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ABSTRACT 

Development of a Novel Risk Prediction Model in Acute Respiratory Distress Syndrome 
Utilizing Pulmonary Physiologic Parameters 

By Joshua Detelich 
 

Introduction: Acute Respiratory Distress Syndrome (ARDS) is a condition that develops rapidly 
in response to a primary critical illness and leads to respiratory failure that requires mechanical 
ventilation to support. It has a mortality rate of 40% and there are no direct acting pharmacologic 
treatments. The limited interventions available are underutilized because clinicians lack a tool to 
predict early pulmonary outcomes for risk stratification and therapy selection. Our aim was to 
create a model predicting pulmonary worsening at 48 hours with a composite outcome of death or 
lack of improvement in both positive end expiratory pressure and fraction of inspired oxygen in a 
cohort of ARDS network trial participants. 
Methods: We conducted a secondary data analysis of nine randomized control trials from the 
ARDS network. Participants were excluded if they were in a study arm that is no longer standard 
of care, had incomplete data or co-enrolled in more than one of the studies. Participants were 
randomly divided into derivation (70%) and validation (30%) cohorts. Multivariable logistic 
regression with automatic backward selection on readily available clinical, demographic, and 
pulmonary parameters was used to derive an initial model which was then refined through various 
methods. The final model was assessed using the area under a receiver operating curve (AUC) in 
both the derivation and validation cohort. 
Results: The derivation cohort had 762 participants while the validation had 334. 461 (60.5%) of 
the participants in the derivation cohort experienced the outcome with only 4.1% due to death in 
the first 48 hours. The final derived model included oxygen saturation index, driving pressure, 
acute hepatic failure, history of hematologic malignancy and history of chronic pulmonary disease 
as its covariates. Efforts to refine the model made no significant improvements. The AUC was 
0.643 on the derivation cohort and 0.641 on the validation set. A probability cutpoint of 0.56 could 
be used for a sensitivity of 76.8% and specificity of 37.5%. 
Conclusions: A predictive model was created for a novel pulmonary outcome which used only 
readily available clinical parameters. However, it only had modest predictability and did not meet 
clinically significant sensitivity and specificity thresholds. 
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INTRODUCTION 
 

Acute Respiratory Distress Syndrome (ARDS) is a rapidly developing condition 

that leads to respiratory failure for which a patient requires a mechanical ventilator to 

support the functions of the pulmonary system (1). ARDS accounts for roughly 10% of all 

intensive care unit (ICU) patients and still today, has a mortality rate of 30-40% (2-4). 

Those that survive have significantly longer ICU stays associated with more severe 

morbidity compared to ICU patients that do not develop ARDS (3). Currently, there are no 

direct acting pharmacologic therapies, and all interventions are aimed at supporting 

pulmonary function while attempting to reduce rates of ventilator-induced injuries (1). 

Despite limited therapeutic options, there exists remarkable variation in practice and 

underutilization of even potentially lifesaving interventions such as prone ventilation (5). 

One potential explanation is that the clinical criteria to identify ARDS are sensitive but not 

specific, and therefore capture a patient population that includes those without ARDS who 

recover pulmonary function rapidly. The lack of any tool for a clinician to predict the early 

course for an ARDS patient may lead to a “wait and see” approach which delays 

implementation of any intervention to avoid exposing the patient to unnecessary risks and 

cost.  

Current risk stratification models in ARDS all aim to predict mortality, and while 

some do perform quite well in this regard, they have not gained traction in stratifying 

clinical care early in a patient’s trajectory (Table 1) (6-10). This could be from the 

observation that most patients with ARDS do not die directly from pulmonary failure but 

rather multiorgan failure after a prolonged ICU stay (11). Therefore, they do not help the 

clinician decide if more aggressive pulmonary interventions are warranted. A predictive 
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model focused on early pulmonary specific outcomes could help make this decision and 

overall improve utilization of these interventions.  

The overall aim of this thesis project is to develop a model in a cohort of patients 

from the ARDS network trials that can predict those who will fail to have improvement in 

pulmonary status at 48 hours post diagnosis through a composite of death and change in 

positive end-expiratory pressure (PEEP) and fraction of inspired oxygen (FiO2) using 

readily available clinical variables including pulmonary physiologic parameters. The 

hypothesis for the final model is that early pulmonary worsening prediction would be aided 

by the inclusion of parameters of pulmonary physiology and a threshold of 80% sensitivity 

and 50% specificity could be reached. The model was created using multivariable logistic 

regression on a derivation cohort and tested against a separate validation cohort. The 

primary goal of the model is to aid clinicians in implementation of ARDS interventions 

and secondarily could potentially be used to aid future therapeutic trials research for cohort 

enrichment. Since the primary purpose was to aid clinicians, it was important that the final 

model be easily used clinically. As such, all variables included in the analysis are those 

readily available and previously described without any additional invasive testing required. 
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BACKGROUND 

ARDS, first described in 1967, is a condition that only occurs secondary to a 

primary critical illness that acutely leads to pulmonary failure necessitating the use of 

mechanical ventilation for support (1). Generally, a patient will present for a life-

threatening illness that causes a significant inflammatory response (i.e. sepsis, pneumonia, 

trauma, pancreatitis, etc.) and within a few days of onset, a maladaptive response to this 

inflammation damages the epithelial barrier of the alveoli, flooding the lung with 

proteinaceous fluid, profoundly altering respiratory mechanics and ultimately leading to 

inability to maintain adequate gas exchange (2). Nearly 25% of all ICU patients requiring 

mechanical ventilation develop or already have ARDS and still today, 30-40% of them die 

(3, 4). 

Lung biopsy is the gold standard to diagnose ARDS, however since the risk of this 

is prohibitive in critically ill patients, clinicians rely on a set of clinical criteria which has 

evolved over the past 50 years. The current iteration is called the Berlin Criteria which was 

developed by an expert panel in 2012 (12, 13). The main goal of the panel was to improve 

clinical feasibility of the criteria to ultimately increase early recognition of ARDS. While 

the Berlin Criteria did make considerable efforts towards increasing identification of 

ARDS, it continued to rely on the ratio of dissolved oxygen in the blood to the fraction of 

inspired oxygen (PaO2/FiO2) as the sole predictor of severity by increased rates of 

mortality (12). Other risk stratification models have been created with improved 

performance, but still aim to predict overall mortality (Table 1) (6-10). Despite the 

improved predictability of these models, the Berlin Criteria remains the de facto risk 

stratification tool through use of PaO2/FiO2 for both clinicians and researchers alike due 
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to its simplicity. 

Therapy for ARDS is limited and is focused on supporting the functions of the lung 

while reducing iatrogenic harm from the ventilator. Respiratory function is supported by 

the mechanical ventilator by offloading the workload from the patient and improving 

oxygen levels in the blood by increasing PEEP and FiO2. Ventilator induced lung injury 

can be limited through use of low tidal volume ventilation, a conservative fluid 

management strategy, neuromuscular blockade, and prone ventilation. There have been 

many direct pharmacologic agents tested, but to this day, none have shown clinically 

important outcomes (1). In a landmark study that shifted the paradigm of ARDS 

management, the ARMA trial showed that by using low tidal volume ventilation mortality 

was 31.0% compared to 39.8% (RR 0.78, p=0.007) in the control group (14). The FACTT 

trial showed that by limiting fluid administration, there was an increase in ventilator-free 

days (14.6±0.5 vs. 12.1±0.5, P<0.001) and ICU-free days (13.4±0.4 vs. 11.2±0.4, P<0.001) 

(15, 16). These two interventions carry no significant risk or increase in resource 

utilization, so have been widely accepted. In the PROSEVA trial, early implementation of 

prone ventilation demonstrated a reduction in mortality, with 16.0% vs 32.8% in the control 

group (HR 0.39; 95% CI 0.25-0.63; P<0.001; NNT=6) (17). Lastly, the ACURASYS trial 

found that with early neuromuscular blockade for 48 hours there was a mortality of 31.6% 

vs 40.7% in the control (RR 0.68; 95% CI 0.48-0.98; P=0.04; NNT=11) (18). These last 

two trials used a specific indication of PaO2/FiO2 < 150, but despite them both finding 

significant mortality improvement, there is overall underutilization of both interventions 

and more frequently they are implemented late as a rescue therapy rather than early in the 

clinical course (5). This can be partially explained by risks associated with each of these. 
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Prone ventilation positioning requires many trained staff members to turn the patients and 

avoid complications of pressure ulcers, physical injury, and accidental removal of vital 

catheters, chest tubes, and the endotracheal tube (19). Neuromuscular blockade 

significantly increases muscle weakness and requires the use of deep sedation with 

consequences of longer ventilation and more delirium (18). Considering these risks along 

with a lack of ability of clinicians to predict the early course of ARDS, it is understandable 

why there may be hesitation to implement these strategies as they were studied and instead 

opt for a “wait and see” approach. In fact, a recently published retrospective analysis found 

that over 10% of patients in some large, randomized control trials had resolved their ARDS 

within just one day of enrollment (20).  

After being diagnosed with ARDS and placed on a mechanical ventilator, a patient 

usually follows one of three trajectories. Some will get better rapidly and continue a steady 

course of recovery as the aforementioned trial shows while others follow a opposite course 

of rapid decline towards death despite aggressive interventions. The majority lay 

somewhere in between however with perhaps and initial decline but then stabilize out and 

over the coming days to weeks either improve or not. By around 48-72 hours after 

diagnosis, which path a patient is on is usually clear. The patients with the in between 

pathway are the ones where theoretically there is a chance that early implementation of an 

intervention like prone ventilation may lead to their survival when they otherwise may have 

died. If there was a predictive model to find those that would have failure to improve in 

pulmonary status by 48 hours then these underutilized therapies could be started 1-2 days 

sooner than with the “wait and see” approach. The primary values that are evaluated 

multiple times throughout the day to see if pulmonary function is improving are the PEEP 
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and FiO2 settings on the ventilator, and if both are improving then it is safe to say that a 

patient has experienced pulmonary improvement. 

The ideal model for this use case, would be simple and only utilize readily available 

clinical markers so that it can be easily adopted. Further, the model performance 

characteristics should favor sensitivity as to not miss a patient that may benefit from an 

intervention while tolerating a moderate false positive rate. Other than the usual clinical 

markers of any ICU patient, there have been many readily available pulmonary physiologic 

measures derived to measure the level of impairment in one of the three major categories 

of pulmonary physiology: oxygenation (21-26), dead-space ventilation (27-31), and 

compliance (32, 33). Oxygenation markers are surrogates for the amount of blood passing 

through the lungs inadequately oxygenated, dead-space ventilation measures aim to 

describe the amount of air going to areas in the lung with poor perfusion, and compliance 

markers are a way to understand the stiffness of the lungs. While all the pulmonary markers 

analyzed (Table 2) have been described previously in the literature, they have never been 

used in conjunction to create a predictive model. 
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METHODS 

Hypothesis and Aim 

Our aim for this study was to create a model predicting failure to have pulmonary 

improvement by 48 hours after enrollment into a cohort of randomized control trials from 

the ARDS network using only readily available clinical and pulmonary parameters. We 

hypothesized that such a model would aid clinicians in earlier and more equitable 

implementation of adjunctive therapies for ARDS such that it met sufficient sensitivity and 

specificity thresholds. 

Study Design 

We conducted secondary analyses of data from nine randomized controlled trials 

conducted by the ARDS Network from 1996-2013: ARMA, KARMA, LARMA, 

ALVEOLI, FACTT, ALTA, EDEN, OMEGA, and SAILS (14-16, 34-40). Data from these 

trials was obtained from the National Heart, Lung and Blood Institute (NHLBI) via the 

Biologic Specimen and Data Repository Information Coordinating Center (BioLINCC) 

program.  

Study Characteristics 

The ARDS network had an overarching goal of quickly and efficiently evaluating 

new therapeutics and interventions for patients with ARDS. As such, each trial shared 

many common inclusion and exclusion criteria. Included patients had to meet Berlin 

criteria for diagnosis of ARDS: 1) PaO2/FiO2 <300 while on mechanical ventilation, 2) 

bilateral infiltrates on chest imaging, 3) no clinical evidence of left atrial hypertension. 

Major exclusions were: 1) Age < 18 2) Neurologic conditions that would impair ability to 

wean from a ventilator, 3) severe chronic respiratory disease, 4) extensive burns, and 5) 
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organ transplant patients. Some trials allowed co-enrollment in a factorial design, and each 

is summarized below with more specific detail. 

ARMA, KARMA, and LARMA were three prospective, multicenter, randomized 

control trials that utilized a factorial design to allow enrollment into ARMA plus either 

KARMA or LARMA. A total of 861 participants were enrolled between 1996-1999. 

ARMA compared a traditional ventilation strategy to one targeting lower tidal volume 

while KARMA compared ketoconazole to placebo and LARMA compared lysofylline to 

placebo. KARMA and LARMA found no significant effects in the treatment groups while 

ARMA found a mortality improvement in the low tidal volume group which set a new 

standard of care. 

ALVEOLI was a prospective, multicenter, randomized control trial that enrolled 

549 participants between 1999-2002 and compared a high PEEP strategy to a low PEEP 

strategy. This trial had a different age exclusion of < 13 years old and overall found no 

significant difference in the two ventilator strategies. 

FACTT was a prospective, multicenter, randomized control trial that enrolled 1000 

participants between 2000-2005 and compared a conservative vs liberal fluid management 

strategy. This trial had an age exclusion of < 13 years old and found that there was in 

increase in ventilator free days in those that received a conservative fluid management 

strategy which helped changed the standard of care. 

ALTA was a prospective, multicenter, double-blind, randomized control trial that 

enrolled 282 participants between 2007-2008 and compared nebulized albuterol to placebo. 

This trial also allowed those 13 years of age and older. Overall, there was no significant 

difference found in the treatment groups. 
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EDEN and OMEGA were prospective, multicenter, randomized control trials with 

a factorial design that enrolled a total of 1000 participants from 2008-2011. EDEN 

compared early full-calorie enteral feeding to trophic enteral feeding while the OMEGA 

trial compared supplementation with n-3 fatty acids, y-linolenic acid, and antioxidants to 

placebo. There were no significant differences between groups in either trial. 

SAILS was a prospective, multicenter, double-blind, randomized control trial that 

enrolled 745 participants from 2010-2013 and compared rosuvastatin to placebo. In 

addition to the common inclusion criteria, these participants had to have evidence of 

systemic inflammatory response syndrome with suspected infection. No significant 

treatment effect was found, and the trial stopped early due to futility. 

Inclusions and Exclusions 

All participants in the aforementioned trials were included in the initial cohort as 

long as they were not in any treatment arms that specifically contradict today’s standard of 

care. From there, further exclusions removed datasets missing key variables used in the 

model creation, participants less than 18 years of age, and duplicates of participants co-

enrolled in more than one study. 

Independent Variables 

The covariates used in the model derivation can be categorized into demographic 

information, clinical, and pulmonary parameters summarized in Table 3. Co-morbid 

conditions included were history of chronic lung disease, chronic dialysis, cirrhosis, solid 

tumor with metastasis, hematologic malignancy, diabetes, previous myocardial infarction, 

hypertension, congestive heart failure, prior stroke with sequelae, and immunosuppression. 

Baseline shock was defined as a mean arterial pressure less than 60 mmHg or use of a 
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vasopressor. Separate organ systems were defined as in failure by the following values: 

cardiac if systolic blood pressure <90 mmHg or on vasopressors, central nervous system if 

Glasgow coma score <12, coagulation if platelet < 80, renal if creatinine >2.0, and hepatic 

if bilirubin >2. Calculation of pulmonary parameters used is shown in greater detail in 

Table 2. 

Outcomes 

The primary outcome for our predictive model was pulmonary worsening at 48 

hours. This was defined as a composite outcome of either death before 48 hours or lack of 

improvement in both PEEP and FiO2. Improvement in PEEP and FiO2 was defined as 

values at 48 hours being lower than the values at baseline or liberation from the ventilator 

before 48 hours. If either the PEEP or FiO2 was worse or stable, then that would meet 

criteria for the outcome. 

A separate predictive model was also derived for a secondary outcome of 28-day 

mortality. 

Analytic Plan 

After applying inclusions and exclusions to the dataset, univariate analyses of the 

key descriptive variables were performed on this initial cohort. From here, any participants 

with outliers, impossible values, or missing independent variables were removed. The 

remaining cohort was split by simple random sampling with 70% going into a derivation 

cohort and 30% into a validation cohort. Bivariate analyses of the derivation cohort were 

performed with t-test, rank-sum, and chi-square tests appropriate. Multivariable logistic 

regression with automatic backward selection in SAS v9.4 on the derivation cohort was 

used to create the initial predictive model. A p < 0.1 was used as the selection criteria and 
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a complete case analytic strategy was used. 

Model Refinement and Validation 

The initial model underwent multiple steps of refinement as an attempt to improve 

its predictability. If there were multiple variables within the same pulmonary parameter 

category, then the one that resulted in the highest area under the receiver operator curve 

(AUC) was kept in order to avoid high collinearity. All continuous variables were 

transformed and evaluated in their square, cubic, and natural log forms to challenge the 

linearity assumption. A priori interaction terms of pulmonary parameters with body mass 

index (BMI) and history of chronic pulmonary disease were tested. A priori key variables 

of age, gender, BMI, and primary illness (cause of ARDS) were then forced back into the 

model if not already present. Finally, a LOESS smoother was used to find cut-points to 

transform any continuous variable into categorical. Each iteration was evaluated by 

likelihood ratio when models were nested with the original and otherwise an improvement 

in AUC of 0.05 was considered significant. 

The fit of the final model was evaluated with the Hosmer-Lemeshow test, a 

calibration plot, and visually with a box and whisker plot. Overall model predictability was 

assessed with the AUC and tested against the validation cohort. Finally, a classification 

table of the final model was created to find an optimal probability cutpoint for the model 

use case. 
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RESULTS 

Cohort Selection and Baseline Characteristics 

There was a total of 5179 participants in the nine ARDS network trials available 

for analysis. All trials that occurred before ALTA did not have any variables available in 

the datasets for baseline co-morbid conditions and this was responsible for the majority of 

exclusions. A comparison of the basic demographics in this excluded cohort vs the 

analyzed is shown in Table 4. After further exclusions and simple random splitting of the 

cohort, there were 762 in the derivation and 334 in the validation cohorts (Figure 1). 

Baseline characteristics of the cohort before splitting and of the derivation cohort are shown 

in Tables 5-8. The cohort was relatively young with an average age (SD) of 53 (16), 

predominantly white (77%), and mainly living independently (81%). In terms of clinical 

variables, 44% were obese, 84% were medical ICU patients, 43% had baseline shock, 72% 

had moderate-severe ARDS by the Berlin definition, and pneumonia was the most common 

underlying condition at 64%. 461 out of the 762 in the derivation cohort had the primary 

outcome of pulmonary worsening at 48 hours and 35% experienced the secondary outcome 

of 28-day mortality. How those participants qualified for the composite primary outcome 

is shown in Table 9. Only 4.1% qualified by early mortality. 

Primary Outcome Logistic Model Results 

After applying automatic backward selection to the multivariable logistic 

regression model, the remaining covariates were oxygen saturation index, driving pressure, 

hepatic failure, presences of hematologic malignancy, and history of chronic pulmonary 

disease. The parameter coefficients are shown in Table 10. Efforts to refine the model made 

no significant difference in its predictability and all iterations are summarized in Table 11. 
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Validation of the model was first done by evaluating its fit to the data. A Hosmer-

Lemeshow test was performed which showed a p-value of 0.53 indicating a failure to reject 

the null that the model was a good fit for the data. Fit was then evaluated visually with a 

calibration plot and box and whisker plot shown in Figures 2 and 3. The calibration plot 

also showed good fit and while the box and whisker plot had separation, there was 

significant overlap between those that did and did not get the outcome. A classification 

table was made and an optimal probability level of 0.56 led to accuracy of 61.3%, 

sensitivity of 76.8%, and specificity of 37.5% (Table 12). Finally, receiver operating curves 

for the derivation and validation cohort were overlayed in Figure 4 and resulted in AUC of 

0.643 and 0.641 respectively. 

Secondary Outcome Logistic Model Results 

Following the same methodology used to arrive at the final model for the primary 

outcome a multivariate logistic regression model was derived for the secondary outcome 

of 28-day mortality. Its final covariates were oxygen saturation index, driving pressure, 

alveolar/arterial ratio, ventilatory ratio, age, gender, hepatic failure, baseline shock, 

coagulopathy, immunosuppression, and presence of hematologic malignancy. The AUC 

on the derivation and validation cohorts was 0.795 and 0.770 respectively. This was 

compared to the more general severity of illness calculator Acute Physiology, Age, and 

Chronic Health III (APACHE) (41) which was found to have an AUC of 0.685 and 0.683 

on the derivation and validation cohorts respectively. 
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DISCUSSION 

This study represents the first attempt at creation of a model in ARDS to predict an 

early pulmonary outcome. The final model predicting the primary outcome and consisting 

of oxygen saturation index, driving pressure, hepatic failure, presence of hematologic 

malignancy and history of chronic pulmonary disease had only modest predictability with 

an AUC of 0.643. The most optimal cutpoint for clinical use only yielded a sensitivity of 

76.8% and specificity of 37.5%. The model did however fit the data well and performed 

nearly identically on the validation cohort. In terms of the secondary outcome of 28-day 

mortality, its final model consisted of the covariates: oxygen saturation index, driving 

pressure, alveolar/arterial ratio, ventilatory ratio, age, gender, presence of hematologic 

malignancy, immunosuppressed state, baseline shock, hepatic failure, and coagulopathy. It 

had moderate performance with AUC of 0.795 on the derivation cohort and 0.770 on the 

validation set. 

Despite the ultimate result of our findings, the study had some key strengths. The 

cohort utilized allowed for a large sample size to be evaluated that all had rigorously 

collected randomized control trial data. In addition, there was a high enough event rate of 

the primary outcome to allow analysis of many covariates. Not only was this the first study 

to evaluate this novel pulmonary outcome, but it is also the first to combine this many 

previously described pulmonary physiologic parameters into a model building approach 

for ARDS. Finally, the derived model is simple enough to be used clinically. There are 

only 5 variables required with little to no chance of not having the information available 

on a routine ARDS patient. The only potential missing points would be an unknown history 

of hematologic malignancy or chronic pulmonary disease, and in these instances, it would 
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make reasonable clinical sense to assume the patient does not have these conditions. 

Before fully interpreting the results of this study, it is critical to understand the 

limitations faced beyond the already expected limits of a secondary data analysis. A 

predictive model is only useful if it is able to perform well on a new cohort of patients, and 

there are two issues that make this model less generalizable. One is that all of the data used 

to derive the model is 1-2 decades old. ARDS management has not changed appreciably in 

that time however, so it is less likely to be a concern. Next, all of these participants were 

enrolled in rigorously designed controlled trials which has exclusions and rarely mimics 

real-life scenarios fully. The benefit of having reliable and consistently collected data to 

make the model initially though is likely better than having made a model from 

observational data. There were also many patients excluded from the original cohort and a 

high missingness in the data of a few covariates analyzed including driving pressure which 

made it into the final model. Despite this, there were still adequate patients and events 

available in the derivation and validation cohorts for the complete case analysis and when 

comparing the derivation set to the excluded population there were no significant 

differences in demographics (Table 4). 

When interpreting the model, even though it did not perform well, the presence of 

these predictive covariates does make clinical sense. It is reasonable to believe that those 

with underlying lung disease would do worse with an acute lung ailment as is shown by 

the model. Also, as expected, pulmonary physiologic variables did play a role in predicting 

the outcome in all categories of pulmonary physiology except for dead space. This is 

unexpected because dead space estimates have repeatedly been shown to be associated with 

mortality in ARDS and is relevant in our 28-day mortality model (42). Hepatic failure and 
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history of hematologic malignancy are known to worsen outcomes in the ICU and are used 

in severity of illness scores such as the Simplified Acute Physiology Score II (SAPS II) 

and the APACHE III score (41, 43). Counterintuitively however, a higher oxygen 

saturation index and presence of hepatic failure are both predictive of lower odds of the 

outcome. This may be due to inherent bias in the outcome and could help explain why we 

did not develop a more clinically useful model which is explained in more detail below. 

Our model aimed to predict a composite outcome of either death or failure to have 

improved PEEP and FiO2 by 48 hours of ARDS development. When interpreting the 

presence of oxygen saturation index in the model which has FiO2 in its calculation, it 

becomes clear that there is an inherent severity of illness bias within the outcome. Those 

participants that start at a higher baseline PEEP and FiO2 have more room for improvement 

than those with milder disease and starting already at a low value for each of these 

variables. This creates a scenario where the model is being created with the balance of two 

opposing forces: the true severity of illness by physiologic measures vs. the practical nature 

of the worse disease having more room for improvement. This finding means that even had 

the model performed better, its clinical utility would be questionable. Otherwise, this model 

illustrates that predictions in the critically ill patient are difficult. Even models derived on 

thousands of patients such as the APACHE scores perform well on some cohorts and 

significantly worse others as seen in our study (41, 44). We believed that by targeting an 

earlier outcome, fewer variations would come into consideration and therefore prediction 

should be easier, but that was not the case.  

When evaluating the performance of the model for the secondary outcome, it had 

similar predictability to other models that have been created for mortality in patients with 
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ARDS (Table 1). In addition, while there were pulmonary physiologic parameters 

included, it was heavily driven by extrapulmonary markers such as age, baseline shock, 

and immunosuppression. This finding is expected given that most patients with ARDS do 

not die directly from pulmonary failure, but rather multiorgan dysfunction that develops 

over time from the underlying critical illness (11). 

Conclusions and Future Directions:  

This study developed a predictive model for a novel outcome of early pulmonary 

worsening in a cohort of ARDS patients. The combination of limited predictability and 

inherent severity of illness bias in the outcome measure make it unsuitable for clinical use 

in its current state. With the COVID-19 being a significant cause of ARDS, conscious and 

equitable resource utilization has been brought to the forefront. Now more than ever has a 

model such as the one aimed to be created in this work been more relevant and necessary 

for clinicians to have at their disposal. Further research should be done to create a model 

accurately predicting early pulmonary outcomes with readily available baseline clinical 

markers because of this strong need. It could be improved by changing the definition of 

pulmonary worsening, focusing on more severe patients, or creating separate models for 

different phenotypes of ARDS. Race was included as one of our evaluated covariates and 

ended up not being predictive but would have led to more discussion had it been. I believe 

future models should not include this as a covariate even if it is predictive due to the 

inherent inequity it may lead to. Finally, future methods should utilize capabilities of 

machine learning which is a growing field with significant promise if applied correctly. It 

also has the benefit of being able to continually improve as more data is fed into it which 

helps keep a model relevant to changing practices in medicine.  
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TABLES 
 

Table 1. Current Risk Stratification Models in ARDS 
Scoring 
system Parameters used Performance 

Berlin 
Criteria 

 
PaO2/FiO2 

               Mortality     VFD(IQR) 
Mild          30%           16(0-24) 
Moderate 35%            11(0-21) 
Severe     41%              0(0-18) 
 
          Mortality AUC 0.58 

Lung Injury 
Score 

Chest X-ray, 
PaO2/FiO2, PEEP, 

Pulmonary 
Compliance 

Mortality AUC 0.58 

Villar et al. 
Age, PaO2/FiO2, 
Plateau Pressure, 

Extrapulmonary organ 
failure 

Mortality AUC 0.86 

Cooke et al. 
Hematocrit 

Serum Bilirubin 
Net Fluid Balance 

Age 

Mortality AUC 0.72 

Abbreviations: PaO2/FiO2: Ratio of blood oxygen to fraction of inspired oxygen. PEEP: positive end 
expiratory pressure. VFD: Ventilator free days. AUC: Area under curve 
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Table 2. Physiologic Parameters and their Calculation 
Physiologic 
Category Parameter Formula 

Oxygenation 

Oxygenation Index 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀2𝑀𝑀100
𝑀𝑀𝑃𝑃𝑀𝑀2

 

Oxygen Saturation 
Index 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀2𝑀𝑀100
𝑆𝑆𝑆𝑆𝑀𝑀2

 

Alveolar-arterial 
Gradient 𝑀𝑀𝑀𝑀𝑀𝑀2 − 𝑀𝑀𝑃𝑃𝑀𝑀2 

Arterial-Alveolar 
Ratio 

𝑀𝑀𝑃𝑃𝑀𝑀2
𝑀𝑀𝑀𝑀𝑀𝑀2

 

Dead Space 
Ventilation 

Ventilatory Ratio 
𝑉𝑉𝑉𝑉𝑀𝑀𝑀𝑀𝑃𝑃𝑉𝑉𝑀𝑀2
𝑉𝑉𝑉𝑉𝑆𝑆𝑉𝑉𝑉𝑉𝑉𝑉𝑀𝑀37.5

 

Minute Ventilation 
for PaCO2=40 

𝑉𝑉𝑉𝑉𝑀𝑀𝑀𝑀𝑃𝑃𝑉𝑉𝑀𝑀2
40

 

Siddiki Estimate 1 −
�0.86𝑀𝑀(𝐻𝐻𝐻𝐻𝑀𝑀ℎ𝑓𝑓𝑀𝑀0.8)

6.8644 �

𝑉𝑉𝑉𝑉𝑀𝑀𝑀𝑀𝑃𝑃𝑉𝑉𝑀𝑀2
 

Harris-Benedict 
Estimate 1 −

0.86𝑀𝑀𝐻𝐻𝐻𝐻/8.604
𝑉𝑉𝑉𝑉𝑀𝑀𝑀𝑀𝑃𝑃𝑉𝑉𝑀𝑀2

 

Compliance 
Pulmonary 
Compliance 

𝑉𝑉𝑉𝑉
(𝑀𝑀𝑆𝑆𝑃𝑃𝑃𝑃𝑉𝑉 − 𝑀𝑀𝑉𝑉𝑉𝑉𝑀𝑀)

 

Driving Pressure 𝑀𝑀𝑆𝑆𝑃𝑃𝑃𝑃𝑉𝑉 − 𝑀𝑀𝑉𝑉𝑉𝑉𝑀𝑀 
Abbreviations: MAP:Mean Airway pressure, FiO2: Fraction of inspired oxygen, SpO2: Oxygen saturation of 
hemoglobin, PAO2: partial pressure of oxygen in alveoli, PaO2: partial pressure of oxygen in blood, VE: 
Minute ventilation, PaCO2: partial pressure of carbon dioxide in blood, VEpred: Predicted minute ventilation, 
HB: Harris Benedict basal metabolic rate, hf: hypermetabolic correction factor, Vt: Tidal Volume, Pplat: 
Plateau pressure, PEEP: Positive end expiratory pressure 
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Table 3. Summary of Covariates used to build logistic model 
Category Variables 

Demographics Age 
Gender 
Race 
BMI 
Place of residence 

Clinical Co-morbidities 
Shock 
Vasopressors 
Organ Failure 
Primary Illness 

Pulmonary 
Parameters 

Oxygenation index 
Saturation index 
A-a ratio and gradient 
VE40 
VR 
Dead space estimates 
Compliance 
Driving pressure 

Abbreviations: BMI: Body mass index, A-a: Aleolar-arterial, VE40: corrected minute ventilation, VR: 
ventilatory ratio 
 
Table 4. Demographics of excluded datasets and Initial cohort 
Characteristic Excluded 

Datasets n=2410 
Initial Cohort 
n=1907 

Age, mean (std) 51 (17) 53 (16) 
Female 47% 50% 
Race   
White 70% 77% 
Black 18% 16% 
Other/missing 12% 7% 

Abbreviations: std: standard deviation 
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Table 5. Baseline Characteristics of Initial Cohort 
Characteristic, no. (%) All Participants 

n=1907 (%) 
Age, Mean (std) 52.87 (16.22) 
     18-29 yrs 186 (9.75) 
     30-39 yrs 205 (10.75) 
     40-49 yrs 375 (19.66) 
     50-59 yrs 497 (26.06) 
     60-69 yrs 344 (18.04) 
     70+ yrs 300 (15.73) 
Female Gender 943 (49.45) 
  
Race  
White 1472 (77.19) 
Black 296 (15.52) 
Other 71 (3.72) 
Missing 68 (3.57) 
  
Place of Residence  
Home Independently 1545 (81.02) 
Home with help 193 (10.12) 
Home w professional help 27 (1.42) 
Intermediate Care or rehab 33 (1.73) 
Skilled nursing facility 75 (3.93) 
Other 33 (1.73) 
Missing 1 (0.05) 
  
Co-morbid conditions  
Chronic lung disease 
Missing 

260 (13.63) 
1 (0.05) 

On chronic dialysis 55 (2.88) 
Cirrhosis 
Missing 

95 (4.98) 
2 (0.1) 

Solid Tumor with mets 53 (2.78) 
Liquid Tumor 89 (4.67) 
Diabetes 
Missing 

486 (25.49) 
1 (0.05) 

Hypertension 
Missing 

886 (46.46) 
2 (0.1) 

Previous MI 
Missing 

102 (5.35) 
1 (0.05) 

Congestive Heart Failure 
Missing 

119 (6.24) 
1 (0.05) 

Prior stroke with sequelae 
Missing 

58 (3.04) 
1 (0.05) 
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Immunosuppressed 239 (12.53) 
  
Health Behaviors  
Tobacco Use  
    Ever Smoker 
    Missing 

1002 (52.54) 
183 (9.6) 

    Current Smoker 
    Missing 

568 (29.79) 
906 (47.51) 

Alcohol Frequency  
     Never 918 (48.14) 
     Monthly 282 (14.79) 
     2-4 times/month 127 (6.66) 
     2-3 times/wk 109 (5.72) 
     4+ times/wk 282 (14.79) 
     Missing 189 (9.91) 
  
Height, cm Mean (std) 
Missing 

169.02 (10.9) 
1 (0.05) 

Weight, kg Median (IQR) 
Missing 

82 (68, 100) 
6 (0.31) 

BMI, kg/m2  Median (IQR) 28.61 (23.85, 34.48) 
     BMI < 18 60 (3.15) 
     BMI 18-24 531 (27.84) 
     BMI 25-30 477 (25.01) 
     BMI > 30 832 (43.63) 
     Missing 7 (0.37) 
Ideal Body weight, kg Median 
(IQR) 
Missing 

62 (55, 72) 
2 (0.1) 

APACHE III score Mean (std) 
Missing 

92.24 (27.75) 
62 (3.25) 

No. of organ failure Median (IQR) 1 (1, 2) 
Cardiac Failure 554 (29.05) 
Hepatic Failure 1624 (85.16) 
Renal Failure 1439 (75.46) 
CNS Failure 209 (10.96) 
Coagulopathy 1560 (81.8) 
Medical ICU 1604 (84.11) 
Baseline vasopressors 767 (40.22) 
Baseline Shock 825 (43.26) 
  
ARDS Risk Factor  
Pneumonia 1211 (63.5) 
Sepsis 339 (17.78) 
Trauma 64 (3.36) 
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Aspiration 186 (9.75) 
Multiple Transfusions 25 (1.31) 
Other/not classified 82 (4.3) 
  
ARDS Severity by Berlin Criteria  
     Mild 301 (15.78) 
     Moderate 824 (43.21) 
     Severe 549 (28.79 
     Missing 233 (12.22) 
PaO2/FiO2 Median (IQR) 128 (87, 179) 
  
Pulmonary Worsening 48 hours 
Missing 

1121 (58.78) 
59 (3.09) 

28-Day Mortality 403 (21.13) 
Abbreviations: std: standard deviation, IQR: interquartile range. All values given as no.(%) unless otherwise stated. 
APACHE: Acute Physiology and Chronic Health Evaluation, ARDS: Acute Respiratory Distress syndrome 
 
Table 6. Baseline Pulmonary Characteristics of Initial Cohort 
Physiologic Parameter, 
Median (IQR) 

All Participants n=1907 

Oxygenation Index 
Missing, no. (%) 

9.42 (5.87, 14.59) 
213 (11.17%) 

     Mean Airway Pressure, 
cmH2O 

15 (12, 18) 

     PaO2, mmHg 83 (70, 106) 
     FiO2 0.5 (0.4, 0.7) 
Oxygenation Saturation 
Index 
Missing, no. (%) 

8.16 (5.42, 12.27) 
 
190 (9.96%) 

     SpO2 % 96 (94, 98) 
A-a Gradient mmHg 
Missing, no. (%) 

238.57 (163.32, 358.3) 
40 (2.10%) 

     PAO2 mmHg 318.07 (248.71, 449.3) 
a/A Ratio 0.26 (0.18, 0.37) 

40 (2.10%) 
Ventilatory Ratio 
Missing, no. (%) 

1.76 (1.4, 2.19) 
112 (5.87%) 

     Minute Ventilation 
L/min 

10.6 (8.6, 12.9) 

     PaCO2 mmHg 38 (34, 45) 
     Predicted VE (IBW x 
100) L/min 

6.2 (5.5, 7.2) 

VE40 L/min 
Missing, no. (%) 

10.15 (8.19, 12.74) 
110 (5.77%) 

Siddiki Dead Space 
Missing, no. (%) 

0.38 (0.14, 0.55) 
117 (6.14%) 
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     HB_sid basal metabolic 
rate kcal/d 

1449.22 (1218.34, 1789.54) 

     hf correction factor 1.6 (1.6, 2.15) 
Harris-Benedict Dead 
Space 
Missing, no. (%) 

0.6 (0.49, 0.68) 
 
117 (6.14%) 

     HB basal metabolic rate 
kcal/d 

1596.3 (1389.1, 1877.28) 

Pulmonary Compliance 
ml/cmH2O 
Missing, no. (%) 

30.63 (23.13, 40) 
 
708 (37.13%) 

     Tidal volume mL 410 (355, 474) 
     Plateau Pressure cmH2O 
Mean (std) 

23.65 (6.07) 

     PEEP cmH2O 10 (5, 12) 
Driving Pressure cmH2O 
Missing, no. (%) 

14 (11, 18) 
648 (33.98%) 

Abbreviations: IQR: interquartile range, PaO2: partial pressure of oxygen in the blood, FiO2: fraction of inspired 
oxygen, SpO2: saturation of oxygen A: alveolar, a: arterial, VE: Minute ventilation HB: Harris-Benedict, hf: 
hypermetabolic factor, PEEP: Positive end-expiratory pressure. 
All values given as median (IQR) unless otherwise stated 
 
Table 7. Baseline Characteristics of Derivation Cohort 
Characteristic Pulmonary 

Improvement 
n=301 (39.5%) 

Pulmonary 
Worsening n=461 
(60.5%) 

p-valueϮ 

Age, Mean (std) 52.12 (17.11) 54.14 (15.98) 0.097 
     18-29 yrs 13.29 8.24 0.0469 
     30-39 yrs 9.97 10.20  
     40-49 yrs 16.28 19.52  
     50-59 yrs 29.90 24.95  
     60-69 yrs 13.95 20.17  
     70+ yrs 16.61 16.92  
Female Gender 49.17 50.76 0.6679 
    
Race   0.2336 
White 77.08 77.22  
Black 17.61 14.1  
Other 2.66 4.56  
Missing 2.66 4.12  
    
Place of Residence   0.7653 
Home Independently 83.39 80.04  
Home with help 8.64 11.28  
Home w professional help 1.33 1.30  
Intermediate Care or rehab 0.66 1.30  
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Skilled nursing facility 3.99 4.56  
Other 1.99 1.52  
    
Co-morbid conditions    
Chronic lung disease 9.30 13.88 0.0578 
On chronic dialysis 3.32 3.25 0.9586 
Cirrhosis 4.31 4.12 0.8943 
Solid Tumor with mets 2.66 3.25 0.6383 
Liquid Tumor 2.66 6.07 0.0298 
Diabetes 29.24 26.03 0.3315 
Hypertension 47.51 44.47 0.4102 
Previous MI 6.64 6.72 0.9655 
Congestive Heart Failure 4.98 6.29 0.4495 
Prior stroke with sequelae 2.33 2.60 0.8102 
Immunosuppressed 9.63 11.93 0.3225 
    
Health Behaviors    
Tobacco Use    
    Ever Smoker 
    Missing 

53.82 
10.63 

51.19 
11.06 

0.4909 

    Current Smoker 
    Missing 

32.56 
47.18 

29.07 
48.81 

0.3364 

Alcohol Frequency   0.5268 
     Never 43.85 47.07  
     Monthly 14.95 15.84  
     2-4 times/month 6.98 4.34  
     2-3 times/wk 5.98 5.21  
     4+ times/wk 16.94 15.84  
     Missing 11.30 11.71  
    
Height, cm Mean (std) 169.47 (11.46) 169.13 (11.37) 0.6846 
Weight, kg Median (IQR) 81 (65, 96) 79 (66, 98) 0.7577 
BMI, kg/m2  Median (IQR) 27.50 (23.07, 

33.35) 
27.56 (23.45, 
33.95) 

0.5381 

     BMI < 18 2.99 3.69 0.9083 
     BMI 18-24 33.22 31.89  
     BMI 25-30 23.92 25.38  
     BMI > 30 39.87 39.05  
Ideal Body weight, kg 
Median (IQR) 
Missing 

62 (55, 73) 62 (55, 72) 0.6896 

APACHE III score Mean 
(std) 
Missing 

91.87 (28.22) 93.95 (28.14) 0.3228 
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No. of organ failure Median 
(IQR) 

1 (1, 2) 1 (1, 2) 0.2066 

Cardiac Failure 26.91 29.50 0.4385 
Hepatic Failure 89.37 83.51 0.0235 
Renal Failure 80.73 76.57 0.1740 
CNS Failure 11.30 12.36 0.6565 
Coagulopathy 84.72 81.34 0.2291 
Medical ICU 83.72 79.83 0.1771 
Baseline vasopressors 41.20 42.95 0.6318 
Baseline Shock 45.18 46.85 0.6509 
    
ARDS Risk Factor   0.0615 
Pneumonia 62.46 63.56  
Sepsis 14.29 18.22  
Trauma 2.33 4.34  
Aspiration 14.62 8.46  
Multiple Transfusions 1.00 0.65  
Other/not classified 5.32 4.77  
    
ARDS Severity by Berlin 
Criteria 

  0.0130 

     Mild 10.63 18.22  
     Moderate 47.18 46.85  
     Severe 33.22 27.77  
     Missing 8.97 7.16  
PaO2/FiO2 Median (IQR) 124 (80, 173) 135 (93, 185) 0.0144 
    
28-Day Mortality 9.3 25.38 <0.0005 

Abbreviations: std: standard deviation, IQR: interquartile range. All values given as no.(%) unless otherwise stated. 
APACHE: Acute Physiology and Chronic Health Evaluation, ARDS: Acute Respiratory Distress syndrome 
Ϯ p-value for t-test, rank-sum, and chi sq for difference in means, median, and proportions respectively 
 
Table 8. Baseline Pulmonary Characteristics of Derivation Cohort 
Physiologic Parameter, 
Median (IQR) 

Pulmonary 
Improvement 
n=301 

Pulmonary 
Worsening 
n=461 

p-valueϮ 

Oxygenation Index 10.38 (6.77, 16) 8.77 (5.52, 
13.10) 

0.0009 

     Mean Airway 
Pressure, cmH2O 

16 (13, 18) 14 (11, 17) <0.0001 

     PaO2, mmHg 87 (72, 111) 84 (70, 108) 0.1859 
     FiO2 0.6 (0.5, 0.7) 0.5 (0.4, 0.7) <0.0001 
Oxygenation Saturation 
Index 

9.38 (6.38, 13.8) 7.65 (5.2, 
11.05) 

<0.0001 

     SpO2 % 97 (94, 99) 96 (94, 98) 0.0017 
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A-a Gradient mmHg 269.55 (179.21, 
385.05) 

231.32 (159.21, 
338.05) 

0.0004 

     PAO2 mmHg 373.68 (294.32, 
461.8) 

314.32 (246.21, 
425.55) 

<0.0001 

a/A Ratio 0.25 (0.18, 0.35) 0.27 (0.19, 
0.38) 

0.0476 

Ventilatory Ratio 1.7 (1.39, 2.24) 1.8 (1.42, 2.19) 0.4949 
     Minute Ventilation 
L/min 

10.8 (8.8, 12.8) 10.5 (8.8, 12.8) 0.7484 

     PaCO2 mmHg 38 (33, 44) 38 (33, 44) 0.9765 
     Predicted VE (IBW x 
100) L/min 

6.2 (5.5, 7.3) 6.2 (5.5, 7.2) 0.6896 

VE40 L/min 10.15 (8.17, 
12.6) 

10.4 (8.19, 
12.92) 

0.6767 

Siddiki Dead Space 0.4 (0.16, 0.56) 0.4 (0.16, 0.56) 0.9876 
     HB_sid basal 
metabolic rate kcal/d 

1403.2 (1195.92, 
1800.11) 

1407.63 
(1184.79, 
1767.63) 

0.5896 

     hf correction factor 1.6 (1.6, 2.15) 1.6 (1.6, 2.03) 0.9147 
Harris-Benedict Dead 
Space 

0.61 (0.52, 0.68) 0.62 (0.51, 
0.69) 

0.7903 

     HB basal metabolic 
rate kcal/d 

1581.51 
(1384.42, 
1834.17) 

1551.22 
(1366.01, 
1834.43) 

0.6596 

Pulmonary Compliance 
ml/cmH2O 

30.77 (24, 41.25) 30.77 (22.78, 
39.09) 

0.5407 

     Tidal volume mL 410 (360, 468) 420 (350, 480) 0.533 
     Plateau Pressure 
cmH2O Mean (std) 

24.39 (6.1) 23.08 (5.71) 0.0028 

     PEEP cmH2O 10 (8, 12) 8 (5, 10) <0.0001 
Driving Pressure 
cmH2O 

14 (10, 16) 14 (11, 18) 0.0947 

Abbreviations: IQR: interquartile range, PaO2: partial pressure of oxygen in the blood, FiO2: fraction of inspired 
oxygen, SpO2: saturation of oxygen A: alveolar, a: arterial, VE: Minute ventilation HB: Harris-Benedict, hf: 
hypermetabolic factor, PEEP: Positive end-expiratory pressure. 
All values given as median (IQR) unless otherwise stated 
Ϯ p-value for t-test and rank-sum for difference in means and medians respectively 
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Table 9. How Participants qualified for primary outcome in the derivation set 
Outcome component, 
no. (%) 

Pulmonary worsening in Derivation cohort 
N = 461 (60.5%) 

Early Mortality 19 (4.1) 

PEEP and FiO2 216 (46.9) 

PEEP 151 (32.8) 

FiO2 74 (16.1) 

PEEP w/ missing FiO2 1 (0.2) 

FiO2 w/ missing PEEP 0 (0) 

Abbreviations: PEEP: positive end-expiratory pressure, FiO2: fraction of inspired oxygen 
 
Table 10. Final Logistic Model Parameters 
Covariate β estimate (SE) Odds Ratio (95% CI) P-valueϮ 

Oxygenation 
Saturation 
Index 

-0.0678 (0.0141) 0.934 (0.909, 0.961) <0.0001 

Driving 
Pressure 

0.0376 (0.0154) 1.038 (1.008, 1.070) 0.0143 

Hematologic 
Malignancy 

0.8395 (0.4133) 2.315 (1.030, 5.204) 0.0422 

Chronic 
Pulmonary 
Disease 

0.4580 (0.2452) 1.581 (0.978, 2.557) 0.0618 

Hepatic 
Failure 

-0.5855 (0.2313) 0.557 (0.354, 0.876) 0.0113 

Abbreviations: CI: confidence interval 
Ϯ Wald-chi sq test p-value 
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Table 11. Iterations of Model Refinement 
Model AUC -2 Log L 
Base (derived from backward 
selection with p < 0.1) 

0.6432 981.245 

OSI squared 0.6361 988.307 
OSI cubed 0.6255 994.519 
Ln (OSI) 0.6421 979.140 
DP squared 0.6429 981.943 
DP cubed 0.6409 983.869 
Ln(DP) 0.6417 982.615 
BMI and chronic pulmonary dx 
interaction with OSI and DP 

0.6462 971.542 

BMI interaction with OSI and 
DP 

0.6482 972.673 

Age back 0.6460 980.301 
Gender back 0.6433 981.180 
BMI back 0.6439 980.760 
ARDS cause back 0.6545 972.634 
Categorized OSI and driving 
pressure using LOESS to find 
cutpoints 

0.6480 974.105 

Abbreviations: AUC: Area under receiver operating curve, OSI: oxygen saturation index, Ln: natural log, DP: Driving 
pressure, BMI: body mass index, dx: disease, ARDS: Acute Respiratory Distress Syndrome 
 
Table 12. Classification Table of the Final Model 
Probability Accuracy Sensitivity Specificity 

0.48 62.3 90.7 18.9 

0.52 63.5 87.2 27.2 

0.56 61.3 76.8 37.5 

0.58 60.8 70.7 45.5 

0.64 55.6 43.8 73.8 

0.66 53.9 36 81.4 

0.70 48.4 21.0 90.4 
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FIGURES 
 

 
Figure 1. Flow Diagram of Participant Selection into Final Cohorts 
 

 
Figure 2. Calibration Plot of Final Logistic Model 
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Figure 3. Box and Whisker Plot of Final Logistic Model 
Line through the box indicates median, boundaries of the box indicate the interquartile 
range, the diamond indicates the mean, circles represent outliers. 
1 = experienced outcome, 0 = did not experience outcome 



 

 
 

38 

 
Figure 4. Receiver Operating Curves of Final Model 
 


