X runs over the reduced special fibres of regular proper models
X of F which are obtained as a sequence of blow-ups of X0 centered at
closed points of X0.

Remark 4.3.2. The proof of Theorem 4.3.1 also works if we just consider
divisorial discrete valuations instead of considering all discrete valuations
on F .
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4.4 Local-Global Principle

In this section, we prove the local-global principle for norm one tori over
semi-global fields with respect to points on the reduced special fibre under
some assumptions on the semi-global field and the residue field. This,
combined with Theorem 4.3.1, allows us to conclude that under the same
assumptions, the local-global principle for norm one tori also holds with
respect to discrete valuations.

Lemma 4.4.1. Let K be a complete discretely valued field with residue
field κ and F be the function field of a smooth, projective, geometrically
integral curve over K. Let X be a regular proper model of F with the
reduced special fibre X a union of regular curves with normal crossings.
Let L/F be a finite Galois extension over F of degree n. Let P ∈ X be a
closed point and U an irreducible open subset of X with P in the closure
of U. Suppose that :

• n is coprime to char(κ),

• K contains a primitive nth root of unity ρ, and

• for all finite Galois extensions l/κ(P ) of degree d dividing n,

Tl/κ(P )(κ(P )) = RTl/κ(P )(κ(P ))〈ρn/d〉.

Then

TL⊗FFP,U/FP,U (FP,U) = RTL⊗FFP,U/FP,U (FP,U)〈ρ〉.

Proof. Let κ(U) be the function field of U. Since X is a union of regular
curves, P gives a discrete valuation on κ(U). Let κ(U)P be the completion
of κ(U) at P. Then by definition, FP,U is a complete discretely valued
field with residue field κ(U)P . Since L/F is a Galois extension of degree
n, L⊗F FP,U '

∏
L0 for some finite Galois extension L0/FP,U of degree

d dividing n. Since FP,U is a complete discretely valued field with residue
field κ(U)P , L0 is a complete discretely valued field with residue field
M0 a finite extension of κ(U)P of degree d1 dividing d. Since κ(U)P is a
complete discretely valued field with residue field κ(P ), M0 is a complete
discretely valued field with residue field l0 a finite Galois extension of
κ(P ) of degree d2 dividing d1. Hence, by the assumption on κ(P ) and
Lemma 4.1.2, we have

TM0/κ(U)P (κ(U)P ) = RTM0/κ(U)P (κ(U)P )〈ρn/d1〉.
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Hence, once again by Lemma 4.1.2, we have

TL0/FP,U (FP,U) = RTL0/FP,U (FP,U)〈ρn/d〉.

Since L ⊗F FP,U is the product of n/d copies of L0, by Corollary 2.4.4,
we have

TL⊗FFP,U/FP,U (FP,U) = RTL⊗FFP,U/FP,U (FP,U)〈ρ〉.

We are now ready to prove the local-global principle for norm one tori
over semi-global fields with respect to points on the reduced special fibre of
the model under some assumptions on the given semi-global field F and
the residue field κ.

Theorem 4.4.2. Let K be a complete discretely valued field with residue
field κ and F be the function field of a smooth, projective, geometrically
integral curve over K. Let X be a regular proper model of F with reduced
special fibre X a union of regular curves with normal crossings. Let L/F
be a Galois extension over F of degree n. Suppose that

• n is coprime to char(κ),

• K contains a primitive nth root of unity ρ,

• for all finite extensions κ′/κ and for all finite Galois extensions l/κ′ of
degree d dividing n,

Tl/κ′(κ
′) = RTl/κ′(κ

′)〈ρn/d〉,

• the graph associated to X is a tree.

Then XX(F, TL/F ) = 0.

Proof. Let P be a finite set of closed points of X containing all the nodal
points of X. By [HHK15a, Corollary 5.9.], it is enough to show that
XP(F, TL/F ) = 0. Let X \P = ∪iUi. Then each Ui is an irreducible open
subset of X. By ([HHK15a, Corollary 3.6.]), it is enough to show that the
product map

ψ :
∏
i

TL/F (FUi)×
∏
P∈P

TL/F (FP )→
∏

(P,Ui)

TL/F (FP,Ui)
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is surjective, where the product on the right hand side is taken over all
pairs (P,Ui) with P ∈ P and Ui such that P in the closure of Ui.

Let (λP,Ui) ∈
∏

(P,Ui)

TL/F (FP,Ui). We show that (λP,Ui) is in the image of

ψ. By Lemma 4.4.1, for each pair (P,Ui) with P in the closure of Ui, we
have λP,Ui = ρjP,UiµP,Ui for some integer jP,Ui and µP,Ui ∈ RTL/F (FP,Ui).
Let G be the Galois group of L/F. For each σ ∈ G, there exists aσ,P,Ui ∈
(L⊗F FP,Ui)× such that

µP,Ui =
∏

σ∈G(L/F )

σ(aσ,P,Ui)(aσ,P,Ui)
−1.

Since the group RL/F (Gm) is F -rational, by ([HHK09, Theorem 3.6.]),∏
i

(L⊗F FUi)× ×
∏
P∈P

(L⊗F FP )× →
∏

(P,Ui)

(L⊗F FP,Ui)×

is surjective. Hence for each σ ∈ G, there exist bσ,Ui ∈ (L⊗F FUi)× and
bσ,P ∈ (L⊗F FP )× such that aσ,P,Ui = bσ,Uibσ,P . We have

µP,Ui =
∏

σ∈G(L/F )

σ(aσ,P,Ui)(aσ,P,Ui)
−1

=
∏

σ∈G(L/F )

σ(bσ,Uibσ,P )(bσ,Uibσ,P )−1

=
∏

σ∈G(L/F )

σ(bσ,Ui)(bσ,Ui)
−1σ(bσ,P )(bσ,P )−1.

Since σ(bσ,Ui)(bσ,Ui)
−1 ∈ TL/F (FUi) and σ(bσ,P )(bσ,P )−1 ∈ TL/F (FP ), (µP,Ui)

is in the image of ψ.

Since TL/F (F ) is a group and ρ ∈ TL/F (F ), by Corollary 3.3.3, (ρjP,Ui ) is
in the image of ψ. Since ψ is a homomorphism, (λP,Ui) is in the image of
ψ, hence proving that ψ is surjective.

Using the above theorem and Theorem 4.3.1, we get that the under same
assumptions, we have the local-global principle for norm one tori over
semi-global fields with respect to discrete valuations :

Theorem 4.4.3. With the hypothesis as in Theorem 4.4.2, we have
X(F, TL/F ) = 0.
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Proof. Let X be a regular proper model of F which is obtained as a
sequence of blow-ups of X0 at closed points. Since the graph Γ(X0) is a
tree, Γ(X ) is also a tree (see [HHK15a, Remark 6.1(b)]). Let X be the
reduced special fibre of X . Then XX(F, TL/F ) = 0 by Theorem 4.4.2.
Thus, by Theorem (4.3.1), we have X(F, TL/F ) = 0.

Corollary 4.4.4. Let K be an m-local field with first residue field κ or
an iterated Laurent series in m variables over an algebraically closed
field κ. Let F be the function field of a smooth, projective, geometrically
integral curve over K and L/F be a finite Galois extension of degree n
with (n, char(κ)) = 1. Let X be a regular proper model of F with reduced
special fibre X a union of regular curves with normal crossings. Suppose
that the graph associated to X is a tree. If K contains a primitive nth

root of unity, then X(F, TL/F ) = 0.

Proof. This immediately follows from Corollary 4.1.4 and Theorem (4.4.3).

Remark 4.4.5. By Remark 4.3.2, the results also hold true if we just
consider divisorial discrete valuations instead of all discrete valuations on
F in Theorem 4.4.3 and Corollary 4.4.4.
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Chapter 5

Local-global principle for
multinorm tori over
semi-global fields

Let F be a field and L1, L2, . . . , Lm be finite Galois extensions of F . Let

L =
m∏
i=1

Li. We denote by TL/F the multinorm torus corresponding to the

extensions Li/F, 1 ≤ i ≤ m. More precisely, TL/F is the torus defined as

TL/F = ker


m∏
i=1

RLi/FGm

m∏
i=1

NLi/F

−−−−−−−→ Gm

 ,

where NLi/F are the maps induced from the usual norm maps from Li to F .

For any field F and finite separable extensions Li/F , 1 ≤ i ≤ m, if the
gcd of the degrees [Li : F ] is 1, then the local-global principle holds for
the multinorm torus TL/F . For any λ ∈ F×, λ[Li:F ] is in the image of the
norm map NLi/F . Since the gcd of the degrees [Li : F ] is 1, λ is a product
of norm from the extensions Li/F . So it is interesting only to consider
the cases when the gcd of the degrees of the extensions is not 1.

For a semi-global field F and étale algebras L/F which are either product
to two degree p cyclic extensions or product of finitely many quadratic
cyclic extensions, we study local-global principle for multinorm tori TL/F
with respect to discrete valuations on F .
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5.1 X vs XX

We follow the same strategy as we had in the norm one tori case and
compare the groups X and XX for multinorm tori.

Notation 5.1.1. For a regular proper model X of a semi-global field F
and a field extension L/F , we use ramX (L/F ) to denote the ramification
locus for the exxtension L/F with respect to X . Also, for λ ∈ F×, we
use suppX (λ) to denote the support of λ in X .

Theorem 5.1.2. Let A be a complete regular local ring of dimension
2 with the residue field κ and the fraction field F . Let L1, L2, . . . , Lm
be finite Galois extensions of F with [Li : F ] = ni. Assume that all ni
are coprime to char(κ). Let m = (π1, π2) be the maximal ideal of A.
Assume that Li/F are unramified on A except possibly at π1, π2. Let
λ = uπr1π

s
2 ∈ F , where u ∈ A is a unit and r, s are integers. Suppose that

λ is a product of norms from the extensions Li ⊗F Fπ1/Fπ1. Then λ is a
product of norms from the extensions Li/F .

Proof. Let us consider n =
m∏
i=1

ni. By our assumption, n is coprime

to char(κ). Let λ =
m∏
i=1

βi, where βi = NLi⊗FFπ1/Fπ1 (αi) for some αi ∈

(Li ⊗F Fπ1)×. By Lemma 4.2.7, we can write βi = uiπ
ri
1 π

si
2 bi

n for some
ui ∈ A a unit, bi ∈ Fπ1 and integers ri, si.

Let b =
m∏
i=1

(bi)
n. Then b = λ

m∏
i=1

(uiπ
ri
1 π

si
2 )−1. Hence b ∈ F . Since b is a

nth power in Fπ1 , it is a nth power in F by [PPS18, Corollary 5.5.] and
hence is a norm from Li/F . Thus we can assume that bi = 1. So let

λ =
m∏
i=1

βi with βj = uiπ
ri
1 π

si
2 such that βi is a norm from Li ⊗F Fπ1/Fπ1 .

By Theorem 4.2.9, we conclude that βi is a norm from Li/F and hence λ
is a product of norms from the extensions Li/F .

Theorem 5.1.3. Let K be a complete discretely valued field with residue
field κ. Let F be the function field of a smooth, projective, geometrically
integral curve over K. Let Li/F be Galois field extensions of degrees
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coprime to char(κ) for i = 1, 2, . . . ,m. Let L =
m∏
i=1

Li. Let X0 be a

regular proper model of F . Then

X(F, TL/F ) =
⋃
X

XX(F, TL/F ),

where X runs over the reduced special fibres of regular proper models X
of F which are obtained as a sequence of blow-ups of X0 centered at closed
points of X0.

Proof. Let x ∈X(F, TL/F ) ⊂ H1(F, TL/F ). Since

H1(F, TL/F ) ' F×/(
m∏
i=1

NLj/F (L×i )),

let λ ∈ F× be a lift of x. By [Lip75, p-193], there exists a sequence of
blow-ups X →X0 centered at closed points of X0 such that the union of
suppX (λ), ramX (Li/F ) and the reduced special fiber X of X is a union
of regular curves with normal crossings. We show that x ∈XX(F, TL/F ).

Let P ∈ X. Suppose P is a generic point of X. Then P gives a discrete
valuation ν of F with Fν = FP . Since x ∈X(F, TL/F ), x maps to 0 in
H1(FP , TL/F ).

Suppose that P is a closed point. Let η1 be the generic point of an
irreducible component of X containing P. Let OX ,P be the local ring at P
and mX ,P be its maximal ideal. Then by our choice of X ,mX ,P = (π1, π2),
where π1 is a prime defining η1 at P, λ = uπr1π

s
2 for some unit u ∈ OX ,P

and integers r, s, and all Li ⊗F FP/FP are unramified on OX ,P except

possibly at π1, π2. Since Li/F are Galois extensions, Li⊗F FP =
∏

(Li)P
for some Galois extensions (Li)P/FP . Since Li⊗F FP/FP is unramified on
OX ,P except possibly at π1, π2, (Li)P/FP is unramified on OX ,P except
possibly at π1, π2. Since λ is a lift of x ∈XX(F, TL/F ), λ is a product of
norms from Li⊗F Fη1/Fη1 . Since Fη1 ⊂ FP,η1 , λ is a product of norms from
Li⊗F FP,η1/FP,η1 . Hence λ is a product of norms from (Li)P ⊗FP,η1/FP,η1 .
Thus, by Theorem 5.1.2, λ is a product of norms from (Li)P/FP and x
maps to 0 in H1(FP , TL/F ). Therefore x ∈XX(F, TL/F ). By ([HHK15a,

Proposition 8.2.]), we have X(F, TL/F ) =
⋃
X

XX(F, TL/F ), where X runs

over the reduced special fibres of regular proper models of F.
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Remark 5.1.4. The proof of Theorem 5.1.3 also works if we just consider
divisorial discrete valuations instead of considering all discrete valuations
on F .

5.2 Local-Global Principle

We will be using the following notation throughout this section.

Notation 5.2.1. For a semi-global field F and field extensions Li/F , we
use Li,η, Li,P , Li,P,η and Li,P,U to denote Li⊗F Fη, Li⊗F FP , Li⊗F FP,η,
and Li ⊗F FP,U respectively.

5.2.1 Multinorm tori associated to two degree p cyclic
extensions

Let K be a complete discretely valued field with residue field κ. Let F
be the function field of a smooth, projective, geometrically integral curve
over K and let L1 and L2 be two cyclic extensions of F each of degree
p for some prime p. Let L = L1 × L2 and TL/F denote the associated
multinorm torus. Assume that κ is either algebraically closed or a finite
field. Assume that p 6= char(κ). Let X be a regular proper model of F .
We prove that for any branch FP,η, TL/F (FP,η)/R = {1}. Using this, we
conclude that over semi-global fields, the local-global principle holds for
such multinorm tori with respect to discrete valuations.

We start with a basic result about multinorm tori over arbitrary fields.

Lemma 5.2.2. Let Li, 1 ≤ i ≤ m, be finite separable extensions of a
given field F with [Li : F ] = ni. Let n := lcm(ni | 1 ≤ i ≤ m). Let

L =
m∏
i=1

Li. Let αi ∈ F× for all i, 1 ≤ i ≤ m− 1. Then the element

(α
n/n1

1 , α
n/n2

2 , . . . , α
n/nm−1

m−1 ,

m−1∏
i=1

α
−n/nm
i ) ∈ TL/F (F )

actually belongs to RTL/F (F ).
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Proof. Let us consider f(t) ∈ TL/F (F (t)) given by

f(t) =

((
t+ α1

t+ 1

)n/n1

,

(
t+ α2

t+ 1

)n/n2

, . . . ,

(
t+ αm−1

t+ 1

)n/nm−1

,

m−1∏
i=1

(
t+ 1

t+ αi

)n/nm)
.

Then for t = 0, we get

f(0) = (α
n/n1

1 , α
n/n2

2 , . . . , α
n/nm−1

m−1 ,

m−1∏
i=1

α
−n/nm
i )

and for t =∞, we get f(∞) = (1, 1, . . . , 1).

Hence (α
n/n1

1 , α
n/n2

2 , . . . , α
n/nm−1

m−1 ,

m−1∏
i=1

α
−n/nm
i ) belongs to RTL/F (F ).

Now we study R-trivial elements of TL/F (F ) for complete discretely valued
fields F where L is product of two degree p cyclic extensions.

Lemma 5.2.3. Let F be a complete discretely valued field with residue
field κ. Let L1/F be a degree p unramified cyclic extension and L2/F
be a degree p ramified cyclic extension. Assume that p 6= char(κ). Let
L = L1 × L2. Then TL/F (F )/R = {1}.

Proof. We can write L2 = F ( p
√
π) where π is a parameter in F . Then

π is also a parameter in L1. Let (µ1, µ2) ∈ TL/F (F ). We can write
µ1 = u1π

q1 and µ2 = u2( p
√
π)q2 where u1 ∈ L1 and u2 ∈ L2 are

units and q1, q2 are integers. We have 1 = NL1/F (µ1)NL2/F (µ2) =
NL1/F (u1)π

pq1NL2/F (u2)(−1)npq2πq2 where np = 1 if p = 2 and np = 2 if
p > 2. Then q2 = −pq1. Also, (−1)npq2 = 1 for any prime p.

By Lemma 5.2.2, (πq1 , π−q1) ∈ RTL/F (F ). Thus it is enough to consider
the case when µ1 and µ2 are units in L1 and L2 respectively. Furthermore,
since L2/F is totally ramified, we have µ2 = µp3µ4 where µ3 ∈ L2 is a unit
and µ4 ∈ F is a unit. We have 1 = NL1/F (µ1)[NL2/F (µ3)µ4]

p. Let α =
NL2/F (µ3)µ4 ∈ F . Then (α, α−1) ∈ RTL/F (F ). Hence (µ1α, µ

p
3µ4α

−1) is
R-equivalent to (µ1, µ2). We have NL1/F (µ1α) = 1 and NL2/F (µp3µ4α

−1) =
1. Now, since L1/F and L2/F are cyclic extensions, by Lemma 2.4.2,
TL1/F (F )/R = {1} and TL2/F (F )/R = {1}. Thus (µ1α, µ

p
3µ4α

−1) is in
RTL/F (F ) and we are done.
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Lemma 5.2.4. Let F be a complete discretely valued field with residue
field κ. Let L1/F and L2/F be two degree p ramified cyclic extensions.
Assume that p 6= char(κ). Let L = L1 × L2. Then TL/F (F )/R = {1}.

Proof. Let π be a parameter in F . Then we can write L1 = F ( p
√
π) and

L2 = F ( p
√
vπ) for some unit v ∈ F×. We can assume that v /∈ F×p

otherwise both extensions are isomorphic and by Proposition 2.4.3,
TL/F (F )/R ' TL1/F (F )/R. By Lemma 2.4.2, since L1/F is cyclic, we
have TL1/F (F )/R = {1}. Hence we are done.

Let (µ1, µ2) ∈ TL/F (F ). We can write µ1 = u1( p
√
π)q1 and µ2 = u2( p

√
vπ)q2

where u1 ∈ L1 and u2 ∈ L2 are units and q1, q2 are integers. We have
1 = NL1/F (u1)(−1)npq1πq1NL2/F (u2)(−1)npq2vq2πq2 . We get that q2 = −q1.
Consequently, (−1)npq1(−1)npq2 = 1. Also, since the extensions are totally
ramified, NL1/F (u1), NL2/F (u2) ∈ F×p. Hence vq2 ∈ F×p and p divides q2

since v /∈ F×p. Let q1 = pq for some integer q.

By Lemma 5.2.2, ((vπ)q, (vπ)−q) ∈ RTL/F (F ). Thus it is enough to show
that (µ1(vπ)−q, µ2(vπ)q) = (u1v

q, u2) ∈ RTL/F (F ). Thus we can assume
that µ1 and µ2 are units in L1 and L2 respectively. Furthermore, since
L2/F is totally ramified, we have µ2 = µp3µ4 where µ3 ∈ L2 is a unit and
µ4 ∈ F is a unit. Continuing as in the proof of Lemma 5.2.3, we get that
(µ1, µ2) ∈ RTL/F (F ).

For the next lemma, we assume that the field F is complete discretely
valued with residue field again a complete discretely valued field. Thus,
we can apply this lemma to the branch fields FP,η.

Lemma 5.2.5. Let F be a complete discretely valued field with residue
field κ a complete discretely valued field. Assume that κ′, the residue field
of κ, is algebraically closed or a finite field . Let L1/F and L2/F be two
unramified cyclic extensions of degree p. Assume that p 6= char(κ′). Let
L = L1 × L2. Then TL/F (F )/R = {1}.

Proof. We first consider the case when κ′ is algebraically closed. The
unramified cyclic extensions L/F of degree p are in one-to-one correspon-
dence with cyclic extensions l/κ of degree p, where l is the residue field of
L ([Mil, Proposition 7.50, p-126]). Since κ′ is algebraically closed, there
is a unique cyclic extension of κ of degree pThus, in this case, there is
only one unramified cyclic extension of F of degree p upto isomorphism.
Hence, by Proposition 2.4.3, TL/F (F )/R ' TL1/F (F )/R = {1}.
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Now assume that κ′ is a finite field.Let π ∈ F× be a parameter. Then π
is also a parameter in L1 and L2. Let (µ1, µ2) ∈ TL/F (F ). We can write
µi = uiπ

qi for some units ui ∈ Li and some integers qi for i = 1, 2. Then
1 = NL1/F (u1)π

pq1NL2/F (u2)π
pq2 . Then pq1 = −pq2, hence q1 = −q2 =

q(say). By Lemma 5.2.2, (πq, π−q) ∈ RTL/F (F ). Hence, we can assume
that µ1 and µ2 are units.

Let l1 and l2 denote the residue fields of L1 and L2 respectively. Let
l = l1× l2. We want to show (µ1, µ2) ∈ RTL/F (F ). By [Gil04, Proposition
2.2.], it is enough to show that Tl/κ(κ)/R = {1}.

Suppose at least one of the extensions l1/κ or l2/κ is totally ramified.
Then by Lemma 5.2.3 and Lemma 5.2.4, we get that Tl/κ(κ)/R = {1}.

Suppose that l1/κ and l2/κ are both unramified, then they are both
isomorphic since κ′ is a finite field. Hence,again by Proposition 2.4.3, we
conclude that Tl/κ(κ)/R = {1}.

Proposition 5.2.6. Let F be a complete discretely valued field with
residue field κ a complete discretely valued field. Assume that κ′, the
residue field of κ, is algebraically closed or a finite field . Let L1/F and
L2/F be two cyclic extensions of degree p. Assume that p 6= char(κ′). Let
L = L1 × L2. Then TL/F (F )/R = {1}.

Proof. The proof follows from Lemma 5.2.3, Lemma 5.2.4 and Lemma
5.2.5.

Corollary 5.2.7. Let K be a complete discretely valued field with residue
field κ. Let F be the function field of a smooth, projective, geometrically
integral curve over K. Assume that κ is either algebraically closed or a
finite field. Let L1, L2 be two degree p cyclic extensions of F . Assume
that p 6= char(κ). Let L = L1 × L2. Then for any regular proper model
X and any choice of P, XP(F, TL/F ) = 0 and XX(F, TL/F ) = 0.

Proof. Let X be a regular proper model of F and X be the special fibre.
Let (P, η) be a branch. We can assume that both Li,P,η are fields for
i = 1, 2. Otherwise, if Li,P,η is not a field for some i, then Li,P,η is a product
of p copies of FP,η. Thus, in this case, we get that TL/F (FP,η)/R = {1}
by Lemma 2.4.6. Then by Proposition 5.2.6, we get that for any branch
(P, η), TL/F (FP,η)/R = {1}. Hence, for any choice of P , XP(F, TL/F ) = 0
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by [CTHH+19, Theorem 3.1.]. Thus XX(F, TL/F ) = 0 by [HHK15a,
Corollary 5.9.].

As a consequence, we have the following theorem :

Theorem 5.2.8. Let K be a complete discretely valued field with residue
field κ. Let F be the function field of a smooth, projective, geometrically
integral curve over K. Assume that κ is either algebraically closed or a
finite field. Let L1, L2 be two degree p cyclic extensions of F . Assume
that p 6= char(κ). Let L = L1 × L2. Then X(F, TL/F ) = 0.

Proof. The result follows from Corollary 5.2.7 and Theorem 5.1.3.

Remark 5.2.9. We note that we do not need any assumptions on the
graph associated to the semi-global field F here.

5.2.2 More general multinorm tori

Let K be a complete discretely valued field with residue field κ algebraically
closed. Let F be the function field of a smooth, projective, geometrically
integral curve over K. Let TL/F be the multinorm torus associated to
cyclic extensions Li/F for 1 ≤ i ≤ m with degrees [Li : F ] prime. We
study TL/F (FP,η)/R for branches (P, η).

Notation 5.2.10. For a discrete valuation ν on F , let Fν,h be the
henselization of F at ν.

We start with some results concerning tori defined over semi-global fields.

Lemma 5.2.11. Let T be a torus defined over a semi-global field F .
Suppose that :

• a) the natural map T (Fη,h) → T (Fη)/R is surjective for all codi-
mension zero points η of X, and,

• b) the natural map T (FP )→ T (FP,η)/R is surjective for all branches
(P, η).
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Then for all proper open subsets U of Xη, the map T (FU)→ T (Fη)/R is
surjective.

Proof. Let U be a proper open subset of Xη and µ ∈ T (Fη). Then by the
assumption a), there exists µh ∈ T (Fη,h) which maps to µ in T (Fη)/R.
Thus, replacing µ by µh, we may assume that µ ∈ T (Fη,h). Since, by
[HHK14, Lemma 3.2.1.], the field Fη,h is the filtered direct limit of the
fields FV , where V ranges over the nonempty open proper subsets of Xη,
there exists a nonempty open proper subset V of Xη such that µ ∈ T (FV ).
By taking intersection with U , if needed, we may assume that V ⊆ U.
If V = U , there is nothing to prove. Suppose that V 6= U . Let P ∈ U \V .
By assumption, the map T (FP ) → T (FP,η)/R is surjective. Let µP be
an element in T (FP ) mapping to the class of µ in T (FP,η)/R. Then
µ = µPαP,η for some αP,η ∈ RT (FP,η). By Lemma 2.4.11, there exists
αV ∈ RT (FV ) and αP ∈ RT (FP ) with αP,η = αPαV in RT (FP,η). Then
µ = µPαPαV . Hence µα−1

V = µPαP ∈ T (FV ) ∩ T (FP ). By [HHK15b,
Lemma 2.12.] and [HHK15b, Proposition 3.9.], µα−1

V ∈ T (FV ∪{P}). Also,
µα−1

V maps to the equivalence class of µ in T (Fη)/R since αV ∈ RT (FV ) ⊆
RT (Fη). Since U \V is a finite set, doing this process finitely many times,
we get the result.

Lemma 5.2.12. Let T be a torus defined over a semi-global field F . Let
X be a regular proper model of F and X be the reduced special fiber. Let
η ∈ X be a codimension zero point. Suppose that :

• the natural map T (Fη,h)→ T (Fη)/R is surjective, and,

• for every closed point P of Xη, the natural maps T (Fη)→ T (FP,η)/R
and T (FP )→ T (FP,η)/R are surjective.

Then for any proper open subset U of Xη, the natural map

T (FU)→ T (FP,η)/R

is surjective.

Proof. The proof follows immediately from Lemma 5.2.11 since the natural
map T (FU)→ T (FP,η)/R factors through T (Fη)/R.
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Proposition 5.2.13. Let F be a semi-global field with a regular proper
model X and the special fibre X. Let T be a torus defined over F .
Assume that :

• the graph associated to F is a tree,

• the natural map T (Fη,h)→ T (Fη)/R is surjective,

• the natural map T (Fη)→ T (FP,η)/R is surjective for all possible η and
branches (P, η) and all choices of P, and

• the natural map T (FP ) → T (FP,η)/R is surjective for all possible P
and branches (P, η) and all choices of P.

Then XX(F, T ) = 0.

Proof. By [HHK15a, Corollary 5.9.], we just need to show that for every
choice of P , XP(F, T ) is trivial. This immediately follows from Lemma
5.2.12 and Corollary 3.3.4.

Lemma 5.2.14. Let F be a field. Let TL/F be the multinorm torus
associated to finite separable extensions Li/F for 1 ≤ i ≤ m with [Li : F ] =
ni. Let n := lcm(ni | 1 ≤ i ≤ m).
Assume that:

• for all (µ1, . . . , µm) ∈ TL/F (M), there exists (µ′1, . . . , µ
′
m) ∈ TL/F (F )

such that NLi⊗FM/M(µiµ
′−1
i ) ∈M×n.

• The natural maps

TLi/F (F )→ TLi/F (M)/R

are surjective for 1 ≤ i ≤ m.

Then the natural map TL/F (F )→ TL/F (M)/R is surjective.

Proof. Let (µ1, . . . , µm) ∈ TL/F (M). Then by assumption, there exists

(µ′1, . . . , µ
′
m) ∈ TL/F (F ) with NLi⊗FM/M(µiµ

′−1
i ) = αni for some αi ∈ M

for 1 ≤ i ≤ m.
Let us consider xi = µiµ

′−1
i . Then it is enough to show that the class of

(x1, . . . , xm) is in the image of the map TL/F (F )→ TL/F (M)/R.
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Now we consider

(β1, . . . , βm−1, βm) = (α
n/n1

1 , α
n/n2

2 , . . . , α
n/nm−1

m−1 ,
m−1∏
i=1

α
−n/nm
i )

in TL/F (M). Then by Lemma 5.2.2, (β1, . . . , βm) ∈ RTL/F (M). Thus, it
is enough to show that the class of (x1β

−1
1 , . . . , xmβ

−1
m ) lies in the image

of the map TL/F (F ) → TL/F (M)/R. For 1 ≤ i ≤ m, xiβ
−1
i ∈ TLi/F (M).

Now, by assumption, there exists γi ∈ TLi/F (F ) mapping to the class of
xiβ

−1
i ∈ TLi/F (M)/R for 1 ≤ i ≤ m. Then (γ1, . . . , γm) maps to the class

of (x1β
−1
1 , . . . , xmβ

−1
m ) in TL/F (M)/R. Hence we are done.

Lemma 5.2.15. Let F be a Henselian discretely valued field with residue
field κ and with completion F̂ . Assume that F has a primitive root of
unity ρn2. Let L/F be a finite separable field extension of degree n which
is coprime to char(κ). Let TL/F be the associated norm one torus. Then
the natural map

TL/F (F )→ TL/F (F̂ )/R

is surjective.

Proof. Since F is Henselian, L is also Henselian and L⊗F F̂ is a field and
completion of L. Let u ∈ TL/F (F̂ ). Then u is a unit. Let v ∈ L be close

to u in L⊗F F̂ . Since n is coprime to char(κ), we have u = van
2

for some
a ∈ L ⊗F F̂ . Since NL/F (v)[NL⊗F F̂ (a)]n

2
= NL⊗F F̂ (u) = 1, NL/F (v) ∈

F̂×n
2
. Since F is Henselian, there exists b ∈ F such that NL/F (v) = bn

2
.

Then NL/F (vb−n) = 1. We have u(vb−n)−1 = (anb−1)n ∈ TL/F (F̂ ). Since
NL⊗F F̂ (anb−1)n = 1, we have NL⊗F F̂ (anb−1) = ρnin2 for some i, 0 ≤ i ≤
n− 1. Then NL⊗F F̂ (anb−1ρ−in2) = 1. Let us consider w = vb−nρ−in2 . Then

w ∈ TL/F (F ) and uw−1 = (anb−1ρ−in2)
n. Since (anb−1ρ−in2)

n ∈ RTL/F (F̂ )

[CTS77, Proposition 15], we conclude that uw−1 ∈ RTL/F (F̂ ) and hence
we are done.

Lemma 5.2.16. Let F be a Henselian discretely valued field and F̂ be
its completion. Let κ be the residue field of F . Let L1, L2, . . . , Lm be
finite separable extensions of F with [Li : F ] = ni. Assume that F has all
primitive n2

i -th roots of unity for all i, 1 ≤ i ≤ m. Assume that all ni are
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coprime to char(κ). Let L =
m∏
i=1

Li.

Then
TL/F (F )→ TL/F (F̂ )/R

is surjective.

Proof. Let µ ∈ TL/F (F̂ )/R. Then µ = (µ1, . . . , µm) with µi ∈ Li ⊗F F̂

and
m∏
i=1

NLi⊗F F̂ /F̂ (µi) = 1. Let n = lcm(ni | 1 ≤ i ≤ m).

We first show that for all (µ1, . . . , µm) ∈ TL/F (F̂ ), there exists (µ′1, . . . , µ
′
m) ∈

TL/F (F ) such that NLi⊗F F̂ /F̂ (µiµ
′−1
i ) ∈ F̂×n. Since  Li ⊗F F̂ is the com-

pletion of Li for 1 ≤ i ≤ m − 1, there exists µ′i ∈ Li with µi =

µ′iθ
n
i for some θi ∈ (Li ⊗F F̂ )×n. Let λ =

m−1∏
i=1

NLi/F (µ′i) ∈ F . Since

λ
m−1∏
i=1

NLi⊗F F̂ /F̂ (θi)
n =

m−1∏
i=1

NLi⊗F F̂ /F̂ (µi) = NLm⊗F F̂ /F̂ (µm)−1, λ is a

norm from Lm ⊗F F̂ /F̂ . Since F is Henselian and F̂ is the comple-
tion of F , λ is a norm from Lm/F by [Art69, Thm 2.2.1]. Let µ′m ∈
Lm with NLm/F̂

(µ′m) = λ. Then µ′ = (µ′1, . . . , µ
′
m) ∈ TL/F (F ) and

NLi⊗F F̂ /F̂ (µiµ
′−1
i ) ∈ F̂×n for 1 ≤ i ≤ m.

Now, by Lemma 5.2.15, we get that the maps TLi/F (F )→ TLi/F (F̂ )/R
are surjective for all i, 1 ≤ i ≤ m. Hence, by Lemma 5.2.14, TL/F (F )→
TL/F (F̂ )/R is surjective.

Remark 5.2.17. If all the extensions Li/F , 1 ≤ i ≤ m are cyclic of degree
ni, then we do not need to assume that F has all primitive n2

i -th roots of
unity for all i, 1 ≤ i ≤ m. Since, by Lemma 2.4.2, TLi/F (F̂ )/R = {1}.

Lemma 5.2.18. Let K be a complete discretely valued field with residue
field κ. Let F be the function field of a smooth, projective, geometrically
integral curve over K. Let X be a regular proper model of F and X be
the reduced special fibre. Let P ∈ X be a nonempty finite set of closed
points containing all the intersection points. Let η be the generic point
of one of the components of X and let (P, η) be a branch. Let Lη/Fη be
a field extension of degree n with n coprime to char(κ). Assume that
LP,η = Lη ⊗F Fp,η is a field. Then for any λ ∈ NLP,η/FP,η((LP,η)

×) and
an integer N coprime to char(κ), there exists a λ′ ∈ NLη/Fη((Lη)

×) such
that λλ′−1 is a N th power in F×P,η.
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Proof. Let π ∈ Fη be a parameter. Since Lη/L
nr
η is totally ramified,

we can write Lη as Lη = Lnrη ( e
√
uπ), where u is a unit in Lnrη ([CF67,

Proposition 1, p-32]). Then LP,η = LnrP,η(
e
√
uπ).

Let L(η) and F (η) denote the residue field of Lη and Fη respectively.
Similarly, L(P, η) and F (P, η) denote the residue field of LP,η and FP,η
respectively. Then F (P, η) and L(P, η) are completions of F (η) and L(η)
respectively. Let Lnrη and LnrP,η be the maximal unramifield subextensions
of Lη/Fη and LP,η/FP,η respectively. Since [LP,η : LnrP,η] = [Lη : Lnrη ] = e
and [LP,η : FP,η] = n = [Lη : Fη], we get that [L(η) : F (η)] = [Lnrη : Fη] =
n/e = [LnrP,η : FP,η] = [L(P, η) : F (P, η)].

Let µ ∈ L×P,η with λ = NLP,η/FP,η(µ). Then we can write µ = θ( e
√
uπ)i,

where θ ∈ LP,η is a unit and i is an integer. Since LP,η and LnrP,η have
same residue field L(P, η), and since N is coprime to char(κ), by Hensel’s
lemma, there exists θ′ a unit in LnrP,η and α ∈ LP,η with θ = θ′(α)N . Hence
without loss of generality we can assume that θ ∈ LnrP,η. We have

λ = NLP,η/FP,η(µ) = [NLnrP,η/FP,η
(θ)]e[NLP,η/FP,η(

e
√
uπ)]i

= [NLnrP,η/FP,η
(θ)]e[NLη/Fη(

e
√
uπ)]i.

Let θ be the image of θ in the residue field L(P, η). We haveNLnrP,η/FP,η
(θ) =

NL(P,η)/F (P,η)(θ) ∈ F (P, η). Since L(P, η) is completion of L(η) and by

Hensel’s lemma, there exists φ ∈ L(η) such that θ · φ−1
is a N th power

in L(P, η). Let φ ∈ Lnrη such that φ is the image of φ in L(η). Then

NL(η)/F (η)(φ) = NLnrη /Fη(φ). We get that NLnrP,η/FP,η
(θφ−1) is a N th power

in F (P, η). Hence, by Hensel’s lemma,

NLnrP,η/FP,η
(θφ−1) = NLnrP,η/FP,η

(θ)[NLnrη /Fη(φ)]−1

is a N th power in F (P, η). Now λ′ = NLnrη /Fη(φ) has the desired property.

Lemma 5.2.19. Let K be a complete discretely valued field with residue
field κ and F be the function field of a smooth, projective, geometrically
integral curve over K. Assume that κ is algebraically closed. Assume that
Li/F, 1 ≤ i ≤ m, are cyclic extensions with [Li : F ] = p, where p is a
prime number. Assume that p 6= char(κ). Let TL/F denote the multinorm
torus associated to the extensions Li/F . Let η be the generic point of one
of the components of X \P and let (P, η) be a branch. Assume that for at
least one i, Li,P,η = Li ⊗F FP,η is unramified over FP,η. Then the natural
map

TL/F (Fη)→ TL/F (FP,η)/R
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is surjective.

Proof. We can assume that all Li,P,η are fields. Otherwise, if Li,P,η is not
a field for some i, then Li,P,η is a product of two copies of FP,η. Thus, in
this case, we get that TL/F (FP,η)/R = {1} by Lemma 2.4.6. Hence the
conclusion of the lemma holds.

Let (µ1, . . . , µm−1, µm) ∈ TL/F (FP,η). Let λi = NLi,P,η/FP,η(µi) for all i,

1 ≤ i ≤ m. Then
m∏
i=1

λi = 1. Without loss of generality, we can as-

sume that the extension Lm,P,η/FP,η is unramified. Let π ∈ Fη be a
parameter. Then π is also a parameter in FP,η and Lm,P,η. By Lemma
5.2.18, for i, 1 ≤ i ≤ m − 1, we can find µ′i ∈ Li,η with such that
λi[NLi,η/Fη(µ

′
i)]
−1 = αpi for some αi ∈ F×P,η. For 1 ≤ i ≤ m − 1, let

λ′i = NLi,η/Fη(µ
′
i). Since

m−1∏
i=1

λi = (λm)−1 and λm = NLm,P,η/FP,η(µm), p

divides valπ(
m−1∏
i=1

λi) where valπ denotes the valuation on FP,η with pa-

rameter π. Since, for 1 ≤ i ≤ m− 1, λiλ
′−1
i = αpi with αi ∈ F×P,η, p also

divides valπ(
m−1∏
i=1

λ′
−1
i ).

Let F (η) and F (m, η) be the residue field of Fη and Lm,η respectively.
Since κ is algebraically closed, F (η) is a C1 field([GS06, Thm 6.2.8, p-
143]). Thus the norm map NL(m,η)/F (η) is surjective. Hence the norm map

NLm,η/Fη is surjective on units. Since p divides valπ(
m−1∏
i=1

λ′
−1
i ), we can

find a µ′m ∈ L×m,η with NLm,η/Fη(µ
′
m) =

∏m−1
i=1 λ′−1. Then (µ′1, . . . , µ

′
m) ∈

TL/F (Fη) and NLi,P,η/FP,η(µiµ
′−1
i ) ∈ F×pP,η for 1 ≤ i ≤ m. Also, since the

extensions Li,P,η/FP,η are cyclic, TL/F (FP,η)/R = {1} by Lemma 2.4.2.
Hence, the result follows by Lemma 5.2.14.

Lemma 5.2.20. Let K be a complete discretely valued field with residue
field κ and F be the function field of a smooth, projective, geometrically
integral curve over K. Assume that κ is algebraically closed. Assume
that Li/F, 1 ≤ i ≤ m, are quadratic cyclic extensions. Assume that
char(κ) 6= 2. Let TL/F denote the multinorm torus associated to the
extensions Li/F . Let η be the generic point of one of the components of
X \ P and let (P, η) be a branch.
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Then the natural map

TL/F (Fη)→ TL/F (FP,η)/R

is surjective.

Proof. We can assume that all Li,P,η are fields. Otherwise, if Li,P,η is not
a field for some i, then Li,P,η is a product of two copies of FP,η. Thus, in
this case, we get that TL/F (FP,η)/R = {1} by Lemma 2.4.6. Hence the
conclusion of the lemma holds.

Let π ∈ Fη be a parameter. Then π is also a parameter in FP,η. Let δ be
a parameter in κ(η), the residue field of Fη. Then δ is also a parameter
in the residue field of FP,η.

Case A Let us assume that at least one of the extensions Li,P,η/FP,η is
unramified. Then we have the result by Lemma 5.2.19.

Case B Now we assume that all the extensions Li,P,η/FP,η are ramified.
There are only two non-isomorphic quadratic cyclic extensions of FP,η
that are ramified, given by FP,η(

√
π) and FP,η(

√
δπ). In this case, by

Proposition 2.4.5, it is enough to consider the case when m = 2 and
L1,P,η/FP,η and L2,P,η/FP,η are both ramified quadratic cyclic extensions.
In this case, by Lemma 5.2.4, we have TL/F (FP,η)/R = {1}.

Lemma 5.2.21. Let K be a complete discretely valued field with residue
field κ and F be the function field of a smooth, projective, geometrically
integral curve over K. Assume that Li/, 1 ≤ i ≤ m, are finite Galois
extensions of degree ni, where ni is a natural number coprime to char(κ).
Let TL/F denote the multinorm torus associated to the extensions Li/F .
Let X be a regular proper model of F such that the union of ramX (Li/F )
and the reduced special fibre X is a union of regular curves with normal
crossings. Assume that the natural maps

TLi/F (FP )→ TLi/F (FP,U)/R

are surjective for 1 ≤ i ≤ m. Let (P,U) be a branch.

Then the natural map

TL/F (FP )→ TL/F (FP,U)/R

is surjective.
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Proof. Let µi ∈ Li,P,U for 1 ≤ i ≤ m with NLi,P,U/FP,U (µi) = λi such that
m∏
i=1

λi = 1. Let n := lcm(ni | 1 ≤ i ≤ m). By Lemma 4.2.7, we can write

λi = λ′i · (αi)n for some αi ∈ FP,U , where λ′i = uiπ
si
1 π

ti
2 for some ui ∈ FP

and integers si, ti. By Theorem 4.2.9, we can choose µ′i ∈ Li,P with
NLi,P /FP (µ′i) = λ′i for 1 ≤ i ≤ m−1. Similarly, we choose µ′m ∈ Lm,P with

NLm,P /FP (µ′m) = (
m−1∏
i=1

λ′i)
−1. Then (µ′1, µ

′
2, . . . , µ

′
m) ∈ TL/F (FP ). Now the

result follows from Lemma 5.2.14.

Corollary 5.2.22. Let K be a complete discretely valued field with residue
field κ and F be the function field of a smooth, projective, geometrically
integral curve over K. Assume that κ is algebraically closed. Assume that
Li/F, 1 ≤ i ≤ m, are finite Galois extensions of degree ni, where ni is a
natural number coprime to char(κ). Let TL/F denote the multinorm torus
associated to the extensions Li/F . Let X be a regular proper model of F
such that the union of ramX (Li/F ) and the reduced special fibre X is a
union of regular curves with normal crossings. Let (P,U) be a branch.

Then the natural map

TL/F (FP )→ TL/F (FP,U)/R

is surjective.

Proof. Since κ is algebraically closed by Lemma 4.4.1, we have: TLi/F (FP,U )/R =
〈ρni〉 for all i; 1 ≤ i ≤ m, where ρni is a primitive nth

i root of unity in F.
Thus the natural maps

TLi/F (F )→ TLi/F (FP,U)/R

are surjective for 1 ≤ i ≤ m since ρni ∈ TLi/F (F ). Thus, the result follows
from (5.2.21).

Theorem 5.2.23. Let K be a complete discretely valued field with residue
field κ and F be the function field of a smooth, projective, geometrically
integral curve over K. Assume that κ is algebraically closed. Let X be a
regular proper model of F such that the union of ramX (Li/F ) and the
reduced special fibre X is a union of regular curves with normal cross-
ings. Let Li/F, 1 ≤ i ≤ m, be quadratic cyclic extensions. Assume that
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char(κ) 6= 2. Let TL/F denote the multinorm torus associated to the exten-
sions Li/F . If the graph associated to F is a tree then XX(F, TL/F ) = 0.

Proof. The result follows from Proposition 5.2.13, Lemma 5.2.16, Lemma
5.2.20, and Corollary 5.2.22.

Theorem 5.2.24. Let K be a complete discretely valued field with residue
field κ algebraically closed. Let F be the function field of a smooth,
projective, geometrically integral curve over K. Let Li/F, 1 ≤ i ≤ m, be

quadratic cyclic extensions. Assume that char(κ) 6= 2. Let L =
m∏
i=1

Li. If

the graph associated to F is a tree then X(F, TL/F ) = 0.

Proof. Let X be a regular proper model of F . By [Lip75, p-193], there
exists a sequence of blow-ups X0 →X centered at closed points of X
such that the union of ramX (L/F ) and the reduced special fibre X0 of X0

is a union of regular curves with normal crossings. Now by Theorem 5.1.3,
it is enough to show that for any blowup Y of X0, XY (F, TL/F ) = 0.
Thus the result follows from Theorem 5.2.23.
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Chapter 6

Examples of failure of
local-global principle for norm
one tori and multinorm tori
over semi-global fields

In this chapter, we give examples of failure of local-global principle for
norm one tori (see Corollary 6.0.11) and multinorm tori (see Corol-
lary 6.0.12) over semi-global fields. We again use field patching and
R-equivalence.

Let K be a complete discretely valued field with residue field algebraically
closed. Colliot-Thélène, Parimala and Suresh ([CTPS16, Section 3.1. &
Proposition 5.9.]) constructed a function field of a smooth, projective,
geometrically integral curve over K and a Galois extension L/F with
Galois group Z/2Z×Z/2Z such that the local-global principle fails for the
norm one torus TL/F associated to L/F . They use higher reciprocity laws
to detect nontrivial elements in X(F, TL/F ). In this section, we produce
examples of Galois extensions L/F with Galois group Z/nZ× Z/nZ and
using patching techniques, we show that X(F, TL/F ) is nontrivial.

Multinorm tori over number fields and semi-global fields :

Let k be a number field and L1, L2 be two finite Galois extensions of k.
Let L = L1 × L2 and let TL/k be the multinorm torus associated to the
extensions L1 and L2 over k. If L1 and L2 are linearly disjoint, then
Demarche and Wei ([DW14, Theorem 1]) proved that the local-global
principle holds for TL/k. In this section, we also give an example to show
that a similar result does not hold in general for function fields of curves
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over a complete discretely valued field.

Proposition 6.0.1. Let A be a unique factorization domain and F be its
fraction field. Let L/F be a finite Galois extension and B be the integral
closure of A in L. Suppose that B is a unique factorization domain. Then
every element in TL/F (F ) can be written as sθ for some s ∈ RTL/F (L)
and θ ∈ B a unit.

Proof. Let λ ∈ TL/F (F ). Then λ ∈ L× and NL/F (λ) = 1. Since L is
the fraction field of B, λ = αβ−1 for some α, β ∈ B. Since NL/F (λ) =
1, NL/F (α) = NL/F (β). Let p ∈ B be a prime. Since A is a unique
factorization domain, pB ∩A = qA for some prime q ∈ A and NL/F (p) =
vqr for some unit v ∈ A. Suppose that p divides α in B. Then NL/F (p)
divides NL/F (α) in A and hence q divides NL/F (α). Since NL/F (α) =
NL/F (β), there exists a prime p′ ∈ B such that p′ divides β and p′B∩A =
qA. Since L/F is a Galois extension, there exists σ ∈ Gal(L/F ) such
that p = wσ(p′) for some unit w ∈ B. Write α = pα′ and β = p′β′.
Then λ = αβ−1 = pp′

−1
α′β′

−1
= σp′p′

−1
wα′β′

−1
. Since B is a unique

factorization domain, the proposition follows by induction on the number
of prime factors of α in B.

Proposition 6.0.2. Let A be a complete regular local ring of dimension
2 with maximal ideal (π, δ), fraction field F and residue field κ. Let n
be a positive integer which is coprime to char(κ). Let L = F ( n

√
π, n
√
δ).

Suppose that F contains a primitive n2- th root of unity ρ. Then

TL/F (F ) = RTL/F (F )〈ρ〉.

Proof. Let B be the integral closure of A in L. Then B is a regular
local ring of dimension 2 with fraction field L and residue field κ ([PS14,
Corollary 3.3.]). Let λ ∈ TL/F (F ). Then λ ∈ L× with NL/F (λ) = 1. Then
by Proposition 6.0.1, there exists s ∈ RTL/F (F ) and a unit θ ∈ B such
that λ = sθ. Since the residue fields of A and B are equal, there exists
θ1 ∈ A such that θ ≡ θ1 modulo the maximal ideal of B. Since n is coprime
to char(κ), by Hensel’s lemma, we have θ = θ1α

n2
for some unit α ∈ B.

Let s1 = NL/F (α)−1αn
2 ∈ L. Then by Lemma 2.4.7, s1 ∈ RTL/F (F ). Let

a = θ1NL/F (α) ∈ F. Then θ = as1. Thus λ = sθ = sas1 = ss1a. Since

NL/F (λ) = 1 = NL/F (s) = NL/F (s1), 1 = NL/F (a) = an
2
. Thus a ∈ 〈ρ〉.

Hence λ = ss1a ∈ RTL/F (F )〈ρ〉.
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Lemma 6.0.3. Let F be a complete discretely valued field with residue
field κ and ring of integers R. Let n be a positive integer coprime to
char(κ). Let π ∈ R be a parameter and u ∈ R a unit with [F ( n

√
u) : F ] = n.

Let L = F ( n
√
u, n
√
π). Suppose that F contains a primitive n2-th root of

unity ρ. Then ρt ∈ RTL/F (F ) if and only if n divides t.

Proof. Let σ be the automorphism of L/F given by σ( n
√
π) = ρn n

√
π and

σ( n
√
u) = n

√
u and τ be the automorphism L/F given by τ( n

√
u) = ρn n

√
u

and τ( n
√
π) = n

√
π. Then the Galois group of L/F is an abelian group of

order n2 generated by σ and τ and hence RTL/F (F ) is generated by the
set {σ(a)a−1τ(b)b−1 | a, b ∈ L×}. Since ρn = τ( n

√
u)/ n
√
u ∈ RTL/F (F ),

ρnj ∈ RTL/F (F ) for any integer j.

Conversely, suppose ρt ∈ RTL/F (F ) for some integer t. Without loss of
generality, we may assume that 1 ≤ t ≤ n2. Then ρt = a−1σ(a)b−1τ(b)
for some a, b ∈ L. Let L′ = F ( n

√
π). Since ρ ∈ F and NL/L′(b

−1τ(b)) = 1,
we have ρnt = NL/L′(a)−1NL/L′(σ(a)). Let c = NL/L′(a) ∈ L′. Since
σ(c) = σ(NL/L′(a)) = NL/L′(σ(a)), we have σ(c) = ρntc. Hence σ(cn) =
(σ(c))n = (ρnt)ncn = cn. Since L′/F is a Galois extension with Galois
group generated by σ, cn ∈ F. Thus c = θ n

√
π
m

for some integer m and
θ ∈ F . Since L/L′ is an unramified extension of degree n and c is a norm
from L/L′, the valuation of c is divisible by n. Since θ ∈ F and n

√
π is a

parameter in L′, m = nr for some r. Hence c ∈ F and ρnt = c−1σ(c) = 1.
Since ρ is a primitive n2-th root of unity, n divides t.

Notation 6.0.4. Let A be a semi-local regular ring of dimension 2 with
three maximal ideals m1,m2,m3. Suppose that there exist three prime
elements π1, π2, π3 ∈ A such that m1 = (π2, π3), m2 = (π1, π3) and
m3 = (π1, π2). Suppose that πi /∈ mi for all i. Let n ≥ 2 be an integer
coprime to char(A/mi) for all i. Let F be the fraction field of A. For

1 ≤ i ≤ 3, let Âmi be the completion of A at mi, Fmi be the fraction field

Âmi and Fπj be the completion of F at the discrete valuation given by πj.

Let 1 ≤ i 6= j, k ≤ 3. Since mi = (πj, πk), Âmi is a regular local ring with
maximal ideal (πj, πk). In particular, πj gives a discrete valuation on Fmi
which extends the discrete valuation on F given by πj. Let Fmi,πj be the
completion of Fmi at the discrete valuation given by πj. Then Fπj ⊂ Fmi,πj .
Let L = F ( n

√
π1π2, n

√
π2π3). Suppose that F contains ρ, a primitive n2-th

root of unity.

Corollary 6.0.5. With notations as in Notation 6.0.4, we have

TL/F (Fmi) = RTL/F (Fmi)〈ρ〉.
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Proof. Since π2 is a unit at m2, we have m2Am2 = (π1π2, π3π2). Hence,
by Proposition 6.0.2, we have TL/F (Fm2) = RTL/F (Fm2)〈ρ〉. Since π1 is
a unit at m1, m1Am1 = (π1π2, π

−1
1 π3). Since L = F ( n

√
π1π2, n

√
π2π3) =

F ( n
√
π1π2,

n

√
π−1

1 π3), by Proposition 6.0.2, we have TL/F (Fm1) = RTL/F (Fm1)〈ρ〉.
Similarly, TL/F (Fm3) = RTL/F (Fm3)〈ρ〉.

Corollary 6.0.6. With notations as in Notation 6.0.4, we have

TL/F (Fπi) = RTL/F (Fπi)〈ρ〉.

Proof. Let κ(νπi) be the residue field of Fπi . The discrete valuation νπi of F
given by πi has unique extension ν̃πi to L. Since F contains a primitive nth

root of unity, the residue field κ(ν̃πi) of L at ν̃πi is a cyclic extension of κ(π)
of degree n. In particular, Tκ(ν̃πi )/κ(νπi )

(κ(νπi)) = RTκ(ν̃πi )/κ(νπi )
(κ(νπi)).

Hence, by Lemma 4.1.2,

TL/F (Fπi) = RTL/F (Fπi)〈ρ〉.

Corollary 6.0.7. Let Fmi,πj be as in Notation 6.0.4. Then ρt ∈ RTL/F (Fmi,πj )
if and only if n divides t.

Proof. Since the residue field of Fmi,πj is a complete discretely valued
field with the image of πk (k 6= i, j) as a parameter and the image of πi
as a unit, it is easy to see that L⊗F Fmi,πj ' Fmi,πj ( n

√
vπj,

n
√
u) for some

units u and v such that [Fmi,πj(
n
√
u) : Fmi,πj ] = n. Thus, the corollary

follows from Lemma 6.0.3.

For each 1 ≤ i 6= j ≤ 3, we have inclusions fields Fmi → Fmi,πj and
Fπj → Fmi,πj . Thus we have the induced homororphisms

αij : TL/F (Fmi)/R→ TL/F (Fmi,πj)/R

and
βji : TL/F (Fπj)/R→ TL/F (Fmi,πj)/R.

Lemma 6.0.8. The product map

φ : (
3∏
i=1

TL/F (Fmi)/R)× (
3∏
j=1

TL/F (Fπj)/R)→
∏

1≤i 6=j≤3

(TL/F (Fmi,πj)/R)

is not surjective.
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Proof. Let y12 = ρ ∈ TL/F (Fm1,π2) and yij = 1 ∈ TL/F (Fmi,πj ) for all i 6= j

and (i, j) 6= (1, 2). Then we show that y = (yij) ∈
∏

1≤i 6=j≤3

(TL/F (Fmi,πj )/R)

is not in the image of φ.

Suppose y is in the image of φ. Then there exist ai ∈ TL/F (Fmi) and
bj ∈ TL/F (Fπj) such that φ(a1, a2, a3, b1, b2, b3) = y modulo R-trivial
elements. Then we have α12(a1)β21(b2) = y12 = ρ modulo R-trivial ele-
ments and αij(ai)βji(bj) ∈ RTL/F (Fmi,πj) for all i 6= j and (i, j) 6= (1, 2).
By Corollary 6.0.5 and Corollary 6.0.6, we have ai = ciρ

si for some
ci ∈ RTL/F (Fmi) and bj = djρ

tj for some di ∈ RTL/F (Fπj ). Hence ai = ρsi

and bj = ρtj modulo R-trivial elements. Since ρ ∈ F, αij(ρ) = ρ and
βji(ρ) = ρ for all i 6= j. We have ρ = y12 = α12(a1)β21(b2) = ρs1+t2 modulo
R-trivial elements. Hence, by Corollary 6.0.7, n divides 1− s1 − t2.

Let 1 ≤ i 6= j ≤ 3 with (i, j) 6= (1, 2). Then 1 = αij(ai)βji(bj) = ρsi+tj

modulo R-trivial elements. Hence ρsi+tj ∈ RTL/F (Fmi,πj ) and by Corollary
6.0.7, n divides si+ tj. Since n divides s2 + t1 and s3 + t1, n divides s3−s2.
Since n divides s1 + t3 and s2 + t3, n divides s1 − s2. Hence n divides
s1 − s3. Since n divides s3 + t2, n divides s1 + t2, which contradicts the
fact that n divides 1− s1 − t2.

Theorem 6.0.9. Let K be a complete discretely valued field with residue
field κ and ring of integers R. Let X be a regular integral surface proper
over R and F be its fraction field. Let X denote the reduced special fibre
of X . Suppose that X is a union of regular curves with normal crossings.
Suppose that there exist three three irreducible curves X1, X2 and X3

regular on X such that Xi ∩Xj, i 6= j has exactly one closed point. Let
n ≥ 2 be an integer coprime to char(κ). Suppose that K has a primitive
n2-th root of unity. Then there exists a Galois extension L/F of degree n2

with Galois group isomorphic to Z/nZ× Z/nZ such that the local-global
principle fails for TL/F .

Proof. Let P1, P2 and P3 be the points of Xi ∩Xj, i 6= j. Let A be the
semi local ring at P1, P2 and P3 on X . Then A has three maximal ideals
m1,m2 and m3. Since X is regular and each Xi is regular on X , there
exist primes π1, π2, π3 ∈ A such that mi = (πj, πk) for all distinct i, j, k.
Let L = F ( n

√
π1π2, n

√
π2π3). Since K contains primitive nth root of unity,

L/F is a Galois extension with Galois group isomorphic to Z/nZ×Z/nZ.
We claim that the local-global principle fails for TL/F .
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Let P be a finite set of closed points of X containing all the singular
points of X. Let X \ P = ∪Ui, with Ui ⊂ Xi for i = 1, 2, 3. By [HHK15a,
Corollary 3.6.], it is enough to show that the product map∏

P∈P

TL/F (FP )×
∏
i

TL/F (FUi)→
∏
P,Ui

TL/F (FP,Ui)

is not surjective. Since X1, X2, X3 are the only curves in X passing
through P1, P2 or P3, it is enough to show that

φ :
3∏
i=1

TL/F (FPi)×
3∏
j=1

TL/F (FUj)→
∏
Pi,Uj

TL/F (FPi,Uj)

is not surjective. Since FUj ⊂ Fπj and FPi,Uj = FPi,πj , φ factors as

3∏
i=1

TL/F (FPi)×
3∏
j=1

TL/F (FUj)→
3∏
i=1

TL/F (FPi)×
3∏
j=1

TL/F (Fπj)→
∏
Pi,πj

TL/F (FPi,πj).

Since, by Lemma 6.0.8,

3∏
i=1

(TL/F (Fπi)/R)×
3∏
j=1

(TL/F (FPj)/R)→
∏
Ui,Pj

(TL/F (FPi,Uj)/R)

is not surjective, φ is not surjective.

Remark 6.0.10. The above theorem for κ algebraically closed and n = 2
is proved by Colliot-Thélène, Parimala and Suresh ([CTPS16, Section 3.1.
& Corollary 6.2.]).

Corollary 6.0.11. Let K be a complete discretely valued field with residue
field κ and ring of integers R. Let t ∈ R be a parameter. Let X =
Proj (R[x, y, z]/〈xy(x+ y − z)− tz3〉) . Let X be the special fibre of X .
Then X = Proj (κ[x, y, z]/〈xy(x+ y − z)〉) which is reduced. Then X has
three irreducible components X1, X2, X3 and Xi intersects Xj, i 6= j
at exactly one point. Let F be the function field of X . Then F '
K(x)[y]/〈xy(x+y−1)−t〉. Let n ≥ 2 be coprime to char(κ). Suppose that

K contains a primitive n2-th root of unity. Let L = F ( n
√
xy, n

√
y(x− 1)).

Then L/F is a Galois extension with Galois group isomorphic to Z/nZ×
Z/nZ. By Theorem 6.0.9, the local-global principle for fails for TL/F .
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Proof. Let U = Spec (R[x, y]/〈xy(x+ y − 1)− t〉) . Then U is an affine
open subset of X . Let P1 = (1, 0), P2 = (0, 1) and P3 = (0, 0) be the
three closed points of U. Let A be the semi local ring at P1, P2 and
P3 and let mi be the maximal ideal of A corresponding to Pi. Then
m1 = (x + y − 1, y), m2 = (x, x + y − 1) and m3 = (x, y). Hence, by
Theorem 6.0.9, the local-global principle fails for TL/F .

Corollary 6.0.12. Let K be a complete discretely valued field with residue
field κ and ring of integers R. Let t ∈ R be a parameter. Let X =
Proj (R[x, y, z]/〈xy(x+ y − z)(x− 2z)− tz4〉) and F be the function field
of X . Then F ' K(x)[y]/〈xy(x + y − 1)(x − 2) − t〉. Let θ1 = (x −
2)/(x − 2 + xy(x + y − 1)) and θ2 = (y − 2)/(y − 2 + xy(x + y − 1)).

Let n ≥ 2 with 6n coprime to char(κ). Let L1 = F ( n
√
xy, n

√
y(x+ y − 1))

and L2 = F ( n
√
xyθ1,

n
√
y(x+ y − 1)θ2). Then L1 and L2 are finite Galois

extensions of F that are linearly disjoint. Let L = L1 × L2. Then the
local-global principle fails for the multinorm torus TL/F .

Proof. To show that the local-global principle fails for TL/F , by [HHK09,
Theorem 3.6.] and as in the proof of Theorem 6.0.9, it is enough to show
that

φ :
3∏
i=1

(TL/F (Fπi)/R)×
3∏
j=1

(TL/F (FPj)/R)→
∏
Ui,Pj

(TL/F (FPi,Uj)/R)

is not surjective.

Let U = Spec (R[x, y]/〈xy(x+ y − 1)(x− 2)− t〉) . Then U is an affine
open subset of X . Let P1 = (1, 0), P2 = (0, 1), P3 = (0, 0) and Q = (2, 2).
Let A be the semi local ring at P1, P2, P3 and Q. Let mi be the maximal
ideals of A corresponding to Pi and m be the maximal ideal corresponding
to Q. Let π1 = x, π2 = y and π3 = x + y − 1. Then m1 = (π2, π3),
m2 = (π1, π3), m3 = (π1, π2). We also have m = (x − 2, y − 2). Since
2 6= char(κ), x−2 and y−2 are units at mi and θi = 1 modulo mj and πj.
Since n is coprime to char(κ), θi ∈ F n

Pi
and θi ∈ F n

πj
for all i and j. Hence

L1⊗F Fπi ' L2⊗F Fπi and L1⊗F FPj ' L2⊗F FPj . By Proposition 2.4.3,
we have TL/F (Fπi)/R ' TL1/F (Fπi)/R, TL/F (FPj )/R ' TL1/F (FPj )/R and
TL/F (FUi,Pj)/R ' TL1/F (FUi,Pj)/R. Since, by Lemma 6.0.8,

3∏
i=1

(TL1/F (Fπi)/R)×
3∏
j=1

(TL1/F (FPj)/R)→
∏
Ui,Pj

(TL1/F (FPi,Uj)/R)
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is not surjective, φ is not surjective. Hence the local-global principle fails
for TL/F .

Since π1π2 = xy = 4 modulo m and π2π3 = 6 modulo m, we have
L1⊗F FQ = FQ(

n
√

4,
n
√

6). Since 6n is coprime to char(κ), L1⊗F FQ/FQ is
unramified. Since xy(x+y−1) = 12 modulo m, x−2+xy(x+y−1) = 12an

for some a ∈ FQ. Similarly, y− 2 + xy(x+ y+ 1) = 12bn for some b ∈ FQ.
Hence L2⊗F FQ = FQ( n

√
(x− 2)/3, n

√
(y − 2)/2). Since the maximal ideal

m = (x− 2, y − 2) and 3, 2 are units at m, L1 ⊗F FQ and L2 ⊗F FQ are
linearly disjoint over FQ. In particular, L1 and L2 are linearly disjoint
over F.
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