Distribution Agreement

In presenting this thesis or dissertation as a partial fulfillment of the requirements for an advanced degree from Emory University, I hereby grant to Emory University and its agents the non-exclusive license to archive, make accessible, and display my thesis or dissertation in whole or in part in all forms of media, now or hereafter known, including display on the world wide web. I understand that I may select some access restrictions as part of the online submission of this thesis or dissertation. I retain all ownership rights to the copyright of the thesis or dissertation. I also retain the right to use in future works (such as articles or books) all or part of this thesis or dissertation.

Signature:

Abigail L. Henry

November 30, 2017

Associations of diet and lifestyle factors with oxidative stress and inflammation biomarkers according to antioxidant enzyme and DNA repair genetic risk scores

By

Abigail L. Henry

Master of Science in Public Health

Epidemiology

Roberd M. Bostick Committee Chair Associations of diet and lifestyle factors with oxidative stress and inflammation biomarkers according to antioxidant enzyme and DNA repair genetic risk scores

By

Abigail L. Henry

B.S., Furman University, 2015

Thesis Committee Chair: Roberd M. Bostick, MD, MPH

An abstract of A thesis submitted to the Faculty of the Rollins School of Public Health of Emory University in partial fulfillment of the requirements for the degree of Master of Public Health in Epidemiology 2017

Abstract

Associations of diet and lifestyle factors with oxidative stress and inflammation biomarkers according to antioxidant enzyme and DNA repair genetic risk scores

By Abigail L. Henry

Oxidative stress and inflammation are involved in the etiology of several chronic diseases. Numerous diet and lifestyle factors are associated with oxidative stress and inflammation; however, little is known about associations of genetic factors, individually or jointly with environmental factors, and their associations with systemic oxidative stress and inflammation. We investigated associations of environmental and genetic exposures, separately and jointly, with circulating biomarkers of oxidative stress (F2-isoprostanes [FiP]) and inflammation (high sensitivity C-reactive protein [hsCRP]) in two pooled cross-sectional studies (n=465). We collected blood samples and extensive medical, dietary, and lifestyle data. Fifteen pro- and antioxidant dietary and lifestyle exposures were selected a priori for an oxidative balance score (OBS), with higher scores representing greater antioxidant exposures. Twenty-two single nucleotide polymorphisms (SNPs) in three antioxidant enzyme (AE) genes, and 79 SNPs in 14 DNA base excision repair (BER) genes were genotyped and used to develop AE and BER genetic risk scores (GRS). Multivariable general linear regression was used to assess adjusted mean FiP and hsCRP concentrations across tertiles of the OBS and GRS, separately and jointly. The mean FiP and hsCRP concentrations among those in the highest relative to the lowest tertiles of the OBS were, proportionately, 19.04% (p<0.0001) and 27.76% (p=0.02) lower, respectively. The corresponding findings for the AE GRS were 7.45% (p=0.02) and 35.54% (p=0.01) higher, and for the BER GRS they were 14.51% (p=0.04) and 48.92% (p=0.01) higher concentrations. Relative to those in the joint low OBS/high GER group (the hypothesized highest risk group), participants in the high OBS/low AE or BER GRS groups (the hypothesized lowest risk groups) had lower mean hsCRP concentrations compared to participants in the high risk tertile of either the OBS or the GRS, a pattern not found for FiP concentrations. Our findings suggest that environmental factors and antioxidant enzyme and DNA base excision repair genotypes may affect systemic inflammation and oxidative stress, and that they may synergize in affecting systemic inflammation, but not oxidative stress.

Word Count: 324

Associations of diet and lifestyle factors with oxidative stress and inflammation biomarkers according to antioxidant enzyme and DNA repair genetic risk scores

By

Abigail L. Henry

B.S., Furman University, 2015

Thesis Committee Chair: Roberd M. Bostick, MD, MPH

A thesis submitted to the Faculty of the Rollins School of Public Health of Emory University in partial fulfillment of the requirements for the degree of Master of Public Health in Epidemiology 2017

Table of Contents:

Title/Abstract	1
Introduction	2
Methods	5
Study design and population	5
Data collection	6
Data analysis	7
Exclusions	7
Oxidative Balance Score (OBS)	8
Genetic Risk Scores (GRS)	8
Analyzing associations of the OBS and GRS with FiP and hsCRP	9
Results	10
Discussion	12
References	18
Tables	24
Appendices	29

Associations of diet and lifestyle factors with oxidative stress and inflammation biomarkers according to antioxidant enzyme and DNA repair genetic risk scores

By Abigail L. Henry

ABSTRACT

Oxidative stress and inflammation are involved in the etiology of several chronic diseases. Numerous diet and lifestyle factors are associated with oxidative stress and inflammation; however, little is known about associations of genetic factors, individually or jointly with environmental factors, and their associations with systemic oxidative stress and inflammation. We investigated associations of environmental and genetic exposures, separately and jointly, with circulating biomarkers of oxidative stress (F2-isoprostanes [FiP]) and inflammation (high sensitivity C-reactive protein [hsCRP]) in two pooled cross-sectional studies (n=465). We collected blood samples and extensive medical, dietary, and lifestyle data. Fifteen pro- and antioxidant dietary and lifestyle exposures were selected a priori for an oxidative balance score (OBS), with higher scores representing greater antioxidant exposures. Twenty-two single nucleotide polymorphisms (SNPs) in three antioxidant enzyme (AE) genes, and 79 SNPs in 14 DNA base excision repair (BER) genes were genotyped and used to develop AE and BER genetic risk scores (GRS). Multivariable general linear regression was used to assess adjusted mean FiP and hsCRP concentrations across tertiles of the OBS and GRS, separately and jointly. The mean FiP and hsCRP concentrations among those in the highest relative to the lowest tertiles of the OBS were, proportionately, 19.04% (p<0.0001) and 27.76% (p=0.02) lower, respectively. The

corresponding findings for the AE GRS were 7.45% (p=0.02) and 35.54% (p=0.01) higher, and for the BER GRS they were 14.51% (p=0.04) and 48.92% (p=0.01) higher concentrations. Relative to those in the joint low OBS/high GER group (the hypothesized highest risk group), participants in the high OBS/low AE or BER GRS groups (the hypothesized lowest risk groups) had lower mean hsCRP concentrations compared to participants in the high risk tertile of either the OBS or the GRS, a pattern not found for FiP concentrations. Our findings suggest that environmental factors and antioxidant enzyme and DNA base excision repair genotypes may affect systemic inflammation and oxidative stress, and that they may synergize in affecting systemic inflammation, but not oxidative stress.

INTRODUCTION

Oxidative stress and inflammation are linked with the pathogenesis of several chronic diseases and cancers, including colorectal cancer (CRC) (1-9). Chronic inflammation can induce oxidative stress and damage, and is involved with cancer initiation and promotion (9, 10). Oxidative stress can lead to chronic inflammation (9), which is associated with higher risk of several chronic diseases, including cancer. The exact determinants of chronic, excess systemic oxidative stress and inflammation are unknown; however, they likely include environmental and genetic exposures (11, 12).

Oxidative stress is defined as a disturbance in the balance between pro-oxidants and antioxidants, favoring the former (13). Reactive oxygen and nitrogen species (RONS) are oxidants that are formed normally during aerobic metabolism, and are kept in balance by antioxidants, which delay or inhibit oxidation (13). If RONS production is excessive, proteins, lipids, and DNA may be

oxidatively damaged, resulting in increased production of pro-inflammatory and antiinflammatory cytokines (14, 15).

The body has three levels of defense to prevent or decrease the amount of RONS-induced damage. The first level of defense is small molecular antioxidants, such as vitamins C and E, which neutralize RONS. The second level involves antioxidant enzymes (AE), which detoxify RONS into less reactive species. Superoxide dismutases (SOD) detoxify superoxide (O_2^-), and catalase (CAT) and gluthathione peroxidases (GPX) detoxify hydrogen peroxide (H₂O₂), which are both endogenously produced ROS (16). The third level of defense is the DNA base excision repair (BER) system, which repairs RONS-induced DNA damage (17).

Although endogenous enzymatic mechanisms are extremely important in maintaining oxidative balance, exogenous modifiable factors, such as diet and lifestyle, also contribute (18). Exogenous modifiable factors, such as smoking and obesity, act as pro-oxidants, and regular moderate physical activity has antioxidant effects (19-21). Vitamin C, vitamin E, and carotenoids act as antioxidants, whereas saturated fat and red meat act as pro-oxidants in the body (15, 22, 23).

Diet and lifestyle are modifiable risk factors for oxidative stress and inflammation (24, 25) and CRC (26). Therefore, studying associations of diet and lifestyle with oxidative stress and inflammation could provide possible insights into their determinants and possibly their roles in the etiology of various chronic diseases, including CRC. Biomarkers commonly used in human epidemiologic studies to reflect systemic oxidative stress and inflammation include circulating F_2 -isoprostanes (FiP) and high sensitivity C-reactive protein (hsCRP), respectively.

Diet and lifestyle exposures have been associated with circulating FiP and hsCRP concentrations. The Western diet pattern was found to be directly associated with FiP and hsCRP concentrations (27), whereas the Mediterranean diet was inversely associated with both biomarkers (12, 27-30). hsCRP concentrations were found to be directly associated with red and processed meats, highenergy beverages, and refined grains intakes (31), and inversely associated with fruits and vegetables, vitamin C, and folate intakes (32). Similarly, FiP concentrations were found to be directly associated with meat intakes, and inversely associated with fruits and vegetables, betacarotene, and flavonoids intakes (32-35). Lifestyle factors were also found to be associated with FiP and hsCRP concentrations; e.g., physical activity was inversely and smoking was directly associated with both biomarkers (33, 35-37).

An oxidative balance score (OBS) was developed to quantify the collective contributions of individual diet and lifestyle exposures to someone's overall oxidative balance (38). In previous studies, the OBS was inversely associated with FiP (39), biomarkers of inflammation (including hsCRP) (39), colorectal adenoma (38) and colorectal cancer (1). Diet and lifestyle factors, however, only contribute to the exogenous sources of oxidative stress and thus the OBS does not account for endogenous antioxidant defenses, such as antioxidant enzymes and DNA base excision repair.

Multiple polymorphic genes encode antioxidant enzymes and the components of the DNA base excision repair system. It is unlikely that single variants in these genes contribute substantially to the genes' impacts on oxidation control and damage repair systems, but it is possible that collectively they may. One way of investigating the potential collective effects of multiple variants in multiple genes is by constructing genetic risk scores (GRS) (40, 41) To our knowledge, there are no previous reports of associations of antioxidant enzyme (AE) or DNA base excision repair (BER) GRS, alone or jointly with dietary and lifestyle exposures, with biomarkers of oxidative stress or inflammation.

To address these gaps in knowledge, we created an OBS and AE and BER GRS, and assessed their separate and joint associations with circulating concentrations of FiP and hsCRP in two pooled cross-sectional studies.

METHODS

Study design and population

We conducted a secondary analysis of data from two pooled cross-sectional studies conducted by the same principal investigator using essentially the same participant recruitment and data collection protocols. The two pooled studies (42), described elsewhere, included the Markers of Adenomatous Polyps I study (MAP I) (43, 44) and the Markers of Adenomatous Polyps II study (MAP II) (45, 46). Participants were recruited from patients with no prior history of colorectal neoplasms who were scheduled for an elective, outpatient colonoscopy at large gastroenterology clinics in North Carolina and South Carolina. Eligible participants were English-speaking, 30-74 years of age, and capable of informed consent. Participants were excluded if they had a history of colorectal adenomatous polyps, familial adenomatous polyposis, cancer other than non-melanoma skin cancer, known genetic syndromes associated with colonic neoplasia, or inflammatory bowel disease. MAP I was conducted in Winston-Salem and Charlotte, North Carolina from 1994-1997. Of those who met the eligibility criteria, the MAP I and MAP II consent rates were 67% and 76%, respectively, and the sample sizes were 420 and 204, respectively, yielding an initial pooled sample size of 624.

Each study was approved by the Institutional Review Board of the institution where it was conducted: Wake Forest University School of Medicine for MAP I and the University of South Carolina for MAP II. All participants provided informed consent, and the present data analysis was conducted using de-identified data. The MAP I and the MAP II studies hereinafter are referred to as the MAP study.

Data collection

Prior to undergoing colonoscopy, all study participants completed mailed questionnaires on demographics, medical history, family history of colorectal cancer, reproductive history (in women), self-reported anthropometrics, diet, and lifestyle. Diet was assessed using semiquantitative Willett food frequency questionnaires (47), and physical activity was assessed using a modified Paffenbarger questionnaire. Participants submitted their completed questionnaires and had fasting venous blood samples taken at their colonoscopy visit prior to the procedure.

Blood was collected, handled and stored in a manner allowing for genotyping and biomarker measurements. Prior to colonoscopy, fasting venous blood samples were drawn into pre-chilled, red-coated Vacutainer tubes. The tubes were immediately placed on ice and shielded from light, and taken to the laboratory. Tubes for serum and plasma were centrifuged under refrigeration, and aliquoted into amber-colored cryopreservation vials. Butylated hydroxytoluene and salicylic acid, lipid and aqueous soluble antioxidants, respectively, were added to aliquots designated for oxidative stress biomarker measurements. The air in all aliquot vials was displaced with an inert gas (nitrogen in MAP I and argon in MAP II), and the vials were capped with O-ring screw caps. The aliquots were then immediately placed in a -70° C freezer until analysis. All biomarker assays for the present study were conducted at the Molecular Epidemiology and Biomarker Research Laboratory at the University of Minnesota.

Plasma F₂-isoprostane (FiP) levels were measured via a gas chromatography-mass spectrometry method (48, 49), which is considered the gold standard method for measuring FiP. Deuterium (4)-labeled 8-iso-prostaglandin $F_{2\alpha}$ was used to extract FiP from participants' samples as an

internal standard. Quality control procedures included the analysis of two control pools that had varying concentration ranges of FiP (inter-assay coefficients of variation [CV] 9.5% and 11%, respectively). High sensitivity C-reactive protein (hsCRP) was measured via latex-enhanced immunonephelometry on a Behring nephelometer II (BN-II) analyzer (CV 4%; Behring Diagnostics).

Single nucleotide polymorphisms (SNPs), with a minor allele frequency >5%, in a pathway (antioxidant enzyme genes [AE] and DNA base excision repair [BER]) were selected for genotyping; TagSNPs were used when available. For the AE genes, 11 SNPs were selected for *CAT*, 5 for *GTSP1*, and 6 for *MnSOD* (See Appendix Table 1). For the BER pathway, 3 SNPs were selected for *APEX1*, 1 for *FEN1*, 15 for *LIG1*, 5 for *LIG3*, 6 for *MBD4*, 3 for *MPG*, 6 for *MUTYH*, 6 for *OGG1*, 3 for *PNKP*, 3 for *POLB*, 4 for *SMUG1*, 11 for *TDG*, 2 for *UNG*, and 11 for *XRCC1* (See Appendix Table 2). Genotyping was conducted using the iPLEX Sequenom genotyping platform at the Biomedical Genomics Center, the core genotyping laboratory at the University of Minnesota. The genotyping concordance for the selected SNPs in 64 pairs of blinded duplicate samples was \geq 95% (50).

Data analysis

Exclusions

We excluded for analysis participants missing both hsCRP and F₂-isoprostane values (n=75); those missing >10% of their food frequency questionnaire responses or who reported implausible total energy intakes (<600 or >6,000 kcal/d) (n=22); those with biomarker values >3 standard deviations above the mean (n=16); and non-white participants (n=45) (because there were too few for genetic analyses), thus leaving a final sample size of 465 participants (MAP I = 301; MAP II = 164).

Oxidative Balance Score (OBS)

An equal-weight, 15-component OBS was calculated for each participant using previously described methods (38). Briefly, the 15 components were chosen *a priori* based on their expected anti- or pro-oxidant effects, and included dietary and supplemental antioxidants (pro-vitamin A carotenoids, lutein, lycopene, vitamin C, vitamin E, omega-3 fatty acids, flavonoids, and glucosinolates), dietary pro-oxidants (iron, omega-6 fatty acids, and saturated fats), and lifestyle factors, including physical activity (considered to have predominantly antioxidant effects) and adiposity (BMI), smoking, and alcohol intake (considered to have predominantly pro-oxidant effects). Antioxidant exposures were assigned a weight of +1, and pro-oxidants a weight of -1. The component values were then summed, with a higher score representing a higher balance of antioxidant to pro-oxidant exposures.

Genetic Risk Scores (GRS)

AE and BER genetic risk scores (GRS) were developed as follows. First, for the GRS, we excluded participants who were missing data on >20% of the SNPs of interest (n=130 for AE and n=124 for BER). This left final sample sizes of 335 for AE- and 341 for BER-related analyses. All SNPs were assessed for Hardy-Weinberg equilibrium. Variant allele heterozygotes and homozygotes were combined if there were \leq 10 participants with either genotype. Then, for each SNP genotype, mean FiP and hsCRP concentrations were calculated using sex-and BMI-adjusted general linear models. From these results, the proportional mean differences in FiP and hsCRP concentrations between the variant genotypes and the common homozygote were calculated. SNPs for the AE GRS were included if the proportional mean difference in FiP concentrations were >5% plus the direction of the mean difference for hsCRP was the same as for FiP. Similarly, SNPs for the BER GRS were included if the proportional mean difference in the more variable hsCRP concentrations were >10% plus the direction of the mean difference for FiP was the same as for hsCRP. Based on these SNP selection criteria, for the AE GRS we included 2

SNPs for *CAT*, 1 for *GSTP1*, and 3 for *MnSOD* for the AE GRS (See Appendix Table 3); and for the BER GRS we included 1 SNP for *APEX1*, 5 for *LIG1*, 2 for *LIG3*, 1 for *MBD4*, 2 for *MUTYH*, 1 for *PNKP*, 1 for *POLB*, 1 for *SMUG1*, 3 for *TDG*, and 4 for *XRCC* (See Appendix Table 4)

Next, each SNP was scored 1 point for each variant allele, which was then given a positive sign if the mean biomarker concentration was higher among those with the variant allele, and a negative sign if it was lower. Finally, the values assigned to the genotypes were summed to produce the respective GRS.

Analyzing associations of the OBS and GRS with FiP and hsCRP

Characteristics of the study participants were summarized and compared across tertiles of hsCRP and FiP concentrations using general linear models for continuous variables and extended chisquare tests for categorical variables. When necessary, continuous variables were normalized using the natural logarithm.

Mean adjusted hsCRP and FiP concentrations according to tertiles of the OBS and the AE and BER GRS were calculated and compared using general linear models. Because hsCRP and FiP concentrations were log transformed, geometric means and their 95% confidence intervals (CI) were calculated and reported. The covariates included in the final model were selected based on a combination of previous research, biologic plausibility, and whether inclusion/exclusion of potential covariates from the model affected the estimated proportional difference in the mean concentration of the biomarker of interest between the third and first tertile of the score of interest by $\geq 10\%$. The covariates selected for the final model for the OBS included total energy intake, sex, HRT use, education, and regular (\geq once/week) nonsteroidal anti-inflammatory drug (NSAID) use. The covariates for the final GRS models included sex and BMI.

To assess potential interaction between the OBS and the AE or BER GRS for adjusted mean FiP/hsCRP concentrations, we conducted a joint/combined analysis in which participants in the joint lowest OBS tertile/highest GRS tertile were the reference group.

All statistical analyses were conducted using SAS version 9.4 software (SAS Institute, Inc. Carry, North Carolina). A two-sided P-value ≤0.05 was considered statistically significant.

RESULTS

Selected characteristics of the participants according to tertiles of circulating F₂-isoprostane (FiP) and hsCRP concentrations are summarized in Tables 1 and 2, respectively. Among the 376 participants on whom FiP was measured, the serum concentrations ranged from 29.32 to 223.43 pg/mL, and among the 487 participants on whom hsCRP was measured, the serum concentrations ranged from 0.14 to 22.51 μ g/mL. The Pearson correlation coefficient for the correlations between circulating FiP and hsCRP concentrations was 0.38 (p <0.0001). Participants in the highest relative to the lowest FiP tertile were more likely to be a woman, be less educated, take HRT, and to smoke; less likely to take aspirin regularly; and, on average, to have a higher BMI, a lower oxidative balance score, lower circulating serum 25-OH-vitamin D₃ concentrations, and lower intakes of alcohol, calcium, dietary iron, and multiple antioxidant micronutrients. Participants in the highest relative to the lowest; and, on average, to have a higher BMI, lower circulating serum 25-OH-vitamin D₃ concentrations, and lower intakes of some, but not all, antioxidant micronutrients.

Mean circulating FiP and hsCRP concentrations according to tertiles of the oxidative balance score (OBS), are shown in Table 3. A higher OBS represents a predominance of antioxidant relative to pro-oxidant dietary and lifestyle exposures. In the multivariable adjusted analyses, there was a dose-response pattern of decreasing mean FiP and hsCRP concentrations across the tertiles of the OBS, and the mean FiP and hsCRP concentrations among those in the upper relative to the lower OBS tertile, were, proportionately, statistically significantly 19.0% and 27.8% lower, respectively.

Mean circulating FiP and hsCRP concentrations according to tertiles of antioxidant enzyme (AE) and DNA base excision repair (BER) genetic risk scores (GRS) are shown in Table 4. A higher GRS indicates a higher balance of variant alleles directly associated with FiP or hsCRP relative to variant alleles inversely associated with FiP or hsCRP. In the multivariable adjusted analyses, there was a dose-response pattern for increasing mean FiP and hsCRP concentrations across the tertiles of the BER GRS, and the mean FiP and hsCRP concentrations among those in the upper relative to the lower BER GRS tertile, were, proportionately, statistically significantly 14.5% and 48.9% higher, respectively. Although the mean differences in FiP and hsCRP across the AE GRS tertiles were also statistically significant, there was no dose-response pattern; the mean FiP and hsCRP concentrations among those in the upper relative to the lower AE GRS tertile, were, proportionately, statistically significantly 7.4% and 35.5% higher, respectively.

The multivariable-adjusted mean plasma FiP and hsCRP concentrations in the joint OBS/GRS tertiles are shown in Table 5. Participants in the joint lowest OBS tertile/highest GRS tertile were considered the reference group (the hypothesized highest risk group). Relative to this reference group, the mean hsCRP concentrations were lower in the joint highest OBS tertile/lowest AE GRS tertile (the hypothesized lowest risk group) than in the joint low OBS tertile/low AE GRS tertile or the high OBS/high AE GRS groups. The mean hsCRP concentration among those in the

joint highest OBS tertile/lowest AE GRS tertile relative to those in the lowest OBS tertile/highest AE GRS tertile reference group, was estimated to be, proportionately, 37.9% lower (p=0.09). The pattern of findings for the OBS/BER GRS joint analysis paralleled those for the OBS/AE GRS, and the mean hsCRP concentration among those in the joint highest OBS tertile/lowest BER GRS tertile relative to those in the lowest OBS tertile/highest BER GRS tertile reference group, was, proportionately, statistically significantly 45.6% lower. A similar interaction-type pattern was not noted in the corresponding analyses for mean FiP concentrations. The mean FiP concentration among those in the joint highest OBS tertile relative to those in the lowest OBS tertile/lowest AE GRS tertile relative to those in the joint highest OBS tertile/lowest AE GRS tertile relative to those in the joint highest OBS tertile/lowest AE GRS tertile relative to those in the joint highest OBS tertile/lowest AE GRS tertile relative to those in the joint highest OBS tertile/lowest AE GRS tertile relative to those in the lowest OBS tertile/lowest AE GRS tertile relative to those in the lowest OBS tertile/lowest AE GRS tertile relative to those in the joint highest OBS tertile/lowest BER GRS tertile relative to those in the lowest OBS tertile/highest BER GRS tertile reference group, was, proportionately, statistically significantly 20.6% lower.

DISCUSSION

The findings from this study suggest that in humans 1) a higher balance of anti- relative to prooxidant dietary and lifestyle exposures may be inversely associated with oxidative stress and inflammation, 2) certain combinations of genotypes of antioxidant enzyme genes (*CAT*, *GSTP1*, and *MnSOD*) as well as of DNA base excision repair genes (*APEX1*, *LIG1*, *LIG3*, *MBD4*, *MUTYH*, *PNKP*, *POLB*, *SMUG1*, *TDG*, and *XRCC1*) may be associated with oxidative stress and inflammation, and 3) certain combinations of genotypes of antioxidant enzyme and DNA base excision repair genes may modify the association of the balance of anti- relative to pro-oxidant dietary and lifestyle exposures with inflammation, but not oxidative stress. To our knowledge, this is the first study to report associations of AE and BER GRS, alone or jointly with an oxidative balance score, with circulating biomarkers of oxidative stress and inflammation in humans.

The use of an OBS to reflect the aggregate balance of anti-to pro-oxidant dietary and lifestyle exposures is well established, and the use of an equal weight score (i.e., all score components are equally weighted before being summed) is well supported. Dash et al. constructed four different OBS using four different weighting schemes (equal weights, weights derived from meta-analyses of associations of the individual score components with colorectal neoplasms, weights based on associations of the individual score components with colorectal neoplasms within the same study in which they were applied, and weights from a Bayesian analysis that considered both prior and within current study associations). They then compared associations of the four different OBS with incident, sporadic colorectal adenoma in a large case-control study (38) and with incident colorectal cancer in large prospective cohort study (1), finding very similar results with all four OBS in both studies, thus supporting the use of the more simply constructed equal weight score. The apparent reason for this is that each individual component is so modestly associated with risk, that the weights given to the components were so small, they had no appreciable effects on the overall OBS.

Other investigators have reported associations of OBS with various outcomes. In a prospective cohort study of 2,814 Belgian male smokers, Van Hoydonck et al. constructed an OBS that reflected a higher balance of pro- relative to anti-oxidant exposures (i.e., the opposite of those reported by Dash et al. and those used in the present study) (51). They found that the risk of all-cause and total cancer mortality was higher among those with a higher OBS (risk ratio [95% CI]: 1.44 (1.13-1.82); 1.62 (1.07-2.45), respectively) (51). Kong et al. reported findings from a cross-sectional study (n=365) in an outpatient, elective colonoscopy population that an equal-weight OBS, constructed similarly to the present study, was inversely associated with colorectal

adenoma, FiP, and hsCRP (ORs [95% CIs] for those in the highest of three relative to the lowest of three categories: 0.39 [0.17-0.89], 0.25 [0.10-0.65], and 0.21 [0.09-0.49], respectively) (39). Lakkur et al. also found in a cross-sectional study (n=321) that an equal-weight OBS, constructed similarly to that in the present study, was inversely associated with FiP (OR for those in the highest relative to the lowest OBS tertile = 0.04 [95% CI 0.01-0.17]; ptrend <0.01) (52). Lee et al. reported a statistically significant inverse trend (p = 0.013) for associations of quintiles of an OBS with hsCRP in a cross-sectional study of 6,414 Korean men and women (53). The results from these studies support our findings of inverse associations of an OBS with both FiP and hsCRP, as well as the use of an equal-weight OBS to reflect the aggregate of anti- and pro-oxidant exposures.

Although there are no previous reports of AE or BER GRS with biomarkers of oxidative stress or inflammation, other investigators have reported associations of various SNPs with related outcomes. In a case-control study of 436 Crohn's disease patients, 367 ulcerative colitis patients, and 434 controls, *SOD2* rs4880 was associated with Crohn's disease, but the finding was no longer statistically significant after accounting for multiple testing (54). In our study, *SOD2* rs4880 was modestly, but not statistically significantly, inversely associated with FiP concentrations. In a case-control study of breast cancer among Greek-Cypriot women (1,109 cases and 1,177 controls), the inverse association of a Mediterranean diet with breast cancer was stronger among those with more common *MnSOD* and *CAT* genotypes (55). Of relevance to that study is that a more Mediterranean diet-like pattern was strongly statistically significantly associated with lower FiP and hsCRP concentrations in a cross-sectional study (n=646) in a pooled outpatient, elective colonoscopy population (27).

Using endogenous factors, such as genetic risk scores, in addition to exogenous factors, such as smoking or diet, allows for a broader understanding of disease risk and the potential interactions

between genes and the environment. Other investigators have used genetic risk scores to assess associations of aggregates of genetic polymorphisms with various outcomes. For example, in the prospective Framingham Offspring Study, Meigs et al. created a genotype score based on 18 diabetes risk alleles among 2,377 participants, and after 28 years of follow up found that the genotype score was directly associated with diabetes incidence (OR 1.12 per risk allele, 95% CI 1.07-1.07) (40). Oh et al. in a prospective, exome-wide study of biochemical recurrence after radical prostatectomy for prostate cancer (n=912 prostate cancer patients), found that among those with a higher GRS, the 10-year biochemical recurrence-free survival rate was 46.3% vs. 81.8% among those with a lower GRS (56).

Several studies reported interactions of DNA base excision repair system genetic variants jointly with diet and lifestyle anti- and pro-oxidants in relation to risk of colorectal adenoma (50, 57); however, our study is the first to report potential interactions of antioxidant enzyme and DNA base excision repair system genotypes with an OBS in relation to biomarkers of oxidative balance and inflammation. In a case-control study (n=408 adenoma cases, 604 controls), Wang et al. constructed an equal weight OBS and a BER GRS, and found that having more BER risk variants combined with a lower OBS was associated with higher risk of colorectal adenoma compared to having more variants and a higher OBS or having less genetic variants and a lower OBS (50). In a case-control study (n=677 adenoma cases, 691 controls), Corral et al. investigated BER gene SNPs (although the SNPs investigated were not the same as those in our study) as potential modifiers of associations of smoking, alcohol, and dietary folate with colorectal adenoma (*MUTYH* p_{interaction} = 0.002, *OGG1* p_{interaction} = 0.013, and *FEN1* p_{interaction} = 0.013), and one SNP modified the association of alcohol consumption with adenoma (*LIG3* p_{interaction} = 0.024) (57).

This study has several limitations. First, as mentioned previously, the genetic risk scores were derived solely from the study population (an elective, outpatient colonoscopy population), and thus the findings from the scores may not be generalizable to other populations. A more ideal way of creating genetic risk scores would be to base them on in-depth knowledge of the functional consequences of the various SNPs, combined with associations of the various SNPs with biomarkers of oxidative stress and inflammation across several large, general population-based studies; however, such information was unavailable, leaving our approach the only remaining option. Despite this limitation, our investigation and findings are novel, and clearly support further investigation in larger, general population-based studies. Also, our findings of effect modification of the OBS-biomarker associations would seem less likely to be population specific (at least in general, although not necessarily in magnitude). Second, our study population included only white participants, so our findings may not be generalizable to other races.

Other limitations include having only single biomarkers of oxidative stress and inflammation. However, F₂-isoprostanes is currently the most widely accepted, reliable, valid biomarker of oxidative stress in humans, and hsCRP has been used extensively across numerous studies with excellent success. Also, we were unable to assess the temporality of the OBS-biomarker associations due to the nature of the cross-sectional study design. FFQs have known limitations, including recall error, inability to precisely measure some dietary exposures (especially regarding population-specific foods), and issues regarding capturing seasonal patterns of intakes. However, the FFQ used in our study was previously validated (58), and in our study, recall error would be expected to be non-differential (participants did not know their biomarker values), which would be expected to attenuate any associations involving dietary exposures (i.e., the OBS). One way to address this limitation would be to use both serum/plasma biomarkers of dietary intakes and FFQderived dietary values; however, for this study only FFQ data were available. Although we evaluated numerous SNPs, it was not possible to consider every SNP for each gene of interestespecially those that are rare—and thus potential influential SNPs may have been excluded. Finally, our sample size was relatively small; however, for a study with continuous biomarker measures as outcomes, our statistical power was adequate for capturing important differences.

Our study also had several strengths, including being the first study, to our knowledge, to report 1) associations of aggregates of antioxidant enzyme and DNA base excision repair genotypes with biomarkers of oxidative stress and inflammation in humans, and 2) aggregates of antioxidant enzyme and DNA base excision repair genotypes as modifiers of associations of dietary and lifestyle factors with biomarkers of oxidative stress and inflammation. Other strengths included the collection and assessment of extensive dietary, lifestyle, and medical data as potential confounding factors, the high quality of the laboratory measurements, and the inclusion of both men and women.

In conclusion, our novel findings suggest that, collectively, genotypes of antioxidant enzyme genes as well as of DNA base excision repair system genes may be associated with oxidative stress and inflammation, and may modify the association of the balance of anti- relative to prooxidant dietary and lifestyle exposures with inflammation, but not oxidative stress in humans. Given the strength of the novel findings, combined with our study limitations, future larger studies in highly representative general population samples are clearly indicated.

REFERENCES

- Dash C, Bostick RM, Goodman M, et al. Oxidative balance scores and risk of incident colorectal cancer in a US prospective cohort study. *Am J Epidemiol* 2015;181(8):584-94.
- Block G. The Data Support a Role for Antioxidants in Reducting Cancer Risk. *Nutrition Reviews* 1992;50:207-13.
- Poulsen HE, Prieme H, Loft S. Role of oxidative DNA damage in cancer initiation and promotion. *Eur J Cancer Prev* 1998;7:7-16.
- 4. Valko M, Izakovic M, Mazur M, et al. Role of oxygen radicals in DNA damage and cancer incidence. *Molecular and Cellular Biochemistry* 2004;266:37-56.
- 5. Coussens LM, Werb Z. Inflammation and cancer. *Nature* 2002;420(6917):860-7.
- Terzic J, Grivennikov S, Karin E, et al. Inflammation and colon cancer. *Gastroenterology* 2010;138(6):2101-14 e5.
- Kim S, Keku TO, Martin C, et al. Circulating levels of inflammatory cytokines and risk of colorectal adenomas. *Cancer Res* 2008;68(1):323-8.
- Groblewska M, Mroczko B, Wereszczynska-Siemiatkowska U, et al. Serum interleukin 6 (IL-6) and C-reactive protein (CRP) levels in colorectal adenoma and cancer patients. *Clin Chem Lab Med* 2008;46(10):1423-8.
- Reuter S, Gupta SC, Chaturvedi MM, et al. Oxidative stress, inflammation, and cancer: how are they linked? *Free Radic Biol Med* 2010;49(11):1603-16.
- Bartsch H, Nair J. Chronic inflammation and oxidative stress in the genesis and perpetuation of cancer: role of lipid peroxidation, DNA damage, and repair. *Langenbecks Arch Surg* 2006;391(5):499-510.
- 11. Eldridge RC, Flanders WD, Bostick RM, et al. Using multiple biomarkers and determinants to obtain a better measurement of oxidative stress: a latent variable structural equation model approach. *Biomarkers* 2017;22(6):517-24.

- Esmaillzadeh A, Kimiagar M, Mehrabi Y, et al. Dietary Patterns and Markers of Systemic Inflammation among Iranian Women. *J Nutr* 2007;137:992-8.
- Sies H. Oxidative Stress: oxidants and antioxidants. *Experimental Physiology* 1997;82:291-5.
- Strzelczyk JK, Wielkoszynski T, Krakowczyk L, et al. The activity of antioxidant enzymes in colorectal adenocarcinoma and corresponding normal mucosa. *Acta Biochim Pol* 2012;59(4):549-56.
- Birben E, Sahiner UM, Sackesen C, et al. Oxidative Stress and Antioxidant Defense.
 WAO Journal 2012;5:9-19.
- Lei XG, Zhu JH, Cheng WH, et al. Paradoxical Roles of Antioxidant Enzymes: Basic Mechanisms and Health Implications. *Physiol Rev* 2016;96(1):307-64.
- Kabzinski J, Mucha B, Cuchra M, et al. Efficiency of Base Excision Repair of Oxidative DNA Damage and Its Impact on the Risk of Colorectal Cancer in the Polish Population. *Oxid Med Cell Longev* 2016;2016:3125989.
- Goodman M, Bostick RM, Dash C, et al. Hypothesis: oxidative stress score as a combined measure of pro-oxidant and antioxidant exposures. *Ann Epidemiol* 2007;17(5):394-9.
- van der Vaart H, Postma DS, Timens W, et al. Acute effects of cigarette smoke on inflammation and oxidative stress: a review. *Thorax* 2004;59(8):713-21.
- 20. Ji LL, Gomez-Cabrera MC, Vina J. Exercise and hormesis: activation of cellular antioxidant signaling pathway. *Ann N Y Acad Sci* 2006;1067:425-35.
- 21. Furukawa S, Fujita T, Shimabukuro M, et al. Increased oxidative stress in obesity and its impact on metabolic syndrome. *J Clin Invest* 2004;114 (12):1752-61.
- Venturi M, Hambly RJ, Glinghammar B, et al. Genotoxic activity in human feacal water and the role of bile acids: a study using the alkaline comet assay. *Carcinogenesis* 1997;18(12):2353-9.

- 23. Tappel A. Heme of consumed red meat can act as a catalyst of oxidative damage and could initiate colon, breast and prostate cancers, heart disease and other diseases. *Med Hypotheses* 2007;68(3):562-4.
- 24. Lopes HF, Martin KL, Nashar K, et al. DASH diet lowers blood pressure and lipidinduced oxidative stress in obesity. *Hypertension* 2003;41(3):422-30.
- 25. Erlinger TP, Miller ER, 3rd, Charleston J, et al. Inflammation modifies the effects of a reduced-fat low-cholesterol diet on lipids: results from the DASH-sodium trial. *Circulation* 2003;108(2):150-4.
- Chan AT, Giovannucci EL. Primary prevention of colorectal cancer. *Gastroenterology* 2010;138(6):2029-43 e10.
- 27. Whalen KA, McCullough ML, Flanders WD, et al. Paleolithic and Mediterranean Diet Pattern Scores Are Inversely Associated with Biomarkers of Inflammation and Oxidative Balance in Adults. *J Nutr* 2016;146(6):1217-26.
- Satia JA, Tseng M, Galanko JA, et al. Dietary patterns and colon cancer risk in Whites and African Americans in the North Carolina Colon Cancer Study. *Nutr Cancer* 2009;61(2):179-93.
- 29. Dai J, Jones DP, Goldberg J, et al. Association between adherence to the Mediterranean diet and oxidative stress. *Am J Clin Nutr* 2008;88(5):1364–70.
- Fung TT, McCullough ML, Newby PK, et al. Diet-quality scores and plasma concentrations of markers of inflammation and endothelial dysfunction. *Am J Clin Nutr* 2005;82:163-73.
- Tabung FK, Smith-Warner SA, Chavarro JE, et al. Development and Validation of an Empirical Dietary Inflammatory Index. *J Nutr* 2016;146(8):1560-70.
- Holt EM, Steffen LM, Moran A, et al. Fruit and vegetable consumption and its relation to markers of inflammation and oxidative stress in adolescents. *J Am Diet Assoc* 2009;109(3):414-21.

- 33. Meyer KA, Sijtsma FP, Nettleton JA, et al. Dietary patterns are associated with plasma
 F(2)-isoprostanes in an observational cohort study of adults. *Free Radic Biol Med* 2013;57:201-9.
- Block G, Dietrich M, Norkus EP, et al. Factors Associated with Oxidative Stress in Human Populations. *American Journal of Epidemiology* 2002;156(3):274-85.
- 35. Anderson C, Milne GL, Sandler DP, et al. Oxidative stress in relation to diet and physical activity among premenopausal women. *Br J Nutr* 2016;116(8):1416-24.
- Ballard-Barbash R, Friedenreich CM, Courneya KS, et al. Physical activity, biomarkers, and disease outcomes in cancer survivors: a systematic review. *J Natl Cancer Inst* 2012;104(11):815-40.
- Morrow JD, Frei B, Longmire AW, et al. Increase in circulating products of lipid peroxidation (F2-isoprostanes) in smokers. *N Engl J Med* 1995;332:1198-203.
- 38. Dash C, Goodman M, Flanders WD, et al. Using pathway-specific comprehensive exposure scores in epidemiology: application to oxidative balance in a pooled casecontrol study of incident, sporadic colorectal adenomas. *Am J Epidemiol* 2013;178(4):610-24.
- Kong SY, Bostick RM, Flanders WD, et al. Oxidative balance score, colorectal adenoma, and markers of oxidative stress and inflammation. *Cancer Epidemiol Biomarkers Prev* 2014;23(3):545-54.
- 40. Meigs JB, Shrader P, Sullivan LM, et al. Genotype score in addition to common risk factors for prediction of type 2 diabetes. *N Engl J Med* 2008;359(21):2208-19.
- 41. Conran CA, Na R, Chen H, et al. Population-standardized genetic risk score: the SNP-based method of choice for inherited risk assessment of prostate cancer. *Asian J Androl* 2016;18(4):520-4.

- Fedirko V, Bostick RM, Goodman M, et al. Blood 25-hydroxyvitamin D3 concentrations and incident sporadic colorectal adenoma risk: a pooled case-control study. *Am J Epidemiol* 2010;172(5):489-500.
- 43. Boyapati SM, Bostick RM, McGlynn KA, et al. Calcium, Vitamin D, and Risk for Colorectal Adenoma: Dependency on Vitamin D Receptor BsmI Polymorphism and Nonsteroidal Anti-Inflammatory Drug Use? *Cancer Epidemiol Biomarkers Prev* 2003;12:631-7.
- Gong Y-L, Xie D-W, Deng Z-L, et al. Vitamin D receptor gene Tru9I polymorphism and risk for incidental sporadic colorectal adenomas. *World Journal of Gastroenterology* 2005;11(31):4794-9.
- 45. Sidelnikov E, Bostick RM, Flanders WD, et al. MutL-homolog 1 expression and risk of incident, sporadic colorectal adenoma: search for prospective biomarkers of risk for colorectal cancer. *Cancer Epidemiol Biomarkers Prev* 2009;18(5):1599-609.
- 46. Daniel CR, Bostick RM, Flanders WD, et al. TGF-alpha expression as a potential biomarker of risk within the normal-appearing colorectal mucosa of patients with and without incident sporadic adenoma. *Cancer Epidemiol Biomarkers Prev* 2009;18(1):65-73.
- 47. Willett WC, Smpson L, Browne ML, et al. The use of a self-administered questionnaire to assess diet four years in the past *American Journal of Epidemiology* 1988;127:188-99.
- Morrow JD, Roberts JLn. Mass Spectrometry of Prostanoids: F2-Isopprostanes Produced by Non-Cyclooxygenase Free Radical-Catalyzed Mechanism. *Methods in Enzymology*: Academic Press, Inc., 1994:163-74.
- 49. Milne GL, Yin H, Brooks JD, et al. Quantification of F2-Isoprostanes in Biological Fluids and Tissues as a Measure of Oxidant Stress. 2007;433:113-26.

- Wang T, Goodman M, Sun YV, et al. DNA base excision repair genetic risk scores, oxidative balance, and incident, sporadic colorectal adenoma. *Mol Carcinog* 2017;56(6):1642-52.
- 51. Van Hoydonck PGA, Temme EHM, Schouten EG. A Dietary Oxidative Balance Score of Vitamin C, Beta-Carotene and Iron Intakes and Mortality Risk in Male Smoking Belgians. J Nutr 2002;132:756-61.
- 52. Lakkur S, Bostick RM, Roblin D, et al. Oxidative balance score and oxidative stress biomarkers in a study of Whites, African Americans, and African immigrants. *Biomarkers* 2014;19(6):471-80.
- Lee HS, Park T. Pathway-Driven Approaches of Interaction between Oxidative Balance and Genetic Polymorphism on Metabolic Syndrome. *Oxid Med Cell Longev* 2017;2017:6873197.
- 54. Costa Pereira C, Duraes C, Coelho R, et al. Association between Polymorphisms inAntioxidant Genes and Inflammatory Bowel Disease. *PLoS One* 2017;12(1):e0169102.
- 55. Kakkoura MG, Demetriou CA, Loizidou MA, et al. MnSOD and CAT polymorphisms modulate the effect of the Mediterranean diet on breast cancer risk among Greek-Cypriot women. *Eur J Nutr* 2016;55(4):1535-44.
- Oh JJ, Park S, Lee SE, et al. Genetic risk score to predict biochemical recurrence after radical prostatectomy in prostate cancer: prospective cohort study. *Oncotarget* 2017;8 (No. 44):75979-88.
- 57. Corral R, Lewinger JP, Joshi AD, et al. Genetic variation in the base excision repair pathway, environmental risk factors, and colorectal adenoma risk. *PLoS One* 2013;8(8):e71211.
- Willett WC, Sampson L, Stampfer MJ, et al. Reproducibility and validity of a semiquantitative food frequency questionnaire. *American Journal of Epidemiology* 1985;122:51-65.

-		Tertiles of F2-isoprostanes b		
_	Low	Medium	High	P-value c
Characteristics	(n = 116)	(n = 116)	(n = 116)	
Demographics	50 (0.0)	50 (0.1)	54 (0.0)	0.00
Age (years) Male (%)	58 (8.9) 62.1	58 (8.4) 52.6	56 (9.9) 27.6	0.29 <0.0001
College degree or higher (%)	39.1	24.1	15.5	< 0.0001
Family history of CRC $(\%)^{d}$	26.7	25.9	29.3	0.83
Lifestyle				
Regular ^e NSAID use (%)	20.4	27.6	26.1	0.41
Regular ^e asprin use (%)	47.4	35.3	21.6	0.0002
HRT use in women $(n = 183)$ (%)	13.1	17.5	23.0	0.63
Current smoker (%)	16.7	29.0	30.6	0.10
Body mass index (kg/m ²)	26.0 (4.1)	26.9 (5.0)	29.3 (6.7)	< 0.0001
Waist-hip ratio	0.92 (0.10)	0.92 (0.14)	0.91 (0.17)	0.40 ^j
Alcohol (drinks/wk) ^f	3.8 (6.9)	3.6 (7.4)	1.5 (3.4)	0.07 ^j
Physical activity (METs/wk) ^g	238.7 (148.5)	249.0 (168.0)	251.5 (151.2)	0.32 ^j
Circulating 25-OH-vitamin D ₃ (ng/mL)	27.9 (10.9)	28.0 (12.1)	24.0 (10.3)	0.05 ^j
Dietary Intakes				
Total energy (kcal/d)	2,047 (840)	1,851 (704)	1,872 (757)	0.10 ^j
Total fat (g/d)	70.5 (35.8)	67.4 (33.2)	67.1 (38.7)	0.55 ^j
$Total^{h}$ calcium (mg/d)	909.1 (411.3)	829.0 (457.7)	788.2 (378.8)	0.04 ^j
Dietary fiber (g/d)	23.6 (10.7)	19.7 (8.6)	20.1 (10.7)	0.001 ^j
Red & processed meats (servings/d)	1.1 (0.9)	1.0 (0.7)	1.0 (1.2)	0.58 ^j
Fruits & vegetables (servings/d) ⁱ	6.2 (3.7)	4.9 (3.1)	5.4 (4.0)	0.003 ^j
Antioxidants:				
Total ^h carotene (IU/d)	10,499 (8,081)	8,194 (7,018)	8,964 (11,161)	0.002 ^j
Lutein (mg/d)	3,697 (2,863)	3,175 (2,899)	2,989 (2,849)	0.05 ^j
Lycopene (mg/d)	5,855 (7,299)	4,226 (3,563)	4,457 (4,274)	0.02 ^j
Total ^h vitamin C (mg/d)	346.8 (332.4)	255.5 (277.6)	222.5 (263.5)	0.0001 ^j
Total ^h vitamin E (mg/d)	117.0 (188.1)	81.3 (184.3)	26.6 (69.1)	< 0.0001
Dietary omega-3 fatty acid (g/d)	1.6 (2.3)	1.3 (1.3)	1.4 (1.4)	0.95 ^j
Dietary flavonoids (mg/d)	473.3 (421.6)	386.8 (331.9)	397.7 (416.0)	0.02 ^j
Dietary glucosinolates (mg/d)	19.1 (14.9)	17.7 (16.7)	22.5 (42.4)	0.66 ^j
Prooxidants:				
Dietary iron (mg/d)	16.5 (8.5)	14.0 (6.6)	13.8 (7.1)	0.0007^{j}
Dietary omega-6 fatty acids (g/d)	12.6 (6.5)	12.2 (9.1)	11.3 (5.6)	0.20 ^j
Saturated fats (g/d)	22.8 (12.7)	22.1 (10.9)	22.7 (13.9)	0.96 ^j
Oxidative Balance Score (OBS) ^k	1.4 (4.9)	-0.2 (5.1)	-0.5 (5.4)	0.01

Table 1. Selected characteristics of participants (n = 348) by tertiles of plasma F_2 -isoprostanes concentrations, in the pooled MAP I and MAP II cross-sectional studies ^a

Abbreviations: MAP, Markers of Adenomatous Polyps; CRC, colorectal cancer; NSAID, nonsteroidal anti-inflammatory drug; HRT, hormone replacement therapy; MET, metabolic equivalents of task

^a Data presented as mean (standard deviation) unless otherwise specified

^b Plasma F₂-isoprostanes concentrations, tertile ranges (pg/mL): low = 29.32 - 64.56; medium = 64.57 - 91.84; high = 92.52 - 223.43

^c P-values based on chi-square test for categorical variables and general linear models for continuous variables

^d Family history of colorectal cancer in a first degree relative

^e Regular use is defined as \geq once per week

^fA drink is defined as 1 glass/bottle/can of beer, 4 oz. glass of red/white wine, or 1 drink or 1 shot of liquor

g Moderate + vigorous phyiscal activity

^h Total intake = dietary + supplemental intakes

ⁱNot including juice

^j Based on natural log-transformed variable

^k Oxidative balance score is a composite of 15 anti- and pro-oxidant dietary and lifestyle exposures (see text); calculated by assigning +1 weight to all antioxidants and -1 weight to all prooxidants, a higher score representst higher anti-oxidant relative to pro-oxidant environmental exposures; study population range: -15.1 to 23.7

25

		Tertiles of hsCRP b		
	Low	Medium	High	P-value
Characteristics	(n = 152)	(n = 153)	(n = 153)	
Demographics	55 (0.0)	50 (0.5)	57 (0.0)	0.01
Age (years)	55 (8.8) 59.2	58 (8.5) 52.9	57 (9.3) 36.6	0.01
Male (%) College degree or higher (%)	38.2	25.0	19.7	0.0002 0.0017
Family history of CRC $(\%)^{d}$	23.7	29.4	24.8	0.48
T : C (-).				
Lifestyle	30.9	27.6	30.7	0.78
Regular ^e NSAID use (%)	37.5	38.2	31.6	
Regular ^e asprin use (%)	9.1	38.2 20.8	23.8	0.42 0.0005
HRT use in women $(n = 231)$ (%) Current smoker (%)	14.8	26.2	30.2	0.0005
Body mass index (kg/m ²)	25.8 (5.1)	28.1 (5.9)	29.5 (6.0)	< 0.0001
Waist-hip ratio	0.90 (0.16)	0.93 (0.14)	0.92 (0.09)	<0.0001 0.05 ^j
Alcohol (drinks/wk) ^f	3.3 (5.9)	3.0 (6.4)	2.6 (6.5)	0.84 ^j
Physical activity (METs/wk) ^g	231.3 (150.8)	257.7 (165.6)	243.1 (164.4)	0.49 ^j
Circulating 25-OH-D ₃ (ng/mL)	28.5 (10.8)	27.1 (12.3)	25.3 (10.4)	0.11 ^j
Dietary Intakes				
Total energy (kcal/d)	1,850 (727)	1,966 (798)	1,884 (738)	0.34 ^j
Total fat (g/d)	65.5 (31.8)	71.1 (39.6)	67.9 (32.6)	0.34 ^j
Total ^h calcium (mg/d)	873.4 (458.9)	884.3 (451.2)	803.4 (413.2)	0.23 ^j
Dietary fiber (g/d)	20.3 (9.9)	21.7 (9.7)	19.8 (9.6)	0.16 ^j
Red & processed meats (servings/d)	1.0 (0.7)	1.1 (1.2)	1.1 (0.8)	0.20 ^j
Fruits & vegetables (servings/d) ⁱ	5.0 (3.1)	5.5 (3.5)	5.3 (3.7)	0.48 ^j
Antioxidants:				
Total ^h carotene (IU/d)	9,365 (8,119)	8,556 (7,510)	8,459 (9,520)	0.45 ^j
Lutein (mg/d)	3,092 (2,459)	3,249 (2,975)	3,163 (2,540)	0.82 ^j
Lycopene (mg/d)	4,497 (3,134)	5,225 (5,198)	4,656 (6,046)	0.18 ^j
Total ^h vitamin C (mg/d)	299.7 (402.7)	286.0 (307.3)	245.8 (269.6)	0.54 ^j
Total ^h vitamin E (mg/d)	78.4 (158.8)	69.9 (154.5)	56.2 (146.3)	0.14 ^j
Dietary omega-3 fatty acid (g/d)	1.2 (1.5)	1.3 (1.4)	1.5 (2.1)	0.05 ^j
Dietary flavonoids (mg/d)	396.3 (349.4)	410.1 (406.9)	421.1 (404.1)	0.95 ^j
Dietary glucosinolates (mg/d)	17.0 (15.4)	18.3 (17.5)	21.0 (36.1)	0.32 ^j
Prooxidants:				
Dietary iron (mg/d)	14.4 (6.2)	15.1 (8.6)	14.0 (6.6)	0.42 ^j
Dietary omega-6 fatty acids (g/d)	12.3 (8.4)	12.5 (6.9)	11.4 (5.6)	0.32 ^j
Saturated fats (g/d)	21.1 (10.5)	23.5 (13.9)	22.9 (11.8)	0.16 ^j
Oxidative Balance Score (OBS) ^k	0.7 (5.0)	-0.3 (5.7)	-0.4 (4.9)	0.14

Table 2. Selected characteristics of participants (n = 458) by tertiles of plasma high sensitivity C-reactive protein (hsCRP) concentrations, in the pooled MAP I and MAP II cross-sectional studies ^a

Abbreviations: MAP, Markers of Adenomatous Polyps; CRC, colorectal cancer; NSAID, nonsteroidal anti-inflammatory drug; HRT, hormone replacement therapy; MET, metabolic equivalents of task

^a Data presented as mean (standard deviation) unless otherwise specified

^b Plasma hsCRP concentrations, tertile ranges (μ g/mL): low = 0.14 to 1.63; medium = 1.65 to 4.43; high = 4.44 to 22.51

^c P-values based on chi-square test for categorical variables and general linear models for continuous variables

^d Family history of colorectal cancer in a first degree relative

^e Regular use is defined as \geq once per week

^fA drink is defined as 1 glass/bottle/can of beer, 4 oz. glass of red/white wine, or 1 drink or 1 shot of liquor

^g Moderate + vigorous phyiscal activity

^h Total intake = dietary + supplemental intakes

ⁱNot including juice

^jBased on natural log-transformed variable

^k Oxidative balance score is a composite of 15 anti- and pro-oxidant dietary and lifestyle exposures (see text); calculated by assigning +1 weight to all antioxidants and -1 weight to all prooxidants, a higher score representst higher anti-oxidant relative to pro-oxidant environmental exposures; study population range: -15.1 to 23.7

					F2-isoprostanes,	pg/L				hsCRP, µg/m	ıL	
			n	mean	(95% CI)	% diff. ^c	P-value	n	mean	(95% CI)	% diff. ^c	P-value
Oxidative Balance	e Score (OBS) ^d	OBS tertile medians										
Crude ^e												
	OBS tertiles											
	1	-4.83	118	83.40	(78.08, 89.08)	-		161	2.85	(2.42, 3.37)	-	
	2	-0.32	128	84.04	(78.88, 89.53)	0.8		164	2.98	(2.53, 3.51)	4.4	
	3	4.64	130	71.21	(66.87, 75.82)	-14.6	0.0003	162	2.33	(1.98, 2.75)	-18.2	0.09
Multivariable	-adjusted ^f											
	OBS tertiles											
	1	-4.83	118	93.21	(86.71, 100.19)	-		161	3.44	(2.84, 4.16)	-	
	2	-0.32	128	89.04	(82.85, 95.69)	-4.5		164	3.15	(2.60, 3.80)	-8.5	
	3	4.64	130	75.46	(70.54, 80.72)	-19.0	< 0.0001	162	2.48	(2.07, 2.98)	-27.8	0.02

Table 3. Mean^a plasma F_2 -isoprostanes and high sensitivity C-reactive protein (hsCRP) concentrations according to tertiles of an Oxidative Balance Score (OBS), in the pooled MAP I and MAP II cross-sectional studies ^b

Abbreviations: MAP, Markers of Adenomatous Polyps; CI, confidence interval

^a Geometric means and 95% confidence intervals from general linear models

^b Unequal sample sizes in tertiles due to ranking ties. Differences in the numbers of participants due to availability of serum samples for the two biomarker assays.

^c Proportional difference, in percent, between mean value in the corresponding tertile and mean value in the first tertile (reference); e.g.: (([tertile 3 mean - tertile 1 mean] / tertile 1 mean] x 100%)

^d Oxidative balance score is a composite of 15 anti- and pro-oxidant dietary and lifestyle exposures (see text); a higher score represents higher anti-oxidant relative to pro-oxidant environmental exposures; study population range: -15.1 - 23.7

^e No covariates in the model

^fAdjusted for total energy intake, sex, hormone replacement thearapy (HRT) use, education (less than high school, high school degree/vocational school/some college, college graduate or higher), nonsteroidal anti-inflammatory drug (NSAID) and/or aspirin use (≥ 1 /wk or < 1/wk)

				F ₂ -isoprostanes,	pg/L				hsCRP, µg/n	ηL	
		n	mean	(95% CI)	% diff. ^d	P-value	n	mean	(95% CI)	% diff. ^d	P-valu
GRS for BER genes ^e	GRS tertile median										
Crude ^f											
BER GRS tertiles											
1	-5	79	72.87	(67.07, 79.18)	-		106	1.89	(1.54, 2.31)	-	
2	-1	77	78.40	(72.07, 85.27)	7.6		105	2.50	(2.04, 3.06)	32.1	
3	3	92	84.20	(77.97, 90.93)	15.5	0.04	123	2.99	(2.48, 3.61)	58.4	0.005
Adjusted ^g											
BER GRS tertiles											
1	-5	79	76.26	(70.67, 82.29)	-		106	2.03	(1.67, 2.46)	-	
2	-1	77	81.44	(75.48, 87.88)	6.8		105	2.68	(2.21, 3.25)	31.9	
3	3	92	87.33	(81.32, 93.77)	14.5	0.04	123	3.03	(2.53, 3.62)	48.9	0.01
GRS for AE genes ^e	GRS tertile median										
Crude ^f											
AE GRS tertiles											
1	-4	82	74.49	(68.62, 80.87)	-		121	2.09	(1.73, 2.52)	-	
2	-2	76	85.80	(78.79, 93.44)	15.2		97	2.75	(2.23, 3.39)	31.6	
3	0	89	77.37	(71.51, 83.72)	3.9	0.05	112	2.65	(2.17, 3.22)	26.7	0.11
Adjusted ^g											
AE GRS tertiles											
1	-4	82	76.16	(70.70, 82.04)	-		121	2.10	(1.76, 2.51)	-	
2	-2	76	89.02	(82.43, 96.14)	16.9		97	3.00	(2.46, 3.67)	42.9	

Table 4. Mean^a plasma F_2 -isoprostanes and high sensitivity C-reactive protein (hsCRP) concentrations according to tertiles of DNA Base Excision Repair (BER) and Antioxidant Enzyme (AE) genetic risk scores (GRSs), in the pooled MAP I and MAP II cross-sectional studies ^{b,c}

Abbreviations: MAP, Markers of Adenomatous Polyps; BER, Base Excision Repair; AE, Antioxidant Enzyme; GRS, genetic risk score CI, confidence interval

^a Geometric means and 95% confidence intervals from general linear models

^b Unequal sample sizes in tertiles due to ranking ties. Differences in the numbers of participants due to availability of serum samples for the two biomarker assays and genotyping.

^cAE gene score is based on 6 SNPs in 3 AE genes and BER gene score is based on 21 SNPs in 10 BER genes; complete list of genes and SNPs in text and appendix tables 3 and 4, respectively

^d Proportional difference, in percent, between mean value in the corresponding tertile and mean value in the first tertile (reference); e.g.: (([tertile 3 mean - tertile 1 mean] / tertile 1 mean] x 100%)

^e A higher GRS indicates a higher number of higher relative to lower risk alleles

^f No covariates in the model

^g Adjused for sex and body mass index

		1				OBS tertiles ^e 2				3			
	cell n	mean (95% CI)	% diff ^d	p-value	cell n	mean (95% CI)	% diff ^d	p-value	cell n	mean (95% CI)	% diff ^d	p-value	
GRS for antioxidant enxyme genes AE GRS tertiles ^f													
High	29	-	1.0 (ref.)	-	38	3.17 (2.05, 4.88)	-24.9	0.29	45	2.72 (1.91, 3.88)	-26.4	0.29	
Medium	34	4.57 (3.06, 6.82)	1.0	0.97	28	3.93 (2.46, 6.28)	-2.9	0.92	35	2.37 (1.62, 3.46)	-42.0	0.04	
Low	45	2.83 (1.85, 4.32)	-27.8	0.18	41	2.39 (1.65, 3.46)	-38.4	0.06	35	2.17 (1.42, 3.32)	-37.9	0.09	
GRS for base excision repair genes BER GRS tertiles ^f													
High	37	-	1.0 (ref.)	-	46	3.55 (2.39, 5.29)	2.6	0.91	40	3.11 (2.20, 4.40)	-27.7	0.16	
Medium	43	5.24 (3.55, 7.74)	24.9	0.30	25	3.08 (2.03, 4.65)	-13.9	0.56	37	2.52 (1.67, 3.81)	-24.1	0.27	
Low	30	3.05 (1.98, 4.70)	-21.5	0.30	36	2.37 (1.67, 3.37)	-50.2	0.0029	40	2.00 (0.34, 1.05)	-45.6	0.01	

Table 5. Joint/combined analysis of mean ^a plasma F ₂ -isoprostanes and high sensitivity C-reactive protein (hsCRP) concentrations according to tertiles of an Oxidative Balance Score and tertiles of
DNA Base Excision Repair and Antioxidant Enzyme genetic risk scores (GRS), in the pooled MAP I and MAP II cross-sectional studies be

		1			OBS tertiles ^e 2				3			
	cell n	mean (95% CI)	% diff ^d	p-value	cell n	mean (95% CI)	% diff	p-value	cell n	mean (95% CI)	% diff ^d	p-value
GRS for antioxidant enxyme genes AE GRS tertiles ^f												
High	21	-	1.0 (ref.)	-	30	101.51 (86.75, 118.78)	7.7	0.44	38	75.56 (65.47, 87.21)	-17.5	0.06
Medium	23	123.42 (103.63, 146.97)	29.0	0.01	23	86.01 (70.63, 104.73)	-7.1	0.53	30	83.74 (70.08, 100.06)	-5.5	0.65
Low	29	95.59 (78.10, 116.99)	1.5	0.89	28	86.31 (73.59, 101.22)	-3.4	0.75	25	73.42 (59.78, 90.17)	-17.3	0.16
GRS for base excision repair genes BER GRS tertiles ^f												
High	27	-	1.0 (ref.)	-	33	100.51 (85.42, 118.26)	-6.2	0.51	32	85.40 (72.56, 100.50)	-21.0	0.04
Medium	31	104.23 (89.24, 121.74)	-2.2	0.81	18	90.94 (76.04, 108.76)	-10.1	0.35	28	80.61 (68.19, 95.29)	-17.7	0.09
Low	16	90.03 (70.62, 114.78)	-19.4	0.08	29	82.85 (71.71, 95.72)	-19.6	0.02	34	75.81 (65.96, 87.14)	-20.6	0.03

Abbreviations: MAP, Markers of Adenomatous Polyps; CI, confidence interval; GRS, genetic risk score; BER, Base Excision Repair; AE, Antioxidant Enzyme

^a Geometric means and 95% confidence intervals from general linear model. Adjusted for total energy intake, sex, hormone replacement thearapy (HRT) use, education (less than high school, high school degree/vocational school/some college, college graduate or higher), nonsteroidal anti-inflammatory drug (NSAID) and/or aspirin use (≥ 1 /wk or < 1/wk).

^b Unequal sample sizes in tertiles due to ranking ties. Differences in the numbers of participants due to availability of serum samples for the two biomarker assays, nutritient analysis and genotyping. ^cAE gene score is based on 6 SNPs in 3 AE genes and BER gene score is based on 21 SNPs in 10 BER genes; complete list of genes and SNPs in text and appendix tables 3 and 4, respectively ^d Proportional difference, in percent, between mean value in the corresponding tertile and mean value in the first tertile (reference); e.g.: (([tertile 3 mean - tertile 1 mean) x 100%) ^e Oxidative balance score is a composite of 15 anti- and pro-oxidant dietary and lifestyle exposures (see text); a higher score represents higher anti-oxidant relative to pro-oxidant environmental exposures; study population range: -15.1 - 23.7

^fA high GRS represents a higher risk category

Gene	SNP rs ID	RefSNP Alleles (strand direction)	Minor Allele ^a
CAT	rs1001179	A/G (REV)	Т
CAT	rs7947841	A/G (FWD)	А
CAT	rs499406	A/C/G (REV)	Т
CAT	rs566979	A/G/T (REV)	С
CAT	rs16925614	C/T (FWD)	Т
CAT	rs11032703	C/T (FWD)	Т
CAT	rs11604331	A/G (FWD)	G
CAT	rs525938	A/G (REV)	С
CAT	rs7104301	A/G (FWD)	G
CAT	rs12272630	C/G (FWD)	С
CAT	rs7943316	A/T (FWD)	Т
GSTP1	rs4147581	C/G (FWD)	G
GSTP1	rs1138272	C/T (FWD)	Т
GSTP1	rs749174	C/T (REV)	А
GSTP1	rs1695	A/G (FWD)	G
GSTP1	rs762803	A/C (FWD)	А
MnSOD	rs5746151	A/G (REV)	Т
MnSOD	rs5746136	A/G (REV)	Т
MnSOD	rs4880	C/T (REV)	G
MnSOD	rs6917589	C/T (FWD)	С
MnSOD	rs8031	A/T (REV)	Т
MnSOD	rs2842980	A/T (REV)	А

Appendix Table 1. Antioxidant enzyme genes investigated

Abbreviations: *CAT*, catalase; *GSTP1*, glutathione S-transferase pi 1; *MnSOD*, manganese superoxide dismutase

^a Data from 1000 Genomes Project

Gene	SNP rs ID	RefSNP Alleles (strand direction)	Minor Allele
APEX1	rs3136814	A/C (FWD)	С
APEX1	rs1130409	A/G/T (FWD)	G
APEX1	rs1760944	A/C (REV)	T
	131700944	A/C (KLV)	1
FEN1	rs412334	A/G (REV)	Т
LIG1	rs419664	A/G/T (REV)	А
LIG1	rs156641	A/G (REV)	Т
LIG1	rs2288881	A/G (REV)	Т
LIG1	rs3730947	A/G (REV)	Т
LIG1	rs3731037	C/T (REV)	А
LIG1	rs411073	C/T (REV)	А
LIG1	rs3730908	C/T (REV)	А
LIG1	rs20579	C/G/T (REV)	А
LIG1	rs3730881	C/T (REV)	А
LIG1	rs3730914	C/T (REV)	А
LIG1	rs3731003	C/T (REV)	А
LIG1	rs3730837	A/G (REV)	С
LIG1	rs274862	C/T (FWD)	С
LIG1	rs3730912	A/C (REV)	Т
LIG1	rs20580	A/C (REV)	G
LIG3	rs3135974	A/G (FWD)	А
LIG3	rs3135998	A/G (FWD)	А
LIG3	rs3135989	G/T (FWD)	G
LIG3	rs3135967	A/G (FWD)	G
LIG3	rs2074516	C/G (REV)	G
MBD4	rs3138360	A/G (REV)	Т
MBD4	rs10342	A/G/T (REV)	Т
MBD4	rs2005618	C/T (REV)	G
MBD4	rs2311394	C/T (REV)	G
MBD4	rs2307293	C/G (REV)	G
MBD4	rs3138326	A/T (REV)	А
MPG	rs3176415	A/G (FWD)	G
MPG	rs2541622	C/G/T (REV)	А
MPG	rs3176424	A/G (FWD)	G
MUTYH	rs3219476	G/T (REV)	А
MUTYH	rs3219484	A/G (REV)	Т
MUTYH	rs3219494	A/G (REV)	Т
MUTYH	rs3219463	A/G (REV)	Т
MUTYH	rs3219489	C/G (REV)	Т
MUTYH	rs3219493	C/G (REV)	G
OGG1	rs125701	A/G (FWD)	А
OGG1	rs1805373	A/C/G (FWD)	А
OGG1	rs2072668	C/G (FWD)	G
OGG1	rs3219008	A/G (FWD)	G
OGG1	rs159153	C/T (FWD)	С

Appendix Table 2. DNA base excision repair pathway genes investigated
OGG1	rs293795	C/T (REV)	G
PNKP	rs3739206	G/T (REV)	С
PNKP	rs2257103	C/T (FWD)	Т
PNKP	rs3739186	A/T (REV)	Т
POLB	rs2979896	G/T (REV)	С
POLB	rs3136811	C/G (FWD)	G
POLB	rs3136797	C/G (FWD)	G
SMUG1	rs2233920	G/T (REV)	А
SMUG1	rs3136386	C/G (REV)	С
SMUG1	rs971	C/T (FWD)	Т
SMUG1	rs2279402	C/T (REV)	G
TDG	rs3829301	A/C (FWD)	С
TDG	rs4135113	A/G/T (FWD)	А
TDG	rs2629768	A/G (REV)	Т
TDG	rs4135064	C/T (FWD)	Т
TDG	rs322107	C/T (REV)	А
TDG	rs4135061	A/G (FWD)	G
TDG	rs4135081	A/G (FWD)	G
TDG	rs322109	A/C/G (REV)	С
TDG	rs4135093	C/T (FWD)	С
TDG	rs4135094	C/T (FWD)	С
TDG	rs167715	C/T (REV)	G
UNG	rs3219245	G/T (FWD)	Т
UNG	rs246079	A/G (FWD)	А
XRCC1	rs939461	A/C (FWD)	С
XRCC1	rs3213247	G/T (REV)	А
XRCC1	rs939460	A/G (FWD)	А
XRCC1	rs25487	A/G (REV)	Т
XRCC1	rs25489	A/C/G (REV)	Т
XRCC1	rs1001581	C/T (FWD)	Т
XRCC1	rs2307191	C/T (REV)	А
XRCC1	rs3213403	A/G (REV)	С
XRCC1	rs915927	A/C/G/T (REV)	С
XRCC1	rs3213255	C/T (REV)	G
XRCC1	rs25496	C/T (REV)	G

Abbreviations: *APEX1*, apurinic/apyrimidinic endodeoxyribonuclease 1; *FEN1*, flap structure-specific endonuclease 1; *LIG1*, DNA ligase 1; *LIG3*, DNA ligase 3; *MBD4*, methyl-CpG binding domain 4; *MPG*, N-methylpurine DNA glycosylase; *MUTYH*, mutY DNA glycosylase; *OGG1*, 8-oxoguanine DNA glycosylase; *PNKP*, polynucleotide kinase 3'-phosphatase; *POLB*, DNA polymerase beta; *SMUG1*, single-strand-selective monofunctional uracil-DNA glycosylase 1; *TDG*, thymine DNA glycosylase; *UNG*, uracil DNA glycosylase; *XRCC1*, X-ray repair cross complementing 1

^a Data from 1000 Genomes Project

Appendix Table 3. Antioxidant enzyme genetic risk score genes

genetic risk score ger	ies
Gene	SNP rs ID
CAT	rs525938
CAT	rs7943316
GSTP1	rs1138272
MnSOD	rs5746136
MnSOD	rs4880
MnSOD	rs8031
Abbrariational CAT	Contalagat CCTD1

Abbreviations: *CAT*, catalase; *GSTP1*, glutathione S-transferase pi 1; *MnSOD*, manganese superoxide dismutase

Gene	SNP rs ID
APEX1	rs1760944
LIG1	rs419664
LIG1	rs156641
LIG1	rs411073
LIG1	rs274862
LIG1	rs20580
LIG3	rs3135974
LIG3	rs2074516
MBD4	rs2307293
MUTYH	rs3219484
MUTYH	rs3219489
PNKP	rs3739206
POLB	rs3136797
SMUG1	rs3136386
TDG	rs4135061
TDG	rs322109
TDG	rs4135094
XRCC1	rs939460
XRCC1	rs25487
XRCC1	rs915927
XRCC1	rs3213255

Appendix Table 4. DNA base excision repair genetic risk score genes

Abbreviations: APEX1,

apurinic/apyrimidinic endodeoxyribonuclease 1; *LIG1*, DNA ligase 1; *LIG3*, DNA ligase 3; *MBD4*, methyl-CpG binding domain 4; *MUTYH*, mutY DNA glycosylase; *PNKP*, polynucleotide kinase 3'-phosphatase; *POLB*, DNA polymerase beta; *SMUG1*, singlestrand-selective monofunctional uracil-DNA glycosylase 1; *TDG*, thymine DNA glycosylase; *UNG*, uracil DNA glycosylase; *XRCC1*, X-ray repair cross complementing 1

Cont	OND	Contin	Wat-L4			HWE			Geometrie		% Diff ^b	
Gene	SNP	Genotype	Weight	n	Expected n	χ²	p value	Mean	95% LL	5 CL UL	% Diff ^s	p van
CAT	rs1001179					2.20	0.14					
		Missing	0	0								
		GG	0	145	199.8			78.32	(74.01,	82.88)		
		GA	1	93	119.4			78.58	(73.27,	84.26)		
		AA	2	9	17.8			74.18	(59.27,	92.85)	-5.3	0.8
CAT	rs7947841 ^d					4.33	0.04					
		Missing	0	0								
		GG	0	212	292.6			78.78	(75.22,	82.51)		
		GA	1	31	42.9			73.66	(65.25,	83.16)		
		AA	2	4	1.6			91.79	(62.00,	135.89)	16.5	0.4
		GA + AA		35				75.03	(66.79,	84.29)	-4.8	0.4
CAT	rs499406					2.65	0.10					
		Missing	1	0								
		GG	0	92	115.7			76.60	(71.38,	82.20)		
		GA	1	110	163.5			81.03	(75.97,	86.42)		
		AA	2	45	57.7			75.18	(68.02,	83.10)	-1.8	0.3
CAT	rs566979					0.03	0.86					
		Missing	1	0								
		TT	0	92	135.3			75.62	(70.44,	81.19)		
		TG	1	120	156.5			80.91	(76.07,	86.05)		
		GG	2	35	45.3			76.32	(68.14,	85.48)	0.9	0.3
CAT	rs16925614 ^d					0.32	0.57					
		Missing	0	1								
		CC	0	188	244.3			78.65	(74.87,	82.63)		
		СТ	1	55	84.4			77.01	(70.26,	84.41)		
		TT	2	4	7.3			76.82	(54.86,	107.58)	-2.3	0.9
		CT + TT		59				77.00	(70.49,	84.11)	-2.1	0.6
CAT	T rs11032703 ^d					0.05	0.82					
-		Missing	0	1								
		CC	0	192	263.4			78.13	(74.40,	82.05)		
		СТ	1	52	68.2			78.57	(71.48,	86.37)		
		TT	2	2	4.4			80.03	(49.54,	129.28)	2.4	0.9
		CT + TT		54				78.63	(71.68,	86.26)	0.6	0.9
CAT	rs11604331					0.60	0.44					
C/II	1311004331	Missing	1	0		0.00	0.11					
		AA	0	105	139.7			76.54	(71.67,	81.73)		
		AG	1	109	154.5			81.74	(76.63,	87.19)		
		GG	2	33	42.7			72.90	(64.89,	81.91)	-4.7	0.1
CAT °	rs525938					0.26	0.61					
		Missing	0	0								
		AA	0	131	170.9			79.24	(74.72,	84.04)		
		AG	1	95	138.2			77.83	(72.60,	83.43)		
		GG	2	21	27.9			73.93	(63.56,	85.99)	-6.7	0.6
CAT	rs7104301					0.86	0.35					
		Missing	0	0								
		AA	0	121	177.4			76.54	(71.95,	81.42)		
		AG	1	107	134.2			80.87	(75.71,	86.38)		
		GG	2	19	25.4			74.98	(64.22,	87.54)	-2.0	0.4
CAT	rs12272630 ^d					18.10	< 0.0001					
		Missing	0	0								
		GG	0	237	321.2			77.72	(74.40,	81.20)		
		GC	1	9	15.6			93.62		117.34)		
		CC	2	1	0.2			85.33		169.21)	9.8	0.2
		$\mathbf{GC} + \mathbf{CC}$		10				92.75	(74.93,	114.80)	19.3	0.1
CAT °	rs7943316					1.23	0.27					
		Missing	1	0								
		TT	0	114	147.6			78.74	(73.92,	83.87)		
		TA	1	108	150.9			78.83	(73.86,	84.13)		
		AA	2	25	38.6			73.61	(64.15,	84.48)		0.6

Appendix Table 5. Mean plasma F2-Isoprostanes according to antioxidant enzyme genotypes, in the pooled MAP1 and MAPII cross-sectional studies ^a

GSTP1	rs4147581					0.38	0.54					0.08
		Missing	1	8								
		CC	0	70	95.2			78.05	(71.97,	84.63)		
		CG	1	121	163.6			80.91	(76.04,	86.09)		
		GG	2	49	70.2			71.02	(64.53,	78.16)	-9.0	
GSTP1 °	rs1138272 ^d					4.15	0.04					
		Missing	0	2								
		ເເັ	0	205	275.9			77.29	(73.76,	80.99)		
		СТ	1	37	56.3			82.43	(73.77,	92.11)		
		TT	2	3	2.9			124.05	(84.48,	182.17)	60.5	0.04
		CT + TT		40				85.12	(76.47,	94.74)	10.1	0.11
COTRI	540154					0.02	0.07		(,,	,,		
GSTP1	rs749174	Missing	1	1		0.03	0.87					0.05
		CC	0	110	150.7			74.40	(69.82,	79.28)		
		СТ	1	110	130.7			82.90	(09.82,	88.28)		
		TT	2	23	36.7			82.90 75.29	(65.52,	86.50)	1.2	
			2	20	50.7			10.29	(05.52,	00.50)	1.2	
GSTP1	rs1695					0.00	0.95					
		Missing	0	0	154.2			74.45	((0.04	70.07)		
		AA	0	113	154.3			74.45	(69.94,	79.27)		
		AG	1	109	147.5			83.34	(78.14,	88.88)	0.6	
		GG	2	25	35.3			74.92	(65.58,	85.59)	0.6	0.04
GSTP1	rs762803					0.17	0.68					
		Missing	1	1								
		CC	0	79	109.1			73.16	(67.84,	78.89)		
		CA	1	120	164.7			81.15	(76.31,	86.30)		
		AA	2	48	62.1			79.93	(72.55,	88.06)	9.3	0.10
MnSOD	rs5746151 ^d					0.42	0.52					
		Missing	0	0								
		GG	0	218	296.3			78.23	(74.72,	81.91)		
		GA	1	28	39.4			78.41	(69.01,	89.09)		
		AA	2	1	1.3			80.34	(40.89,	157.86)	2.7	1.00
		GA + AA		29				78.48	(69.24,	88.95)	0.3	0.96
r con f									(,	,		
MnSOD °	rs5746136	Missing	0	7		0.58	0.44					
		Missing GG	0 0	7 128	163.1			80.49	(75.84,	95 42)		
		GG GA	1	93	137.8			80.49 76.06	(73.84, (70.94,	85.42) 81.54)		
		AA	2	22	29.1			73.76	(63.96,	85.06)	-8.4	0.34
		AA	2	22	27.1			75.70	(05.70,	05.00)	-0.4	0.5-
MnSOD °	rs4880					7.43	0.01					
		Missing	1	10								
		CC	0	60	86.3			80.89	(74.10,	88.30)		
		CT	1	139	163.4			77.77	(73.42,	82.37)		
		TT	2	42	77.3			74.82	(67.43,	83.02)	-7.5	0.52
MnSOD	rs6917589					0.08	0.78					
		Missing	0	0								
		TT	0	148	193.0			80.58	(76.24,	85.17)		
		TC	1	87	124.1			74.53	(69.33,	80.11)		
		CC	2	12	20.0			77.74	(64.03,	94.38)	-3.5	0.24
MnSOD °	rs8031					0.00	0.97					
		Missing	1	1								
		TT	0	62	92.2			71.88	(66.02,	78.26)		
		ТА	1	124	167.6			80.54	(75.83,	85.54)		
		AA	2	60	76.2			80.45	(73.75,	87.75)	11.9	0.08
Macon	rs2842980 ^d					2.44	0.12					
MnSOD	rs2842980 °	Missing	0	0		2.44	0.12					
		Missing	0	0	210.7			70.00	(71 06	82 54)		
		AA	0	152	210.7			79.08	(74.86,	83.54)		
		AT TT	1	88 7	111.5			77.69 68.09	(72.29,	83.50) 87.83)	12.0	0.5
			2	7	14.7			68.09	(52.78,	87.83)	-13.9	0.51
		AT + TT		95				76.95	(71.79,	82.49)	-2.7	0.54

Abbreviations: MAP, Markers of Adenomatous Polyps; HWE, Hardy-Weinberg Equilibrium; CL, confidence level; LL, lower level; UL, upper level; *CAT*, catalase; *GSTP1*, glutathione S-transferase pi 1; *MnSOD*, manganese superoxide dismutase

^a Adjusted for sex (male and female) and body mass index (continuous)

^b Proportional difference, in percent, between variant homozygous genotpe and common homozygous genotype (reference); e.g.: (([variant mean -

dominant mean] / dominant mean) x 100%)

^c SNPs included in antioxidant enzyme (AE) genetic risk score (GRS)

 $^{\rm d}$ If a SNPs heterozygous and/or variant homozygous genotype has ≤ 10 participants then they were combined

Gene	SNP	Genotype	Weight	n		HWE			Geometric	CL	% Diff ^b	n vah
Gene	5111	Genotype	weight	п	Expected n	χ²	p value	Mean			70 DIII	p van
CAT	rs1001179					2.20	0.14					
		Missing	0	0								
		GG	0	190	199.8			2.32	(2.01,	2.69)		
		GA	1 2	127	119.4			2.68	(2.24,	3.19)	16.9	0.2
		AA	2	13	17.8			1.93	(1.12,	3.35)	-16.8	0.3
CAT	rs7947841 ^d		0	0		4.33	0.04					
		Missing GG	0 0	0 291	292.6			2.41	(2.15,	2.71)		
		GA	1	36	42.9			2.41	(1.93,	3.78)		
		AA	2	3	1.6			1.59	(0.39,	6.49)	-34.2	0.6
		GA + AA		39				2.62	(1.89,	3.64)	8.8	0.6
CAT	rs499406					2.65	0.10		()	,		
CAI	18499400	Missing	1	0		2.03	0.10					
		GG	0	119	115.7			2.11	(1.76,	2.53)		
		GA	1	146	163.5			2.71	(2.30,	3.19)		
		AA	2	65	57.7			2.49	(1.95,	3.19)	18.0	0.1
CAT	rs566979					0.03	0.86					
-		Missing	1	0								
		TT	0	133	135.3			2.46	(2.07,	2.93)		
		TG	1	152	156.5			2.44	(2.08,	2.87)		
		GG	2	45	45.3			2.36	(1.75,	3.17)	-4.0	0.9
CAT	rs16925614 ^d					0.32	0.57					
		Missing	0	1								
		CC	0	238	244.3			2.60	(2.29,	2.95)		
		CT	1	85	84.4			1.99	(1.61,	2.47)	21.0	0.1
		TT	2	6	7.3			2.03	(0.91,	4.52)	-21.9	0.1
		CT + TT		91				2.00	(1.62,	2.45)	-23.3	0.0
CAT	rs11032703 ^d					0.05	0.82					
		Missing	0	1	262.4				(2.0)			
		CC	0 1	257	263.4 68.2			2.33 2.85	(2.06,	2.64)		
		CT TT	2	68 4	4.4			4.42	(2.24, (1.64,	3.63) 11.93)	89.6	0.1
		CT + TT	2	72	4.4			2.92	(2.31,	3.69)	25.2	0.1
~	11/0 1001	01 - 11		12		0.00	0.44	2.72	(2.51,	5.07)	23.2	0.1
CAT	rs11604331	Missing	1	0		0.60	0.44					
		AA	0	139	139.7			2.13	(1.80,	2.52)		
		AG	1	145	154.5			2.71	(2.30,	3.20)		
		GG	2	46	42.7			2.61	(1.95,	3.50)	22.7	0.1
CAT °	rs525938					0.26	0.61					
		Missing	0	0								
		AA	0	168	170.9			2.50	(2.14,	2.91)		
		AG	1	137	138.2			2.47	(2.09,	2.93)		
		GG	2	25	27.9			1.88	(1.26,	2.82)	-24.6	0.4
CAT	rs7104301					0.86	0.35					
		Missing	0	0								
		AA	0	171	177.4			2.55	(2.19,	2.97)		
		AG GG	1 2	137 22	134.2			2.28	(1.92,	2.70)	2.0	0.6
		66	2	22	25.4			2.60	(1.70,	3.98)	2.0	0.6
CAT	rs12272630 ^d		0	0		18.10	< 0.0001					
		Missing	0	0	221.2			2.46	(2.20)	0.75)		
		GG GC	0 1	316 12	321.2 15.6			2.46 2.17	(2.20, (1.22,	2.75) 3.85)		
		CC	1 2	2	0.2			1.13	(0.27,	3.85) 4.70)	-54.0	0.5
		GC + CC	2	2 14	0.2			1.13	(0.27,	3.36)	-34.0	0.3
a un f				14				1.70	(1.10,	5.50)	-19.5	0.4
CAT °	rs7943316	Missing	1	0		1.23	0.27					
		Missing TT	1 0	0 142	147.6			2.52	(2.14,	2.98)		
				174					14.17	2.701		
		TA	1	155	150.9			2.52	(2.15,	2.95)		

Appendix Table 6. Mean plasma high sensitivity C-reactive protein according to antioxidant enzyme genotypes, in the pooled MAP1 and MAPII crosssectional studies ^a

GSTP1	rs4147581					0.38	0.54					
		Missing	1	8								
		CC	0	95	95.2			2.28	(1.86,	2.80)		
		CG	1	156	163.6			2.50	(2.13,	2.94)		
		GG	2	71	70.2			2.48	(1.95,	3.15)	8.7	0.77
GSTP1 °	rs1138272 ^d					4.15	0.04					
00111	1011002/2	Missing	0	2		1.15	0.01					
		CC	0	273	275.9			2.41	(2.14,	2.71)		
		СТ	1	49	56.3			2.65	(1.99,	3.51)		
		TT	2	6	2.9			4.31	(1.99,	9.59)	79.1	0.32
			-	55	2.,							
		CT + TT		55				2.80	(2.14,	3.65)	16.1	0.31
GSTP1	rs749174					0.03	0.87					
		Missing	1	1								
		CC	0	146	150.7			2.46	(2.09,	2.91)		
		СТ	1	148	148.7			2.42	(2.05,	2.85)		
		TT	2	35	36.7			2.45	(1.75,	3.44)	-0.4	0.99
CETDI	wa1605					0.00	0.05					
GSTP1	rs1695	Missing	0	0		0.00	0.95					
		Missing AA	0	0 150	154.3			2.40	(2.04,	2.82)		
		AA AG	0	150 146								
		AG GG	1	146 34	147.5			2.46	(2.08,	2.90)	57	0.05
		66	2	34	35.3			2.53	(1.80,	3.56)	5.7	0.95
GSTP1	rs762803					0.17	0.68					
		Missing	1	1								
		CC	0	108	109.1			2.52	(2.08,	3.06)		
		CA	1	159	164.7			2.37	(2.02,	2.77)		
		AA	2	62	62.1			2.48	(1.92,	3.19)	-1.9	0.87
MnSOD	rs5746151 ^d					0.42	0.52					
MINSOD	185740151	Missing	0	0		0.42	0.52					
		GG	0	292	296.3			2.42	(2.15,	2.72)		
		GG	1	36	39.4			2.42	(2.13,	3.44)		
		AA	2	2	1.3			4.81	(1.18,	19.61)	98.7	0.63
			2		1.5							
		GA + AA		38				2.55	(1.85,	3.53)	5.5	0.76
MnSOD °	rs5746136					0.58	0.44					
		Missing	0	7								
		GG	0	163	163.1			2.66	(2.28,	3.11)		
		GA	1	128	137.8			2.24	(1.88,	2.66)		
		AA	2	32	29.1			1.98	(1.40,	2.80)	-25.6	0.17
MnSOD ^c	rs4880					7.43	0.01					
MINSOD	154000	Missing	1	10		7.45	0.01					
		CC	0	74	86.3			3.15	(2.50,	3.96)		
		СТ	1	184	163.4			2.18		,		
		TT	2	62	77.3			2.18	(1.89, (1.79,	2.52) 2.94)	-27.0	0.03
		• •	4	02	11.5			2.30	(1.79,	2.94)	-27.0	0.05
MnSOD	rs6917589					0.08	0.78					
		Missing	0	0								
		TT	0	187	193.0			2.67	(2.31,	3.09)		
		TC	1	124	124.1			2.21	(1.85,	2.64)		
		CC	2	19	20.0			1.90	(1.21,	2.99)	-28.8	0.14
MnSOD ^c	rs8031					0.00	0.97					
		Missing	1	1		0.00	0.91					
		TT	0	88	92.2			2.14	(1.74,	2.64)		
		TA	1	165	167.6			2.39	(2.05,	2.79)		
		AA	2	76	76.2			3.03	(2.41,	3.80)	41.2	0.09
			-						、····,	,		
	**************************************					2.44	0.12					
MnSOD	rs2842980 ^d											
MnSOD	rs2842980 ^d	Missing	0	0	a1 a -			a · ·	(a			
MnSOD	rs2842980 ^d	AA	0	204	210.7			2.44	(2.13,	2.81)		
MnSOD	rs2842980 ^d	AA AT	0 1	204 117	111.5			2.58	(2.15,	3.09)		0.01
MnSOD	rs2842980 ^d	AA	0	204							-55.7 -0.8	0.04 0.94

Abbreviations: MAP, Markers of Adenomatous Polyps; HWE, Hardy-Weinberg Equilibrium; CL, confidence level; LL, lower level; UL, upper level; *CAT*, catalase; *GSTP1*, glutathione S-transferase pi 1; *MnSOD*, manganese superoxide dismutase

^a Adjusted for sex (male and female) and body mass index (continuous)

^b Proportional difference, in percent, between variant homozygous genotpe and common homozygous genotype (reference); e.g.: (([variant mean -

dominant mean] / dominant mean) x 100%)

^c SNPs included in antioxidant enzyme (AE) genetic risk score (GRS)

 $^{\rm d}$ If a SNPs heterozygous and/or variant homozygous genotype has ≤ 10 participants then they were combined

Corre	CND	Construct	Woisht	-]	HWE			Geometri		% Diff ^b	n val
Gene	SNP	Genotype	Weight	n	Expected n	χ^2	p value	Mean		6 CL UL	% Diff	p value
APEX1	rs3136814					0.35	0.56		EL	0L		
		Missing	0	3								
		AA	0	232	317.3			82.18	(78.51,	86.01)	-	
		AC	1	14	20.3			76.36	(63.74,	91.47)	-7.1	0.43
APEX1	rs1130409					0.02	0.89					
	101100107	Missing	1	3								
		GG	0	61	90.6			86.88	(79.71,	94.70)	-	
		GT	1	125	168.8			80.12	(75.29,	85.26)	-7.8	
		TT	2	59	78.6			80.81	(73.95,	88.30)	-7.0	0.29
APEX1 °	rs1760944					0.06	0.99					
	131/00/14	Missing	1	21		0.00	0.77					
		cc	0	85	119.1			87.59	(81.35,	94.30)	-	
		CA	1	110	152.9			78.50	(73.53,	83.79)	-10.4	
		AA	2	37	49.1			79.35	(70.87,	88.85)	-9.4	0.07
FEN1	rs412334 ^d					2.64	0.10					
1 2.11	15412334	Missing	0	14		2.04	0.10					
		GG	0	162	227.1			79.32	(75.16,	83.70)	-	
		GA	1	69	90.8			87.72	(80.86,	95.17)	10.6	
		AA	2	4	9.1			107.84	(76.82,	151.39)	36.0	0.04
		GA+AA		73				88.68	(81.91,	96.01)	11.8	0.02
LIGH!	rs419664					1.66	0.20		· · ·	,		
LIG1 °	rs419664	Missing	1	3		1.00	0.20					
		GG	0	83	108.2			82.17	(76.19,	88.62)	-	
		GT	1	112	166.6			81.53	(76.42,	86.98)	-0.8	
		TT	2	51	64.2			81.27	(73.85,	89.44)	-1.1	0.98
						1.00	0.00			,		
LIG1 °	rs156641	Missing	1	5		1.28	0.26					
		GG	0	97	125.1			82.38	(76.91,	88.24)	-	
		GA	1	106	159.9			80.07	(74.91,	85.58)	-2.8	
		AA	2	42	51.1			86.67	(77.98,	96.34)	5.2	0.45
	d						0.14		(,		
LIG1	rs2288881 ^d	Missing	0	4		2.23	0.14					
		GG	0	225	305.8			82.01	(78.28,	85.92)	-	
		GA	1	20	30.5			79.38	(68.35,	92.19)	-3.2	
		AA	2	1	0.8			105.16	(53.07,	208.37)	28.2	0.71
		GA+AA		21				80.41	(69.48,	93.05)	-2.0	0.79
		0.1.1.1		21				00111	(0).10,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	2.0	0.77
LIG1	rs3730947		0	1								
		Missing	0 0	1 248				81.82	(70 20	85.51)		NA
		GG	0	240				01.02	(78.28,	85.51)	-	NA
LIG1	rs3731037 ^d					1.60	0.21					
		Missing	0	3								
		CC	0	191	264.6			80.96	(77.02,	85.10)	-	
		CT	1	51	69.8			85.47	(77.64,	94.08)	5.6	0.47
		TT	2	5	4.6			73.18	(54.29,	98.65)	-9.6	0.47
		CT+TT		56				84.22	(76.87,	92.27)	4.0	0.45
LIG1 °	rs411073					2.24	0.13					
		Missing	1	8								
		CC	0	82	105.3			82.45	(76.35,	89.04)	-	
		CT	1	108	164.5			81.69	(76.45,	87.28)	-0.9	
		TT	2	52	64.3			80.05	(72.77,	88.07)	-2.9	0.89
LIG1	rs3730908 ^d					0.43	0.51					
		Missing	0	2								
		CC	0	227	312.5			81.79	(78.08,	85.68)	-	
		СТ	1	19	25.9			79.95	(68.53,	93.28)	-2.3	0.78
		TT	2	0	0.5							
		CT+TT		19				79.95	(68.53,	93.28)	-2.3	0.78
LIG1	rs20579 ^d					0.11	0.74					
		Missing	0	1								
		ເເັ	0	185	257.7			81.76	(77.71,	86.03)	-	

Appendix Table 7. Mean plasma F₂-Isoprostanes according to DNA base excision repair genotypes, in the pooled MAP1 and MAPII cross-sectional studies ^a

		СТ	1	58	76.6			82.63	(75.62,	90.30)	1.1	
		TT	2	4	5.7			68.36	(48.80,	95.76)	-16.4	0.56
		CT+TT		62				81.64	(74.92,	88.97)	-0.1	0.97
LIG1	rs3730881					0.02	0.89					
LIGI	135750001	Missing	0	1		0.02	0.07					
		CC	0	245	336.0			81.68	(78.12,	85.41)	-	
		СТ	1	3	5.0			91.14	(61.46,	135.14)	11.6	0.59
		01	•	5	510			,	(01.10,	100111)	1110	0.07
LIG1	rs3730914 ^d					0.17	0.68					
		Missing	0	6								
		CC	0	168	234.0			81.50	(77.24,	86.00)	-	
		СТ	1	70	91.9			83.17	(76.64,	90.26)	2.0	
		TT	2	6	9.0			73.46	(55.69,	96.89)	-9.9	0.68
		CT+TT		76				82.33	(76.13,	89.03)	1.0	0.83
LIG1	rs3731003											
	100701000	Missing	0	3								
		cc	0	245				81.63	(78.08,	85.35)	-	NA
	4									,		
LIG1	rs3730837 ^d		0	10		2.77	0.10					
		Missing	0	12	2(0.0			01.22	(77.41	05.44		
		AA	0	188	260.9			81.32	(77.41,	85.44)	-	0.05
		AG	1 2	54 0	64.1			82.12	(74.75,	90.21)	1.0	0.85
		GG	2		3.9							
		AG+GG		54				75.30	(74.75,	90.21)	-7.4	0.85
LIG1 °	rs274862					0.17	0.68					
		Missing	1	8								
		TT	0	88	116.2			81.50	(75.75,	87.68)	-	
		TC	1	112	161.6			79.59	(74.55,	84.97)	-2.3	
		CC	2	43	56.2			85.65	(77.07,	95.19)	5.1	0.50
LIG1	rs3730912 ^d					0.82	0.36					
LIGI	r\$3/30912	Missing	0	1		0.82	0.30					
		CC	0	188	261.2			84.12	(77.83,	86.03)	_	
		CA	1	54	73.6			84.12	(76.62,	92.35)	0.0	
		AA	2	5	5.2			73.34	(54.46,	98.78)	-12.8	0.66
		CA+AA	_	59				83.08	(76.02,	90.80)	-1.2	0.77
		CATAA		59				85.08	(70.02,	90.80)	-1.2	0.77
LIG1 °	rs20580					2.47	0.12					
		Missing	1	8								
		CC	0	63	77.8			82.15	(75.43,	89.47)	-	
		CA	1	110	166.3			80.14	(75.03,	85.59)	-2.5	0.77
		AA	2	70	88.8			84.08	(77.42,	91.32)	2.3	0.66
LIG3 °	rs3135974 ^d					0.24	0.62					
		Missing	0	2								
		GG	0	205	281.7			81.42	(77.56,	85.47)	-	
		GA	1	41	55.5			83.91	(75.48,	93.28)	3.1	
		AA	2	1	2.7			77.88	(39.65,	152.97)	-4.3	0.87
		GA+AA		42				83.77	(75.45,	93.00)	2.9	0.62
LIG3	rs3135998					0.21	0.65					
	1001000000	Missing	1	0								
		GG	0	80	110.9			84.94	(78.62,	91.78)	-	
		GA	1	120	167.1			80.47	(75.65,	85.60)	-5.3	
		AA	2	48	62.9			80.42	(72.91,	88.71)	-5.3	0.51
LIG3	rs3135989 ^d					0.01	0.91					
LIGS	rs3135989	Missing	0	3		0.01	0.91					
		TT	0	221	304.9			81.64	(77.93,	85.54)	-	
		TG	1	25	33.2			82.52	(72.16,	94.36)	1.1	
		GG	2	1	0.9			63.67	(32.42,	125.02)	-22.0	0.76
		TG+GG		26				81.71	(71.65,	93.19)	0.1	0.99
		10,00		20				01.71	(71.05,	95.19)	0.1	0.77
LIG3	rs3135967					0.04	0.84					
		Missing	1	4								
		AA	0	77	102.1			80.84	(74.82,	87.34)	-	
		AG	1	118	166.8			81.11	(76.23,	86.30)	0.3	0.71
		GG	2	50	68.1			84.73	(76.91,	93.34)	4.8	0.71
LIG3 °	rs2074516 ^d					0.35	0.55					
		Missing	0	1								
		GG	0	203	279.9			81.48	(77.61,	85.54)	-	

		GC	1	43	57.2			83.70	(75.49,	92.81)	2.7	
		CC	2	1	2.9			77.78	(39.62,	152.68)	-4.5	0.89
		GC+CC		44				83.57	(75.46,	92.55)	2.6	0.66
									(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,		
MBD4	rs3138360 ^d					0.03	0.87					
		Missing	0	1								
		GG	0	222	302.2			81.73	(78.00,	85.64)	-	
		GA	1	26	37.7			82.55	(72.33,	94.21)	1.0	0.89
		AA	2	0	1.2							
		GA+AA		26				82.55	(72.33,	94.21)	1.0	0.89
										· · ·		
MBD4	rs10342 ^d					1.24	0.27					
		Missing	0	2								
		GG	0	200	277.2			82.71	(78.81,	86.81)	-	
		GA	1	43	59.6			77.78	(69.83,	86.64)	-6.0	
		AA	2	4	3.2			88.30	(63.10,	123.55)	6.8	0.53
		GA+AA		47				78.68	(70.98,	87.21)	-4.9	0.38
MBD4	rs2005618 ^d					0.08	0.77					
MDD4	rs2005018	Missing	0	0		0.08	0.77					
		Missing TT	0	192	267.5			82.36	(78.39,	86.52)	-	
			1	52	69.1			79.02		80.32) 87.19)		
		TC	2						(71.62,	,	-4.0	0.00
		CC	2	4	4.5			88.38	(63.13,	123.74)	7.3	0.68
		TC+CC		56				79.69	(72.50,	87.61)	-3.2	0.54
MBD4	rs2311394 ^d					0.07	0.79					
	152511574	Missing	0	6								
		TT	0	195	269.6			82.87	(78.92,	87.02)	-	
		TC	1	45	61.9			80.28	(72.30,	89.14)	-3.1	
		cc	2	3	3.6			79.46	(54.01,	116.89)	-4.1	0.85
		TC+CC	2		5.0							
		IC+CC		48				80.22	(72.53,	88.74)	-3.2	0.56
MBD4 °	rs2307293					0.01	0.91					
		Missing	0	6								
		GG	0	240	332.0			81.84	(78.27,	85.56)	-	
		GC	1	4	4.0			79.24	(53.93,	116.43)	-3.2	0.87
MADA	at a case of d					0.(2	0.42					
MBD4	rs3138326 ^d	Missian	0	16		0.62	0.43					
		Missing	0	16 190	260.7			81.85	(77.02	95 09)	-	
		AA AT							(77.93,	85.98)		
			1 2	44	61.7			79.89	(71.89,	88.79)	-2.4	0.02
		TT	2	4	3.7			88.38	(63.38,	123.24)	8.0	0.82
		AT+TT		48				80.61	(72.87,	89.16)	-1.5	0.78
MPG	rs3176415					0.06	0.81					
		Missing	1	9								
		GG	0	74	103.1			78.35	(72.46,	84.72)	-	
		GA	1	118	163.8			84.41	(79.27,	89.88)	7.7	
		AA	2	50	65.1			79.45	(72.17,	87.45)	1.4	0.28
MAG	4					0.05	0.62					
MPG	rs2541622 ^d		0	-		0.25	0.62					
		Missing	0	5				01.40	(55.10	05.05		
		CC	0	167	229.3			81.42	(77.13,	85.95)	-	
		CT	1	71	97.3			82.36	(76.03,	89.21)	1.1	0.07
		TT	2	7	10.3			80.38	(62.37,	103.59)	-1.3	0.97
		CT+TT		78				82.18	(76.16,	88.67)	0.9	0.84
MPG	rs3176424					0.05	0.83					
	1001/0121	Missing	0	3								
		AA	0	240	330.0			81.80	(78.22,	85.54)	-	
		AG	1	7	7.9			78.14	(60.74,		-4.5	0.72
				,				/0111	(00.7.1,	100.00)		0.72
MUTYH	rs3219476					1.03	0.31					
		Missing	1	0								
		GG	0	93	141.3			80.29	(74.86,	86.11)	-	
		GT	1	124	156.4			78.59	(74.02,	83.45)	-2.1	
		TT	2	31	43.3			100.07	(88.78,	112.80)	24.6	0.001
MUTYH °	rs3219484 ^d					0.02	0.89					
morm	135217704	Missing	0	1		0.02	5.07					
		GG	0	214	292.8			82.94	(79.13,	86.94)	-	
		GA	1	32	46.3			77.19	(68.53,	86.95)	-6.9	
		AA	2	2	1.8			52.91	(33.04,	84.73)	-36.2	0.10
			-	34	1.0						-9.1	
		GA+AA		34				75.43	(67.20,	84.67)	-9.1	0.14

MUTYH	rs3219494											
morrin	185219494	Missing	0	1								
		GG	0	248				81.82	(78.28,	85.51)	-	NA
MUTYH	rs3219463					2.62	0.11					
	135217405	Missing	0	3		2.02	0.111					
		ເດັ	0	131	188.6			79.97	(75.27,	84.97)	-	
		GA	1	101	127.7			82.87	(77.49,	88.62)	3.6	
		AA	2	13	21.6			96.77	(79.76,	117.40)	21.0	0.17
MUTYH °	rs3219489					1.60	0.21					
morrin	100217 107	Missing	0	0		1.00	0.21					
		GG	0	132	188.5			79.69	(75.05,	84.62)	-	
		GC	1	101	130.1			82.21	(76.90,	87.90)	3.2	
		CC	2	15	22.5			98.57	(82.42,	117.88)	23.7	0.09
MUTYH	rs3219493 ^d					1.95	0.16					
merim	185219495	Missing	0	9		1.75	0.10					
		GG	0	188	269.3			80.77	(76.80,	84.95)	-	
		GC	1	53	59.4			83.18	(75.85,	91.23)	3.0	0.58
		CC	2	0	3.3							
		GC+CC		53				83.18	(75.85,	91.23)	3.0	0.58
0001	donard d					1.06	0.20					
0GG1	rs125701 ^d	Missing	0	6		1.06	0.30					
		GG	0	179	242.6			84.68	(80.50,	89.07)	-	
		GA	1	60	85.8			75.01	(68.80,	81.79)	-11.4	
		AA	2	8	7.6			65.78	(52.01,	83.21)	-22.3	0.01
		GA+AA		68				73.89	(68.10,	80.18)	-12.7	0.005
0001									(******,			
0GG1	rs1805373	Missing	0	0								
		Missing GG	0 0	0 248				81.82	(78.28,	85.51)	-	NA
		00	0	240				01.02	(78.28,	85.51)		INA
0GG1	rs2072668					0.19	0.66					
		Missing	0	1	102.5				(=====	04.55		
		CC CG	0 1	147 88	193.5 126.0			79.90 84.31	(75.50, (78.33,	84.55)	- 5.5	
		GG	2	12	20.5			88.56	(78.33, (72.95,	90.75) 107.52)	10.8	0.37
		00	2	12	20.5			88.50	(72.95,	107.52)	10.8	0.57
0GG1	rs3219008			-		4.69	0.03					
		Missing	0	5	102.7			70.20	(75.10	02.00)		
		AA AG	0 1	153 77	193.7 123.6			79.38 83.03	(75.13, (76.83,	83.88) 89.73)	4.6	
		GG	2	16	125.0			95.48	(80.83,	112.77)	20.3	0.10
		00	-		1917			20110	(00.05,	112.77)	2010	0.10
0GG1	rs159153		0	0		7.34	0.01					
		Missing TT	0 0	8 124	164.6			04 77	(79.77,	00.00)		
		TC	1	89	164.6 139.7			84.77 81.39	(79.77,	90.08) 87.51)	-4.0	
		cc	2	30	29.6			71.81	(63.42,	81.31)	-15.3	0.06
0001						2.02	0.15		(,	,		
0GG1	rs293795	Missing	0	0		2.05	0.15					
		Missing TT	0	170	229.1			84.84	(84.84,	80.54)	-	
		TC	1	68	100.8			76.86	(70.87,	83.35)	-9.4	
		cc	2	10	11.1			65.89	(53.34,	81.39)	-22.3	0.02
navern (2520207					2 40 00	< 0.0001			,		
PNKP ^c	rs3739206	Missing	0	1		340.00	< 0.0001					
		TT	0	246	338.0			81.87	(78.30,	85.60)	_	
		GG	2	1	2.0			65.91		129.20)	-19.5	0.53
DIWD						2.50	0.07		(,			
PNKP	rs2257103	Missing	1	7		3.50	0.06					
		Missing CC	1 0	7 92	121.8			84.95	(78.93,	91.43)	-	
		СС	1	100	160.4			82.00	(76.70,	87.66)	-3.5	
		TT	2	50	52.8			78.10	(70.94,	85.99)	-8.1	0.38
DAIND	wo2720106											
PNKP	rs3739186	Missing	0	1								
		TT	0	248				81.82	(78.28	85.51)	-	NA
n							0.45		(. 5.20,	,		
POLB	rs2979896 ^d	Mia-i	0	1		0.18	0.67					
		Missing TT	0 0	1 217	296.5			81.38	(77.62	85.32)		
		11	0	21/	290.5			01.50	(77.63,	05.52)	-	

		TG	1	29	42.0			85.65	(75.54,	97.11)	5.2	
		GG	2	1	1.5			65.50	(33.37,	128.54)	-19.5	0.61
		TG+GG		30				84.90	(75.04,	96.07)	4.3	0.52
POLB	rs3136811 ^d					0.23	0.63					
TOLD	135150811	Missing	0	2		0.25	0.05					
		CC	0	217	295.6			81.39	(77.64,	85.32)	-	
		CG	1	30	42.9			85.76	(75.80,	97.02)	5.4	
		GG	2	1	1.6			65.51	(33.43,	128.39)	-19.5	0.59
		CG+GG		31				85.03	(75.31,	96.00)	4.5	0.50
		00.00		51				00.00	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,		0.00
POLB ^c	rs3136797					0.05	0.82					
		Missing	0	9	224.0			00.40				
		CC	0	235	324.0			82.48	(78.80,	86.34)	-	1.00
		CG	1	5	7.9			82.48	(61.03,	111.48)	0.0	1.00
SMUG1	rs2233920											
		Missing	0	1								
		GG	0	247				82.12	(78.58,	85.81)		NA
SMUG1 °	rs3136386 ^d					0.25	0.61					
		Missing	0	2								
		CC	0	228	310.6			81.68	(78.01,	85.52)	-	
		CG	1	18	27.8			81.88	(69.70,	96.19)	0.3	0.98
		GG	2	0	0.6							
		CG+GG		18				81.88	(69.70,	96.19)	0.3	0.98
SMUG1	rs971					1.57	0.21					
5.400	13771	Missing	0	2		1.57	0.21					
		CC	0	103	141.7			83.79	(78.22,	89.75)	-	
		СТ	1	107	155.6			81.04	(75.88,	86.56)	-3.3	
		TT	2	37	42.7			79.17	(70.79,	88.54)	-5.5	0.64
CO UICI	2250 (02					0.02	0.22			,		
SMUG1	rs2279402	Missing	1	1		0.93	0.33					
		CC	0	73	99.6			83.82	(77.34,	90.85)	-	
		СТ	1	116	168.8			81.12	(76.12,	90.85) 86.44)	-3.2	
		TT	2	58	71.6			80.86	(73.89,	88.49)	-3.5	0.78
TDC	d					2.20	0.12		(,			
TDG	rs3829301 ^d	Missing	0	1		2.29	0.13					
		Missing AA	0	225	309.8			81.95	(78.21,	85.86)	-	
		AC	1	225	30.5			82.79	(73.21,	95.86)	1.0	
		CC	2	2	0.8			61.03	(37.99,	98.04)	-25.5	0.47
		AC+CC	-	23	010			80.62	(70.07,	92.75)	-1.6	0.83
		Actee		25				00.02	(70.07,	92.15)	-1.0	0.05
TDG	rs4135113		0			0.20	0.66					
		Missing	0	3	222.2			02.14	(79.40	85.96)		
		GG GA	0 1	235 10	322.2 15.6			82.14 81.79	(78.49, (66.19,	83.90) 101.07)	-0.4	0.97
		- UA		10	15.0			01.75	(00.1),	101.07)	0.1	0.97
TDG	rs2629768 ^d					0.52	0.47					
		Missing	0	12	242.4			02.17	(70.02	07.52)		
		GG	0	179	243.4			83.17	(79.03,	87.53)	-	
		GA AA	1 2	54 6	79.1 6.4			75.92 63.47	(69.25, (48.35,	83.23) 83.33)	-8.7 -23.7	0.05
			2		0.4							
		GA+AA		60				74.58	(68.33,	81.40)	-10.3	0.03
TDG	rs4135064 ^d					0.19	0.67					
		Missing	0	1								
		CC	0	205	285.4			81.37	(77.53,	85.40)	-	
		СТ	1	40	52.2			83.88	(75.32,	93.41)	3.1	
		TT	2	2	2.4			97.30	(60.31,	156.98)	19.6	0.68
		CT+TT		42				84.44	(76.01,	93.81)	3.8	0.52
TDG	rs322107 °					0.25	0.62					
		Missing	0	6								
		cc	0	182	245.9			83.96	(79.84,	88.30)	-	
		СТ	1	58	82.2			76.74	(70.25,	83.83)	-8.6	
		TT	2	6	6.9			63.64	(48.52,	83.48)	-24.2	0.04
		CT+TT		64				75.42	(69.32,	82.07)	-10.2	0.03
TDG ^c	rs4135061					0.94	0.33					
106	134133001	Missing	0	2		0.94	0.55					
		AA	0	138	186.6			85.52	(80.73,	90.59)	-	
			-						· · · · · · · · · · · · · · · · · · ·	,		

		AG	1	88	129.8			79.81	(74.27,	85.77)	-6.7	
		GG	2	20	22.6			67.90	(58.53,	78.77)	-20.6	0.01
TDC	4125001					0.0	0.42					
TDG	rs4135081		1	1		0.62	0.43					
		Missing	1	1	100.4			70.01	(72.20)	0.5 (0)		
		AA	0	79	108.4			79.21	(73.29,	85.60)	-	
		AG	1	120	167.2			82.95	(77.91,	88.31)	4.7	0.01
		GG	2	49	64.4			83.17	(75.49,	91.63)	5.0	0.61
TDG	rs322109 °					11.59	0.001					
		Missing	0	20								
		AA	0	190	259.4			82.90	(78.82,	87.20)	-	
		AG	1	34	59.2			78.99	(70.25,	88.82)	-4.7	
		GG	2	7	3.4			71.59	(55.39,	92.54)	-13.6	0.43
		AG+GG	_	41				77.66	(69.81,	86.40)	-6.3	0.27
		AGTGG		41				//.00	(09.81,	80.40)	-0.3	0.27
TDG	rs4135093					0.02	0.88					
		Missing	1	13								
		TT	0	80	110.3			78.65	(72.87,	84.88)	-	
		TC	1	117	160.4			80.96	(75.98,	86.27)	2.9	
		CC	2	41	58.3			86.12	(77.47,	95.72)	9.5	0.39
6	. d					0.01	0.65					
TDG °	rs4135094 ^d		0	6		0.21	0.65					
		Missing	0	5	270 7			70.00	(74.10	02 72		
		TT	0	207	278.7			79.88	(76.19,	83.73)	-	
		TC	1	36	54.6			92.28	(82.41,	103.33)	15.5	
		CC	2	2	2.7			100.54	(62.89,	160.73)	25.9	0.05
		TC+CC		38				92.69	(83.03,	103.48)	16.1	0.01
TDG °	rs167715 ^d					5.03	0.02					
100	1310//13	Missing	0	1		5.05	0.02					
		TT	0	193	264.7			82.74	(78.73,	86.94)	-	
		тс	1	47	70.6			79.16	(71.69,	87.42)	-4.3	
		cc	2	7	4.7			71.24	(55.29,	91.79)	-13.9	0.41
			2		4.7					<i>,</i>		
		TC+CC		54				78.07	(71.18,	85.63)	-5.6	0.27
UNG	rs3219245 ^d					1.96	0.16					
		Missing	0	2								
		GG	0	202	277.9			81.52	(77.62,	85.62)	-	
		GT	1	38	56.3			82.50	(73.95,	92.03)	1.2	
		TT	2	4	2.9			77.18	(55.19,	107.92)	-5.3	0.93
		GT+TT		42				81.97	(73.89,	90.92)	0.5	0.92
		01111		12				01.77	(75.0),	<i>(</i> 0. <i>)</i> 2)	0.5	0.72
UNG	rs246079					0.52	0.47					
		Missing	1	4								
		AA	0	87	112.7			81.86	(76.07,	88.08)	-	
		AG	1	116	165.5			81.47	(76.47,	86.80)	-0.5	
		GG	2	43	60.7			82.67	(74.48,	91.76)	1.0	0.97
XRCC1	rs939461 ^d					0.02	0.90					
meer	18939401	Missing	0	2		0.02	0.90					
		AA	0	201	277.2			81.08	(77.20,	85.15)		
		AC	1	45	59.6			85.01	(76.72,	94.20)	4.9	
		CC	2	2	3.2			86.92	(54.04,	139.81)	7.2	0.69
			2		3.2							
		AC+CC		47				85.09	(76.99,	94.06)	5.0	0.39
XRCC1	rs3213247 ^d					0.18	0.67					
		Missing	0	2								
		GG	0	216	296.5			81.34	(77.56,	85.32)	-	
		GT	1	31	42.0			85.66	(75.93,	96.63)	5.3	0.43
		TT	2	0	1.5					,		
		GT+TT		31				85.66	(75.93,	96.63)	5.3	0.43
		01111		51				05.00	(15.75,	<i>J</i> 0.0 <i>J</i>)	5.5	0.45
XRCC1 °	rs939460					6.06	0.01					
		Missing	0	7								
		GG	0	167	219.1			84.10	(79.75,	88.68)	-	
		GA	1	67	102.9			76.56	(70.36,	83.32)	-9.0	
		AA	2	9	12.1			78.28	(62.39,	98.21)	-6.9	0.16
XRCC1 °	rs25487					0.53	0.46					
ARCUT	152340/	Missing	1	1		0.55	0.40					
		Missing	0	1 94	121.2			80.90	(75.25	96 951		
		GG			131.2				(75.35,	86.85)	-	
		GA	1	119	160.6			80.51	(75.63,	85.71)	-0.5	0.22
		AA	2	35	49.2			88.61	(79.12,	99.25)	9.5	0.32

XRCC1	rs25489 ^d					3.84	0.05					
ANCU	r\$25489	Missing	0	0		3.64	0.05					
		GG	0	228	313.6			81.90	(78.21,	85.77)	_	
		GA	1	18	26.9			81.57	(69.53,	95.70)	-0.4	
		AA	2	2	0.6			75.23	(46.60,	121.46)	-8.1	0.94
		GA+AA	2	20	0.0			80.89	(69.59,	94.02)	-1.2	0.88
		GATAA		20				80.89	(09.39,	94.02)	-1.2	0.88
XRCC1	rs1001581					0.98	0.32					
		Missing	1	8								
		CC	0	86	121.3			81.07	(75.32,	87.26)	-	
		СТ	1	121	159.4			79.10	(74.34,	84.16)	-2.4	
		TT	2	37	52.3			89.03	(79.79,	99.34)	9.8	0.18
XRCC1	rs2307191											
		Missing	0	6								
		cc	0	243				81.62	(78.02,	85.38)		NA
	A									,		
XRCC1	rs3213403 ^d		0			0.20	0.66					
		Missing	0	1	205.5			01.05	(70.10	05.00)		
		AA	0	215	295.5			81.95	(78.19,	85.89)	-	
		AG	1	29	42.0			77.56	(68.27,	88.10)	-5.4	0.40
		GG	2	2	1.5			101.18	(62.75,	163.16)	23.5	0.48
		AG+GG		31				78.87	(69.69,	89.25)	-3.8	0.57
XRCC1	rs915927					0.43	0.51					
		Missing	1	14								
		AA	0	82	110.9			83.73	(77.73,	90.19)	-	
		AG	1	118	160.2			83.04	(77.95,	88.46)	-0.8	
		GG	2	38	57.9			76.38	(68.45,	85.22)	-8.8	0.35
XRCC1 °	rs3213255					0.001	0.97					
AKCCI	185215255	Missing	1	14		0.001	0.97					
		TT	0	92	124.2			83.79	(78.01,	90.01)	-	
		тс	1	114	154.7			81.88	(76.73,	87.36)	-2.3	
		CC	2	31	48.2			75.28	(66.62,	85.05)	-10.2	0.32
									(····,			
XRCC1 °	rs25496		0	2								
		Missing	0	3				02.12	(70.57	05.00		274
		TT	0	245				82.13	(78.56,	85.86)		NA

Abbreviations: MAP, Markers of Adenomatous Polyps; HWE, Hardy-Weinberg Equilibrium; CL, confidence level; LL, lower level; UL, upper level; *APEX1*, apurinic/apyrimidinic endodeoxyribonuclease 1; *FEN1*, flap structure-specific endonuclease 1; *LIG1*, DNA ligase 1; *LIG3*, DNA ligase 3; *MBD4*, methyl-CpG binding domain 4; *MPG*, N-methylpurine DNA glycosylase; *MUTYH*, mutY DNA glycosylase; *OGG1*, 8-oxoguanine DNA glycosylase; *PNKP*, polynucleotide kinase 3'-phosphatase; *POLB*, DNA polymerase beta; *SMUG1*, single-strand-selective monofunctional uracil-DNA glycosylase 1; *TDG*, thymine DNA glycosylase; *UNG*, uracil DNA glycosylase; *XRCC1*, X-ray repair cross complementing 1

^a Adjusted for sex (male and female) and body mass index (continuous)

^b Proportional difference, in percent, between variant homozygous genotpe and common homozygous genotype (reference); e.g.: (([variant mean - dominant mean] / dominant mean) x 100%)

^c SNPs incuded in the DNA base excision repair (BER) genetic risk score (GRS)

 $^{\rm d}$ If a SNPs heterozygous and/or variant homozygous genotype has ≤ 10 participants then they were combined

C	CINID	Com t	W.2.14			HWE			Geometri			
Gene	SNP	Genotype	Weight	n	Expected n	χ^2	p value	Mean	95%	6 CL UL	% Diff ^b	p valu
APEX1	rs3136814					0.35	0.56		LL	UL		
	135150014	Missing	0	3		0.00	0.00					
		AA	0	311	317.3			2.57	(2.29,	2.89)	-	
		AC	1	20	20.3			2.58	(1.65,	4.03)	0.3	0.99
APEX1	rs1130409					0.02	0.89					
	101100107	Missing	1	3								
		GG	0	86	90.6			2.70	(2.18,	3.34)	-	
		GT	1	167	168.8			2.43	(2.07,	2.86)	-9.8	
		TT	2	78	78.6			2.67	(2.13,	3.35)	-0.8	0.67
APEX1 °	rs1760944					0.06	0.80					
		Missing	1	21								
		CC	0	115	119.1			2.83	(2.35,	3.42)	-	
		CA	1	151	152.9			2.58	(2.19,	3.05)	-8.8	
		AA	2	48	49.1			2.00	(1.49,	2.67)	-29.5	0.14
FEN1	rs412334 ^d					2.64	0.10					
		Missing	0	14								
		GG	0	219	227.1			2.56	(2.23,	2.94)	-	
		GA	1	96	90.8			2.72	(2.21,	3.34)	6.2	
		AA	2	5	9.1			3.03	(1.24,	7.42)	18.5	0.84
		GA+AA		101				2.73	(2.23,	3.35)	6.8	0.59
LIG1 °	rs419664					1.66	0.20					
LIGI	1011/001	Missing	1	3								
		GG	0	110	108.2			2.69	(2.22,	3.26)	-	
		GT	1	153	166.6			2.57	(2.18,	3.03)	-4.4	
		TT	2	69	64.2			2.40	(1.88,	3.06)	-10.7	0.77
LIG1 °	rs156641					1.28	0.26					
LIGI	10100011	Missing	1	5								
		GG	0	129	125.1			2.40	(2.01,	2.86)	-	
		GA	1	144	159.9			2.64	(2.23,	3.13)	10.2	
		AA	2	56	51.1			2.82	(2.16,	3.68)	17.6	0.55
LIG1	rs2288881 ^d					2.23	0.14					
-	152200001	Missing	0	4								
		GG	0	302	305.8			2.58	(2.29,	2.91)	-	
		GA	1	26	30.5			2.41	(1.64,	3.54)	-6.5	
		AA	2	2	0.8			1.72	(0.42,	7.05)	-33.4	0.81
		GA+AA		28				2.35	(1.63,	3.40)	-8.7	0.65
LIG1	rs3730947											
2101	135750947	Missing	0	1								
		GG	0	334				2.57	(2.29,	2.88)		NA
1101	anat oan d					1.0	0.21			,		
LIG1	rs3731037 ^d	Missing	0	3		1.60	0.21					
		CC	0	261	264.6			2.53	(2.23,	2.87)	-	
		СТ	1	64	69.8			2.87	(2.23,	3.69)	13.4	
		TT	2	7	4.6			1.54	(0.74,	3.21)	-39.3	0.26
		CT+TT		71				2.69	(2.12,	3.41)	6.2	0.64
LIG: C	no 41 1 0 7 2					2.24	0.12			,		
LIG1 °	rs411073	Missing	1	8		2.24	0.13					
		CC	0	8 108	112.0			2.77	(2.28,	3.36)	-	
		СТ	1	149	151.0			2.54	(2.28,	3.01)	-8.2	
		TT	2	70	71.0			2.37	(1.87,	3.02)	-14.3	0.60
1101	d and a second					0.42	0.51			,		
LIG1	rs3730908 ^d	Missing	0	2		0.43	0.51					
		CC	0	308	312.5			2.56	(2.27,	2.89)	-	
		СТ	1	23	25.9			2.50	(2.27, (1.67,	3.80)	-1.7	
		тт	2	1	0.5			1.33	(0.18,	9.73)	-48.1	0.81
		CT+TT	-	24				2.45	(1.64,	3.67)	-4.3	0.83
		0.111		-7				2.75	(1.04,	5.07)	T.J	0.05
LIG1	rs20579 ^d	Nr: -	0			0.11	0.74					
		Missing	0	1	2577			2.51	(2.20	200		
		CC	0	253	257.7			2.51	(2.20,	2.86)	-	

Appendix Table 8. Mean plasma high sensitivity C-reactive protein according to DNA base excision repair genotypes, in the pooled MAP1 and MAPII cross-sectional studies ^a

		СТ	1	75	76.6			2.76	(2.19,	3.47)	10.0	
		TT	2	5	5.7			2.58	(1.07,	6.25)	2.8	0.77
		CT+TT		80				2.75	(2.20,	3.43)	9.5	0.48
LICI						0.02	0.90			· ·		
LIG1	rs3730881	Missing	0	1		0.02	0.89					
		Missing CC	0	329	336.0			2.58	(2.30,	2.89)		
		СС	1	5	5.0			1.91	(2.30, (0.79,	4.63)	-25.9	0.51
		CI	1	5	5.0			1.91	(0.79,	4.03)	-23.9	0.51
LIG1	rs3730914 ^d					0.17	0.68					
		Missing	0	6								
		CC	0	230	234.0			2.53	(2.21,	2.90)	-	
		СТ	1	90	91.9			2.85	(2.31,	3.52)	12.5	
		TT	2	8	9.0			1.70	(0.85,	3.43)	-32.7	0.32
		CT+TT		98				2.73	(2.23,	3.34)	7.7	0.54
LIG1	rs3731003											
2101	135751005	Missing	0	3								
		CC	0	331				2.56	(2.28,	2.87)		NA
	d					0.77	0.10		. ,	,		
LIG1	rs3730837 ^d	Missing	0	12		2.77	0.10					
		Missing AA	0	252	260.9			2.46	(2.16	2.80)		
		AA AG	1	69	64.1			2.40	(2.16, (2.33,	2.80)	- 21.0	
		GG	2	1	3.9			1.96	(2.33, (0.27,	14.09)	-20.4	0.37
			2		5.9							
		AG+GG		70				2.96	(2.32,	3.77)	20.3	0.18
LIG1 °	rs274862					0.17	0.68					
		Missing	1	8								
		TT	0	117	116.2			2.35	(1.95,	2.82)	-	
		TC	1	153	161.6			2.63	(2.23,	3.10)	12.0	
		CC	2	57	56.2			2.74	(2.10,	3.58)	16.7	0.55
LIG1	rs3730912 ^d					0.82	0.36					
		Missing	0	1								
		CC	0	258	261.2			2.51	(2.21,	2.85)	-	
		CA	1	68	73.6			2.99	(2.34,	3.82)	19.0	
		AA	2	7	5.2			1.54	(0.73,	3.22)	-38.9	0.18
		CA+AA		75				2.80	(2.22,	3.53)	11.3	0.41
LIG1 °	rs20580					2.47	0.12					
LIGI	1820300	Missing	1	8		2.47	0.12					
		CC	0	84	77.8			2.25	(1.81,	2.80)	-	
		CA	1	148	166.3			2.65	(2.24,	3.14)	17.9	
		AA	2	94	88.8			2.73	(2.22,	3.36)	21.4	0.38
0	4					0.04	0.62		(,	,		
LIG3 °	rs3135974 ^d	Missing	0	2		0.24	0.62					
		Missing GG	0	275	281.7			2.50	(2.21,	2.83)	-	
		GA	1	56	55.5			2.88	(2.21, (2.20,))	3.76)	15.1	
		AA	2	2	2.7			2.75	(0.68,	11.10)	10.1	0.63
		GA+AA	-	58	2.7			2.87	(2.21,	3.73)	14.9	0.34
		GATAA		50				2.07	(2.21,	5.75)	14.9	0.54
LIG3	rs3135998					0.21	0.65					
		Missing	1	0	110.0				(2.20)			
		GG	0	112	110.9			2.41	(2.20,	3.23)	-	
		GA	1	158	167.1			2.41	(2.06,	2.82)	0.0	0.50
		AA	2	64	62.9			2.83	(2.20,	3.64)	17.6	0.50
LIG3	rs3135989 ^d					0.01	0.91					
		Missing	0	3								
		TT	0	299	304.9			2.59	(2.29,	2.92)	-	
		TG	1	32	33.2			2.40	(1.69,	3.40)	-7.1	
		GG	2	1	0.9			5.30	(0.73,	38.44)	105.0	0.71
		TG+GG		33				2.46	(1.74,	3.47)	-5.0	0.78
LIG3	rs3135967					0.04	0.84					
		Missing	1	4								
		AA	0	101	102.1			2.94	(2.40,	3.59)	-	
		AG	1	161	166.8			2.38	(2.03,	2.78)	-19.1	
		GG	2	68	68.1			2.58	(2.02,	3.29)	-12.3	0.25
LIG3 °	rs2074516 ^d					0.35	0.55					
LIGS	rs20/4516	Missing	0	1		0.35	0.55					
		GG	0	273	279.9			2.50	(2.21,	2.83)	-	
			-						、 <u> </u>	,		

		GC	1	58	57.2			2.92	(2.24,	3.79)	16.7	
		CC	2	2	2.9			2.75	(0.68,	11.09)	9.9	
		GC+CC		60				2.91	(2.25,	3.77)	16.4	0.57
		00.00							(2.20,	5.77)		
MBD4	rs3138360 ^d					0.03	0.87					
		Missing	0	1								
		GG	0	295	302.2			2.60	(2.31,	2.94)	-	
		GA	1	38	37.7			2.32	(1.68,	3.20)	-10.9	
		AA	2	1	1.2			1.86	(0.26,	13.43)	-28.4	0.76
		GA+AA		39				2.30	(1.68,	3.17)	-11.4	0.48
MBD4	rs10342 ^d					1.24	0.27					
MDD4	r\$10342	Missing	0	2		1.24	0.27					
		GG	0	274	277.2			2.58	(2.28,	2.92)	-	
		GG	1	54	59.6			2.58	(1.95,	3.42)	-0.1	
		AA	2	5	3.2			2.38	(1.93, (1.01,	5.85)	-6.1	0.99
			2		3.2							
		GA+AA		59				2.56	(1.96,	3.35)	-0.6	0.97
MBD4	rs2005618 ^d					0.08	0.77					
		Missing	0	0								
		TT	0	264	267.5			2.58	(2.28,	2.93)	-	
		TC	1	65	69.1			2.51	(1.94,	3.24)	-2.8	
		CC	2	5	4.5			2.42	(1.00,	5.85)	-6.1	0.97
		TC+CC		70				2.50	(1.96,	3.20)	-3.1	0.82
									(, -,			
MBD4	rs2311394 ^d					0.07	0.79					
		Missing	0	6								
		TT	0	266	269.6			2.59	(2.28,	2.93)	-	
		TC	1	58	61.9			2.56	(1.96,	3.34)	-1.1	
		CC	2	4	3.6			2.51	(0.94,	6.70)	-2.8	1.00
		TC+CC		62				2.55	(1.97,	3.30)	-1.2	0.93
MBD4 °	rs2307293					0.01	0.91					
mbD4	132307273	Missing	0	6		0.01	0.71					
		GG	0	325	332.0			2.61	(2.32,	2.92)	-	
		GC	1	4	4.0			1.03	(0.33,	3.20)	-60.4	0.11
										,		
MBD4	rs3138326 ^d					0.62	0.43					
		Missing	0	16	2.00 5							
		AA	0	257	260.7			2.57	(2.26,	2.92)	-	
		AT	1	58	61.7			2.61	(1.99,	3.42)	1.5	0.00
			2	~								
		TT	2	5	3.7			2.41	(1.00,	5.81)	-6.2	0.98
		AT+TT	2	5 63	3.7			2.41 2.59	(1.00, (2.00,	5.81) 3.35)	-6.2 0.8	0.98
MPG	rs3176415		2		3.7	0.06	0.81					
MPG	rs3176415	AT+TT	2		3.7	0.06	0.81					
MPG	rs3176415			63	3.7	0.06	0.81					
MPG	rs3176415	AT+TT Missing	1	63 9		0.06	0.81	2.59	(2.00,	3.35)	0.8	
MPG	rs3176415	AT+TT Missing GG	1 0	63 9 98	103.1	0.06	0.81	2.59 2.59	(2.00,	3.35)	0.8	
		AT+TT Missing GG GA	1 0 1	63 9 98 164	103.1 163.8			2.59 2.59 2.53	(2.00, (2.12, (2.17,	3.35) 3.16) 2.96)	0.8 - -2.2	0.95
	rs3176415 rs2541622 ^d	AT+TT Missing GG GA AA	1 0 1 2	63 9 98 164 63	103.1 163.8	0.06	0.81	2.59 2.59 2.53	(2.00, (2.12, (2.17,	3.35) 3.16) 2.96)	0.8 - -2.2	0.95
		AT+TT Missing GG GA AA Missing	1 0 1 2 0	63 9 98 164 63 5	103.1 163.8 65.1			2.59 2.59 2.53 2.63	(2.00, (2.12, (2.17, (2.05,	3.35) 3.16) 2.96) 3.37)	0.8 -2.2 1.6	0.95
		AT+TT Missing GG GA AA Missing CC	1 0 1 2 0 0	63 9 98 164 63 5 222	103.1 163.8 65.1 229.3			2.59 2.59 2.53 2.63 2.73	(2.00, (2.12, (2.17, (2.05, (2.37,	3.35) 3.16) 2.96) 3.37) 3.13)	0.8 	0.95
		AT+TT Missing GG GA AA Missing CC CT	1 0 1 2 0 0 1	63 9 98 164 63 5 222 99	103.1 163.8 65.1 229.3 97.3			2.59 2.59 2.53 2.63 2.73 2.34	(2.00, (2.12, (2.17, (2.05, (2.37, (1.91,	3.35) 3.16) 2.96) 3.37) 3.13) 2.86)	0.8 	0.95
		AT+TT Missing GG GA AA Missing CC CT TT	1 0 1 2 0 0	63 9 98 164 63 5 222 99 9	103.1 163.8 65.1 229.3			2.59 2.59 2.53 2.63 2.73 2.34 2.04	(2.00, (2.12, (2.17, (2.05, (2.37, (1.91, (1.05,	3.35) 3.16) 2.96) 3.37) 3.13) 2.86) 3.94)	0.8 -2.2 1.6 -14.2 -25.2	0.95
		AT+TT Missing GG GA AA Missing CC CT	1 0 1 2 0 0 1	63 9 98 164 63 5 222 99	103.1 163.8 65.1 229.3 97.3			2.59 2.59 2.53 2.63 2.73 2.34	(2.00, (2.12, (2.17, (2.05, (2.37, (1.91,	3.35) 3.16) 2.96) 3.37) 3.13) 2.86)	0.8 	0.95
		AT+TT Missing GG GA AA Missing CC CT TT	1 0 1 2 0 0 1 2	63 9 98 164 63 5 222 99 9 9 108	103.1 163.8 65.1 229.3 97.3			2.59 2.59 2.53 2.63 2.73 2.34 2.04	(2.00, (2.12, (2.17, (2.05, (2.37, (1.91, (1.05,	3.35) 3.16) 2.96) 3.37) 3.13) 2.86) 3.94)	0.8 -2.2 1.6 -14.2 -25.2	0.95
MPG	rs2541622 ^d	AT+TT Missing GG GA AA Missing CC CT TT	1 0 1 2 0 0 1 2 0	63 9 98 164 63 5 222 99 9 9 108 3	103.1 163.8 65.1 229.3 97.3 10.3	0.25	0.62	2.59 2.53 2.63 2.73 2.34 2.04 2.31	(2.00, (2.12, (2.17, (2.05, (1.91, (1.05, (1.91,	3.35) 3.16) 2.96) 3.37) 3.13) 2.86) 3.94) 2.80)	0.8 -2.2 1.6 -14.2 -25.2	0.95
MPG	rs2541622 ^d	AT+TT Missing GG GA AA Missing CC CT TT CT+TT CT+TT	1 0 1 2 0 0 1 2 0 0 0	63 9 98 164 63 5 222 99 9 108 3 323	103.1 163.8 65.1 229.3 97.3 10.3 330.0	0.25	0.62	2.59 2.59 2.53 2.63 2.73 2.34 2.04 2.31 2.53	(2.00, (2.12, (2.17, (2.05, (2.37, (1.91, (1.05, (1.91, (2.25,	3.35) 3.16) 2.96) 3.37) 3.13) 2.86) 3.94) 2.80) 2.83)	0.8 -2.2 1.6 -14.2 -25.2 -15.2	0.95 0.96 0.35 0.16
MPG	rs2541622 ^d	AT+TT Missing GG GA AA Missing CC CT TT CT+TT Missing	1 0 1 2 0 0 1 2 0	63 9 98 164 63 5 222 99 9 9 108 3	103.1 163.8 65.1 229.3 97.3 10.3	0.25	0.62	2.59 2.53 2.63 2.73 2.34 2.04 2.31	(2.00, (2.12, (2.17, (2.05, (1.91, (1.05, (1.91,	3.35) 3.16) 2.96) 3.37) 3.13) 2.86) 3.94) 2.80)	0.8 -2.2 1.6 -14.2 -25.2	0.95
MPG MPG	rs2541622 ^d rs3176424	AT+TT Missing GG GA AA Missing CC CT TT CT+TT CT+TT	1 0 1 2 0 0 1 2 0 0 0	63 9 98 164 63 5 222 99 9 108 3 323	103.1 163.8 65.1 229.3 97.3 10.3 330.0	0.25	0.62	2.59 2.59 2.53 2.63 2.73 2.34 2.04 2.31 2.53	(2.00, (2.12, (2.17, (2.05, (2.37, (1.91, (1.05, (1.91, (2.25,	3.35) 3.16) 2.96) 3.37) 3.13) 2.86) 3.94) 2.80) 2.83)	0.8 -2.2 1.6 -14.2 -25.2 -15.2	0.95 0.96 0.35 0.16
MPG	rs2541622 ^d	AT+TT Missing GG GA AA Missing CC CT TT CT+TT Missing AA AG	1 0 1 2 0 0 1 2 0 0 1	63 9 98 164 63 5 222 99 9 108 3 323 8	103.1 163.8 65.1 229.3 97.3 10.3 330.0	0.25	0.62	2.59 2.59 2.53 2.63 2.73 2.34 2.04 2.31 2.53	(2.00, (2.12, (2.17, (2.05, (2.37, (1.91, (1.05, (1.91, (2.25,	3.35) 3.16) 2.96) 3.37) 3.13) 2.86) 3.94) 2.80) 2.83)	0.8 -2.2 1.6 -14.2 -25.2 -15.2	0.95 0.96 0.35 0.16
MPG MPG	rs2541622 ^d rs3176424	AT+TT Missing GG GA AA Missing CC CT TT CT+TT Missing AA AG	1 0 1 2 0 0 1 2 0 0 1 2	63 9 98 164 63 5 222 99 9 108 3 323 8 0	103.1 163.8 65.1 229.3 97.3 10.3 330.0 7.9	0.25	0.62	2.59 2.53 2.63 2.73 2.34 2.04 2.31 2.53 3.65	(2.00, (2.12, (2.17, (2.05, (1.91, (1.05, (1.91, (1.91, (2.25, (1.83,	3.35) 3.16) 2.96) 3.37) 3.13) 2.86) 3.94) 2.80) 2.83) 7.28)	0.8 -2.2 1.6 -14.2 -25.2 -15.2 -15.2	0.95 0.96 0.35 0.16
MPG MPG	rs2541622 ^d rs3176424	AT+TT Missing GG GA AA Missing CC CT TT CT+TT CT+TT Missing AA AG	1 0 1 2 0 0 1 2 0 0 1 1 2	63 9 98 164 63 5 222 99 9 108 3 323 8 0 133	103.1 163.8 65.1 229.3 97.3 10.3 330.0 7.9	0.25	0.62	2.59 2.59 2.53 2.63 2.73 2.34 2.04 2.31 2.53 3.65 2.48	(2.00, (2.12, (2.17, (2.05, (1.91, (1.05, (1.91, (1.05, (1.91,) (2.25, (1.83,) (2.07,	3.35) 3.16) 2.96) 3.37) 3.13) 2.86) 3.94) 2.80) 2.83) 7.28) 2.96)	0.8 -2.2 1.6 -14.2 -25.2 -15.2 -15.2	0.95 0.96 0.35 0.16
MPG MPG	rs2541622 ^d rs3176424	AT+TT Missing GG GA AA Missing CC CT TT CT+TT CT+TT Missing AA AG	1 0 1 2 0 0 1 2 0 0 1 1 2	63 9 98 164 63 5 222 99 9 108 3 323 8 0 133 162	103.1 163.8 65.1 229.3 97.3 10.3 330.0 7.9	0.25	0.62	2.59 2.59 2.53 2.63 2.73 2.34 2.04 2.31 2.53 3.65 2.48 2.65	(2.00, (2.12, (2.17, (2.05, (2.37, (1.91, (1.05, (1.91, (1.91, (1.05, (1.91,)))))))))))))))))))))))))))))))))))	3.35) 3.16) 2.96) 3.37) 3.13) 2.86) 3.94) 2.80) 2.83) 7.28) 2.96) 3.11)	0.8 -2.2 1.6 -14.2 -25.2 -15.2 -15.2 -15.2	0.95 0.96 0.35 0.16 0.30
MPG MPG MUTYH	rs2541622 ^d rs3176424 rs3219476	AT+TT Missing GG GA AA Missing CC CT TT CT+TT CT+TT Missing AA AG	1 0 1 2 0 0 1 2 0 0 1 1 2	63 9 98 164 63 5 222 99 9 108 3 323 8 0 133	103.1 163.8 65.1 229.3 97.3 10.3 330.0 7.9	0.25	0.62	2.59 2.59 2.53 2.63 2.73 2.34 2.04 2.31 2.53 3.65 2.48	(2.00, (2.12, (2.17, (2.05, (1.91, (1.05, (1.91, (1.05, (1.91,) (2.25, (1.83,) (2.07,	3.35) 3.16) 2.96) 3.37) 3.13) 2.86) 3.94) 2.80) 2.83) 7.28) 2.96)	0.8 -2.2 1.6 -14.2 -25.2 -15.2 -15.2	0.95 0.96 0.35 0.16
MPG MPG	rs2541622 ^d rs3176424	AT+TT Missing GG GA AA Missing CC CT TT CT+TT Missing AA AG Missing GG GT TT	1 0 1 2 0 0 1 2 0 0 1 2 1 0 1 2	63 9 98 164 63 5 222 99 9 108 3 323 8 0 133 162 39	103.1 163.8 65.1 229.3 97.3 10.3 330.0 7.9	0.25	0.62	2.59 2.59 2.53 2.63 2.73 2.34 2.04 2.31 2.53 3.65 2.48 2.65	(2.00, (2.12, (2.17, (2.05, (2.37, (1.91, (1.05, (1.91, (1.91, (1.05, (1.91,)))))))))))))))))))))))))))))))))))	3.35) 3.16) 2.96) 3.37) 3.13) 2.86) 3.94) 2.80) 2.83) 7.28) 2.96) 3.11)	0.8 -2.2 1.6 -14.2 -25.2 -15.2 -15.2 -15.2	0.95 0.96 0.35 0.16 0.30
MPG MPG MUTYH	rs2541622 ^d rs3176424 rs3219476	AT+TT Missing GG GA AA Missing CC CT TT CT+TT CT+TT Missing GG GT TT Missing	1 0 1 2 0 0 1 2 0 0 1 1 2 1 0 1 2	63 9 98 164 63 5 222 99 9 108 3 323 8 0 133 162 39	103.1 163.8 65.1 229.3 97.3 10.3 330.0 7.9 141.3 156.4 43.3	0.25	0.62	2.59 2.59 2.53 2.63 2.73 2.34 2.04 2.31 2.53 3.65 2.48 2.65 2.52	(2.00, (2.12, (2.17, (2.05, (1.91, (1.05, (1.91, (1.05, (1.91,) (2.25, (1.83,) (2.07, (2.26, (1.83,)	3.35) 3.16) 2.96) 3.37) 3.13) 2.86) 3.94) 2.80) 2.83) 7.28) 2.96) 3.11) 3.47)	0.8 -2.2 1.6 -14.2 -25.2 -15.2 -15.2 -15.2 -15.2	0.95 0.96 0.35 0.16 0.30
MPG MPG MUTYH	rs2541622 ^d rs3176424 rs3219476	AT+TT Missing GG GA AA Missing CC CT TT CT+TT CT+TT CT+TT Missing GG GT TT	1 0 1 2 0 0 1 2 0 0 1 1 2 1 0 1 2	63 9 98 164 63 5 222 99 9 108 3 323 8 0 133 162 39 1 287	103.1 163.8 65.1 229.3 97.3 10.3 330.0 7.9 141.3 156.4 43.3 292.8	0.25	0.62	2.59 2.59 2.53 2.63 2.73 2.34 2.04 2.31 2.53 3.65 2.48 2.65 2.52 2.73	(2.00, (2.12, (2.17, (2.05, (1.91, (1.05, (1.91, (1.05, (1.91,) (2.25, (1.83,) (2.07, (2.26, (1.83,) (2.42,	3.35) 3.16) 2.96) 3.37) 3.13) 2.86) 3.94) 2.80) 2.83) 7.28) 2.96) 3.11) 3.47) 3.08)	0.8 -2.2 1.6 -14.2 -25.2 -15.2 -15.2 -15.2 -15.2 -15.2 -15.2 -15.2 -15.2 -15.2 -15.2 -15.2 -15.2 -15.2 -1.6	0.95 0.96 0.35 0.16 0.30
MPG MPG MUTYH	rs2541622 ^d rs3176424 rs3219476	AT+TT Missing GG GA AA Missing CC CT TT CT+TT CT+TT Missing GG GT TT Missing	1 0 1 2 0 0 1 2 0 0 1 1 2 0 0 1 2	63 9 98 164 63 5 222 99 9 108 3 323 8 0 133 162 39 1 287 45	103.1 163.8 65.1 229.3 97.3 10.3 330.0 7.9 141.3 156.4 43.3 292.8 46.3	0.25	0.62	2.59 2.59 2.53 2.63 2.63 2.73 2.34 2.04 2.31 2.53 3.65 2.48 2.65 2.52 2.73 1.88	(2.00, (2.12, (2.17, (2.05, (1.91, (1.05, (1.91, (1.05, (1.91,) (1.05, (1.91,) (2.25, (1.83,) (2.07, (2.26, (1.83,) (2.42, (1.40,)	3.35) 3.16) 2.96) 3.37) 3.13) 2.86) 3.94) 2.80) 2.83) 7.28) 2.96) 3.11) 3.47) 3.08) 2.51)	0.8 -2.2 1.6 -14.2 -25.2 -15.2 -15.2 -15.2 -15.2 -15.2 -15.2 -15.2 -15.2 -15.2 -15.2 -15.2 -15.2 -16 -14.2 -25.2 -1.6	0.95 0.96 0.35 0.16 0.30 0.84
MPG MPG MUTYH	rs2541622 ^d rs3176424 rs3219476	AT+TT Missing GG GA AA Missing CC CT TT CT+TT CT+TT Missing GG GT TT T Missing	1 0 1 2 0 0 1 2 0 0 1 1 2 1 0 1 2	63 9 98 164 63 5 222 99 9 108 3 323 8 0 133 162 39 1 287 45 2	103.1 163.8 65.1 229.3 97.3 10.3 330.0 7.9 141.3 156.4 43.3 292.8	0.25	0.62	2.59 2.59 2.53 2.63 2.63 2.73 2.34 2.04 2.31 2.53 3.65 2.52 2.73 1.88 0.48	(2.00, (2.12, (2.17, (2.05, (1.91, (1.05, (1.91, (1.05, (1.91,) (2.25, (1.83,) (2.26, (1.83,) (2.42, (1.40, (0.12,)	3.35) 3.16) 2.96) 3.37) 3.13) 2.86) 3.94) 2.80) 2.83) 7.28) 2.96) 3.11) 3.47) 3.08) 2.51) 1.91)	0.8 -2.2 1.6 -14.2 -25.2 -15.2 -15.2 -15.2 -15.2 -15.2 -15.2 -15.2 -15.2 -15.2 -15.2 -15.2 -15.2 -16 -14.2 -25.2 -15.2 -16 -14.2 -25.2 -15	0.95 0.96 0.35 0.16 0.30 0.84 0.84
MPG MPG MUTYH	rs2541622 ^d rs3176424 rs3219476	AT+TT Missing GG GA AA Missing CC CT TT CT+TT CT+TT Missing GG GT TT Missing	1 0 1 2 0 0 1 2 0 0 1 1 2 0 0 1 2	63 9 98 164 63 5 222 99 9 108 3 323 8 0 133 162 39 1 287 45	103.1 163.8 65.1 229.3 97.3 10.3 330.0 7.9 141.3 156.4 43.3 292.8 46.3	0.25	0.62	2.59 2.59 2.53 2.63 2.63 2.73 2.34 2.04 2.31 2.53 3.65 2.48 2.65 2.52 2.73 1.88	(2.00, (2.12, (2.17, (2.05, (1.91, (1.05, (1.91, (1.05, (1.91,) (1.05, (1.91,) (2.25, (1.83,) (2.07, (2.26, (1.83,) (2.42, (1.40,)	3.35) 3.16) 2.96) 3.37) 3.13) 2.86) 3.94) 2.80) 2.83) 7.28) 2.96) 3.11) 3.47) 3.08) 2.51)	0.8 -2.2 1.6 -14.2 -25.2 -15.2 -15.2 -15.2 -15.2 -15.2 -15.2 -15.2 -15.2 -15.2 -15.2 -15.2 -15.2 -16 -14.2 -25.2 -1.6	0.95 0.96 0.35 0.16 0.30 0.84

MUTYH	rs3219494											
		Missing	0	1								
		GG	0	334				2.57	(2.29,	2.88)	-	NA
						2 (2	0.11					
MUTYH	rs3219463					2.62	0.11					
		Missing	0	3								
		GG	0	179	188.6			2.62	(2.25,	3.06)	-	
		GA	1	136	127.7			2.52	(2.13,	2.99)	-4.0	
		AA	2	16	21.6			3.30	(1.99,	5.47)	25.8	0.60
MUTYH °	rs3219489					1.60	0.21					
		Missing	0	0								
		GG	0	180	188.5			2.57	(2.20,	3.00)	-	
		GC	1	136	130.1			2.48	(2.09,	2.94)	-3.5	
		CC	2	18	22.5			3.25	(2.01,	5.24)	26.4	0.58
MUTYH	rs3219493 ^d					1.95	0.16					
		Missing	0	9								
		GG	0	260	269.3			2.53	(2.23,	2.87)	-	
		GC	1	64	59.4			2.61	(2.04,	3.34)	3.2	
		CC	2	1	3.3			2.09	(0.29,	14.98)	-17.3	0.96
		GC+CC		65				2.60	(2.03,	3.32)	2.9	0.84
		deree		05				2.00	(2.05,	5.52)	2.9	0.04
0GG1	rs125701 ^d					1.06	0.30					
		Missing	0	6								
		GG	0	239	242.6			2.56	(2.25,	2.93)	-	
		GA	1	80	85.8			2.46	(1.97,	3.08)	-3.9	
		AA	2	10	7.6			2.94	(1.58,	5.47)	14.5	0.86
			2		7.0							
		GA+AA		90				2.51	(2.04,	3.10)	-2.0	0.87
0GG1	rs1805373											
	101000070	Missing	0	0								
		GG	0	334				2.57	(2.29,	2.88)	-	NA
		00	0	554				2.57	(2.29,	2.00)	-	INA
0GG1	rs2072668					0.19	0.66					
		Missing	0	1								
		CC	0	191	193.5			2.63	(2.27,	3.04)	-	
		CG	1	121	126.0			2.46	(2.04,	2.96)	-6.5	
		GG	2	21	20.5			2.62	(1.70,	4.04)	-0.1	0.84
		00	-		2010			2.02	(11/0,		0.1	0.01
0GG1	rs3219008					4.69	0.03					
		Missing	0	5								
		AA	0	196	193.7			2.59	(2.24,	3.00)	-	
		AG	1	108	123.6			2.49	(2.04,	3.02)	-4.1	
		GG	2	26	19.7			2.80	(1.89,	4.14)	8.0	0.85
									()	. ,		
0GG1	rs159153					7.34	0.01					
		Missing	0	8								
		TT	0	172	164.6			2.75	(2.35,	3.21)	-	
		TC	1	116	139.7			2.31	(1.91,	2.79)	-15.9	
		CC	2	39	29.6			2.66	(1.94,	3.66)	-3.1	0.35
0001						2.05	0.15					
0GG1	rs293795					2.05	0.15					
		Missing	0	0								
		TT	0	227	229.1			2.58	(2.25,	2.95)	-	
		TC	1	92	100.8			2.54	(2.06,	3.13)	-1.7	
		CC	2	15	11.1			2.55	(1.53,	4.27)	-1.0	0.99
DATES	wa2720206					240.00	< 0.0001					
PNKP °	rs3739206		0			340.00	< 0.0001					
		Missing	0	1								
		TT	0	332	338.0			2.56	(2.28,	2.87)	-	
		GG	2	1	2.0			2.00	(0.28,	14.37)	-21.8	0.81
PNKP	rs2257103					3.50	0.06					
	10220/100	Missing	1	7		5.50	5.00					
		CC	0	127	121.8			2.77	(2 20	3 22)	-	
									(2.30,	3.33)		
		CT	1	142	160.4			2.42	(2.05,	2.87)	-12.3	0.55
		TT	2	59	52.8			2.62	(2.02,	3.40)	-5.3	0.57
PNKP	rs3739186											
		Missing	0	1								
		TT	0	334				2.57	(2.29,	2.88)	-	NA
		• •	0	554				2.57	(2.2),	2.00)	-	1 1/ 1
POLB	rs2979896 ^d					0.18	0.67					
		Missing	0	1								
		TT	0	291	296.5			2.59	(2.30,	2.93)	-	
									,	,		

		TG	1	41	42.0			2.36	(1.73,	3.23)	-8.9	
		GG	2	1	1.5			1.94	(0.27,	13.96)	-25.4	0.83
		TG+GG		42				2.35	(1.73,	3.20)	-9.3	0.56
DOLD	atacont d					0.22	0.(2					
POLB	rs3136811 ^d	Missing	0	2		0.23	0.63					
		Missing	0	2	205 (2.50	(2.20)	2.01)		
		CC	0	290	295.6			2.58	(2.28,	2.91)	-	
		CG	1 2	42	42.9			2.40	(1.76,	3.26)	-6.9	0.00
		GG	2	1	1.6			1.93	(0.27,	13.86)	-25.1	0.88
		CG+GG		43				2.39	(1.76,	3.24)	-7.4	0.64
POLB ^c	rs3136797					0.05	0.82					
1022		Missing	0	9								
		ເເັ	0	318	324.0			2.56	(2.28,	2.88)	-	
		CG	1	8	7.9			3.12	(1.55,	6.26)	21.9	0.58
0.000												
SMUG1	rs2233920		0									
		Missing	0	1				0.67	(2.20)	2 00)		27.4
		GG	0	333				2.57	(2.29,	2.88)	-	NA
SMUG1 °	rs3136386 ^d					0.25	0.61					
		Missing	0	2								
		CC	0	306	310.6			2.53	(2.25,	2.84)	-	
		CG	1	25	27.8			3.00	(2.02,	4.46)	18.6	
		GG	2	1	0.6			1.30	(0.18,	9.20)	-48.7	0.57
		CG+GG		26				2.91	(1.97,	4.29)	14.9	0.50
									(,		
SMUG1	rs971		0	2		1.57	0.21					
		Missing	0	2					(1.05	2.54		
		CC	0	143	141.7			2.31	(1.95,	2.74)	-	
		СТ	1	142	155.6			2.79	(2.35,	3.30)	20.7	0.26
		TT	2	48	42.7			2.71	(2.04,	3.62)	17.6	0.26
SMUG1	rs2279402					0.93	0.33					
		Missing	1	1								
		CC	0	102	99.6			2.31	(1.89,	2.82)	-	
		CT	1	156	168.8			2.72	(2.31,	3.20)	18.0	
		TT	2	75	71.6			2.63	(2.09,	3.32)	14.1	0.42
TDG	rs3829301 ^d					2.29	0.13					
	13302/301	Missing	0	1								
		AA	0	306	309.8			2.58	(2.30,	2.91)	-	
		AC	1	27	30.5			2.70	(1.85,	3.93)	4.3	
		CC	2	1	0.8			0.22	(0.03,	1.57)	-91.4	0.05
		AC+CC		28				2.47	(1.70,	3.58)	-4.6	0.82
									(,		
TDG	rs4135113		0	2		0.20	0.66					
		Missing	0	3	202.2			2.50	(2.20)	2.01)		
		GG AG	0 1	317 15	322.2 15.6			2.59 2.47	(2.30,	2.91)	-4.4	0.86
		AG	1	15	15.0			2.47	(1.48,	4.12)	-4.4	0.80
TDG	rs2629768 ^d					0.52	0.47					
		Missing	0	12								
		GG	0	240	243.4			2.46	(2.15,	2.81)	-	
		GA	1	74	79.1			2.69	(2.13,	3.40)	9.4	
		AA	2	8	6.4			2.44	(1.22,	4.92)	-0.6	0.80
		GA+AA		82				2.66	(2.13,	3.33)	8.3	0.54
TDG	rs4135064 ^d					0.19	0.67					
120	184133004	Missing	0	1		0.17	0.07					
		CC	0	281	285.4			2.56	(2.26,	2.90)	-	
		СТ	1	49	52.2			2.58	(1.94,	3.42)	0.7	
		TT	2	3	2.4			2.91	(0.92,	9.20)	13.7	0.98
		CT+TT		52				2.60	(1.97,	3.42)	1.4	0.93
		01-11						2.00	(1.57,	5.12)		0.55
TDG	rs322107 ^c					0.25	0.62					
		Missing	0	6	• /				(a			
		CC	0	242	245.9			2.51	(2.20,	2.86)	-	
		СТ	1	78	82.2			2.60	(2.08,	3.24)	3.6	0.07
		TT	2	8	6.9			2.47	(1.25,	4.91)	-1.3	0.96
		CT+TT		86				2.58	(2.09,	3.19)	3.1	0.81
TDG °	rs4135061					0.94	0.33					
100		Missing	0	2								
		AA	0	186	186.6			2.52	(2.17,	2.93)	-	
									,	,		

		AG	1	122	129.8			2.75	(2.29,	3.30)	8.8	
		GG	2	24	22.6			2.13	(1.42,	3.18)	-15.7	0.48
TDC	4125001					0.(2	0.42					
TDG	rs4135081		1	1		0.62	0.43					
		Missing	1	1	100.4			2.56	(2.1.1			
		AA	0	110	108.4			2.56	(2.11,	3.11)	-	
		AG	1	156	167.2			2.63	(2.23,	3.09)	2.5	
		GG	2	67	64.4			2.47	(1.94,	3.16)	-3.4	0.92
TDG	rs322109 ^c					11.59	0.001					
	13522107	Missing	0	20								
		AA	0	261	259.4			2.64	(2.32,	2.99)	-	
		AG	1	45	59.2			2.14	(1.59,	2.87)	-18.9	
		GG	2	9	3.4			2.16	(1.12,	4.16)	-18.0	0.38
			2		5.4							
		AG+GG		54				2.14	(1.64,	2.80)	-18.8	0.16
TDG	rs4135093					0.02	0.88					
		Missing	1	13								
		TT	0	107	110.3			2.40	(1.86,	3.15)	-	
		TC	1	157	160.4			2.70	(2.29,	3.18)	12.3	
		CC	2	58	58.3			2.42	(1.86,	3.15)	0.6	0.61
									. ,	,		
TDG °	rs4135094 ^d		^	-		0.21	0.65					
		Missing	0	5	27 0 -			o /-	(2.1.2	0.50		
		TT	0	271	278.7			2.47	(2.18,	2.79)	-	
		TC	1	56	54.6			3.05	(2.34,	3.99)	23.7	·
		CC	2	2	2.7			3.08	(0.77,	12.31)	25.0	0.34
		TC+CC		58				3.05	(2.35,	3.97)	23.7	0.14
TDG °	rs167715 ^d					5.03	0.02					
106	1810//15	Missing	0	1		5.05	0.02					
		TT	0	265	264.7			2.59	(2.28,	2.94)	-	
		TC	1	205 59	70.6			2.39	(2.28, (1.92,	3.22)	-4.0	
		CC	2	9	4.7			2.49		3.22) 4.14)		0.84
			2		4.7				(1.11,		-17.0	
		TC+CC		68				2.44	(1.91,	3.11)	-5.8	0.66
UNG	rs3219245 ^d					1.96	0.16					
		Missing	0	4								
		GG	0	275	277.9			2.64	(2.33,	2.99)	-	
		GT	1	50	56.3			2.14	(1.61,	2.83)	-19.1	
		TT	2	5	2.9			2.47	(1.02,	5.96)	-6.5	0.39
		GT+TT		55				2.16	(1.66,	2.83)	-18.1	0.18
		01011		55				2.10	(1.00,	2.00)	10.1	0.10
UNG	rs246079					0.52	0.47					
		Missing	1	2								
		AA	0	115	112.7			2.64	(2.18,	3.19)	-	
		AG	1	155	165.5			2.62	(2.23,	3.08)	-0.8	
		GG	2	62	60.7			2.37	(1.83,	3.05)	-10.3	0.77
XRCC1	rs939461 ^d					0.02	0.90					
meer	18939401	Missing	0	2		0.02	0.70					
		AA	0	272	277.2			2.55	(2.25,	2.89)		
		AC	1	58	59.6			2.70	(2.25,	2.89)	6.0	
		CC	2	3	3.2			2.07	(2.25,	2.89)	-18.6	0.86
			2		3.2							
		AC+CC		61				2.66	(2.06,	3.45)	4.6	0.76
XRCC1	rs3213247 ^d					0.18	0.67					
		Missing	0	2								
		GG	0	290	296.5			2.59	(2.29,	2.92)	-	
		GT	1	42	42.0			2.51	(1.85,	3.40)	-2.9	
		TT	2	1	1.5			6.00	(0.81,	44.42)	132.2	0.70
		GT+TT	-	43				2.56	(1.89,	3.46)	-1.0	0.95
		01111		45				2.50	(1.69,	5.40)	-1.0	0.95
XRCC1 °	rs939460					6.06	0.01					
		Missing	0	7								
		GG	0	222	219.1			2.76	(2.41,	3.17)	-	
		GA	1	86	102.9			2.32	(1.87,	2.89)	-16.0	
		AA	2	19	12.1			2.23	(1.42,	3.50)	-19.3	0.31
VDCC1	rs75407					0.53	0.46					
XRCC1 °	rs25487	Missing	1	1		0.55	0.40					
		Missing			131.2			2 45	(2.04	2.04)		
		GG	0	125	131.2			2.45	(2.04,	2.94)	-	
		GA	1	164	160.6			2.62	(2.24,	3.07)	6.9 10.2	0.00
		AA	2	45	49.2			2.70	(2.01,	3.63)	10.2	0.80

XRCC1	rs25489 ^d					3.84	0.05					
Ancer	1823407	Missing	0	0		5.04	0.05					
		GG	0	309	313.6			2.56	(2.27,	2.88)	-	
		GA	1	23	26.9			2.55	(1.67,	3.89)	-0.3	
		AA	2	2	0.6			3.83	(0.94,	15.57)	49.8	0.85
		GA+AA		25				2.64	(1.77,	3.95)	3.2	0.88
		Grunn		20				2.0.	(1.77,	5.75)	5.2	0.00
XRCC1	rs1001581					0.98	0.32					
		Missing	1	8								
		CC	0	114	121.3			2.56	(2.12,	3.09)	-	
		СТ	1	165	159.4			2.50	(2.14,	2.93)	-2.1	
		TT	2	47	52.3			2.71	(2.04,	3.61)	6.2	0.89
XRCC1	rs2307191											
		Missing	0	6								
		СС	0	328				2.57	(2.29,	2.89)	-	NA
XRCC1	rs3213403 ^d					0.20	0.66					
ANULI	r\$3213403	Missing	0	1		0.20	0.00					
		AA	0	290	295.5			2.52	(2.24,	2.85)	-	
		AG	1	40	42.0			3.03	(2.20,	4.18)	20.2	
		GG	2	2	1.5			2.13	(0.52,	8.67)	-15.6	0.54
		AG+GG		42				2.98	(2.18,	4.09)	18.2	0.32
		Adidd		72				2.90	(2.10,	4.07)	10.2	0.52
XRCC1	rs915927					0.43	0.51					
		Missing	1	14								
		AA	0	106	110.9			2.98	(2.46,	3.62)	-	
		AG	1	162	160.2			2.52	(2.15,	2.95)	-15.6	
		GG	2	54	57.9			2.19	(1.67,	2.87)	-26.6	0.15
XRCC1 °	rs3213255					0.001	0.97					
		Missing	1	14								
		TT	0	121	124.2			2.98	(2.48,	3.58)	-	
		тс	1	152	154.7			2.55	(2.16,	2.99)	-14.6	
		CC	2	47	48.2			2.13	(1.60,	2.84)	-28.5	0.13
XRCC1 °	rs25496											
ARCUI	1323470	Missing	0	3								
		TT	0	332				2.58	(2.30,	2.89)	-	NA
			v	552				2.50	(2.50,	2.07		1 12 1

Abbreviations: MAP, Markers of Adenomatous Polyps; HWE, Hardy-Weinberg Equilibrium; CL, confidence level; LL, lower level; UL, upper level; *APEX1*, apurinic/apyrimidinic endodeoxyribonuclease 1; *FEN1*, flap structure-specific endonuclease 1; *LIG1*, DNA ligase 1; *LIG3*, DNA ligase 3; *MBD4*, methyl-CpG binding domain 4; *MPG*, N-methylpurine DNA glycosylase; *MUTYH*, mutY DNA glycosylase; *OGG1*, 8-oxoguanine DNA glycosylase; *PNKP*, polynucleotide kinase 3'-phosphatase; *POLB*, DNA polymerase beta; *SMUG1*, single-strand-selective monofunctional uracil-DNA glycosylase 1; *TDG*, thymine DNA glycosylase; *UNG*, uracil DNA glycosylase; *XRCC1*, X-ray repair cross complementing 1

^a Adjusted for sex (male and female) and body mass index (continuous)

^b Proportional difference, in percent, between variant homozygous genotpe and common homozygous genotype (reference); e.g.: (([variant mean - dominant mean] / dominant mean] x 100%)

^c SNPs incuded in the DNA base excision repair (BER) genetic risk score (GRS)

 d If a SNPs heterozygous and/or variant homozygous genotype has ≤ 10 participants then they were combined

				F2-isoprostanes, j	og/L				hsCRP, µg/n	ιL	
		n	mean	(95% CI)	% diff. ^d	P-value	n	mean	(95% CI)	% diff. ^d	P-value
Oxidative Balance Score (OBS) ^{e,f}	OBS tertile median										
ase Excision Repair GRS ^g											
BER - Low (< -1)											
OBS tertiles											
1	-5.13	30	83.49	(72.56, 96.08)	-		51	3.48	(2.52, 4.81)	-	
2	-0.17	36	81.04	(71.38, 92.01)	-2.9		48	2.13	(1.55, 2.93)	-38.8	
3	4.81	48	74.95	(67.16, 83.64)	-10.2	0.38	57	1.89	(1.41, 2.53)	-45.8	0.01
BER - High (\geq -1)											
OBS tertiles											
1	-4.74	44	101.03	(90.05, 113.35)	-		59	3.37	(2.43, 4.67)	-	
2	-0.34	44	98.16	(87.00, 110.76)	-2.8		59	3.61	(2.61, 5.00)	7.4	
3	4.64	46	82.12	(73.13, 92.21)	-18.7	0.01	60	2.75	(2.00, 3.77)	-18.4	0.33
ntioxidant Enzyme GRS ^h											
AE - Low (< -1)											
OBS tertiles											
1	-4.85	38	88.85	(77.49, 101.87)	-		63	2.83	(2.01, 3.99)	-	
2	-0.62	39	87.57	(76.82, 99.82)	-1.4		54	2.64	(1.88, 3.71)	-6.7	
3	5.39	39	78.28	(68.67, 89.24)	-11.9	0.25	54	2.10	(1.49, 2.95)	-26.0	0.34
AE - High (≥ -1)											
OBS tertiles											
1	-5.05	35	98.82	(87.31, 111.85)	-		45	3.81	(2.78, 5.23)	-	
2	-0.08	42	92.83	(82.48, 104.48)	-6.1		53	3.08	(2.30, 4.13)	-19.2	
3	4.44	54	76.21	(68.67, 84.59)	-22.9	0.001	61	2.53	(1.91, 3.34)	-33.7	0.10

Appendix Table 9. Mean^a plasma F₂-isoprostanes and high sensitivity C-reactive protein (hsCRP) concentrations according to tertiles of an Oxidative Balance score (OBS) stratified by dichotomized Genetic Risk Scores (GRSs), in the pooled MAP I and MAP II cross-sectional studies ^{b,c}

Abbreviations: MAP, Markers of Adenomatous Polyps; CI, confidence interval; GRS, genetic risk score; BER, Base Excision Repair; AE, Antioxidant Enzyme

^a Geometric means and 95% confidence intervals from general linear model

^b Unequal sample sizes in tertiles due to ranking ties. Differences in the numbers of participants due to availability of serum samples for the two biomarker assays, nutritient analysis and

^c AE gene score is based on 6 SNPs in 3 AE genes and BER gene score is based on 21 SNPs in 10 BER genes; complete list of genes and SNPs in text and appendix tables 3 and 4, respectively

^d Proportional difference, in percent, between mean value in the corresponding tertile and mean value in the first tertile (reference); e.g.: (([tertile 3 mean - tertile 1 mean] / tertile 1 mean) x 100%)

^e Oxidative balance score is a composite of 15 anti- and pro-oxidant dietary and lifestyle exposures (see text); a higher score represents higher anti-oxidant relative to pro-oxidant environmental exposures; study population range: -15.1 - 23.7

 f Adjusted for total energy intake, sex, hormone replacement thearapy (HRT) use, education (less than high school, high school degree/vocational school/some college, college graduate or higher), nonsteroidal anti-inflammatory drug (NSAID) and/or aspirin use ($\geq 1/wk$ or < 1/wk)