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Abstract

Scalable Computational Pathology: From Interactive to Deep
Learning

By Michael Nalisnik

Advances in microscopy imaging and genomics have created an explosion of pa-
tient data in the pathology domain. Whole-slide images of histologic sections contain
rich information describing the diverse cellular elements of tissue microenvironments.
These images capture, in high resolution, the visual cues that have been the basis of
pathologic diagnosis for over a century. Each whole-slide image contains billions of
pixels and up to a million or more microanatomic objects whose appearances hold
important prognostic information. Combining this information with genomic and
clinical data provides insight into disease biology and patient outcomes. Yet, due to
the size and complexity of the data, the software tools needed to allow scientists and
clinicians to extract insight from these resources are non-existent or limited. Addi-
tionally, current methods utilizing humans is highly subjective and not repeatable.
This work aims to address these shortcomings with a set of open-source computational
pathology tools.

We first present a comprehensive interactive machine learning framework for as-
sembling training sets for the classification of histologic objects. The system provides
a complete infrastructure capable of managing the terabytes worth of images, ob-
ject features, annotations and metadata in real-time. Active learning algorithms are
employed to allow the user to work in tandem with the system in an intuitive and
efficient manner. We demonstrate how the system can be used to phenotype mi-
crovascular structures in gliomas to predict survival, and to explore the molecular
pathways associated with these phenotypes. Quantitative metrics are developed to
describe these structures.

We also present a scalable, high-throughput, deep convolutional learning frame-
work for the classification of histologic objects is presented. Due to its use of represen-
tation learning, the framework does not require the images to be segmented, instead
learning optimal task-specific features in an unbiased manner. Addressing scalabil-
ity, the graph-based, parallel architecture of the framework allows for the processing
of large image archives consisting of hundreds of slides and hundreds of millions of
histologic objects. We demonstrate the system’s capabilities classifying cell nuclei in
lower grade gliomas.
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Chapter 1 Introduction

1.1 Overview

Pathology is a subspecialty of medicine that practices the diagnosis of disease. It

is an area of medicine that is rich with data — from comprehensive molecular charac-

terizations of tissues obtained by genomic and sequencing analysis, to high-resolution

images of tissues obtained through various forms of microscopy imaging or histology.

Pathologists use these data resources in various scenarios to render diagnosis, and

often to assess prognosis and stratify patients into risk groups accosted with expected

outcomes. Microscopic evaluation of tissues is a time-honored practice in pathology,

dating back more than a century [1]. The visual properties of tissues carry impor-

tant information on disease-related processes - like the formation of blood vessels,

or immune system response. In cancers, the shapes and types of cells present carry

important diagnostic and prognostic information that are used to classify the tumor

and assess how advanced a patient’s disease is. Manual evaluation of tissue histology

by trained professionals is highly subjective, being prone to both considerable intra-

observer and inter-observer variations [2]. For example, in an experiment by Fuchs

and Buhmann [3], 180 randomly selected nuclei were presented in three different

views of varying magnification. Five pathologists were tasked with determining if

a nucleus is normal or atypical by wether or not it is stained by an Immunohisto-

chemical (IHC) stain. To test for intra-pathologist variation, a subset of the nuclei

were presented again, this time rotated by 90 degrees. The overall intra-pathologist

classification was 21.2%, meaning that every fifth nucleus was classified contrary to

the original classification. For inter-pathologist classification, out of 180 nuclei all five

pathologists agreed on 105. For the remaining 75 nuclei the pathologists disagreed,
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Figure 1.1: Computational pathology

Technologies, frameworks and algorithms that identify histologic objects and structures in an object,
repeatable and scalable fashion.

resulting in an error rate of 42%. The development of more objective quantitative

metrics for evaluating pathology images remains a significant barrier in effectively

using this resource in research and clinical care.

Recent advancements in microscopy imaging now enabled the digitization of mas-

sive volumes of histology data. Slide scanning microscopes can produce whole-slide

images that capture the entire histological detail of a tissue specimen in a single high

magnification image pyramid. These images can be digitized from histologic sections

at 200x–400x magnification, generating substantial images containing billions of pix-

els each, with dimensions in the tens-of-thousands to hundreds-of-thousands of pixels.

A single whole-slide image can be digitized in around 2.5 minutes, and a single slide
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scanning device can easily produce a terabyte of image data in a single day. These

devices are increasingly being adopted in both clinical and research settings, resulting

in an explosion of histology image data. The creation of vast collections of whole-slide

images creates an opportunity to extract information from this content using image

analysis algorithms. A commonly used algorithm is the segmenting of micro-anatomic

objects in the images and representing each object with a set of quantitative features,

methods such as this can produce objective and repeatable descriptions of the visual

properties of patient tissues. When combined with genomic and clinical data, these

representations can be used to improve the accuracy of diagnosis and prognosis, and

to reveal new insights into disease biology. Public repositories such as The Cancer

Genome Atlas (TCGA) provide archives of whole-slide images, genomic and clinical

data for more than 10,000 human subjects, spanning more than 20 selected types of

cancers. Each whole-slide image can contain hundreds-of-thousands to more than one

million micro-anatomic objects — resulting in hundreds-of-millions of objets just for

a single cancer type.

The visualization, management and analysis of whole-slide image data bring new

challenges for human-computer interaction, large-scale data management and ma-

chine learning. For example, one of the most common applications in computational

pathology is to apply learning algorithms to develop classification rules for phenotypes

of interest, with the goal of quantifying the abundance of a specific type of cell for

each patient in a cohort. Computational analysis of histology images have been used

to predict metastatic potential [4], survival [5] [6] [7] [8] [9], grade [10] [11], histologic

classification [12] [13] [14] and to link histologic patterns with genetic alterations or

molecular disease subtypes [15] [16] [17]. Although these algorithms demonstrate

scientific or potential clinical utility, few directly engage domain experts, address the

challenge of processing hundreds of millions of micro-anatomic objects or are provided

as comprehensive open-source tools to the research community.
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1.2 Contributions

The goal of this work is to provide scalable computational pathology tools which

provide accurate, repeatable and objective results and provide these tools to the

research community as an open-source resource. To that end, we present the following:

1. A scalable interactive learning framework and 2. A scalable, high-throughput,

deep-learning framework.

The first tool is a software framework for interactive classification and phenotyping

of large whole-slide imaging datasets that: 1. Has a web-based interface that can

fluidly display gigapixel image and annotations of tens of thousands of annotations,

2, Utilizes a machine learning server for fast, interactive training of classification

rules in large datasets, 3. Employs active learning algorithms to improve training

efficiency, and 4. Provides tools for creating, sharing and reviewing labeled data and

ground-truth validations sets.

The second tool is a deep-learning framework for the characterization of large

whole-slide image datasets. The use of deep learning eliminates the need for nu-

clear segmentation and the development of “engineered” features. The graph-based

architecture of the framework allows for high-throughput analysis of hundreds of

whole-slide images containing over a million histologic objects each.

In particular this work contributes the following:

• An interactive learning system that connects experts with powerful learning

algorithms and very large datasets generated from whole-slide images [18] [19].

• A large-scale, real-time visualization of tens of thousands of object boundaries

enabled by a dynamic caching scheme.

• The use of heatmaps to augment active learning algorithms by guiding the user

to objects of interest rather than explicitly selecting objects.
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• A set of metrics: Hypertrophy Index and Clustering Index, to quantify mi-

crovascular phenotypes. These metrics are calculated using machine-learning

methods and utilize classifiers trained in the interactive learning framework.

• Demonstrates that quantified microvascular phenotypes are equivalent to grade

when combined with genomic variables [20].

• Demonstrates that active learning outperforms passive learning in classifying

vascular endothelial cell nuclei.

• An efficient deep learning pipeline capable of classifying hundreds of millions of

objects.

1.3 Organization

This dissertation os organized into two parts: Chapters 2 through 4 focus on a

scalable interactive framework. Chapters 5 and 6 focus on a scalable, high-throughput

deep-learning framework.

Chapter 2 provides an introduction to active learning which is an important algo-

rithm employed in our interactive learning system. Chapter 3 describes the architec-

ture and functionality of HistomicsML. Chapter 4 demonstrates the phenotyping of

microvascular structures in gliomas and describes the metrics developed to describe

these phenotypes. Chapter 5 provides an introduction to deep learning and recent

advances in its methods. Chapter 6 describes the architecture and functionality of

TissueNet, a scalable high-throughput deep learning framework for the characteriza-

tion of large whole-slide image datasets. Chapter 7 gives conclusion and a description

of future work.
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Chapter 2 Active Learning

2.1 Introduction

Supervised learning is the process of building a prediction model with training

samples that have known outcomes. The training data is made up of features which

describe the characteristics of the sample. The outcomes are typically called labels.

For instance, a classification model to determine the type of iris would be trained

using samples that describe the iris with features such as; sepal length, sepal width,

petal length and petal width. The training set would consist many samples composed

of these features along with a label, in this case the type of iris. Once a model is

trained, it can be used to classify an iris’s type using only the features describing the

iris are known. The training dataset is often called the ground truth.

While having ground truth for supervised learning is necessary, obtaining it is

not always a trivial task. The cost associated with obtaining the training samples

can be significant. This cost can be in the monetary sense of the word, though most

often it is measured in time and effort. Suppose we need to build a model capable of

classifying images as either a cat or a dog. Obtaining the labels for the training set

is inexpensive as almost anyone can instantly identify a dog or a cat. Now let’s say

we need to build a model capable of classifying images of skin lesions as cancerous

or benign. A domain expert, in this case a highly trained doctor, must be used to

identify the lesion. Additionally, the type of lesion may not be apparent to the domain

expert, requiring more time and even additional domain experts to identify it. In this

case the cost of obtaining a label is expensive in time, effort and money.

Another difficulty in obtaining ground truth is the tendency to select “textbook”

examples for a training set. These examples are typically unambiguous and take little
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Figure 2.1: Ambiguity with textbook examples

When selecting only textbook examples, the area around the actual class boundary (pink curve) is
not represented in the training set allowing any of the other (inaccurate) boundaries (dashed lines)
to be learned by the algorithm.

effort for the domain expert to identify. Selecting these types of examples causes a

reduction in the accuracy of the model. This is known as selection bias [21]. The

model will not generalize well to examples that are not as obvious as those selected

for the training set.

With a small amount of data to label this may not be a problem since the domain

expert is forced to label all of the data. As the size of the dataset grows, the tendency

to select textbook examples increases as it becomes much more difficult, or even

impossible, to examine the entire dataset. For datasets such as cellular objects from

whole-slide images, selecting ground truth can be cognitively exhausting.

There is a need to improve ground truth selection by minimizing cost while max-

imizing accuracy. The following will describe one such method, active learning.

2.2 Active Learning

Active learning is a method in which the learning algorithm interacts with an

oracle to select training samples to learn from instead of passively learning from a

preselected set [22]. The oracle can be anything capable of returning a label to the
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learning algorithm; a machine, a person, another algorithm, etc. The idea is that

the learning algorithm knows its own weaknesses and therefore can select a sample

that will better improve its generalization - how well it performs on unseen data.

The strategic selection of training samples by an objective algorithm has been shown

to overcome selection bias and improve generalization in several machine-learning

problems [23] [24] [25].

There are several scenarios in which active learning may operate. Three of the

main scenarios are: query synthesis, stream-based selective sampling and pool-based

sampling [22]. In query synthesis, the algorithm may select any sample from the

input space, including samples that it synthesizes [26]. This requires the distribution

of the data to be known and finite. For stream-based selective sampling, the act

of obtaining a sample, is of minimal cost and can occur frequently. The learning

algorithm has to decide whether to discard the sample or query the oracle for its

label. The labeled samples are used to guide the algorithm to regions of the domain

that it is weakest by selecting the appropriate samples to query for a label [27]. The

third scenario is pool-based sampling. In this scenario there is a large collection of

unlabeled data available. [28] The algorithm selects samples from the pool based

on how confident it is of predicting the samples class. Unlike stream-based selective

sampling, the samples from the unlabeled pool are not discarded and may be used in

later queries.

So how does the learning algorithm know which samples to select for query?

Simply stated, the algorithm chooses samples that it is most uncertain of. At any

time during the learning activity, the algorithm has learned from a set of already

label samples. At this point the algorithm tries to predict the class of value for the

unlabeled samples. Depending on the classification or regression algorithm used, the

learner knows how certain it is of its prediction. In the case of a support vector

machine, the closer a sample is to the decision hyperplane, the more uncertain the
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Sampling low-confidence objects Retrain classification rule

Figure 2.2: Sampling ambiguous examples

Selecting more ambiguous samples allows the algorithm to learn the area around the actual boundary
more accurately. By selecting the samples indicated by the red boxes, the algorithm is able to learn
a more accurate boundary. (indicated by the shaded areas)

algorithm is of its prediction. In linear regression, the farther away from the regression

line a sample is, the more uncertain the algorithm is. In an ensemble method such

as random forests, the smaller the difference between the number trees predicting the

positive class and trees predicting the negative class, the more uncertain the algorithm

is of its prediction. Selecting the samples the algorithm is most uncertain of provides

more information about the data space allowing the algorithm to reduce weaknesses

thus making it more accurate. This process is called uncertainty sampling [28].

Active learning is an iterative process. The algorithm starts with a few labeled

samples to build an initial model. In the pool-based scenario, the model is then used

to predict the class or value of every sample in the unlabeled pool. The sample or

samples for which the algorithm is most uncertain of are then selected to be presented

as queries to the oracle. The model is then updated with the newly labeled samples

and the process starts over again. This cycle is repeated until a sufficient accuracy is

achieved or stopping criteria is met.

Determining the appropriate stopping criteria is an open problem in the literature

[29] [30] [31]. An obvious method is to have the system stop when a particular
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Figure 2.3: The active learning process

An objective sampling strategy scans the unlabeled sample pool to identify those examples that will
improve the classifier the most. The user labels a small set of the samples, the classifier is updated
and the cycle repeats.

accuracy is reached. There are a few problems with this strategy. Typically, an

algorithm’s accuracy is assessed using a labeled validation set, which would require

more tabled data. Where would this validation set be obtained? Having the user

select it raises the same issues with selection bias and having another domain expert

select the set increases the cost, which runs contrary to the goal of active learning.

Cross-validating using the previously selected samples tends to be over optimistic,

especially when the set includes few sample. Besides these issues though, what is an

appropriate accuracy? In general, most work on stopping criteria is based on some

intrinsic measure of stability or self-confidence, stopping when the accuracy plateaus

and active learning ceases to be useful. Such self-stopping methods may be applicable

in certain situations. Though in reality, economic or other external factors will dictate

the stopping point [22]. For another argument against self-stopping, certain types of

data may become ambiguous as they approach the decision boundary between classes.

This ambiguity makes it difficult, if not impossible, for a domain expert to distinguish
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between classes. As the active learning process moves closer to the decision boundary

during selection, the user will be less likely to provide a label for the samples. This

may suggest using a metric to quantify this difficulty, but this too may be inaccurate.

As the dimensionality of the data increases, the decision boundary may become more

complex. This can cause particular areas of the data space to not have been explored,

resulting in poor generalization error [32], In the end, it will most likely depend on

the user to determine an appropriate stopping criteria.
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Chapter 3 HistomicsML - A Scalable
Interactive Learning Framework

3.1 Introduction

A common analysis task in histology datasets is the classification of cells. With

whole-slide images containing hundreds of thousands to more than one million cells,

a dataset consisting of a few hundred patients can easily contain hundreds of millions

of cells. The amount of data in these datasets poses a few challenges in building a

classifier. First, selection bias for a dataset this size will be a significant problem.

We cannot expect domain experts to manually search through hundreds of whole-

slide images and not be biased in their selections. Second, there needs to be a way

to annotate and capture input from the domain expert in an efficient and intuitive

manner. Visualizing, capturing input and managing the data cannot be overlooked

with massive datasets such as these. Often in the literature the focus is on the

accuracy or efficiency of an algorithm without regard to the infrastructure required

to attain the reported results. Most published algorithms operate as command line

tools directly on data files and lack a user interface that enables a domain expert to

interact with the data and algorithms. When input from a domain expert is needed,

it is typically acquired offline by presenting a small collection of manually selected

image subregions to the domain expert for labeling or annotation. Enabling domain

experts to directly interact with machine learning algorithms via active learning on

large datasets has been shown to improve prediction accuracy and user experience in

general applications [33] [34] [35] [36] [37]. The challenge in utilizing active learning

with histomic data is in building software with the scalable visualization and machine-

learning capabilities described above.
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We have developed HistomicsML, an interactive software framework which facil-

itates the phenotyping and classification of large whole-slide datasets. HistomicsML

enables users to rapidly train accurate histologic classification rules with several key

features: (i) A web-based interface that can fluidly display gigapixel images contain-

ing millions of image analysis objects (ii) A machine-learning server for fast, real-time

interactive training of classification rules in datasets with hundreds of millions of ob-

jects (iii) Utilization of active-learning algorithms for improved training efficiency (iv)

Tools for creating, sharing and reviewing labeled data and ground-truth validation

sets. HistomicsML is open-source (https://github.com/cooperlab/ActiveLearning)

and is available as a software container for easy deployment (https://hub.docker.com/

r/histomicsml/active/).
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3.2 Architecture

HistomicsML is web-based system designed for scalability in the direction of both

the number of users and the size of datasets. The system is composed of four major

components: (i) The learning server — updates the classifier, selects new samples for

the user to label and generates heat maps (Ii) The image server — Provides whole

slide image pyramids that allow the user to zoom and pan through the whole image in

real-time (iii) Database — Contains the locations and boundaries of all the segmented

cells (iv) The web application — The system’s user interface.

3.2.1 Random Forests

While active learning is agnostic to the specific classifier used, so long as it provides

a measure of prediction confidence, HistomicsML utilizes Random Forests so a short

overview is warranted.

Random Forests [38] are an ensemble learning method utilizing bagging of classi-

fication trees and random feature selection. Bagging, short for bootstrap aggregating,

aggregates the results from m trees which are constructed independently using boot-

strap sampling of the training set. That is, for a random forest of size m and a

training set T of size N , m new training sets of size N are generated by uniformly

sampling T with replacement. Each of the m trees in the random forest are then

constructed using one of the generated training sets.

In the usual construction of classification and regression trees (CART), the best

split point is chosen from all features of the sample. That is, the feature that alone

best classifies the training sample [39]. In random feature selection, a small group of

features m�M are randomly selected at each node with the best split point selected

from this group. The size of the group m remains constant for each node.

We choose random forests for HistomicsML due to their resistance to overfitting,

computational efficiency and simplicity in design. For our implementation we used
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Figure 3.1: Active learning with random forests

The random forest classifier aggregates the predictions of multiple decision trees and provides a
readout of prediction confidence. Given the histomic feature profile of an entity, each tree in the
forest predicts the class ti as either the positive (+1) or negative (-1) with the final aggregate
prediction made by majority vote. Prediction confidence is measured as the absolute value of the
prediction average (pi). Objects with a confidence |pi| close to one indicate a consensus of the decision
trees, where objects with a confidence |pi| close to zero indicate a lack of consensus by the trees.
Objects with lower confidence scores are difficult to classify and make good candidates for labeling in
the active learning paradigm. In our framework we calculate the object labels and confidence scores
for instance-based sampling and heatmap generation with each classifier update/iteration. Objects
with minimum confidence (where trees are tied or most discordant) are sampled for instance based
learning.
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100 trees, with the maximum depth of the tree fixed at 10 and (eq floor of the square

root of features) features selected for node splits. In the active learning context, the

prediction confidence, or uncertainty, is calculated by voting on the prediction of the

individual trees. The prediction confidence for a random forest classifier evaluated

on object i is calculated as

ci =

∣∣∣∣ N∑
j=1

tj

∣∣∣∣ ∈ {− 1, 1
}

Where tj is the classification tree j of N total trees. Maximum prediction con-

fidence is achieved if all trees agree on the predicted class. Minimum prediction

confidence is achieved when the individual trees are evenly split on the predicted

class. In the literature, maximum prediction confidence is often referred to most

certain while minimum prediction confidence is referred to as most uncertain.

3.2.2 Data Formats

HistomicsML utilizes three input data formats: 1. A set of whole-slide images in

pyramid tagged image file format (TIFF). 2. A collection of object boundaries in a

text delimited format. 3. A set of features characterizing the image analysis objects as

binary data stored in HDF5 format. The input data is formatted in a preprocessing

step for consumption into the system. The whole-slide images are converted from

proprietary microscope vendor formats using VIPS [40] and OpenSlide [41]. Object

boundaries and histomic features are generated by an image segmentation pipeline

that is described in more detail later. The text-delimited output from the pipeline

is then converted — boundary data is put into comma separated values for insertion

into a MySql database, while the histomic features are z-score normalized and stored

in HDF5 format. Storing the features in HDF5 is done to facilitate efficient loading

into the systems and maintain an internal organization of objects by patient and slide

along with other metadata. The object metadata includes: the object’s database ID
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for its boundary data, the centroid of the object, the slide name the object is located

on, normalization data, indices for fast access of feature data by slide and provenance

data. For output, the training set is also stored in HDF5 format. The output contains

the histomic features of the objects, the class label of objects labeled during training,

the iteration the object was added to the training set, class names, slide names,

object database ID, normalization data and provenance data. Information about the

training set is also stored in the database. This include information such as dataset

used, name of the training set, filename of the training set, total number of objects

selected, the ID’s of the objects and the creation time of the training set.

3.2.3 Image Segmentation and Feature Extraction

As mentioned earlier, the histomic features and object boundaries are generated

by a preprocessing step. The software pipeline that performs this is shown in Figure

3.2. This pipeline utilizes algorithms provided by the HistomicsTK Python library

for histologic image analysis (http://github.com/DigitalSlideArchive/HistomicsTK)

to perform color normalization, nuclear masking and splitting, feature extraction, and

database ingestion. Each whole slide image is normalized to a standard hematoxylin

and eosin (H&E) sample with desirable color characteristics using Reinhard normal-

ization. Tissue pixels are first masked from the background using linear discriminant

analysis and then the mean and standard deviation of the tissue pixels in the LAB

color space are calculated. These moments are mapped to match the moments of a

color standard image prior to inversion back to RGB color space. This color normal-

ization process considerably improves the quality of subsequent image analysis steps,

improving the consistency of segmentation results and image features. Whole slide

images are split into 4096 x 4096 pixel tiles and processed independently to highlight

cell nuclei. A color deconvolution algorithm is first applied to digitally separate the

hematoxylin and eosin stains. The deconvolved hematoxylin intensity images are then
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masked to identify pixels corresponding to cell nuclei using a combination of adaptive

thresholding and morphological reconstruction to remove background debris. Closely

packed nuclei are then split using a watershed segmentation applied to the laplacian-

of-gaussian response of the hematoxylin image. Each nucleus is characterized using a

set of 48 features describing its shape, intensity and texture. These features include

eccentricity, solidity and fourier shape descriptors (shape), statistics of hematoxylin

signal including variance, median, mean, min/max, kurtosis, skew and entropy (inten-

sity) and statistics of hematoxylin intensity gradients (texture). Color normalization,

segmentation and feature extraction is carried out in a cluster-computing environ-

ment to allow timely processing of large sets of whole-slide images. Boundaries and

features generated by segmentation are stored in a text-delimited format and used as

input to the preprocessing described in the previous section.

3.2.4 Scalability

The interactive nature of the system implies an expected responsiveness — while a

hard real-time response is not required, delays measured in more than several seconds

will diminish the user experience. As such, our idea of scalability is not only related

to the size of datasets but also in responsiveness of the system. As we strove to

avoid delays in the system as a whole, there were two areas of particular concern:

Visualization of the whole-slide images and annotations and a responsive sampling

strategy capable of handling hundreds-of-millions of data objects. The system was

designed in a modular fashion with the ability to utilize multiple servers, thus allowing

for scalability to larger datasets and more concurrent users. In out implementation

we opted for a single multi-core server to host all components.

A single whole-slide image can have tens of millions of polyline annotations that

delineate the boundaries of histologic objects. These annotation must be able to be

displayed in a fluid real-time maker to the user. To achieve this, scalable vector graph-
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Figure 3.2: Segmentation pipeline

The system uses an image analysis pipeline for analyzing cell nuclei in whole-slide images based
on HistomicsTK (http://histomicstk.readthedocs.io), a software library for digital pathology image
analysis. Step 1 in this pipeline normalizes the color characteristics of each slide to a gold standard
H&E to improve color-deconvolution and downstream filtering operations. Step 2 processes the
slide tile-wise, first digitally unmixing color images into eosin and hematoxylin stain images, then
analyzing the hematoxylin image to mask nuclear pixels using a Poisson-Gaussian mixture model and
smoothing this binary mask with a graph-cutting procedure. We then apply a constrained Laplacian
of Gaussian filter to split closely packed cell nuclei. In step 3, a set of 48 features describing shape,
texture and staining is calculated for each segmented cell nucleus. Finally, in step 4 all segmentation
boundaries and features from each slide are aggregated into a single file. A delimited-text format is
used for object boundaries, which are ingested into a SQL database to drive visualization in the user
interface. Features are stored in a HDF5 structured format on a RAID array for fast and convenient
access in training and evaluating classification rules.
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ics (SVG) overlays were generated in real-time from boundary information stored in

the database. To obtain high query throughput, the boundaries were indexed by

slide name, x-centroid and y-centroid. The order of the index keys is important as

using the slide name first reduces the number of records to process from hundreds

of millions to a million or less. To reduce the number of queries needed as a user

pans around an image, a spatial caching scheme was implemented. When generating

the SVG overlay, the system queries the database not only for the annotations that

are visible in the current view but also those in the area surrounding it. With the

SVG generated being larger than the visible portion of the slide, the web browser

efficiently crops the SVG displaying only those annotations that fall within the visi-

ble portion of the slide. As the user pans, the SVG is translated and cropped again.

The translation and cropping are significantly faster than querying the database and

regenerating the SVG. New queries are performed in the background while the slide

image in being panned. The background query occurs when the slide is panned by

half the visible area in any direction and the new SVG is generated while the current

one is still being displayed. Once generated the new SVG is made visible while the

old one is hidden and discarded, providing a seamless update.

The ability to apply a classifier and analyze its response in seconds is paramount

to the usefulness of the system.

3.2.5 Learning process

The system employs two methods for soliciting class labels from the user: Instance-

based and Heatmap-based. The instance-based method is a typical implementation

of active learning where the system selects a few samples (in out case eight) with the

lowest classification confidence and presents them to the user for labeling. The user

then labels the samples and submits them to the system and a new classifier is built

with the updated training set. The heatmap-based method displays a transparent
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Figure 3.3: Scalable display of boundaries

Each whole-slide image can contain a million or more histologic entities, each with polygonal bound-
aries that consist of multiple (x,y) vertices. Rendering these boundaries fluidly requires effective
database query, client-server communication and spatial caching. Our software framework renders
boundaries in the web interface using a dynamic strategy outlined here. Following a mouse event,
the current field of view (position/magnification) is communicated to the server. If the magnification
is at or above 10X, the database is queried to identify objects in the current and adjacent fields.
The image data, object boundaries and object metadata (including class) are communicated back
to the web client. The web-client then constructs a Scalable Vector Graphics (SVG) document that
contains the boundary polylines and that encodes any classification information using color tags.
This strategy provides fluid visualization and does not incur any delay on a panning event in the
client viewer, since the adjacent regions are already encoded in the SVG document.
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heatmap overlay, representing smoothed prediction confidence or positive class den-

sity, on top of the whole-slide image. The heatmap guides users to areas of interest

in the slide where the user may or may not select objects. With the heatmap-based

method, the user is the one to select the objects to be added to the training set rather

than the system, with the system just making “suggestions”. This is closer to the

scenario of stream-based selective sampling [27] mentioned earlier, rather than the

pool-based approach used in the instance-based method.

The instance-based method is a straight forward implementation of active learning

with a slight alteration. At any iteration of the process, the current labeled training

set is used to build a random forest classifier. The classifier is applied to the remaining

unlabeled data pool. Due to the size of the unlabeled data pool and the discrete nature

of the uncertainty score, there will be many samples having the highest uncertainty.

Therefore we randomly sample eight from the most uncertain. This deviated from

the usual active learning method were only one sample is selected per iteration.

The heatmap-based method is used to guide the user to areas on slides that have

low prediction confidence or high positive class density. Other than guiding the user

to areas of interest, the system has no input on which objects to add to the training

set. While uncertainty sampling may eventually select from these areas, the massive

size of the datasets intended for use in the system may need far too many iterations.

The heatmap-based method also helps in areas that may be misclassified but not of

the lowest prediction confidence. This occurs when the active learning process starts

selecting very close to the decision boundary where it may be impossible for the

user to determine the class of the object. The positive class density is of use when

classifying objects that tend to group together naturally. For example, in tissue,

endothelial cells tend to group together near blood vessels. By guiding the user to

areas where the positive class is prevalent, areas of the data space missed by the

active learning process can be explored. The system also employs a slide ranking
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method which presents the user with slides ordered by minimum average prediction

confidence. This guides the user at the slide level to those which have more areas of

low prediction confidence, eliminating the need to look at every slide in the dataset

when using the heatmap-based method.

3.2.6 Workflow

The user begins at the landing page where they can start a new session or resume

a previous learning session. To start a new learning session the user selects a dataset

from a drop down menu and provides names for the session, positive and negative

classes in the respective text fields. To initialize the classifier, the user is then di-

rected to a “priming” screen to select 4 examples from each class. The priming screen

contains a whole slide image viewer that displays the selected slide and boundary an-

notations. Users can select examples by double-click, which highlights their boundary

in yellow, and adds a thumbnail image of the selected examples to an array above the

viewer. Following this labeling the initial classifier is trained and applied to the en-

tire dataset to generate initial class predictions and confidence values. The user then

enters the “select” screen where they will provide additional labels through active

learning feedback. To resume a session, the user selects a dataset from the dropdown

menu, which populates another dropdown menu containing the sessions available for

the selected dataset. Selecting a session and clicking the “continue” button brings

the user to the “select” screen to resume the session from the last iteration.

The selection page is the interface for the instance-based method of soliciting

feedback. Here the user is presented with eight “ambiguous” samples selected based

on their prediction confidence. These samples are displayed as thumbnail images in

an array across the top of the screen along with the predicted label. When the user

clicks on a sample in the array, the slide viewer in the bottom portion of the screen will

load the appropriate slide image, pan and zoom the location of the sample centering
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Figure 3.4: Landing page

The landing page enables users to initiate a new learning session or to continue an existing session.
For starting a new session users select a dataset, provide a session name and assign class names for
training. Selecting a dataset from the continue session option populates a drop down list displaying
the session names, class names and labeled example statistics for sessions associated with that
dataset



25

it in the screen. The boundary of the sample is displayed along with a 50 x 50 pixel

bounding box. The user can toggle the boundary on and off for the sample. The

bounding box allows for easy location of the sample while panning through the slide

or when the sample’s boundary is not displayed. The user changes the label by double

clicking on the thumbnail image of the sample in the array. This will cycle through

the possible labels. As the system is currently limited to binary classifiers, there are

three possible choices for the label. Naturally there is the positive and negative class

labels. There is also an “ignore” label which allows a selected sample to be excluded

from the training set. If the user is unable to determine the samples class, or if the

sample is not valid. A sample may not be valid due to an error in segmentation or

is an artifact rather than a cell. Labeling a sample as “ignore” also removes it from

the unlabeled pool. Once the samples have been given the proper label, they are

submitted to the system and a new classifier is built with the updated training set.

The system applies the updated classifier to the unlabeled pool of samples and selects

eight to be displayed.

At any point after priming the system, the user can utilize the “viewer” and

“heatmaps” screens. In the viewer screen, the user can pan and zoom through any

slide in the dataset, display the boundaries of the segmented objects, and display

classification results of the current classifier. Normally when displaying the boundary

of an object, the viewer screen uses aqua to color the boundary. When displaying

classification results, the boundaries are colored according the classification result for

the object. The specific color used is indicated in a legend. The user can display or

hide the boundaries, making it easier to examine individual objects. When enabled,

the boundaries are only displayed at higher magnification, 10X and beyond. When

viewing at lower resolutions an uncertainty heatmap or positive class density heatmap

will be overlaid on top of the slide image. While zooming in from a lower magnifi-

cation with a heatmap displayed, the system will switch to the boundary display
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Figure 3.5: Selection page

This view facilitates the labeling of samples selected by active learning to refine the classification
rule. Thumbnail images of 8 instances selected as valuable by active learning are displayed in an
array along with their predicted class. Clicking a thumbnail directs the whole-slide image viewport
to the slide/region surrounding this sample. Double-clicking the thumbnail image cycles the assigned
class labels. After correcting errors the user can commit these samples to the training set and update
the classifier. They can then resume with additional feedback or finalize the classification rule.
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with classification information at around 10X magnification. This allows the user to

located an area of interest with the heatmap view then zoom in to examine the clas-

sification of individual objects. While viewing classification results the user can fix

misclassification errors by double-clicking on an object. Double-clicking on an object

will change its boundary to yellow indicating it is staged for addition to the training

set. The object will be labeled with the inverse class it was classified with. That is,

if the object was classified as the positive class it will be added to the training set

with the negative class label. Once the user is finished selecting objects, clicking the

“retrain” button will add them to the training set. After adding the new objects, the

system, rebuilds the classifier and updates the display. At any time before clicking

the “retrain” button, the user can “unstage” the object by double-clicking it. The

viewer screen, using the combination of heatmaps and correcting misclassifications, is

where the heatmap-based method of soliciting labels is realized. The heatmap screen

provides a ranking of all the slides in the dataset by average uncertainty. Two views

of the slides are display; one overlaid with an uncertainty heatmap, the other with a

positive class density heatmap. They are ordered from top to bottom with the slide

with the highest average uncertainty, or minimum prediction confidence, at the top.

Clicking on any of the slide images with bring the user to the viewer screen with the

appropriate slide image loaded.

In addition to the “viewer” and “heatmaps” screens, we provide a review page

where the samples of the training set are displayed, organized by class and slide.

This interface permits additional review of the labeled examples and enables the users

to change labels using drag-and-drop. This feature facilitates multiple reviewers for

collaboration among less and more experienced reviewers.
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Figure 3.6: Viewer page — heatmap view

This view enables the overlay of heatmaps of classification confidence or positive class density in
a whole-slide imaging viewport. Users can zoom into hotspots to review the classification rule
predictions and to provide additional feedback in key regions that are likely to contain false positive
or false negative predictions
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Figure 3.7: Viewer page — boundary view

Zooming into a hotspot region users can review and correct predictions for individual objects. Here
cell nuclei positively classified as vascular endothelial cells are indicated with green boundaries and
others indicated with white. Users can single-click objects in this view to correct prediction errors —
cycling their class label and committing them to the training set. The classifier can also be updated
from within in this view to visualize the results of feedback.
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Figure 3.8: Heatmap page

This view displays slides overlaid with their uncertainty and positive class density heatmaps to
prioritize feedback. Slides are sorted based on average confidence so that users can direct feedback
to slides with large numbers of confounding samples. Clicking a thumbnail directs the user to the
review screen for feedback. This page is updated and the slides resorted with each update of the
classification rule.
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Figure 3.9: Review page

The review screen enables users to review and revise labeling provided for classification rule training.
Labeled samples are organized in an array by slide and label/class. Users can browse the scrollable
thumbnail gallery and change the label of a sample by drag-and-drop of the thumbnail images.
Clicking a thumbnail directs the whole-slide viewport to the region of this sample.
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3.2.7 Command line tools

A command line tool for applying trained classifiers outside of the user interface

is also provided. This tool enables users to perform prediction and quantification of

large datasets offline after training a classifier. The command line tool takes as input a

classifier HDF5 file and an HDF5 file of histomic features for objects to be classified (in

the input format described previously). The prediction function will generate a new

HDF5 file that supplements the input file with predicted class labels and prediction

confidence scores. The quantification tool provides basic quantification (counting) of

objects in each slide, and generates a CSV file with the slide name, positive class

count and negative class count for each slide present in the input HDF5 file.

3.3 Results

We used HistomicsTK (http://github.com/DigitalSlideArchive/HistomicsTK) to

generate features for 360 million cell nuclei using 781 images (464 tumors) from The

Cancer Genome Atlas Lower Grade Glioma (LGG) project. We trained a classification

rule to identify vascular endothelial cell nuclei (VECN) and validated its performance

using 67 slides not used in training.The VECN classifier was initialized by manually

labeling 8 nuclei, and refined with both instance-based and heatmap-based learning to

label 135 nuclei in 27 iterations. The VECN classifier is highly sensitive and specific,

achieving an area-under-curve (AUC) of 0.9643 and improving over the initial rule

with AUC=0.9234.

To further validate our VECN classifier, we correlated the mRNA expression levels

of the endothelial marker PECAM1 with the proportion of cells positively classified

as VECs in each specimen. Percent-VECN was significantly positively correlated

with PECAM1 /CD31 expression (Spearman rho=0.24, p=1.27e–7). We note that

the mRNA measurements originate from frozen materials where image analysis was

performed on fixed and paraffin embedded tissues that originate from same primary
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Figure 3.10: Classifying vascular endothelial cells in gliomas

(A) We trained a classification rule to identify vascular endothelial cell nuclei in lower-grade gliomas
(highlighted in green) using data from The Cancer Genome Atlas (TCGA-LGG). (B) This classifier
achieved an area-under-curve (AUC) accuracy of 0.96 with only 135 labeled nuclei for training. (C)
A total of 27 active learning iterations were performed, improving the AUC from 0.92 to 0.96. (D)
For additional validation we correlated the percentage of positively classified endothelial cells in each
sample with mRNA expression levels of the endothelial marker PECAM1 using measurements from
TCGA frozen specimens.

tumor but with unknown proximity to the frozen materials.

To evaluate system responsiveness, we measured the time required for the update-

predict process including classifier rule training, classification of all unlabeled objects,

sampling of instances for active learning, and calculation of heatmaps. We evaluated

various sized datasets ranging from 106–107 objects. We observed a consistent linear

increase of 1 second per 5.5 million objects on our 24-core server. This translates to

a 10 second learning cycle for a 50 million object dataset.

We selected 67 digital slides from the LGG cohort to serve as a validation set

for measuring the performance of a VECN classifier. In each slide, we selected a

field containing a mixture of nuclei from vascular endothelial cells and other cell

types (tumor nuclei and inflammatory cells, for example). Each correctly segmented

nucleus in the field was labeled as either vascular endothelial or other. Incorrectly

segmented nuclei, or nuclei that were too ambiguous to classify were ignored. In total

2479 cell nuclei were labeled. Each annotation was reviewed by a board-certified

neuropathologist using our review function. Classifiers used for reporting accuracy

results were trained using a mixture of instance-based and heatmap-based review.
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Figure 3.11: Validation of classifier performance

(A) We trained a classification rule to identify vascular endothelial cell nuclei in lower-grade gliomas
(highlighted in green) using data from The Cancer Genome Atlas (TCGA-LGG). (B) This classifier
achieved an area-under-curve (AUC) accuracy of 0.96 with only 135 labeled nuclei for training. (C)
A total of 27 active learning iterations were performed, improving the AUC from 0.92 to 0.96. (D)
For additional validation we correlated the percentage of positively classified endothelial cells in each
sample with mRNA expression levels of the endothelial marker PECAM1 using measurements from
TCGA frozen specimens.
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Chapter 4 Microvascular proliferation
and hypertrophy analysis

4.1 Introduction

Images of histology contain important information that can be difficult or impos-

sible to ascertain through genomic assays. Recent focus on deconvolution of gene

expression profiles can accurately estimate the fractions of cell types in a sample, but

these approaches cannot provide spatial or morphologic information that often con-

tains considerable prognostic or scientific value. While molecular phenomena drive

phenotypes, quantitative histologic analysis provides more immediate readouts of in-

formation that are difficult or impossible to obtain from genomic profiling. These

data can add a new dimension to studies of complex processes like lymphocytic infil-

tration, angiogenesis, and tumor-stromal interactions, or the functional annotation of

genetic alterations. Growth in tools for genomic analysis in the last decade provide

a roadmap for increasing utilization of histologic imaging data. Open-source devel-

opment can engage a broader technical audience with interests in machine-learning

and image analysis, and more focus on creating enabling software infrastructure for

data visualization, management and analysis can place data in the hands of experts

who have driving biological and clinical questions. We used HistomicsML to analyze

microvascular phenotypes in gliomas, illustrating how datasets that link histology,

clinical outcomes, and genomics can be mined to investigate prognostic biomarkers

and genotype-phenotype relationships. We showed that quantitative metrics of mi-

crovascular phenotypes are associated with grade and molecular subtype, and that

prognostic models based on these metrics perform as well as grade in predicting

survival. Integration with genomic data identified both well-recognized molecular
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pathways associated with angiogenesis, and also more interesting subtype-specific

molecular pathways enriched with phenotype-correlated genes.

4.2 Principal Curves

Principal curves are smooth 1-dimensional curves that pass through the center of

a p-dimensional dataset. They are a generalization of linear principal components

that provide a summarization of the data. The first definition of principal curves was

proposed by Hastie and Stuetzle [42]. Typically when summarizing data, a variable

is chosen as a response relative to some other explanatory variable or variables. For

instance, a patients blood pressure relative to their body mass index. The idea is to

generate a model in which to predict the response given the explanatory variable(s).

There are many techniques which can easily achieve this, such as linear regression,

though there are times when there is no response variable we are interested in. In-

stead, we would like to summarize the joint behavior of all the variables. This is the

motivation behind Hastie and Stuesle’s development of principal curves.

Hastie and Stuetzle’s definition of principal curves is based on self-consistency,

where a one-dimensional curve passes through the center of a p-dimensional point

cloud. The curve is a vector of p functions f(λ) = (f1(λ), f2(λ), ..., fp(λ)) with λ

providing an ordering along the curve. The parameterization of f is not unique,

any monotone transformation could be applied to λ and along with the appropriate

modification of the functions f1 to fp, and the resultant curve will be the same. Given

a dataset X, the projection index λt(x) = supλ : x− f(λ) = inf x− f(µ) is the value

of λ which minimizes the distance between x and f(λ). By the H&S definition, the

curve is called self-consistent if E(X|λf (X) = λ) = f(λ) for all λ. Additionally,

a principal curve cannot intersect itself. Once a principal curve is constructed, the

“summary” value of a data point can be determined by projecting the data point

onto the curve and calculating the arc length from the beginning of the curve to the
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point of projection.

The algorithm for the construction of principal curves for datasets is an iterative

method that alternates between a projection step and a conditional-expectation step.

The complete algorithm can be seen below. For an N x p dataset X, the curve f

is represented by N tuples (λ, f) in increasing order of λ to form the vertices of a

polygon. The value of $ \lambda $ is its arc length along the current curve, where $

\lambda 0 = 0 $ and λn is the arc length of the curve from λ0. The curve is initialized

to the first linear principal component of X. In the projection step, the nearest point

p to xi is found on the curve then λi is set to the arc length from the beginning of

the curve to p. In the conditional-estimation step, the λi’s are used to update the

functions f1, f2, fp. The obvious way to calculate E(X|λf i = λi) is to take the mean

of all the data points in X that project onto the curve at λi. Since there tends to

be only one data point in X that projects onto the curve at λi, a local averaging

needs to be done with the data points xj whose projections λk are close enough to

λi. This can be achieved with scatterplot smoothing such as [43] and [44]. The

smoother is applied to each of the (λ, fi) tuples, after which the algorithm returns

to the projection step using the updated curve to calculate new λ′i. This process

is repeated until the change in the squared distance from X to f falls below some

threshold t.

Algorithm 1 The Principal-Curve Algorithm

Require: f (0)(λ) = x̄ = aλ , where a is the first linear principal component
Require: λ(0)(x) = λf (0)(x)

repeat
f (j)(.) = E(X|λf (j−i)(X) = .)

λ(j)((x)) = λf(j)(x) ∀ x ∈ h
D2(h, f (j)) = Eλ(j)E[‖(X)− f(λ(j)(X))‖2 | λ(j)(X)]

until ∆D2(h, f (j)) < t

There has been several other definitions of principal curves that have followed

Hastie and Stuetle’s. Kegl et al [45] relaxed the original definition to curves that
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achieve the minimum expected squared distance from points in the dataset to the

location they project onto the curve. Along with this relaxation, they propose the

polygonal line algorithm. This algorithm constructs the curve by adding vertices one

by one to a polygonal line and optimizing the vertex positions after each addition

by minimizing the squared distance of the data to the curve. Verbeek et al. [46]

proposed an algorithm similar to Kegl et al., the k-segments algorithm. Tibshirani

[47] proposed a probabilistic definition of principal curves where the curve minimizes

a penalized log-likelihood measure. This definition employs a mixture model for the

data. Though the definitions vary, the essence remains the same — principal curves

provide a summarization of the joint behavior over all the dimensions in the data.

4.3 Phenotyping Microvascular Structures in

Gliomas

We developed and validated quantitative metrics to describe the phenotypes of

microvascular structures in gliomas. Gliomas are among the most vascular solid

tumors, with microvascular structures undergoing apparent transformations in re-

sponse to signaling from neoplastic cells. Microvascular hypertrophy, or thickening

of microvascular structures, represents an activated state of individual endothelial

cells that show nuclear and cytoplasmic enlargement associated with increased tran-

scription and translation. Microvascular hyperplasia, on the other hand, represents

the accumulation, clustering and multilayering of endothelial cells due to their local

proliferation. While these changes are understood to accompany disease progression,

the prognostic value of quantitative phenotyping of microvasculature in gliomas has

not been established in the era of precision medicine, and may be beyond the capacity

of human visual recognition.

The hypertrophy of individual nuclei was scored using a nonlinear function to

model the continuum of VECN morphologies. This scoring was validated by manually
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Figure 4.1: Quantitative phenotyping of microvasculature in gliomas

Microvascular structures undergo visually apparent changes in response to signaling within the
tumor microenvironment. (A) We measured nuclear hypertrophy using a nonlinear curve to model
the continuum of VECN morphologies. A hypertrophy index (HI) was calculated for each patient to
measure the extremity of nuclear hypertrophy score values. (B) We validated nuclear scores using a
set of manually labeled nuclei (hypertrophic (1) / non-hypertrophic (0)) (Wilcoxon p=6.63e-12). (C)
Examples of cell nuclei used in validation. (D) We implemented a clustering index (CI) to measure
the spatial clustering of vascular endothelial cells as a readout of hyperplasia. CI measures the
average number of endothelial nuclei within a 50-micron radius of each VECN in a sample. (E) CI
was compared to manual assessments of hyperplasia (multi-layered (1) / not layered (0)) (Wilcoxon
p=3.61e-4). (F) Example microvascular structures from two of the slides used in comparison
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labeling 120 VECN (45 hypertrophic, 75 non-hypertrophic) to establish that hyper-

trophy scores are significantly higher for hypertrophic nuclei (Wilcoxon p=8.63e–12).

A hypertrophy index (HI) was calculated to summarize hypertrophy at the patient

level. Within the distribution of nuclear scores for a patient, the more hypertrophic

nuclei appear in the distribution tail. We used distribution skew to capture tail

thickness so that more positive HI values indicates the presence of more hypertrophic

VECN.

Hyperplasia and proliferation were measured using a VECN clustering index (CI)

to capture the extent of spatial clustering of VECNs. CI was calculated at the patient

level as the average number of VECNs within a 50-micron radius of each VECN in

that patient. CI was also compared to manual slide-level assessments of microvascular

proliferation in 137 images (18 slides presenting multilayered phenotypes /119 not

presenting) to show higher CI measures associate with images where multi-layered

microvascular structures are present (Wilcoxon p=3.61e–4).

The Endothelial clustering index. CI was calculated using a spatial statistic

based on a modified version of Ripley’s K-function [48]. Ripley’s K-function, origi-

nally developed for geographic and epidemiological applications, captures the “degree

of spread” of events in spatial domains. Since microvascular hyperplasia and prolif-

eration are, by definition, associated with increases in VECN density, we excluded

Ripley’s density normalization in our proliferation metric. We also ignored edge-effect

corrections due to the extremely large number of objects and the relative rare scarcity

of objects at the edge of tissue sections. CI was calculated as:

CI(τ) =
1

K

K∑
i=1

|Ωi|, Ωi = {di,j ≤ τ}, di,j = ‖xi − xj‖2 (4.1)

where K is the number of objects/nuclei in the image, di,j is the Euclidean distance

between objects i, j, and τ is a positive search radius. This effectively calculates

the average number of objects within distance τ of each object in the slide. In our
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experiments, CI was calculated for objects positively classified as VECN with a search

radius of τ = 50-microns. KD tree indexing was used to accelerate the computational

search for neighboring VECN.

Endothelial hypertrophy index (HI) was calculated by scoring the morphologies

of individual nuclei and calculating population statistic for each patient. Hypertro-

phy in VECN was first quantified using a principal curve technique to score each

nucleus. We developed our own principal curve routines that will be added to the

HistomicsTK library. When applied to histomic feature profiles, the fitted principal

curve enables the modeling of the morphologic continuum of VECN from small, thin

normal appearing nuclei to enlarged hypertrophic nuclei that are reacting to the sur-

rounding tumor microenvironment. The principal curve models the feature vector

values fi of object i as

fi = g(λi) + ei (4.2)

where g is a 1D nonlinear curve in feature space parameterized by the free variable

λ, and ei is a random component. After fitting the principal curve, each nucleus is

scored by projecting its feature profile onto the curve, and calculating the path length

from the projection to the curve origin

si =

∫ λi

λ0

‖g′(z)‖dz (4.3)

where λ0 is the origin of the curve, λi is the location of the least-squares projection

of fi onto the curve, and g′ is the curve tangent function. Nuclei that are more

hypertrophic in the morphologic continuum will have longer path length values and

thus higher nuclear scores. In our analysis we constructed a principal curve using

histomic shape features for area, eccentricity and perimeter. The directionality for

the beginning/end of the curve was established by initializing the curve fitting with

a single normal appearing nucleus and a single hypertrophic nucleus.
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At the patient-level, HI was calculated to represent the population-level skew of

VECN towards more hypertrophic morphologies. HI was measured as the negative

skew of nuclear scores

SI = − 1

K

K∑
i=1

(si − s̄)3 (4.4)

where K is the number of objects/nuclei in the image, si is the hypertrophy score

of object i, and si is the mean hypertrophy score. This statistic increases in value as

the right tail of the score distribution grows.

4.4 Microvascular phenotypes accurately predict

survival

Diffuse gliomas are the most common adult primary brain tumor and are uni-

formly fatal. Survival of patients diagnosed with infiltrating glioma depends on age,

grade and molecular subtypes that are defined by IDH mutations and co-deletion

of chromosomes 1p and 19q [49]. The lower grade gliomas (grades II, III) exhibit

remarkably variable survival ranging from 6 months to 10+ years. Highly aggressive

IDH wild-type (IDHwt) gliomas having an expected survival of 18 months. Gliomas

with IDH mutations and 1p/19q co-deletions (IDHmut-codel) have the best outcomes,

with some patients surviving 10+ years. Gliomas with IDH mutations and lacking

co-deletions (IDHmut-non-codel) have intermediate outcomes with survival ranging

from 3–8 years. The accuracy of grade in predicting outcomes varies depending on

subtype [50].

We first investigated associations between hyperplasia and hypertrophy, grade

and molecular subtype in the TCGA cohort using CI and HI (See Figure 4.2 A and

Table 4.1) We found that IDHwt gliomas exhibit a greater degree of microvascular

hyperplasia than the less aggressive IDHmut-non-codel and IDHmut-codel gliomas

(Kruskal-Wallis p=8.43e–6). Increased microvascular hyperplasia is also strongly as-
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sociated with higher grade in each molecular subtype (Wilcoxon IDHwt p=4.99e–4,

IDHmut-non-codel p=1.96e–6, IDHmut-codel p=2.08e–4). While differences in mi-

crovascular hypertrophy across subtypes (Wilcoxon p=0.747) and grades were not sta-

tistically significant, the median HI for grade III gliomas was higher in each molecular

subtype. We also explored subtypes by using median CI or HI values to stratify pa-

tients into high/low risk groups. (See Figure 4.3) Kaplan-Meier analysis found these

“digital grades” were marginally prognostic within IDHmut-codel gliomas (log-rank

CI p=6.87e–2, HI p=5.09e–2) and IDHwt gliomas (CI p=4.68e–2), but remarkably

neither CI nor HI could discriminate survival in the IDHmut-non-codel gliomas.

Similar discrimination patterns were observed when stratifying by WHO grade.

After investigating associations with grade and subtype, we used a prognostic

modeling approach to evaluate the prognostic value of microvascular phenotypes.

Cox hazard models were created with various combinations of predictors including

grade, subtype, CI and HI. (see Figure 4.2 B) Patients were randomly assigned to

100 non-overlapping training /validation sets, and each was used to train and eval-

uate a model using Harrell’s concordance index [51]. We found that the models

based on HI+CI+grade+subtype have the best performance, and significantly out-

performing grade+subtype models (Wilcoxon p=3.35e–11), suggesting that HI, CI

measurements have prognostic value independent of grade and subtype. Models based

on grade+subtype and HI+CI+subtype have equivalent performance (p=0.915), and

models based on HI+CI slightly outperform grade-only models (Wilcoxon p=3.02e–

8). Finally, we found that although HI-only models perform only slightly better

than random (median c-index 0.58), HI+CI models perform significantly better than

CI-only models (p=9.09e–17).

Labels to validate hypertrophy index and clustering index were acquired by man-

ual inspection of digital slide images by a board-certified pathologist who was blinded

to the computer-generated HI and CI scores. For hypertrophy, a selection of 120 cell
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Figure 4.2: Predicting survival with microvascular phenotypes.

(A) HI and CI were compared with important clinical metrics including WHO Grade, molecular
subtypes and survival. CI is significantly associated with subtype (Kruskal-wallis p=8,43e-6) and
grade within each subtype. HI was not significantly associated with either subtype (Kruskal-wallis
p=0.747) or grade. (B) We trained cox hazard models using combinations of phenotypic and clinical
predictors to assess and compare their prognostic relevance. Models were trained and evaluated
using 100 randomized training/testing sets. HI +CI models perform better than grade-only models
(Wilcoxon p=3.02e-8). We also noted that HI +CI predictors are relevant independent of subtype
(p=2.80e-34) and grade (p=3.35e-11). There was no difference between HI + CI+subtype and
Grade+subtype models (p=0.915). Although an HI-only model has weak performance, the HI+CI
model outperforms the CI-only model (p=9.09e-17).
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Figure 4.3: Kaplan-Meier analysis

Median values of CI or HI were used to stratify patients into low/high risk groups for Kaplan-Meier
analysis in each molecular subtype (grade is shown for comparison). HI and CI can discriminate
survival marginally in IDHwt gliomas (CIp = 4.68e − 2) and IDHmut-codel gliomas (log-rank
CIp = 6.87e − 2, HIp = 5.09e − 2), but not in IDHmut-non-codel gliomas. We observed that
grade is marginally better at discriminating survival than CI or HI (IDHwt p=5.86e-2, IDHmut-
non-codel p=7.93e-2, IDHmut-codel p=1.93e-2), but is also only marginal predictive of survival for
IDHmut-non-codel gliomas.
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nuclei classified as VECN were labeled as either hypertrophic (45) or non-hypertrophic

(75) using our validation set creation tool. The nuclear hypertrophy scores were com-

pared for these manually labeled nuclei using a non-parametric Wilcoxon text. For

clustering index, 137 slides were manually reviewed to determine if they present mi-

crovascular hyperplasia and proliferation (multi-layered vessels). The CI scores for

slides presenting multi-layered vessels were compared to scores for the control slides

using the Wilcoxon test.

4.5 Genomic Integration Identifies Phenotype

Associated Pathways

The molecular mechanisms of angiogenesis in gliomas have been studied exten-

sively, and are targeted through anti-VEGF therapies like Bevacizumab [52]. To

investigate the molecular pathways associated with microvascular phenotypes, we

performed gene-set enrichment analyses [53] that correlated CI and HI with mRNA

expression. We analyzed for IDHwt and IDHmut-codel gliomas separately since mech-

anisms may vary across subtype. IDHmut-non-codel gliomas were not analyzed. A

partial list of pathways enriched at FDR q<0.25 significance is summarized in Table

4.5 .

Given the proximal association between angiogenesis and hypoxia in cancer bi-

ology, we expected our pathway analysis to identify strong relationships between

microvascular phenotypes and classic hypoxia and metabolic glycolysis pathways.

We found both HIF2A and VEGFR1/2 mediated signaling pathways were both up-

regulated with increasing hyperplasia and hypertrophy. Among the most strongly

phenotype-correlated genes were those involved in hypoxia and angiogenesis includ-

ing VEGFA, VHL, ARNT, PGK1 [54], ADM [55], and EPO, as well as glycolytic

response mediators HK1, PGK1, ALDOA, PFKFB3, PFKL and ENO1. Angiopoietin

receptor [56] and Notch signaling [57] pathways were also significantly enriched in
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Pathway Group Pathway name Leading-edge genes Subtype / metric 
(directionality) 

Nominal p-value (FDR 
q-value) 

Classiscal angiogenesis 
pathways 

* HIF1-alpha transcription 
factor 

PFKL, PFKFB3, ALDOA, 
EGLN1/3, PGK1, HK1 

IDHmut-codel / HI (+) 
IDHmut-codel / CI (-) 

0.033 (0.179) 
< 0.001 (0.116) 

HIF2-alpha transcription 
factor  

CREBBP, EP300, VEGFA, VHL, 
ARNT, TWIST1 

IDHwt / CI (+) 
IDHmut-codel / CI (+) 

0.004 (0.017) 
0.024 (0.116) 

VEGFR1/2 mediated 
signaling BRAF, MAPK1/14 IDHwt / HI (+) 

IDHmut-codel / CI (+) 
0.012 (0.144) 
0.009 (0.12) 

* VEGFR1 specific signals  MAPK1, NRP1/2 IDHwt / HI (+) 0.007 (0.19) 

Angiopoeitin receptor TIE-
2 mediated signaling 

ANGPT2, MAPK1/14, MMP2, 
NFKB1, PIK3C 

IDHwt / HI (+) 
IDHwt / CI (+) 

IDHmut-codel / CI (+) 

0.014 (0.147) 
0.015 (0.063) 
0.009 (0.087) 

* PDGFRA signaling GRB2, PIK3CA, FOS, PDGFRA, 
PLCG1 IDHmut-codel / HI (+) 0.014 (0.08) 

Developmental signalling 
pathways 

Notch signaling network NOTCH1/2/3/4, MAML1/2, JAG1, 
EP300, MYC 

IDHwt / CI (+) 
IDHmut-codel / CI (+) 

< 0.001 (< 0.001) 
0.02 (0.146) 

* Notch mediated 
HES/HEY network 

HEY1, NOTCH1, MAML1/2, 
HIF1A, TCF3, EP300 

IDHwt / HI (+) 
IDHwt / CI (+) 

0.007 (0.143) 
< 0.001 (< 0.001) 

* WNT signaling WNT3A, GSK3B, CAV1 IDHmut-codel / CI (+) 0.021 (0.085) 

* Regulation of nuclear 
beta catenin signaling  IDHmut-codel / CI (+) 0.004 (0.054) 

* GLI-mediated Hedgehog 
signaling  IDHwt / CI (+) 0.015 (0.063) 

Other pathways 

* Regulation of 
SMAD2/SMAD3 signaling 

SMAD3/4, MAPK1, MAP3K1, 
TGFBRAP1 

IDHwt / HI (+) 
IDHwt / CI (+) 

0.002 (0.008) 
0.024 (0.139) 

* SMAD2/SMAD3 nuclear 
signaling 

SMAD3/4, CDK2/4, CDKN1A, 
AKT1, MYC IDHwt / CI (+) < 0.001 (< 0.001) 

* FOXM1 transcription 
factor network 

FOXM1, GSK3A, MAP2K1, MYC, 
FOS, MMP2 IDHmut-codel / CI (+) < 0.001 (< 0.001) 

Table 4.1: Molecular pathways enriched with phenotype-correlated transcripts

Gene set enrichment analysis of the correlations between HI / CI and gene expression identified
multiple pathways associated with gliomas and vascularization. Many of the significantly enriched
pathways are specific to one molecular glioma subtype.
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both subtypes.

Pathways with enrichment specific to IDHwt gliomas included Notch mediated

regulation of HES/HEY [58], GLI-mediated hedgehog signaling [59], and SMAD

signaling [60], all of which have been linked to angiogenesis or regulation of structure

and fate in vascular endothelial cells. Pathways with enrichment specific to IDHmut-

codel gliomas included WNT and beta-catenin signaling, and PDGFRA signaling

(PDGFRA amplification is frequent in IDHmut-codel gliomas). WNT and beta-

catenin signaling are known to act synergistically with Notch to regulate endothelial

differentiation and vasculogenesis and to help regulate HIF1A in hypoxic conditions

[61].

We note that angiogenesis generally accompanies disease progression in gliomas,

and that pathway enrichments may reflect molecular patterns associated generally

with disease progression in addition to angiogenesis-related microenvironmental sig-

naling.

4.6 Active learning training improves prognostica-

tion

To evaluate the benefit of active learning training, we repeated our experiments us-

ing a classification rule trained with a standard approach where the expert constructs

a training set without the aid of active learning feedback. Using the same image col-

lections described above, 135 cell nuclei were labeled in the training images (roughly

evenly split between VECN and non-VECN). A classification rule was trained using

these labels and applied to the dataset to compare classification and prognostic model-

ing accuracies with the active learning classifier. The validation AUC of the standard

classifier was 0.984 (AUC for the active learning classifier was 0.964). While the AUC

measured on the validation set was higher, the standard learning classifier is much

less specific on the entire dataset, producing very high estimates of percent-VECN in
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the TCGA cohort ranging from 7.1–57.2% (compared to 0.025.6% percent-VECN for

active learning). Agreement between PECAM1 expression and percent-VECN was

much lower for the standard classifier percent-VECN (Spearman rho=0.16 versus

0.24). We calculated updated HI and CI metrics using the standard classifier results

and found that prognostic models based on these metrics were no longer predictive

of survival (see Figure 4.2 C). The median c-index of models based on CI alone fell

to <0.55 (Wilcoxon p=2.52e–34). Models incorporating HI+CI+subtype were also

no longer equivalent to subtype+grade models (p=4.20e–34), and only slightly better

than subtype.
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Chapter 5 Deep Learning

5.1 Introduction

The methods and tools so far presented have relied on the “engineering” of features

to characterize, or rather describe, the objects that machine learning methods will

be applied to. Theses features are predetermined manually and are usually taken

from characteristics domain experts naturally use to describe the objects. While the

engineered features have served well for many applications of machine learning, there

are some drawbacks when using them for classification of objects from whole-slide

images. The most significant drawback is the location and segmentation of cell nuclei

in the images. Nuclear segmentation is a computationally expensive process prone to

mistakes. The main challenge in segmenting nuclei from whole slide images is that

the tissue is a 2-dimensional section partitioned from a 3-dimensional object. The

sectioning of the sample often resulting in nuclei sectioned at odd angles, damage and

overlapping of tissue to name a few issues. Additionally, separation of densely cluster

nuclei is a long-standing problem [62].

Another drawback is the selection of the features. While the selected features

may work well for humans, there may be patterns in the images not detectible by

humans that may better characterize the objects. It would be advantageous to let the

algorithms determine the representation for the object of interest rather than relying

on engineered features. The following will describe a method which utilizes deep

artificial neural networks to not only classify objects but also learn representations of

them: Deep learning.

Feature learning methods based on deep convolutional networks have demon-

strated remarkable performance in general image analysis tasks. [63] These methods
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Figure 5.1: Segmentation error

The segmentation algorithm could not discern between the 2 nuclei causing erroneous features to be
generated.
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learn task specific features directly from raw image data using multiple levels of repre-

sentations. Starting with the raw image data, each level learns simple but non-linear

filters that transforms the representation in the previous layer into a higher, more

abstract representation. With enough layers, very complex functions can be learned.

5.2 Artificial Neural Networks

Artificial neural networks are a supervised learning method that use artificial

neurons as the basic unit of computation. Inspired by the animal brain, the Threshold

Logic Unit (TLU), developed by Warren McCulloch and Walter Pitts, is considered

the first artificial neuron [64], Like an animal neuron, the TLU has stimuli, or inputs.

These inputs can have a value of 0 or 1 and are summed together. When the sum

of the inputs is equals to or exceeds a threshold theta, the neuron becomes activated

and produces an output signal of 1. Additionally, the TLU has one or more inhibitor

inputs which keeps the neuron in the inactive state, output signal of 0, regardless

of the other inputs. These inputs allow the TLU to synthesize logic function such

as AND, OR, XOR, NOR and NOT. Combining individuals TLU’s together into a

network allows the computation of any logical function or simulation of any finite

automaton [65]. The functions of the network are defined by how the TLU’s are

interconnected.

Frank Rosesnblatt followed the TLU in the 1950s and 60s with a more general

computational model, the Perceptron [66]. In this model, the inputs to the neuron are

weighted and like the TLU, is activated when the sum of the weighted inputs reaches

a threshold theta. The preceptors are arranged in a specific pattern, a fully connected

bipartite graph, which is usually called a single-layer perceptron, The function of the

network is defined by adapting the weights of the neurons with an algorithm.

In 1969, Marvin Minsky and Seymour Papert [67] showed that the single-layer

perceptron was incapable of learning a whole class of problems. In particular they
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showed that the XOR problem could not be solved due to the fact it is not linearly

separable. This limitation was resolved by multi-layered perceptrons which include

one or more hidden layers. These networks are also called feedforward Neural Net-

works because they are acyclic with the signals moving forward from the input layer

through each hidden layer to the output layer.

The feedforward network is trained using the back-propagation algorithm which

adjusts the weights of the neurons to minimize the error between the actual output

of the network and the desired output [68]. The learning algorithm is called back-

propagation due to the propagation of errors backwards from the output layer through

the hidden layers. Adjusting the weights to minimize the error is an optimization

problem with gradient descent being a popularly used method. A cost function E

is used to assess the difference between the actual and desired, or target, output.

Gradient decent uses the derivative of the cost function to determine how to adjust

each weight in a particular layer. As such, a requirement is that the output of the

artificial neurons be differentiable. The output of the neuron is controlled by an

activation function. In the case of the TLU and perceptron, this is the step function.

Since the step function is not differentiable, other activation functions such as the

logistic function are used. The weights are adjusted in an iterative manner observing

each input example and adjusting by the learning rate gamma

5.3 Convolutional Neural Networks

Although ANNs are theoretically able to learn complex non-linear mappings from

large collections of samples, there are limitations when they are applied to image

recognition tasks. In order to learn the complex patterns in images, an ANN requires

a many hidden layers with many neurons per layer creating a very large number of

parameters that must be learned [69]. The large number of parameters makes the

ANN susceptible to overfitting. Models with fewer parameters to learn will typically
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generalize better and require fewer training samples [70]. While overfitting can be

mitigated by increasing the size of the dataset, if possible, it comes at an increased

computational expense. A more impactful limitation of the ANN is the lack of built-in

invariance with respect to translations or local distortions of the input. [71] To learn

these translations and distortions, there would need to be multiple neurons with

similar weight patterns located where the translations and distortions may occur

in the image. Additionally, images have a two-dimensional local structure in that

adjacent pixels are highly correlated. The local structure is completely ignored by an

ANN.

Convolutional neural networks (ConvNets) are similar in structure to ANNs but

consist of layers other than fully connected. Also inspired by animal biology: in this

case the visual cortex of a cat which was known to consist of maps of local receptive

fields that decrease in granularity [72]. Instead of being composed entirely of fully

connected layers, ConvNets use the ideas of local receptive fields, shared weights

and pooling in the majority of the layers. These architectural adjustments aim to

overcome the limitations of the ANN stated previously. The structure of a typical

ConvNet is shown in Figure 5.2.

In the convolutional layer, instead of connecting every input to every neuron,

only small localized regions are connected. This region is called the local receptive

field, and each connection has a learned weight accosted with it. The field is scanned

across the entire image, with each location being connected to a new neuron in the

next layer. This is implemented as a convolution filter and is what give the layer its

name. There are multiple filters per layer, each with its own weights. Though a single

filter uses the same weights across the entire image. These shared weights allow the

filters of the firsts layer to learn basic features of the image such as edges, points or

corners. Subsequent convolutional layers then learn more complex patters of these

basic features. The convolutional layer allow a ConvNet to learn patterns without
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Figure 5.2: Typical convolutional neural network

Convolutional neural networks can be broken down into two parts: convolutional layers which extract
the features from the image and the fully connected layers which learn the structures of the images.
The convolutional layers form three-dimensional volumes with f two-dimensional feature maps,
while the fully connected layers form one-dimensional linear arrays with each neuron connected to
one neuron in the previous layer.
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regard for the pattern’s location in the image. The layers of a ConvNet can be though

of as a three-dimensional volume with each filter in a convolutional layer creating a

two-dimensional feature map in the next layer. Like the ANN, activation functions are

use for the outputs of the convolutional layer. Instead of the sigmoid, or hyperbolic

tangent functions, ConvNets typically use Rectified Linear Units (ReLU). The ReLU

applies max(0, x) element-wise to the output as the activation function, ReLUs were

found to improve performance over the normal sigmoid activation function [73].

The pooling layer follows the convolutional layer and “summarize” the feature

maps by sub-sampling. The pooling layer takes a small region of the feature map,

typically 4 pixels square, and reduces it to a single pixel with a function. Typically

max pooling is used, the maximum value of the region is used. Other functions such

as average pooling or L2-norm pooling have been used though max pooling has shown

the best results [74] [75].

ConvNets utilize one or more fully connected layers followed by logistic regression

as the last few layers of the network. These layers take the features extracted by the

previous layers and perform the final classification. As with ANNs, all weights are

learned using back-propigation.

5.4 Deep Convolutional Neural Networks Augmen-

tation

Deep neural networks for image recognition are of interest due to their ability to

learn highly complex functions by increasing abstraction with each layer [63] [76].

ConvNets provide a significant advantage over ANNs in deep networks due to the

reduction in the number of parameters to learn, the ability to learn features regardless

of the feature’s position and the ability to preserve spatial locality. These advantages

are not all that can be utilized to improve the ability of deep networks to learn image

classification tasks.
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The convolutional and pooling layers provide a reduction in the number of param-

eters to learn as compared to a fully connect network of the same depth (number of

layers). Still, for a deep network, lets say 10 or more layers, there will be a significant

number of parameters to learn. As the number of parameters increases so does the

number of training samples required to avoid over-fitting [70]. As we have discussed

earlier in this work, the cost of obtaining labeled training samples can be significant.

Since the raw data are being used instead of engineered features, we can increase the

size of the training set with data augmentation [77]. Stated simply, data augmenta-

tion is applying label-preserving transformations to the existing labels images. These

include, but are not limited to, vertical and horizontal reflection [78], rotation, crop-

ping, lens distortion [79], translations and skewing [80]. For each augmented image,

a random combination of transformations with random parameters are chosen. The

augmentation factor, the number of augmented images added per original training

image, of 10 or 20 can easily make a training set in the hundreds a training set in the

thousands.

Data augmentation can also be used at prediction time. Instead of using the

classification results for a single test image, the image can be augmented with each

resultant image also classified. The results can then either be averaged using the

softmax score or a majority vote can be used on the predicted class of each image [78].

While a deep network consists mostly of convolutional and pooling layers, there

are still a few fully connected layers that are susceptible to overfitting due to the

number of parameters. To mitigate the overfitting, a technique called dropout can

be used [73]. Stated simply, dropout works by randomly dropping a fraction of the

fully connected layer’s neurons during training. For each training epoch, a set of

neurons are selected to be ignored and the parameters are updated as normal for

the remaining neurons. This process is repeated, each time selecting a new set of

neurons, as training continues. The act of dropping random neurons each training
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epoch simulates the averaging of predictions made by a large number of networks

without the complexity of creating them [81]. Since the weights for the remaining

neurons were learned with a fraction of the neurons missing, we multiple the neurons

by the fraction of neurons that were dropped out.
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Chapter 6 TissueNet - A Scalable Deep
Learning Framework

6.1 Introduction

Deep learning methods have been applied to histologic image data for mitosis de-

tection [82] [83] [84], identifying regions invasive ductal carcinoma [85] and region

classification in glioblastomas and renal clear cell carcinomas [86]. While the works

provide encouraging results, none addressed the critical issue of scalability, with each

using datasets numbered in the hundreds of objects, nor provide the research com-

munity with readily available open-source tools. With an image dataset consisting of

hundreds of slides, smaller histologic objects such as cell nuclei can easily number in

the hundreds-of-millions, making tools that scale a necessity.

There are a few challenges when working with large whole-slide image datasets:

(i) Commonly available deep learning tools take images as input for both training

a model and using the model to predict. Any image manipulation such as resizing

must be done as a preprocessing step, this include extracting regions of interest from

whole-slide images which could number in the millions per slide. Some currently

available tool will either read each image individually or require another preprocessing

step to package the images together. (ii) Training set size — As we have shown

earlier, obtaining labeled examples is a costly task. Due to the complexity of deep

convolutional neural networks, more labeled examples are needed than a classifier

such as a Random Forest or support vector machine. (iii) Volume of data — To

efficiently process hundreds of slides, which can contain over three hundred million

nuclei in the case of low grade glioma dataset, the system must be able to leverage

multiple cores, GPUs and servers.
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To address these challenges, we have developed TissueNet, a scalable deep learning

software framework for the classification of histologic objects. TissueNet provides a

complete end-to-end pipeline for training and predicting that includes preprocessing

steps such as data augmentation, laplacian pyramids for multi-resolution networks

and grayscale conversion. Its parallel architecture takes advantage of modern multi-

core and multithreaded hardware and has support for multiple GPUs for prediction.
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6.2 Architecture

6.2.1 Nuclear Detection and Image Normalization

While Deep learning methods eliminate the need for image segmentation, the

histomic objects of interest first need to be extracted from the whole-slide image and

cropped to a specific size. Instead of segmentation we use a nuclear detection pipeline,

which locates the nuclei within the image and calculates the location of its centroid.

The centroids are then used to guide the extraction tool described in the next section.

The nuclear detection pipeline utilizes algorithms provided by the HistomicsTK

library for histologic image analysis. The pipeline follows the same general steps as

the segmentation pipeline describe in section 3.2.3. Images are color normalized to

a standard, then color deconvolution is used to create a binary mask of the location

of pixels corresponding to cell nuclei. The mask is used by a constrained Laplacian

of Gaussian (LoG) filter which produces a scale-selective peak response at the center

of each object. The LoG filter response is then used, along with a binary mask, by

a max clustering algorithm which identifies the local maximum for each pixel in the

nuclear mask. From these local maximum the centroids of the nuclei are calculated.

Unlike the segmentation pipeline, no further processing is needed. The advantage

of this method is that it is able to discern multiple nuclei that are clustered tightly

together.

6.2.2 Software

TissueNet is composed of a set of 4 tools: tn dataset convert, tn slide convert,

tn train and tn predict. Internally, each of the tools are structured as a directed

acyclic graph (DAG) with each node of the graph performing a single task such as

reading, writing, training, augmentation, prediction, etc. This architecture provides

two advantages. First, each node can execute in parallel, allowing the system to

scale to massive datasets numbering in the hundreds-of-millions. As currently imple-
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Figure 6.1: Nuclear segmentation

Even though the nuclei a packed closely together, the nuclear detection algorithm correctly detect
2 nuclei whereas the segmentation algorithm detect 1.



63

mented, each node runs in its own thread on the same server. However, this can be

easily expanded to allow nodes to run on multiple servers for much greater scalability.

Secondly, the DAG architecture allows processing tasks to be easily enabled, disabled

and ordered as needed for conversion, training or prediction of a particular dataset.

This includes having multiple nodes running the same task on different segments of

data, providing both task and data parallelism.

The two tools, tn dataset convert and tn slide convert, are used in a one-time

preprocessing step to prepare a dataset for use in TissueNet. The objects we are

interested in analyzing on the whole-slide image need to be extracted from the image.

The extraction process is quite time consuming as it needs to decompress the entire

image and extract the regions of interest. Rather than repeat the extraction process

every time an analysis is run, TissueNet stores the objects in a “packed” format in

which each extracted region of interest is sequentially stored one after another in the

file. This “packed” format allows the system to read in large chunks of data from

the disk in a very efficient and fast manner. Preparing a single slide image for use

in TissueNet is accomplished with the tn convert slide tool. The image file and a list

of object centroids is provided as input, while the size of the extracted area defaults

to 48 by 48 pixels but can be optionally set to another size. The tn convert dataset

tool is used to convert training sets obtained from the HistomicsML system where the

objects of interest each have a label and originate from multiple slides. Both tools

save the data in an HDF5 [87] file format.

The tn train and tn predict tools are, as their names imply, used for training and

predicting. These tools utilize the Caffe library [88] for their convolutional neural

network implementations. To facilitate the DAG structure of our tools, we utilize the

low-level API of Caffe and have implemented our own solver wrapper to support the

online nature of the DAG, allowing the tools to scale beyond the available system

and GPU memory. To define the network architecture, Caffe uses Google’s protocol
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buffers (protobuf). The protobuf files are plain text files which are parsed at run-

time. This allows network flexibility without the need for code modification as long

as the input and output of the network is compatible with TissueNet.

The training and prediction tools provide additional functionality that is either

readily available through run-time parameters or can be added with simple code mod-

ification. Of these, data augmentation is the most prominent. The data augmentation

functionality takes an input image and creates duplicate samples by applying a series

of transforms to the image. The number and types of transforms are selected at ran-

dom and include: rotation, horizontal and vertical flip, rotation, shear, scaling and

translation. The number of new samples generated defaults to 10 for training and

3 for prediction and can be changed by a run-time parameter. For prediction, each

sample, the original and the augmentation derived, are run on a separate GPU.

Other functionality available as run-time parameters: grayscale — converts the

input image to grayscale; multi-resolution — uses two images of the same object

at different magnification levels; H&E deconvolution — instead of RGB channels,

separate the Hematoxylin and Eosin components for the input channels. Additionally,

a Laplacian pyramid node is available for another type of multi-resolution technique

and requires code modification to enable.

6.2.3 Networks

While TissueNet can use any network architecture, the dataset will dictate the

specific architecture to use. For our data, we needed a model that works well classify-

ing cell nuclei. Instead of trial and error, we compared a basic network architecture,

LeNet [71], with VGGNet — a few very deep models from Karen Simonyan and An-

drew Zisserman [89] and another popular architecture: AlexNet developed by Alex

Krizhevsky, Ilya Sutskever and Geoffrey E. Hinton [78].

LeNet–5 is a convolutional network designed for handwritten and machine printed



65

Read Augment

Predict

Predict

Predict

Predict

Average
scores

1012 Bytes
4	x	1012 Bytes108 Images
4	x	108 Images

Figure 6.2: TissueNet prediction

TissueNet is capable of predicting hundreds of millions of nuclear objects. The system reads a slide’s
worth of 48 x 48 images from disk and sends them to the augmentation node. Using an augmentation
factor of 3, four images (one original and three augmented) are sent to the four prediction nodes.
Each of the processing nodes runs in its own thread ensuring that data will be ready for the prediction
nodes as they complete processing the current batch of data. As the prediction nodes are predicting
one batch of data, the read and augmentation nodes are preparing another.
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character recognition. With 4 weight layers, It is composed of 2 convolutional layers

each followed by a pooling layer. The convolutional and pooling layers are followed

by two fully connected layers with a RelU activation as the output of the first and

softmax for the output of the second. It is interesting to note that for this model,

there are no RelU’s on the output of the convolutional layers as we will see in the

other models.

AlexNet was the winner of the 2012 ImageNet Large-Scale Visual Recognition

Challenge (ILSVRC) http://www.image-net.org/challenges/LSVRC/. It is composed

of 8 weight layers with 5 convolutional and 3 fully connected. The first 2 convolu-

tional layers are followed by overlapping pooling layers with RelU activation and local

response normalization (LRN). The LRN helps keep highly “excited” neurons from

spilling over into neighboring neurons since RelU’s have unbounded activations. The

idea is preserve high-frequency components within the receptive fields. The next 3

convolutional layers are connected directly together with RelU’s for activation with-

out max pooling. The last convolutional layer is followed by a max pooling layer. The

final 3 layers are fully connected with RelU activations and the final output utilizes

softmax. Of note in this model is its use of dropout in the fully connected layers.

VGGNet is actually a set of architectures ranging from 11 to 19 weight layers. It

was the second place finisher for the 2014 ILSVRC event. They are similar to AlexNet

though have more weight layers. Distinguishing weight layers is important because

it determines the number of parameters that need to be learned. As with AlexNet,

VGGNet utilizes convolutional layers with RelU activation and max pooling. What

differs is the lack of pooling between sets of the convolutional layers. While AlexNet

uses this technique for its last 3 convolutional layers, VGGNet uses it throughout.

The idea is that large receptive fields can be replaced by successive layers of 3x3

convolutions. This reduces the number of weights needed to learn. For instance,

a 7x7 convolutional layer with F feature maps needs 49F 2 weights. While three
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successive 3x3 convolutional layers need only 27F 2 weights, while covering the same

7x7 receptive field.

6.3 Results

We used the same 360 million cell nuclei from 781 images (464 tumors) from

The Cancer Genome Atlas Lower Grade Glioma (LGG) project as for HistomicsML

validation. The 135 sample training set for vascular endothelial cell nuclei (VECN)

and the 2479 labels cell nuclei from 67 slides for the validation set were also used. See

section 3.3 for a description. All test were run on a 12-core /24 thread server with

128 GigaBytes of RAM and 2 Nvidia K–80 GPUs.

To compare accuracy between network models, we trained each network using an

augmentation factor from 10 to 60 in increments of 10. We then applied the network

to the 2479 sample validation set using an augmentation factor of 4. The training

and prediction were run 10 times and we took the mean of the runs. The results can

be seen in Figure 6.3.

AlexNet with an augmentation factor of 60 performed the best in accuracy overall.

LeNet was removed from the comparison due to its inability to converge while training

at any augmentation factor. We reason that the inability to converge is due to the

nature of the nuclei images. Rather than detecting objects, we believe the networks

must behave more like texture detectors. Since LeNet was developed for handwriting

and machine printed character detection, which has very sharp edges, it was most

likely unable to discern any patterns in the nuclei images. AlexNet also outperformed

in training time relative to the other networks at the same augmentation factor.

Intuitively, as the augmentation factor and the number of weight levels in the network

increased the execution time for prediction also increased. Surprisingly, the VGGNet

models decreased in accuracy as the augmentation factor increased. Since they all

share the same 3 x 3 layered filter approach for the first layer as oppose to AlexNet’s
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Figure 6.3: TissueNet VECN classification results

We trained 6 networks on our 2479 VECN validation set. LeNet was unable to converge while training
so it is excluded from these graphs. (A) Each model performed similarly for augmentation factors
of 10 and 20. As the augmentation factor increased the VGGNet models decreased in accuracy. (B)
Training time was linear for all but the 19 weight layer VGGNet. (C) AlexNet with an augmentation
factor of 60, achieved an accuracy of 92.2% and an AUC of 0.9712.



69

11 x 11, we believe the larger filter in AlexNet is better suited for our application.

This may be due to the reduction in weights for the initial layer. While the 2 layers

3 x 3 convolution filters effectively act as a 5 x 5 filter, for the nuclei images a larger

convolution may be needed. Again, this is may be due to our application being more

of texture detection rather than object. Training time wast linear for most models,

the only exception is the 19 layer VGGNet model. We are unsure of the nature of

the slowdown, though overheating seems unlikely as the 16 layer VGGNet ran for a

longer period of time. This is still an open question.

Comparing the results to the random forest classifier, we see an improvement of

87.4% to 92.2% and 0.9643 to 0.9712 for AUC. Though we used an augmentation

factor of 60 to achieve the increase in accuracy, we still only need the 135 labeled

samples. This is another benefit of TissueNet, the image augmentation capability

reduces the number of samples needed.

To demonstrate TissueNet’s ability to process large datasets, we classified 3,319,414,

three-channel color mages, at 48 x 48 pixels, of cell nuclei with the VGG–16 network.

Total run time was 17,840.64 seconds (4 hours 57 minutes) to read, augment and

classify all images. This is a processing rate of 5.4 milliseconds per image or 5946.88

seconds (1 hour 39 minutes) per slide of 1.1 million nuclei. For comparison, our initial

proof of concept for classifying cell nuclei utilized an existing deep learning toolkit

and took over 6 hours to process a single slide.
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Chapter 7 Discussion and Future Work

7.1 Discussion

HistomicsML enables biomedical investigators to extract phenotypic information

from large whole-slide imaging datasets by addressing the unique challenges presented

by the scale and nature of this data. HistomicsML is open-source, and is available as

a software container for convenient deployment.

We trained a highly accurate endothelial cell classifier (AUC=0.9643) by labeling

only 135 cell nuclei using active learning. The visualization and learning capabilities

of HistomicsML simplifies the training process for experts by enabling them to rapidly

label objects for training and to re-train and review classification rules in seconds. The

web-based interface provides access to terabytes of image data, and new technology

enables fluid and seamless display of image analysis boundaries and class predictions

associated with hundreds of millions of histologic objects. Active learning methods

direct label to objects that provide the most training benefit, improving training

efficiency by minimizing the labeling of redundant objects. Scalable implementations

of both machine-learning algorithms and visualization software enable this system to

operate efficiently on very large datasets.

Using our endothelial classifier, we accurately predicted survival in glioma patients

with validated measurements of microvascular phenotypes. We identified significant

associations between microvascular phenotypes, grade, and recently defined molecular

subtypes of gliomas. These investigations are timely in the current era of precision

medicine, in which prognostic biomarkers have not been established within newly

emergent molecular subtypes of diseases such as the diffuse gliomas. While it has

long been established that angiogenesis is related to disease progression in gliomas,
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we showed that HistomicsML can be used to measure subtle changes in microvascular

phenotypes that perform as well as grade in predicting survival. Integration with

genomic data identified recognized molecular pathways associated with angiogenesis,

and more interesting subtype-specific pathways that are enriched with phenotype-

correlated genes.

Our analysis of gliomas is a template for how HistomicsML can be used to link

histology, clinical and genomic data to explore the prognostic and molecular associa-

tions of histologic phenotypes in other diseases. Images of histology contain important

information that can be difficult or impossible to ascertain through genomic assays.

Recent developments in the deconvolution of gene expression data can accurately es-

timate the abundance or fractional proportions of cell types in a sample, but these

approaches cannot provide spatial or morphologic information that often contains con-

siderable prognostic or scientific value. While molecular phenomena drive phenotypes,

quantitative histologic analysis provides more immediate readouts of information that

are difficult or impossible to obtain from genomic profiling. Additionally, we showed

how active learning improved prognostication and agreement between histologic and

molecular markers for VECNs.

TissueNet is was shown to improve classification accuracy over Random Forests

using the same training set. Utilizing the AlexNet architecture with an augmentation

factor of 60, we were able to obtain an accuracy of 92.24% on our validation set

compared to 87.4% achieved by the Random Forest. The deep learning methodology

also assists in the idea of reducing cost by reducing the number of labeled samples

needed in the training set as image augmentation was shown to provide an increase in

performance in AlexNet. As with HistomicsML, TissueNet is open-source and freely

available.
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7.2 Future work

Future development of HistomicsML will focus on enabling the analysis of re-

gion/patch-based data and improving scalability for larger datasets. The analysis

of image patches characterized by texture analysis or autoencoders can address the

classification of complex multicellular structures while avoiding the need for explicit

segmentation and is a simple extension of HistomicsML. The memory footprint of

feature data is currently a limitation that prevents HistomicsML from scaling to

larger datasets. We plan to improve memory management, and to utilize commodity

graphics processors to enable HistomicsML to run on workstation class systems.

Currently, HistomicsML is limited to binary classifiers so support for multi-class

is forthcoming. While multi-class sup[port is a trivial change for the learning server,

the challenge is in the user interface. Double clicking in the selection page may work

for a few labels but will get tedious for more than five. How to cleanly incorporate

selecting multiple labels with limited screen real estate is a human-computer interface

problem.

Region classification is another anticipated addition to HistomicsML. Instead of

single cell nuclei, we look to classify regional structures within the whole-slide image

such as necrosis, angiogenesis and immune response. While a naive implementation

of dividing the whole-slide image into bigger sections and keeping the system as-is

may work to some extent, these regions are not naturally rectangular and vary widely

in size. Challenges arise for both the user interface and for learning algorithms. Deep

learning is an excellent choice for this type of classification but the slow training time

makes them unfeasible.

TissueNet is in its nascency, with many avenues of research open. Of particular

concern is training time, with the fastest network taking over seven minutes to train

1350 samples of 48 x 48 pixel images. The ability to perform classification with

significantly larger images may be handicapped by such long training times. This is
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of importance in the analysis of image patches for multicellular structures, where the

sizes are around 1024 x 1024 pixels. One promising solution is using multiple GPU’s

for training.

Another interesting area of exploration is in image segmentation. There has been

some work in the literature that utilizes deep learning to segment objects within an

image using fully convolutional networks. The challenge for whole-slide pathology

images , besides their sheer size, is the lack of “high-frequency” boundaries. That

is, the objects we are interested in typically do not have well-defined edges as say a

car on a street would. In fact, if looking for historic structures as, pseudopalisading

necrosis, there is no definitive boundary delineating the structure. For whole-slide

images, the image segmentation needs to be more of a texture segmentation.

Multi-Resolution functionality support is area that may be useful for classification

of object types that tend to “clump” together. Utilizing a high and low magnification

image together, the network can use the local structure in the low-res image to improve

classification. The ability to take a low-res image and extract a high-res section from

the center already exists in TissueNet, but showed a decline in accuracy. Using multi-

resolution tiff images may be of use.

Scaling TissueNet further is another area ripe for enhancement. Currently, Tis-

sueNet runs on a single server, with each node of the DAG running in its own thread.

Scaling to multiple servers, utilizing network communication between the nodes, will

allow a single node to use multiple threads without degrading the other nodes in

the DAG. This will be of more significance for classification of large image patches,

especially in the augmentation nodes.
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Schwarz, C. Curtis, M. J. Dunning, H. Bardwell, et al., “Quantitative im-
age analysis of cellular heterogeneity in breast tumors complements genomic
profiling,” Science translational medicine, vol. 4, no. 157, 157ra143–157ra143,
2012.

[16] W. C. Rutledge, J. Kong, J. Gao, D. A. Gutman, L. A. Cooper, C. Appin,
Y. Park, L. Scarpace, T. Mikkelsen, M. L. Cohen, et al., “Tumor-infiltrating
lymphocytes in glioblastoma are associated with specific genomic alterations
and related to transcriptional class,” Clinical Cancer Research, vol. 19, no. 18,
pp. 4951–4960, 2013.

[17] L. A. Cooper, D. A. Gutman, C. Chisolm, C. Appin, J. Kong, Y. Rong, T.
Kurc, E. G. Van Meir, J. H. Saltz, C. S. Moreno, et al., “The tumor mi-
croenvironment strongly impacts master transcriptional regulators and gene
expression class of glioblastoma,” The American journal of pathology, vol. 180,
no. 5, pp. 2108–2119, 2012.

[18] M. Nalisnik, D. A. Gutman, J. Kong, and L. A. Cooper, “An interactive learn-
ing framework for scalable classification of pathology images,” in Big Data (Big
Data), 2015 IEEE International Conference on, IEEE, 2015, pp. 928–935.

[19] L. A. Cooper, J. Kong, D. A. Gutman, W. D. Dunn, M. Nalisnik, and D. J.
Brat, “Novel genotype-phenotype associations in human cancers enabled by
advanced molecular platforms and computational analysis of whole slide im-
ages,” Laboratory investigation, vol. 95, no. 4, pp. 366–376, 2015.

[20] M. Nalisnik, M. Amgad, S. Lee, J. V. Vega, D. J. Brat, D. A. Gutman, and
L. A. D. Cooper, “Rapid interactive phenotyping in large histomic datasets
with active learning,” Submitted, 2017.

[21] M. Kubat, S. Matwin, et al., “Addressing the curse of imbalanced training
sets: One-sided selection,” in ICML, vol. 97, 1997, pp. 179–186.



76

[22] B. Settles, “Active learning,” Synthesis Lectures on Artificial Intelligence and
Machine Learning, vol. 6, no. 1, pp. 1–114, 2012.

[23] D. Cohn, L. Atlas, and R. Ladner, “Improving generalization with active learn-
ing,” Machine learning, vol. 15, no. 2, pp. 201–221, 1994.

[24] A. J. Joshi, F. Porikli, and N. Papanikolopoulos, “Multi-class active learning
for image classification,” in Computer Vision and Pattern Recognition, 2009.
CVPR 2009. IEEE Conference on, IEEE, 2009, pp. 2372–2379.

[25] B. Settles, “Active learning literature survey,” University of Wisconsin, Madi-
son, vol. 52, no. 55-66, p. 11, 2010.

[26] D. Angluin, “Queries and concept learning,” Machine learning, vol. 2, no. 4,
pp. 319–342, 1988.

[27] L. E. Atlas, D. A. Cohn, and R. E. Ladner, “Training connectionist networks
with queries and selective sampling,” in Advances in neural information pro-
cessing systems, 1990, pp. 566–573.

[28] D. D. Lewis and W. A. Gale, “A sequential algorithm for training text classi-
fiers,” in Proceedings of the 17th annual international ACM SIGIR conference
on Research and development in information retrieval, Springer-Verlag New
York, Inc., 1994, pp. 3–12.

[29] F. Laws and H. Schätze, “Stopping criteria for active learning of named entity
recognition,” in Proceedings of the 22nd International Conference on Com-
putational Linguistics-Volume 1, Association for Computational Linguistics,
2008, pp. 465–472.

[30] M. Bloodgood and K. Vijay-Shanker, “A method for stopping active learning
based on stabilizing predictions and the need for user-adjustable stopping,” in
Proceedings of the Thirteenth Conference on Computational Natural Language
Learning, Association for Computational Linguistics, 2009, pp. 39–47.

[31] F. Olsson and K. Tomanek, “An intrinsic stopping criterion for committee-
based active learning,” in Proceedings of the Thirteenth Conference on Com-
putational Natural Language Learning, Association for Computational Linguis-
tics, 2009, pp. 138–146.

[32] S. Dasgupta, “Two faces of active learning,” Theoretical computer science, vol.
412, no. 19, pp. 1767–1781, 2011.

[33] N. Kutsuna, T. Higaki, S. Matsunaga, T. Otsuki, M. Yamaguchi, H. Fujii, and
S. Hasezawa, “Active learning framework with iterative clustering for bioimage
classification,” Nature communications, vol. 3, p. 1032, 2012.

[34] Z. Wang, C. D. Monteiro, K. M. Jagodnik, N. F. Fernandez, G. W. Gundersen,
A. D. Rouillard, S. L. Jenkins, A. S. Feldmann, K. S. Hu, M. G. McDermott, et
al., “Extraction and analysis of signatures from the gene expression omnibus
by the crowd,” Nature communications, vol. 7, 2016.



77

[35] R. D. King, K. E. Whelan, F. M. Jones, P. G. Reiser, C. H. Bryant, S. H.
Muggleton, D. B. Kell, and S. G. Oliver, “Functional genomic hypothesis gen-
eration and experimentation by a robot scientist,” Nature, vol. 427, no. 6971,
pp. 247–252, 2004.

[36] B. Zhang, Y. Wang, and F. Chen, “Multilabel image classification via high-
order label correlation driven active learning,” IEEE Transactions on Image
Processing, vol. 23, no. 3, pp. 1430–1441, 2014.

[37] D. H. Nguyen and J. D. Patrick, “Supervised machine learning and active
learning in classification of radiology reports,” Journal of the American Medical
Informatics Association, vol. 21, no. 5, pp. 893–901, 2014.

[38] L. Breiman, “Random forests,” Machine learning, vol. 45, no. 1, pp. 5–32,
2001.

[39] J. Friedman, T. Hastie, and R. Tibshirani, The elements of statistical learning.
Springer series in statistics Springer, Berlin, 2001, vol. 1.

[40] K. Martinez and J. Cupitt, “Vips-a highly tuned image processing software ar-
chitecture,” in Image Processing, 2005. ICIP 2005. IEEE International Con-
ference on, IEEE, vol. 2, 2005, pp. II–574.

[41] A. Goode, B. Gilbert, J. Harkes, D. Jukic, M. Satyanarayanan, et al., “Openslide:
A vendor-neutral software foundation for digital pathology,” Journal of pathol-
ogy informatics, vol. 4, no. 1, p. 27, 2013.

[42] T. Hastie and W. Stuetzle, “Principal curves,” Journal of the American Sta-
tistical Association, vol. 84, no. 406, pp. 502–516, 1989.

[43] W. S. Cleveland, “Robust locally weighted regression and smoothing scat-
terplots,” Journal of the American statistical association, vol. 74, no. 368,
pp. 829–836, 1979.

[44] B. W. Silverman, “Some aspects of the spline smoothing approach to non-
parametric regression curve fitting,” Journal of the Royal Statistical Society.
Series B (Methodological), pp. 1–52, 1985.
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M.-F. Hamou, C. Rüegg, R. Stupp, M. Delorenzi, and M. E. Hegi, “Modulation
of angiogenic and inflammatory response in glioblastoma by hypoxia,” PloS
one, vol. 4, no. 6, e5947, 2009.

[56] M. Felcht, R. Luck, A. Schering, P. Seidel, K. Srivastava, J. Hu, A. Bartol,
Y. Kienast, C. Vettel, E. K. Loos, et al., “Angiopoietin-2 differentially regu-
lates angiogenesis through tie2 and integrin signaling,” The Journal of clinical
investigation, vol. 122, no. 6, pp. 1991–2005, 2012.

[57] J. Dufraine, Y. Funahashi, and J. Kitajewski, “Notch signaling regulates tumor
angiogenesis by diverse mechanisms,” Oncogene, vol. 27, no. 38, pp. 5132–5137,
2008.

[58] N. M. Kofler, C. J. Shawber, T. Kangsamaksin, H. O. Reed, J. Galatioto, and
J. Kitajewski, “Notch signaling in developmental and tumor angiogenesis,”
Genes & cancer, vol. 2, no. 12, pp. 1106–1116, 2011.

[59] W. Chen, T. Tang, J. Eastham-Anderson, D. Dunlap, B. Alicke, M. Nannini,
S. Gould, R. Yauch, Z. Modrusan, K. J. DuPree, et al., “Canonical hedge-
hog signaling augments tumor angiogenesis by induction of vegf-a in stromal
perivascular cells,” Proceedings of the National Academy of Sciences, vol. 108,
no. 23, pp. 9589–9594, 2011.

[60] M.-J. Goumans, Z. Liu, and P. Ten Dijke, “Tgf-beta signaling in vascular
biology and dysfunction,” Cell research, vol. 19, no. 1, pp. 116–127, 2009.



79

[61] E. Dejana, “The role of wnt signaling in physiological and pathological angio-
genesis,” Circulation research, vol. 107, no. 8, pp. 943–952, 2010.

[62] Y. Al-Kofahi, W. Lassoued, W. Lee, and B. Roysam, “Improved automatic
detection and segmentation of cell nuclei in histopathology images,” IEEE
Transactions on Biomedical Engineering, vol. 57, no. 4, pp. 841–852, 2010.

[63] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, no.
7553, pp. 436–444, 2015.

[64] W. S. McCulloch and W. Pitts, “A logical calculus of the ideas immanent
in nervous activity,” The bulletin of mathematical biophysics, vol. 5, no. 4,
pp. 115–133, 1943.

[65] R. Rojas, Neural networks: A systematic introduction. Springer Science & Busi-
ness Media, 2013.

[66] F. Rosenblatt, “The perceptron: A probabilistic model for information storage
and organization in the brain.,” Psychological review, vol. 65, no. 6, p. 386,
1958.

[67] M. Minsky and S. Papert, “Perceptrons.,” 1969.

[68] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations
by back-propagating errors,” Cognitive modeling, vol. 5, no. 3, p. 1, 1988.

[69] G. Hinton, L. Deng, D. Yu, G. E. Dahl, A.-r. Mohamed, N. Jaitly, A. Senior,
V. Vanhoucke, P. Nguyen, T. N. Sainath, et al., “Deep neural networks for
acoustic modeling in speech recognition: The shared views of four research
groups,” IEEE Signal Processing Magazine, vol. 29, no. 6, pp. 82–97, 2012.

[70] G. James, D. Witten, T. Hastie, and R. Tibshirani, An introduction to statis-
tical learning. Springer, 2013, vol. 6.

[71] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86, no. 11,
pp. 2278–2324, 1998.

[72] D. H. Hubel and T. N. Wiesel, “Receptive fields, binocular interaction and
functional architecture in the cat’s visual cortex,” The Journal of physiology,
vol. 160, no. 1, pp. 106–154, 1962.

[73] G. E. Dahl, T. N. Sainath, and G. E. Hinton, “Improving deep neural networks
for lvcsr using rectified linear units and dropout,” in 2013 IEEE International
Conference on Acoustics, Speech and Signal Processing, IEEE, 2013, pp. 8609–
8613.

[74] Y.-L. Boureau, J. Ponce, and Y. LeCun, “A theoretical analysis of feature pool-
ing in visual recognition,” in Proceedings of the 27th international conference
on machine learning (ICML-10), 2010, pp. 111–118.

[75] Y.-L. Boureau, F. Bach, Y. LeCun, and J. Ponce, “Learning mid-level features
for recognition,” in Computer Vision and Pattern Recognition (CVPR), 2010
IEEE Conference on, IEEE, 2010, pp. 2559–2566.



80

[76] Y. Bengio, A. Courville, and P. Vincent, “Representation learning: A review
and new perspectives,” IEEE transactions on pattern analysis and machine
intelligence, vol. 35, no. 8, pp. 1798–1828, 2013.

[77] K. Sohn and H. Lee, “Learning invariant representations with local transfor-
mations,” ArXiv preprint arXiv:1206.6418, 2012.

[78] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with
deep convolutional neural networks,” in Advances in neural information pro-
cessing systems, 2012, pp. 1097–1105.

[79] R. Wu, S. Yan, Y. Shan, Q. Dang, and G. Sun, “Deep image: Scaling up image
recognition,” ArXiv preprint arXiv:1501.02876, vol. 7, no. 8, 2015.

[80] P. Y. Simard, D. Steinkraus, and J. C. Platt, “Best practices for convolutional
neural networks applied to visual document analysis.,” in ICDAR, vol. 3, 2003,
pp. 958–962.

[81] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. R. Salakhut-
dinov, “Improving neural networks by preventing co-adaptation of feature de-
tectors,” ArXiv preprint arXiv:1207.0580, 2012.
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