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Abstract 

 

The Evolutionary Theory of Behavior Dynamics:  

Complexity, Darwinism, and the Emergence of High-Level Phenotypes 

 

 

By Andrei Popa 

 

 

McDowell (2004) instantiated low-level Darwinian processes in a computational theory of 

behavior dynamics. The theory causes a population of behaviors to evolve through time under the 

selection pressure of the environment. It has been tested under a variety of conditions and the 

emergent outcomes were repeatedly shown to be qualitatively and quantitatively indistinguishable 

from those displayed by live organisms (McDowell, in press). As empirical evidence accumulates 

and our understanding of the theory matures, the analogy between biological and behavioral 

evolution becomes more compelling. Expanding the exploration of this analogy becomes both 

necessary and fascinating. The main purpose of this project was to explore the effects of mutation 

and the environment's value and conduciveness on various dimensions of behavioral variability, 

in continuous choice environments. Secondly, qualitative predictions made by the Evolutionary  

Theory about the effects of changeover delays (COD) on behavior variability were verified 

against the behavior of college students in equivalent environments. The continuous choice 

behavior of college students was correctly predicted on eight out of eight behavioral dimensions. 

Thirdly, low-level characteristics of students' continuous choice behavior were compared with 

traditional measures of impulsivity and sustained attention, in an effort to investigate the potential 

equivalence between mutation and a property of the nervous system that produces impulsivity-like 

symptoms. The results were inconclusive, likely due to a lack of extreme impulsivity scores in the 

human sample. The findings presented in this paper provided significant additional evidence for 

the selectionist account as a valid mechanism of behavior change. In addition, the knowledge 

generated by the Evolutionary Theory provided important insights about clinically-relevant 

phenomena, such as disordered variability (or impulsivity) and raise the possibility of using the 

theory as a platform for simulating the emergence of specific high-level phenotypes. These 

implications appear even more fascinating considering that a connection with mental health was 

not explicitly sought, nor can it be traced to the inner-workings of the theory. This challenges our 

current understanding of mental illness and provides a new way of thinking about the evolution of 

behavioral repertoires and their emergent high-level characteristics.  
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The Evolutionary Theory of Behavior Dynamics: 

Complexity, Darwinism, and the Emergence of High-Level Phenotypes 

 Live organisms are in continuous interaction with the world that surrounds them. These 

interactions, in time, give rise to rich behavioral repertoires, dynamical constellations that affect 

and are affected by the outside world. The mechanisms that govern the continuous interaction 

between behavioral repertoires and their environmental consequences are not well understood 

(Dragoi & Staddon, 1999; McDowell, in press). Several types of explanations have been 

proposed, but, so far, none has met with overwhelming success. Although different in many 

respects, all existing theories share a common feature: behavioral repertoires are assumed to be 

governed by a central entity and subordinated to the fulfillment of apriori theoretical 

prescriptions (e.g. maximization). The Evolutionary Theory of Behavior Dynamics (McDowell, 

2004), which constitutes the focus of this project, proposes a different type of explanation. It 

assumes that the order we observe in behavioral repertoires is not the product of a guiding 

process. Instead, the theory proposes, the structured high-level outcomes that we observe emerge 

naturally from the reiteration of low-level Darwinian processes of selection, recombination, and 

mutation. Therefore, behavioral repertoires are not, according to this framework, pulled towards 

goals, but rather pushed through time by selectionist forces, towards no specific end-state or goal. 

The high-level phenotypes are literally created moment by moment by the processes that govern 

the interaction between the organism and the world in which it is immersed (McDowell, 20110, 

in press).  

 The experiments discussed in this paper, although grouped under three specific aims, 

were motivated by an overarching question about the behavior of organisms: are behavioral 

repertoires, at a basic level, complex systems pushed through time by selectionist forces? The 

three specific aims of this thesis were 1) to expand the knowledge about the Evolutionary Theory 

by learning about the functional role of various computational variables (e.g. mutation) on the 

emergent outcomes, 2) to explore the theory's potential of predicting the behavior of live 
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organisms, and 3) to explore the relation between traditional measures of impulsivity and various 

low-level characteristics of continuous choice behavior in human participants. The rationale and 

significance of these three specific aimswill be discussedin detail at the end of the introductory 

section.Before doing so it is important to clarify the theoretical context of this research, which 

constitutes the focus of the next subsections.  

 Adaptive behavior 

 The object of study of behavior analysis is adaptive behavior, defined as behavioral 

patterns that, at least occasionally, result in positive outcomes. The outcomes can be separated 

into two categories: resource acquisition (e.g. food, access to water, social praise, attention from 

peers, etc.) or threat escape or avoidance (e.g. escape predators, avoid reprimands, avoidbeing 

grounded, lessen psychological tension, etc.). Behaviors that result in resource acquisition are 

called positively reinforced because something is added. Behaviors that result in avoidance or 

escape of threat are called negatively reinforced, because something is removed (escape) or 

prevented from occurring in the first place (avoidance). Whenever the environment permits it 

escape turns into avoidance. The overarching purpose of the discipline is to uncover the general 

principles that govern the relations between adaptive behavior and its consequences (Pierce & 

Cheney, 2004).  

 An example of a general relation between behaviors and positive outcomes is the 

mathematical statement known as the Matching Law. Discovered by Richard Herrnstein 

(Equation 1; 1961) and further developed by William Baum (1974; Equation 2 and its logarithmic 

form, Equation 3) and others, it expresses ratios of adaptive behaviors as a function of ratios of 

resource acquisition. It states that when free to choose between simultaneously available 

alternatives (continuous choice behavior) organisms tend to distribute their responses (or time) 

among alternatives in the same proportion in which resources are delivered by the alternatives.  
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Eq.2 

log  
B1

B2
  =  𝑎 log  

r1

r2
  +  log 𝑏 Eq.3 

Equation 2, known as the power function matching equation, has two free parameters, b and a. 

The first parameter (b) captures the organism’s bias(or preference) for one alternative or the 

other, preference due to other factors then the rates of resource acquisition. Usually, fluctuations 

in bias were caused by a difference in the subjective values of the alternatives (e.g. reward 

quality, etc.; Myers & Myers, 1977; Baum, 1979; Davison & McCarthy, 1988). In symmetrical-

choice environments the bias parameter varies around unity (b ≈ 1). The second parameter, the 

exponent of Equation 2, (a; the slope of the line described by Equation 3), is sometimes referred 

to as sensitivity to reinforcement (Baum, 1974). When the exponent equals unity (a = 1) the rates 

of responding perfectly match the rates of reinforcement. This outcome is called perfect matching 

and it means that the organism’s behavioris perfectly controlled by its consequences. Note then 

when b = a = 1 Equation 2 is reduced to Equation 1. The outcome described by an exponent 

larger than unity (a> 1) is called overmatching. This deviation means that the organism tends to 

place more responses on the richer alternative, than otherwise predicted by perfect matching. 

When the exponent is smaller than unity (a< 1) the outcome is called undermatching. This means 

that the organismtends to place fewer responses on the richer alternative, than otherwise predicted 

by perfect matching. As the exponent decreases, the level of undermatching becomes more 

severe, up to the point of complete indifference (a = 0): the organism allocatesits behaviors at 

random, "oblivious" to environmental consequences (Davison & McCarthy, 1988;McDowell, 

1988).  
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 A plethora of research showed that Equation 2 is an excellent descriptor of steady-state 

choice-behavior (or behavior at equilibrium). It usually accounts for more than 90% of the 

variance and leaves random residuals. Moreover, the exponent (a) was usually found to vary 

around 0.8, which means that the organism's behavior is controlled by consequences, but not 

perfectly, the organism showing a slight tendency towards indifference (slight undermatching). 

Five decades of thorough experimentation showed that the power function matching equation 

accurately describes the relation between response and reinforcement ratios, across species and 

settings, from pigeons pressing levers to naturally occurring human behavior (Baum, 1974, 1979; 

Wearden & Burgess, 1982; Davison & McCarthy, 1988;McDowell, 1988; Dallery, Soto, & 

McDowell, 2005; McDowell, Caron, Kulubekova, & Berg, 2008; McDowell & Caron, 2010; see 

McDowell, 2012, for an in-depth discussion). 

 Behavior dynamics 

 The Power Function Matching Equation (Equation 2) is an excellent account of behavior 

statics, or behavior at equilibrium. Like any other descriptor, this mathematical statement 

provides valuable information about ―how things are‖, but remains silent about "how things came 

to be the way they are". Several accounts of behavior dynamics have been proposed over the 

years. Although different in form and underlying theory, they typically consist of a statement of a 

dynamic theory, from which a descriptive outcome is obtained. The melioration 

account(Vaughan, 1981; Herrnstein, 1982) and the maximization account (Baum, 1981; Rachlin 

et al., 1981) are two prominent examples of dynamic theories. A maximization account may 

assume that an organism tends to maximize the utility (value) of its behaviors; thus, a certain 

utility function may be proposed, namely, a function that expresses behavior’s value in terms of 

independent variables, like benefit and cost. Using this utility function a researcher may predict 

what the final outcome will be, assuming the organism’s tendency to maximize value. Most 

dynamic accounts assume an end-state (e.g. maximum value) and use analytical mathematical 

models to predict it. An in-depth discussion about various accounts and their present status goes 
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beyond the purpose of this paper. A preliminary discussion about various categories and 

implementations, as well as the major obstacles in comparing their performance (e.g. lack of 

agreed-upon evaluative criteria), was recently provided by McDowell (in press). So far, no 

account has received wide acceptance and very few (if any) have been unequivocally falsified.  

 One theory that received considerable support in the past ten years is the Evolutionary 

Theory of Behavior Dynamics (McDowell, 2004), a theory that proposes a very different type of 

explanation for the dynamics of behavior.The next section will describe the theoretical 

framework to which this theory belongs, after which the theory will be described in detail.  

 Complexity, emergence, and evolution 

 The notion of "complexity" is usually encountered in twoidioms: complexity science and 

complex systems. Complexity science is the discipline that focuses on the study of complex 

systems. The crucial characteristic that differentiates complex systems from other systems is 

emergence(Holland, 1988). Emergence is understood as a process that, over time, gives rise to 

structures (e.g. behaviors, features) that are caused by the low-level processes that govern the 

system, but are not directly explained by these processes (Holland, 1988, 2000). A common 

example is the behavior of a school of fish. For an outside observer the group behaves as a 

coherent, ordered structure, as if it were guided by a central entity, in the same way in which the 

overall behavior of an army is guided by a general. An alternative explanation is that these (quite 

beautiful) high-level phenotypes emerge naturally from the individual behavior of each fish, who 

"follows" simple guidelines such as swim in the same general direction, stay close (to your fellow 

fish), but not too close (Neil deGrasse Tyson, in Liota & Fine, 2007
1
). The overall behavior of the 

group is thus produced by each fish following these simple rules, but cannot be directly explained 

by the individual behavior of its elements.  

                                                           
1
http://www.pbs.org/wgbh/nova/nature/emergence.html 
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 Although it only recently started to regain attention in social sciences, the concept of 

emergence, or spontaneous order, is neither new nor peripheral. In 1767, Adam Ferguson, one of 

the champions of Scottish Enlightenment, wrote (bold added):  

"Mankind, following in the present sense of their minds, in striving to remove 

inconveniences, or to gain apparent and contiguous advantages, arrive at ends 

which even their imagination could not anticipate; and pass on, like other 

animals, in the track of their nature, without perceiving its end. He who first said, 

"I will appropriate this field; I will leave it to my heirs;" did not perceive, that he 

was laying the foundation of civil laws and political establishments.  

[...] 

Men, in general, are sufficiently disposed to occupy themselves in forming 

projects and schemes; but he who would scheme and project for others, will find 

an opponent in every person who is disposed to scheme for himself. Like the 

winds that come we know not whence, and blow whithersoever they list, the 

forms of society are derived from an obscure and distant origin; they arise, long 

before the date of philosophy, from the instincts, not from the speculations of 

men. The crowd of mankind, are directed in their establishments and measures, 

by the circumstances in which they are placed; and seldom are turned from their 

way, to follow the plan of any single projector.Every step and every movement 

of the multitude, even in what are termed enlightened ages, are made with equal 

blindness to the future; and nations stumble upon establishments, which are 

indeed the result of human action, but not the execution of any human 

design." 

(Adam Ferguson, An Essay on the History of Civil Society, 1819/1767, page 221-223) 

 If some of the first systematic discussions on the notion of emergence (or spontaneous 

order) date back 250 years or so, the first successful complexity theory, as in a theory that 



Page 7 of 123 

 

explained a real-world system that exhibits emergence,is not much younger. Although not as 

attention-grabbing as it was in the 19
th
 century, Darwin's Theory of Evolution (Darwin, 1858) 

remains a formidable achievement. Not only it explained the emergent complexity of 

life,butprovided a new way of thinking about the relations between living organisms, the world 

that surrounds them, and time. The tremendous explanatory power of this theory was due to a 

fundamental shift in focus: from the content to be explained (e.g. human eye, the platypus, 

giraffes' necks,  etc.) to the low-level forces/mechanisms that produce the content. By following, 

perhaps without explicit intent, in the footsteps of physics, a discipline that emphasizes forces and 

treats content as incidental, Darwin's Theory of Evolution not only set the foundations of modern 

biological sciences, but provided an entirely new way of thinking about the emergence and 

trajectory of living organisms (Mayr, 2001; Dawkins, 2009). 

 Two essential mechanisms of evolution are selection and mutation. Natural selection, the 

central tenet of evolutionary thought,is the only mechanism that causes the evolution of 

adaptations (Futuyma, 2009). It is often referred to as the self-evident mechanism, a direct 

consequence of fundamental characteristics of life itself: there are always more offspring than can 

survive, they differ in their ability to survive, and the features underlying these abilities are 

heritable (Hurst, 2009). In other words, natural selection is not a theory, a hypothesis about how 

life might work, but  a consequence that follows from the fact that Organism X, reproducing 

before (or more) than Organism Y, passes its entire genetic material to the future generation, 

including any allele that may have provided some advantage for its reproductive success. If 

natural selection is the strongest mechanism, mutation is what allows evolution to occur in the 

first place, producing the raw material for genetic variation on which natural selection operates 

(Carlin, 2011; Loewe , 2008 ).In the words of Lewis Thomas, "without this characteristic of DNA 

to blunder slightly we would still be anaerobic bacteria and there would be no music" (The Lives 

of a Cell : Notes of a Biology Watcher, 1974). 
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 Ironically, what makes emergence possible, also makes emergent properties very difficult 

to study. Because error, by definition, occurs at random, the existing predictive models cannot, in 

principle, be applied to emergent features. This unexpected difficulty is not posed only by slight 

differences in the system's initial conditions, as in the case of chaotic systems, which are 

deterministic (Strogatz, 1994). It stems from the probabilistic nature of the low-level processes 

that produce the emergent properties. This renders the evolution of complex systems 

computationally irreducible (Wolfram, 2002): steps (or computations) cannot be "skipped"; in 

order to observe an outcome one must wait for each computation to be performed, for the 

outcome to be created. Bypassing computational irreducibility is impossible in practice and, at 

least for now, seems impossible in principle. The only way to examine such systems is the brute-

force computational approach: represent the problem abstractly, implement it in a computer 

program, perform all the computations, and analyze whatever outcome emerges. 

 Natural selection as general process, was proposed to govern not only the change in 

genetic makeup, but also the change that occurs in behavioral repertoires (Pringle, 1951;Catania, 

1978, 1987; Donahoe et. al., 1993; Skinner, 1981; Staddon &Simmelhag, 1971) and in cultural 

practices (Glenn, 1988, 1989; Hayek, 1952a, 1952b, 1988; Lamal, 1997; Lamal&Greenspoon, 

1991; Lloyd, 1985; Norton, 1997). 

 The Evolutionary Theory of Behavior Dynamics(McDowell, 2004) was developed to 

verify if the selectionist framework is a valid account for the dynamics of behavioral repertoires. 

It conceptualizes the behavioral repertoires of live organisms as complex systems pushed through 

time by low-level selectionist forces, towards no specific end-state or goal. The high-level 

phenotypes that we observe and analyze (e.g. ADHD-like symptoms, the Matching Law)are not 

stand-alone entities, but emergent properties, produced by the reiteration of the low-level 

processes that govern the system, but not directly reducible to them. It is an instance of 

complexity theory stated as a set of simple rules that cause selection, reproduction, and mutation 

to occur in a population of potential behaviors by means of a genetic algorithm (McDowell 
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&Popa, 2009). Behaviors in the theory are represented by integers, which constitute the 

behaviors' phenotypes; their corresponding binary representations constitute the behaviors' 

genotypes. Behaviors may be sorted into classes of adaptive (or operant) behavior, where similar 

behavioral phenotypes are represented by similar integer values. Therefore, integers are an 

abstract representation of real-world instrumental behaviors. For example, phenotype 101 

(genotype 1100101), may becomputationally equivalent toa rat’s left-paw lever press, phenotype 

105 (genotype 1101001) may becomputationally equivalent toa right-paw lever press, and a 

phenotype of 765 (genotype 1011111101) might represent rearing at the back of the cage 

(extraneous, non-target behavior).  

 Although the actual implementation required substantial effort, the logic of the theory is 

"simple enough to be written on a napkin" (McDowell 2012), as illustrated in Figure 1. At each 

generation, or time tick, a behavior is randomly selected and emitted from a population of 

behaviors, abstractly represented by numbers (integers and their corresponding binary 

representations). Emissions are followed by selection of parents for the next generations. If the 

emission did not result in positive outcomes, parents are selected at random. If the emitted 

behavior resulted in a positive outcome, parents are selected based on their fitness: behaviors that 

are closer to the previously reinforced behavior have a higher chance of becoming parents. 

Regardless of how parents selected (at random or based on their fitness) they recombine in the 

same way, each parent having equal chances of contributing to the child's genotype. The 

population of children is affected by mutation: a small number of children behaviors are selected 

at random and one of the bits in their genotypes, also selected at random, is "flipped" from zero to 

one or one to zero. From this new, mutated population, a behavior is emitted at random and 

another cycle begins.The continuous application of Darwinian rules of selection, recombination, 

and mutation, in time, gives rise to ordered behavioral patterns that can be analyzed and 

compared to live data.  
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 Extensive experimentation has shown that the Evolutionary Theory produces behavior 

that is qualitatively andquantitatively indistinguishable from that observed in live organisms. 

Steady-state behavior is well described by Herrnstein's hyperbola (McDowell, 2004), the power 

function matching equation (McDowell & Caron, 2007; McDowell Caron, Kulubekova, & Berg, 

2008; McDowell & Popa, 2010), and the bivariate matching equation (McDowell, Popa, & 

Calvin, 2012). Remarkable agreement with live data was also found when examining the pattern 

of switching between alternatives (McDowell & Popa, 2010; Popa & McDowell, 2010), the 

distribution of  inter-response times (IRTs; Kulubekova& McDowell, 2008), and specific 

characteristics of preference in rapidly changing environments (Kulubekova& McDowell, in 

press). Most importantly, these outcomes are not goals embedded in the theory, they cannot be 

traced to any of the rules that push the population of behaviors though time. These findings 

suggested that both molar (e.g. undermatching) and molecular behavioral features (e.g. inter-

response time distributions) are emergent properties of the reiteration of the low-level Darwinian 

processes (for a comprehensive review see McDowell, in press).  

 The present project: motivation and specific aims 

 The focus of the present project wasthe low-level Darwinian process of mutation. 

Mutation is an essential process for biological evolution, providing the genetic variation on which 

selection operates (Loewe, 2008; Carlin, 2011). When investigating the parallel between 

biological evolution and behavioral evolution it becomes obvious that mutation deserves special 

attention. In regard to behavior, mutation essentially refers to a process that generates behavioral 

variability, a phenomenon that received a lot of attention, for two main reasons. First, it is 

essential for the evolution/development of behavioral repertoires. This point is self-evident: 

without some random variability an organism would be incapable to adjust to novelty (Staddon 

&Simmelhag, 1971; Futuyma, 2009; Mayr, 2001). Interestingly, mutation was shown to be 

essential for the evolution of virtual behavioral repertoires, McDowell (2010) showing that 

without mutation, behavioralrepertoires become stuck in one of the target classes.Second, 
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behavior variability was shown to be a behavioral characteristic with potential adaptive value. For 

example, extensive research has shown that behavioral variability increases when the 

environments' valuedecreases (Antonitis, 1951; Eckerman&Lanson, 1969; Neuringer, 2002, 

2009; Neuringer & Jensen, 2012; Stokes, 1995). It is important to note that behavior variability is 

not adaptive in itself, but by its consequences: increasedvariability results in a higher frequency 

of spontaneous behaviors,which have exploratory potential. Many of these behaviors may be 

unsuccessful (much like most biological mutations do not trigger major consequences). However, 

the increased variability may at least occasionally result in the discovery of new resources or in 

the emergenceof novel behaviors that may acquire existing resources that were previously out of 

reach. Previous studies indicated that decreasing the rate or magnitude of the reinforcement had 

similar effects on the behavior of the virtual organism. For example, McDowell & Popa (2010) 

showed that lower reinforcement rates produced lower exponent values (or sensitivity, a), an 

indicator of low environmental control on behavior. The decrease in exponent's values were 

accompanied by increased rates of switching between alternatives, effects well documented in the 

live organisms literature (Davison & McCarthy, 1988; McDowell, 2012). 

 If high behavioral variability may be a natural, adaptive reaction to low-value 

environments, it was suggested that too much behavior variability may have detrimental effects 

(Neuringer, 2009). The ADHD literature abounds in studies that show that the behavior of ADHD 

children is characterized by higher levels of behavior variability than that of controls (Castellanos 

et al., 2005; Rubia et al., 2007). It is worth noting however that there areno criteria for how much 

variability is too much.  

 McDowell & Popa (2010) suggested that mutation, one of the processes that animates the 

virtual organism, may becomputationally equivalent toa fixed property of the nervous system 

that, under certain environmental circumstances, induces impulsivity-like symptoms in live 

organisms. They showed that a higher rate of mutation produced steady-state choice-behavior 

characterized by lower sensitivity to reinforcement (lower exponents, a) and high frequency of 
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switching between alternatives. Theyalso showed that arranging stronger reinforcers improved 

the behavior of virtual organisms characterized by high mutation rates. Preliminary studies (Popa 

& McDowell, 2011) showed that arranging richer environments had similar effects, producing 

higher exponents and lower frequencies of switching between alternatives. These results were 

congruent with findings from the ADHD literature whichsuggest that (1) the choice-behavior of 

ADHD diagnosed children is characterized by lower sensitivity to reinforcement (Barkley, 

1997;Kollins et. al., 1997; Taylor et. al., 2010) and (2) that ADHD symptoms can be ameliorated 

by increasing the rate and magnitude of the reinforcement (Barkely, 2013; Pfiffner et. al, 1985; 

Pfiffner, 1996).  

 Changeover Delay in live (COD) and virtual (HDCOD) organisms 

 In addition to reward rate and magnitude, Taylor et. al. (2010) showed that arranging a 

changeover delay (COD; Findley, 1958) may increase the sensitivity to reward of ADHD children 

in continuous-choice settings. A changeover delay (COD) is an environmental variable that was 

introduced in concurrent-schedule procedures in order to prevent rapid switching between 

alternatives. It can be implemented in a variety of ways; the most common is to implement a 

"blackout" period immediately after a switch (or changeover) occurs. During this period, called 

the changeover delay (COD), even if a reinforcer is available, it is withheld until the delay 

elapses. Ifthe organism switches back it initiates another delay, and so on. When a COD is in 

effect rapid switching is costly for the organism, therefore the presence of a COD reinforces 

responding in bouts and discourages sporadic, hit-and-run responses. Among its most common 

effects are increased sensitivity to reinforcement (a), longer bouts of responding, and decreased 

frequency of switching (Shull &Pliskoff, 1967; Baum, 1974, 1979; Davison & McCarthy, 1988; 

Temple et. al., 1995). The name Changeover Delay technically refers to the time delays 

(measured in seconds) arranged by the experimenter. However, the term is used more broadly to 

refer to any environmental manipulation that makes rapid switching costly. For example, similar 

effects were obtained when increasing the physical distance between two levers (Davison 



Page 13 of 123 

 

&McCarthy, 1988). Increased travel distance between alternatives caused the organism to switch 

less often, thus spending more time engaged in continuous responding
2
. 

 Popa & McDowell (2010)showed that a specific feature of the binary strings(that 

abstractly represent the behaviors' genotypes), called Hamming Distance (HD; Hamming, 1950) 

affected the behavior of the virtual organism in similar ways in which a changeover delay affects 

the behavior of live organisms. This feature will be referred throughout this manuscript as 

"Hamming Distance changeover delay" and will be denoted with HDCOD. The way it is computed 

will be explained in detail in the next section. The effects of changeover delays on behavior 

variability were not extensively studied in the live-organism literature. Considering its behavioral 

effects, if the rate and magnitude of reinforcement are measures of the environment's value, then 

the changeover delay could be conceptualized as a measure of the environment's conduciveness, 

with low values facilitating rapid switching and high values discouraging rapid switches. 

 Given the important status of mutation in biological evolution, and its effects on the 

behavior of the virtual organism animated by the evolutionary theory (e.g. extinction at low rates, 

erratic behavior at high rates), its systematic study becomes a necessity for a better understanding 

of the Evolutionary Theory and of the analogy between biological and behavioral evolution. 

Furthermore, understanding the dynamic interplay between organismic (mutation) and 

environmental factors (value, conduciveness) may provide important insights about the 

emergence of high-level level phenotypes. The systematic study of these relations constitutes the 

first specific aim and the core of this project. In addition to learning about the theory, the present 

project took the first steps in verifying predictions made by the theory in experiments with live 

organisms (specific aims 2 and 3). The three specific aims are discussed below; Figure 2 may be 

helpful in clarifying the connections between them.  

 

                                                           
2
 The author used this principle to prevent impulsive email checking and internet surfing during writing 

periods by unplugging the modem. The time required to restart the modem served as a changeover delay 
and resulted in less switching between alternatives and longer bouts of writing behavior. 
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 Specific Aim 1 

 The first specific aim was to learn about the effects of reward rate, reward magnitude, 

and computational changeover delay on the behavioral variability of virtual organisms 

characterized by different mutation rates.Previous studies (McDowell & Popa, 2010) indicated 

that 1) high mutation rates produced behavioral characteristics similar to somethat were 

traditionally reported in ADHD studies (e.g. low sensitivity) and 2) more frequent and stronger 

rewards tended to prevent the emergence of these undesirable outcomes, at least to a certain 

extent, a practice recommended by most behavior management guides of ADHD (Barkely, 1995, 

2013; Pfiffner et. al, 1985; Pfiffner, 1996). In addition, recent findings suggested that a 

changeover delay (COD; Findley, 1958) may successfully improve the sensitivity to 

reinforcement of ADHD children in continuous choice procedures (Taylor et. al., 2010). This 

provided an interesting opportunity to further investigate the computational equivalence between 

Hamming Distances arrangements and real-world changeover delays (COD).The present project 

expanded the number of dependent variables investigated beyond the ones usually examined in 

studies of continuous-choice performance (e.g. exponent values, bias parameters, changeover 

frequency). In addition, the range of reward rates, magnitudes, and mutation rates was 

significantly increased to better sample the parameter space; various Hamming Distance 

arrangements (HDCOD; discussed in detail in the next section) were also added to the experimental 

design.  

 Specific Aim 2 

 The second specific aim was to explore the theory's potential of predicting the 

performance of college students in continuous-choice settings.The concurrent-schedule procedure 

provided a suitable common ground for comparing the behavior of virtual and live organisms. 

This phase of the project constituted a necessary step in exploring the equivalence between 

mutation and impulsivity, as apparent from Figure 2. During this phase college students 

responded in continuous choice environments very similar to those arranged by the Evolutionary 
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Theory. Their behavioral characteristics were compared to those of virtual organisms. This phase 

was heavily exploratory and it wasintended to 1) provide initial information about the theory's 

potential of predicting human behavior and 2) to test the concurrent schedules procedure and 

assess its suitability for future research.  

 Specific Aim 3 

 The third specific aim was to explore the relation between mutation and impulsivity. The 

behavioral characteristics of students' continuous choice behavior were compared with traditional 

measures of impulsivity and inattention. The purpose was to verify whetherthe concurrent-

schedule procedure itself canprovide information about potential low-level behavioral markers 

specific to highly impulsive participants. Such findings would allow comparisons between the 

continuous-choice characteristics of highly impulsive students to those of virtual organisms 

characterized by high mutation rates. 

 Taken together, these three phases provided a plethora of information about the inner-

workings of the evolutionary theory, knowledge of special relevance to its intended, overarching 

purpose: to verify whetherbehavioral repertoires, at a basic level, are complex systems pushed 

through time by selectionist forces. In addition, this project took the first steps in exploring the 

possibility of translating this knowledge into the real-world. One higher, long-term goal of 

successfully translating such knowledge is to eventually gain insight about clinically-relevant 

phenotypes (e.g. pathologic impulsivity). The experiments and analyses entailed by this project 

were divided into three phases, each focused on one specific aim. Due to the large volume of 

information, the three experimental phases (method, results, discussion) will be addressed 

separately, followed by a general discussion.  

Phase 1: Effects of environment'svalue and conduciveness on the continuous choice 

behaviorof virtual organisms characterized by various mutation rates. 

Method 



Page 16 of 123 

 

 Subjects.Subjectswere virtual organisms with repertoires of 100 behaviors. Their 

phenotypes ranged between 0 and 4,095. Their corresponding genotypes were padded with 

zeroes, where necessary, so that all genotypes had 12-character bit strings. The phenotype range 

was wrapped around itself in a circle, such that the absolute distance between 0 and 4,095 was 

equal to that between 0 and 1. At each generation (or time tick) one behavior was randomly 

emitted. Therefore, each behavior in the population, throughout an experimental session, had an 

equal chance of being emitted. For each pair of concurrent schedules the subjects began as naive, 

the initial population being selected at random from the 0 - 4,095 range. 

 Apparatus and materials.Experiments were run on commercially available, of-the-shelf 

desktops and notebooks. The program that instantiated the virtual organism and its virtual 

environment were developed in VB 2010, part of the Microsoft Visual Studio 2010 Integrated 

Development Environment, by McDowell and Calvin (McDowell, Popa, and Calvin, 2012). Data 

were stored in standard databases and analyzed using Microsoft Office Excel (except for the IRT 

and IBT measures). 

 Procedure.All organisms were allowed to evolve in symmetrical, continuous choice 

environments, with two target classes delivering reinforcement at random time intervals 

(concurrent RI RI schedules). Each target class encompassed 41 behaviors. The rest of 4,014 

behaviors (4,096 - 82), representing almost 98% of all potentialphenotypes, were extraneous 

behaviors: they were never reinforced and can be conceptualized as "everything else" a live 

organism may do in an experimental chamber other than the target responses (e.g. pressing 

levers). 

 Figure 1provides an overview of the theory's functionality. At each moment in time, that 

is, for eachgeneration, a behavior was selected at random from the existing population. This 

constituted an emission. Although emissions are completely random, the structure of the 

population may be composed of very fit behaviors, which means that the probabilities of emitting 

a behavior from one of the target classes are not equal; furthermore, these probabilities change 
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from generation to generation, depending on the consequences of previous emissions. Emissions, 

therefore, can be best described as random selections from a finite set of behaviors with an 

irregular, dynamic configuration. After an emission, the program selected parents for the new 

generation of behaviors. Parents were always selected with replacement from the existing 

population. The manner in which they were selected depended on the consequences of the last 

emission. If the previously emitted behavior was not successful (did not acquire a resource) 

parents were selected at random. If the behavior did acquire a resource, parents were selected 

based on their fitness. The fitness value of each behavior was calculated as the absolute distance 

between its own phenotype and the phenotype of the previously reinforced behavior.  Behaviors 

that were closer, in absolute distance, to the previously reinforced behavior were considered fitter 

than behaviors that were further away(on the circular phenotype range). Therefore,fitter behaviors 

were characterized by smaller fitness values.For example, if the previously reinforced behavior 

was 500, behavior 550 (fitness value = │550-500│ = 50) is considered fitter than behavior 400 

(fitness value = │550-400│ = 100).This method of calculating fitness values,based on the 

phenotype of the previously reinforced behavior (which becomes Fitness Zero) is called 

individual fitness. 

 An exponential function was then used to select parents based on their fitness. This 

function (Equation 4) expresses the probabilitydensity, p, associated with a parent beingchosen as 

a function of its fitness, x, 

p(x) = ae-ax,                                                                         Eq.4 

where, 0 <x< ∞.  The mean of this density function is 

µ =  
1

𝑎
.                                                                             Eq.5 

 This equation is referred to as the parental selection function. It depends only on its mean 

(µ; Equation 5). The value of its mean influences the strength of the selection process. Smaller 

means characterize stronger selection processes (only very fit behaviors can become parents), and 
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vice-versa: large means indicate weak selection events (low selection pressure),whichallow even 

behaviors with very low fitness (high fitness value, far away from the previously reinforced 

behavior) to become parents. The strength of the selection process was found to have similar 

effects on the performance of the virtual organisms as the magnitude of the reinforcement has on 

the performance of live organisms (McDowell, 2004; McDowell & Caron, 2007; McDowell et. 

al., 2008). Therefore, the mean of the parental selection function (µ) seems to be a computational 

equivalent of reinforcement magnitude, with smaller means (µ) being equivalent to larger 

magnitudes. Parents were selected bydrawing a fitness value at random from thedensity function 

using the procedure describedby McDowell (2004), and then searchingthe population of potential 

behaviors for abehavior with that fitness. 

 Once parents were selected, they recombined to give rise to a new, child behavior. The 

recombination method used is called bit-string recombination: every bit in the child's genotype 

had a 50% chance of coming from the corresponding slot in the father's genotype or from the 

corresponding slot in the mother's genotype.After a new population was obtained, it was affected 

by a small degree (rate) of mutation. The method used in this paper is called bit-flip by 

individual: a certain percentage of behaviors are randomly selected from the population and one 

bit in their genotype, at random, is flipped from 0 to 1 or 1 to 0. The percentage of behaviors 

affected by mutation is referred to as the mutation rate and its value is set by the experimenter in 

the beginning of the experiment; it is, therefore, a fixed property of the organism, unaffected by 

environmental factors. After the child population was affected by mutation a new behavior was 

randomly emitted and another cycle began. Selection of parents based on fitness tends to 

concentrate behaviors around the target classes. In contrast, random selection of parents and 

mutation are processes that introduce variation into the population.  

 All experiments arranged symmetrical-choice environments with11 pairsof independent, 

random-interval schedules (concurrent RI RI schedules). The average scheduled rate of 

reinforcement differed from component to component (e.g. RI 16 RI 84) but overall, the averages 
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of the 11 schedules were equal for the two alternatives. Each RI RIpairwas in effect for 20,000 

generations (or time ticks), hence an experiment lasted for 220,000 generations (20,000 x 11 RI 

RI pairs). Responses, obtained rewards, and changeovers between alternatives were summed over 

500 generation blocks, yielding 40 data points for each RI RI pair. The 40 data points were 

averaged for each pair, yielding 11 data points per experimental session.  

 Independent variables 

 There were four independent variables: Hamming Distance changeover delay, reward 

rate (or density), reward magnitude, and mutation rate. They are described below. Because the 

Hamming Distancechangeover delay (HDCOD) requires some explanation, it will be discussed 

first. 

 The Hamming Distance Changeover Delay (HDCOD) 

 Behaviors in the Evolutionary Theory are represented by integers (behaviors' phenotypes) 

and their corresponding binary strings (behaviors' genotypes). Obtaining one bit string from 

another is accomplished by "flipping" bits from 1 to 0 or 0 to 1. The number of bits that must be 

flipped in order to obtain another string of equal length is referred to as the Hamming Distance 

between the two strings (Hamming, 1950). For example, transforming 511 into 512 requires 

flipping 10 out of the 12 bits that make their genotypes (000111111111 → 001000000000); 

therefore, the Hamming Distance between 511 and 512 is ten.  

 Popa & McDowell (2010) showed that the absolute difference between the Hamming 

Distance that separates thetarget classes (HDBETWEEN) and the largest Hamming Distance found 

within a class (HDWITHIN) affected the behavior of virtual organisms in similar ways as a COD 

affects the behavior of live organisms. When this difference (HDBETWEEN - HDWITHIN) was larger 

or equal to three (3) the choice-behavior of the virtual organism was characterized by typical 

levels of undermatching (a ~0.8). When the difference decreased bellow three (3) sensitivity to 

rewarddecreased rapidly and approached very low values (a ~ 0.1), a trend accompanied by a 

large increase in the frequency of switching between alternatives. 



Page 20 of 123 

 

 Detailed mining of the same data revealed interesting underlying patterns that better 

explain the relation between Hamming Distances and the continuous-choice behavior of the 

virtual organism.In a continuous choice environment two collections of integers (phenotypes) are 

defined as target classes. In this example, the two target classes encompass behaviors 251-255 

and 256-260 respectively (five behaviors in each target class). For each behavior in a target class 

one may calculate the Hamming Distance between that behavior and all other behaviors in the 

class (Figure 3). The average of these distances represents the average number of bits that must 

be flipped in that behavior's string in order to transform it into any other behavior from the same 

target class. By calculating this average Hamming Distance for all behaviors in a target class and 

averaging these averages, one obtains a measure of the average overall Hamming Distance 

between all behaviors in the same target class. In other words, an average number of bits that 

must be flipped in order to change any behavior in that target class into any other behavior in the 

same class. This average of averages will be referred to as the average Hamming Distance 

between behaviors in the same target class;it will be denoted HDSAME.Following the same logic, 

one may compute the average overall Hamming Distance between all behaviors in one class and 

all behaviors in the other class. This overall average expresses the average number of bits that 

must be flipped in order to change any behavior from one target class into any behavior from the 

other target class. This average of averages will be referred as the average Hamming Distance 

between the behaviors fromone target class and the behaviors from the other target class;it will be 

denoted HDOTHER. 

 When the difference between HDOTHER and HDSAMEis small, it is "easy" for a behavior 

from one class to transition into the other class. The processes of mutation and recombination can 

easily give rise to a behavior that "falls" into the other class because only a few bits must be 

flipped. When the difference between HDOTHER and HDSAMEis large, it is "difficult" for a behavior 

from one class to transition into the other class; mutation and recombination are less likely to 

produce behaviors that are several bits apart from their origin. Therefore, the absolute difference 
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between HDOTHER and HDSAME can be conceptualized as a measure of the overall average 

"difficulty" to switch from one class to the other, referred to as environment's conduciveness. The 

difference between HDOTHER and HDSAME will be referred to asHamming Distance Changeover 

Delay and will be denoted with HDCOD.  

 Data reported by Popa & McDowell (2010) were re-analyzed in terms of the HDCOD; the 

results can be examined in Figure 4. For low HDCOD values,sensitivity (a) was very low (left 

panel) and the changeover frequency very high (right panel). As HDCOD increased, sensitivity 

increased slowly at first, and very sharply after HDCOD surpassed a certain interval (~[2, 3]); this 

phenomenon was accompanied by a large decrease in the frequency of switching between 

alternatives. Note that these results are almost identical, qualitatively and quantitatively, with 

those reported by Popa & McDowell (2010). The main advantage offered by this measure 

(HDCOD) is that it is a continuous variable. Also, it provides an explanatory mechanism for the 

phenomenon described initially.  

 As the figure illustrates, a certain minimum is necessary for obtaining typical levels of 

undermatching. Once above this minimum, further increases in the HDCOD hadvirtually no effect 

on behavior. However, Popa and McDowell (2011b) showed that when the mutation rate was 

increased, further increases in HDCOD do impact behavior, meliorating the detrimental effects of 

mutation. Therefore, increases in the HDCOD may not have a visible impact at typical mutation 

levels, but they may have important effects at high mutation rates.    

 Experimental design 

 Table 1 offers an overview of the experimental design. The rate of mutation was 

manipulated directly. The eight values chosen for this project were 5%, 10%, 20%, 30%, 40%, 

50%, 75%, and 100%.The Hamming Distance changeover delay (HDCOD) cannot be manipulated 

directly, because the structure of the continuum of integers cannot be modified. Therefore, in 

order to modify the relation between the average Hamming Distances in the two classes, this 

variable was manipulated indirectly, by changing the location of the target classes.The six HDCOD 
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values chosen for this project were 1.4 (extremely low), 2.3, 3.4, 4.4 (high, historical standard), 

5.4, and 6.4; they can be examined in Table 1, along with the locations that constituted the 

boundaries between classes.The overall reinforcement rate (or density) was manipulated directly. 

The smallest overall scheduled rate of reinforcement was ~3.4 rewards per 500 generations. The 

next four values were calculated so that they were 5 times, 10 times, 50 times, and 500 times 

higher than the smallest value. Therefore, the overall scheduled reinforcement rates (scheduled 

per 500 generations) were: ~3.4 (very scarce), ~17, ~34 (moderate), ~172, and ~1,723 (extremely 

rich). The middle value, 34, is very close to the one previously investigated (~28; McDowell & 

Popa, 2010); for the purpose of this project it is considered to be a standard, moderate reward 

rate. The magnitude of the reinforcement was manipulated directly by manipulating its 

computational equivalent, namely the strength of the selection process (McDowell, 2004; 

McDowell, Caron, Kulubekova, & Berg, 2008). The strength (or severity) of the selection process 

depends only on the mean of the parental selection function (µ, Equation 5), with smaller means 

indicating stronger selection events, therefore higher reinforcement magnitudes. The five values 

chosen for this project were 25 (strong selection), 50, 100 (moderate), 200, and 500 (weak 

selection, small reward magnitude). 

 Overall, the first phase entailed 8 x 6 + 8 x 4 + 8 x 5 = 112 experimental conditions. Five 

experiments were run for each condition. This yielded 560 experiments, with a total of ~120 

million generations of responding, hence 120 million reiterations of the cycle Emission → 

Selection → Recombination → Mutation (and all the computations entailed by each step). Given 

these particular experimental settings, the average duration of an experiment (220,000 

reiterations) was approximately 200 minutes. Therefore, the entire collection of experiments 

described here would require, under ideal conditions (no power outages, no down-times, etc.), 

approximately 1,200 hours (~50 days) of continuous running, at 100% processor usage. Given the 

high computational requirements, the exploratory nature of this study, and the vast amount of 
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information, Rate x Magnitude x HDCOD interactions were not investigated. Their combined 

effects constitute a priority for future studies. 

Results 

 Measures 

 Traditional descriptors of continuous-choice (behavior and reward rates, sensitivity 

bias, and proportion of variance accounted for). Behavior and reward rates on each alternative 

(B1, B2, r1, r2) were summed per 500 generation blocks. The 40 data points (20,000 generations / 

500) were averaged, resulting in overall behavior and reward rates for each alternative, per RI RI 

component. Each experiment arranged 11 RI RI pairs (or components). For each RI RI pair, the 

ratios of behaviors (B1/B2) and obtained rewards (r1/r2) were transformed to logarithms, as 

required by Equation 3. The slope of the straight line formed by these 11data points gave the 

sensitivity value (a) for that particular organism, in that particular experiment. The intercept of the 

line, log(b), was used to calculate the bias parameter (b = 10
INTERCEPT

). The correlation coefficient 

between logs of responses and rewards was squared (r
2
), providing a measure of the proportion of 

variance accounted for (pVAF) by Equation 3. In addition, a total average frequency (per 500 

generations) of target behaviors (B1 + B2) and obtained rewards (r1 + r2) was calculated for each 

organism.  

 The changeover (CO) profiles were examined by fitting a quadratic polynomial 

(Equation 6),  

𝑦 =  𝑎𝑥2  +  𝑏𝑥 +  𝑐,                                                                   Eq.6 

to the average COs per RI RI component, pooled across the five repetitions  (5 x 11 = 55 data 

points, averaged per 500 generations), where yis the average changeover (CO) frequency and x is 

the proportion of reinforcement obtained from the first alternative. As discussed by McDowell et. 

al (2008), the vertex of the fitted parabola is an estimate of the maximum CO rate for a set of 

concurrent schedules;it is given by Equation 7, 
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COMAX  = 𝑐 −
b

2

4a
.                                                                        Eq.7 

 Topographic variability (ΔPHENOTYPE).Behaviors' phenotypes are represented by 

integers. At each time tick a behavior is randomly selected from the population and it is emitted. 

This can be conceptualized as the moment-to-moment topographic variability of a live organism. 

A rat can press the lever, then go to the back of cage, then come back and press the other lever; 

or, it may "stay on task" and emit a bout of responses on one lever. Similarly, if we consider a 

class of operands between 512 - 552, the organism can "press the lever twice in a row" (e.g. 515, 

535), then "wander in the back of the cage" (e.g. 985), then "explore the immediate proximity of 

the lever" (e.g. 557). The absolute difference between two consecutive phenotypes, or 

emissions(Δ) is a measure of how "abrupt", topographically different, two successive behaviors 

are. For example, the succession 512 - 980 can be conceptualized as "pressing this lever" - "run to 

the back of the cage" or "reading from a book" - "climbing the furniture". The average of all these 

consecutive differences (ΔPHENOTYPE) provides a measure of the overall "smoothness" of 

continuous behavior. 

 Small ΔPHENOTYPE values indicate smooth  transitions between activities. For example, the 

sequence 512, 514, 516, 556, 558, 556, which yields a ΔPHENOTYPE of 50/5 = 10, can be 

conceptualized as three consecutive lever presses followed by a pause spent in the close vicinity 

of the levers. On the other hand, the sequence 512, 912, 512, 102, 512, 102, which yields a 

ΔPHENOTYPE of 2,000/5 = 400, can be conceptualized as a lever press, immediately followed by 

going to the back of the cage, then immediately returning to the lever, and so on. Although both 

sequences contain the same number of target behaviors, the continuous behavior described by the 

two sequences is very different. The first sequence (ΔPHENOTYPE = 10) describes sustained on-task 

behavior followed by a pause spent close to the lever (analogous to a student that spends a chunk 

of time working on a paper and then checks his Facebook page for 10 minutes). The second 

sequence (ΔPHENOTYPE = 400) describes a behavioral pattern marked by rapid, abrupt changes: 
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sporadic target responding, followed by abandoning the task and rearing in a corner of the cage, 

followed by another target response, and so on (analogous to a student who writes a sentence, 

then goes to the kitchen, then writes another sentence, then watches TV for 5 minutes, and so on). 

The average, moment-to-moment topographic variability for one organism (or experiment) was 

calculated by averaging all the differences between two consecutive phenotypes (emissions), for 

an entire experiment (220,000 emissions → 219,999 differences). Averaging the five averages 

yielded a grand average (one data point) per experimental condition. 

 Inter Bout Time (IBT).The average time spent between bouts constitutes a low-level, 

basic measure of the time that elapses between the moment when the organism abandoned a 

sustained activity and the moment when it re-engaged in a sustained activity (on either 

alternative).A bout was considered to begin when a target behavior was emitted.All behaviors 

that followed were considered to be part of that bout. A bout was consider terminated when a 

switch occurred (changeover, a behavior occurred in the other target class) or when the organism 

emitted extraneous behaviors for more than ten consecutive time ticks. This condition was 

necessary because the organisms emitted a lot of extraneous responses that can be conceptualized 

as "doing something else", like rearing in the back of the cage. The decision to end a bout after 

ten time ticks was semi-arbitrary. Because of the large volume of data only thisduration  was 

examined here but it would be interesting to investigate the effects of more or less relaxed 

definitions for what counts as a bout. It should be noted that the minimum bout length was three. 

Two consecutive responses were not counted as a bout;they were considered sporadic responses. 

The duration of an Inter Bout Intervalwas calculated as the difference between the end of one 

bout and the beginning of the next, regardless of the alternative in which the organism engaged 

(target class 1 or 2). The average inter bout time (IBT) for an experiment was obtained by 

averaging all the inter bout intervals, for the entire experiment (220,000 generations). Averaging 

the five averages yielded a grand IBT average (one data point) per experimental condition.  
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 Bout frequency, bout length, and sustained (or in-bout) behavior. The average 

number of bouts was calculated for each experimental condition, averaged per 500 generations. 

Their average length (responses per bout) was obtained in a straightforward manner, by dividing 

the absolute frequency of bout behaviors by the absolute frequency of bouts. These variables 

were informative in themselves, but they also allowed to calculatethe average frequency of 

sustainedtarget behavior(or bout-behavior, averaged per 500 generations). Target behaviors can 

occur in sustained, ordered sequences, like a child spending one hour  to solve math problems, 

another two hours working on an assignment, 40 minutes playing video games, and so on. They 

can also occur in sporadic instances, like working on a math problem for a few minutes, writing a 

few sentences for an assignment, going back to the math problem, and so on. All these are target 

responses, but there is a qualitative difference between the first, ordered pattern, which is highly 

desirable and more likely to produce high-quality work, and the second pattern, which denotes a 

sporadic, fractured behavior pattern. An overall analysis that would take into account only target 

behavior would ignore such differences, which may carry important information about the quality 

of behavioral patterns.Therefore, target behavior can be expressed as Sustained Behavior + 

Sporadic Behavior. From this relation, the proportion of sustained, or in-bout behavior can be 

calculated with the formula  

Sustained Behavior (%) = Bouts ∙ Average bout length
All Target Behavior ,   Eq. 8 

which gives a quantity that varies between 1 (100% of target behavior occurred in bouts) and 0 

(all target behavior was sporadic, disorganized behavior). To the author's knowledge, the 

proportion of sustained behavior and the moment-to-moment topographic variability  

(∆PHENOTYPE) were not systematically investigated in the live-organism literature; they may 

constitute interesting and informative additions to the other behavioral measures investigated 

here.  

 General presentation format 
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 In all the figures presented in this paper, the moderate environment, characterized by 

moderate reinforcing value (~34 reinforcers per 500 generations, µ = 100), was represented by a 

continuous black line with grey squares. In all figures, theleft panels depict effects of 

reinforcement density (or rate), the middle panels depict the effects of reinforcement magnitude 

(strength of the selection process), and the right panels depict effects of Hamming Distance 

changeover delay (HDCOD). In all figures the x-axis represents mutation rate (0 - 100%). 

 Sensitivity (a), changeovers (COMAX), and topographic variability (ΔPHENOTYPE)

 Figure 5 shows the effects of various reinforcement densities (left), various strengths of 

the selection process (<=> reinforcement magnitude, middle), and various HDCOD values (right) 

on sensitivity values (a, panels 1, 2, 3), maximum changeover frequency (COMAX, panels 4, 5, 6), 

and topographic variability (ΔPHENOTYPE, panels 7, 8, 9), at different mutation rates. Overall, 

organisms characterized by higher mutation rates showed smaller sensitivity to reward, switched 

more often between alternatives, and displayed a larger moment-to-moment topographic 

variability. The effects of high mutation rates were mediated by the environment's value(left and 

center panels) and conduciveness (right panels), with one notable exception: varying the HDCOD 

values had almost no impact on ΔPHENOTYPE, regardless of the rate of mutation (Figure 5, panel 9).

 Sensitivity (a):  effects of reward rate (Figure5, panel 1).When the density of 

reinforcement was very low (~3.4reinf/ 500 gen) even organisms characterized by moderate 

mutation rates (~5-20%) displayed moderate sensitivity values,a never exceeding 0.75 and 

dropping rapidlyand to very low values as mutation rate increased above 30% (a → 0.1). When 

the overall rate of reinforcement was increased to ~17reinf./500 gen, organisms characterized by 

low to moderate mutation rates showed typical sensitivity values (5 - 20%,a~0.8). As mutation 

rate increased, the exponent values decreased as well, but more slowly and towards larger 

absolute values. The largest impact was observed at mutation rates between 20% and 75%. In 

these conditions exponent values were noticeably larger  (a ~ 0.5 - 0.25), but still described 

severe undermatching. When the reward density was increased to ~34 (moderate rate), mutation 



Page 28 of 123 

 

rates between ~5 - 15% produced typical sensitivity values (a ~ 0.8). Sensitivity decreased rapidly 

as the rate of mutation increased to 40-50% (a ~ 0.5). Organisms characterized by mutation rates 

higher than 50% showed severe levels of undermatching (a ~ 0.2). Increasing reinforcement 

density even further, to ~172 (per 500 generations) had virtually no effects on sensitivity values at 

low to moderate mutation rates (5-20%, a ~0.8). However, organisms characterized by high 

mutation rates (30-50%) performed remarkably well (a ~0.7).As the rate of mutation increased 

above 50% sensitivity decreased towards 0.5, far from the indifference to consequences exhibited 

in scarcer environments. When reinforcement density was increased to ~1,700, sensitivity varied 

around 0.8 for mutation rates between 5 and 20%, after which it decreased towards a minimum of 

0.6 (100% mutation). When scheduling ~1,723 reinforcers per 500 generations, even though 

reinforcement was delivered at random intervals, the environment was so rich that most target 

behaviors acquired resources. The high exponent values produced by this environment at very 

high mutation rates may have been artifacts of the high rates of reinforcement and not the 

expression of behavior controlled by consequences. 

 Sensitivity (a): effects of reward magnitude (Figure 5, panel 2). Overall, exponent 

values (a) increased with the strength of the selection process (Figure 5, panel 2), but the relation 

was mediated by mutation rate. As a reminder, the strength of the selection process was found to 

be computationally equivalent to the magnitude of the reinforcement (McDowell, 2004; 

McDowell et. al., 2008). The severity of the selection process depends on the mean (µ) of the 

parental selection function (Equation 5), with smaller means indicating stronger selection events 

(only very fit behaviors have real chances of becoming parents), hence higher reinforcer 

magnitudes. When the selection process was very weak (µ = 500) sensitivity was very low for all 

mutation rates, decreasing sharply from ~0.5 (5% mutation) towards 0.1 (mutation rates  >20%). 

Increasing the strength of the selection process (µ = 200) produced noticeably higher sensitivity 

values at all mutation rates. For mutation rates of 5 and 10%,sensitivity varied around 0.8. It 

decreased to approximately 0.5 for mutation rates of 20%, after which it decreased towards 0.2. 
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Increasing the strength of the selection process even further (µ = 100, moderate magnitude) had 

little effect at low mutation rates (5-20%). However, stronger selection events had significant 

impact on the behavior of organisms characterized by mutation rates of 20-40%, with exponents 

varying between 0.5 and 0.8. As the rate of mutation increased above 50% sensitivity decreased 

towards ~0.2, value that describes severe undermatching.When the severity of the selection 

process was increased even further (µ = 50), organisms characterized by mutation rates between 5 

and 40% displayed typical sensitivity values (a ~ 0.8). With further increases in the rate of 

mutation, the exponents dropped towards 0.25 (at 100% mutation). Very strong selection 

processes (µ = 25) produced exponents that varied around typical values (a ~ 0.8) for mutation 

rates between 5 and 50%. As the rate of mutation increased towards 100% sensitivity decreased 

towards 0.4, a remarkably high value for this mutation rate. 

 Sensitivity (a): effects of the Hamming Distance changeover delay (HDCOD; Figure 5, 

panel 3). When the rate of mutation was between 5% and 20% HDCOD values greater than ~3 

produced exponents that varied around the typical values observed in live organisms (a ~0.8). 

When the HDCOD was 2.4 the exponents varied around 0.5, mathematically indicating a large 

degree of undermatching. When the HDCOD was 1.4 organisms characterized by mutation rates of 

5-20% exhibited very severe undermatching (a ~0.2).When the rate of mutation increased above 

20%, small HDCODvalues (1.4 and 2.4) causedsensitivityto drop rapidlytoward small absolute 

values.  Larger HDCOD values generally produced larger exponents, caused a less rapid decline in 

exponents' values, and produced larger absolute minimum values. As is apparent from the figure, 

it seems that HDCOD values can be grouped intothree categories, based on their effects on 

sensitivity: "low", "large", and "intermediate". HDCOD values of 1.4 and 2.4 can be labeled 

"low"values and 4.4, 5.4, and 6.4 can be labeled "large" (or "good") values (they produced "good" 

matching). The intermediate value, 3.4, seems to belong to a "grey" category, behaving as a 

"large" value at low-moderate mutation rates and as a "low" value at mutation rates greater than 

30-40%.  
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 Changeovers (COMAX): effects of reward rate (Figure 5, panel 4). Overall, as the rate 

of mutation increased,the frequency of changeovers between alternatives (COMAX) increased in a 

roughly hyperbolic pattern, at all reinforcement rates. Changes in the overall reinforcement 

density did not have a dramatic impact on COMAX, with one exception. When the overall 

scheduled reinforcement rate was extremely high (~1,723reinf/500 gen) organisms characterized 

by low-medium mutation rates (5-30%) switched noticeably less often than in all other 

conditions. In addition, as mutation rate increased, COMAX increased roughly logistically and not 

hyperbolically.  

 Changeovers (COMAX): effects of reward magnitude (Figure 5, panel 5). COMAX was 

noticeably affected by changes in the strength of the selection process (reinforcement magnitude). 

In this case, environments characterized by stronger selection events produced smaller COMAX 

values at all mutation rates (unlike changes in reinforcement density). Differences in COMAX 

increased as mutation rate increased, the most affected organisms being those characterized by 

medium mutation rates (20-30%). As the rate of mutation increased beyond these values the 

effects of various strengths of the selection process diminished considerably. The decrease in 

COMAX at higher reinforcement rates and magnitudes hasnot yet been investigated in the live 

organism literature, to the authors' knowledge. Therefore, it constitutes a direct, easy to test 

prediction made by the Evolutionary Theory.  

 Changeovers (COMAX) : effects of HDCOD(Figure 5, panel 6).The effects of various 

HDCOD values on COMAX were extremely interesting and somewhat puzzling. Overall, at all 

mutation rates, greater HDCOD values caused the organisms to switch less often between 

alternatives, which was expected. Also, for HDCOD values of 4.4, 5.4, and 6.4 ("large" values) , 

COMAX increased systematically with the rate of mutation, from ~1 changeover (5%) to ~5 

changeovers (100% mutation) per 500 generations; these trends were also expected. What was 

surprising was the switching behavior produced by HDCOD values less than ~3.5. When the 

HDCOD was 1.4, organisms characterized by mutation rates of 5% switched most often between 
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alternatives (almost 40 times more often than when HDCOD was 4.4). However, as the rate of 

mutation increased, COMAXdecreased, reaching its minimum when mutation rate was 100%! 

Although its minimum, at 100% mutation, was still higher than all other COMAX values observed 

at 100% mutation, this pattern was not expected. A similar but less pronounced pattern was 

observed when HDCOD was increased to 2.4 (still "low" value): the maximum COMAX value was 

observed at 5% mutation ( ~16/500 gen) and the minimum, at 100% mutation (~5.5). When 

HDCOD was increased to 3.4, COMAXincreased when the mutation rate increased from 5% to 20%, 

thendecreased as the rate of mutation increased further. This pattern can be categorized as a 

"transition", or "hybrid" pattern, which is interesting considering that the 3.4. HDCODvalue 

produced sensitivityvalues(a; Figure 5, panel 3) values that can be labeled as "intermediate" (a 

~0.5), between mathematical indifference (a ~ 0.0) and typical undermatching (a ~0.8).

 Topographic variability (ΔPHENOTYPE): overview.At each generation the organism 

emitted a behavior, abstractly represented by an integer. The absolute differences between two 

consecutive phenotypes, or emissions provided a measure of the topographical difference 

between two successive behaviors. It varies between 0 (same behavior is emitted twice in a row) 

and 2,047, half of the continuum's size (4,095). This is not too different from real world 

scenarios, where the behavior of a live organism is limited by a variety of factors (e.g. size of the 

accessible environment, biological constraints, etc). The average of all these consecutive 

differences (ΔPHENOTYPE) provided a measure of the overall "smoothness" of continuous behavior, 

with small ΔPHENOTYPE values indicating smooth  transitions between activities and large 

ΔPHENOTYPE values indicating rapid, abrupt behavioral changes (e.g. sporadic target responding, 

followed by abandoning the task and rearing in a corner of the cage, followed by another target 

response, and so on). As illustrated in Figure 5 (panels 7, 8, 9), ΔPHENOTYPE increased roughly 

hyperbolically with the rate of mutation. Overall, increasing the environment's value produced  

smaller ΔPHENOTYPE values at all mutation rates. The effects were more pronounced at low-
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moderate mutation rates; they diminished as the rate of mutation increased. Different HDCOD 

values did not have a noticeable effect on ΔPHENOTYPE. 

 ΔPHENOTYPE: effects of reward rate (Figure 5, panel 7). As is apparent from Figure 5 

(panel 7), increasing the overall reinforcement density from ~3.4 (very scarce environment) to 

~34 (moderately rich environment) had asignificant impact at low mutation rates. For example, at 

5% mutation, ΔPHENOTYPE was reduced by approximately 30% (from ~900 to ~600). When 

increasing the rate of reinforcement to ~172, organisms characterized by low mutation rates 

exhibited much lower levels of topographic variability (ΔPHENOTYPE reduced to ~250 at 5% 

mutation). When arranging extremely rich environments (~1,723reinf/500 gen) organisms 

characterized by mutation rates between 5% and 30% showed a large reduction in topographic 

variability (ΔPHENOTYPE ~150 at mutation rates of 5 and 10%). Under all experimental conditions, 

the effects of higher reinforcement density decreased as mutation rate increased.  

 ΔPHENOTYPE: effects of reward magnitude (Figure 5, panel 8). Increasing the strength of 

the selection process (Figure 5, panel 8) produced smaller ΔPHENOTYPEvalues at all mutation rates. 

The effects were larger at small mutation rates, diminished as the  rate of mutation increased, and 

were practically annulled at very large mutation rates. 

 ΔPHENOTYPE: effects of HDCOD(Figure 5, panel 9).As the rate of mutation increased, 

∆PHENOTYPE increased as well, in a roughly hyperbolical pattern. Different HDCOD values had little 

or no impact on ∆PHENOTYPE, regardless of the rate of mutation that characterized the virtual 

organisms. 

 Target behavior and obtained reinforcers 

 Figure 6 shows the effects of various reinforcement densities (left), various strengths of 

the selection process (middle), and various HDCOD values (right), on the overall frequency of 

target behavior (panels 1, 2, 3) and obtained rewards (panels 4, 5, 6), at various mutation rates. 

Behaviors and rewards were summed for both alternatives and averaged per 500 generations. 
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Overall, the frequency of target behavior and obtained rewards decreased systematically with the 

rate of mutation. 

 Target behavior and obtained reinforcers: effects of reward rate (Figure 6, panels 1 

and 4).Increasing the reinforcement density while maintaining the strength of the selection 

process constant (µ = 100; left panels) produced noticeable increases in the frequency of target 

behavior. These effects were very large at small mutation rates. In very scarce environments 

(~3.4 rewards) organisms characterized by mutation rates of 5% emitted, on 

average,approximately 25 target responses/500 generations. Increasing reinforcement density to 

~17 caused the same organisms to emit almost three times more target responses (~75). 

Increasing reinforcement density to ~34 (moderate rate)increased the frequency of target behavior 

to approximately 110. Increasing reinforcement density to ~172 (very rich environment) 

produced approximately 200 target responses; increasing it to ~1,723 produced approximately 

250 responses (per 500 generations). These effects diminished rapidly as the rate of mutation 

increased. For example, organisms characterized by 50% mutation emitted between 12 and 35 

responses under the most extreme conditions (~3.4 reinforcers and ~1,723 reinforcers 

respectively). The pattern of obtained rewards (Figure 6, panel 4) closely followed the pattern of 

behavior frequency. At low mutation rates (5%) reinforcement densities between ~3.4 and ~34 

produced between 2 and 17 reinforcers (per 500 generations). When reinforcement density was 

increased to ~172, same organisms acquired approximately 75 reinforcers. When the rate of 

reinforcement was ~1,723, the average number of acquired reinforcers increased to 

approximately 200. As the rate of mutation increased, the effects of reinforcement density 

decreased. Overall, in environments that arranged low to moderate reinforcement rates (~3.4 - 34 

reinforcers / 500 generations) increases in mutation rate caused the frequency of target behavior 

(panel 1) and acquired rewards (panel 4) to drop quickly. Very rich environments (~172 and 

1,723) maintainedrelatively high frequencies of target behaviors and obtained rewards even at 

mutation rates of 20 - 30%.  
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 Target behavior and obtained reinforcers: effects of reward magnitude (Figure 6, 

panels 2 and 5).When reinforcement density was held constant (~34 reinforcers per 500 

generations) systematic modifications in thestrength of the selection process (middle panels) had 

similar effects to those produced by increased reinforcement densities (left panels). The 

frequency of target behavior (Figure 6, panel 2) increased to very high values (frequency varied 

between 25 and 200) at 5% mutation. These effects decreased rapidly with the rate of mutation, 

becoming practically annulled at mutation rates larger than 50% (towards the operant, or baseline 

level of responding). Same effects were observed in the number of acquired rewards. Strong 

selection processes (high magnitudes) produced significant increases in the number of acquired 

rewards (from 8 to about 20, at 5% mutation). These effects decreased rapidly with the rate of 

mutation. Note that increasing either the rate or magnitude of the reinforcement had similar 

qualitative and quantitative effects on the frequency of target behavior (panels 1 and 2). Their 

effects on the number of acquired reinforces was qualitatively similar (panels 4 and 5). However, 

at mutation rates between 5 and 50%, arranging richer environments produced almost ten times 

more reinforcers (~200, at 5% mutation) than increasing reward's magnitude (stronger selection 

events; ~20, at 5% mutation). This result was not surprising. While both rate and magnitude tend 

to concentrate behaviors around the target classes, thus producing larger frequencies of target 

behaviors, increases in rate also cause more of these behaviors to be successful. 

 Target behavior and obtained reinforcers: effects of HDCOD (Figure 6, panels 3 and 

6).As the rate of mutation increased, the frequency of target behavior decreased rapidly. The 

same pattern characterized the frequency of obtained rewards. Various HDCOD values had little 

effect on the frequency of target behavior, regardless of the rate of mutation. The only exception 

was observed when the HDCOD was very small (1.4). In this environment the average frequency of 

target behavior was approximately 30% higher than in all other conditions, but only at mutation 

rates of 5 - 20%. For higher mutation rates the differences were barely noticeable; the average 

frequency of target behavior was very similar at various HDCOD values.The pattern in the 
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frequency of obtained rewards closely followed the pattern of target behavior. The average 

frequency of acquired rewards (per 500 generations) decreased rapidly as the rate of mutation 

increased. However, the effects of various HDCOD values were more pronounced than in the case 

of target behavior, especially at low-moderate mutation rates (5  - 30%). Small HDCOD values 

caused the virtual organisms to obtain more rewards, an effect that diminished as the rate of 

mutation increased.  

 Bout frequency and length 

 Figure 7 illustrates the effects of reinforcement density (left), reinforcement magnitude 

(middle),and HDCOD (right), on the average bout frequency (panels 1, 2, 3)and length (panels 4, 5, 

6), at various mutation rates. Overall, organisms characterized by higher mutation rates emitted 

fewer bouts, of shorter length, a relation mediated by reward rate, reward magnitude, and HDCOD.

 Bout frequency: effects of reward rate (Figure 7, panel 1).When the environment was 

rich (~172 and ~1,723 reinforcers per 500 generations) the average number of bouts increased 

with the rate of mutation, from ~2 (5% mutation) to ~ 5 (10-20% mutation), after which it 

decreased towards a minimum of ~ 1 bout/500 generations (100% mutation). For reinforcement 

ratesof ~34 and ~17, the average number of bouts decreased systematically with the rate of 

mutation, from ~4 (5-20% mutation) to approximately 0.75 (100% mutation). When the 

environment scheduled very few reinforcers (~3.4 rewards/500 generations) bout frequency 

decreased from a maximum of ~2.5 (5% mutation) to a very low absolute minimum (~0.25 at 

100% mutation). 

 Bout frequency: effects of reward magnitude (Figure 7, panel 2).When reinforcement 

density was held constant (~34reinf / 500 generations), modifying reward magnitude had similar 

effects on bout frequency as modifying the reward density. As the rate of mutation increased, 

organisms placed in environments characterized by low reward magnitude (weak selection 

events,µ= 500 and 200) emitted fewer and fewer bouts. As the selection process became stronger 

(µ= 100, 50,and 25) the average bout frequency followed the same trend produced by high 
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reinforcement densities: it increased as the rate of mutation increased from 5% to 10-20%, after 

which it decreased as the rate of mutation increased further (a trend probably caused by very large 

bout lengths, as will become apparent from the next paragraphs). It is important to note that bout 

frequency was heavily affected by both reinforcement rate and magnitude.Although the effects of 

rich environments and strong reinforcers diminished as the rate of mutation increased, they were 

still noticeable at high mutation rates (50-75%). Also, overall, stronger reinforcers tended to 

produce a slightly higher number of bouts than high reinforcement densities, effects more 

pronounced at mutation rates greater than 50%.  

 Bout frequency: effects of HDCOD.(Figure 7, panel 3). HDCOD values of 3.4, 4.4, 5.4, 

and 6.4 had little impact on bout frequency, regardless of the rate of mutation. When the HDCOD 

was 2.4 organisms characterized by mutation rates of 5% and 10% exhibited approximately 80% 

more bouts (~9/500 generation) than when the HDCOD was 3.4, 4.4, 5.4, or 6.4 (~5/500 

generations). The same pattern, but more pronounced, was observed when the HDCOD was 1.4. 

Behavior characterized by mutation rates of 5% emitted approximately 17 bouts per 500 

generations, almost four times more bouts than when the HDCOD was 3.4, 4.4, 5.4, or 6.4 (~5/500 

generations). As the rate of mutation increased further, the effects of various HDCOD values 

became less pronounced, having very little impact once the rate of mutation increased above 

~40%. 

 Bout length: effects of reward rate (Figure 7, panel 4).When reinforcement density 

was very large (~1,723 and ~172 per 500 generations)organisms characterized by mutation rates 

of 5% emitted remarkably long bouts. Their length varied between ~150 (~1,723 reinforcers, 5% 

mutation) and ~30 (~172 reinforcers, 10% mutation). The average bout length decreased as the 

rate of reinforcement decreased to ~34 reinforces (~25), ~17 reinforces (~17), and ~3.4 reinforces 

(~10). For all reinforcement densities, the average bout length decreased very rapidly as the rate 

of mutation increased. The detrimental effects of high mutation rates were more pronounced in 

environments that scheduled fewer reinforcers. In all environments, mutation rates higher than 
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~50%  produced average bout lengths of ~3 responses/bout, the minimum number of responses 

that still constituteda bout. 

 Bout length: effects of reward magnitude(Figure 7, panel 5). The effect of reward 

magnitude was very similar to that of reinforcement density. Weak to moderate selection events 

(µ=  500, 200, and 100) produced almost identical bout lengths as low to moderate reinforcement 

densities (~3.4, ~17, and ~34 reinforcers), at all mutation rates. When the selection events were 

very strong (µ= 50 and 25), organisms characterized by mutation rates of 5% emitted long bouts, 

with averages between ~45 and 70 responses per bout. As the rate of mutation increased, the 

average bout length decreased rapidly, reaching the theoretical minimum (3 responses/bout) when 

the rate of mutation increased above 50%. This trend was identical to that produced by very high 

reinforcement densities. However, at low mutation rates, high reinforcement densities produced 

bouts that were almost twice as long as those produced by strong selection processes. The overall 

large number of responses per bout produced by high reinforcement rates and strong selection 

events could explain why organismscharacterized by mutation rates of 5 and 10% emitted 

relatively few bouts (Figure 7, panels 1 and 2).  

 Bout length: effects of HDCOD (Figure 7, panel 6).HDCOD values of 3.4, 4.4, 5.4, and 6.4 

had little impact on the average bout length, regardless of the rate of mutation. When the HDCOD 

was 2.4 organisms characterized by mutation rates of 5% and 10% exhibited bouts that were 

approximately 50% shorter than when the HDCOD was 3.4, 4.4, 5.4, or 6.4 (~12 responses per bout 

vs. ~20 responses per bout). The same pattern, but more pronounced, was observed when the 

HDCOD was 1.4. Organisms characterized by mutation rates of 5% emitted bouts with an average 

length of only ~6 responses per bout. As the rate of mutation increased further, the effects of 

various HDCOD values became less pronounced, having very little impact once the rate of 

mutation increased above ~30%. 

 Sustained (in-bout) behavior (%)and Inter-Bout Time (IBT).Figure 8  illustrates the 

effects of reinforcement density (left), reinforcement magnitude (strength of the selection process; 
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middle), and HDCOD (right), on the proportion of sustained (or in-bout) behavior (panels 1, 2, 3) 

and Inter-Bout Time (IBT; panels 4, 5, 6), at various mutation rates.Overall, organisms 

characterized by higher mutation rates exhibited smaller proportions of sustained behavior and 

took longer times, on average, to re-engage in sustained responding (starting another bout of 

responses) once a bout was terminated (longer IBT). Increasing the rate or the magnitude of the 

reinforcement improved the performance of organisms characterized by high mutation rates on 

both dimensions. Various HDCOD values had smaller impact, especially on IBT values.As a 

reminder, the proportion of sustained behavior  (Equation 8) was calculated by dividing the 

frequency of target behavior that occurred in bouts (bouts x bout length) bythe frequency of target 

behaviors (averages per 500 generation blocks). Sustained behavior provided a measure of how 

structured, or organized, the target behavior is, by discarding the target sporadic responses. 

 Sustained behavior (%): effects of reward rate (Figure 8, panel 1).Overall, lower 

rates of reinforcement produced smaller proportions of sustained behavior. The effects of 

reinforcement rates increased at first, then decreased as the rate of mutation increased. Organisms 

characterized by mutation rates of 5% displayed a very high proportion of sustained behavior (> 

95%), at all reinforcement densities. The only exception was observed when the rate of 

reinforcement was extremely small (~3.4reinf/500 generations): the average frequency of 

sustained behavior was approximately 80%. As the rate of mutation increased, the proportion of 

sustained behavior decreased as well. The effects of mutation were mediated by reinforcement 

density; high reinforcement densitiescaused organisms characterized by high mutation rates to 

emit fairly high proportion of sustained behavior. For example, when the overall reward density 

was ~172, the proportion of sustained behavior emitted by organisms characterized by mutation 

rates of 50% was approximately 54%. When the reward density was decreased to ~34 and ~17, 

the proportion of sustained behavior displayed by the same organisms (50% mutation) decreased 

to ~40% and ~32% respectively. Decreasing the overall reward rate even further (~3.4 

rewards/500 generations) caused organisms characterized by moderate mutation rates (20% 
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mutation) to respond in a very disorganized manner. Less than 50% of their total target behavior 

was organized in bouts (sustained behavior), the majority consisting of sporadic responses. When 

the rate of mutation was 50% the proportion of sustained behavior was only ~17%.  

 Sustained behavior (%): effects of reward magnitude (Figure 8, panel 2). The effects 

of various reinforcer magnitudes were very similar to those produced by various reinforcement 

rates. However, weak selection events (µ= 500 and 200) produced slightly smaller proportions of 

sustained behavior than scarce environments (~3.4 and ~17/500 generations). 

 Sustained behavior (%): effects of HDCOD (Figure 8, panel 3). Overall, as the rate of 

mutation increased, the proportion of sustained behavior decreased. Large HDCOD values (4.4, 

5.4, and 6.4) had very little impact on the proportion of sustained behavior, regardless of the rate 

of mutation. Organisms characterized by mutation rates of 5-10% responded almost exclusively 

in bouts, emitting very few sporadic target behaviors (proportion of sustained behavior > 95%). 

As the rate of mutation increased, the proportion of sustained behavior decreased towards very 

low minimum values (20% at 100% mutation). When the HDCOD was 2.4 and 1.4 ("low" values), 

the proportion of sustained behavior exhibited by organisms characterized by low mutation rates 

(5 and 10%) diminished from about 95% (large HDCOD= values) to approximately 80% and 70% 

respectively. At higher rates of mutation various HDCOD values had little or no effect on the 

proportion of sustained behavior. 

 Inter-Bout Time: effects of reward rate (Figure 8, panel 4). Increasing the 

reinforcement rate produced smaller IBTs; the effects were more pronounced as the rate of 

mutation increased. When the rate of reinforcement was very low (~3.4 rewards/500 generations) 

the average IBT increased sharply from approximately 180 time ticks (5% mutation) to 

approximately 2,000 time ticks (100% mutation). This trend was observed at all reinforcement 

densities, but was largely diminished in richer environments. For example, when the overall 

reward density was increased to ~17, the average IBT increased from approximately 80 time ticks 

(5% mutation) to approximately 1,100 time ticks (100% mutation). The increase was very large 
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and rapid, but the absolute values, across all mutation rates, were practically reduced to half. 

Increasing the rate of reinforcement even further (~34, ~172, and ~1,723 reinforcers) diminished 

the effects of large mutation rates even further.  The effects of reward density diminished as the 

density increased. For example, the overall differences between reward rates of ~34 and ~172 

were overall larger than between reward rates of ~172 and ~1,723 (the change in IBT was rather 

small). Note that, overall, differences in IBT values at small-moderate mutation rates were rather 

large, in absolute values. For example, organisms characterized by mutation rates of 10% 

exhibited IBT values of ~230, ~100, ~75, ~35, and ~20, at reward densities of ~3.4, ~17, ~34, 

~172, and ~1,723. These rather large differences were obscured in the figureby the huge 

differences observed at high mutation rates. 

 Inter-Bout Time: effects of reward magnitude(Figure 8, panel 5). The effects of 

various reinforcement magnitudes (various strengths of the selection process) on IBT were very 

similar to those produced by various reward densities. When the selection process was very weak 

(µ = 500) IBT increased sharply from approximately 160 time ticks (5% mutation) to 

approximately 2,700 time ticks (100% mutation). The same trend was observed for all reward 

magnitudes. The absolute values, however,  were much smaller when the selection events were 

very strong (large magnitudes). For example, when the strength of the selection process was 

increased fromµ = 500 to µ = 200, the average IBT increased from approximately 80 time ticks 

(5% mutation) to approximately 1,500 time ticks (100% mutation). The increase was sharp, but 

the average IBT durations, across all mutation rates, were drastically reduced. Stronger selection 

events (µ=100, 50,and  25) counteracted the effects of large mutation rates even further, and were 

visible even at low mutation rates. For example, the average IBTs produced by organisms 

characterized by mutation ratesof 10% were~225, ~110, ~75, ~60, for means (µ) of 500, 200, 

100, and 50. As the strength of the selection process increased, its effects on the average IBT 

decreased.  
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 Inter-Bout Time: effects of HDCOD (Figure 8, panel 6).As apparent from, various 

HDCOD values had little impact on the average Inter-Bout Time (IBT). As the rate of mutation 

increased, the average IBT increased from approximately 50 time units (at 10% mutation) to 

approximately 1,000 time units (100% mutation). When the rate of mutation was small-moderate 

(5 - 20%) the effects of various HDCOD values were barely noticeable, varying between ~20 

(HDCOD = 1.4) and ~60 (HDCOD = 6.4), at 5% mutation. As the mutation rate increased, the effects 

of various HDCOD values became more pronounced, with larger HDCOD producing greater IBTs, 

but still much smaller in absolute values than those produced by low reward rates or magnitudes. 

Discussion 

 The purpose of the first phase was to learn about the effects of mutation on various 

behavioral features of continuous choice, and about the mediating effects of different reward 

rates, reward magnitudes, and Hamming Distance Changeover Delays (HDCOD). The dependent 

variables included the traditional measures examined in the live organisms literature (sensitivity, 

response and reward rates, etc.), but also low-level characteristics pertaining to behavior 

variability, some of which have not been investigated in the live organisms literature (e.g. 

∆PHENOTYPE).  

 General effects of mutation 

 In environments characterized by a large HDCOD (4.4; low conduciveness),that scheduled 

a moderate number of reinforcers (e.g. ~34 reinforcers per 500 generations), of moderate 

magnitude (µ = 100), organisms characterized by higher mutation rates performed much worse 

than those characterized by smaller mutation rates. As the rate of mutation increased, sensitivity 

to reinforcement(a) decreased from typical values at moderate mutation rates (a ~0.8 at 5-20% 

mutation) toextreme undermatching (a~0.2for mutation rates higher than 50%). The decrease in 

sensitivity was accompanied by a largeincrease in the frequency of switchingbetween alternatives 

(high COMAX).These results reliably paralleled previous findings (McDowell & Popa, 2010). 

Moreover, the outcomes generated by the computational theory were robust with respect to the 
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size of the continuum of integers (4,096 instead of 1,024) and to the form of the parental selection 

function (exponential instead of linear; McDowell & Popa, 2010).In addition to low sensitivityand 

high changeover frequency, organisms characterized by higher mutation rates emitted much 

lower rates of target behavior and obtained significantly fewer rewards. They emitted fewer 

bouts, of shorter length, and took much longer to re-engage in sustained behavior once a bout was 

terminated (larger IBT). They exhibited much smaller proportions of sustained behavior, their 

target behavior being sporadic and disorganized. The temporal disorganization was accompanied 

by abrupt topographical changes (large ∆PHENOTYPE).  

 Mutation and ADHD 

 The behavioral constellation described above is strikingly similar to behavioral 

characteristics observed in ADHD-diagnosed children. When compared to their non-diagnosed 

counterparts, the continuous-choice behavior of children who received an ADHD diagnostic was 

characterized by diminished sensitivity to reward (a~ 0.3) and a high frequency of switching 

between alternatives (Kollins et. al., 1997; Taylor et., al., 2010). In addition, core features of 

hyperactive-impulsive children include short amounts of time spent on task and decreased 

productivity, rapid task abandonment, and difficulties re-engaging in task behavior once the 

activity was abandoned (Mash &Barkley, 2003). The topography of their behavior is also an issue 

of concern, hyperactive-impulsive children being described as displaying abnormally high levels 

of motor activity (Abikoff&Gittelman, 1985), "always on the go", "moving as being driven by a 

motor", "unable to sit still", "moving about", "rapidly distracted by interfering stimuli/activities" 

etc. (Mash & Barkley, 2003; Waslick& Greenhill, 2004). 

 Interestingly, a single organismic feature, namely mutation rate, produced the entire 

constellation of behavior characteristics described above. In ADHD children similar behavioral 

features are apparently produced by one property of the nervous system that directly affects 

behavioral inhibition (Barkley, 1997; Martinnussen et. al, 2005; Tamm et. al., 2004).The 

resemblance between the behavioral constellations of children that received an ADHD diagnostic 
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and those of virtual organisms characterized by high mutation rates is striking. The fact that this 

entire constellation emerged freely, unguided, from the reiteration of Darwinian processes was 

even more remarkable. 

 High environmental value (reward rate and magnitude) and low conduciveness (high 

HDCOD).Increasing the rate or magnitude of the reinforcement had positive effects on the 

behavior of virtual organisms characterized by high mutation rates, on almost all dimensions 

investigated. When placed in more valuable environments (increased reinforcement rate or 

magnitude) they showed increasedsensitivity to reward (a ~0.5-0.8), switched less often between 

alternatives (decreased COMAX), exhibited increased frequency and quality oftarget behavior 

(increased number of bouts, increased bout length, and increased proportion of sustained 

behavior), took less time to re-engage in sustained responding (shorter IBTs), showed 

largereductions in their moment-to-moment topographic variability (∆PHENOTYPE), and acquired 

more rewards. These results were in agreement with generally accepted knowledge about the 

behavioral management of ADHD symptoms in humans. The beneficial effects of high 

reinforcement rates on ADHD symptoms in children is widely recognized in the ADHD literature 

(Freibergs& Douglas, 1969, referred in Douglas, 1985; Douglas & Parry, 1994; Konrad et. al., 

2000; Parry& Douglas, 1983; Worland et. al., 1973; Barkley, 1995, 2002, 2013). In addition, the 

necessity of increased reward rate and magnitude in managing the behavior of ADHD children is 

widely acknowledged by researchers and practitioners alike, being a core component of most 

training guides for parents and teachers (Barkley, 1997, 2013; Pfiffner et. al., 1985; Pfiffner, 

1996).  

 Overall, increasing the HDCOD values, thus decreasing the environment's conduciveness,  

had much lower impact on behavioral variability than  increased reward rate or magnitude, with a 

few exceptions. Organisms characterized by high mutation rates switched less between 

alternatives (lower COMAX values), effects comparable to those produced by higher reward rates 

and magnitudes;  also, they showed small increases in sensitivity to reward (a), but the effects 
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were much less pronounced. Higher HDCOD values did not seem to affect the other six behavioral 

dimensions in noticeable ways. Note that the HDCOD value used as "standard" in this study (4.4, 

between 511 and 512) was already "large", previously shown to produce typical undermatching. 

Therefore these outcomes were not surprising, being perfectly aligned with previous findings 

(McDowell & Caron, 2007; McDowell et. al., 2008, McDowell & Popa, 2010; Popa & 

McDowell, 2010) and the live-organism literature (Davison & McCarthy, 1988) which indicated 

that after a certain threshold further increases in COD did not have noticeable effects on 

continuous choice.  

 Low environmental value (low rate and magnitude) and high conduciveness (low 

HDCOD).Increasing the rate or magnitude of reinforcement improved the behavioral symptoms of 

organisms characterized by high mutation rates. Low-value environments acted in the opposite 

direction, aggravating their already disorganized behavior. These effects were not surprising, and 

werecongruent with similar findings reported in the ADHD literature (Sonuga-Barke et. al., 1992; 

Schweitzer &Sulzer-Azaroff, 1995). Interestingly, low-value environments had detrimental 

effects on the behavior of organisms characterized by low mutation rates as well. In fact, very low 

reinforcement ratesand magnitudes caused organisms characterized by low mutation rates to 

behave more erratically than organisms characterized by high mutation rates, in high-value 

environments, an interesting phenomenon that will be revisited shortly. 

 Human studies are relatively scarce, but the general effects of low reinforcement rates 

and magnitudes are well known in the non-human literature. In continuous-choice settings one 

ofthe most common effects was a decrease in sensitivity to reinforcement (Baum, 1974, 1979; 

Davison & McCarthy, 1988; see also McDowell, 2012 for a general review).In addition, 

numerous studies indicated that behavior variability (a low-level descriptor of ADHD behavior; 

Castellanos et al., 2005; Rubia et al., 2007), varied systematically with reward density, with high 

densities reducing variability levels and low densities and extinction increasing variability levels 

(Lee et. al., 2007). This phenomenon was observed on a variety of dimensions thatcharacterize 
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responses, such as response location (see Antonitis, 1951; Eckerman&Lanson, 1969), intensity 

(Notterman&Mintz, 1965), topography (overt form; Stokes, 1995), and frequency (Mechner, 

1958). Relatively recent findings from experiments with less complex organisms complement 

data obtained with various vertebrates. Queitsch, Sangster, & Lindquist (2002) (in Roberts 

&Gharib, 2006) showed that under high levels of environmentally induced stress (e.g. increased 

heat) fruit flies (Drosophila Melanogaster) show increased phenotypic variation, caused by 

outbursts in mutation rates. Taken together, these results suggest that increased behavior 

variability may not always be an expression of pathology, but quite the opposite, a natural 

response of life forms in general to low-resource environments (stressful environments; 

Neuringer, 2009), thus bringing into question the general interpretation of low-sensitivity values 

(a) as indicators of pathology. 

 The choice-behavior of virtual organisms characterized by high mutation rates was not 

affected by low HDCOD values in significant ways. In contrast, the effects of low HDCOD values on 

the behavior of organisms characterized by low-moderatemutation rateswere extremely 

interesting: they had little or no effect on some behavioral features, while profoundly debilitating 

others. These organisms showed almost complete indifference to reinforcement (a ~ 0.2), 

exhibited almost five times more bouts, but almost five times shorter, and the highest proportion 

of sustained (in-bout) behavior did not exceed~70%. The frequency of target behavior and 

obtained rewards were noticeably higher as compared to those produced by high HDCOD values, 

while their moment-to-moment behavior variability (∆PHENOTYPE) and Inter-Bout Times (IBTs) 

were practically unaffected. 

 Different environmental features,different low-level mechanics, similarhigh-level 

outcomes.Upon a close examination of the low-level mechanics of behavior, the coherence of 

these results becomes evident. The HDCODeither facilitates or impedes the transition between one 

target class to the other, which is why it was conceptualized here as a measure of 

environment'sconduciveness. Modifications in HDCODvalues do not affect behavior directly. 
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Unlike rate and magnitude, higher HDCOD values do not concentrate more behavior around the 

target classes. It simply impedes rapid switching, much like in the real world, where it makes 

switching less appealing (Davison & McCarthy, 1988).  

 Conversely, low ratesof reinforcement translate intofewerselection events. In conjunction 

with a moderate strength of the selection process, low rates result in low frequencies of 

moderately fit child-populations. Behavioral repertoires are concentrated around the target classes 

less often, hence less target behavior, fewer rewards, fewer bouts of shorter lengths, greater 

phenotypic variability (more extraneous behavior means more random selections of parents), etc. 

Low magnitudes of reinforcement (weaker selection events), on the other hand, result in moderate 

frequencies of unfit child-populations. Ceteris paribus, weak selection means that less fitbehavior 

is concentrated around the target classes.Behavioral outcomes look the same as those produced by 

low rates (less target behavior, less rewards, etc.), but through slightly different mechanisms: not 

because behavior is concentrated less often, but because selection eventsresult in less 

fitpopulations.  

 In contrast, low HDCOD values do not act directly on the quantity of target behavior, but 

rather on its structure. When a behavior from one target class is reinforced, the selection event 

that follows concentrates the subsequent population of children around the target classes. 

However, when the genotypes of two (fit) parents recombine, each bit in a child's string has a 50-

50 chance of coming from one parent or the other.A low HDCOD means that the necessary number 

of bits (on average), required to "move" a behavior from one target class to the other is small. 

Therefore, when the HDCOD is low, selection events triggered by behaviors in one class have high 

chances of producing child-behaviors that belong to the other class. This effect is further 

enhanced by mutation, which operates by randomly selecting a small percentage of behaviors 

(e.g. 10%) and randomly flipping one of the bits in their genotype. When the number of bits 

necessary to "move" a behavior in the other target class is high (high HDCOD) the chances that 
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mutation will result in behaviors from the other class are small. When the HDCOD is low, it's easy 

for mutants to become behaviors in the other class.  

 Given the way these processes work (recombination and mutation), it follows that low 

HDCOD values produce erratic behavior through very different mechanisms than low rates or 

magnitudes. For example, low rates and magnitudes result in low sensitivity because the overall 

amount of target behavior decreases so low that many selection events are followed by long 

strings of extraneous behavior, and the next target behavior falls in one target or another due to 

chance rather than to the consequences triggered by the previously reinforced behavior (which 

dissipate quickly). In contrast, low HDCOD values result in low sensitivity because they allow 

selection events triggered by one target class to result in target behaviors from the other class, 

thus causing a large increase in the number of changeovers. They provoke ruptures in the 

behavior structure, not its quantity, by severely altering the ratios of behaviors and rewards. This 

would explain why low HDCOD values were more debilitating than low rates or magnitudes, 

causing almost complete indifference (a ~0.2) even in organisms characterized by low mutation 

rates (5%). It would also explain the seemingly aberrant patterns of changeovers produced by low 

HDCOD values at various mutation rates (Figure 5, panel 6). Although low HDCOD values produced 

more switches at all mutation rates (which was expected), the highest rate of switching was 

observed at the lowest mutation rates, COMAX decreasing with the rate of mutation. At low 

mutation rates, many selection events resulted in changeovers, through the mechanism described 

above. As the rate of mutation increased, the populations of children became more spread out 

across the continuum, resulting in fewer target behaviors altogether, thus decreasing the number 

of opportunities for switches to occur.In addition, it explains why low HDCOD values had virtually 

no effect on topographic variability (∆PHENOTYPE). If a selection event triggered by one target class 

produces a behavior from the other class, theirphenotypes are still very close. Summary 

 Overall, the effects of high mutation rates on the behavior of virtual organisms 

animatedby the Evolutionary Theory were remarkably congruent with existing knowledge about 
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the behavior of ADHD-diagnosed children. Organisms characterized by higher mutation rates 

showed decreased sensitivity to reward (a ↓), switched more often between simultaneously-

available activities (COMAX ↑), engaged less often in continuous-responding (bouts ↓), abandoned 

the task faster (bout length ↓), and took longer to re-engage in sustained responding (IBT ↑). 

Overall, their highly variable (∆PHENOTYPE ↑) and disorganized behavior (sustained behavior ↓) 

caused them to acquire significantly fewerresources than organisms characterized by lower 

mutation rates.Furthermore, arranging richer environments or delivering stronger rewards 

counteracted (at least to some extent) the detrimental effects of high mutation rates, results in 

agreement with widely accepted knowledge and findings about the behavior of ADHD children. 

What makes these similarities even more remarkable is that the collection of behavioral 

symptoms described above and the phenomena  that surrounded them(e.g. effects of reward rate) 

were not goals embedded in the theory. This remarkably coherent constellation emerged freely 

during the dynamic interaction between organisms and the environments in which they were 

immersed, interactions governed by low-level Darwinian processes of selection, recombination, 

and mutation. These results add to the already large body of data (McDowell, in press) that 

support the validity of Darwinian processes as a causal account for the dynamics of adaptive 

behavior.  

 Implications  

 The reiteration of Darwinian processes gave rise to similar high-level outcomes, despite 

different configurations of the initial conditions (various mutation rates, various reward densities, 

etc). As noted earlier, organisms characterized by low mutation rates that evolved in low-value 

environmentsdisplayed behavioral characteristics that in many cases were indistinguishable from 

those displayed by organisms characterized by high mutation rates in high-value environments. 

Figure 9 may help illustrate this phenomenon and its far-reaching implications. The figure 

depictsthe behavioral characteristics of five virtual organisms. Each of the nine axes depicts one 

of the nine dependent variables, with zero in the center of the radar-type graph. The order of the 
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nine variables was changed so that variables for which "low" values mean "desirable", "good" 

outcomes were close together (COMAX, ∆PHENOTYPE, and IBT; first three black axes). Uniting the 

nine points resulted in an irregular surface that provides an overall visual description of an 

organism's behavioral characteristics. The raw values were transformed, where necessary, by 

dividing them by a multiple of 10 (specified below, next to each variable). The purpose was to 

bring all variables to a comparable scale that would allow a visual depiction. From the first, 

perpendicular axis, going clockwise, the nine variables are: COMAX (/10), ∆PHENOTYPE (/10,000), 

IBT (/10,000), Sensitivity (a), Responses (/100), Rewards (/100), Bouts (/10), Bout Length (/100), 

and Sustained behavior (%).  

 An organism that displayed low behavior variability (desired outcome) is characterized 

by a small black area and a large grey area (panel 1). Panels 2, 3, 4, and 5 depict organisms that 

displayed high variability. Thesefour constellations of behavioral characteristics can be described 

as highly variable, very similar to each other, and very different from the constellation depicted in 

panel 1. Despite their apparent similarities, they were all caused by different combinations of 

organismic and environmental features, specified in the upper-left corner of the figure. Similar, 

apparently maladaptive, behavioral characteristics were produced primarily by environmental 

features (e.g. panel 2, very low reward magnitude), by an organismic characteristic (e.g. panel 5, 

100% mutation rate), or by various combinations of environmental-organismic features (panels 3 

and 4).  

 The similarities between the behavioral characteristics depicted in panels 2 and 4 become 

more interesting when considering the vast body of data that repeatedly showed that increased 

variability may be a natural response of live organisms triggered by low-value environments (see 

Neuringer, 2009, for an overview), thus bringing into question the general interpretation of low-

sensitivity values (a) as indicators of pathology. However, the similarity between the surface 

behavioral characteristics depicted in panel 2 and those depicted in panel 5 may have even deeper 

implications. On the surface, these two behavioral constellations are not simply similar, they are 
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similar in a pathologic way. If these behavioral characteristics would have been observed in two 

young children, it would have been extremely difficult to resist the temptation of diagnosing both 

with the same psychological disorder (most likely ADHD), when in fact the outcome depicted in 

panel 2 was produced by an organism characterized by a low mutation rate (10%) immersed in a 

environment with very low-rewarding value (very low reward magnitude). These results suggests 

that assigning diagnostics based only on observed behavioral characteristics may result in 

grouping together highly "impaired" individuals (panel 5, 100% mutation) and quite "healthy" 

individuals (panel 2, 10% mutation).This hypothesis and its implications will be revisited in the 

general discussion section. 

Phase 2: Effects of Changeover Delays on the continuous-choice behavior of virtual 

organisms and college students. 

 The purpose of the first phase of this project was to learn about the effects of various 

reward rates, reward magnitudes, and Hamming Distancechangeover delays (HDCOD), on the 

continuous choice-behavior of virtual organisms characterized by various mutation rates. The 

purpose of the second phase was to explore the Theory's potential for predicting the behavior of 

college students in continuous choice environments, as a function of changeover delay (COD), 

along the same behavioral characteristics investigated in the first phase.   

Method 

 Participants 

 The human participants were 38 Emory undergraduate students, males and females, ages 

between 18 and 21. Their low-level behavioral characteristics in continuous-choice environments 

were contrasted against those displayed by virtual organisms characterized by mutation rates of 

10%, placed in environments characterized bydifferent HDCOD values.  

 Apparatus and materials 

 Experiments were run on an off-the-shelf desktop computer hardware. The computer 

program that arranged the continuous-choice procedure (concurrent RI RI schedules) was written 
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by author in VB 2010, part of the Microsoft Visual Studio 2010 Integrated Development 

Environment (IDE).  

 Procedure 

 The 38 participants responded in a continuous-choice procedure that arranged 

sevenconcurrent, independent Random Interval schedules. The exact details are provided in Table 

2.The testing environment was kept as simple as possible; Figure 10  provides an illustration of 

thestudents' visual experience during testing. During the procedure, the screen displayedthree 

elements: two buttons and a text box that displayed the total number of acquired rewards (1 point 

= 1 reward). The buttons were mouse-operated (mouse left click = response). All participants 

received the following instructions: 

"Thank you for choosing to participate in this study. This task investigates the 

basic mechanisms that allow us to adapt to dynamic environments. When the 

session will begin the screen will display a number of buttons. You may obtain 

points by operating the buttons displayed on the screen. Use the mouse to click 

(operate) the buttons. Your objective is to figure out how the environment works. 

The acoustic cues will help, so make sure you put on the headset. Once you begin 

a session it is very important that you focus on task. The time component is 

crucial, so please refrain from using the phone, etc. The end of the session is 

signaled by a message box that asks you to notify the experimenter. Press the red 

button to begin the session. Thank you." 

 All experimental sessions started with a very rich pair of identical schedules, which 

scheduled reinforcements, on average, every 700 milliseconds, or 0.7 seconds (RI 0.7 RI 0.7). 

This wascalled the Acquisition component, which was included to allow the participants to 

become acquainted with the task.The next five RI RI pairs were presented in random order for 

each participant. The last (7
th
) component of the experimental session was an extinction phase 

during which no reinforcers were scheduled. Once the extinction phase was over a message box 
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announcedthe end of the experimental session thanked students for their participation. An 

experimental session lasted for approximately 18 minutes.The first and last components were in 

effectfor 50 seconds each. The five intermediary components were in effect for 200 seconds each. 

The transition from one component to another was signaled by a short sound. This stimulus was 

always the same. Its purpose was to signal participants that something changed in the 

environment, without providing additional cues. The delivery of a reward was signaled by a very 

short sound and by incrementing the total number of points by 1. This sound was different from 

the sound that signaled the transition from one component to another. 

 Participants were randomly assigned to one of the two experimental groups: "No_COD" 

or "COD_2s". In the "No_COD" condition (N = 20) the two concurrent Random Interval 

schedules ran on two physically distinct alternatives (on two buttons, Figure 10, left panel) and no 

changeover delay (COD) was in effect. This means that whenever the participant switched from 

one alternative (button) to the other, if a reward was available on that alternative it was delivered 

immediately, without delay, contingent on the switch-response. In the "COD_2s" condition (N = 

18), both schedules ran on the same physical alternative (the right button, Figure 10, middle and 

right panels). The left, grey button acted as a Findley-Key, or a changeover key (Findley, 1958). 

The function of this button was to switch between the available alternatives (schedules), signaled 

by two different colors. In the No_COD condition, the two schedules were arranged on different 

buttons, left and right. In the COD_2s condition, the concurrent schedules were run on the same 

button, one during the green color and one during the red color. The participant could switch 

between the schedules (alternatives) at any point, by pressing the Findley-button, but only one 

alternative was visible at a time (the right button was either red or green, not both). In this 

condition, a changeover delay of 2 seconds (COD 2s) was implemented on each key. This means 

that whenever the participant pressed the Findley-button (thus changing the color of the right 

button, or switching between alternatives),s/he triggered the changeover delay interval which in 

this study was set at two seconds. During this period, target responses had no effect; even if a 
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reward was already available (the timer for the non-visible alternative ran in the background), it 

was only delivered contingent on the first response that occurred after the delay elapsed. If the 

participant switched back, another 2-second delay started, and so on. In theory, a participant 

could go through the entire testing time without acquiring any rewards.  

 The raw data from concurrent schedules was recorded in text files. Whenever an 

eventoccurred (the only possible events were responses on one of the two alternatives), the 

program recorded the time signature, the type of event (click on the first or second button), and its 

consequence, if any (reinforced or not). The raw data were imported into Microsoft Excel for 

analysis. 

Results 

 Measures 

 The data sets produced by college students were analyzed in a manner similar to the data 

sets produced by the virtual organisms animated by the Evolutionary Theory (Phase 1). The 

behavioral measures were also calculated in the same manner (detailed bellow), with two 

exceptions. First, the moment-to-moment phenotypic variability (∆PHENOTYPE) could not be 

computed. The traditional method of recording human input (buttons, clicks) does not allow for 

the calculation of this behavioral dimension. In the search for a procedure that would allow more 

direct comparisons between virtual and human organisms, a completely different method of 

recording human input has been developed, which would address the ∆PHENOTYPE issue. It 

constitutes the focus of an extensive research project that will be discussed in the Future 

Directions subsection. Second, the frequencies of responses, rewards, etc. were reported per 

minute; in the case of virtual organisms they were reported per 500-generation blocks.Response 

and reward rates were summed for each RI RIschedule, for each alternative. The behavior and 

reward ratios (B1/B2 and r1/r2) were converted to logarithms; the slope of these six data points (the 

Extinction component was not included because the reward rates were always zero) gave the 

sensitivity to reward (a, the exponent of Equation 2, slope in Equation 3) of that participant, in 
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that particular environment. The intercept of the line was used to calculate the bias parameter (b = 

10
INTERCEPT

), and the squared correlation coefficient (r
2
) provided the proportion of variance 

accounted for (pVAF) by Equation 3.  

 The total number of responses, rewards, bouts, and changeovers were calculated for each 

participant and divided by the total number of minutes spent in the six schedules. The average 

bout length was obtained by counting all the responses that occurred in bouts and dividing by the 

total number of bouts. The proportion of sustained (in-bout) behavior was calculated in the same 

manner described in Phase 1 (Equation 8). The overall absolute frequency of sustained behavior 

was divided by the overall absolute frequency of target behavior (thus eliminating the target 

sporadic responses).A bout was considered any sequence of three or more consecutive responses 

on one alternative. A bout was considered terminated when the participant switched to the other 

alternative.In the case of virtual or non-human organisms, it is many times necessary to establish 

additional criteria for what terminates a bout, due to the presence of extraneous responses (e.g. 

phenotypes outside the target class, rearing at the back of the cage). No additional criteria were 

necessary here: the rates of behavior were extremely high (~2.5 per second), without noticeable 

pauses.  

 Behavioral characteristics of students' continuous-choice behavior: overview 

 The traditional characteristics of continuous-choice are illustrated in Table 3. Overall, the 

data sets were well described by Equation 3, which explained approximately 70% of the variance 

(r
2
:M = 0.68, Mdn = 0.78, SEM = 0.04). The residuals left by Equation 3 were standardized and 

plotted against the predicted log (B1/B2) values. Visual inspection of the plots did not reveal the 

presence of systematic trends, conclusion supported by the very weak Pearson (r) correlations (M 

= 0.13, Mdn = 0.05, SEM = 0.03).  The bias parameter (b = 10
INTERCEPT

) varied around unity (M = 

0.97, Mdn = 0.97, SEM = 0.01), an expected outcome in symmetrical-choice environments (the 

overall scheduled rates of reinforcement were, overall, identical on the two alternatives). 



Page 55 of 123 

 

 The average slope values obtained from Equation 3(sensitivity, a) were 0.47 in the 

No_COD condition (Mdn = 0.47, SEM = 0.06) and 0.66 in the COD_2s condition (Mdn = 0.7, 

SEM = 0.06), with an overall average of 0.56 pooled across conditions (N = 38; Mdn = 0.59, SEM 

= 0.04). These values are comparable with those previously reported in studies with human 

participants. For example, Kollins, Newland, &Critchfield (1997) examined data from 13 studies 

with human participants and found a median slope (a) of 0.7, almost identical to the one observed 

in the COD_2s groupand a little lower than the one observed in a review ofstudies with non-

human subjects (a ~0.85; Baum, 1979).The No_COD group was characterized by smaller 

sensitivity values, thus bringing down the overall average. This was an expected outcome, 

produced by the experimental manipulation, and will be discussed in the next section. However, 

when comparing the COD_2s data with those reported by Kollins, Newland, &Critchfield (1997), 

despite the virtually identical median values (~0.7), the data sets described here were 

characterized by a slightly more accentuated tendency towards undermatching.  

 This slight general tendency was most likely due to two factors. First, participants were 

exposed only once to each RI RI component, and for a very short period of time (e.g. 200 

seconds). Second, no "transition data" were discarded from the analysis. The matching equations 

(including Equations 2 and 3) are mathematical descriptorsof steady-state behavior, or behavior at 

equilibrium. The common procedure in the field is to discard the periods of transition between RI 

RI components (the transition) and keep only steady-state data (the last period of an RI RI 

component). The analyses discussed here were conducted on all data, including the transition 

periods, which, by definition, add a certain level of noise to the data sets. This decision was 

motivated by the short period of time spent in each RI RI component (e.g. 200s) which made it 

difficult to identify a common criterion regarding the period to be discarded. 

 Overall, the results described above were well described by Equation 3, despite keeping 

the "transition" data, the short duration spent in each RI RI component, the very high rates of 

reinforcement (~ one reward / second, on average), and the participants' complete lack of 
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experience with the environment or the procedure. This suggested that long testing periods, a 

major obstacle in experimenting with human participants, may notbe necessaryfor obtaining 

robust results. It is possible that designing a more familiar environment, richer in rewards, may 

have contributed substantially to the robustness of the results reported here. Traditionally, such 

environments involved levers or large buttons, which are outside of the day-to-day experience of 

most college students. Also, the scheduled rates of reinforcement were similar to those arranged 

in experiments with non-human subjects (e.g. RI  60 RI 120 → ~1.5 rewards/minute), probably 

too low to keep students engaged for long periods of time. In contrast, the procedure described 

here implemented a testing environment much closer in design to the everyday experience of 

college students (e.g. using a regular computer and a mouse to operate two buttons on the screen). 

Also, the high pace of the experimental task may have contributed to keeping the students 

engaged, which in turn may have been reflected in the robust parameter values that described 

their choice-behavior. These hypotheses need further verification. The results described here 

suggest that this implementation is promising for investigating the continuous-choice behavior of 

human participants. 

 Effects of changeover delay on the behavior variability of virtual organisms (HDCOD) 

and college students (COD) 

 Data produced by college students in the No_COD (N = 20 )and COD_2s (N = 18 ) 

conditions were compared to those produced by virtual organisms animated by the Evolutionary 

Theory in environments characterized by various HDCOD values. In the figures described below 

the data produced by virtual organisms is always presented in the left panels (HDCOD = 1.4, 2.4, 

3.4, 4.4, 5.4, 6.4). The data produced by college students under the "No_COD" and "COD_2s" 

experimental conditions is always presented in the right panels (averaged per experimental 

condition, with the error bars indicating standard errors of the mean, SEM).  

 The Evolutionary Theory correctly predicted the direction of the differences between 

groups on eight out of eight behavioral measures. When compared to the No_COD group, the 
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participants in the COD_2s condition, on average, showed greater sensitivity to reward (a), 

switched less often between alternatives, emitted fewerresponses, obtained fewerrewards, emitted 

fewer, but longer bouts, displayed a greater proportion of sustained behavior (%), and exhibited 

greater inter-bout times (IBT). On four out of eight behavioral dimensions the differences were 

statistically significant (a summary is provided in Table 4).  

 Sensitivity and Changeovers 

 Figure 11 depictssensitivity values (the exponent, a; top panels) and changeover 

frequencies (bottom panels). The left panels depict results produced by the Evolutionary Theory 

at various  HDCOD values. When the Hamming changeover delay was low (HDCOD = 1.4), the 

continuous choice behavior of the virtual organism was characterized by severe undermatching (a 

~0.25). It's maximum changeover frequency (COMAX) varied around 28 / 500 generations. 

Increasing the HDCOD caused systematic increases in sensitivity (a), accompanied by a noticeable 

reduction in the frequency of switching between alternatives. The differences produced by 

various HDCOD values were larger at first, but tended to disappear once the HDCOD was increased 

beyond ~3.0. Similar patterns were observed when examining the data produced by college 

students. In the No_COD condition the average sensitivity values (a) varied around 0.47 

(pronouncedundermatching; panel 2) and the average frequency of changeovers (COs/minute) 

varied around 50 (panel 4). The averaged sensitivity (a) values in the COD_2s group was 0.66, 

significantly larger than the No_COD group, t(18) = 2.19, p< 0.05 (one-tailed). Also, the 

COD_2s group switched, on average, significantly less than the No_COD group, t(18) = -1.99, p< 

0.05 (one-tailed). 

 Target behavior and obtained rewards 

 Figure 12 depictsaverage frequencies of target behavior (top panels) and obtained 

rewards (bottom panels). The left panels depict results produced by the Evolutionary Theory at 

various  HDCOD values, averaged per 500 generations. As the HDCOD increased from 1.4 towards 

6.4, the average frequency of target behavior (top left) decreased from ~100 towards ~70 (per 500 
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generations).  The same pattern was observed when examining the frequency of obtained rewards 

(bottom left): a decrease from ~20 towards ~14 (per 500 generations). The differences produced 

by various HDCOD values were larger at first, but tended to disappear once the HDCOD was 

increased beyond ~3.0. Similar changeover delay effects were observed in the results produced 

by college students (right panels). Students in the "COD_2s" condition, on average, emitted fewer 

behaviors (~87 vs. ~110; top right) and obtained fewer rewards (~33 vs. ~42; bottom right) than 

students in the No_COD condition. The average decrease in the number of obtained rewards 

caused by a 2-seconds COD was statistically significant, t(18) = -3.44, p< 0.01 (one-tailed). 

 Bout frequency and bout length 

 Figure 13 depictsaverage frequencies of bouts (top panels) and the average bout length 

(responses/ bout; bottom panels). The left panels depict results produced by the Evolutionary 

Theory at various  HDCOD values. As the HDCOD increased from 1.4 towards 6.4, the average 

frequency of bouts decreased from ~12.5 to ~5 (per 500 generations).  The decrease in bout 

frequency was accompanied by an increase in bout length (the average number of responses 

within a bout), which increased from ~5.5 to ~14. The differences produced by various HDCOD 

values were larger at first and diminished fast once the HDCOD was increased beyond ~3.0. 

Similar effects were observed when examining the results produced by college students. The 

average bout frequency emitted by students in the No_COD condition was approximately 

8.0/minute, larger than the bout frequency observed in the COD_2s group (M = 6.4). In addition, 

students in the COD_2s group emitted longer bouts (M = 13.5) than students in the No_COD 

group (M = 7.2). Although both differences were in the direction predicted by the theory, they did 

not reach statistical significance. 

 Sustained behavior (%) and Inter-Bout Time (IBT) 

 Figure 14 depictsthe percent of sustained behavior (top panels) and the average inter-bout 

time (IBT; bottom panels). The left panels depict results produced by the Evolutionary Theory at 

various  HDCOD values. As the HDCOD increased from 1.4 towards 6.4, the average proportion of 
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sustained behavior (%) increased from ~65% to ~95%. The average duration of the inter-bout 

times (IBT) increased as well, from ~ 30 to ~75 time units. In both cases, the differences 

produced by various HDCOD values diminished once the HDCOD was increased beyond ~3.0. 

Similar effects were observed when examining the results produced by college students. Students 

in the "COD_2s" condition, on average, exhibited a significantly higher proportion of sustained 

behavior (M = 67%)  than the students in the No_COD group (M = 51%), t(18) = 1.96, p< 0.05 

(one-tailed). They also exhibited larger IBT values (M = 115) than students in the No_COD 

group (M = 69). Although in the predicted direction, this difference did not reach statistical 

significance.  

Discussion 

 Overall, the Evolutionary Theory performed remarkably well in predicting the low-level 

characteristics of students' continuous-choice.When compared to students in the No_COD 

condition, the students in the COD_2s group, on average, showed significantly higher sensitivity 

to reward (a), switched significantly less often between alternatives, obtained significantly 

fewerrewards, and displayed a significantly higher proportion of sustained behavior;they emitted 

fewerresponses, fewer but longer bouts, and took longer to re-engage in sustained behavior upon 

the termination of a response sequence (longer IBT).  

 Increases in sensitivity (a) and decreases in CO frequencies are not at all surprising 

(Baum, 1982; Davison & McCarthy, 1988). However, no systematic study with live organisms, 

humans or non-humans, has ever investigated this collection of behavioral features in a 

systematic way (to the author's knowledge). The fact that the theory made accurate predictions on 

all eight behavioral dimensions, and that four of the predicted differences reached statistical 

significance despite the relatively small sample sizeswas remarkable. A post hoc power analysis 

(G*Power 3.1; Erdfelder et. al, 1996; Faul et. al., 2007) revealed that, considering the existing 

sample sizes and the observed effect size (Cohen’s d’ ~ 0.6; Cohen, 1977), the achieved power 

was approximately 0.53, value which can be interpreted as modest. An a priori analysis indicated 
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that achieving reasonable power (0.8) to detect a medium effect size (Cohen’s d’ ~ 0.5) would 

require approximately 50 participants per experimental group. 

 These findings provide strong support for the computational equivalence between the 

Hamming Distance changeover delay (HDCOD) and the changeover delay (COD) used in 

experiments with live organisms (Baum, 1982; Davison & McCarthy, 1988; Davison, 1991; 

Jimenez &Aparicio, 2009).This finding adds to increasing knowledge about the functional 

equivalence between computational variables and real-world parameters (e.g. the strength of the 

selection process <=> reinforcement magnitude; McDowell, 2004; McDowell et. al., 2008). Most 

importantly, the results described above constituted an important step in the verification of the 

theory, that of creating new knowledge about the behavior of live organisms. The ability to 

formulate accurate and testable predictions about unknown phenomena is arguably the ultimate 

test of a theory's robustness. The data presented above constitute a first, promising step in this 

direction. Corroborated with ten years of robust empirical findings (McDowell, in press) they 

suggest that the Theory's translational potential is definitely worth pursuing. 

Phase 3: Continuous-choice behavior and traditional measures of impulsivity/inattention. 

 The purpose of the first phase of this project was to learn about the effects of various 

reward rates, reward magnitudes, and Hamming Distance changeover delay (HDCOD), on the 

continuous choice-behavior of virtual organisms characterized by various mutation rates. The 

purpose of the second phase was to explore the Theory's potential forpredicting the effects of a 

changeover delay on the low-level behavior characteristics of students' continuous-choice 

behavior. The purpose of the third phase was to explore the relation between thelow-level 

behavior characteristics of students' continuous-choice behaviorand traditional measures of 

impulsivityand inattention. The rationaleof this phase, outlined in Figure 2,was to explore the 

computational equivalence between the Darwinian process of mutation and a property of the 

nervous system that causes impulsivity-like symptoms in live organisms, via the concurrent-

schedule procedure.  
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Method 

 Participants. 

 Participants were the same 38 Emory undergraduate students who participated in Phase 2.  

 Apparatus and materials. 

 The Continuous Performance Test was administered on the off-the-shelf computer used 

for the concurrent-schedule procedure (Phase 2). The self-reported measures of impulsivitywere 

administered in pen-and-paper format.  

 Procedure. 

 Table 5 depicts the succession and duration of the tasks. The concurrent-schedule task 

(Phase 2) was followed by a short break, after which  the participant was administered the 

Continuous Performance Test - Identical Pairs (CPT-IP; Cornblatt et. al., 1988, 1989). The task 

took 10 minutes to complete. It consisted of numbers flashing on the screen in rapid succession. 

The numbers were composed of 2, 3, and 4 digits respectively (2 digits first, 4 digits last). The 

participants' task was to respond (by pressing the left mouse button) whenever two successive 

numbers were identical. The CPT was followed by a short break, after which the participant was 

administered the self-report measures (pen-and-paper format).  

 Instruments 

 In total, there were 13 different self-report measures of impulsivity and one for 

inattention. They are described below. An additional instrument, the Social Desirability Scale 

(SDS), was used to investigate the participants' tendency to manage their social image, providing 

answers they thought  were expected by a potential reader or that would portray them in what 

someone might interpret as a "better light".  

 The Adult Attention Deficit Disorders Evaluation Scale (A-ADDES) is a 58-item self-

report inventory of impulsivity and inattention, shown to have excellent psychometric properties, 

based onestablished national norms (McCarney& Anderson 1996). It consists of a series of 

statements that describe specific behaviors. Participants rate the frequency withwhich they engage 
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in each behavior on a 5-point scale, ranging from 0 (―do not engage in behavior‖) to 4 (―one to 

several times per hour‖). It provides two separate subscores, one for Inattention and one for 

Hyperactivity/Impulsivity. Its internal consistency was shown to be very high (0.99 overall), with 

test-retest reliability varying around 0.90 for the two subscales (Anastopoulos& Shelton, 2001). 

The adult version is considered appropriate for ages between 18 and 65, and therefore was 

suitable for the present project.  

 The UPPS-P behavior impulsivity scale is a 59-item inventory intended to describe five 

features of impulsive behavior. Negative Urgency addresses outcomes that may stem from a 

tendency to act on strong, usually negative impulses (e.g. anxiety, anger, etc.). Lack of 

Perseverance refers to an individual’s ability to complete tasks despite boredom. Lack of 

Premeditation assesses the ability to ―think before acting‖, to analyze the potential consequences 

of an action and use that information to guide behavior. Sensation Seeking intends to describe 

behavioral outcomes that stem from a need for intense stimulation. These four subscales 

constitute the core of the original UPPS scale (Whiteside &Lynam, 2001). The fifth component, 

Positive Urgency, was added later in an attempt to describe impulsive behaviors resulting from 

high positive moods (Cyders et. al., 2007). The UPPS-P inventory was shown to have good 

internal consistency (Whiteside &Lynam (2001) and its subscales seem able to capture unique 

facets of impulsivity (Whiteside et al., 2005). It was successfully used in characterizing 

impulsivity-related disorders, such as substance abuse, pathological gambling, and ADHD 

subtypes (Miller et al., 2003; Cyders et al., 2007; Verdejo-Garcia et al., 2007; Miller et al., 2010). 

 The Sensation Seeking Scale V (SSS-V, Zuckerman, 1971, 1996) is a forced-choice, 40-

item self-reported inventory that measures various dimensions of sensation seeking. Aside from 

the general score, the scale provides four specific subscores (each based on 10 items): Thrill and 

Adventure Seeking, Experience Seeking, Disinhibition, and Boredom Susceptibility. The scale 

has been extensively tested and was shown to have excellent psychometric properties 
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(Zuckerman, 2007a, b). Its extensive use and validity recommend it as an instrument of choice for 

assessing impulsivity-related behaviors in adolescents (Zuckerman, 1983).  

Results 

 Coding Surveys 

 The raw scores were coded as follows. For A-ADDES the raw scores were coded 

according to the Hawthorne manual (McCarney& Anderson, 1996), coding that takes into 

account the national averages, gender, and age. The standard scores vary between 0 and 15. The 

standard scale is reversed, so that high raw scores become low standard scores. For example, an 

extremely impulsive participant would obtain a raw score of 105 (on a scale from 0 to 108) and a 

standard score of 0 (zero), on a scale from 0 to 15. Because none of the other scales are reversed, 

after the raw scores were standardized, the scale was re-reversed, solely for consistency reasons: 

if "more" is always "more" it makes the results easier to read. For the UPPS-P, SSS, and SDS the 

raw scores were converted to z-scores.  

 CPT-IP measures 

 CPT tasks in general are widely used in the ADHD literature and have beenshown to be 

successful in differentiating between ADHD and non-ADHD participants (Losier et. al., 1996). 

This particular version (CPT-IP; Cornblatt et. al., 1997)was shown to have very good 

psychometric properties and is used nation-wide to assess the quality and quantity of sustained 

attention (Nestor et. al., 1991). In addition, it was shown to be a little harder than other CPTs 

(Cornblatt et. al., 1988; Adler et. al., 2001), thus allowing for a finer differentiation in the 

students' performance. The CPT-IP task offered information about the number of correct 

responses, or hits (correct identification of identical pairs) and number of false alarms (incorrect 

identification of catch trials as correct answers). Based on the overall proportions of hits and false 

alarms the program calculates two indices, d-prime (d') and beta (β). The first index, d', called a 

discriminative index, is the most commonly reported measure. It provides a measure of the 

participant's ability to discriminate signal from noise and is considered to be a measure of 
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attentional capacity, with lower values indicating worse (lower) ability to discriminate between 

signal and noise. The second index, beta (β), is interpreted as an index of motivation, and 

apparently captures a participant's tendency to over-respond ("risk-taking attitude") or under-

respond ("conservative attitude"), with higher values indicating a more conservative tendency 

(Cosway et. al., 2002; Cornblatt, 1988, 1989). Both measures are calculated automatically at the 

end of the task.  

 Continuous-choice measures 

 The continuous-choice measures were the measures obtained in Phase 2: sensitivity to 

reward (a) the exponent of Equation 2), frequencies (per minute) of changeovers (CO/min), target 

behavior (B/min), obtained reinforcers (Reinf/min), and bouts (Bouts/min), average bout length 

(Bout Length), Sustained Behavior (%), and Inter-Bout Time (IBT). 

 The correlational analyses were conducted using the R statistical package (R 

Development Core Team, 2013). This phase required a two-step analysis. The first step was to 

analyze the relation between behavioral characteristics of continuous-choice, on one hand and the 

survey and CPT-IP scores, on the other hand. Because the first were, as expected, influenced in 

systematic ways by the presence or absence of a changeover delay (COD), these analysis were 

conducted separately for the two groups: No_COD (N = 20) and COD_2s (N = 18).The second 

step, included for verification purposes, was to examine the relation between the traditional 

measures of impulsivity and inattention. This analysis was conducted on all 38 scores, combined, 

because these scores were not subject to experimental manipulations. 

 Continuous-choice and measures ofimpulsivity/inattention 

 Overall, the results were inconclusive. Figure 15 depicts the correlation coefficients (r) 

that described the relations between continuous-choice characteristics (vertical) and survey and 

CPT-IP measures (horizontal). The figure only retained the relations that were statistically 

significant. Due to the very large volume of data, the relations that were not significant were 

excluded from description and discussion, with a few exceptions that appeared informative. The 



Page 65 of 123 

 

shaded values emphasize negative relations. Very few correlations were significant, many at the 

0.05 level, all modest in strength; their average size was ~0.5 for the No_COD group (average r
2
= 

0.25,SD = 0.09) and ~0.49 for the COD_2s group (average r
2
= 0.24, SD = 0.04).  

 No_CODgroup 

 SSS-V. The proportion of sustainedbehavior (%) correlated significantly with the 

Experience Seeking score of SSS-V (r = 0.41, p< 0.05). The correlation was positive, indicating 

that as the Sensation Seeking score increased, the proportion of sustained behavior increased as 

well.  

 UPPS-P. There were no significant correlations between the UPPS-P scores and 

continuous-choice characteristics. 

 A-ADDES. As the overall A-ADDES score increased, the average bout length increased 

as well (r = 0.42, p< 0.05). The Hyperactivity/Impulsivity score correlated significantly with four 

continuous-choice characteristics. As the Hyperactivity/Impulsivity score increased, the exponent, 

a, increased (r = 0.44, p< 0.05), the average bout-length increased (r = 0.55, p< 0.05), the 

proportion of sustained behavior increased (r = 0.46, p< 0.05), and the Inter-Bout Time, IBT, 

decreased (r = -0.43, p< 0.05). 

 CPT-IP. The discrimination indices, d', did not correlate significantly with any 

continuous-choice characteristic. The second CPT measure, beta (β; tendency to over- or under-

respond), correlated significantly with the average bout length (r = -0.44, p< 0.05): the tendency 

tounder-respond increased as the average bout length decreased.  

 COD_2s group 

 SSS. There were no significant correlations between the SSS scores and the continuous-

choice characteristics. 

 UPPS-P.In the COD-2s group, UPPS-PTOTAL correlated significantly with three 

continuous-choice characteristics. As the total UPPS-P score increased, the bout frequency 

(bouts/min) increased (r = 0.48, p< 0.05), the proportion of sustained behavior increased (r = 
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0.47, p < 0.05), and the Inter-Bout Time (IBT)decreased(r = -0.45, p< 0.05).Positive Urgency 

correlated significantly with the proportion ofsustained behavior (r = 0.45, p< 0.48). Lack of 

Premeditation correlated significantly with bout frequency (bouts/min: r = 0.5, p< 0.48). Negative 

Urgency correlated significantly with the exponent, a (r = 0.5, p< 0.05), with bout frequency (r = 

0.51, p< 0.05), and with Inter-Bout Time, IBT (r = -52, p< 0.05).  

 A-ADDES. As the overall A-ADDES scores increased, the proportion of sustained 

behavior decreased (r = -0.45, p< 0.05). Unlike in the No_COD group, the 

Hyperactivity/Impulsivity subscale did not correlate significantly with any continuous-choice 

characteristic. The Inattention score correlated significantly with the proportion of sustained 

behavior (r = -0.51, p< 0.05).  

 CPT-IP.The discrimination indices, d', correlated significantly with the exponent, a: as d' 

increased (better discrimination, or less impulsivity), the exponent increased as well (r = 0.45, p< 

0.05). The CPT-IPsensitivity parameter (β) correlated significantlywith the average behavior 

frequency (B/min): as β (the tendency to be more conservative) increased, behavior frequency 

decreased (r = -0.5, p< 0.05).  

 For several reasons, the correlations described above seem to be more likely due to 

chance (Type I errors) than to actual meaningful trends. First, only 27 correlations were 

significant, out of 270. Out of them, only two were significant at 0.01 level. In addition, the 

average effect sizes were modest, with an average r
2 
of 0.24 (SD = 0.07). The significant 

correlations were inconsistent from group to group and variable to variable. For example, in the 

No_COD group some of the few significant correlations were between concurrent-schedules 

variables and some of theA-ADDES scores, but none with UPPS-P scores. In the COD_2s group 

the situation was reversed:many (of the few) significant correlations involved UPPS-P scores, but 

only two involved A-ADDES scores.  

 Relations between various measures ofimpulsivity/inattention 
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 The outcomes generated by the Evolutionary Theory (Phase 1) werevery robust and in 

agreement with the live-organisms literature.The predictions about the low-level behavioral 

characteristics of students' continuous-choice (Phase 2) were correct on all eight behavioral 

dimensions (with fourreaching statisticalsignificance). The unsatisfactory results described above 

(Phase3) were unexpected and in disagreement with both the theory's predictions and with the 

results previously reported in the live-organism literature. 

 A close examination of the traditional measures of impulsivity and inattentionrevealed 

that the impulsivity scores of the 38 participants 1) were not very variable, clustered around (and 

even below) the theoretical average and 2) includedextremely few very high scores. In addition, 

the correlations between the scores obtained with different instruments were rarely significant and 

only modest in size, probably due to the small variability and lack of extreme scores. Figure 16 

depicts the correlation coefficients between the various measures of impulsivity/inattention (self-

reported and CPT-IP). Due to the large volume of data, only the statistically significant relations 

were reported (* p< 0.01, ** p< 0.05). 

 Within instruments. 

 The correlation between the two CPT-IP measures, d-prime (d') and sensitivity (β), 

wasnot significant.The two subscales of A-ADDES were highly correlated with the A-ADDES 

total score (Hyperactivity/Impulsivity: r = 0.9, p < 0.01; Inattention: r = 0.87, p<0.01 ). The 

relation between the two subscales was noticeably weaker (r = 0.57, p< 0.01).  

 All UPPS-P subscales correlated significantly with the total score (p< 0.01), with 

correlation coefficients varying between 0.44 (lack of perseverance) and 0.84 (positive urgency). 

The relations between subscales varied in strength. Negative Urgency correlated significantly 

with the total score (r = 0.78, p< 0.01), Positive Urgency (r = 0.57, p<0.01), Sensation Seeking (r 

= 0.28, p <0.05), lack of Perseverance (r = 0.34, p<0.05), and lack of Premeditation (r = 0.44, p< 

0.01). Lack of Premeditation correlated significantly with the total score (r = 0.67, p< 0.01) and 

Positive Urgency (r = 0.52, p< 0.01), but not with Sensation Seeking and lack of Perseverance. 
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Lack of Perseverance correlated significantly with Positive Urgency (r = 0.29, p< 0.05), but not 

with Sensation Seeking. Overall, 11 out of 15 relations were significant and the coefficients of 

determination (r
2
) were small (M = 0.27).  

 The relation between the total SSS-V score and its subscales was good. SSS-

Totalcorrelated significantly with Boredom Susceptibility (r = 0.54, p< 0.01), Disinhibition(r = 

0.72, p< 0.01), Experience Seeking(r = 0.76, p < 0.01), and Thrill and Adventure Seeking(r = 

0.76, p < 0.01).At a subscale level, Boredom Susceptibility correlated significantly with 

Disinhibition(r = 0.32, p< 0.05) but not with Experience Seeking and Thrill and Adventure 

Seeking.Disinhibition correlated significantly with Thrill Seeking (r = 0.35, p< 0.05) and 

Experience Seeking (r = 0.31, p< 0.05). Experience Seeking and Thrill and Adventure Seeking 

correlated among each other (r = 0.59, p< 0.01). Overall, out of 10 relations eight were 

significantand the coefficients of determination (r
2
) were small (M= 0.3). 

 Betweeninstruments 

 CPT-IP and inventories 

 D-prime (d') correlated significantly with four self-report measures (out of 13), A-

ADDES Inattention (r = -0.45 ,p< 0.01), A-ADDES Hyperactivity/Impulsivity (r = -0.42 , p< 

0.01), A-ADDES total (r = -0.49 , p< 0.01), and the lack of Perseverance subscale of the UPPS-P 

inventory (r = -0.28 , p< 0.05). All relations were inverse-proportional, with d' decreasing with 

increased self-reported scores of Inattention, Hyperactivity/Impulsivity, and Lack of 

Perseverance. Note that overall d' correlated significantly with the A-ADDES total score and its 

subscales (modest effect sizes, average r ~0.40), with only one UPPS-P subscale, and none of the 

SSS-V scores. Sensitivity (β) correlated significantly with two self-reported measures (out of 13); 

bothwere subscales of the UPPS-P inventory and both relations were very modest: Negative 

Urgency (r = -0.29, p< 0.05) and Positive Urgency (r = -0.35, p< 0.05). Both relations were 

inverse-proportional, with β decreasing (increased tendency of answering "yes, the stimuli are 



Page 69 of 123 

 

identical") as either negative or positive urgency increased. It did not correlate significantly with 

any of the A-ADDES or SSS-V scores. 

 A-ADDES and UPPS-P 

 Overall, out of 18 relations, only eight were significant, one in the counter-intuitive 

direction. A-ADDES-Inattention  correlated significantly with Sensation Seeking (r = -0.34, p< 

0.05) and lack of Perseverance (r = 0.61, p< 0.01), but not with UPPS-P total score, Positive 

Urgency, lack of Premeditation, and Negative Urgency. A-ADDES-Hyperactivity/Impulsivity 

correlated significantly with UPPS-P total score (r = 0.38, p< 0.05), Positive Urgency (r = 0.34, 

p< 0.05), lack of Perseverance (r = 0.44, p< 0.01), and lack of Premeditation (r = 0.38, p < 0.01), 

but not with Sensation Seeking and Negative Urgency. A-ADDES total score correlated 

significantly with Positive Urgency(r = 0.34, p< 0.05) and lack of Perseverance (r = 0.6, p< 

0.01), but not with UPPS-P total score, Sensation Seeking, lack of Premeditation, and Negative 

Urgency. Overall, the relations were modest (average r = 0.42, r
2
 ~0.17) . 

 UPPS-P and SSS-V 

 Overall, out of 30 relations, only 11 were significant. Negative Urgency correlated 

significantly only with Disinhibition (r = 0.34, p< 0.05). Lack of Premeditation did not correlate 

significantly with any of the SSS scores. Lack of Perseverance correlated significantly only with 

Disinhibition (r = 0.39, p< 0.01). UPPS-P Sensation Seeking correlated significantly with SSS-

Total (r = 0.71, p< 0.01), Thrill and Adventure Seeking (r = 0.82, p< 0.01), Experience Seeking 

(r = 0.6, p< 0.01), and Disinhibition (r = 0.49, p< 0.01), but not with Boredom Susceptibility. 

Positive Urgency correlated significantly only with Disinhibition (r = 0.37, p< 0.05). UPPS-P 

total score correlated significantly with SSS-Total (r = 0.51, p< 0.01), Thrill and Adventure 

Seeking (r = 0.37, p< 0.05), Experience Seeking (r = 0.4, p< 0.05), and Disinhibition(r = 0.56, p< 

0.01), but not with Boredom Susceptibility. Overall, the relations were modest (average r = 0.50, 

r
2
 ~0.25) . 

 A-ADDES and SSS-V.Overall, out of 15 relations, none was statistically significant. 
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Discussion 

 Overall, the correlations between various measures of inattention and impulsivitywere 

either non-significant (44 out of 90) or modest in size(average r = 0.50, SD = 0.17, Mdn = 0.45). 

A closer examination of the raw scores revealed that the level of variability in the present sample 

was small on all measures, with most scores clustered around the theoretical averages, and almost 

no extremely high scores). 

 A-ADDES.The A-ADDES scores were standardized according to the manual 

(McCarney& Anderson, 1996), on a scale from 0 to 15. The authors found that the average 

standard scores (for both inattention and impulsivity) were approximately 6 for the general 

population and approximately 13 for participants who had an ADHD diagnostic. In the present 

sample the average standard scores were 7.2 for inattention (Mdn = 7, SD = 2.8) and 9.6 for 

impulsivity (Mdn = 10, SD = 2.5). Although the impulsivityscores seem high, they are still well 

below the values identified by the authors as "problematic" (13). In addition, the A-ADDES 

Hyperactivity / Impulsivity scores correlated only modestly with the UPPS-P inventory subscales 

and not at all with any of the SSS-V scales. Impulsivity is considered a multi-dimensional 

construct (Evenden, 1999) and it is possible that the UPPS-P and SSS-V inventories tap into 

different domains than the A-ADDES subscale. However, it seems unlikely that none of the 11 

subscales of UPPS-P and SSS-V taps into a similar impulsivity domain. Moreover, the relation 

with the CPT-IP measure generally interpreted as a measure of impulsivity (d') was also modest 

(r
2
 = 0.17).The A-ADDES impulsivity scores were the highest impulsivity scores in the sample 

and this subscale was the only one that correlated (although modestly) with the laboratory 

measure d'. The scores obtained with the UPPS-P and SSS-V inventories showed even less 

variability and were closer to their theoretical average.  

 UPPS-P.Table 6 depicts the theoretical scores for the UPPS-P inventory (all subscales), 

the values observed in the present sample, and the values observed in the control group in a recent 

ADHD study (Miller et. al., 2010). The scores observed in the present sample are very similar to 
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(and sometimes smaller than) their theoretical average and the ones reported by Miller et. al. 

(2010) on all subscales, which suggests that the scores observed in the present sample are quite 

low, far from values that could be interpreted as "problematic". To add to the confusion, the 

highest scores observed in the present sample were the Sensation Seeking subscale scores, which 

correlated significantly with the subscales of UPPS-P, but not with the Impulsivity subscale of A-

ADDES. Instead, it correlated significantly with the Inattention subscale of A-ADDES, and the 

relation was inverse-proportional: higher sensation seeking tendencies were correlated with lower 

inattention scores.  

 SSS-V.The same was true for the SSS-V scale (Zuckerman, 1971, 2007), as illustrated in 

Table 7. The average total score was 18.5 (Mdn = 19, SD = 6.1), smaller than both their 

theoretical averages and the values previously reported to describe control groups (M = 19.5, SD 

= 5.5,  Ridgeway&Russel, 1980;M = 20.6, SD = 6.5, McDaniel & Mahan, 2008). Furthermore, 

McDaniel & Mahan (2008) observed correlation coefficients between the SSS-V subscales and 

the total score that varied around  0.6, comparable with the values observed in the present sample 

(r ~ 0.65).  

 CPT-IP.In the case of the main CPT-IP measure, d-prime (d'), things are quite unclear. 

Table 8 depicts the results observed in the present sample and results previously reported in 

groups with various diagnostics and control groups. As a reminder, lower d' values indicate low 

discrimination ("undesirable" outcome) and high values indicatehigh  discrimination("good" 

outcome). The present sample was characterized by an average d' of 2.12 (SD = 0.78). Barr et al. 

(2008), in a study on schizophrenia, reported d' values around 2.1 in the schizophrenia group 

(almost identical with this sample!) and values around 3.3 (better discrimination) in the control 

group.Almost identical values were observed by Dyer et. al. (2008), who reported d' values of 

approximately 2.0 in the schizophrenia group. Their manipulation did not involve a non-

diagnosed group because they used d' to measure before-after treatment effects. After treatment 

both the placebo group and the experimental group were characterized by higherd' values (better 
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discrimination): 2.5 in the placebo group and 2.7 in the experimental group. Very interesting 

results were reported by Rutschmann et al. (1977), in a study on children classified as being at 

"ultra-high risk" of developing schizophrenia. The d' statistic was identical for controls and ultra-

high-risk at age 7-8y, (d' ~1.0, poor discrimination), was ~2.0 for controls (similar to the present 

sample)and 1.5 for ultra-high-risk at age 9-10y, and ~2.3 for controls and ~2.0 for ultra-high-risk 

at age 11-12y (both similar to the 2.12 observed in the present sample). Cornblattet. al. (1988), in 

a study involving controls, non-diagnosed participants, observed d' values that varied around 1.6 

at test and 2.0 at re-test. Cornblatt  et. al. (1989), observed d' values that varied around ~1.9 in a 

control group, ~1.85 in a depression group, and 0.75 (very low value, very poor discrimination) in 

a schizophrenia group.  

 The data described above suggests that the d' statistic needs to be interpretedwith caution, 

since the d' values observed in some studies in the control groups were lower(worse outcome) 

than d' values that, in other studies, characterized depressed, ADHD, or schizophrenia groups. 

The potential of the d' statistic to provide knowledge about pathologic behavior is unclear, 

especially considering that differences in age (Rutschmann et. al., 1977) or one previous exposure 

to the task were enough to produce noticeable improvement in d' values, both in control 

(Cornblatt et. al., 1988) and schizophrenia groups (Dyer et. al., 2008).  

 In summary, the results of the third experimental phase were inconclusive. Thescores 

obtained on self-reported measures of impulsivity/inattentionand on the CPT-IP task could not be 

corroborated with low-level characteristics of continuous-choice behavior. The impulsivity/ 

inattention scores were low. They varied around or below their theoretical averages and, overall, 

fell below values previously reported in the literature to describe control groups. This made it 

difficult to verify their relation with behavioral characteristics of continuous-choice. In addition, 

the sample examined here was composed of young adults, and the severity of ADHD symptoms 

is known to decline with age (Rutschmann et. al., 1977).  
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A power analysis was conducted using G*Power 3.1 (Erdfelder et. al, 1996; Faul et. al., 2007). 

The results indicated that the achieved power for detecting an average effect size (Cohen’s d’ ~ 

0.5; Cohen, 1977) was fairly high (~0.73) for the within group analyses (N1 = 17, N2 = 20) and 

very high overall (0.96 for N = 37). These results are congruent with the hypothesis formulated 

earlier: the variability in impulsivity scores was not large enough to allow for sensible 

differentiations among participants.  

A close examination of gender differences (Table 9) strengthened this conclusion. The average 

scores were small, varying closely around average (zero, for z-scores). Differences between the 

average scores of males and females were very small and in the expected direction. Males scored 

slightly higher on impulsivity dimensions, females scored lightly higher on the inattention 

subscale of A-ADDES, in accordance to previous findings (McCarney& Anderson, 1996; 

Barkley, 2005, 2013). 

 The potential of the concurrent-choice procedure of discriminating between non-

diagnosed and ADHD-diagnosed participants was verified in previous studies along general 

dimensions such as sensitivity to reward (a) and frequency of changeovers (Kollins et. al., 1997; 

Taylor et. al., 2010). Behavioral measures like those examined here (e.g. sustained behavior, IBT, 

etc.) have not yet been investigated, to the author's knowledge, in continuous-choice settings with 

human participants. Verifying their potential of informing about pathologic (or even just 

problematic) impulsivity/inattention features will require experimental groups characterized by 

greater levels of inattention/impulsivity, preferably non-medicated participants that received 

ADHD diagnoses. When this project was initiated the involvement of special populations was 

considered premature, mainly on ethical grounds. The validity of the concurrent-schedule 

procedure, built specifically for this project, was not verified at that time. Neither was the 

potential of the Evolutionary Theory to make predictions about the continuous-choice behavior of 

live organisms. The results generated by this project indicated that these two issues are no longer 

problematic. The concurrent-schedule implementation described here produced robust results, 
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congruent with the vast literature on this topic. The fact that a remarkably short testing-time was 

enough to generate good results is the real gain: this will allow the testing of human participants 

without losing accuracy and, most importantly, without inducing high stress levels. In addition, 

the fact that the Evolutionary Theory made specific predictions about the continuous-choice 

behavior of live organisms, corroborated the vast amount of knowledge gained about the theory 

itself, provides the necessary support and incentive to begin expanding this research enterprise to 

clinically-relevant human behavior.  

General Discussion 

 The overarching purpose of this thesis was to expand the knowledge about the 

Evolutionary Theory of Behavior Dynamics and to begin exploring its translational potential. The 

first specific aim was to explore the effects of the Darwinian process of mutation on the behavior 

variability of virtual organisms, and the mediating role of three environmental characteristics: 

reward rate, reward magnitude, and changeover delay (HDCOD). The second specific aim was to 

test predictions made by the Evolutionary Theory about the effects of a changeover delay (COD) 

on the continuous choice behavior of college students. The third specific aim was to explore the 

potential equivalence between mutation and a biological variablethat induces impulsivity-like 

symptoms in live organisms. 

 Because the Evolutionary Theory cannot cast predictions in the same way as traditional 

theories do, learning about the effects of various variables and processes requires running the 

theory, performing all the necessary computations, and then examining the emergent outcome. 

The present projectproduced important knowledge about the effects of mutation on the behavior 

variability of virtual organisms, and about the mediating role of the environment'svalue and 

conduciveness. This knowledge added to ten years of fruitful efforts (McDowell, in press) and 

provided important insight about the emergence of high-level phenotypes from the reiteration of 

Darwinian processes. In addition, the behavior characteristics produced by high mutation rates 

were remarkably similar to behavioral descriptions of ADHD. This parallel was strengthened by 
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the mediating effects of environmentalcharacteristics, functionally similar to those reported in the 

ADHD literature. In addition to expanding the theoretical knowledge about the 

EvolutionaryTheory and the potential equivalence between specific high-level phenotypes of 

virtual organisms and clinically-relevant phenotypes (Phase 1), this project provided the first 

laboratory evidence supporting the theory's potential for predicting human behavior (Phase 

2).Taken together, these findings provide further support for the selectionist paradigm as a valid 

account of behavior dynamics, and for the Evolutionary Theory, as a valid instantiation, with 

translational potential that is worth pursuing. In addition, they may have important implications 

for the way we conceptualize and study mental disorders, implications that will be discussed in 

the next subsection.Unfortunately, the computational equivalence between mutation and a 

hypothesized biological variable that produces impulsivity-like symptoms in live organisms 

remains uncertain (Phase 3). The practical and theoretical obstacles in establishing this 

equivalence will constitute the focus of the last subsection of this manuscript.  

 Theoretical implications 

 The results described in the first phase of this project may have important implications 

for the field of mental health. They suggest that an organism's behavior cannot be studied 

meaningfully outside the environment in which it emerged, for two main reasons. First, similar 

high-level phenotypes  may be generated by various combinations of different factors (Figure 9), 

impossible to identify from the outcome itself. Second, similar high-level phenotypes may impact 

the organisms that exhibit them in different ways: what may resemble a maladaptive constellation 

of traits may actually be adaptive responses, triggered by the environments' scarcity. 

 The traditional approach to clinically-relevant phenotypes such as ADHD relies heavily 

on high-level descriptions (how behaviors look like), which, in turn, are used to assign 

individuals to research groups (e.g. the ADHD group). If extremely similar behavioral 

constellations can be produced by numerous combinations of factors, as suggested by the 

Evolutionary Theory, individuals in different research samples may differ greatly in how their 
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behavioral characteristics came about. In some individuals they may have been generated almost 

entirely by organismic (biological) variables, in others by environmental characteristics, and in 

most individuals, by combinations of factors from both categories. This would lead to highly 

heterogeneous groups of individuals, whose behavioral characteristics would be assessed and 

approached in the same way (due to surface similarities), in turn causing different studies to reach 

different (or even contradictory) conclusions. This would explain, for example, why the number 

of studies that found connections between ADHD diagnostics and candidate genes was not much 

greater than the number of failed replication attempts (Waldman &Gizer, 2006) or why 

behavioral treatments are sometimes just as effective as medication in managing ADHD 

symptoms, as suggested by a recent examination of ~170 studies (Fabiano et. al., 2008).If this 

hypothesis is correct, it follows that the study of psychological disorders must include, in addition 

to high-level descriptions, low-level functional analyses of the behavioral patterns that appear 

problematic. Attributing them by default to biological factors may be inaccurate, since they 

emerged from the dynamic interaction between a particular organism and a particular 

environment.An emergent property cannot be understood outside the system that created it: a 

uniqueorganism-environmentstructure, continuously pushed through time by Darwinian forces. 

 Limitationsand Future Directions 

 The results obtained in the first phase of this project provided important information 

about the effects of various mutation rates on various characteristics of continuous choice-

behavior. However, this project was focused on mutation rates that varied between 5% and 100%. 

The next step will be to examine the effects of very small mutation rates on the same behavioral 

characteristics. McDowell & Popa (2010) showed that at mutation rates less than 5% the choice 

behavior of virtual organisms tended to become less sensitive to environmental consequences, as 

reflected by accentuated tendencies towards undermatching (a ~0.6). A thorough examination of 

the effects of very small mutation rates (0% - 5%)will provide a more complete picture of the 

effects of mutation on choice-behavior. 
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 The present study investigated the separate effects of three environmental variables on 

choice-behavior, at various mutation rates. The next step will be to examine the combined effects 

of these variables. In addition, the present study investigated organisms that differed only in the 

rate of mutation that characterized them; all other characteristics were kept constant and identical 

with previous studies. For example, all organisms had behavioral repertoires of 100 behaviors 

(the population size), selected from the 0 - 4,095 range. Recent pilot studies (Frankel, A.& 

Kelley, S.,personal communication, July 2013) suggested that the size of the behavioral 

repertoires has important effects on behavior. This organismic feature may be equivalent to the 

behavioral diversity/richness of a live organism, indicating the number of behavioral options an 

organism has at a particular time (e.g. a wide vocabulary, narrow emotional repertoire, etc). This 

variable is different than the size of the target classes (environmental feature), which indicates 

how many behaviors with different phenotypes can trigger similar consequences (the size of the 

operant class). The importance of these variables becomes easier to grasp if one thinks about the 

very rigid behavioral repertoires of autistic children (Neuringer, 2009) or the important focus on 

building social skills in the repertoires of depressed clients (Pierce & Cheney, 2004).The 

combined effects of various population and class sizes are bound to influence choice behavior in 

important ways. When added to the already suggested pathways (small mutation rates, various 

combinations of reward rates and magnitudes, etc.) it becomes evident that, although the 

Evolutionary Theory is "simple enough to be written on a napkin" (McDowell, 2012), the 

outcomes it generates are not.  

 In addition to producing behavioral outcomes consistent with those observed in live 

organisms (phase 1), the Evolutionary Theory made accurate qualitative predictions about the 

behavior of college students on all eight behavioral dimensions (with four reaching statistical 

significance). These results were quite remarkable, indicating that the theory's translational 

potential is definitely worth exploring. In doing so, it would be useful to adapt the concurrent-

schedule procedure in ways that would permit more direct comparisons between the behavior of 
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virtual and human organisms. One option is to conceptualize the testing environment as a two-

dimensional space and to represent the target classes as regions within this space (through 

Cartesian coordinates). Instead of "pressing buttons" the participant will "click within a certain 

region". The Cartesian coordinates of each response (click) can be recorded, allowing the precise 

calculation (in pixels) of ∆PHENOTYPE (the moment-to-moment behavior variability). In addition, 

this procedure will allow for the precise manipulation of the size of target classes (the target 

regions) and the number of extraneous options (the total size of region). In general, it will allow 

for more direct comparisons between the behavior of virtual organisms and human participants, 

an important step for exploring the Theory's ability to predict human behavior in laboratory 

settings.  

 The third aim of this project was to verify the potential equivalence between mutation 

and a property of live organisms that produces impulsivity-like symptoms in live organisms. The 

results were inconclusive, mainly due to a lack of high scores on traditional measures of 

impulsivity in the present sample (non-diagnosed college students). These results suggest that in 

order to verify this connection, future experiments should include participants characterized by 

high levels of impulsivity, preferably ADHD-diagnosed participants. Nevertheless, the other 

extreme also needs to be considered. The manner in which the construct impulsivityis discussed in 

literature tends to convey, most likely unintentionally, the attitude that it is a fundamentally 

negative characteristic, like myopia:in an ideal, healthy organism, it would not exist at all. The 

potentially maladaptive effects of extremely low impulsivity scores were rarely discussed, with a 

few notable exceptions. For example, Neuringer (2009) discussed the maladaptive role of high 

behavior variability levels, but also those of extremely low variability levels, as observed in the 

stereotypical behavior of children diagnosed with autism. The connection between variability and 

impulsivityhowever, was not explored systematically; at this point the conceptual and empirical 

relation between the two constructs remains unclear. An examination of the relation between very 

low impulsivity scores, continuous choice behavior, and low mutation rates (in the Theory), could 
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provide valuable insight about the potential adaptive role of impulsivity, its maladaptive extremes, 

and the context in which they need to be understood.  

 Concluding remarks 

 The more we learn about the Evolutionary Theory, the story it reveals about the evolution 

of behavioral repertoires becomes more complicated, more interesting, and more coherent. 

Emerging freely from the reiteration of low-level Darwinian processes, the high-level outcomes 

produced by the theory showed a remarkable inner-coherence, in qualitative and quantitative 

agreement with the behavior of live organisms (see McDowell, in press, for a review). The 

possibility that human behavioral repertoires are complex systems pushed through time by low-

level Darwinian processes becomes harder and harder to ignore.  

 

The structures and phenomena that make our world, from tadpoles to rainbows, and from cave 

paintings to philosophy and the stock market, are diverse and, prima facie, overwhelmingly 

complicated. Historically, the more we learned about them, the more complicated they appeared 

to be. That is until a new way of looking at them reveals a fundamental simplicity that runs deep 

underneath the observable (Feynman, 1981
3
). The diversity of life was explained by a few low-

level mechanisms that, over billions of years, created what we see today (Darwin, 1858; Mayr, 

2001; Dawkins, 2009). The universe itself was traced back to twelve fundamental particles and 

four forces (CERN, 2012
4
). At this point, the field of psychology seems to be in a "complicated" 

phase, with numerous competing theories, vast collections of sound, yet disconnected findings, 

and still in search ofmechanisms and rules. The complexity paradigm (Ferguson, 1776, Hayek, 

1952, 1980; Holland, 1988, 2000; Wolfram, 2002) suggests that all phenomena that interest us, 

from ADHD tomoral behavior andtraffic laws, are emergent properties, produced (but not directly 

                                                           
3
https://www.youtube.com/watch?v=FXiOg5-l3fk 

4
http://home.web.cern.ch/about/physics/standard-model 
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explained) by simple rules reiterated over time. In order to understand such systems and their 

emergent properties one must identify the rule that create them. 

 It has been proposed that the rules that create these outcomes are low-level selectionist 

processes, hypothesized to unify biology, behavior, and culture (Pierce&Cheney,2008), to 

produce the phenomenon referred to as consciousness (Edelman, 2006), and to bridge the 

quantum and classical realities (Zurek, 2009). The Evolutionary Theory of Behavior Dynamics 

(McDowell 2004, 2013) is a computational theory that implemented the selectionist hypothesis in 

an attempt to explain the evolution of behavioral repertoires of live organisms. It is also the first 

step psychology takes towards a science of complexity, and, as shown by ten years of failed 

falsification attempts, it is a promising one.   
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Table 1 

 

The table provides an overview of the experimental conditions examined in the first phase of this 

project. The environments referred to as "moderate" (or "standard" in the case of the HDCOD 

manipulation), on grey background, arranged a moderate overall reward rate (~34/500 

generations), a moderate strength of the selection process (parental selection function mean, µ = 

100 ), and a computational changeover delay (HDCOD) that can be described as "high", and that 

coincides with the traditional location of the target classes, between 511 and 512 (Hamming 

Distance = 10). When one variable was allowed to vary the other two were kept constant. For 

example, when investigating the effects of various reinforcement densities (top third of the table), 

the strength of the selection process and the HDCOD were kept constant (µ = 100, HDCOD = 4.4, 

when the target classes were defined separated by a HD of 10, between 511│512).  

 

Description 

Overall 

reward 

density 

 
(per 500 

generations) 

 

Parental Selection 

Function mean (µ) 

 
(lower means = stronger 

selection ~ higher 

reinforcement 

magnitude) 

 

Hamming Changeover 

Delay (HDCOD) 

 
(HDCOD = HDOTHER - HDSAME; the 

table also depicts the value of the 

Hamming Distance between the 

target classes and its location on 

the continuum) 

Extremely high rate  1,723 100 4.4 (HD 10, 511 | 512) 

High rate 172 100 4.4 (HD 10, 511 | 512) 

Moderate rate and 

magnitude 
34 100 

4.4 (HD 10, 511 | 512) 

Low rate 17 100 4.4 (HD 10, 511 | 512) 

Very low rate 3 100 4.4 (HD 10, 511 | 512) 

Very strong selection 34 25 4.4 (HD 10, 511 | 512) 

Strong selection 34 50 4.4 (HD 10, 511 | 512) 

Moderate rate and 

magnitude 

34 
100 

4.4 (HD 10, 511 | 512) 

Weak selection 34 200 4.4 (HD 10, 511 | 512) 

Very weak selection 34 500 4.4 (HD 10, 511 | 512) 

High HDCOD 34 100 6.4 (HD 12, 2,047 | 2,048) 

High HDCOD 34 100 5.4 (HD 11, 1,023 | 1,024) 

High, Standard HDCOD 34 100 4.4 (HD 10, 511 | 512) 

Moderate-High HDCOD 34 100 3.4 (HD 9, 255 | 256) 

Moderate HDCOD 34 100 2.4 (HD 8, 383 | 384) 

Low HDCOD 34 100 1.4 (HD 7, 447 | 448) 
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Table 2 

 

Brief description of the difference between the two experimental conditions (first two columns, 

No_COD and COD_2s), the means of the Random Interval schedules for the two alternatives 

(column 3), the ratio of scheduled reinforcement for each RI RI component (column 4), the period 

of time for which each component was in effect (in seconds), and the order in which the 

components were presented. Note that except the difference described in the first two columns, 

the procedure was identical for the two groups.   

 
 

Experimental condition  

(# of participants) 

 Means of the Random 

Intervals (seconds) 

Mean 

ratios 

Time 

in 

effect 

Order 
 

Group No_COD 

(N = 20) 

 

Group COD_2s 

(N = 18) 

The two schedules  

were arranged on two 

different physical 

alternatives (two 

buttons). No COD was 

in effect.  

 

The two schedules  

were arranged on one 

physical alternative 

(the right button). 

Switching between the 

two schedules was 

done by pressing the 

left button, called the 

Findley-button. Every 

press of the Findley-

button started a 2-

second COD. 

 

RI 0.7 RI 0.7 1 50s 
Always 

first 

RI 2.4 RI 1.2 2 200s 

Random 

order 

RI 2.1 RI 1.5 1.4 200s 

RI 1.8 RI 1.8 1 200s 

RI 1.5 RI 2.1 0.7 200s 

RI 1.2 RI 2.4 0.5 200s 

Extinction Extinction n/a 50s 
Always 

last 
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Table 3 

 

Macro-level descriptors of the continuous-choice behavior of college students: sensitivity (a, the 

slope described by Equation 3), bias (b = 10
INTERCEPT

), the proportion of variance accounted for 

by Equation 3 (pVAF), and the correlation coefficient between the standardized residuals left by 

Equation 3 and the predicted values. For each of the four variables the table provides averages, 

medians, and standard errors of the mean, for all participants (N = 38, white background), the 

No_COD group (N = 20, pink background), and the COD_2s group (N = 18, blue background). 

.  

 

 
Sensitivity (a) Bias (b) pVAF (Eq. 3) Pearson residuals 

 
All 

No 

COD 

COD 

2s 
All 

No 

COD 

COD 

2s 
All 

No 

COD 

COD 

2s 
All 

No 

COD 

COD 

2s 

Avg. 0.56 0.47 0.66 0.97 0.99 0.94 0.68 0.66 0.71 0.13 0.09 0.18 

Median 0.59 0.47 0.70 0.97 0.98 0.96 0.78 0.79 0.76 0.05 0.03 0.18 

SEM 0.04 0.06 0.06 0.01 0.02 0.02 0.04 0.07 0.06 0.03 0.04 0.05 
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Table 4 

 

The eight behavioral measures (column 1), the averages for each experimental group (with 

standard errors of the mean in parenthesis; columns two and three), the conclusion of the F-test 

for equality of variance, and the conclusion of 1-tailed t-tests. The values in bold, on grey 

background, indicate the four differences that reached statistical significance.  

 

 

Behavioral measure 
No_COD 

M (SEM) 
COD_2s 

M (SEM) 

Variances 

(results of 

F-Tests) 

1-tailed t-test 

t p 

a (sensitivity) 0.47 (0.05) 0.66 (0.06) Equal 2.19 0.018 

CO/min 51 (8.5) 29 (6.0) Equal -1.99 0.028 

B/min 112 (13.5) 87 (9.9) Unequal -1.44 0.091 

r/min 42 (2.1) 33 (1.7) Unequal -3.44 0.001 

Bouts/min 8.2 (0.8) 6.4 (1.0) Equal -1.34 0.106 

Bout Length 7.2 (1.0) 13.5 (3.8) Unequal 1.59 0.064 

Sustained behavior (%) 0.51 (0.05) 0.67 (0.07) Equal 1.96 0.029 

IBT 40 (17) 55 (49) Unequal 0.90 0.053 

N.B. The mean comparison was "COD_2s" - "No_COD". 
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Table 5 

 

The concurrent-schedule procedure (described in Phase 2) was followed by a short break, after 

which the participants were administered the CPT-IP computer task (10 minutes), and four 

personality inventories (last columns).  

 

 

 

Task 

 

Duration Notes 

 

Concurrent Schedules procedure (~17 minutes) 

 
Break 5-10 min  

 
Continuous 

Performance Test 

(CPT-Identical Pairs) 

 

10 min Sustained attention, behavior inhibition 

Break 5-10 min  

Questionnaires ~30 min 

 

Questionnaire, purpose, #items 

 
A-ADDES (Adult Attention 

Deficit Disorders Evaluation 

Scale) 

Inattention, 

Impulsivity 

58 

 (2 subscales) 

UPPS-P Impulsivity 
59 

 (5 subscales) 

Sensation Seeking Scale V 

(SSS-V) 
Impulsivity 

40  

(4 subscales) 

Social Desirability Scale 

(labeled as Personal 

Reaction Inventory - PRI) 

self-

management 

tendencies 

33 
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Table 6 

 

Comparisons between the UPPS-P theoretical scores (Minim, Maxim, Average), the scores 

observed in the present sample (Minim, Maxim, Average, Median, SD),  and the scores reported 

by Miller et.al. (2010) for a control group with comparable demographic characteristics. 

 

 
Theoretical Observed 

 

Miller et al. 

(2010 - control 

group) 

 

 
Min Max Avg. Min Max Avg. Med SD Avg. SD 

Neg. Urg. 12 48 30 16 38 27.9 28 5.7 21.9 6.8 

(lack of) Prem. 11 44 27.5 12 32 21.9 23 5.5 22.1 5.0 

(lack of) Persev. 10 40 25 12 31 19.8 19 4.9 19.1 4.8 

Sens. Seek 12 48 30 18 45 32.6 33 7.6 30.1 9.0 

Poz. Urg. 14 56 35 14 50 26.6 26 8.6 n/a n/a 

UPPS-P 59 236 147.5 84 177 129 131 21.6   

UPPS-P  

(minus Positive 

Urgency) 
  

129.0   129.0 
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Table 7 

 

Comparisons between the SSS-V theoretical scores (Minim, Maxim, M = 5, not included), the 

scores observed in the present sample (Minim, Maxim, Average, Median, SD),  and the total 

scores (Mean and SD) reported for control groups in two studies with comparable demographics 

(Ridgeway &Russel, 1980; McDaniel & Mahan, 2008).  

 

 

SSS-V 

subscale 
Theoretical Observed 

Ridgeway&R

ussel (1980) 

 

McDaniel & 

Mahan 

(2008) 

 

 
Min Max Min Max M Mdn SD M SD M SD 

Boredom 

Susceptibility 
0 10 0 8 3.2 3 1.9 n/a n/a n/a n/a 

Disinhibition 0 10 0 9 4.1 4 2.3 n/a n/a n/a n/a 

Experience 

Seeking 
0 10 2 9 4.8 5 1.8 n/a n/a n/a n/a 

Thrill and 

Adventure 

Seeking 

0 10 0 10 6.3 7 2.7 n/a n/a n/a n/a 

SSS total 0 40 3 29 18.5 19 6.1 19.5 5.5 20.6 6.5 
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Table 8 

 

Comparisons between the CPT-IP d-prime values (d'; discrimination index) observed in the 

present sample (grey background) and those reported in various studies (first column), in 

diagnosed and non-diagnosed groups (second column).   

 

 

Study Group diagnostic 
d' values 

M SD 

Present sample none <=>"Control" 2.1 0.78 

Barr et. al.(2008) 
Schizophrenia 2.1 0.8 

Control 3.3 0.62 

 Dyer et. al. (2008) 

Schizophrenia - Treatment: Pre-Test 2.1 0.8 

Schizophrenia - Treatment: Post Test 1.9 0.7 

Schizophrenia - Placebo: Pre-Test 2.5 0.8 

Schizophrenia - Placebo: Post Test 2.7 0.8 

Rutschmann et. al. (1977) 

Control - 7-8y ≈ 1.0 n/a 

Control - 9-10y ≈ 2.0 n/a 

Control - 11-12 y ≈ 2.3 n/a 

High-Risk - 7-8y ≈ 1.0 n/a 

High-Risk - 9-10y ≈ 1.5 n/a 

High-Risk - 11-12 y ≈ 2.0 n/a 

Cornblatt  et. al. (1988) 
Control - Test 1.6 0.7 

Control - Retest 2.0 0.5 

Cornblatt  et. al.(1989) 

Control ≈ 1.9 1.05* 

Depressed ≈ 1.85 1.84* 

Schizophrenia ≈ 0.75 1.67* 

*= recalculated based on SEM  ~0.2 (N = 28, 17, and 14) 

 

 

Table 9. 

Gender differences on various dimensions of impulsivity and inattention. The scores for UPPS-P, 

SSS-V, and PRI are expressed in z-scores. The scores on A-ADDES and CPT (d’) were not 

converted into z-scores, being already expressed in standard units, as discussed in the Methods 

section. The average scores were small, varying closely around average. Differences between the 

average scores of males and females were very small and in the expected direction. Males scored 
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slightly higher on impulsivity dimensions, females scored lightly higher on the inattention 

subscale of A-ADDES, and the averages of the two groups were almost identical and equal to 

zero on the Social Desirability Scale (noted here with PRI, Personal reaction Inventory).  

Measure 
Females (N = 29) Males (N = 9) 

Average Median SEM Average Median SEM 

A-ADDES 

Inaten. 8.04 8.50 0.49 7.11 8.00 1.12 

Hyp/Imp. 5.18 5.00 0.50 6.22 6.00 0.55 

A-ADDES 13.21 13.00 0.88 13.33 15.00 1.59 

UPPS-P 

Neg. Urg. -0.07 -0.08 0.20 0.20 0.36 0.24 

(lack of) Prem. -0.13 0.01 0.20 0.40 0.19 0.27 

(lack of) Persev. -0.04 -0.38 0.19 0.12 0.03 0.35 

Sens. Seek -0.07 -0.02 0.19 0.21 0.31 0.33 

Poz. Urg. -0.04 -0.19 0.19 0.12 -0.08 0.36 

UPPS-P -0.10 0.00 0.20 0.30 0.09 0.27 

SSS-V 

Boredom Susceptibility -0.07 -0.11 0.18 0.23 -0.11 0.40 

Disinhibition 0.03 -0.06 0.21 -0.11 -0.06 0.20 

Experience Seeking 0.03 0.09 0.19 -0.09 0.09 0.34 

Thrill and Adventure Seeking -0.07 0.27 0.19 0.23 0.27 0.34 

SSS -0.03 0.09 0.20 0.11 -0.08 0.29 

PRI Soc. Dez. 0.00 0.07 0.20 0.01 -0.04 0.32 

CPT d' 2.16 2.10 0.16 2.00 1.93 0.21 
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Figure 1.The figure provides an overview of the theory's functionality. At each generation, or 

time tick, a behavior is randomly selected and emitted from a population of behaviors, abstractly 

represented by numbers (integers and their corresponding binary representations). Emissions are 

followed by selection of parents for the next generations. If the emission did not result in positive 

outcomes, parents are selected at random. If the emitted behavior resulted in a positive outcome, 

parents are selected based on their fitness: behaviors that are closer to the previously reinforced 

behavior have a higher chance of becoming parents. Regardless of how parents selected (at 

random or based on their fitness) they recombine in the same way, each parent having equal 

chances of contributing to the child's genotype. The population of children is affected by 

mutation: a small number of child-behaviors are selected at random and one of the bits in their 

genotypes, also selected at random, is "flipped" from zero to one or one to zero. From this new, 

mutated population, a behavior is emitted at random and another cycle begins.The continuous 

application of Darwinian rules of selection, recombination, and mutation, in time, gives rise to 

ordered behavioral patterns that can be analyzed and compared to live data.  
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Figure 2.The figure illustrates the connection between the three specific aims of this project. The 

first specific aim was to learn about the effects of reward rate, reward magnitude, and Hamming 

Distance changeover delay (HDCOD) on the behavioral variability of virtual organisms 

characterized by different mutation rates. The second aim was to verify the theory's potential of 

predicting the performance of college students in continuous-choice settings. The third aim was to 

use the information obtained in the first two phases (specific aims 1 and 2) to explore the relation 

between mutation and impulsivity. 
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Figure 3.The figure outlines the calculation of the Hamming Distance changeover delay (HDCOD) 

as a function of HDOTHER - HDSAME. HDOTHER (top of the figure) is obtained by averaging all the 

Hamming Distances between all behaviors in a target class and all behaviors in the other class. 

HDSAME (lower part of the figure) is obtained by averaging all the Hamming Distances between 

all behaviors in a target class and all behaviors in the same class. The difference between the two 

averages can be conceptualized as a measure of the overall average "difficulty" to switch from 

one class to the other. This difference was referred to as environment's conduciveness, where high 

conduciveness is described by low HDCOD values, which is characteristic of environments that 

facilitate rapid switching between alternatives.  
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Figure 4.Sensitivity (a; left panel) and frequency of switching (changeovers, right panel), asa  

function of HDCOD = HDOTHER - HDSAME (reanalysis of data reported by Popa& McDowell, 

2010).Sensitivity(a) increased as HDCOD increased, in a roughly logistical pattern, which indicated 

the presence of a certain threshold-area: bellow certain HDCOD values sensitivity was always very 

low; above this threshold,further increases in HDCOD did not have noticeable impact on 

sensitivity. The frequency of switching correlated negatively with sensitivity: very high 

frequencies of switching were associated with severe undermatching (low HDCOD) and vice versa. 
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Figure 5.Figure 5 shows the effects of various reinforcement densities (left), various strengths of 

the selection process (<=> reinforcement magnitude, middle), and various HDCOD values (right) 

on sensitivity values (a, panels 1, 2, 3), maximum changeover frequency (COMAX, panels 4, 5, 6), 

and topographic variability (ΔPHENOTYPE, panels 7, 8, 9), at different mutation rates.  
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Figure 6.Figure 6 shows the effects of various reinforcement densities (left), various strengths of 

the selection process (middle), and various HDCOD values (right), on the overall frequency of 

target behavior (panels 1, 2, 3) and obtained rewards (panels 4, 5, 6), at various mutation rates. 

Behaviors and rewards were summed for both alternatives and averaged per 500 generations.  
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Figure 7.Figure 7 illustrates the effects of reinforcement density (left), reinforcement magnitude 

(middle),and HDCOD (right), on the average bout frequency (panels 1, 2, 3)and length (panels 4, 5, 

6), at various mutation rates. Overall, organisms characterized by higher mutation rates emitted 

fewer bouts, of shorter length, a relation mediated by reward rate, reward magnitude, and HDCOD.  
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Figure 8.Figure 8 illustrates the effects of reinforcement density (left), reinforcement magnitude 

(strength of the selection process; middle), and HDCODvalues (right), on the proportion of 

sustained (or in-bout) behavior (panels 1, 2, 3) and Inter-Bout Time (IBT; panels 4, 5, 6), at 

various mutation rates. 
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Figure 9.Figure 9 depicts the behavioral characteristics of five virtual organisms. Each of the nine 

axes depicts one of the nine dependent variables, with zero in the center of the radar-type graph. 

The order of the nine variables was changed so that variables for which "low" values mean 

"desirable", "good" outcomes were close together (COMAX, ∆PHENOTYPE, and IBT; first three black 

axes). Uniting the nine points resulted in an irregular surface that provides an overall visual 

description of the organism's behavioral characteristics. The raw values were transformed, where 

necessary, by dividing them by a multiple of 10 (in parenthesis, next to each variable). The 

purpose was to bring all variables to a comparable scale that would allow a visual depiction. 

From the first, perpendicular axis, going clockwise, the nine variables are: COMAX (/10), 

∆PHENOTYPE (/ 10,000), IBT (/10,000), Sensitivity (a), Responses (/100), Rewards (/100), Bouts 

(/10), Bout Length (/100), Sustained behavior (%).An organism that displayed low behavior 

variability (desired outcome) is characterized by a small black area and a large grey area (panel 

1). Panels 2, 3, 4, and 5 depict organisms that displayed high variability. The constellations of 

behavioral characteristics depicted in panels 1, 2, 3, and 4 can be described as highly variable, are 

very similar to each other, and very different from the constellation depicted in panel 1. Despite 

their apparent similarities, they were all caused by different combinations of organismic and 

environmental features. 
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Figure 10.The figure provides an illustration of the students' visual experience during the 

concurrent-schedule procedure. In the No_COD condition (left panel) the two concurrent 

schedules ran on different physical alternatives, two grey buttons. In the COD_2s condition 

(middle and right panels) the two concurrent schedules ran on the same physical alternative (the 

right button); the color of the key (red or green) signaled the participant that a different schedule 

was in effect. The participant could switch between alternatives by pressing the changeover 

button(left grey button). 
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Figure 11.The figure depicts sensitivity values (the slope of Equation 3, a; top panels) and 

changeover frequencies (bottom panels). The left panels depict results produced by the 

Evolutionary Theory at various  HDCOD values. The right panels depict results produced by 

college students when the duration of the changeover delay was zero seconds ("No_COD" 

condition) and two seconds ("COD_2s" condition). The error bars represent standard errors of the 

mean (SEM). Asterisks indicate significant differences between conditions (* p< 0.05).  
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Figure 12.The figure depicts average frequencies of target behavior (top panels) and obtained 

rewards (bottom panels). The left panels depict results produced by the Evolutionary Theory at 

various  HDCOD values, averaged per 500 generations. The right panels depict results produced by 

college students when the duration of the changeover delay was zero seconds ("No_COD") and 

two seconds ("COD_2s"), averaged per minute. The error bars represent standard errors of the 

mean (SEM). Asterisks indicate significant differences between conditions (** p< 0.01).  
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Figure 13.The figure depicts average frequencies of bouts (top panels) and the average bout 

length (responses/ bout; bottom panels). The left panels depict results produced by the 

Evolutionary Theory at various  HDCOD values. The right panels depict results produced by 

college students when the duration of the changeover delay was zero seconds ("No_COD") and 

two seconds ("COD_2s"). For bout frequency (top panels) the figure depicts averages per 500 

generations; for college students, it depicts averages per minute. The error bars represent standard 

errors of the mean (SEM).  
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Figure 14.The figure depicts proportions of sustained behavior (top panels) and the average Inter-

Bout Time (IBT; bottom panels). The left panels depict results produced by the Evolutionary 

Theory at various  HDCOD values. The right panels depict results produced by college students 

when the duration of the changeover delay was zero seconds ("No_COD") and two seconds 

("COD_2s"). The error bars represent standard errors of the mean (SEM). Asterisks indicate 

significant differences between conditions (* p< 0.05). 
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Figure 15.The figure depicts the correlation coefficients (r) that described the relations between 

continuous-choice characteristics (vertical) and scores on impulsivity/inattention inventories and 

CPT-IP measures (horizontal). The figure only retained the relations that were statistically 

significant (* p< 0.05, ** p< 0.01). The shaded values emphasize negative relations. 
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Figure 16.The figure depicts the correlation coefficients (r) between the various measures of 

impulsivity/inattentionobserved in the present sample (self-reported and CPT-IP), for all 

participants (N  = 38). The figure only retained the relations that were statistically significant (* 

p< 0.05, ** p< 0.01). The shaded values emphasize negative relations. 


