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Abstract

Numerical Approaches for Large-Scale Ill-Posed Inverse Problems

By Julianne Chung

Ill-posed inverse problems arise in a variety of scientific applications.
Regularization methods exist for computing stable solution approximations,
but many of these methods are inadequate or insufficient for solving large-
scale problems. This work addresses these limitations by developing ad-
vanced numerical methods to solve ill-posed inverse problems and by imple-
menting high-performance parallel code for large-scale applications. Three
mathematical models that frequently arise in imaging applications are con-
sidered: linear least squares, nonlinear least squares, and nonlinear Poisson
maximum likelihood. Hybrid methods are developed for regularization of
linear least squares problems, variable projection algorithms are used for
nonlinear least squares problems, and reconstruction algorithms are investi-
gated for nonlinear Poisson-based models. Furthermore, an efficient parallel
implementation based on the Message Passing Interface (MPI) library is de-
scribed for use on state-of-the-art computer architectures. Numerical exper-
iments illustrate the effectiveness and efficiency of the proposed methods on
problems from image reconstruction, super-resolution imaging, cryo-electron
microscopy reconstruction, and digital tomosynthesis.



Numerical Approaches for Large-Scale Ill-Posed Inverse Problems

By

Julianne Chung
B.A. with Highest Honors in Mathematics, Emory University, 2004

Advisor: James G. Nagy, Ph.D.

A dissertation submitted to the Faculty of the Graduate School
of Emory University in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

in Mathematics and Computer Science

2009



Acknowledgments

Words cannot begin to express the gratitude and heartfelt thanks that
I owe to my advisor, James Nagy. Jim, you are a truly phenomenal person,
and I am so fortunate to have you as my academic father! Thank you for
sharing your passions with me and helping me to find mine. You will for-
ever be an exemplary role model and mentor in my life. Thank you for all
the knowledge and passion you have shared with me, the compassion and
kindness you have extended to me, and the generosity and support you have
provided for me over the years. Nine long years ago, you recognized my
potential, and, since then, you have never stopped believing in me. I owe
my successes to you.

I would also like to express my sincerest gratitude to Michele Benzi and
Eldad Haber. I feel very privileged to have learned from your wealth of
knowledge and expertise. Thank you for challenging me to grow and for all
the support you have provided me during my time at Emory. Thank you
for serving on my committee and for your helpful comments to improve this
manuscript.

Thank you to the faculty, staff, postdoctoral researchers and graduate
students in the Department of Mathematics and Computer Science at Emory
University for providing a stimulating environment for me to learn. In addi-
tion, I’d like to thank the Emory Graduate School, in particular, thank you
to Rosemary Hynes and Geri Thomas for all your support in administering
my fellowship.

I am grateful to the Department of Energy’s Office of Science and Na-
tional Nuclear Security Administration for supporting my research goals and
dreams through the DOE Computational Science Graduate Fellowship pro-
gram. To the staff at the Krell Institute, many thanks for all your support
and encouragement, and to my fellow CSGFers, your stories and your com-
mitment to science are inspiring. Thank you for sharing your experiences
with me.

I have had the privilege to know and work with some amazing researchers
who have contributed directly to the completion of my dissertation. Thank



you to Dianne O’Leary for the valuable insight and support you provided to
improve the weighted-GCV approach. I am ecstatic about the opportunity
to work with you next year! Also, thank you to Ioannis Sechopoulos for
introducing me to the polyenergetic tomosynthesis problem and for assist-
ing in the development of the work presented in Chapter 4. I owe many
thanks to my practicum mentor Chao Yang at the Lawrence Berkeley Na-
tional Laboratory for allowing me to get my hands dirty by experiencing
large-scale high-performance computing on a real-life application. Thank
you for a wonderful summer research experience and for your contributions
to my dissertation.

In addition, I have befriended many passionate scientists and researchers
during my journey, and I would like to thank them for their professional ad-
vice and valuable insights.

To my closest friends, I thank you for always being there for me, for
making me laugh even in difficult times, and for helping me to see all the
beauty there is in life. Graduate school would not have been nearly as much
fun or as memorable without you guys.

Last but not least, I am indebted to my family. To my parents, Andrew
and Mary, for all the sacrifices you have made and all the hardships you
have endured, I am forever grateful for your unconditional love and support.
And to my siblings, Marianne, Karianne, and Matthew, we share so many
precious memories and you make my life more enjoyable and fulfilling every
day. I love you always.



for my family, friends, and mentors



Contents

1 Introduction 1

1.1 Mathematical Models . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Linear Least Squares . . . . . . . . . . . . . . . . . . . 2

1.1.2 Separable Nonlinear Least Squares . . . . . . . . . . . 3

1.1.3 Nonlinear Poisson Maximum Likelihood . . . . . . . . 3

1.2 Ill-Posed Problems . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Outline of Work . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Linear Least Squares Problems 10

2.1 Test Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Regularization . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.1 Tikhonov Regularization and GCV . . . . . . . . . . . 16

2.2.2 Iterative Regularization: LSQR . . . . . . . . . . . . . 18

2.3 Hybrid Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3.1 Tikhonov and GCV in Hybrid Methods . . . . . . . . . 26

2.3.2 Difficulty in using GCV in Hybrid Methods . . . . . . 27

2.4 Weighted GCV Method . . . . . . . . . . . . . . . . . . . . . 29

2.4.1 W-GCV for Tikhonov Regularization . . . . . . . . . . 31

2.4.2 Interpretations of the W-GCV Method . . . . . . . . . 32

2.4.3 W-GCV for the Bidiagonal System . . . . . . . . . . . 33



2.4.4 Choosing ω . . . . . . . . . . . . . . . . . . . . . . . . 34

2.4.5 Stopping Criteria for LBD . . . . . . . . . . . . . . . . 37

2.5 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.5.1 Results on Various Test Problems . . . . . . . . . . . . 39

2.5.2 Effect of Noise on ω . . . . . . . . . . . . . . . . . . . . 43

2.6 Remarks and Future Directions . . . . . . . . . . . . . . . . . 45

3 Separable Nonlinear Least Squares Problems 48

3.1 Motivating Examples . . . . . . . . . . . . . . . . . . . . . . . 49

3.1.1 Super-Resolution Imaging . . . . . . . . . . . . . . . . 49

3.1.2 Blind Deconvolution . . . . . . . . . . . . . . . . . . . 54

3.2 Solution through Optimization . . . . . . . . . . . . . . . . . . 56

3.2.1 General Gauss-Newton Approach . . . . . . . . . . . . 57

3.2.2 Variable Projection Method . . . . . . . . . . . . . . . 58

3.2.3 Jacobian Construction . . . . . . . . . . . . . . . . . . 61

3.3 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.4 Summary and Future Work . . . . . . . . . . . . . . . . . . . 75

4 A Nonlinear Poisson-based Inverse Problem 76

4.1 Background Information . . . . . . . . . . . . . . . . . . . . . 77

4.2 Polyenergetic Tomosynthesis Model . . . . . . . . . . . . . . . 81

4.2.1 Polyenergetic Model Development . . . . . . . . . . . . 81

4.2.2 Poisson-based Likelihood Function . . . . . . . . . . . 83

4.3 Iterative Reconstruction Algorithms . . . . . . . . . . . . . . . 84

4.3.1 Gradient Descent Algorithm . . . . . . . . . . . . . . . 87

4.3.2 Newton Approach . . . . . . . . . . . . . . . . . . . . . 88

4.4 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.5 Significance and Future Directions . . . . . . . . . . . . . . . . 95



5 Large-Scale Implementation 100

5.1 Motivating Application: Cryo-EM . . . . . . . . . . . . . . . . 101

5.1.1 Mathematical Framework . . . . . . . . . . . . . . . . 106

5.1.2 Iterative Reconstruction Methods . . . . . . . . . . . . 107

5.2 Large-Scale Implementation . . . . . . . . . . . . . . . . . . . 108

5.2.1 Compact Volume Representation . . . . . . . . . . . . 109

5.2.2 Parallelization using 1D Data Distribution . . . . . . . 110

5.2.3 Parallelization using 2D Data Distribution . . . . . . . 113

5.3 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.3.1 Quality of Iterative Reconstruction Algorithms . . . . . 118

5.3.2 Single Processor Performance . . . . . . . . . . . . . . 123

5.3.3 Parallel Performance . . . . . . . . . . . . . . . . . . . 126

5.4 Research Impact . . . . . . . . . . . . . . . . . . . . . . . . . 131

6 Concluding Remarks 133

Appendix 135

A.1 Weighted-GCV . . . . . . . . . . . . . . . . . . . . . . . . . . 135

A.2 Choosing ω in W-GCV . . . . . . . . . . . . . . . . . . . . . . 140

A.3 Convexity for Tomosynthesis . . . . . . . . . . . . . . . . . . . 143

Bibliography 147



List of Figures

2.1 Plot of singular values and their relative spread. . . . . . . . . 21

2.2 Convergence of singular values. . . . . . . . . . . . . . . . . . 22

2.3 Semi-convergence behavior of LSQR and stabilization using a

hybrid method. . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.4 Relative errors with standard GCV. . . . . . . . . . . . . . . . 28

2.5 Relative errors for the Satellite example with standard GCV. . 30

2.6 Relative errors for the Heat example with different values of ω. 35

2.7 Relative errors for adaptive choice of ω. . . . . . . . . . . . . . 40

2.8 Satellite image deblurring example. . . . . . . . . . . . . . . . 42

2.9 Relative errors for different noise levels. . . . . . . . . . . . . . 46

3.1 An illustration of bilinear interpolation. . . . . . . . . . . . . . 53

3.2 Super-resolution example. . . . . . . . . . . . . . . . . . . . . 65

3.3 Super-resolution: Comparison of reconstructed images. . . . . 69

3.4 Blind deconvolution example. . . . . . . . . . . . . . . . . . . 71

3.5 Blind deconvolution: Comparison of reconstructed images. . . 74

4.1 Breast tomosynthesis example. Typical geometry of the imag-

ing device used in breast imaging. . . . . . . . . . . . . . . . . 80

4.2 Breast tomosynthesis example. True volume slices. . . . . . . 92

4.3 Breast tomosynthesis example. Sample projection images. . . 92

4.4 Breast tomosynthesis: Reconstructed slices 1-4. . . . . . . . . 96

4.5 Breast tomosynthesis: Reconstructed slices 5-8. . . . . . . . . 97



5.1 Cryo-EM example. . . . . . . . . . . . . . . . . . . . . . . . . 104

5.2 Euler angle convention. . . . . . . . . . . . . . . . . . . . . . . 107

5.3 Compact volume representation of the 3D data. . . . . . . . . 111

5.4 Retrieving density values and their coordinates using the com-

pact data structure. . . . . . . . . . . . . . . . . . . . . . . . . 111

5.5 Processor layout for volume data distribution. . . . . . . . . . 114

5.6 Cryo-EM example. Sample simulated 2D projection images

and the 3D density map used to generate the 2D data. . . . . 119

5.7 Cryo-EM: Relative error plot for synthetic data. . . . . . . . . 120

5.8 Cryo-EM: Reconstructed 3D structures from synthetic data. . 122

5.9 Cryo-EM: Reconstructed 3D structures from real data. . . . . 124



List of Tables
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Chapter 1

Introduction

Many scientific and engineering applications require numerical methods to

compute efficient and reliable solutions to inverse problems. Inverse prob-

lems arise in important applications, including biomedical imaging, geo-

physics, astrophysics, inverse scattering and molecular biology; see for ex-

ample, [40, 68, 69, 129] and the references therein. Oftentimes, real-life ap-

plications require the computer to process extremely large amounts of data,

and previously proposed methods for solving inverse problems are not ad-

equate for these large-scale problems. Thus, numerical methods that can

efficiently and accurately solve large-scale inverse problems and novel im-

plementation approaches that can take advantage of state-of-the-art parallel

computing architectures must be developed. This is the focus of our work.

The basic goal of an inverse problem is to compute an approximation of

the original model, given observed data and knowledge about the forward

model. Physical systems that require reconstruction of an unknown input

signal from the measured output signal are natural examples of inverse prob-

lems. One particular application is image deblurring, where the goal is to

reconstruct a clearer image, given a blurred image and a point spread function

that defines the blur. In other systems, the internal structure of an object

is desired, but only measured output data is provided. For example, tomo-

graphic reconstruction is the process of reconstructing the inner structures of

a three-dimensional (3D) volume, given a collection of two-dimensional (2D)
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projection images and knowledge about the tomographic process. Inverse

problems can take many forms. Developing a reliable mathematical model

and incorporating appropriate regularization are key components for comput-

ing accurate solutions. In the next section we consider three mathematical

frameworks that are common to many scientific applications.

1.1 Mathematical Models

A solid understanding of the underlying mathematical model is necessary

to guide the development of solution methods. In this dissertation three

mathematical frameworks are considered.

1.1.1 Linear Least Squares

Linear systems that arise from large-scale inverse problems are typically writ-

ten as

b = Ax true + ε , (1.1)

where b ∈ Rm is a known (measured data) vector, A ∈ Rm×n is a matrix

describing the forward model, and x true ∈ Rn represents the true solution.

The vector ε ∈ Rm represents unknown perturbations in the data (such as

noise). Given A and b, the aim is to compute an approximation of x true. We

assume that the perturbations are independent and identically distributed

with zero mean. With a Gaussian noise model, it is appropriate to consider

the least squares formulation:

min
x
||Ax− b||22 . (1.2)

Inverse problems of this form arise in many important applications, including

image reconstruction, image deblurring, geophysics, parameter identification

and inverse scattering. Note that we have not included regularization in
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(1.2); we discuss this in detail in Section 1.2. Furthermore, for any norms

not specified in this dissertation, we assume the 2-norm.

1.1.2 Separable Nonlinear Least Squares

Large-scale inverse problems may also come in nonlinear form:

b = A(y true)x true + ε , (1.3)

where A(y true) ∈ Rm×n is a matrix defined by parameter vector y true, and

ε ∈ Rm is unknown additive noise. If matrix A(y true) is known exactly, the

problem follows the linear model, and the goal is to compute an approxi-

mation of x true. However, in realistic applications, we may only know the

parametric form of A(y), and y true must be approximated through additional

measurements or device calibration. Thus, the goal of the nonlinear problem

is to compute an approximation of x true, while simultaneously correcting the

parameters in y. Similar to the linear model, we assume a Gaussian noise

distribution, thus resulting in the following nonlinear least squares system:

min
x,y
||A(y)x− b||22 . (1.4)

This type of problem can be found in applications such as super-resolution

imaging, where registration parameters are imprecise, or blind deconvolu-

tion, where the point spread function is not known exactly. Furthermore,

applications where the acquisition process includes errors may benefit from

this work.

1.1.3 Nonlinear Poisson Maximum Likelihood

Another mathematical framework common to image processing applications

is a Poisson-based model, in which the data is assumed to be a realization

of a Poisson random variable. Tomographic imaging is a classic example of
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this model. The observed data is based on counts, e.g. photon counts, and

can be represented as

b = Υ[Ax true] + ε , (1.5)

where x true contains voxel values for the true 3D volume, A ∈ Rm×n is

a discrete representation of a ray trace operation, Υ[·] models a nonlinear

transmission tomography process, and ε is additive noise (assumed to have

a Poisson distribution). Given the observed data and information regarding

the tomographic process, the goal is to compute an approximation of x true

that likely produced the observed data b. To solve this problem, the Pois-

son distribution is used to formulate the likelihood function, p(b,x), and

standard optimization methods are implemented to maximize the likelihood

function. That is, we consider the following problem:

max
x

p(b,x) . (1.6)

This particular model arises in many imaging applications, but the appli-

cation that we are interested in is digital tomosynthesis reconstruction for

breast imaging. More details of this problem are presented in a later chapter.

1.2 Ill-Posed Problems

In this section a brief overview of ill-posed inverse problems is presented, with

particular emphasis on the difficulties one typically encounters when comput-

ing solutions for ill-posed inverse problems. The linear least squares model

from Section 1.1.1 is used to derive and illustrate some of the characteristics

of ill-posed problems, but it is important to remark here that these properties

are shared by all ill-posed problems, regardless of the mathematical model.

In the early 1920s, Hadamard first coined the term “ill-posed” [62]. He

defined a problem to be ill-posed if the solution does not exist, is not unique,

or is not a continuous function of the data. That is, small noise in the data
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may give rise to significant errors in the computed approximations. In the

linear problem (1.1), the ill-posed nature is revealed by the singular values of

A, which decay to and cluster at 0. Thus, A is severely ill-conditioned, and

regularization is used to compute stable approximations of x true [40, 58, 68,

129]. Regularization can take many forms; probably the most popular choice

is Tikhonov regularization [58], which is equivalent to solving the augmented

problem:

min
x
{‖Ax− b‖2

2 + λ2‖Lx‖2
2} , (1.7)

where L is a regularization operator, often chosen to be the identity matrix or

a discretization of a differentiation operator. The regularization parameter

λ is a scalar that determines the smoothness of the desired solution. Various

techniques can be used to select the regularization parameter, such as the

discrepancy principle, the L-curve, or the generalized cross-validation (GCV)

method [40, 68, 53, 129]. However, selecting a good parameter is difficult,

and there are disadvantages to each of the above approaches [88].

For large-scale problems iterative regularization is a good alternative to

direct regularization methods such as Tikhonov regularization. In this case,

an iterative method such as LSQR [110] is applied to the least squares prob-

lem (1.2). When applied to ill-posed problems, iterative methods exhibit

an interesting “semi-convergence” behavior. Specifically, the early iterations

reconstruct information about the solution, while later iterations reconstruct

information about the noise. If we terminate the iteration when the error

is minimized, we obtain a regularized solution. However, the difficulty with

using iterative methods for ill-posed inverse problems is that a good stopping

point can be hard to know. Approaches used for well-posed problems, such

as those based on the residual, generally do not work for ill-posed problems.

Furthermore, an imprecise estimate of the termination point can result in a

solution whose relative error is significantly higher than the optimal.

Although many regularization methods exist for ill-posed inverse problems,
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major difficulties arise when dealing with large-scale problems. This disser-

tation investigates a variety of approaches for incorporating regularization

in large-scale problems. More specifically, efficient hybrid regularization ap-

proaches that overcome the limitations of current methods are developed for

linear least squares problems, and methods for incorporating regularization

in separable nonlinear least squares problems are explored. Regularization

for nonlinear Poisson-based models is significantly more challenging but can

be achieved using less sophisticated regularization techniques.

1.3 Outline of Work

Developing numerical methods for large-scale ill-posed inverse problems re-

quires a mathematical understanding of the underlying problem, regular-

ization methods for the numerical treatment of the problem, and efficient

high-performance implementations. This dissertation addresses all of these

issues.

An outline for the work is as follows. Efficient hybrid regularization ap-

proaches for linear least squares problems are discussed in Chapter 2. Then

in Chapter 3, a variable projection approach is considered for solving the

separable nonlinear least squares problem. To efficiently incorporate regu-

larization, connections are made with the hybrid method described in Chap-

ter 2. A nonlinear Poisson-based model is elaborated upon in Chapter 4, in

the context of a digital breast tomosynthesis application, and optimization

approaches for a statistical model are developed. For large-scale problems,

preconditioners can be used to accelerate the convergence rates for previ-

ously mentioned approaches. However, assuming that no such effective pre-

conditioners are available, the significant computational burden in all of the

proposed methods is the matrix-vector and matrix-transpose-vector multipli-

cations. Chapter 5 presents a high-performance implementation scheme that
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allows researchers to perform large-scale computations on state-of-the-art su-

percomputers. Numerical results, specific imaging applications, and future

research directions are presented throughout the dissertation. Concluding

remarks can be found in Chapter 6.

1.4 Contributions

The significant contributions of this dissertation research include develop-

ing effective approaches for regularizing large-scale linear and nonlinear least

squares problems, deriving a novel mathematical framework so that statisti-

cal optimization techniques can be used for nonlinear Poisson-based inverse

problems, and producing high-performance parallel implementations for ex-

ecution on massive distributed computing architectures. More specifically,

this dissertation presents key contributions in each of the following areas:

• Linear Least Squares Problems

– Hybrid regularization methods are considered for large-scale lin-

ear least squares problems. Difficulties arise when using standard

numerical techniques. A novel adaptive approach is developed for

use in the weighted-generalized cross-validation method for select-

ing regularization parameters [24].

– Software contributions for this project include an efficient and

reliable Matlab implementation for hybrid regularization. The

codes are publicly available and have been used in a variety of

imaging applications including blob-based super-resolution [74],

multi-aperture imaging [113], cryo-electron microscopy (Cryo-EM)

reconstruction [26], and motion blur removal for positron emission

tomography.
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• Separable Nonlinear Least Squares Problems

– A variable projection algorithm is used for joint estimation of the

model parameters and the desired image. Our contribution is to

make it work for large-scale problems and to propose a slick way

to incorporate regularization.

– This work has been successfully applied to imaging applications

such as super-resolution imaging and blind deconvolution [21, 22,

23]. Also, it has been cited in a variety of imaging publications

[5, 27, 32, 59, 102, 121, 131].

• Polyenergetic Digital Tomosynthesis

– Current algorithms for digital tomosynthesis reconstruction ignore

the polyenergetic nature of the incident x-ray spectrum. This may

result in artifacts or nonuniformities in the reconstructed images.

This dissertation considers a challenging nonlinear inverse problem

based on the polyenergetic tomosynthesis model.

– We formulate a new mathematical framework for polyenergetic

tomosynthesis that can take advantage of standard numerical op-

timization techniques. Some theoretical analysis of the new for-

mulation is provided, and numerical methods are developed for

computing quality 3D volume reconstructions [25].

• High-Performance Implementation

– Problems from realistic applications often involve extremely large

amounts of data and contain a large number of unknowns. During

a research practicum at Lawrence Berkeley National Laboratory,

I implemented a two-dimensional data distribution scheme to per-

form large-volume reconstructions from Cryo-EM data.
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– My codes have run successfully on up to 15,344 processors using

state-of-the-art supercomputers and are publicly available in the

SPARX (single particle analysis for resolution extension) software

package [26, 75].
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Chapter 2

Linear Least Squares Problems

Many problems follow the linear mathematical model presented in Section

1.1.1. The focus of this chapter is to develop numerical methods for comput-

ing a solution to the linear least squares problem:

min
x
||Ax− b||22 , (2.1)

where the underlying problem is ill-posed. Developing efficient solvers for

linear least squares systems can also be useful within nonlinear optimization

schemes. For example, each iteration of a Gauss-Newton iterative scheme re-

quires an efficient solution approximation for a linear system. In this chapter

we investigate and develop efficient methods for linear least squares prob-

lems. More specifically, some test examples are presented in Section 2.1, and

an overview of regularization approaches is provided in Section 2.2. Section

2.3 provides some background on hybrid methods and describes an adap-

tive approach for selecting regularization parameters. Numerical results and

extensions of this work can be found in Sections 2.5 and 2.6 respectively.

2.1 Test Problems

To illustrate the behavior of our proposed methods, we use six test problems.

The first problem comes from the iterative image deblurring package, ‘Re-

storeTools’ [96]. Image deblurring has the form (1.1), where the vector x true
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represents the true image scene, A is a matrix representing a blurring oper-

ation, and b is a vector representing the observed, blurred and noisy image.

Given the blurred image and information regarding the blur, the aim is to

reconstruct an approximation of the true image. The RestoreTools package

has several data sets and tools (such as matrix construction and multiplica-

tion routines) that can be used with iterative methods. The data set we use

consists of a true image of a Satellite and a so-called point spread function

(PSF) that defines the blurring operation. The matrix A is constructed from

the PSF, using a matrix construction routine in RestoreTools. We then form

the noise-free blurred image as b true = Ax true. The Matlab instructions

are the following:

>> load satellite

>> A = psfMatrix(PSF);

>> b_true = A*x_true;

The images have 256× 256 pixels, so the vectors b true and x true have length

2562 = 65, 536. The function psfMatrix uses an efficient data structure

scheme to represent the 65, 536 × 65, 536 matrix A, and the multiplication

operator, *, is overloaded to allow for efficient computation of matrix-vector

multiplications. For more details, see [96].

The other five test problems are taken from the ‘Regularization Tools’ pack-

age [67]. In each case we generate an n × n matrix A, true solution vector

x true, and (noise-free) observation vector b true, setting n = 256.

• Phillips is Phillips’ “famous” test problem. A, b, and x true are ob-

tained by discretizing the first kind Fredholm integral equation b(s) =
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∫ 6

−6
a(s, t)x(t)dt, where

a(s, t) =

{
1 + cos(π(s−t)

3
) , |s− t| < 3

0 , |s− t| ≥ 3

x(t) =

{
1 + cos(πt

3
) , |t| < 3

0 , |t| ≥ 3

b(s) = (6− |s|)
(

1 +
1

2
cos(

πs

3
)

)
+

9

2π
sin(

π|s|
3

) .

In Matlab, the problem can be constructed with the simple statement:

>> [A, b_true, x_true] = phillips(n);

where n is the dimension of the problem.

• Shaw is a one-dimensional image restoration problem. A and x true are

obtained by discretizing, on the interval −π
2
≤ s, t ≤ π

2
, the functions

a(s, t) = (cos(s) + cos(t))

(
sin(u)

u

)2

, u = π(sin(s) + sin(t)) ,

x(t) = 2 exp(−6(t− 0.8)2) + exp(−2(t+ 0.5)2) .

Then b true = Ax true. The data can be constructed with the simple

Matlab statement:

>> [A, b_true, x_true] = shaw(n);

where n is the dimension of the problem.

• Deriv2 constructs A, b and x true by discretizing a first kind Fredholm

integral equation, b(s) =
∫ 1

0
a(s, t)x(t)dt, 0 ≤ s ≤ 1, where the kernel

a(s, t) is given by the Green’s function for the second derivative:

a(s, t) =

{
s(t− 1) , s < t

t(s− 1) , s ≥ t
.
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There are several choices for x and b; in this chapter we use x(t) = t

and b(s) = (s3 − s)/6. The data can be constructed with the simple

Matlab statement:

>> [A, b_true, x_true] = deriv2(n);

where n is the dimension of the problem.

• Baart constructs A, b and x true by discretizing the first kind Fredholm

integral equation b(s) =
∫ π

0
a(s, t)x(t)dt, 0 ≤ s ≤ π

2
, where

a(s, t) = exp(s cos t)

x(t) = sin t

b(s) =
2 sinh s

s
.

The data can be constructed with the simple Matlab statement:

>> [A, b_true, x_true] = baart(n);

where n is the dimension of the problem.

• Heat is an inverse heat equation using the Volterra integral equation

of the first kind on [0, 1] with kernel a(s, t) = k(s− t), where

k(t) =
t−3/2

2
√
π

exp

(
− 1

4t

)
.

The vector x true does not have a simple functional representation, but

rather is constructed directly as a discrete vector; see [67] for details.

The right-hand side b is produced as b true = Ax true. The data can be

constructed with the simple Matlab statement:

>> [A, b_true, x_true] = heat(n);
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where n is the dimension of the problem.

In order to simulate noisy data, as modeled by equation (1.1), we generate

a noise vector ε for each test problem. The entries of ε are chosen from a

normal distribution with mean zero and variance one, and ε is scaled so that

‖ε‖2

‖Ax true‖2

= 0.1 (i.e., noise level = 10%) .

All of the above examples are ill-posed inverse problems that can be modeled

as a linear least squares problem. Thus, appropriate regularization is required

for computing meaningful solutions. This is the topic of the next section.

2.2 Regularization

Regularization is a tool for the numerical treatment of ill-posed inverse prob-

lems. There are two main approaches for regularization: direct and iterative

regularization. As mentioned in the introduction, iterative regularization

approaches are generally preferred for large-scale problems, but they suffer

from semi-convergence limitations.

To better understand the need for regularization, we first present a the-

oretical analysis based on the singular value decomposition, or SVD. Let

A = UΣVT denote the SVD of A, where the columns ui of U and vi

of V contain, respectively, the left and right singular vectors of A and

Σ = diag(σ1, σ2, · · · , σn) is a diagonal matrix containing the singular val-

ues of A, with σ1 ≥ σ2 ≥ · · · ≥ σn > 0. Using the singular value expansion

of A, an inverse solution can be written as

x inv = A−1b =
n∑
i=1

uTi b

σi
vi =

n∑
i=1

uTi b true

σi
vi︸ ︷︷ ︸

x true

+
n∑
i=1

uTi ε

σi
vi︸ ︷︷ ︸

error

. (2.2)

As indicated above, the inverse solution is comprised of two components:

x true, which is the desired solution, and an error term. Before discussing
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algorithms to compute approximations of x true, it is useful to study the error

term.

Matrices arising from ill-posed inverse problems have the following proper-

ties.

P1. The matrix A is severely ill-conditioned, with the singular values σi

decaying to zero without a significant gap to indicate numerical rank.

P2. The singular vectors corresponding to the small singular values tend

to oscillate more (i.e., have higher frequency) than singular vectors

corresponding to large singular values.

P3. The components |uTi b true| decay on average faster than the singular

values σi. This is referred to as the discrete Picard condition [68].

From the first two properties, we see that the high frequency components

of the error term are highly magnified by division of small singular values.

The computed inverse solution (2.2) is dominated by these high frequency

components and is, in general, a very poor approximation of x true. How-

ever, the third property suggests that there is hope of reconstructing some

information about x true; that is, an approximate solution can be obtained

by reconstructing components corresponding to the large singular values and

filtering out components corresponding to small singular values. A filtered,

or regularized, solution can be computed as

xfilt =
n∑
i=1

φi
uTi b

σi
vi , (2.3)

where the filter factors, φi, satisfy φi ≈ 1 for large σi, and φi ≈ 0 for small σi.

That is, the large singular value components of the solution are reconstructed,

while the components corresponding to the small singular values are filtered

out. Different choices of filter factors lead to different methods. For example,
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the truncated SVD (TSVD) approach uses filter factors

φi =

{
1 if i ≤ `

0 otherwise
,

where ` ≤ n is a prescribed truncation index that serves as a regularization

parameter.

A well-known and widely-used approach called Tikhonov regularization can

also be interpreted as a filtering method and is the focus of Section 2.2.1.

In addition, the GCV approach for selecting regularization parameters is

discussed. Then Section 2.2.2 describes the LSQR method for iterative reg-

ularization.

2.2.1 Tikhonov Regularization and GCV

Tikhonov regularization requires solving the minimization problem given in

(1.7), where the problem is said to be in standard form if the matrix L is taken

to be the identity matrix I. That is, standard form Tikhonov regularization

has the following equivalent formulations:

min
x
{‖Ax− b‖2

2 + λ2‖x‖2
2} ⇔ min

x

∥∥∥∥∥
[

A

λI

]
x−

[
b

0

]∥∥∥∥∥
2

2

. (2.4)

We remark that other regularization methods, such as generalized Tikhonov

regularization (which damps the norm of an appropriate derivative of x), total

variation, `p-norm constraints, or even bound constraints [40, 68, 116, 129],

may be preferable in some applications. In the case where L 6= I, it is common

to use a standard form transformation, thereby making the problem simpler

from a numerical point of view. That is, if L is invertible, then we can use

the substitution y = Lx and get the following form:

min
y
{‖AL−1y − b‖2

2 + λ2‖y‖2
2}. (2.5)
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Notice that this formulation is equivalent to right preconditioning of the

original system with preconditioner L. Another common approach if L

is not invertible is to use the A-weighted pseudoinverse of L, defined as

L†A = (I− (A(I− L†L))†A)L† [39, 68]. The matrix of interest here is AL†A,

and the additional computational cost for including the regularization opera-

tor in iterative methods includes matrix-vector and matrix-transpose-vector

multiplications with L†A. However, it may be difficult in practice to work with

L†A in this way, so a joint bidiagonalization algorithm has been proposed in

[87] that only requires multiplications with L and LT . In this dissertation we

assume L = I and focus on the standard Tikhonov formulation (2.4).

Using the SVD of A, Tikhonov regularization can be written in filtered

form as [68]

xλ =
n∑
i=1

σ2
i

σ2
i + λ2

uTi b

σi
vi . (2.6)

Selecting an appropriate regularization parameter λ is crucial. If λ is too

large, the filter factors damp (or, equivalently, filter out) too many of the

components in the SVD expansion (2.6), and the corresponding solution is

over-smoothed. On the other hand, if λ is too small, the filter factors damp

too few components, and the corresponding solution is under-smoothed. In

the extreme case, note that choosing λ = 0 corresponds to φi = 1 for all i in

(2.3), thereby giving the inverse solution (2.2).

We use a parameter estimation method called generalized cross-validation,

or GCV, which is a predictive statistics-based method that does not require

a priori estimates of the error norm [53, 68]. The basic idea of GCV is that

a good choice of λ should predict missing values of the data. That is, if an

arbitrary element of the observed data is left out, then the corresponding

regularized solution should be able to predict the missing observation fairly

well [68]. We leave out each data value in vector b in turn and seek the value
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of λ that minimizes the prediction errors, measured by the GCV function

G
A, b

(λ) =
n‖(I−AA†λ)b‖2

2(
trace(I−AA†λ)

)2 , (2.7)

where A†λ = (ATA + λ2I)−1AT represents the pseudo-inverse of

[
A

λI

]
and

gives the regularized solution, xλ = A†λb. The subscripts on G(λ) are used to

emphasize the dependence of the GCV function on the matrix A and right

hand side vector b. By replacing A with its SVD, (2.7) can be rewritten, in

the case m ≥ n, as

G
A, b

(λ) =

n

(
n∑
i=1

(
λ2uTi b

σ2
i + λ2

)2

+
m∑

i=n+1

(uTi b)2

)
(

(m− n) +
n∑
i=1

λ2

σ2
i + λ2

)2 , (2.8)

which is a computationally convenient form to evaluate. Thus, GCV can

be easily used with standard minimization algorithms. However, these ap-

proaches require computing the singular value decomposition of the matrix

A [55], which may be computationally impractical for large-scale problems.

2.2.2 Iterative Regularization: LSQR

A more favorable approach for regularizing large-scale problems of the form

(2.1) is to use a conjugate gradient-type solver such as LSQR [110, 111].

This algorithm exhibits faster convergence than gradient descent methods,

especially on ill-conditioned problems. However, the disadvantage is that

noise contaminates the solution faster, so a good stopping criterion is crucial.

LSQR is based on the Lanczos bidiagonalization process (LBD)1 [50]. With

β = ‖b‖ and starting vector w1 = b/β, LBD uses products of the form ATw

1Also referred to as Golub-Kahan bidiagonalization [73].
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and Ay to generate matrices

Wk = [ w1 · · · wk ], Yk = [ y1 · · · yk ], Bk =


α1

β2
. . .
. . . αk

βk+1


for k = 1, 2, ..., where ||wk|| = ||yk|| = 1 and αk, βk > 0. Assuming exact

arithmetic, we would have WT
k Wk = YT

k Yk = I; however, the following

relations hold to machine precision:

Wk+1(βe1) = b (2.9)

AYk = Wk+1Bk (2.10)

ATWk+1 = YkB
T
k + αk+1yk+1e

T
k+1 , (2.11)

where ek+1 denotes the last column of the identity matrix of dimension (k+1).

Given these relations, LSQR [110] solves the sequence of subproblems

fk = argmin
f
||Bkf − βe1||22 , xk = Ykfk . (2.12)

From (2.9) and (2.10) we see that Ax − b = Wk+1(Bkfk − βe1). Since

||Wk+1|| ≈ 1, we see that the vectors xk should converge to a solution of

(2.1), even if the columns of Wk+1 lose orthogonality. As k increases to

k+ 1, LSQR uses cheap recursions to update QR factors of Bk and to obtain

xk+1, without having to compute fk+1. The main storage required is for the

most recent vectors wk and yk, which are used to generate the next vectors

and are then overwritten.

An important property of the LBD process is that for small values of k the

singular values of the matrix Bk approximate very well certain singular values

of A, with the quality of the approximation depending on the relative spread

of the singular values; specifically, the larger the relative spread, the better
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the approximation [8, 54, 118]. For ill-posed inverse problems the singular

values decay to and cluster at zero, such as σi = O(i−c) where c > 1, or

σi = O(ci) where 0 < c < 1 and i = 1, 2, . . . , n [126, 128]. Thus, the relative

gap between large singular values is generally much larger than the relative

gap between small singular values. We therefore expect that if we apply the

LBD iteration to a linear system arising from discretization of an ill-posed

inverse problem, then the singular values of Bk converge very quickly to the

largest singular values of A. The following example illustrates this situation.

Example 2.1 Consider the inverse heat equation described in Section 2.1

that was generated by the function heat in Regularization Tools. We are

interested in the nonzero singular values of A and their approximations com-

puted from the LBD algorithm. In Figure 2.1 we show a plot of the singular

values of A and their relative spread; that is,

σi(A)− σi+1(A)

σi(A)
,

where we use the notation σi(A) to denote the ith largest singular value of

A.

Figure 2.1 clearly illustrates the properties of ill-posed inverse problems;

the singular values of A decay to and cluster at 0. Moreover, we clearly see

that in general the relative gap of the singular values is larger for the large

singular values and smaller for the small singular values. Thus, for small

values of k, we expect to observe that the singular values of Bk converge

quickly to the large singular values of A. This can be seen in Figure 2.2,

which compares the singular values of A with those of the bidiagonal matrix

Bk for k = 10, 20, 50.

The above example implies that if LSQR is applied to the least squares

problem min
x
‖Ax − b‖2

2, then at early iterations the approximate solutions

xk will be in a subspace that approximates a subspace spanned by the large
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Figure 2.1: Plot of singular values and their relative spread. The left plot

contains the singular values of A, denoted as σi(A), and the right plot con-

tains the relative spread of A’s singular values.

singular components of A. Thus, for k � n, xk is a regularized solution.

However, eventually xk should converge to the inverse solution, which is

corrupted with noise. This means that the iteration index k plays the role of a

regularization parameter; if k is too small, then the computed approximation

xk is an over-smoothed solution, while if k is too large, xk is corrupted

with noise. More extensive theoretical arguments of this semi-convergence

behavior of conjugate gradient methods can be found elsewhere; see [64] and

the references therein.

2.3 Hybrid Methods

As described in the previous section, direct methods such as Tikhonov reg-

ularization can be computationally impractical for large problems. Further-

more, iterative methods like LSQR when applied to ill-posed inverse problems

exhibit inherent semi-convergence, where early iterations tend to approxi-

mate spectral components corresponding to signal, while later iterations be-
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come contaminated with noise [68]. A good stopping criterion is required

for computing reliable solutions. To overcome these limitations, we consider

hybrid methods for large-scale ill-posed inverse problems.

Previous work on hybrid methods can be divided broadly into two cate-

gories: those that use iterative methods to solve the regularized problem and

those that embed regularization within an iterative scheme. In this work we

focus on the latter case, but first we make some remarks on the former.

LSQR with Regularization

If a suitable regularization parameter, λ, is known in advance, the LSQR

algorithm can incorporate Tikhonov regularization, and stopping rules can be

implemented that are generally reliable [111]. That is, it has been proposed

to use the LSQR algorithm to solve the Tikhonov problem (2.4), where λ is

a fixed regularization parameter. That is, for λ ≥ 0, LSQR(λ) [111] solves

the subproblems

fk = argmin
f

∥∥∥∥∥
[

Bk

λI

]
f −

[
βe1

0

]∥∥∥∥∥
2

, xk = Ykfk , (2.13)

using similar recursions and slightly more elaborate QR factors. Essentially

no more storage or work is required. Since ||Yk|| ≈ 1, we find from (2.9)-

(2.11) that the vectors fk should converge reliably to a solution of (2.4), even

if Wk+1 and Yk lose orthogonality.

This is an efficient approach if a good value of λ is known. However, if

λ is too small and the problem is ill-posed, LSQR(λ) also exhibits semi-

convergence behavior. This would be useful as long as LSQR’s stopping

rules result in termination at the “right time.”

As mentioned in the previous section, obtaining a good value of λ for large-

scale problems can be very difficult. Standard regularization parameter se-

lection methods typically require a good estimate of the noise level or the
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SVD of matrix A. Other methods such as L-curve require the solution of

(2.4) for several regularization parameters. This limitation can be partially

alleviated by exploiting redundancies and additional information available in

certain iterative methods [15, 47].

Another option that has been proposed for large-scale problems is to for-

mulate Tikhonov regularization as a quadratically constrained least squares

problem, where the Lagrange multiplier serves as a regularization param-

eter [38, 56]. However, the computational cost can still be prohibitive for

very large matrices, and the method proposed in [56] would need to be im-

plemented carefully to avoid failure when a trial choice of parameter in the

iteration is poor [17]. We propose to use an alternate approach that can

automatically select regularization parameters and a stopping iteration.

Embedded Regularization

Another approach for stabilizing the semi-convergence behavior of LSQR and

regularizing large-scale problems is to embed a direct regularization scheme,

such as Tikhonov or TSVD, within an iterative Lanczos bidiagonalization

algorithm [7, 9, 16, 66, 87, 88, 92, 107]. The basic idea of this approach

is to project the large-scale problem onto Krylov subspaces of small (but

increasing) dimension. Then the projected problem can be solved cheaply by

using any direct regularization method.

In particular, we consider the hybrid methods of [107, 7], which are based

on the Lanczos bidiagonalization algorithm, and we are interested in pro-

jected problem (2.12). Recall from the previous example that the singular

values of Bk converge quickly to the large singular values of A. However,

since the original problem is ill-posed, Bk will eventually approximate the

small singular values of A, thereby becoming very ill-conditioned also. Since

Bk is much smaller than A, a number of spectral filtering algorithms [68] can
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Figure 2.3: Semi-convergence behavior of LSQR and stabilization using a

hybrid method. These plots represent relative errors, ‖xk−x true‖2/‖x true‖2,

where x true is the true solution and xk is the solution at the kth iteration. The

left plot illustrates semi-convergence behavior of the iterative method LSQR

for an ill-posed problem. The right plot illustrates how this semi-convergence

behavior can be stabilized with an iterative LSQR-Tikhonov hybrid method.

be used to provide regularization at each iteration. O’Leary and Simmons

[107] proposed using Tikhonov regularization to solve the projected problem,

and Björck [7] suggested using TSVD with GCV to choose the regulariza-

tion parameters. A variety of existing methods can be implemented. For a

comparative study, see Kilmer and O’Leary [88].

The potential benefits of this approach are illustrated in the right plot of

Figure 2.3. Notice that, in contrast to the behavior of the relative errors for

LSQR, the hybrid approach can effectively stabilize the iteration so that an

imprecise (over) estimate of the stopping iteration does not have a deleterious

effect on the computed solution. Björck [7] has suggested using GCV as a

way to determine an appropriate stopping iteration in the hybrid approach.

A disadvantage of this hybrid approach is that at each iteration we must

choose a new regularization parameter for the projected problem. Although
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this is not computationally expensive, in order for the approach to be viable

for practical problems, we must choose good parameters. Optimal choices

for the parameter at each iteration result in convergence behavior similar to

that illustrated in the right plot of Figure 2.3. However, our computational

experience indicates that such optimal behavior cannot be expected when

using parameter selection methods such as the discrepancy principle, GCV,

and the L-curve (see also [88]).

2.3.1 Tikhonov and GCV in Hybrid Methods

At the kth iteration, we consider using Tikhonov regularization to regularize

projected problem (2.12). Thus, we would like to solve

fk = argmin
f

∥∥∥∥∥
[

Bk

λkI

]
f −

[
βe1

0

]∥∥∥∥∥
2

, xk = Ykfk . (2.14)

Notice that the difference between (2.13) and (2.14) is that the regularization

parameter, λk, is allowed to change per iteration here. We consider the GCV

function to select these parameters:

G
Bk, βe1

(λ) =
k‖(I−BkB

†
k,λ)βe1‖2

2(
trace(I−BkB

†
k,λ)
)2 .

Notice the dependence on matrix Bk and right hand side vector βe1. If we

define the SVD of the (k + 1)× k matrix Bk as

Bk = Pk

[
∆k

0T

]
QT
k , (2.15)

then G
Bk, βe1

(λ) can be written as

G
Bk, βe1 (λ) =

kβ2

(
k∑
i=1

(
λ2

δ2
i + λ2

[
PT
k e1

](i))2

+
([

PT
k e1

](k+1)
)2
)

(
1 +

k∑
i=1

λ2

δ2
i + λ2

)2 , (2.16)
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where
[
PT
k e1

](j)
denotes the jth component of the vector PT

k e1, and δi is the

ith largest singular value of Bk (i.e., the ith diagonal element of ∆k).

2.3.2 Difficulty in using GCV in Hybrid Methods

In this section we use standard GCV to choose the Tikhonov regularization

parameter λk at each iteration of the Lanczos-based hybrid methods for the

test problems in Section 2.1. The results are shown in Figure 2.4. In all of our

examples, LSQR, which is essentially LBD with no regularization, exhibits

semi-convergent behavior, as we expect. If we use “optimal” regularization

parameters at each iteration (determined using knowledge of x true to make

the relative error in the solution as small as possible), then Lanczos-hybrid

methods would be excellent at stabilizing the regularized solution, as shown

with the dashed lines. However, in realistic situations, we do not know the

optimal solution, so this is impossible. On the Phillips, Shaw and Deriv2

problems, the performance of standard GCV, though slightly worse than

optimal, is acceptable. For the other three problems, the convergence behav-

ior when using standard GCV is significantly worse than when the optimal

parameters are used.

A major concern is the possibility that rounding errors in the computation

of the matrices Wk, Yk and Bk are causing the poor behavior. Björck,

Grimme and Van Dooren [9] showed that in some cases reorthogonalization

may be necessary for better performance, and Larsen [92] considered partial

reorthogonalization. However, in our tests GCV still had difficulty even

after reorthogonalization. Another option is to use a different regularization

method such as TSVD or exponential filtering, but we found little to no

improvement in the solution. In addition, we delayed regularization until

after k > kmin to wait until Bk more fully captures the ill-conditioning of A,

but that attempt proved futile as well. These phenomena are illustrated in
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Figure 2.4: Relative errors with standard GCV. These plots show the relative

error, ‖xk − x true‖2/‖x true‖2, at each iteration of LSQR and the Lanczos-

hybrid method. Upper left: Satellite. Upper right: Regtools-Phillips. Middle

left: Regtools-Shaw. Middle right: Regtools-Deriv2. Bottom left: Regtools-

Baart. Bottom right: Regtools-Heat.
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the following example.

Example 2.2 In Figure 2.5, we present observations corresponding to the

Satellite example. In particular, various modifications were attempted to im-

prove the results when using standard GCV to select regularization parameters

in the Lanczos-hybrid method. Although the convergence results after using

full reorthogonalization produced slightly smaller solution errors than those

using no reorthogonalization (see the top left plot), the results are still not

ideal. Furthermore, we found no improvement in using TSVD rather than

Tikhonov filtering for this particular example (top right). The two bottom

plots correspond to delaying regularization of the projected system until after

25 and 75 Lanczos iterations respectively. As we see, there is no benefit in

delaying regularization for the projected problem since the errors immediately

jump to the non-ideal curve from using Tikhonov with standard GCV.

It is evident from these examples that there are good choices of the regular-

ization parameters. However, the poor behavior is caused by the suboptimal

parameter chosen by GCV. In particular, the standard GCV function is se-

lecting regularization parameters at each iteration that are much too large.

In the next section we propose replacing it by a weighted-GCV method that

shows much better behavior.

2.4 Weighted GCV Method

In this section we describe a modification of the GCV function, called weighted-

GCV (W-GCV), that improves our ability to choose regularization parame-

ters for the projected problem. We first describe the approach for Tikhonov

regularization for a general linear system of equations. Then in Section 2.4.3

we show how to apply it to the projected problem.
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Figure 2.5: Relative errors for the Satellite example with standard GCV.

These plots show the relative error, ‖xk − x true‖2/‖x true‖2, at each iteration

of LSQR and the Lanczos-hybrid method for the Satellite example. The top

left plot provides results after full reorthogonalization of the Lanczos vectors,

and the top right plot provides results after using TSVD filtering, rather than

Tikhonov. The bottom plots show the results from delayed regularization of

the projected problem.
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2.4.1 W-GCV for Tikhonov Regularization

The standard GCV method is a popular parameter choice method used in a

variety of applications; however, as illustrated in Section 2.3.2, the method

may not perform well for certain classes of problems. Other studies in statis-

tical nonparametric modeling and function approximation noted that in prac-

tical applications, GCV occasionally chose Tikhonov parameters too small,

thereby under-smoothing the solution [28, 46, 89, 106, 127]. To circumvent

this problem, these papers use a concept that we call weighted-GCV. In con-

trast, we observed over-smoothing difficulties when using GCV in Lanczos-

hybrid methods, which motivated us to use a different range of weights in

the W-GCV method.

Instead of the Tikhonov GCV function defined in (2.7), we consider the

weighted-GCV function

G
A, b

(ω, λ) =
n||(I−AA†λ)b||2(
trace(I− ωAA†λ)

)2 . (2.17)

Notice the function’s dependency on a new parameter ω in the denominator

trace term. Choosing ω = 1 gives the standard GCV function (2.7). If we

choose ω > 1, we obtain smoother solutions, while ω < 1 results in less

smooth solutions. The obvious question here is how to choose a good value

for ω. To our knowledge, in all work using W-GCV, only experimental ap-

proaches are used to choose ω. For smoothing spline applications, Kim and

Gu empirically found that standard GCV consistently produced regulariza-

tion parameters that were too small, while choosing ω in the range of 1.2-1.4

worked well [89]. In our problems, though, the GCV regularization parame-

ter is chosen too large; thus, we seek a parameter ω in the range 0 < ω ≤ 1.

In addition, rather than using a user-defined parameter choice for ω as in

previous papers, we propose a more automated, adaptive approach that is

also versatile and can be used on a variety of problems.
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2.4.2 Interpretations of the W-GCV Method

In this section we consider the W-GCV method and look at various the-

oretical aspects of the method. By looking at different interpretations of

the W-GCV method, we hope to shed some light on the role of the new

parameter, ω.

As mentioned in Section 2.2.1, the standard GCV method is a “leave-one-

out” prediction method [53]. In fact, in leaving out the jth observation, the

derivation seeks to minimize the prediction error, given by

m∑
i=1,i 6=j

(b(i) − [Ax](i))2 + λ2||x||22 ,

where b(i) and [Ax](i) are the ith entries of vectors b and Ax respectively. If

we define the m×m matrix

Ej = diag(1, 1, ...1, 0, 1, ...1),

where 0 is the jth entry, then the above minimization is equivalent to

min
x
||Ej(b−Ax)||22 + λ2||x||22.

We can derive the W-GCV method in a similar manner, but we instead use

a weighted “leave-one-out” philosophy. More specifically, consider the case

0 < ω < 1. Then define the matrix

Fj = diag(1, 1, ...1,
√

1− ω, 1, ...1),

where
√

1− ω is the jth diagonal entry of Fj. By using the W-GCV method,

we seek a solution to the following minimization problem:

min
x
||Fj(b−Ax)||22 + λ2||x||22.

In this problem, the jth observation is still present but has been down-

weighted by the factor
√

1− ω; thus, it is completely left out when ω = 1. A
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more detailed derivation of the W-GCV method can be found in Appendix

Section A.1.

By introducing a new parameter in the trace term of the GCV function, we

not only introduce a new weighted prediction approach but also change the

interpretation of the function we are minimizing, perhaps including bias in

the estimator. We consider the special case of Tikhonov regularization and

look at how the GCV function is altered algebraically and graphically with

the new parameter. Using the SVD expansion of A, it can be shown that

the trace term in the standard GCV function is given by

trace(I−AA†λ) =
n∑
i=1

λ2

σ2
i + λ2

+ (m− n).

In contrast, the trace term for the W-GCV function is given by

trace(I− ωAA†λ) =
n∑
i=1

(1− ω)σ2
i + λ2

σ2
i + λ2

+ (m− n)

=
n∑
i=1

(1− ω)φi +
n∑
i=1

λ2

σ2
i + λ2

+ (m− n).

Thus, if ω < 1 then we are adding a multiple of the sum of the filter factors

to the original trace term, and if ω > 1 we are subtracting a multiple. The

graph of the GCV function also undergoes changes as ω is changed from 1.

The denominator becomes zero for some value of ω > 1, so the W-GCV

function has a pole. Fortunately, in our case, 0 < ω ≤ 1. Note that larger

values of ω result in larger computed regularization parameters, and smaller

values of ω result in smaller values of λ.

2.4.3 W-GCV for the Bidiagonal System

In the previous section we discussed W-GCV in the context of Tikhonov

regularization on the original (full) system of equations involving A and b.
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This allowed us to provide a general description, but our aim is to apply

W-GCV to choosing regularization parameters for the projected problem,

(2.12). In this case, the W-GCV function has the form:

G
Bk, βe1

(ω, λ) =
k‖(I−BkB

†
k,λ)βe1‖2

2(
trace(I− ωBkB

†
k,λ)
)2

=

kβ2

(
k∑
i=1

(
λ2

δ2
i + λ2

[
PT
k e1

](i))2

+
([

PT
k e1

](k+1)
)2
)

(
1 +

k∑
i=1

(1− ω)δ2
i + λ2

δ2
i + λ2

)2 ,

where, using the notation introduced in (2.16), Pk is an orthogonal matrix

containing the left singular vectors of Bk, δi is the ith largest singular value of

Bk, and W T
k b = βe1 with β = ‖b‖. Note that this reduces to the expression

in (2.16) when ω = 1.

2.4.4 Choosing ω

For many ill-posed problems, a good value of ω is crucial for the success of

Lanczos-hybrid methods. In this section we consider how different values

of ω may affect convergence behavior, and we present a heuristic, adaptive

approach for finding a good value for ω.

Example 2.3 Consider the test problem Heat, whose convergence graph with

Tikhonov regularization and the standard GCV method is given in the bottom

right corner of Figure 2.4. To illustrate the effects of using the W-GCV

function with Lanczos-hybrid methods, we fix a value of ω for all iterations

and present relative error plots. The results are shown in Figure 2.6.

For this particular example, it is evident that ω = 0.2 is a good value for

the new parameter. However, finding a good ω in this way is not possi-

ble since the true solution is generally not available. Hence, we introduce
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Figure 2.6: Relative errors for the Heat example with different values of ω.

The various plots show how the convergence behavior changes when regu-

larization parameters are chosen using the W-GCV method with different

values of ω. Note that ω = 1 is equivalent to using standard GCV, and ω = 0

is equivalent to using no regularization.
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an automated, adaptive approach that in our experience produces adequate

results.

Recall from Section 2.2.2 that at each iteration of the Lanczos-hybrid

method, we solve the projected least squares problem (2.12) using Tikhonov

regularization. Since the early iterations of LBD do not capture the ill-

conditioning of the problem, we expect that little or no regularization is

needed to solve the projected least squares problem. Let λk,opt denote the

optimal regularization parameter at the kth iteration. Then, we can assume

that for small k, λk,opt should satisfy

0 ≤ λk,opt ≤ σmin (Bk) ,

where σmin denotes the smallest singular value of the matrix. If at iteration

k, we assume that we know λk,opt, then we can find ω by minimizing the

GCV function with respect to ω. That is, solving

∂

∂λ

(
G
Bk, βe1

(ω, λ)
)∣∣∣∣
λ=λk,opt

= 0.

See Appendix Section A.2 for the details of computing the above derivative

and solving for ω. Since we do not know λk,opt, we instead find ω̂k corre-

sponding to λk,opt = σmin (Bk). In later iterations, this approach fails because

σmin (Bk) becomes nearly zero due to ill-conditioning. For these iterations, a

better approach is to adaptively take ωk = mean {ω̂1, ω̂2, . . . , ω̂k} . By aver-

aging the previously computed ω values, we are essentially using the earlier

well-conditioned components of our problem to help stabilize the harmful

effects of the smaller singular values. There are two disadvantages to this

approach. First, it over-smooths the solutions at early iterations, since it uses

a rather large value of λ for a well-conditioned problem. Since these solutions

are discarded, this is not a significant difficulty. Second, it under-smooths

values for large k, so semi-convergence will eventually reappear. However,

in practice we will also be using a method like GCV to choose a stopping
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iteration, so k will not be allowed to grow too large; this is discussed in the

next section.

2.4.5 Stopping Criteria for LBD

The next practical issue to consider is an approach to determine an appro-

priate point at which to stop the iteration. Björck [7] suggested using GCV

for this purpose, when TSVD is used to solve the projected problem. How-

ever, Björck, Grimme and van Dooren [9] showed that modifications of the

algorithm were needed to make the approach effective for practical problems.

Specifically, they proposed a fairly complicated scheme based on implicitly

restarting the iterations.

In this section we describe a similar approach for Tikhonov regularization,

but we do not need implicit restarts. We begin by defining the computed

solution at each iteration of the Lanczos-hybrid method as

xk = Ykfλk = Yk(B
T
kBk + λ2

kI)−1BT
kWT

k b ≡ A†kb . (2.18)

Using the basic idea of GCV, we would like to determine a stopping iteration,

k, that minimizes

Ĝ(k) =
n‖(I−AA†k)b‖2

2(
trace(I−AA†k)

)2 . (2.19)

Using (2.18) and (2.10), the numerator of equation (2.19) can be written as

n‖(I−AA†k)b‖
2
2 = n‖(I−Bk(B

T
kBk + λ2

kI)−1BT
k )βe1‖2

2 . (2.20)
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If we now replace Bk with its SVD (2.15), we obtain

n‖(I−AA†k)b‖
2
2 = nβ2

∥∥∥∥∥∥∥∥∥∥∥


λ2
k

δ21+λ2
k

. . .
λ2
k

δ2k+λ2
k

1

PT
k e1

∥∥∥∥∥∥∥∥∥∥∥

2

2

= nβ2

(
k∑
i=1

(
λ2
k

δ2
i + λ2

k

[
PT
k e1

](i))2

+

([
PT
k e1

](k+1)
)2
)
. (2.21)

Similarly, the denominator of equation (2.19) can be written as

(
trace

(
I−AA†k

))2

=

(
(m− k) +

k∑
i=1

λ2
k

δ2
i + λ2

k

)2

. (2.22)

Thus, combining (2.21) and (2.22), equation (2.19) can be written as

Ĝ(k) =

nβ2

(
k∑
i=1

(
λ2
k

δ2
i + λ2

k

[
PT
k e1

](i))2

+
([

PT
k e1

](k+1)
)2
)

(
(m− k) +

k∑
i=1

λ2
k

δ2
i + λ2

k

)2 . (2.23)

This is the form of Ĝ(k) that we use to determine a stopping iteration in our

implementations. The numerator is n/k times the numerator in (2.16) for

G
A, b

(λk), and the denominator differs only in its first term.

In the ideal situation where the convergence behavior of the Lanczos-hybrid

method is perfectly stabilized, we expect λk to converge to a fixed value

corresponding to an appropriate regularization parameter for the original

problem (2.4). In this case the values of Ĝ(k) converge to a fixed value.

Therefore, we choose to terminate the iterations when these values change
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very little; for example, ∣∣∣∣∣Ĝ(k + 1)− Ĝ(k)

Ĝ(1)

∣∣∣∣∣ < tol ,

for some prescribed tolerance.

However, as remarked in the previous section, it may be impossible to

completely stabilize the iterations for realistic problems, resulting in slight

semi-convergent behavior of the iterations. In this case, the GCV values

Ĝ(k) will begin to increase. Thus, we implement a second stopping criterion

to stop at iteration k0 satisfying

k0 = argmin
k

Ĝ(k) .

2.5 Numerical Results

In this section we illustrate the effectiveness of using the W-GCV method in

Lanczos-hybrid methods with Tikhonov regularization.

2.5.1 Results on Various Test Problems

We implement the adaptive method presented in Section 2.4.4 for choosing

ω and provide numerical results for each of the test problems in Section 2.1.

The resulting convergence curves are displayed in Figure 2.7.

In all of the test problems, choosing ω adaptively provides nearly optimal

convergence behavior. The results for the Phillips and Shaw problems are

excellent with the adaptive W-GCV approach. The Satellite, Baart and

Heat examples exhibit a slowed convergence compared to Tikhonov with

the optimal regularization parameter but achieve much better results than

with the standard GCV. This slowed convergence is due to the fact that at

the early iterations the projected problem is well-conditioned and W-GCV
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Figure 2.7: Relative errors for adaptive choice of ω. Upper left: Satellite.

Upper right: Regtools-Phillips. Middle left: Regtools-Shaw. Middle right:

Regtools-Deriv2. Bottom left: Regtools-Baart. Bottom right: Regtools-

Heat. The W-GCV method, with our adaptive approach to choose ω, pro-

duces near optimal convergence behavior.
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produces a solution that is too smooth. At later iterations, when more small

singular value information is captured in the bidiagonalization process, better

ω, and hence λ, parameters are found, and the W-GCV parameter choice is

close to optimal. In addition, W-GCV avoids the early stagnation behavior

that standard GCV exhibits.

It is interesting to note that the Deriv2 example converges, but eventually

exhibits small signs of semi-convergent behavior. Nevertheless, the results

are still better than the standard GCV, and, moreover, if combined with the

stopping criteria described in Section 2.4.5, the results are quite good. To

illustrate, in Table 2.1 we report the iteration at which our code detected a

minimum of Ĝ(k).

Table 2.1: Results of using Ĝ(k) to determine a stopping iteration. The

numbers reported in this table are the iteration index at which our Lanczos-

hybrid code detected a minimum of Ĝ(k).

Problem Satellite Phillips Shaw Deriv2 Baart Heat

Stopping Iteration 197 18 23 20 9 21

Comparing the results in Table 2.1 with the convergence history plots shown

in Figure 2.7, we see that our approach to choosing a stopping iteration

is very effective. For illustration purposes, we provide in Figure 2.8 the

true and blurred satellite image, followed by the reconstructed image after

197 iterations of the Lanczos-hybrid method using Tikhonov and W-GCV.

Although the scheme does not perform as well on the Baart example, the

results are still quite good considering the difficulty of this problem. (Observe

that with no regularization, semi-convergence happens very quickly, and we

should therefore expect difficulties in stabilizing the iterations.) These results

show that our adaptive W-GCV method performs better than standard GCV,
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(a) True Image (b) Observed Image

(c) Reconstructed Image

Figure 2.8: Satellite image deblurring example. The goal is to reconstruct an

approximation of the true image (a), given the blurred and noisy observed

image (b). Using the W-GCV approach with Tikhonov in the Lanczos-hybrid

scheme, we obtain the reconstructed image (c) at 197 iterations.
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and that we are able to determine an appropriate stopping iteration on a wide

class of problems.

It should also be noted that when LBD takes many iterations, precon-

ditioning could be used to accelerate convergence. For example, Satellite

is a much larger problem than the other examples, so more iterations are

needed. However, the Lanczos-hybrid method can easily incorporate stan-

dard preconditioning techniques to accelerate convergence. For the Satellite

image deblurring example, we used a Kronecker product based preconditioner

[80, 81, 97] implemented in RestoreTools. In this case, the Lanczos-hybrid

method, with W-GCV, detects a minimum of Ĝ(k) in only 54 iterations. The

corresponding solution has relative error 0.4001, which is actually slightly

lower than the relative error 0.4061 achieved at iteration 197 when using no

preconditioning.

2.5.2 Effect of Noise on ω

We now consider how the choice of ω depends on the amount of noise in

the data. In particular, we report on numerical results for the test problems

described in Section 2.1 with three different noise levels:

‖ε‖2

‖Ax true‖2

= 0.1, 0.01, and 0.001.

Thus, these problems have 10%, 1% and 0.1% noise levels respectively. Some

of the results reported in previous sections for 10% noise are repeated here

for comparison purposes.

Recall that because standard GCV computes regularization parameters

that are too large, we should choose 0 < ω ≤ 1 in W-GCV. Generally

we observe that the over-smoothing caused by standard GCV is more pro-

nounced for larger noise levels. Therefore large noise levels typically need

smaller values of ω, while small noise levels need larger values of ω. Our next

experiments were designed to see how far the “optimal” value of ω differs
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from the standard GCV value ω = 1. The results are shown in Table 2.2.

We provide the ω values that allow W-GCV to compute near-optimal reg-

ularization parameters at each iteration of the Lanczos-hybrid method. For

example, in Figure 2.6 we see that for 10% noise, ω = 0.2 produces near

optimal convergence behavior for the Heat problem; thus, this value appears

in the first row, last column of Table 2.2.

Table 2.2: Values of ω for different noise levels. This table contains the values

of ω (found experimentally) that produce optimal convergence behavior of

the Lanczos-hybrid method for different noise levels. Figure 2.9 shows how

these values perform on the Baart and Heat examples.

Satellite Phillips Shaw Deriv2 Baart Heat

Noise Level ωopt ωopt ωopt ωopt ωopt ωopt

10 % 0.40 0.20 0.05 0.10 0.01 0.20

1% 0.50 0.40 0.05 0.20 0.05 0.40

0.1% 0.80 0.50 0.10 0.60 0.10 0.80

The results reported in Table 2.2 were found experimentally. We see clearly

from this table that optimal values of ω depend on the noise level (increasing

with decreasing noise level), as well as on the problem. However, more work

is needed to better understand these relationships.

Figure 2.9 shows how our adaptive approach to choosing ω compares to

the optimal values on two of the test problems (Baart and Heat) and for

three different noise levels. These two test problems are representative of the

convergence behavior we observed with the other test problems. We see that

if a good choice of ω can be found, W-GCV is very effective (much more so

than GCV) at choosing regularization parameters and thus at stabilizing the

convergence behavior, especially for high noise levels. Moreover, although we
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do not yet have a scheme that chooses the optimal value of ω, these results

show that our adaptive approach produces good results on a wide class of

problems, and for various noise levels.

2.6 Remarks and Future Directions

We have considered using a weighted-GCV method in Lanczos-hybrid meth-

ods for solving large-scale ill-posed problems. The W-GCV method requires

choosing yet another parameter, so we proposed and implemented an adap-

tive, automatic approach for choosing this parameter. We have demonstrated

through a variety of test problems that our approach is effective in stabilizing

semi-convergence behavior.

Our Matlab implementation used to generate the results presented in this

chapter is named HyBR to represent Hybrid Bidiagonalization Regularization.

We briefly describe its usage here. The main code is HyBR.m and can be called

in the following way:

>> [x, output] = HyBR(A, b, P, options);

where the required inputs are A and b, as defined in Section 2.1. The optional

input variables are P, which is a preconditioner, and options, which is a

structure that includes input parameters. A parameter structure containing

default parameters can be obtained using the HyBRset.m code. In particular,

>> [options] = HyBRset(‘HyBR’);

An electronic copy of the Matlab codes can be obtained from the following

website: http://www.mathcs.emory.edu/software/HyBR .

Several open questions remain. With the ability to obtain near opti-

mal solutions, Lanczos-hybrid methods should have a significant impact on

many applications. Recently, Kilmer, Hansen and Español [87] suggested a

projection-based algorithm that can be implemented for more general regu-

larization operators. We can treat this iterative method as a hybrid method
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Figure 2.9: Relative errors for different noise levels. The plots on the left

correspond to the Baart example, and the plots on the right correspond to the

Heat example. Optimal choices of ω (found experimentally) produce optimal

convergence behavior, and our adaptive approach to choose ω, produces near

optimal convergence behavior. It can be observed that standard GCV is

ineffective for moderate to high levels of noise.
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and apply W-GCV. In addition, we would like to see how well W-GCV works

in combination with other filtering methods and Lanczos-hybrid methods. Fi-

nally, work remains to be done on developing alternative ways to determine

the new parameter in the W-GCV method, as well as providing a statistical

justification for the new parameter [60, 105].
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Chapter 3

Separable Nonlinear Least

Squares Problems

Nonlinear least squares problems arise in a variety of applications and can

be very difficult to solve. Oftentimes structural properties such as separa-

bility can be exploited to simplify the problem. In this chapter we consider

problems that have the following form:

min
x,y
||A(y)x− b||22 , (3.1)

and we investigate optimization approaches that can take advantage of sep-

arability to efficiently estimate the unknowns x and y.

It is obvious to see that if the parameters in y are known, then we obtain

the linear problem (2.1). However, we consider the case where the parameters

in y are unknown; therefore, both sets of unknowns must be evaluated.

Since we are dealing with ill-posed problems, we consider the Tikhonov

formulation for regularizing the unknowns in x:

min
x,y
{‖A(y)x− b‖2

2 + λ2‖x‖2
2} ⇔ min

x,y

∥∥∥∥∥
[

A(y)

λI

]
x−

[
b

0

]∥∥∥∥∥
2

2

. (3.2)

To regularize the parameters in y, we assume a reduced parameter space

method. That is, we assume the parameters defining the forward operation

can be spanned by a small set of known vectors. In the next section we

present two imaging applications that fit this model.
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3.1 Motivating Examples

Separable nonlinear least squares problems arise naturally in super-resolution

imaging and blind deconvolution applications. In this section we provide a

summary of previous work and a complete description of the mathematical

model for each of these applications.

3.1.1 Super-Resolution Imaging

In many imaging applications, it is desirable to have images with high spatial

resolution. One approach to obtain such images is to build sophisticated in-

strumentation having intrinsically high resolution capabilities. In addition to

being costly, other limitations are difficult to overcome. For example, reduc-

ing the pixel sensor size decreases the signal to noise ratio and also results

in a build up of shot noise [112]. An alternative, less expensive approach

that has gained popularity in digital imaging and video applications is to

use mathematical software tools to combine the information given by a set

of low resolution images into one high resolution image. This is a process

commonly referred to as super-resolution imaging [82].

In order for super-resolution techniques to work, the multiple low resolution

images must contain different information of the same scene. This is typically

accomplished by capturing low resolution images of slightly shifted versions of

the (same) scene, with the shifts occurring at sub-pixel distances. For efficient

implementation of the reconstruction algorithms, it is often assumed that the

shifts are uniform and linear. Another approach that has been proposed is

to use low resolution images of a stationary scene, but where each image

has different amounts of defocus [35]. The idea of achieving super-resolution

dates back to the early 1970s [3], but most substantial work on algorithms

has been done more recently; see for example [13, 19, 35, 101, 103, 124].

Recent overview papers on super-resolution include [42, 112].
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Algorithms for super-resolution involve two key steps: registration and re-

construction. That is, first the shifts, i.e. the relative displacement or de-

formation of each point in each image from each point of a reference image,

must be estimated. Second, after the displacements have been evaluated, a

linear inverse problem must be solved to obtain the high resolution image.

Most approaches proposed in the literature decouple these steps. Decoupling

makes sense if relative displacements are known a priori (possibly from a cal-

ibration process) or if they can be estimated from the low resolution images

[13, 35, 42, 101, 103, 112]. For simple displacements, such as linear uniform

translation, this procedure can work well. However, for more complex, non-

linear, nonuniform transformations, accurately estimating the displacements

on the coarse image can be very difficult. In particular, because the estima-

tion of displacements is done on the coarse image, fine-scale details of the

high resolution image are ignored. This can lead to severe inaccuracies in

the displacements, thus resulting in degradation of the reconstructed image.

Since the registration and reconstruction parts of the problem are not in-

dependent, it is possible to obtain better results by considering a coupled

approach that jointly estimates the displacements and the reconstructed high

resolution image. Although substantial work has been done in the develop-

ment of algorithms for the uncoupled super-resolution problem, relatively lit-

tle work has been done for the coupled problem, which requires solving a non-

linear optimization problem. This can be very expensive to implement unless

one makes other simplifying assumptions; as pointed out in [42], several diffi-

culties related to the joint estimation task still remain largely open. Tom and

Katsaggelos [124] use a maximum likelihood formulation and an expectation

maximization (EM) algorithm to solve the joint estimation problem. They

implement the algorithm in the frequency domain, implying spatial invari-

ance and, hence, linear uniform displacements. Cheeseman et al. [19] consider

the maximum a posteriori (MAP) framework, using the simplex method to
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compute registration parameters and the Jacobi algorithm to solve a system

of linear equations. Hardie, Barnard, and Armstrong [70] also use a MAP

framework. They consider only simple horizontal and vertical displacements

and a numerical optimization approach that alternates between the two sets

of variables.

In this work, we formulate the super-resolution problem as a separable

nonlinear least squares problem and consider a new mathematical framework

that enables us to couple the problem of estimating the displacements with

the problem of estimating the high resolution image. First we develop a

mathematical model for super-resolution imaging.

Mathematical Framework

Suppose we measure m low resolution images, b1,b2, . . . ,bm, which could be

obtained either simultaneously from multiple sensors targeted at the same

object, or from a single sensor that captures images of the same object at

multiple time instances. In either case, it is assumed that each low resolu-

tion image is shifted by subpixel displacements from a particular reference

image. Assuming these low resolution images are undersampled, these sub-

pixel displacements suggest that each low resolution image contains different

information about the same object. Each low resolution image can be repre-

sented as

bi = R Si x true + εi , (3.3)

where εi is additive noise, R is a restriction or decimation matrix that trans-

forms a high resolution image into a low resolution image, and Si is a sparse

matrix that performs a geometric distortion (e.g., shift, rotation, etc.) of the

high resolution image, x true. The geometric distortion, and hence Si, is de-

fined by the parameter vector, yi. (To simplify this discussion we assume no

blurring in the recorded images, but such effects can be easily incorporated

into the model.)
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Note that if we assume each low resolution image is only shifted horizontally

and vertically, then each yi contains only two values (the horizontal and

vertical displacements). If we want to consider more complicated movement

(such as rotation), then each yi might contain up to six values that define,

for example, general linear affine transformations [34]. This is the approach

we follow.

Consider the deformed (shifted, rotated, scaled) image, Six true, where Si is

a sparse n×nmatrix and the nonzero elements of Si are interpolation weights.

To see how the weights used in the bilinear interpolation are calculated, define

coordinate vectors for a discrete image with n pixels as

t1 =


t1,1

t2,1
...

tn,1

 and t2 =


t1,2

t2,2
...

tn,2

 .

That is, pixel j is centered at position tj = (tj,1, tj,2) on a coordinate grid.

Then, the deformation field at pixel j has the form:

ui(tj) =

(
ui,1

ui,2

)
=

(
y

(1)
i y

(2)
i

y
(4)
i y

(5)
i

)(
tj,1

tj,2

)
+

(
y

(3)
i

y
(6)
i

)
. (3.4)

Since the parameters y
(1)
i , y

(2)
i , . . . , y

(6)
i are shared by all pixels in the ith

deformed image, the set of displacement vectors for image i can be written

as

ui =

[
ui,1

ui,2

]
=

[
t1 t2 1

t1 t2 1

]
y

(1)
i
...

y
(6)
i

 = Dyi , (3.5)

where 1 is the vector of all ones. Since the displacements ui are a function of

the registration parameters yi, let Si ≡ S(ui) = S(Dyi). This notation will

aid in future derivations.
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Furthermore, given ui, we can obtain the nonzero elements of Si in the

following way. That is, we would like to connect the displaced pixel, x(tj +

ui) = x(tj +ui(tj)), to four pixel values in the reference image that surround

it. Because subpixel shifts allow us to recover more information about the

object, it would be undesirable for a displaced pixel to fall precisely on one of

the pixels of the reference image. To see how the weights used in the bilinear

interpolation are calculated, suppose xNE, xNW , xSE, xSW are the four pixel

values that surround x(tj + ui), as illustrated in Figure 3.1. Then, assuming

xNW xNE

xSW xSE

x(t
j
+u

i
 )

Figure 3.1: An illustration of bilinear interpolation. Here the corners xNW ,

xNE, xSW , and xSE represent given discrete pixel values, and x(tj + ui) is a

value that must be approximated.

without loss of generality a pixel size of 1× 1, the interpolated point can be

written as

x(tj + ui) = (1− ui,1)(1− ui,2)xNW + ui,1(1− ui,2)xNE + (3.6)

(1− ui,1)ui,2x
SW + ui,1ui,2x

SE.
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The bilinear products of ui,1 and ui,2 are precisely the interpolation weights

found in matrix Si.

Recall that the aim of super-resolution image reconstruction is to fuse the

different image information from the low resolution images in order to create

one high resolution image. The inverse problem can then be modeled as the

nonlinear least squares problem (3.1), where

b =


b1

b2

...

bm

 , y =


y1

y2

...

ym

 , A(y) =


R S(Dy1)

R S(Dy2)
...

R S(Dym)

 , ε =


ε1

ε2

...

εm

 .

By only allowing rotation, translation, scaling and shear, we have assumed

a parametric approach to registration, in that the displacements can be

spanned by a small set of known vectors. This in turn regularizes the reg-

istration process. It is important to note that the number of parameters

defining y is significantly fewer than the number of pixel values defining x.

3.1.2 Blind Deconvolution

Another example of a separable nonlinear least squares problem (3.1) arises

in image deblurring, when the blurring operator is not known exactly. This

problem is often referred to as blind deconvolution in the image processing

literature [18, 71, 76, 120, 130]. It is assumed that the observed image b

is data measured by an imaging device (such as a camera, telescope, micro-

scope, or medical imaging scanner), and A(y) is an operator that models

how the image is captured. If the true parameters y true were available, the

problem reduces to the linear image deblurring problem discussed in Chap-

ter 2. However, realistically the vector y is obtained through a calibration

process, for example, by collecting images of known objects. Thus, it is only

an approximation of the true parameters y true.
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Matrix A(y) models the blurring operation and can be written as

A(y) = A(P(y)) ,

where P(y) is a PSF. In many applications the blur is assumed to be spa-

tially invariant, which means P(y) is an image of a point source object and

A(P(y)) is structured. The precise structure depends on the imposed bound-

ary conditions, but it is usually a combination of Toeplitz and Hankel ma-

trices; see [69] for more details.

In any blind deconvolution problem it is necessary to make some assump-

tions about the blur. For illustration purposes, we assume a general Gaussian

blur, where the ijth entry of the PSF, centered at (k, l), has the form:

p(ij) = exp

−1

2

[
i− k
j − l

]T [
s2

1 r2

r2 s2
2

]−1 [
i− k
j − l

]
= exp

(
−(i− k)2s2

2 − (j − l)2s2
1 + 2(i− k)(j − l)r2

2s2
1s

2
2 − 2r4

)
. (3.7)

Since general blind deconvolution is a highly underdetermined problem, there

is no unique solution. To alleviate this concern, we assume that the blurring

operation follows a certain parametric form. In particular, the parameters

s1, s2 and r determine the spread and orientation of the Gaussian PSF, and

oftentimes a scaling factor is introduced so that the PSF entries sum to 1.

To match our previous notation, let

y =


s1

s2

r

 ,

and let A(y) be the matrix defined by the Gaussian PSF with parameters y.

Notice that similar to the super-resolution imaging example, we have reduced

the number of unknowns in y as a means of regularization. However, we still
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need to regularize the unknowns in the image vector x. Thus, the goal is to

jointly estimate the image x and blur parameters y by solving (3.2). In the

next section we describe some optimization approaches.

3.2 Solution through Optimization

Both of the applications described in the previous section require the solution

of (3.2). In this section we consider a general nonlinear optimization scheme

for simultaneous update of x and y. A Newton or Gauss-Newton approach

can be quite difficult since it requires computation or approximation of the

Hessian matrix, which is typically very large. Furthermore, another concern

is the selection or estimation of a good regularization parameter.

To reduce the computational effort, we discuss a variable projection ap-

proach to take advantage of certain properties of the problem [51, 52, 85,

109, 117]. The basic idea is to exploit the following properties: the variables

x and y separate, the problem is linear in x, and there are significantly fewer

parameters defining y than there are defining x. More specifically, we mathe-

matically eliminate one set of parameters to obtain a reduced cost functional,

and a Gauss-Newton method is used for the reduced problem. This approach

is a slight modification of the methods proposed by Golub and Pereyra [52]

for separable nonlinear least squares problems and is similar to the approach

used by Vogel, Chan and Plemmons [130] for phase diversity blind decon-

volution. We are particularly interested in making the methods feasible for

large-scale problems and incorporating a slick implementation for selecting

good regularization parameters.
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3.2.1 General Gauss-Newton Approach

To simplify notation, we can write the nonlinear least squares problem given

in equation (3.2) as

min
z
ψ(z) = min

z
‖f(z)‖2

2 , (3.8)

where zT = [ xT yT ] and

f(z) = f(x,y) =

[
A(y)

λI

]
x−

[
b

0

]
.

The nonlinear least squares problem (3.8) can be solved using a Gauss-

Newton method [31, 86, 104, 108], which is an iterative algorithm that com-

putes

zk+1 = zk + dk , k = 0, 1, 2, . . .

where

dk = −(ψ̂ ′′(zk))
−1ψ′(zk) ,

z0 is an initial guess, and ψ̂ ′′ is an approximation of the Hessian ψ′′. It is

not difficult to show that ψ′ = JTψf , and an approximation of ψ′′ is given

by ψ̂ ′′ = JTψJψ, where Jψ is the Jacobian matrix; for our problem it can be

written as

Jψ =
[

fx fy

]
=

[
∂f(x,y)

∂x

∂f(x,y)

∂y

]
.

If we define r = −f = b−A(y) x, then the computation to update the search

direction dk at each Gauss-Newton iteration is equivalent to solving a least

squares problem of the form:

min
d
‖Jψd− r‖2

2 . (3.9)

To summarize, then, a Gauss-Newton method applied to (3.8) has the basic

form:
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General Gauss-Newton Algorithm

choose initial z0 =

[
x0

y0

]
for k = 0, 1, 2, . . .

rk = b−A(yk) xk

dk = argmin
d
‖Jψd− rk‖2

zk+1 = zk + dk

end

This general Gauss-Newton approach can work well, but constructing and

solving linear systems with Jψ can be very expensive. Effective precondition-

ers for (3.9) may be difficult to find. Moreover, it requires either specifying a

priori the regularization parameter λ or estimating it within a nonlinear it-

erative scheme; see [61] and the references therein. A further difficulty when

using a fully coupled approach is that we do not take algorithmic advantage

of the fact that the problem is strongly convex in x. Thus, we may take

very small steps due to the nonlinearity induced by y. Instead, we would

like to adapt the variable projection method for separable nonlinear least

squares problems to work for large-scale ill-posed inverse problems and de-

velop an approach where the regularization parameter can be estimated by

the algorithm.

3.2.2 Variable Projection Method

The variable projection method can be used to solve the nonlinear least

squares problem (3.2). The approach exploits the fact that ψ(x,y) is linear
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in x and takes advantage of the relatively fewer parameters contained in y,

compared to x. However, rather than explicitly separating variables x and

y as in coordinate descent, the variable projection approach mathematically

eliminates the linear parameters x, thus obtaining a reduced cost functional

that depends only on y. A Gauss-Newton method is then applied to the

reduced cost functional. Specifically, consider

ϕ(y) ≡ ψ(x(y),y) , (3.10)

where x(y) is a solution of

min
x
ψ(x,y) = min

x

∥∥∥∥∥
[

A(y)

λI

]
x−

[
b

0

]∥∥∥∥∥
2

2

. (3.11)

Using notation from Chapter 2, the solution of (3.11) can be written as

x(y) = A†λ(y)b. Then the residual norm with linear parameters eliminated

can be represented as

||b−A(y)x(y)|| = ||b−A(y)A†λ(y)b||

= ||(I−A(y)A†λ(y))b|| .

The origin of the name “variable projection” comes from the fact that the

matrix I − A(y)A†λ(y) is the projector onto the orthogonal complement of

the column space of A(y) [52]. We say that the residual is the variable

projection of b.

Now to use the Gauss-Newton algorithm to minimize the reduced cost

functional ϕ(y), we need to compute ϕ′(y). Note that because x solves

(2.4), it follows that ψx = 0, and thus

ϕ′(y) =
dx

dy
ψx + ψy = ψy = fTy f .

Although dx
dy

does not need to be computed, the Jacobian of the reduced cost

functional,

Jϕ = fy =
∂[A(y)x]

∂y
, (3.12)
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must be evaluated analytically or approximated. Computing Jϕ may be

nontrivial, but it is often much more tractable than constructing Jψ.

For completeness, a Gauss-Newton method applied to the reduced cost

functional has the basic form:

Reduced Gauss-Newton Algorithm

choose initial y0

for k = 0, 1, 2, . . .

xk = argmin
x

∥∥∥∥∥
[

A(yk)

λI

]
x−

[
b

0

]∥∥∥∥∥
2

rk = b−A(yk) xk

dk = argmin
d
‖Jϕd− rk‖2

yk+1 = yk + dk

end

A major advantage of using the variable projection method for large-scale

inverse problems is that we can use the hybrid approach discussed in Section

2.3 to simultaneously estimate an appropriate regularization parameter and

compute xk at each iteration. That is, in the above algorithm we replace the

statement for xk with

xk = HyBR(A(yk),b)

and notice that the regularization parameter may now change at each Gauss-

Newton iteration. That is, we select λk based on the problem at hand.

We conclude this section with a few remarks on computational issues. First,

it may be necessary to include a line search in the Gauss-Newton method [86],

such as an Armijo rule to ensure sufficient decrease of the objective function.
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However, care must be taken to maintain consistency when implementing

a line search strategy because the regularization parameter, and hence the

objective function, is changing at each Gauss-Newton iteration [61].

Issues in constructing the Jacobian matrix (3.12) are addressed in Section

3.2.3. In regards to computing the update step, dk, the least squares problem

involving the Jacobian is generally not very difficult to solve, at least for the

applications we have considered where the number of parameters in y is

significantly less than the number of parameters in x. In this case, Jϕ has

only a few columns (corresponding to the number of parameters in y) and is

generally well-conditioned.

3.2.3 Jacobian Construction

It is not necessary to have an analytical expression for Jϕ, since a finite

difference approach can be used to numerically approximate the Jacobian.

However, with a reduced parameter space formulation for both the super-

resolution and blind deconvolution examples, deriving the Jacobian is not

too difficult. Thus, for completeness, we provide a mathematical derivation

in this section.

Super-Resolution

Computing the Jacobian for the super-resolution application described in

Section 3.1.1 requires us to take derivatives with respect to the registration

parameters, y. For ease of derivation, consider the derivative associated with

the parameters for the ith low resolution image:

∂[RS(Dyi)x]

∂yi
=
∂[RS(ui)x]

∂yi
.

First notice that using the interpolation formula (3.6), we have

∂x(tj + ui)

∂ui,1
= (1− ui,2)(xNE − xNW ) + ui,2(xSE − xSW ) (3.13a)
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and

∂x(tj + ui)

∂ui,2
= (1− ui,1)(xSW − xNW ) + ui,1(xSE − xNE) . (3.13b)

Observe that the expressions given in (3.13) are equivalent to a simple dis-

cretization of the gradient of the image, assuming it is a piecewise linear

function. We therefore define the Jacobian of the image with respect to the

displacements ui(t) as

Gi ≡ G(ui) ≡
∂[Six]

∂ui
. (3.14)

Then using the chain rule, we can obtain an expression for the Jacobian

with respect to yi,

Ji(y) =
∂[RS(Dyi)x]

∂yi
= RGiD , (3.15)

and the partial derivative of ϕ with respect to yi,

∂ϕ

∂yi
= DTGT

i RT (RSix− bi) . (3.16)

To conclude, the desired Jacobian for the reduced Gauss-Newton approach

is given by

Jϕ =


J1(y)

. . .

Jm(y)

 , (3.17)

where Ji(y) is defined in (3.15).
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Blind Deconvolution

The Jacobian of the reduced cost functional for blind deconvolution can also

be computed using the chain rule in the following way:

Jϕ =
∂ [ A( P(y) ) x ]

∂y

=
∂ [ A( P(y) ) x ]

∂P
· ∂ [ P(y) ]

∂y

= A(X) · ∂ [ P(y) ]

∂y
, (3.18)

where x = vec(X), i.e. x is the vector obtained by stacking columns of matrix

X. The last equality is due to the special structure of a spatially invariant

blurring operator and the commutative property of convolution. For our

particular example, where we assume Gaussian blur with PSF (3.7), it is not

too difficult to get an analytical expression for ∂ [ P(y) ]
∂y

. However, we remark

that disregarding scaling factors that depend on the blur parameters can

lead to erroneous derivative calculations, and careful calculation is needed to

compute the correct values.

For efficient implementation, we use the function psfMatrix from Restore-

Tools (c.f. Section 2.1) to construct A(P(y)) and A(X). The associated rou-

tines were then used for efficiently computing matrix-vector multiplications.

The object oriented approach with operator overloading used in RestoreTools

makes it very easy to perform these operations.

3.3 Numerical Results

In this section we demonstrate that using HyBR to solve the regularized least

squares problem at each Gauss-Newton iteration of the variable projection

method can be beneficial to super-resolution and blind deconvolution imag-

ing applications. More specifically, we show that one can achieve sufficient



64

objective function and gradient norm decrease, as well as more accurate pa-

rameter estimation, by using the HyBR method in a reduced Gauss-Newton

framework. Furthermore, we illustrate that sufficient reconstructions can be

computed without requiring a priori selection of a regularization parameter.

Super-Resolution

For numerical tests reported for the super-resolution imaging example, we

use a magnetic resonance (MR) image, which is available in Matlab. The

original high resolution image with 1282 pixels, together with three low res-

olution images of 322 pixels, is shown in Figure 3.2.

The low resolution images were generated using a sequence of rotations and

translations of the original image, followed by a decimation with averaging

operator. Then 1% random noise was added to each low resolution image.

More specifically, each low resolution image was generated as in equation

(3.3), where the noise vector εi consists of pseudo-random values drawn from

a normal distribution with mean zero and standard deviation one, scaled such

that ||εi||2/||R Six true||2 = 0.01.

We consider solving problem (3.2) using the reduced Gauss-Newton algo-

rithm with regularization parameters of λ = 0.01, λ = 0.1, and λ = 0.45.

The motivation for choosing λ = 0.1 was that it seemed to produce ade-

quate results in numerical experiments. However, we also present results for

regularization parameters of 0.01 and 0.45 to illustrate the potential disad-

vantages of an inaccurate regularization parameter. An initial guess, y0, was

found by minimizing the displacements of each of the coarse images from a

reference image.

To evaluate and compare algorithms, we examine a variety of measures

at each iteration. These include the relative objective function value, the

relative gradient value, and the relative error of the rotation and translation
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(a) (b)

(c) (d)

Figure 3.2: Super-resolution example. The high resolution image is shown

in (a), and three selected low resolution images are shown in (b-d).
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parameters. More precisely, this last measure is computed as

∆y =
‖yk − y true‖
‖y true‖

, (3.19)

where y true are the true parameters and yk are the parameter approximations

at the kth iteration. The results for the reduced Gauss-Newton approach can

be found in Table 3.1 for various fixed regularization parameters.

We then consider the reduced Gauss-Newton with HyBR approach de-

scribed in Section 3.2.2 and present these results in Table 3.2. The additional

column in this table reports the regularization parameter selected by HyBR

at each Gauss-Newton iteration. For better visual inspection, only a specific

region of the true and reconstructed images after 10 Gauss-Newton iterations

is shown in Figure 3.3.

Notice that HyBR in the Gauss-Newton iteration gives similar or slightly

better results than the reduced Gauss-Newton approach with fixed regular-

ization parameter. However, the great advantage here is not having to make

an a priori selection of a regularization parameter. An imprecise value of

the regularization parameter may result in poor convergence behavior, as

demonstrated by λ = 0.01 and λ = 0.45. A regularization parameter that

is chosen too small results in a noisy image such as that in Figure 3.3(c),

while one chosen too large results in a solution that is too smooth, like that

in Figure 3.3(e).

In addition, we include convergence results for the reduced Gauss-Newton

approach with HyBR on data containing a higher noise level. Results for

10% noise are presented in Table 3.3. Notice that, as expected, HyBR com-

puted larger regularization parameters than in the case of 1% noise, in order

to incorporate more regularization. Furthermore, we observed that using

Gauss-Newton with HyBR resulted in similar convergence behavior to that

of the reduced Gauss-Newton method with a fixed, appropriately chosen

regularization parameter. However, a good value of λ may not be known
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Table 3.2: Super-resolution: Convergence of iterations for reduced Gauss-

Newton approach with HyBR. (1% noise)

iteration rel obj rel grad ∆y HyBR computed λ

0 1.0000 1.0000 0.5717 0.2222

1 0.4218 0.5352 0.3410 0.1770

2 0.2132 0.3159 0.2045 0.1502

3 0.1215 0.2225 0.1242 0.1276

4 0.0818 0.1601 0.0817 0.1141

5 0.0654 0.1191 0.0611 0.1079

6 0.0579 0.0895 0.0522 0.1043

7 0.0545 0.0685 0.0488 0.1030

8 0.0528 0.0546 0.0474 0.1018

9 0.0519 0.0461 0.0466 0.1012

10 0.0514 0.0413 0.0461 0.1009
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Table 3.3: Super-resolution: Convergence of iterations for reduced Gauss-

Newton approach with HyBR. (10% noise)

iteration rel obj rel grad ∆y HyBR computed λ

0 1.0000 1.0000 0.5941 0.2179

1 0.9021 0.5674 0.4844 0.2118

2 0.8401 0.3674 0.3889 0.2113

3 0.7996 0.2531 0.3207 0.2084

4 0.7787 0.2068 0.2746 0.2072

5 0.7636 0.1831 0.2390 0.2054

6 0.7506 0.1740 0.2058 0.2044

7 0.7424 0.1701 0.1733 0.2045

8 0.7324 0.1714 0.1450 0.2020

9 0.7258 0.1657 0.1212 0.2009

10 0.7209 0.1448 0.1027 0.2002

a priori, and HyBR can select that parameter automatically. Thus, the re-

duced Gauss-Newton with HyBR approach can be an effective scheme for

jointly estimating the displacement parameters and the reconstructed high

resolution image in super-resolution imaging applications.

We also remark that by exploiting sparsity of the matrix A(y), the method

is very efficient. It is difficult to provide a precise cost analysis because the

amount of work (e.g., number of HyBR iterations, number of Gauss-Newton

iterations) is problem dependent, but we can report on wall clock timings for

the computations in this dissertation. The joint estimation process for this

problem only took 1-2 minutes for 10 iterations of reduced Gauss-Newton

with HyBR. All computations were done in Matlab, using IEEE double

precision arithmetic, on a laptop with a 2.33 GHz dual core Intel CPU.
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Blind Deconvolution

We now illustrate the use of the variable projection approach with HyBR on

a blind deconvolution example. For the results presented in this dissertation,

we assume that our goal is to reconstruct the image shown in Figure 3.4(a),

given the blurred image in Figure 3.4(b).

(a) True Image (b) Observed Image

Figure 3.4: Blind deconvolution example. The goal is to reconstruct an

approximation of the true image of a piece of grain, given the blurred and

noisy observed image.

The images presented here contain 256 × 256 pixels; however, the blurred

image was created by convolving a larger 512 × 512 image with a Gaussian

PSF defined by parameters y true = [3, 4, .5] and then cropping the center of

the image. In this way, we construct a realistic example where boundary

conditions and artifacts may play a role. We also added 1% Gaussian white

noise.

For the proposed Gauss-Newton algorithm, we used the following initial



72

Table 3.4: Blind deconvolution: Convergence of iterations for reduced Gauss-

Newton approach with HyBR. (1% noise)

iteration rel obj rel grad ∆y HyBR computed λ

1 1.0000 1.0000 0.5716 0.1684

2 0.3309 0.6411 0.3347 0.1224

3 0.1493 0.4342 0.2192 0.0988

4 0.0762 0.2953 0.1469 0.0807

5 0.0479 0.2262 0.0998 0.0718

6 0.0355 0.1862 0.0639 0.0678

7 0.0288 0.1614 0.0345 0.0661

8 0.0242 0.1419 0.0139 0.0651

9 0.0213 0.1265 0.0240 0.0645

10 0.0190 0.1151 0.0449 0.0645

11 0.0171 0.1042 0.0656 0.0641

12 0.0159 0.0947 0.0853 0.0638

guess for the blur parameters: y0 = [5, 6, 1]. The relative error for these pa-

rameters is defined in equation (3.19). The relative objective function value,

the relative gradient value, the error in the blur parameters, and the com-

puted regularization parameters are presented in Table 3.4. It is impressive

to see the accuracy of the blur parameters improve by more than an order of

magnitude after only 7 Gauss-Newton iterations.

We notice that with too many iterations, the error in the blur parameters

eventually begins to increase. Based on the values of ∆y, a good stopping

point is at 8 iterations. The improved reconstructed image is shown in Figure

3.5, along with the true image and the initial reconstruction using y0. Since

y true is not known in practice, alternate methods for selecting a stopping
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iteration still need to be investigated.

A well-known property of the blind deconvolution problem is the lack of a

unique solution. Previously proposed blind deconvolution algorithms have

addressed this issue by requiring a significant amount of additional con-

straints on the problem and by including many parameters for the user to

tune and select [71, 130]. Although we have not directly addressed the non-

uniqueness problem, we have reduced the number of user-defined parameters

to one, specifically, the stopping iteration. Furthermore, from the recon-

structed image after 12 Gauss-Newton iterations, shown in Figure 3.5(d), we

can see that an advantage of this algorithm is that a slight overestimate of

the stopping iteration does not severely affect the image.

In this section we have shown that a reduced Gauss-Newton approach com-

bined with an efficient linear solver with regularization can improve blind

deconvolution algorithms. We mention here that this approach can be easily

extended to a related but more complicated multi-frame blind (MFB) de-

convolution problem [120]. In MFB deconvolution, multiple blurred images

are collected, each with a different point spread function and noise realiza-

tion. Following the notation from equation (3.3), we have each blurred image

represented as

bi = A(yi) x true + εi ,

for i = 1, 2, ...,m. The goal once again is to simultaneously update the blur

parameters and reconstruct the image. The regularized variable projection

framework from Section 3.2.2 can be used. We remark that the blurred

images and blur parameters should be concatenated to form one long vector,

thus allowing all of the blur parameters for all of the images to be updated

at the same time. The key difference is that the Jacobian for the MFB

deconvolution problem is a block diagonal matrix of the form (3.17) where

Ji is the Jacobian defined in equation (3.18) corresponding to image i. In

our experiments, we found that the Gauss-Newton algorithm with HyBR
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(a) True Image (b) Initial Reconstruction, y0

(c) 8 G-N iterations (d) 12 G-N iterations

Figure 3.5: Blind deconvolution: Comparison of reconstructed images. Im-

ages correspond to the 1% noise case.
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applied to the MFB deconvolution problem produced similar results to the

blind deconvolution problem presented above.

3.4 Summary and Future Work

We have described an efficient iterative approach for solving separable non-

linear inverse problems. Many researchers have studied the separable non-

linear least squares problem, but few have specifically applied it to large-

scale ill-posed inverse problems. We have addressed this problem and shown

that by combining a Gauss-Newton approach for minimizing a reduced cost

functional with a sophisticated iterative solver for computing Tikhonov reg-

ularized solutions for linear ill-posed inverse problems, one can efficiently

solve large-scale nonlinear inverse problems, with relatively little user input

required.

Nonlinear inverse problems of this form arise in many applications, and we

have provided two examples from image deblurring in which the proposed

algorithm can successfully update both the image and the imaging parame-

ters simultaneously. Future work includes understanding how the additional

regularization term affects the theoretical convergence properties of this al-

gorithm when applied to ill-posed problems and developing an automated

way to select the stopping iteration.
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Chapter 4

A Nonlinear Poisson-based

Inverse Problem

As mentioned in Chapter 1, nonlinear inverse problems are significantly

more challenging to solve than linear inverse problems. If certain properties

can be exploited, as in the case of the separable nonlinear least squares prob-

lem from Chapter 3, efficient methods can be implemented. However, severe

nonlinearities arise in many multi-physics applications due to the compli-

cated nature and coupling of physical processes. Furthermore, contrary to

the assumption of Gaussian noise in the problems from Chapters 2 and 3, it

is common in many medical imaging applications to assume that the imaging

process and additive noise follow a Poisson probability distribution. In this

chapter we seek iterative statistical techniques for a nonlinear Poisson-based

inverse problem arising in a particular application from medical imaging:

digital tomosynthesis.

Tomosynthesis imaging involves the acquisition of a series of projection

images over a limited angular range, that after reconstruction, results in a

pseudo-3D representation of the imaged object. The partial separation of

features in the third dimension improves the visibility of objects of interest

by reducing the effect of the superimposition of tissues. More specifically,

in breast cancer imaging, tomosynthesis is a viable alternative to standard

mammography; however, current algorithms for image reconstruction do not
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take into account the polyenergetic nature of the x-ray source beam enter-

ing the object. This results in inaccuracies in the reconstruction, making

quantitative imaging analysis challenging and allowing for beam hardening

artifacts.

In this chapter we propose a new mathematical formulation that takes into

account the polyenergetic source spectrum and develop a statistical frame-

work that results in a Poisson-based model cost function to minimize. Stan-

dard optimization algorithms are considered, and we derive the necessary

tools for tomosynthesis reconstruction. Although the model we propose is

specific to digital breast tomosynthesis, it can be easily extended to other

nonlinear tomographic imaging applications.

We begin with some background information on tomosynthesis in Section

4.1. Then Section 4.2 derives the mathematical framework for modeling the

effect of polyenergetic x-rays on the observed images. In Section 4.3 we dis-

cuss some of the properties of the problem and consider a variety of iterative

optimization techniques for solving the inverse problem of reconstructing a

3D image from 2D projection images. Numerical results in Section 4.4 il-

lustrate the success of our proposed algorithms, and conclusions and future

directions can be found in Section 4.5.

4.1 Background Information

Ever since Röntgen produced the first medical x-ray image of his wife’s hand

in 1895, projection radiography, or x-ray imaging, has made a significant im-

pact in the field of medical imaging. For example, mammography has played

a key role in the early detection of breast cancer, allowing doctors to pre-

vent metastatic spread and decrease the number of deaths related to breast

cancer. However, a severe limitation of these conventional x-ray systems is

that only one 2D projection image of a 3D object is available from each scan.
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The projection images have a severe decrease in contrast of structures due

to the superimposition of overlaying tissue. Specifically in breast imaging, a

false negative diagnosis may be caused by breast cancer obscured by overlap-

ping tissue, while superimposed normal tissues may appear to be a cancerous

mass, resulting in a false positive diagnosis [137].

Tomosynthesis is a technique for inversely reconstructing slices of a 3D ob-

ject from a set of 2D projection images. Though the idea of tomosynthesis is

rooted in the theory of conventional geometric tomography, known since the

1930s, it was not until the late 1960s and early 1970s when researchers put

these ideas into practice [48, 57]. However tomosynthesis suffered from issues

of practical implementation, including insufficient imaging detectors and in-

adequate computing technology. The introduction of digital technology and

electronic image acquisition in the mid to late 70s significantly improved the

contrast and resolution capabilities, compared to classical screen-film conven-

tional x-ray systems, revitalizing research in tomosynthesis. Unfortunately,

there were still computational and algorithmic limitations, and by the late

70s, tomosynthesis took a “back-seat” to other imaging techniques such as

computed tomography (CT) and magnetic resonance imaging (MRI) [33].

Computed tomography allows the three-dimensional reconstruction of ob-

jects by obtaining a complete 360 degree rotation of projection data around

the object. Though impressive in many respects, CT has its limitations. The

time to complete a CT scan and the radiation dosage requirements for CT

can become prohibitively large compared to standard x-ray imaging. Fur-

thermore, certain regions of the body such as breast tissue can be difficult to

reconstruct with CT, due to the similar densities of breast tissue compared to

that of water [37]. CT is particularly challenging for breast imaging because

the patient must be in the prone position during the scan. In addition to

being difficult for mobility challenged individuals, this positioning makes it

difficult to effectively image the chest wall and axilla area [83]. These undesir-
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able properties of CT, along with recent advancements in digital technology,

post-processing reconstruction algorithms, and computational power, have

motivated and reignited interest in tomosynthesis as a viable alternative to

CT for breast imaging.

The basic idea underlying tomosynthesis is that multiple 2D image projec-

tions of the object are taken at varying incident angles, and each 2D image

provides different information about the 3D object. See Figure 4.1 for an

illustration of a typical geometry for breast tomosynthesis imaging. From

the limited set of 2D projection images, reconstruction algorithms should

be able to reconstruct any number of slices of the 3D object. Sophisticated

approaches used for 3D CT reconstruction cannot be applied here because

projections are only taken from a limited angular range, leaving entire regions

of the frequency space un-sampled. The main challenge in tomosynthesis re-

construction is to remove the out-of-plane blur caused by the backprojection.

Variants of the shift-and-add algorithm have been proposed for performing

the deblurring operation, but another class of algorithms, which we follow in

this chapter, includes iterative reconstruction algorithms that seek to mini-

mize an appropriate cost function. See [33] and references therein for a survey

of previous approaches.

Since the observed projection data from x-ray transmission tomography is

known to follow a Poisson distribution, especially in the case of low-count

transmission scans, many researchers seek to maximize the corresponding log

likelihood function. A common approach to solve the optimization problem

uses a convexity argument to simplify the problem, a technique described in

[91] and used for tomosynthesis reconstruction in [134, 135, 133, 137]. More

recently, Chen and Barner [20] have proposed a multi-resolution, maximum a

posteriori reconstruction algorithm, and Sidky et. al. [123] have implemented

a total variation minimization algorithm.

However, an inaccurate assumption in nearly all of the previously proposed
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Figure 4.1: Breast tomosynthesis example. Typical geometry of the imaging

device used in breast imaging.

reconstruction algorithms is that the x-ray source is monoenergetic; that

is, all incident photons have the same energy level. X-ray photons emitted

from an x-ray tube have a distribution of energies, and as the x-ray beam

passes through any attenuating medium (in this case the breast), there is a

preferential absorption of low energy photons that results in an increase in the

mean energy of the x-ray beam. This phenomenon, called beam hardening,

is of concern in reconstruction methods developed for quantitative imaging

because of the attenuation coefficients’ dependence on x-ray energy.

Ignoring this energy dependence in the mathematical model can lead to se-

vere artifacts in the reconstructed image, apparent in “halo” effects around

bones or streaking in the image. Specifically in breast imaging, “cupping”

artifacts or background nonuniformities may appear and are evident in dark

bands appearing behind dense objects or a reduction in overall contrast.

Few researchers have studied methods for eliminating beam hardening arti-
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facts in the case of x-ray computed tomography [6, 14, 29, 36, 37]. Previ-

ously proposed methods for eliminating beam hardening artifacts include

pre-processing the projection data, post-processing images, or utilizing a

dual-energy imaging modality. All of these approaches have some limita-

tions.

4.2 Polyenergetic Tomosynthesis Model

In this section we describe the image acquisition process for breast tomosyn-

thesis and develop a statistical model for image reconstruction. In particular,

we develop a mathematical model based on a polyenergetic x-ray source spec-

trum and derive a statistical model for the problem.

Although most x-ray projection models are derived in terms of the den-

sity values for the voxels, it is common in breast imaging to interpret the

voxels as a composition of adipose tissue, glandular tissue, or a combination

of both [63]. Thus, each voxel of the object can be represented using the

percentage glandular fraction, i.e. the percentage of glandular tissue present

in that voxel. If density or attenuation coefficient values are desired, then

these can be obtained from the glandular fraction through a simple algebraic

transformation.

4.2.1 Polyenergetic Model Development

Assume that the 3D object is discretized into a regular grid of voxels and

that each of the 2D projection images is discretized into a regular grid of

pixels. Specifically, let N represent the number of voxels in the discretized

3D object and let M be the number of pixels in a discretized 2D projection

image. In practice N is on the order of a few billion and M is the order of

a few million, depending on the size of the imaging detector. The energy-
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dependent linear attenuation coefficient for voxel j = 1, 2, ..., N in the breast

can be represented as

µ(e)(j) = s(e)x
(j)
true + z(e),

where x
(j)
true represents the percentage glandular fraction in voxel j of the

“true” object, and s(e) and z(e) are known energy-dependent linear fit coef-

ficients. This type of decomposition to reduce the number of degrees of free-

dom is similar to an approach used by De Man et. al. [29] for CT, in which

they express the energy dependent linear attenuation coefficient in terms

of its photoelectric component and Compton scatter component. However,

their model is not optimal for our particular application.

In tomosynthesis, a limited number of projections are taken from various

angles in a predetermined angular range, and the photon energies are dis-

cretized into a fixed number of levels. Let there be nθ angular projections and

assume the incident x-ray has been discretized into ne photon energy levels.

In practice, a typical scan may have nθ = 21 and ne = 43. We would like to

formulate a mathematical representation for the θth projection image. For

a particular projection angle, we first compute a monochromatic ray trace

for one energy level and then sum over all energies. Let a(ij) represent the

length of the ray that passes through voxel j, contributing to pixel i. Then

the discrete monochromatic ray trace for pixel i can be represented by

N∑
j=1

µ(e)(j)a(ij) = s(e)
N∑
j=1

x
(j)
truea

(ij) + z(e)
N∑
j=1

a(ij) . (4.1)

Using the standard mathematical model for transmission radiography, the

ith pixel value for the θth noise-free projection image, incorporating all photon

energies present in the incident x-ray spectrum, can be written as

b
(i)
θ =

ne∑
e=1

%(e) exp

(
−

N∑
j=1

µ(e)(j)a(ij)

)
, (4.2)
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where %(e) is a product of the current energy with the number of incident

photons at that energy.

To simplify notation, let’s define Aθ to be an M × N matrix with entries

a(ij). Then equation (4.1) gives the ith entry of vector

s(e)Aθx true + z(e)Aθ1 ,

where x true is a vector whose jth entry is x
(j)
true and 1 is a vector of all ones.

Furthermore, the θth noise-free projection image in vector form can be written

as

bθ =
ne∑
e=1

%(e) exp (−[s(e)Aθx true + z(e)Aθ1]) , (4.3)

where the exponential function is applied component-wise.

Tomosynthesis reconstruction is an inverse problem where the goal is to ap-

proximate the volume, x true, given the set of projection images from various

angles, bθ, θ = 1, 2, ...nθ. In the next section we discuss a statistical model

used for solving this nonlinear inverse problem.

4.2.2 Poisson-based Likelihood Function

It is widely accepted in the medical imaging community that measurements

obtained by x-ray transmission imaging, i.e. photon counts, can be accurately

modeled as independently distributed Poisson random variables, with addi-

tional background noise. Based on x-ray projection model (4.1) and (4.2),

the expected value for the measured data at pixel i for angle θ given volume

approximation x can be written as

E[b
(i)
θ ,x] =

ne∑
e=1

%(e) exp

(
−

[
s(e)

N∑
j=1

x(j)a(ij) + z(e)
N∑
j=1

a(ij)

])
+ ε̄(i)

≡ b̄
(i)
θ + ε̄(i),

where ε̄(i) represents the mean of the errors due to electronic noise and scat-

ter in the observed data. In tomography applications, it is assumed that
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the additive noise is a realization of a Poisson random variable, where the

statistical mean ε̄(i) is known or can be approximated.

For each angle, the measured data can be statistically modeled as an inde-

pendent Poisson random process [36]. That is, the ith pixel of the observed

projection image, bθ, is a realization of a Poisson random variable with mean,

b̄
(i)
θ + ε̄(i) :

b
(i)
θ ∼ Poisson(b̄

(i)
θ + ε̄(i)) .

Thus, we can say that the probability or likeliness of observing projection

image bθ, given volume x, is described by the likelihood function [78, 129]

p(bθ,x) =
M∏
i=1

e−(b̄
(i)
θ +ε̄(i))(b̄

(i)
θ + ε̄(i))b

(i)
θ

b
(i)
θ !

. (4.4)

We would like to compute the glandular fractions, x, that maximize this

likelihood function. For ease of computation, a monotonic negative log oper-

ation is applied to the likelihood function (4.4), and the maximum likelihood

estimator (MLE) can be found by minimizing the negative log likelihood

function:

−Lθ(x) = − log p(bθ,x)

=
M∑
i=1

(b̄
(i)
θ + ε̄(i))− b(i)

θ log(b̄
(i)
θ + ε̄(i)) , (4.5)

for all θ. In the next section we consider efficient algorithms for minimizing

the above negative log likelihood function.

4.3 Iterative Reconstruction Algorithms

In this section we describe some numerical algorithms for estimating the

MLE solution for the polyenergetic tomosynthesis reconstruction problem:

xMLE = argmin
x

{
nθ∑
θ=1

−Lθ(x)

}
. (4.6)
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To simplify notation in the derivation, we fix a particular angle and drop the

subscript, θ, for the remainder of this section.

For a monoenergetic likelihood function, a variety of researchers have stud-

ied this optimization problem. In 1995, Lange and Fessler [91] presented a

comparison of the EM algorithm, a scaled gradient descent algorithm, and a

“convex” algorithm, in which properties of convexity were used to iteratively

approximate the log likelihood function [90, 41]. Under simplifying assump-

tions that the solution exists, is unique and lies in the interior of the feasible

region, they prove that all three methods converge locally to the MLE so-

lution. Furthermore, they prove global convergence for the EM and convex

algorithm when applied to the log posterior function:

Φ(x) = L(x)− λR(x),

where R(x) is a penalizing prior, or smoothing function, and λ is a regular-

ization parameter controlling the accepted level of smoothness. By selecting

a strictly convex prior function, strict concavity of the log posterior function

can be established [91]. However, all of the derivations assume a monoener-

getic x-ray source and a strictly convex cost function, meaning noise is set

to zero in the model (c.f. [43] for derivation).

Our problem not only assumes a polyenergetic x-ray beam, but also takes

into account the presence of noise in the data. Thus, the theories from these

previous algorithms for maximizing the likelihood and posterior functions do

not apply. More specifically, due to severe nonlinearities, the polyenergetic

cost function may not be convex, and regularization must be incorporated

to suppress the noise.

With respect to convexity, there are some reasonable assumptions under

which the polyenergetic cost function is convex. With the new formulation,

it can be shown that the cost function is convex with respect to the glandular

fractions, under the following two conditions:
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1. A is full rank, and

2. b(i) − (b̄(i) + ε̄(i)) ≤
min
e
s(e)

max
e
s(e)

(
b(i)

b̄(i) + ε̄(i)

)
b̄(i) for all i.

Further details of the derivation of these conditions can be found in Appendix

Section A.3. In our numerical experiments, we found that the first condition

holds true, and a good initial guess that satisfies the second condition is not

difficult to obtain.

In regards to the additive noise, selecting the optimal regularizing function

R(x) for breast tomosynthesis reconstruction is still an open question. It has

been noted that for transmission image reconstruction, nonquadratic, edge-

preserving penalty functions are more desirable for images with piecewise

smooth regions [30, 43]. For the monoenergetic case, Bleuet et. al. [10] sug-

gested an adaptive 3D regularization scheme, Sidky et. al. [123] and Kasta-

nis et. al. [84] implemented a total variation optimization approach and Chen

and Barner [20] use a Markov random fields regularization function. For the

polyenergetic case, Elbakri and Fessler [37] used a convex, edge-preserving

Huber penalty for its desirable properties. However, current research has

not yet determined optimal regularization methods for breast image recon-

struction, and this topic should be investigated in future studies. For this

dissertation we incorporate regularization to deal with noise and errors in

the data via early termination of the iterations. That is, we focus on the

new polyenergetic formulation and investigate optimization algorithms to

minimize the original negative log likelihood function (4.5).

We consider a gradient descent and a Newton algorithm. To do this, we

need to compute the gradient and Hessian of the objective function with
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respect to the 3D volume, x. We first establish two important equalities:

∂b̄(i)

∂x(j)
= −a(ij)

ne∑
e=1

%(e)s(e)exp

(
−

[
s(e)

N∑
j=1

a(ij)x(j)+

z(e)
N∑
j=1

a(ij)

])
(4.7)

∂

∂x(`)

(
∂b̄(i)

∂x(j)

)
= a(i`)a(ij)

ne∑
e=1

%(e)s(e)2exp

(
−

[
s(e)

N∑
j=1

a(ij)x(j)+

z(e)
N∑
j=1

a(ij)

])
. (4.8)

These equations will aid in the derivation of the following algorithms.

4.3.1 Gradient Descent Algorithm

The first approach we consider is a simple gradient descent algorithm for

minimizing the function in equation (4.5), which takes the following form:

xk+1 = xk − αk∇L(xk) , (4.9)

where αk is an iteration dependent step length parameter and ∇L(xk) =
∂

∂x(j) (−Lθ) for all θ.

The first derivative of the negative log likelihood function with respect to

x is given by

∂

∂x(j)
(−L) =

M∑
i=1

(
1− b(i)

b̄(i) + ε̄(i)

)
∂b̄(i)

∂x(j)

=
M∑
i=1

a(ij)

(
b(i)

b̄(i) + ε̄(i)
− 1

) ne∑
e=1

%(e)s(e)exp(
−

[
s(e)

N∑
j=1

a(ij)x(j) + z(e)
N∑
j=1

a(ij)

])
,
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where the second equation follows from equation (4.7). Using matrix nota-

tion, the gradient can be written simply as

∇L(xk) = ATvk ,

where vk is a vector whose ith entry is given by

v
(i)
k =

(
b(i)

b̄(i) + ε̄(i)
− 1

) ne∑
e=1

%(e)s(e)exp

(
−

[
s(e)

N∑
j=1

a(ij)x
(j)
k +

z(e)
N∑
j=1

a(ij)

])
.

The gradient descent approach is known to converge slowly, and the step

length parameter αk is chosen to ensure that the objective function decreases.

4.3.2 Newton Approach

Another approach for minimizing the negative log likelihood function is to

employ a Newton-type method. Newton methods are well-known to have

faster convergence properties; however, they are more sensitive than gradient

descent methods to noise in the data and require the initial estimate to be

a good enough approximation. A typical Newton iteration has the following

form:

xk+1 = xk − αkH−1
k ∇L(xk) . (4.10)

However, the Hessian, Hk, may be nontrivial or impossible to compute. One

of our main contributions to this project is to make the Newton approach

feasible. That is, with the new polyenergetic formulation, we are able to

derive an analytical formula for the Hessian matrix by using some detailed

calculus and matrix algebra.

We provide the mathematical details here. For j = 1, 2, ...N and ` =
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1, 2, ...N, the j`th entry of the Hessian matrix, H, can be written as

h(j`) =
∂

∂x(`)

(
∂

∂x(j)
(−L(x))

)
=

∂

∂g(`)

(
M∑
i=1

(
1− b(i)

b̄(i) + ε̄(i)

)
∂b̄(i)

∂x(j)

)

=
M∑
i=1

{(
1− b(i)

b̄(i) + η̄(i)

)
∂

∂x(`)

(
∂b̄(i)

∂x(j)

)
+

∂b̄(i)

∂x(j)

∂

∂x(`)

(
1− b(i)

b̄(i) + ε̄(i)

)}
, (4.11)

where the last equality is just application of the product rule. The derivative

in the first term can be evaluated by equation (4.8) and the derivative in the

second term can be expanded to be

∂

∂x(`)

(
1− b(i)

b̄(i) + ε̄(i)

)
=

b(i)

(b̄(i) + ε̄(i))2

∂b̄(i)

∂x(`)
. (4.12)

Now, plugging in (4.7), (4.8) and (4.12) into (4.11), we get the following

expression for the j`th entry of the Hessian matrix:

h(j`) =
M∑
i=1

a(ij)a(i`)

{(
1− b(i)

b̄(i) + ε̄(i)

) ne∑
e=1

%(e)s(e)2exp(
−

[
s(e)

N∑
j=1

a(ij)x(j) + z(e)
N∑
j=1

a(ij)

])
+

b(i)

(b̄(i) + ε̄(i))2

[
ne∑
e=1

%(e)s(e)exp

(
−

[
s(e)

N∑
j=1

a(ij)x(j) + z(e)
N∑
j=1

a(ij)

])]2
 . (4.13)

Since nothing in the curly brackets of equation (4.13) depends on j or `, let’s

define vector w with entries

w(i) = {...} , (4.14)



90

then equation (4.13) simplifies to

h(j`) =
M∑
i=1

a(ij)a(il)w(i),

corresponding to the matrix

H = ATWA ,

where W is a diagonal matrix with vector w on the diagonal. Note that only

matrix W is iteration dependent. Thus, we have

Hk = ATWkA,

and the Newton step at iteration k can be found by solving the following

system:

Hksk = −∇L(xk). (4.15)

Note that equation (4.15) is the normal equations formulation of the least

squares problem:

min
sk

∥∥∥W 1
2
k Ask −W

− 1
2

k vk

∥∥∥
2
, (4.16)

where W
1
2
k = diag(w

1
2 ). A variety of methods can be used to solve (4.16). An

important remark here is that for large-scale problems, it is recommended

to use inexact Newton approaches [86, 104], where an iterative method with

early termination is used to approximately solve the inner system. For our

problem we use the conjugate gradient algorithm for least squares (CGLS)

[8], so our approach fits a Newton-CG, or truncated Newton, optimization

framework.

4.4 Numerical Results

In this section we illustrate the success of the proposed algorithms presented

in Section 4.3 for solving the polyenergetic tomosynthesis reconstruction

problem for a simulated breast imaging example.
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Given a 3D volume with 128 × 128 × 128 voxels [12], we normalized the

values so that the voxel values range between 0 and 100, each value repre-

senting the percentage fraction of glandular tissue in that voxel. Then 21

projection images were taken from equally spaced angles, within an angular

range from −30◦ to 30◦ at 3◦ intervals, using the typical geometry for breast

tomosynthesis, as illustrated in Figure 4.1. Each 2D projection image was

192 × 256 pixels. The original object represented a medium-sized breast of

size 12.8 cm × 12.8 cm × 6.4 cm, and the detector was 19.2 cm × 25.6 cm.

The source to detector distance at 0◦ was set to 66 cm and the distance from

the center of rotation to detector was 0 cm. The incident x-ray spectrum

consisted of 43 different energy levels, ranging from 5.0 keV to 26 keV in 0.5

keV steps.

For each projection angle, the ray trace matrix Aθ was computed using a

cone beam model with Siddon’s ray tracing algorithm [122]. For each of the

reconstruction algorithms, the initial guess of the 3D volume was a uniform

image with all voxel values set to 50, meaning half glandular and half adipose

tissue. To simulate a more realistic example, we created the projection images

using a 128× 128× 128 volume, but reconstructed a 128× 128× 8 volume.

Furthermore, the projection images included enough additive Poisson noise

so that the relative noise level was 0.1%. The slices of the volume that we

would like to reconstruct can be found in Figure 4.2, and a few of the cropped,

observed projection data can be found in Figure 4.3.

To evaluate the performance of each of the algorithms presented in Section

4.3, we present in Table 4.1 the relative objective function value, the relative

gradient value and the relative error for the 3D image. We note here that

for the Newton algorithm, the stopping criteria used for CGLS on the inner

problem (4.16) was a scaled residual tolerance of .17 or a maximum number

of 100 iterations. The number of CGLS iterations reported for the inner

problem at each Newton iteration can be found in the last column of the
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Figure 4.2: Breast tomosynthesis example. True volume slices.

Figure 4.3: Breast tomosynthesis example. Sample projection images.
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second table. Furthermore, we remark that in applications where the Hessian

cannot be derived analytically, a quasi-Newton approach such as LBFGS can

be a good alternative. However, in our experience, the LBFGS method was

quite slow in converging, and a Newton approach worked much better.

It is evident from Table 4.1 that 4 iterations of the Newton algorithm pro-

duced a small relative error for the image. However, since each Newton

iteration requires the solution of a linear system, it is difficult to present a

fair comparison of the reconstruction algorithms. In terms of computational

effort, we remark that the most computationally burdensome aspect of the

reconstruction is the matrix-vector and matrix-transpose-vector multiplica-

tion with ray trace matrix, A. Each function and gradient evaluation of the

likelihood function requires a total of 3 “ray trace” multiplications (2 for

the function evaluation and 1 more for the gradient), and a multiplication

operation with the Hessian (or its transpose) only requires 2 “ray trace” mul-

tiplications. Furthermore, we use a backtracking line search strategy at each

iteration of the optimization scheme that uses the Cauchy point as an initial

guess, thus requiring another multiplication with the Hessian. It is therefore

the case that the computational cost and timing for, say, one Newton iter-

ation with 50 inner CG iterations with the Hessian is not equivalent to 50

gradient descent iterations.

In Figures 4.4 and 4.5 we present a visual comparison of images, with

slices of the true volume in the first column. In the second column, we

provide the “best” monoenergetic reconstruction of the linear attenuation

coefficients using Lange and Fessler’s “convex” algorithm. Recall that the

monoenergetic algorithm reconstructs attenuation coefficients rather than

glandular fractions, so by “best” we mean that this reconstruction provided

the smallest computed image error between the reconstructed attenuation

coefficients and the attenuation coefficients at the median energy level for the

true volume. In the third and fourth columns, we present the images for the
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gradient descent and Newton algorithms after approximately 12 minutes of

wall clock time. These correspond to reconstructed images after 20 iterations

of gradient descent and 3 iterations of Newton, with the number of “ray

trace” multiplications being 103 and 100 respectively. In terms of timing, the

Newton algorithm for this problem is the clear winner because it computed

a solution with better visual quality.

It is important to remark here that with more iterations of the monoener-

getic algorithm, the images become significantly worse in terms of contrast

resolution. This is expected because we are using an inaccurate model for

reconstruction. However, with more iterations of the gradient descent al-

gorithm with the accurate polyenergetic model, the image will eventually

resemble the superior quality obtained from the Newton algorithm. Also, we

remark that although the image errors in Table 4.1 decrease in early iter-

ations, these errors will eventually increase. This is slightly evident in the

later Newton iterations and is typical of ill-posed problems. Future work is

needed to develop methods to suppress noise amplification. Our numerical

results have successfully shown that reconstruction based on a polyenergetic

model can produce significantly better results than the current reconstruction

algorithms.

4.5 Significance and Future Directions

We have described a novel formulation for polyenergetic tomosynthesis re-

construction and shown that standard numerical optimization techniques can

be used to reconstruct 3D volumes from limited angle 2D projection images.

Many researchers have studied the monoenergetic tomosynthesis problem,

but few have investigated the nonlinear problem that arises from a polyener-

getic spectrum. We have addressed this problem and shown that by reformu-
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Figure 4.4: Breast tomosynthesis: Reconstructed slices 1-4.
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Figure 4.5: Breast tomosynthesis: Reconstructed slices 5-8.
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lating the problem in terms of the glandular fractions, one can analytically

compute the necessary gradients and Hessians for efficiently solving the non-

linear inverse problem.

Nonlinear inverse problems of this form arise in many applications, and we

have focused on one particular application from breast imaging. Our numer-

ical results illustrate the potential for successful application of sophisticated

mathematical techniques and approaches to solve this problem. However,

many open problems still remain, especially in regards to computing the inner

Newton iterations. Future work includes developing efficient preconditioners

for the inner Newton system. For example, limited-memory quasi-Newton

methods, such as LBFGS, have been proposed as good preconditioners for

use within inexact Newton methods [1, 4, 98]. Another potential cause for

concern is non-convexity. In our experiments, we were able to choose an ini-

tial guess that ensured convexity of the objective function. However, if the

Hessian is not positive definite or is close to being singular, i.e. if the diagonal

entries in W become negative or zero, then using a modified Newton method

that uses a positive definite approximation to the Hessian may be beneficial

[104]. In either case, knowing how many inner Newton iterations to run can

be difficult, and standard approaches that stop the inner iterations when the

residual is small may not be appropriate, especially for ill-posed problems.

Nonlinear optimization approaches, such as the Newton-type methods men-

tioned above, become significantly more difficult to analyze for ill-posed prob-

lems [40, 65, 79]. In addition to better understanding the convergence of

nonlinear schemes, a comprehensive evaluation of regularization methods for

breast imaging needs to be conducted, and accurate methods for selecting

regularization parameters need to be investigated. Furthermore, there may

be potential benefits in implementing bound constrained algorithms that re-

strict the solution to a feasible region.

A direction of particular interest from the medical community is the quan-
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tification of physical uncertainties from the system geometry. Due to the

massive size and constant movement of the x-ray source, errors from mis-

alignment of the x-ray tube with the image detector are inevitably introduced

in the mathematical model. Efficient methods for estimating and correcting

for these errors should be investigated. In addition, evaluating the perfor-

mance of these methods in the presence of materials that do not conform to

this model will be pursued in our future work. Also, we briefly mention here

that another approach to tomosynthesis that may require future mathemat-

ical contributions is 3D volume reconstruction from a continuous x-ray scan.

In this case, we believe a motion blur technique may be used to model the

acquisition process.
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Chapter 5

Large-Scale Implementation

Large systems inevitably arise when dealing with real-life imaging applica-

tions. Thus, it is important for us to investigate efficient computer imple-

mentations for large-scale problems. By exploiting structure or sparsity in

the problem, or if good approximations of the Hessian can be found, high

computational costs and storage requirements may be alleviated. For exam-

ple, in the image deblurring and blind deconvolution examples from Chap-

ters 2 and 3 respectively, we were able to exploit structure in the matrix

A and efficiently compute matrix-vector products using an object oriented

approach from RestoreTools. However, larger images would require more

data to manage and more unknowns to compute. In this case the blurring

matrices may become prohibitively large, especially for 3D images. In other

situations exploiting nice properties may not be obvious or even possible. If

high-performance capabilities such as shared memory or distributed comput-

ing clusters are available, then parallel processing is a powerful tool that can

be used. In this chapter we describe some efficient techniques for large-scale

parallel implementations.

First we describe an imaging application from molecular biology where it

is essential to have efficient large-scale implementations. We discuss iterative

methods for estimating a 3D density map of a macromolecular complex from

a large number of 2D Cryo-EM projection images. The problem is compu-

tationally demanding because not only does the problem reconstruct large
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3D images, but also the low signal to noise ratio requires us to use a large

number of projection images for achieving atomic resolution. After describ-

ing the problem in Section 5.1, we describe an efficient implementation of the

matrix-vector and matrix-transpose-vector multiplications using the Message

Passing Interface (MPI) library on distributed memory parallel computers in

Section 5.2. In particular, we present a parallelization strategy in which both

the 2D images and the 3D electron density are distributed on a 2D processor

grid. We estimate the theoretical performance of our parallelization scheme

in terms of the floating point operation and communication volume ratio

and report the measured performance results of our implementation for a

few datasets.

We emphasize here that all of the previously described applications from

earlier chapters can also benefit from the implementation techniques devel-

oped here. For example, in super-resolution imaging, having more low res-

olution images may allow the reconstruction of a higher resolution image.

Also, high-performance computing will become increasingly important for

extension of these methods to work for 3D images. Furthermore, in digital

tomosynthesis a finer scale or discretization for the 3D volume would pro-

vide doctors with more detailed images for better detection and diagnosis of

cancers. Since no preconditioning of the problem is assumed, the main com-

putational bottleneck in all of the previously discussed iterative algorithms is

the matrix-vector multiplications. Thus, efficient implementations for these

operations would be helpful for future extensions and developments.

5.1 Motivating Application: Cryo-EM

In the post-genomic era, high resolution determination of protein structures

becomes extremely important for accurate interpretations of biological func-

tions at the molecular level. The reconstruction of these 3D macromolecular
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structures from 2D electron microscopy images of frozen hydrated samples (a

technique often referred to as single-particle Cryo-EM [44]) has many advan-

tages over other imaging techniques such as x-ray crystallography [132] and

nuclear magnetic resonance (NMR) imaging [11]. In particular, it is suitable

for large macromolecular complexes that are difficult to crystallize, and it al-

lows molecular biologists to capture the structure of macromolecules in their

native states. However, in order to perform a successful reconstruction, we

must solve a nonlinear inverse problem described below.

The image formation theory in single-particle Cryo-EM asserts that each

experimentally collected 2D image bi (i = 1, 2, . . . ,m) represents a projected

view of the 3D electron density x along an unknown projection direction.

The lack of projection direction information is a direct consequence of the

way biological samples are prepared and how their images are taken. In

single-particle Cryo-EM, an aqueous solution that contains purified macro-

molecule samples is spread over a carbon support grid. The grid is plunged

into ethane at liquid nitrogen temperature. At such a low temperature, the

solution substrate and the randomly oriented macromolecule samples it con-

tains freeze rapidly. The frozen specimen is then placed in a transmission

electron microscope (TEM) where it is bombarded by a low dose electron

beam that ultimately produces a set of low-contrast and noisy 2D images on

either a film or a CCD camera.

To reconstruct the 3D electron density map of the macromolecule from

these 2D images, we must solve a nonlinear optimization problem in which

the discrepancy between the collected images and the image formation model

is minimized [136]. This problem can be viewed as a nonlinear least squares

problem in which both the 3D density map and the unknown orientation

parameters associated with each image are treated as decision variables, es-

sentially the problem discussed in Chapter 3. Currently, the most widely

used algorithm for solving this type of problem is the projection matching
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algorithm [114]. The algorithm uses a generalized coordinate descent ap-

proach to identify the optimal orientation parameters and the 3D density in

two alternating steps. In the first step, approximate orientation parameters

are obtained through an exhaustive search in a 5D space of orientation and

translational parameters using an initial guess of the 3D structure as a ref-

erence. This step is computationally costly, but can be easily parallelized.

In the second step, a new 3D structure is reconstructed using the most re-

cent orientation parameters. Although this step is generally faster than the

first step on a single processor, it is more difficult to parallelize due to the

collective communication required to merge 2D data in 3D. Overall, ten to

twenty cycles of these two steps are typically required to obtain a satisfactory

solution to the nonlinear least squares problem.

Because the signal-to-noise ratio (SNR) associated with each image bi is

extremely low (due to the low electron dose in the TEM to minimize radia-

tion damage to the sample), a large number of images are required to boost

the SNR of the reconstructed 3D density and obtain the required resolu-

tion. It has been estimated that to achieve atomic resolution, the number of

2D images required to perform a 3D reconstruction may be as many as one

million. Furthermore, when each image is sampled with a small pixel size

to enhance resolution, the dimension of each image can be quite large (e.g.,

hundreds to thousands of pixels in each direction). Consequently, both steps

described above can be computationally demanding. Although the nonlin-

ear variable projection algorithms described in Chapter 3 can be used for

this application, this chapter focuses on the design and high-performance

implementation of efficient and robust algorithms for the linear least squares

problem discussed in Chapter 2. Equivalently, we focus on the second step

of the projection matching algorithm and the linear subproblem in the vari-

able projection algorithm. See Figure 5.1 for sample images from a Cryo-EM

example.
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(a) EM images (b) A 3D density map

Figure 5.1: Cryo-EM example. Provided with a set of projection images (a)

that often have very low signal-to-noise ratio, the goal of single-particle Cryo-

EM reconstruction is to recover a 3D density map such as the one shown in

(b).
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The 3D reconstruction problem to be solved in the second step of the nonlin-

ear optimization procedure is a well studied problem in computerized tomog-

raphy (CT) [99]. The two factors that distinguish single-particle Cryo-EM

reconstruction from CT are the large volume of data involved and the fact

that the orientation parameters associated with each image are not uniformly

distributed. The weighted backprojection algorithm [99] often used in CT

calculates optimal weights based on the assumption of uniformly distributed

projection angles, making it inappropriate for Cryo-EM reconstruction.

When the dimension of each 2D image is relatively small, a rapid recon-

struction can be obtained by using a direct Fourier inversion algorithm [115],

a technique that is based on the central section theorem [100] and makes

use of 2D and 3D fast Fourier transforms (FFTs). For 2D images that con-

tain a larger number of pixels, the memory requirement of a direct Fourier

inversion is quite substantial, and the inversion must be parallelized on a

distributed memory parallel computer. However, because it is not easy to

parallelize a 3D FFT efficiently on a distributed memory parallel computer

due to its data access pattern and because the interpolation and weighting

procedures used in Fourier inversion tend to introduce undesirable artifacts

in the reconstructed density, it is not the preferred choice of method to use

for high resolution reconstructions of large macromolecular structures.

In the next section we develop the mathematical framework for this problem

and focus on iterative algorithms that construct and refine approximations to

3D macromolecular structures in real space. Cryo-EM is an inverse problem,

so as discussed in Section 2.2, premature termination of standard iterative

methods such as LSQR results in an over-smoothed solution and late termi-

nation can result in significant noise amplification in the computed solution.

Choosing an optimal stopping criterion is therefore equivalent to choosing

an optimal regularization parameter that allows as much information to be

recovered as possible while minimizing the effect of noise amplification. The
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hybrid methods that we described in Section 2.3 make such a task easier. One

of our key contributions to this project is to apply the hybrid regularization

algorithm to large-scale Cryo-EM reconstruction.

5.1.1 Mathematical Framework

Assume that each EM projection image bi contains n × n pixels. Similarly,

the sampled 3D density volume can be represented by n×n×n voxels and can

be denoted as x. The finite-dimensional version of the projection operation

along the ith projection direction can be expressed as

bi = Aix ,

where Ai is an n2 × n3 matrix describing the projection operation. The

matrix Ai depends on an Euler angle triplet (φi, θi, ψi) that determines the

direction of the projection as well as any in-plane rotation. Figure 5.2 gives

a geometric view of the Euler angle convention used in our definition of the

projector operation.

For ease of notation, let

A =


A1

...

Am

 and b =


b1

...

bm

 . (5.1)

Then, we can express the reconstruction problem as

min
x
ρ(x) ≡ ||Ax− b||2 . (5.2)

Because of the large dimension of A, iterative methods that do not require

an explicit construction of A are desirable for solving (5.2). We briefly ex-

amine some of these methods in this section. All of these methods access

A through matrix-vector multiplication subroutines that compute w ← Ax

and v ← ATb. We describe efficient implementations of these subroutines

in Section 5.2.
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Figure 5.2: Euler angle convention. The blue arrow indicates the direction of

the projection, which can be completely specified by a pair of angles (φ, θ).

5.1.2 Iterative Reconstruction Methods

In this section we consider algorithms for Cryo-EM reconstruction. A com-

monly used iterative reconstruction algorithm in the structural biology com-

munity is the simultaneous iterative reconstruction technique (SIRT) [49,

115]. The algorithm is essentially a steepest descent algorithm with a fixed

line search parameter (step length).

Given an initial guess x0 (which could be zero), the 3D density of the

macromolecule is updated iteratively as follows:

xk+1 = xk − λ∇ρ(xk) , (5.3)

where ∇ρ(xk) = AT (Axk − b) and λ is a line search parameter chosen

in advance by the user. It is well known that when A is ill-conditioned,

the steepest descent search direction −∇ρ(xk) results in slow convergence

[104]. Furthermore, to delay the effect of semi-convergence, the step length
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λ, which can also be considered as a regularization parameter, is often chosen

to be a very small number. This further slows down the convergence of

the reconstruction algorithm. In the existing software [45, 75], hundreds of

SIRT iterations are typically required before high resolution features of the

macromolecule emerge.

Since the problem is a linear least squares problem, we propose to use the

Lanczos-hybrid methods developed in Chapter 2, more specifically, we use

the HyBR implementation. Using these methods makes the regularization

task easier by mitigating the semi-convergence behavior of standard itera-

tive reconstruction algorithms. Consequently, an imprecise estimate of the

number of iterations required in hybrid methods does not have a deleterious

effect on the computed solution.

5.2 Large-Scale Implementation

Regardless of which iterative reconstruction algorithm is used, the key to

achieving high performance in these algorithms is to develop an efficient im-

plementation of the matrix-vector multiplications (MATVEC) w← Ax and

v ← ATb. These operations correspond to finite dimensional approxima-

tions to the projection and backprojection calculations. They dominate the

computational cost per iteration for all of the iterative methods considered

here. Because image data is sampled on a finite number of grid points, pro-

jection and backprojection operations are approximated by finite sums of

sampled data. Because different coordinate systems are used to sample 2D

images and 3D density map, we must interpolate as we move from one coor-

dinate system to another. We use linear interpolation in our implementation

of the projection and backprojection operations (c.f. Section 3.1.1, [26]). As

a result, the matrix A is extremely sparse. However, since the dimension of

A is extremely large, we do not store the non-zero elements of A explicitly.
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Instead, we generate these non-zeros on the fly from the orientation parame-

ters (φi, θi, ψi) associated with each image as they are used in the MATVEC

subroutines.

Many proteins and viruses have a globular shape (i.e., their electron density

fills up a globular spatial domain). Therefore, it is often convenient and

efficient to enclose the 3D density map to be reconstructed within a spherical

mask, and store and operate only on the density values associated with voxels

within the mask. In the following section we discuss how to store a 3D density

map x using a compact data structure that improves the data locality of the

matrix-vector multiplications. We also discuss strategies for distributing 2D

images and 3D density maps on multi-processor machines to achieve optimal

parallel performance.

5.2.1 Compact Volume Representation

In many cases (for example, viruses and large macromolecular complexes),

it is known in advance that the molecular structure to be determined has

a globular shape. Efficiency can be gained by working with voxels that lie

within a spherical mask with a radius r < n/2.

A straightforward implementation of the projection calculation would sim-

ply go through each voxel (i, j, k) and check whether it satisfies the condition:

(i− cx)2 + (j − cy)2 + (k − cz)2 ≤ r2, (5.4)

where c = (cx, cy, cz) is the predefined center of the volume. Then only

those that satisfy the above condition are projected onto a 2D image. The

projected density values are accumulated only on pixels that are within a

circular mask with the same radius r.

Because the projection and backprojection calculations are performed re-

peatedly in an iterative reconstruction algorithm, the extra conditional state-

ment required to test (5.4) introduces significant overhead. As illustrated in
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Section 5.3, branch mispredictions incurred by the condition statement and

cache misses caused by fetching density values associated with non-adjacent

voxels can lead to suboptimal performance. Furthermore, storing density

values outside of the spherical mask increases the communication volume in

the parallel implementation of the iterative reconstruction algorithm.

To achieve high performance, we use a compact data structure to store

and work with only those density values defined at voxels within a spherical

mask. To be specific, the density values defined at voxels that satisfy (5.4)

are stored in a contiguous floating point array (x). The density values are

arranged column by column, where each column is defined to be a set of

sampling grid points (i, j, k) that share the same k value. As we can see from

Figure 5.3(a), each column has a different number of sampling grid points.

In our compact data structure, the starting location of each column within

the array x is kept in a separate integer array (colptr) of size ncol + 1 where

ncol is the total number of columns required to represent all voxels within the

spherical mask. We use an additional array (cord) of size ncol×3 to keep track

of the coordinates of the the first voxel in each column whose z-coordinate

is minimal. Figure 5.3(b) shows the coordinates of the columns displayed in

Figure 5.3(a). The pseudocode listed in Figure 5.4 illustrates how the desired

density values and their 3D positions are retrieved in a contiguous fashion in

our implementation of the projection and backprojection calculations.

5.2.2 Parallelization using 1D Data Distribution

The iterative reconstruction algorithms described in Section 5.1.2 can be

easily parallelized on distributed memory parallel computers such as a Linux

cluster if each processor has sufficient memory to store the 3D density map

and other 3D data, such as ∇ρ and the ith column of Yk from the Lanczos

bidiagonalization. Since the major computational cost of an iterative recon-
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Figure 5.3: Compact volume representation of the 3D data.

for jcol = 1:ncol

ix = cord(jcol,1);

iy = cord(jcol,2);

iz = cord(jcol,3);

for i = colptr(jcol):colptr(jcol+1)-1

dval = x(i);

iz = iz + 1;

endfor

endfor;

Figure 5.4: Retrieving density values and their coordinates using the compact

data structure.
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struction procedure is the matrix-vector multiplications associated with the

projection and backprojection operation, parallelization of the reconstruction

procedure essentially amounts to parallelizing these operations.

When 3D data such as x, ∇ρ and the ith column of Yk can be replicated

on each processor, the parallelization of iterative reconstruction algorithms

can be achieved by simply distributing 2D images and their corresponding

orientation and translation parameters evenly among different processors.

Such a data distribution scheme allows us to partition the forward projection

calculation with no inter-processor communication. For example, the residual

vector ri = Aix − bi can be computed independently on the processor to

which bi is assigned. In order to compute the gradient ∇ρ, we must perform

the following backprojection operation:

∇ρ =
m∑
i=1

AT
i ri . (5.5)

Because the residual images ri for i = 1, 2, . . . ,m are distributed on different

processors, each processor can perform a partial sum of the right hand side

of (5.5). In the 1D distribution scheme, these partial sums are collected,

accumulated and broadcast back to all processors using the MPI_Allreduce

function.

To assess the efficiency of the parallelization schemes, we measure the ra-

tio between the number of floating point operations executed and the total

amount of data transferred among different processors. When images are

distributed among processors, the total number of floating point operations

required to compute ∇ρ is O(mn3), when linear interpolation is used for

forward and backward projection calculations. The total amount of data

transfer required is O(n3np), where np is the number of processors. Thus,

the ratio of floating point operations (flop) to the volume of data communi-

cation is

τ =
O(mn3)

O(n3np)
= O

(
m

np

)
. (5.6)
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As clearly seen from (5.6), τ is independent of the image size n. However, if

m remains unchanged, τ becomes smaller as we increase np. This suggests

that the parallel performance will eventually deteriorate due to the increased

amount of communication overhead as we add more processors in the gradient

calculation.

5.2.3 Parallelization using 2D Data Distribution

Digitizing electron microscopy images with a small pixel size (which is re-

quired for high resolution reconstruction) can lead to images with large di-

mensions, especially for large macromolecular complexes and viruses. It is

not uncommon these days to collect virus images with 512 × 512 pixels. In

some cases, it has been estimated that an image size of 1024 × 1024 pixels

may be required to determine 3D structures of viruses (sampled with 1Å per

pixel or even smaller pixel sizes) at higher than 4Å resolution [119].

For extremely large structures, it is impossible to replicate the entire 3D

volume on each processor due to the memory limitations of most distributed

memory parallel computers. In this case, a parallelization mechanism that al-

lows 3D volume data to be distributed among different processors is desirable.

Furthermore, distributing 3D volume data enables us to exploit parallelism

more effectively in the projection and backprojection calculation on state-

of-the-art high-performance computers equipped with tens of thousands of

processors.

In this section we describe a parallel implementation of the iterative re-

construction algorithms that can overcome the existing memory limitation

problem. We discuss how the projection and backprojection operations with

the new data distribution scheme map naturally onto a Cartesian topology,

allowing us to take advantage of easy-to-use, built-in MPI virtual topologies.

We show that this implementation not only allows reconstruction of large-
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volume structures by addressing the memory limitation problem, but also

yields better parallel scalability by improving the floating point operations

to communication ratio.

The new data distribution scheme requires the processors to be grouped

according to a particular 2D layout (see Figure 5.5). Assume that the total

Figure 5.5: Processor layout for volume data distribution. The six processors

pi,j, for i = 1, 2, 3 and j = 1, 2, 3, shown here are grouped by row and column.

Each processor is identified by its row and column group numbers.

number of processors np can be factored as np = nr × nc, where nr and nc

correspond to the number of rows and columns in the 2D processor grid,

respectively. Let gri denote the processor group that consists of processors

pi,1, pi,2, . . . , pi,nc , and let gcj denote the processor group that consists of pro-

cessors p1,j, p2,j, . . . , pnr,j. We remark here that the above notation is purely

for convenience. In actual implementations, we use the MPI virtual Cartesian

topology functionality, which simplifies coding and allows the MPI library to

assign Cartesian coordinates to processors in such a way that automatically
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takes best advantage of the underlying network.

Two-dimensional Cartesian decomposition can be easily created using the

function MPI_Cart_create, and corresponding row and column communi-

cators can be created using the MPI_Cart_sub function. To compute the

residual images using this topology, we distribute the calculation over the

processor row groups gr1 , gr2 , . . . , grnr . Thus, all processors within the same

row group receive replicates of roughly m/nr 2D images and the orientation

and translation parameters that define their corresponding projection oper-

ators. The 3D volume data x and gradient ∇ρ, in their compact spherical

representation, are divided as evenly as possible into nc sub-vectors in the

following manner:

x =


x(1)

x(2)

...

x(nc)

 , ∇ρ =


∇ρx(1)

∇ρx(2)

...

∇ρx(nc)

 ,
and these sub-vectors are distributed over the column groups gc1 , gc2 , . . . , gcnc

and replicated within each group. Thus, each processor only stores a partial

volume in its memory, and the sub-vector x(j) is replicated only on processors

within the column group gcj . It also implies that each projection operator

Ai, which can be represented as a sparse matrix (with the same number of

non-zeros in each column), is now partitioned as

Ai =
[

A
(1)
i A

(2)
i · · · A

(nc)
i

]
.

Using this data distribution scheme, we can express each projection calcula-

tion as

Aix =
nc∑
j=1

A
(j)
i x(j) . (5.7)

Unlike the 1D partition, in which no communication is required in the pro-

jection calculation, (5.7) requires partial sums from different column groups
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to be collected and summed within the row group grk to which the ith image

has been assigned. The image sum must then be broadcast to all processors

within grk . By the same token, the backprojection calculation required in

computing ∇ρ must be modified as well. Because x and ∇ρ are distributed

among different processor column groups, each column group only needs to

compute a sub-volume ∇ρx(j) , which can be expressed as

∇ρx(j) =
m∑
i=1

(A
(j)
i )T ri . (5.8)

Because ri and A
(j)
i are distributed among different processor row groups,

each processor within the jth column group can only perform a partial sum.

These partial sums must be collected and added by a master processor within

that column group. Then the result must be broadcast back to all processors

within that column group.

Using the newly proposed data distribution scheme, the ratio of flops to

communication data volume for the forward projection operation is

τc =
O(n3)

O(n2nc)
= O

(
n

nc

)
. (5.9)

Similarly, the ratio of flops over communication data volume for the back-

projection operation is

τr =
O(mn3/nc)

O(nrn3/nc)
= O

(
m

nr

)
. (5.10)

It follows from (5.9) and (5.10) that the overall scalability of the gradient

calculation in the new parallel distribution scheme is determined by the min-

imum of n
nc

and m
nr

. Because n is typically much smaller than m, we should

choose nc < nr in most cases. When nr is sufficiently large (but still less

than n), the 2D data distribution scheme may have a more favorable flop

count to communication volume ratio.
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For a given number of processors np, there can be several choices for nc and

nr. However, it is easy to see from (5.9) and (5.10) that there is a trade-off

between a larger value of nc and nr. If the memory available on each node

for storing the volume and image data is M bytes and the total number of

processors available is np, then nc and nr should be chosen such that the

following constraints are satisfied:

4n2m

nr
+

4kn3

nc
≤ M (5.11)

nc · nr ≤ np , (5.12)

where k is the number of 3D volumes that must be maintained in the iterative

reconstruction algorithm.

The optimal choice of nc and nr (among all feasible choices) that leads to

the minimum execution time of a 3D reconstruction depends on the values

of n, m, and k, as well as on the communication bandwidth and latency

associated with the user’s computer cluster.

We should point out that the 2D data distribution scheme has a higher

latency cost. In addition to performing a collective communication required

by the backprojection operation among processors belonging to the same col-

umn group at each iteration, we must now also perform a global sum in the

projection calculation among processors belonging to the same row group.

Such a global sum operation must be performed for each projection direction.

To reduce the latency cost, we can allocate more memory to hold the par-

tially projected images until all projections assigned to a processor group are

completed. In this case, only one extra collective communication needs to be

performed at each iteration. The drawback is that the memory requirement

for the image data increases by a factor of two, potentially increasing the

number of processors needed to carry out the calculation.
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5.3 Numerical Results

In this section we present numerical results that illustrate the quality and

performance of the iterative 3D reconstruction procedures described in Sec-

tions 5.1.2 and 2.3. In particular, we demonstrate that HyBR, our implemen-

tation of a Lanczos-hybrid with Tikhonov regularization method where the

regularization parameter is chosen using the W-GCV method, allows us to

obtain high quality 3D structures with a minimal number of iterations. We

also show that using a compact volume representation reduces cache misses

and branch mispredictions in the projection and backprojection calculations.

We report the scalability of parallel reconstructions measured for both 1D

and 2D data distribution schemes on a variety of datasets. We also show

that distributing our data on a 2D Cartesian grid allows us to obtain 3D

reconstructions of large virus structures in several minutes on 15,344 CPUs.

5.3.1 Quality of Iterative Reconstruction Algorithms

In this section we compare the numerical quality of the iterative reconstruc-

tion algorithms presented in Sections 5.1.2, 2.2 and 2.3, namely, SIRT, LSQR,

and HyBR on a relatively small dataset. Two numerical experiments were

performed. In the first experiment, synthetic image data was produced by

projecting a previously reconstructed and low-pass filtered 3D density map

of the TFIID protein [2] along 84 evenly distributed projection directions.

Each image in our 2D image set {bi}, i = 1, 2, . . . , 84, contains 64×64 pixels.

We generated normally distributed (N (0, 1)) random noise images εi to add

to each image after scaling the noise level so that ‖εi‖/‖bi‖ = 0.1 for all i.

Given the set of noise-perturbed 2D projection images, some of which are

shown in Figure 5.6(a), the goal is to reconstruct an approximation of the

true volume shown in Figure 5.6(b).

The advantage of using synthetic data for testing is that we can examine
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(a) Simulated 2D projection images (b) The true solution

Figure 5.6: Cryo-EM example. Sample simulated 2D projection images and

the 3D density map used to generate the 2D data.

the accuracy of the reconstructed 3D density map by evaluating the relative

error.

Figure 5.7 shows the relative error measured at each iteration of SIRT,

LSQR, and HyBR. The dash-dotted line illustrates the slow convergence of

the SIRT algorithm, compared to the Lanczos-based iterative methods. The

regularization parameter λ in (5.3) was tuned by hand through trial and

error. The optimal choice, which we used in the run that produced the

convergence history curve shown in Figure 5.7, appears to be λ = 10−3.

As described in Section 2.2.2, the convergence of LSQR exhibits typical

semi-convergence behavior, where the approximate solution improves at early

iterations, but eventually noise begins to enter and contaminate the com-

puted reconstructions. For this problem, we would ideally like to terminate

the process after 6 iterations, thereby giving us a regularized solution and

avoiding error amplification. However, it is difficult to determine the iter-

ation number that minimizes the relative error without knowing the true
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Figure 5.7: Cryo-EM: Relative error plot for synthetic data.

solution.

For the HyBR reconstruction, we use the W-GCV method to select regular-

ization parameters. Then a suitable stopping iteration is found by monitoring

a GCV function based on the original problem (see Section 2.4.5). Similar

to LSQR, we see in Figure 5.7 that the relative errors for HyBR recon-

struction decrease quickly within the first few iterations. However, since the

noise is suppressed with regularization at every iteration, the hybrid method

converges to a regularized solution rather than the inverse solution. This ex-

plains the absence of semi-convergence behavior, which is a benefit of using

hybrid methods for computing Cryo-EM reconstructions.

In Figure 5.8 we show the isosurface renderings of four reconstructed vol-

umes produced by the three different iterative methods. The same threshold

is used in all of the rendering plots. Figure 5.8(a) shows a reconstructed den-

sity map obtained after running 10 SIRT iterations. It is clear from this figure
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that the method has not fully converged, resulting in an overly smooth solu-

tion. A much better reconstruction, which is obtained after running SIRT for

20 iterations, is shown in Figure 5.8(b). Figure 5.8(d) shows that an equally

good reconstruction that is virtually indistinguishable from the true solution

shown in Figure 5.6(b) is obtained by running only 9 iterations of HyBR.

The noise amplification produced by running 20 iterations of LSQR can be

clearly seen from Figure 5.8(c). All of these observations are consistent with

the relative error plot shown in Figure 5.7. HyBR is clearly more efficient

than SIRT in this case due to the smaller number of iterations required to

obtain a good reconstruction. (Note that the cost per iteration is the same

for all iterative methods considered here.)

A comparison of SIRT and CG-type methods such as LSQR can be found

in [125]; however, it is important to note that both SIRT and LSQR have the

disadvantage of requiring the user to select a stopping iteration. Previously

proposed methods for terminating these iterations should be investigated for

this problem. For HyBR, we use the stopping criteria developed in Section

2.4.5, which automatically terminated the process after 9 iterations for this

particular example.

In the second experiment, we applied HyBR to real Cryo-EM data pro-

duced in [2] to determine the 3D density map of the TFIID protein shown

in Figure 5.1(b) and to compare the quality of the reconstruction with those

obtained from SIRT, LSQR and the direct Fourier reconstruction method

described in [115].

The dataset contains 4418 2D images collected from a TEM. Some of these

images are shown in Figure 5.1(a). The initial Euler angles we used in the

reconstruction were obtained from the 10th iteration of a previous projection

matching run that was used to produce the 3D density map shown in Fig-

ure 5.1(b). In that projection matching run, the 3D reconstruction problem

(5.2) was solved by running 100 iterations of SIRT.
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(a) SIRT (10 its). (b) SIRT (20 its)

(c) LSQR (20 its) (d) HyBR (9 its)

Figure 5.8: Cryo-EM: Reconstructed 3D structures from synthetic data. The

true solution is shown in Figure 5.6(b).
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Without knowing the true solution to the inverse problem, it is difficult

to assess the true quality of a reconstructed 3D density map. In Figure 5.9,

we show the isosurface renderings of reconstructed density maps produced by

the three different iterative methods as well as a 3D density map produced by

the direct Fourier inversion algorithm described in [115]. It is clear from this

figure that both SIRT and HyBR produced 3D density maps that contain all

visible features shown in Figure 5.1(b), whereas both LSQR (20 iterations)

and direct Fourier inversion produced 3D maps that contain a significant

amount of noise and artifact. The HyBR run was terminated at the 10th

iteration, and hence is more efficient than SIRT. We should comment that

similar convergence behavior was observed for other datasets including the

ones listed in Table 5.2. That is, HyBR typically terminates automatically in

at most 10 iterations. To achieve the same reduction in the objective function

(5.2), we often need to run more than 20 SIRT iterations. Terminating

SIRT sooner often produces an over-smoothed reconstruction. The exact

number of iterations depends on the SNR of the image and the choice of

line search parameter used in SIRT. Although the objective function (5.2)

decreases rapidly when using LSQR, noise contamination occurs quickly also.

Earlier termination would have produced nice solutions, but selecting a good

stopping point is not obvious.

5.3.2 Single Processor Performance

In this section we report the performance of the LBD algorithm when it is

executed on a single processor. The single processor performance is measured

in terms of the total CPU time used to run 5 LBD iterations, the number of

floating point operations performed per second, as well as the number of level-

2 (L2) cache misses and branch mispredictions measured in the run. These

measurements are collected by the PAPI [95] performance measurement tool.
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(a) SIRT (20 its) (b) LSQR (20 its)

(c) HyBR (10 its) (d) Fourier reconstruction

Figure 5.9: Cryo-EM: Reconstructed 3D structures from real data. Fig-

ure 5.1(b) shows a reconstruction obtained from running 100 iterations of

SIRT.
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The TFIID dataset that was used in the second experiment in Section 5.3.1

was used for this performance study, which was carried out on an AMD

Opteron processor that runs at a clock speed of 2.2 GHz, has a 2 MB L2

cache, and has peak performance of 4.4 gigaflops/sec (Gflops). We ran two

different implementations of the LBD algorithm. In the first implementation,

the compact volume representation (CVR) was used to store the 3D data (x

and Yk). In the second implementation, x and columns of Yk are stored as

standard 3D arrays. In both implementations, projection and backprojection

operations only make use of voxels that lie within a sphere of predefined

radius r; thus, they perform the same number of floating point operations.

Table 5.1: Performance characteristics of two different implementations of

the LBD algorithm.

Performance characteristics CVR 3D array

CPU time (seconds) 281 565

flops/second 1, 402× 106 804× 106

L2 cache misses 15,601,052 2,293,781,072

branch misprediction 130,801,673 1,215,150,812

Table 5.1 shows that the use of CVR improves the performance of LBD

by a factor of two compared to a simple implementation in which 3D data

objects are stored as 3D arrays. It allows the projection and backprojection

calculations to run at 31% of the peak performance. The superior perfor-

mance exhibited by the CVR version of the LBD run is due to the much

smaller number of L2 cache misses and branch mispredictions shown in the

third and fourth rows of the table respectively.
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5.3.3 Parallel Performance

In this section we report the performance of the parallel implementations of

the reconstruction algorithms discussed earlier. All of these algorithms per-

form the same projection and backprojection calculations in each iteration.

Since these calculations constitute a significant portion of the computational

cost per iteration, the parallel performance characteristics should be similar.

Three different datasets are used in the following experiments. The charac-

teristics of these datasets are described in Table 5.2. Note that the virus data,

which is a subset of the data used in [119], contains only 959 images. How-

ever, since the structure of the virus is known to have icosahedral symmetry,

each image is backprojected 60 times from distinct but symmetrically related

projection directions. That is, each image provides information equivalent to

60 images of a particle with no symmetry, making the effective image count

57,540.

Our parallel scalability analysis is performed on the Franklin cluster main-

tained at NERSC. Franklin is a distributed-memory parallel system with

9,660 compute nodes. Each compute node consists of a 2.6 GHz dual-core

AMD Opteron processor with a theoretical peak performance of 5.2 Gflops.

Each compute node has 4 GBytes of memory. Each compute node is con-

nected to a dedicated SeaStar2 router through Hypertransport with a 3D

torus topology that ensures high performance, low-latency communication

for MPI.

When 1D data distribution is used in the parallel implementation of the

reconstruction algorithm, a collective communication involving all processors

is performed at each iteration. The analysis we showed in Section 5.2 indi-

cates that the parallel scalability of the reconstruction, which we measure

by

s =
T1

Tnp
, (5.13)
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Table 5.2: Cryo-EM: Datasets used in the performance analysis

Target structure image size number of images

TFIID 64× 64 4418

Ribosome 150× 150 150,000

Adenovirus 500× 500 959 (×60)

where Tnp is the wall clock time required to run 10 iterations of the LBD

procedure in parallel on np processors, will eventually degrade as np increases.

This phenomenon can be clearly observed from Table 5.3 in which we show

the speedup factor s for both the TFIID and the Ribosome datasets. For the

TFIID dataset, which was used in [2], linear speedup is observed for parallel

runs with up to 256 processors. A slight departure from linear speedup can

be observed when the total number of processors used reaches 512.

For the Ribosome dataset, which contains 150,000 images, a minimum of

128 processors are used in the performance evaluation. Therefore, our defini-

tion of the speedup factor is modified to become s = T128/Tnp . The parallel

LBD calculation scales linearly up to 4096 processors. A slight departure

from linear scalability is observed when 8192 processors are used. Compared

to the TFIID dataset, the increased number of images (m) in the Ribosome

dataset leads to a higher flop-to-communication volume ratio τ (defined in

equation (5.6)) for a fixed number of processors. As a result, linear scalability

extends to a larger processor count.

To measure how parallel reconstruction performs when both the 2D images

and the 3D data are distributed on a 2D processor grid, we run 10 iterations

of HyBR with several choices of nr and nc such that nr × nc = np ≤ 128.

Table 5.4 shows the wall clock time used in the reconstruction of the TFIID

structure for each (nr, nc) pair. We clearly observe from this table that the

parallel reconstruction scales linearly with respect to the number of column
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(a) Speedup of the TFIID reconstruc-

tion.

np T1/Tnp

2 2

4 4

8 8.2

16 16.4

32 33.1

64 66.3

128 130.7

256 255.8

512 489.9

1024 636.4

(b) Speedup of the Ribosome recon-

struction.

np np/128 T128/Tnp

256 2 2.0

512 4 3.9

1024 8 7.7

2048 16 15.6

4096 32 30.9

8192 64 61.4

Table 5.3: Speedup of the reconstruction for both the TFIID and Ribosome

datasets when 2D images are distributed on a 1D processor grid. The speedup

of the TFIID reconstruction is measured by T1/Tnp , whereas the speedup of

the Ribosome reconstruction is measured by T128/Tnp .
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groups nc, when the number of row groups nr is fixed. A similar observation

can be made for fixing nc and increasing nr. However, for a fixed number

of processors, different combinations of nr and nc result in slightly different

performance, as we can see along the diagonals of the table.

Table 5.4: Wallclock time (seconds) used to reconstruct the 3D density of

the TFIID molecule on a processor grid with nr × nc processors

nc

1 2 4 8 16 32 64 128

128 4.652 * * * * * * *

64 9.261 4.635 * * * * * *

32 18.07 9.255 4.743 * * * * *

nr 16 35.91 18.18 9.582 5.003 * * * *

8 71.95 36.22 18.77 9.997 5.588 * * *

4 143.0 72.48 37.42 19.93 11.44 6.824 * *

2 286.0 144.9 74.65 39.38 22.05 13.41 9.160 *

1 570.8 289.9 149.9 78.76 43.55 26.73 18.07 13.89

To explain this observation, we recall from Section 5.2.3 that the ratio of

flops to communication data volume for parallel reconstructions performed on

a 2D processor grid with nr×nc processors is determined by the minimum of

n/nc andm/nr, where n is the image size andm is the total number of images.

Since m/nr ≥ m/(nrnc), the performance of the 2D data distributed parallel

calculation can exceed that of the 1D distributed calculation (i.e., nc = 1)

only when m/nr < n/nc, or equivalently, when nr/nc > m/n. Because the

number of images in the TFIID dataset (m = 4418) is almost two orders of

magnitude larger than the image size n = 64, we do not expect the 2D data

distribution scheme to outperform the 1D data distribution scheme unless nr

is roughly two orders of magnitude larger than nc. This is indeed the case as
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we can see that parallel reconstructions carried out on the 64× 2 and 32× 2

grids slightly outperform those carried out on a 1D processor grid with 128

and 64 processors respectively.

Similarly, because m/n = 1000 for the the Ribosome data set, we do not

expect to see the benefits of the 2D data distribution scheme when nr/nc is

significantly less than 1000. This is confirmed by the timing results reported

in Table 5.5.

Table 5.5: Wallclock time (seconds) used to reconstruct the 3D density of

the Ribosome molecule on a processor grid with nr × nc processors

nc

1 2 4 8

8192 68.2 * * *

4096 138.6 69 * *

2048 271.7 133.8 68.1 *

1024 526.7 265.6 133.8 69

nr 512 1050 532.7 267.8 136

256 1998 1060 535.2 270.5

128 3905 2112 1069 547.4

However, for the Adenovirus dataset, which contains 959 images, each with

500× 500 pixels, there is a clear advantage to using a 2D data distribution.

Storing 5003 voxels of single precision density values takes roughly 500 MB

of memory. Even if we use a compact volume representation scheme, the

memory requirement for a single 3D structure is still larger than 250 MB.

Therefore, replicating x and Yk on all processors in a parallel HyBR run

that distributes only 2D images along a 1D processor grid is not feasible for

moderately large values of k (e.g., k = 10).

Even if there is enough memory to hold x and Yk on each node, the maxi-
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mum level of parallelism one can exploit from the 1D data distribution scheme

is limited by the number of images, since at least one image must be assigned

to each processor. The 2D data distribution scheme enables us to utilize more

processors when they are available.

In Table 5.6, we report how the parallel LBD computation scales as we add

more processors to the 2D processor grid. We use the wall clock time required

to complete 20 LBD iterations on a 137× 7 processor grid as T1 in (5.13) for

the speedup factor calculation. Table 5.6 shows that we were able to run 10

iterations of the parallel LBD reconstruction on as many as 15,344 (959×16)

processors. The total amount of wall clock time required to perform such a

calculation is roughly 10 minutes. Because Table 5.6 shows that the speedup

of the parallel LBD reconstruction is almost linear, we estimate that running

the same calculation on a single processor with sufficient memory would take

106 days.

Table 5.6: Wallclock time (seconds) used to reconstruct the 3D density of

the Adenovirus on a processor grid with nr × nc processors

nr nc wall clock (sec) speedup

137 7 9635 1

959 2 4841 2

959 4 2406 4

959 8 1335 7.2

959 16 609 15.8

5.4 Research Impact

We have developed a high-performance iterative reconstruction method for

estimating the 3D electron density map of a macromolecule from a large num-



132

ber of 2D Cryo-EM images. Our approach uses the Lanczos-hybrid bidiag-

onalization regularization algorithm, HyBR, from Section 2.3 that allows us

to stabilize the reconstruction process and accurately compute a reconstruc-

tion. Our parallel implementation of the iterative reconstruction algorithm

utilizes a 2D data distribution scheme. It allows both the 2D image data and

the 3D data such as the density map and the right vectors from the Lanc-

zos bidiagonalization to be distributed among different processors, thereby

overcoming the potential memory limitation on a cluster of commodity pro-

cessors. We demonstrated that our parallel implementation of the iterative

reconstruction algorithm scales up to tens of thousands of processors.

We should point out that the 2D parallelization strategy presented here

can also be utilized in other reconstruction algorithms. For example, a

quasi-Newton method referred to as the unified approach in [136] that si-

multaneously seeks the optimal 3D density and orientation parameters by

minimizing a nonlinear least squares objective function can benefit from this

implementation. The variable projection method from Chapter 3 can also be

used. These methods have been shown to work well when a good initial guess

is available. We should also mention that another popular iterative method

for solving the linear reconstruction problem (5.2) is the Algebraic Recon-

struction Technique (ART) [72, 77] and its block variants [94]. However,

contrary to SIRT and the Lanczos-hybrid algorithms where the projection

and backprojection operations can be computed for all 2D images simulta-

neously, ART and Block ART require a sequential use of only one 2D image

per iteration. It has been shown that the parallel performance of SIRT is

generally superior to that of Block ART on distributed architectures [93].

Furthermore, it may be difficult to achieve scalability when more than one

hundred processors are used. More comparisons between parallel implemen-

tations of ART and Lanczos bidiagonalization based iterative methods will

be pursued in our future work.
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Chapter 6

Concluding Remarks

In this dissertation we presented some significant mathematical results,

utilized high-performance computing capabilities for large-scale implementa-

tion, and contributed to scientific advancement in a variety of applications.

We considered three different mathematical models that frequently arise in

imaging applications. The common thread in all of the examples was the

need for efficient regularization and robust implementation for large-scale

ill-posed inverse problems.

The mathematical contributions from this work include developing regular-

ization approaches for linear and nonlinear least squares problems and de-

riving numerical methods for nonlinear Poisson-based maximum likelihood

problems. For the linear least squares problem, we developed an adap-

tive approach for selecting parameters in a standard Tikhonov framework,

showed how it can be effectively used in an iterative hybrid bidiagonalization

regularization (HyBR) method, and produced a user-friendly set of Mat-

lab codes for software distribution. For the nonlinear least squares problem,

we adapted a variable projection approach to use HyBR to solve the linear

problem at each nonlinear iteration. This in turn allowed us to efficiently in-

corporate robust methods for regularization. A different mathematical model

that assumed a nonlinear Poisson distribution was also considered in this dis-

sertation. A new mathematical framework was developed in the context of
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breast tomosynthesis, and standard optimization methods were made fea-

sible for the maximum likelihood formulation. To summarize, a variety of

mathematical problems were considered in this work, and progress was made

on many fronts.

Oftentimes it takes advanced computational capabilities to make the math-

ematical contributions significant in real-life applications. That is, high-

performance computing is important for efficient large-scale implementations.

The significant computational contributions from this research include a mas-

sively parallel code for large-scale image reconstruction. Using the MPI li-

brary, we implemented a 2D data distribution for use on multi-processor

computers. The codes have been included in the publicly available software

package called SPARX and have allowed reconstructions that were previously

not possible.

The scientific contributions are evident in the variety of imaging applica-

tions that have benefitted from our work. In particular, the separable non-

linear least squares framework arises naturally in super-resolution imaging,

blind deconvolution and Cryo-EM reconstruction. All of these applications,

in addition to standard image deblurring, have benefitted from the develop-

ment of HyBR and the large-scale implementations. With new algorithms

for polyenergetic tomosynthesis reconstruction, significant advancements in

breast imaging will hopefully lead to better detection of breast abnormalities.

Although this dissertation focuses on imaging applications, ill-posed inverse

problems arise in many other scientific applications, and the numerical meth-

ods developed here can promote progress and development in other fields as

well.
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Appendix

Here we provide further details and derivations for some of the problems

discussed in this dissertation. In particular, we provide the detailed deriva-

tion of the weighted-GCV function as a “weighted leave-one-out” approach

in Section A.1. Then in Section A.2 we provide details on how we select the

ω parameter for the W-GCV function. Finally, the derivation of the condi-

tions under which the polyenergetic tomosynthesis cost function is convex is

presented in Section A.3.

A.1 Weighted-GCV

As mentioned in Section 2.4.2, W-GCV can be interpreted as a “weighted

leave-one-out” approach. In this section we provide more of the mathematical

details for deriving the proposed weighted-GCV function. Our derivation of

the weighted-GCV function (2.17) follows a similar derivation for the cross-

validation and generalized cross-validation function found in Golub, Heath

and Wahba [53].

Preliminary Results from Cross-Validation

We begin by defining the matrix

Ej = diag(1, 1, ...1, 0, 1, ...1) ,

where 0 is the jth entry. Then let xλ,j be the solution of the following mini-

mization problem:

min
x
||b(j) −A(j)x||22 + λ2||x||22 ,
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where vector b(j) is b with the jth entry missing and matrix A(j) is A with

the jth row missing. Hence, the above minimization problem is equivalent to

the following problem:

min
x
||Ej(b−Ax)||22 + λ2||x||22 . (A-1)

The cross-validation method is based on the concept of prediction error.

In the derivation of the cross-validation approach, consider xλ,j as defined

above. Then consider the jth entry of the residual vector:

b(j) − [Axλ,j]
(j) ,

where b(j) and [Axλ,j]
(j) are the jth entries of vectors b and Axλ,j respectively.

Thus, we can define the average error as

V (λ) =
1

m

m∑
j=1

(b(j) − [Axλ,j]
(j))2 .

The value of λ that minimizes V (λ) is called the “cross-validation” estimate

for λ. The derivation of the cross-validation method, and hence the gener-

alized cross-validation method, is based on the following theorem, which is

proved in [53].

Theorem A.1 We can write V (λ) = 1
m
||D(λ)(I−T(λ))b||22 , where

T = A(ATA + λ2I)−1AT

and

D = diag

(
1

1− t(jj)

)
,

where t(jj) is the jjth entry of matrix T.

Next we follow a similar derivation for weighted-cross-validation.
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Derivation of Weighted-Cross-Validation

We produce an analogous average error function for weighted-cross-validation.

To proceed, we prove the following theorem:

Theorem A.2 We can write the average error Vω(λ) = 1
m
||D̂(λ)(I−T(λ))b||22 ,

where

T = A(ATA + λ2I)−1AT

and

D̂ = diag

(
1

1− ωt(jj)

)
.

Notice that the only difference between the results in Theorem A.1 and

A.2 is the matrix D̂, where D̂ incorporates the new weighting parameter ω.

Furthermore, if ω = 1 in Theorem A.2, then we get the result in Theorem

A.1.

To prove Theorem A.2, we proceed in four steps:

1. First we find an expression for xλ,j .

2. Next we compute the vector Axλ,j .

3. Then we evaluate [Axλ,j]
(j) .

4. Finally we get an expression for b(j) − [Axλ,j]
(j) and evaluate

Vω(λ) =
1

m

m∑
j=1

(b(j) − [Axλ,j]
(j))2 .

Proof. Step 1: Without loss of generality, let’s assume 0 < ω < 1. Then

define the matrix

Fj = diag(1, 1, ...1,
√

1− ω, 1, ...1) ,
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where
√

1− ω is the jth entry. Our goal is to find xλ,j that solves the following

minimization problem:

min
x
||Fj(b−Ax)||22 + λ2||x||22 . (A-2)

By equivalent formulations of Tikhonov regularization (2.4), xλ,j also solves

the following problem:

min
x

∣∣∣∣∣
∣∣∣∣∣
[

FjA

λI

]
x−

[
Fjb

0

]∣∣∣∣∣
∣∣∣∣∣
2

.

Then the normal equations can be written as

(ATFT
j FjA + λ2I)xλ,j = ATFT

j Fjb , (A-3)

and an explicit expression for xλ,j can be written as

xλ,j = (ATFT
j FjA + λ2I)−1ATFT

j Fjb . (A-4)

The following two relations will be important for future use:

1. Fj = I− (1−
√

1− ω)eje
T
j

2. FT
j Fj = I− ωeje

T
j

where ej is the jth column of the identity matrix.

Using the second relationship, we can rewrite the coefficient matrix in equa-

tion (A-3) as

ATFT
j FjA + λ2I = AT (I− ωeje

T
j )A + λ2I

= (ATA + λ2I)− (
√
ωATej)(

√
ωeTj A) .

Now let aTj = eTj A be the jth row of A.

Then

(ATFT
j FjA + λ2I)−1 = (ATA + λ2I− (

√
ωaj)(

√
ωaj)

T )−1 .
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Let’s define

T(λ) = A(ATA + λ2I)−1AT .

Then by the Sherman-Morrison-Woodbury formula and with some algebra,

we can see that xλ,j from equation (A-4) can be written as

xλ,j =
1

1− ωt(jj)
[(1− ωt(jj))A†λ + ωA†λeje

T
j T]FT

j Fjb , (A-5)

where A†λ is defined in Chapter 2 as A†λ = (ATA + λ2I)−1AT .

Step 2: From equation (A-5), we can get an expression for Axλ,j :

Axλ,j =
1

1− ωt(jj)
[(1− ωt(jj))T + ωTeje

T
j T]FT

j Fjb (A-6)

=
1

1− ωt(jj)
[(1− ωt(jj))I + ωTeje

T
j ]TFT

j Fjb . (A-7)

Step 3: Furthermore, we can evaluate [Axλ,j]
(j):

[Axλ,j]
(j) = eTj Axλ,j

=
1

1− ωt(jj)
[(1− ωt(jj))eTj + ωeTj Teje

T
j ]TFT

j Fjb

=
1

1− ωt(jj)
[eTj − ωt(jj)eTj + ωt(jj)eTj ]TFT

j Fjb

=
1

1− ωt(jj)
eTj TFT

j Fjb .

Step 4: Finally, notice that

b(j) − [Axλ,j]
(j) = eTj b− [Axλ,j]

(j) ,

and recall that

FT
j Fj = I− ωeje

T
j .

Then with some algebra, we get

b(j) − [Axλ,j]
(j) = eTj D̂[I−T]b , (A-8)
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where

D̂ = diag

(
1

1− ωt(jj)

)
.

In conclusion,

Vω(λ) =
1

m

m∑
j=1

(b(j) − [Axλ,j]
(j))2

=
1

m
||D̂(λ)(I−T(λ))b||22 . (A-9)

Thus, we have obtained our result. ut
Now, extension from weighted-cross-validation to the weighted-GCV func-

tion is analogous to the generalization process from cross-validation to GCV

provided in [53].

A.2 Choosing ω in W-GCV

This section provides more details about how we select ω in the weighted-

GCV approach described in Section 2.4. In particular, recall from Section

2.4.4 that we find ω by minimizing the GCV function with respect to λ. That

is,
∂

∂λ
[G(ω, λ)]

∣∣∣∣
λ=λk,opt

= 0.

Although in HyBR ω is used to help select regularization parameters for

the projected bidiagonal system (2.12), here we derive the selection of ω

for the generic weighted-GCV function found in equation (2.17). That is,

we use the GCV function that depends on A and b, and for convenience

introduce H and L notation to represent the numerator and square root of

the denominator of the GCV function respectively. Let b̂i = uTi b, where ui

is the ith left singular vector of A, then the weighted-GCV function can be
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written as

G(ω, λ) =

n

 n∑
i=1

(
λ2b̂i

σ2
i + λ2

)2

+
m∑

i=n+1

b̂2
i


(

n∑
i=1

(1− ω)σ2
i + λ2

σ2
i + λ2

i

+m− n

)2 ≡
H

L2
. (A-10)

We would like to take the derivative of G(ω, λ) with respect to λ, so by the

quotient rule, we obtain

∂G(ω, λ)

∂λ
=
L2∂H −H∂(L2)

L4
.

Notice that

∂H

∂λ
= n

n∑
i=1

∂

∂λ

( λ2b̂i
σ2
i + λ2

)2


= n
n∑
i=1

(
2

(
λ2b̂i

σ2
i + λ2

)(
(σ2

i + λ2)2λb̂i − λ2b̂i(2λ)

(σ2
i + λ2)2

))

= 4n
n∑
i=1

σ2
i λ

3b̂2
i

(σ2
i + λ2)3

and

∂L2

∂λ
= 2L

∂L

∂λ

= 4λ

(
n∑
i=1

(1− ω)σ2
i + λ2

σ2
i + λ2

i

+m− n

)[
n∑
i=1

ωσ2
i

(σ2
i + λ2)2

]

= 4λ(L)

[
n∑
i=1

ωσ2
i

(σ2
i + λ2)2

]
.

Thus, the derivative for the GCV function with respect to λ can be written

as in equation (A-11). Now to find ω, we set the numerator of (A-11) to 0 (see

equation (A-12)) and obtain an explicit formula for ω provided in equation

(A-13).
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∂
G

(ω
,λ

)
∂
λ

=

4n
λ

 ( n ∑ i=
1

(1
−
ω
)σ

2 i
+
λ

2

σ
2 i
+
λ

2
+
m
−
n

)(
n ∑ i=

1

σ
2 i
λ

2
b̂2 i

(σ
2 i
+
λ

2
)3

) −
ω

 n ∑ i=
1

( λ
2
b̂ i

σ
2 i
+
λ

2

) 2 +
m ∑

i=
n

+
1

b̂2 i

 n ∑ i=
1

σ
2 i

(σ
2 i
+
λ

2
)2

 
( n ∑ i=

1

(1
−
ω
)σ

2 i
+
λ

2

σ
2 i
+
λ

2 i

+
m
−
n

) 3
(A

-1
1)

( n ∑ i=
1

(1
−
ω
)σ

2 i
+
λ

2

σ
2 i
+
λ

2
+
m
−
n

)(
n ∑ i=

1

σ
2 i
λ

2
b̂2 i

(σ
2 i
+
λ

2
)3

) −
ω

 n ∑ i=
1

( λ
2
b̂ i

σ
2 i
+
λ

2

) 2 +
m ∑

i=
n

+
1

b̂2 i

 n ∑ i=
1

σ
2 i

(σ
2 i
+
λ

2
)2

=
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(A
-1

2)

ω
=

m

n ∑ i=
1

σ
2 i
λ

2
b̂2 i

(σ
2 i
+
λ

2
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 n ∑ i=
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σ
2 i

σ
2 i
+
λ

2
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σ
2 i
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2
b̂2 i

(σ
2 i
+
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σ
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A.3 Convexity for Tomosynthesis

In Section 2.4.2 we remarked that the polyenergetic cost function is convex

with respect to the glandular fractions, under the following two conditions:

1. A is full rank, and

2. b(i) − (b̄(i) + ε̄(i)) ≤
min
e
s(e)

max
e
s(e)

(
b(i)

b̄(i) + ε̄(i)

)
b̄(i) for all i.

In this section we derive these conditions.

Recall that the Hessian matrix has the following form: H = ATWA, where

A is the ray trace matrix and W is a diagonal matrix with entries w(i) on

the diagonal. We would like to show that the Hessian matrix is positive

definite or positive semi-definite under the above assumptions. If we assume

matrix A is full rank, we would like to determine the conditions under which

w(i) ≥ 0 for all i. That is, our goal is to prove the following:(
1− b(i)

b̄(i) + ε̄(i)

) ne∑
e=1

%(e)s(e)2exp

(
−

[
s(e)

N∑
j=1

a(ij)x(j) + z(e)
N∑
j=1

a(ij)

])
+

b(i)

(b̄(i) + ε̄(i))2

[
ne∑
e=1

%(e)s(e)exp

(
−

[
s(e)

N∑
j=1

a(ij)x(j) + z(e)
N∑
j=1

a(ij)

])]2

≥ 0 .

(A-14)

Assuming b̄(i) + ε̄(i) ≥ 0, then (A-14) is equivalent to the following:(
b̄(i) + ε̄(i) − b(i)

) ne∑
e=1

%(e)s(e)2exp

(
−

[
s(e)

N∑
j=1

a(ij)x(j) + z(e)
N∑
j=1

a(ij)

])
+

b(i)

(b̄(i) + ε̄(i))

[
ne∑
e=1

%(e)s(e)exp

(
−

[
s(e)

N∑
j=1

a(ij)x(j) + z(e)
N∑
j=1

a(ij)

])]2

≥ 0 .

(A-15)
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We begin by mentioning that due to the physical interpretation of these

formulas, the two sums (over e) are positive. This follows since the exponen-

tial function is positive, the linear fit coefficients s(e) for all e are positive,

and values %(e) for all e, which represent the incident x-rays at different en-

ergy levels, are positive. Furthermore, the observed datum b(i) and projected

datum b̄(i) + ε̄(i) are positive values.

Now we consider the following two cases.

1. Assume 0 < b(i) ≤ b̄(i)+ε̄(i), then b̄(i)+ε̄(i)−b(i) ≥ 0. Since b(i)

(b̄(i)+ε̄(i))
> 0,

(A-15) is satisfied and we are done.

2. Assume 0 < b̄(i) + ε̄(i) < b(i). This is a more complicated situation, and

first we need the following lemma.

Lemma A.3 Assume 0 < b̄(i) + ε̄(i) < b(i), and assume

b(i) − (b̄(i) + ε̄(i)) ≤ mine s(e)

maxe s(e)

(
b(i)

b̄(i) + ε̄(i)

)
b̄(i) for all i. (A-16)

Then we have the following relationship:

b(i)

(b̄(i) + ε̄(i))

[
ne∑
e=1

%(e)s(e)exp

(
−

[
s(e)

N∑
j=1

a(ij)x(j) + z(e)
N∑
j=1

a(ij)

])]2

≥

(
b(i) − (b̄(i) + ε̄(i))

) ne∑
e=1

%(e)s(e)2exp

(
−

[
s(e)

N∑
j=1

a(ij)x(j) + z(e)
N∑
j=1

a(ij)

])
.

(A-17)

Proof. By assumption, 0 < b̄(i) + ε̄(i) < b(i), so 0 < b̄(i)+ε̄(i)

b(i)
< 1. Thus,

condition (A-16) is equivalent to

b̄(i) + ε̄(i)

b(i)

(
b(i) − (b̄(i) + ε̄(i))

)
≤ mine s(e)

maxe s(e)
b̄(i). (A-18)
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Also notice that the following two inequalities hold:

ne∑
e=1

%(e)s(e)2exp

(
−

[
s(e)

N∑
j=1

a(ij)x(j) + z(e)
N∑
j=1

a(ij)

])
≤

max
e
s(e)

ne∑
e=1

%(e)s(e)exp

(
−

[
s(e)

N∑
j=1

a(ij)x(j) + z(e)
N∑
j=1

a(ij)

])
, (A-19)

and

ne∑
e=1

%(e)s(e)exp

(
−

[
s(e)

N∑
j=1

a(ij)x(j) + z(e)
N∑
j=1

a(ij)

])
≥

min
e
s(e)

ne∑
e=1

%(e)exp

(
−

[
s(e)

N∑
j=1

a(ij)x(j) + z(e)
N∑
j=1

a(ij)

])
=

min
e
s(e) b̄(i) , (A-20)

where the last equality is by definition of b̄(i).

Then consider the following term:[
ne∑
e=1

%(e)s(e)exp

(
−

[
s(e)

N∑
j=1

a(ij)x(j) + z(e)
N∑
j=1

a(ij)

])]2

ne∑
e=1

%(e)s(e)2exp

(
−

[
s(e)

N∑
j=1

a(ij)x(j) + z(e)
N∑
j=1

a(ij)

]) ≥

[
ne∑
e=1

%(e)s(e)exp

(
−

[
s(e)

N∑
j=1

a(ij)x(j) + z(e)
N∑
j=1

a(ij)

])]2

max
e
s(e)

ne∑
e=1

%(e)s(e)exp

(
−

[
s(e)

N∑
j=1

a(ij)x(j) + z(e)
N∑
j=1

a(ij)

]) ≥
min
e
s(e)

max
e
s(e)

b̄(i) , (A-21)

where the first inequality uses equation (A-19) and the second uses equation

(A-20). Thus, combining equations (A-18) and (A-21), we get
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[
ne∑
e=1

%(e)s(e)exp

(
−

[
s(e)

N∑
j=1

a(ij)x(j) + z(e)
N∑
j=1

a(ij)

])]2

ne∑
e=1

%(e)s(e)2exp

(
−

[
s(e)

N∑
j=1

a(ij)x(j) + z(e)
N∑
j=1

a(ij)

]) ≥

b̄(i) + ε̄(i)

b(i)

(
b(i) − (b̄(i) + ε̄(i))

)
,

which is equivalent to (A-17). ut
In conclusion, with this lemma, (A-15) follows easily. That is,

(
b̄(i) + ε̄(i) − b(i)

) ne∑
e=1

%(e)s(e)2exp

(
−

[
s(e)

N∑
j=1

a(ij)x(j) + z(e)
N∑
j=1

a(ij)

])
+

b(i)

(b̄(i) + ε̄(i))

[
ne∑
e=1

%(e)s(e)exp

(
−

[
s(e)

N∑
j=1

a(ij)x(j) + z(e)
N∑
j=1

a(ij)

])]2

≥

(
b̄(i) + ε̄(i) − b(i)

) ne∑
e=1

%(e)s(e)2exp

(
−

[
s(e)

N∑
j=1

a(ij)x(j) + z(e)
N∑
j=1

a(ij)

])
+

(
b(i) − (b̄(i) + ε̄(i))

) ne∑
e=1

%(e)s(e)2exp

(
−

[
s(e)

N∑
j=1

a(ij)x(j) + z(e)
N∑
j=1

a(ij)

])
= 0 .
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bidiagonalization and revealing the size of the noise in a data. Available



155

online at http://www.cs.cas.cz/strakos/download/2008 HnPlSt.pdf,

Preprint 2008.

[74] E. Y. T. Ho and A. E. Todd-Pokropek. Blob-based super-resolution

reconstruction using iterative Lanczos-hybrid regularization. IEEE Nu-

clear Science Symposium Conference Record, 4:2754–2759, 2007.

[75] M. Hohn, G. Tang, G. Goodyear, P. R. Baldwin, Z. Huang, P. A.

Penczek, C. Yang, R. M. Glaeser, P. D. Adams, and S. J. Ludtke.

SPARX, a new environment for Cryo-EM image processing. J. Struc-

tural Biology, 157:47–55, 2007.

[76] S. M. Jefferies, K. J. Schulze, C. L. Matson, K. Stoltenberg, and E. K.

Hege. Blind deconvolution in optical diffusion tomography. Optics

Express, 10:46–53, 2002.
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