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Abstract

Slow granular flows: roles of polydispersity and cohesion
By Pablo E. Illing

This work consists of two simulation projects and a experimental project, which
study the effect cohesive forces and polydispersity have on granular materials and on
granular flows.

The first computational project studies the compression and fracture of crystal
and glassy materials using 2D droplet arrays, and the effects of cohesive forces and
polydispersity. We use a bubble model to simulate droplets, with an attractive force,
which makes the bubbles adhere to each other and the walls. Droplets are first placed
in an hexagonal array. For monodisperse bubbles, this forms a crystalline aggregate,
polydisperse rafts resemble a glassy material. Once initialized, the droplet raft will
be compressed between two walls, with only one wall moving towards the other.
The array is compressed and eventually induced to rearrange. These rearrangements
occur via fractures, in which depletion bonds are broken between droplets. In crystal
arrays, fractures are preceded by a peak in the force exerted on the walls, which
drops once the fracture occurs. For small droplet arrays, a single fracture propagates
through the crystal in a single well-defined event. For larger rafts, multiple fractures
can nucleate at different locations and propagate nearly simultaneously, leading to
competing fractures. In polydisperse arrays, the addition of multiple droplet sizes
further disrupts the fracture events, showing differences between ideal crystalline
arrays, crystalline arrays with a small number of defects, and fully amorphous arrays.

The experimental project studied the 2D granular flow of highly polydisperse hard
disks in a non-conventional flow geometry. We use a variety of size distributions with
the largest particle being five time larger than the smallest. The experimental setup
uses plungers to push the particles in a back and forth fashion. We find the flow
behaves in a strikingly different manner compared to size distributions with lower
polydispersity that are commonly studied. We characterize the non-affine motion
and particle rearrangement, and find a qualitatively difference in the behavior of
smaller and larger particles. The smaller particles tend to have higher non-affine
motion, induced by the larger disks. Furthermore, we found that this local non-affine
behavior increases with increasing polydispersity.

For the third project we study the clogging of gravity driven cohesive particle
in a two dimensional hopper, using my simulations, and experimental data provided
by our collaborators at McMaster University. Using a similar model used in the first
computational project, with added gravitational forces, we simulate adhesive droplets
as they flow due to gravity through a hopper. We vary the size of the opening, as
well as the depletion and gravitational forces. We find that stronger depletion leads
to higher clogging probability. By taking into account the depletion and gravitational
forces, we can define a cohesive length scale, which effectively collapses all our sim-
ulation and experimental data onto a master curve. This indicates that for cohesive
granular materials, in addition to particle size, the cohesive length scale must also be
taken into account to describe the clogging.
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3.11 (a) ∆rNA/⟨R⟩, and (b) D2
min/⟨R⟩2, as a function of the polydispersity for

each size distribution. For ∆rNA/⟨R⟩, we see no relation to polydispersity,

averaging to a value of 0.37. On the other hand D2
min/⟨R⟩2 shows a positive

relation with polydispersity. The dashed line is a least-squares fit to the
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min(∆t =
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∆t(x.y), Fig.(d), such that |DF (∆t(x, y))| ≈ df0, Fig (e). The final color
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min(∆t(x, y)). We see at the top row thatD2

min
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4.1 (d) Representative image showing a clog in simulations, with a colour

overlay: Red droplets indicate the clogging arch, blue droplets repre-

sent remaining droplets, yellow droplets remain attached to the ag-

gregate due to cohesion. In this particular simulation w/d = 3.25,

and w/δ = 5.00. (b) Representative experimental image showing a

clog, with w/d = 8.8 while w/δ = 2.86 ± 0.07. (c) Side and top

view schematic diagram of the experimental chamber. Droplets are

deposited and float to the bottom of the top slide while the chamber

is held horizontal. (d) During the experiment, the chamber is rotated

to a desired tilt angle which drives the droplets due to the buoyant force.103

4.2 Clogging probability of (a) simulations and (b) experiments with w/d =

3.0 for a range of cohesive strengths as a function of strength of the

effective gravitational forces g, and effective buoyant forces sin θ. Solid

lines represent fits of Eq. 4.8 to the data. The value of the driving

force where the probability of clogging is Pclog = 1/2 as a function the

cohesive strength is shown for c) simulation and d) experiment. . . . 106

4.3 Clogging probability for a range of cohesive strengths as a function

of the hopper opening width over the droplets diameter(w/d), for con-

stant g. Solid lines represent fits of Eq. 4.11 to the data. For increasing

ϕc wider hopper exits are needed in order to avoid clogging, meaning

that the particles clog easier if they are more cohesive. . . . . . . . . 109

4.4 w∗/d as a function of δ. Close to δ ≈ 1 there’s a change in the be-

haviour for w∗/d, as we expected. We have therefore chosen to fit these

behaviours differently. The black dashed line represents the linear fit

for low cohesion, while the red dashed line is the linear fit for high

cohesion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110



4.5 Figs. (a) and (b) show the mean avalanche size before a clog occurs

plotted against the dimensionless ratio w/δ∗, for simulations and ex-

periments, respectively. The solid line is a fit to Eq. 4.17. Figs. (c) and

(d) shows ln(⟨s⟩+1) as a function of w/δ∗, for simulations and experi-

ments respectively. Using Eq. 4.18 we were able to fit the data, dashed

lines in Figs.(c) and (d), and obtain the parameter to plot Eq. 4.17 in

Figs.(a) and (b). Dashed lines show a plateau at 190 droplets. For the

simulations the empty symbols are data point with variable g, whereas

the stripped data points are simulations with N = 95 for the circles,

and N = 285 for the squares. . . . . . . . . . . . . . . . . . . . . . . 112

4.6 Probability of clogging as a function of w/δ∗. The data for both simula-

tions and experiments collapses onto one master curve. The dashed line

represents a fit to Eq. 4.20 using A = 0.12±0.03 and B = 0.029±0.001,

for the simulations, and A = 0.4 ± 0.1 and B = 0.70 ± 0.09 for the

experiments. For the simulations the empty symbols are data point

with variable g, whereas the stripped data points are simulations with

N = 95 for the circles, and N = 285 for the squares. . . . . . . . . . . 115



A.1 Figures showing the correlation between averaged |∆θ| against different

quantities measured in the flow for the bidisperse size distribution (left

column panels) and the T4 size distribution (right panels). From top to

bottom, (a,b) display the correlation between |∆θ| and the displacement of

the particles, (c,d) show |∆θ| vs nonaffine displacement, and (e,f) show |∆θ|

vs D2
min. The red data points correspond to the bins in the central zone as

outlined by Fig. 3.2, while the blue data points correspond to all bins out-

side this area. Regarding the displacements (a,b), there does not seem to

be a strong correlation between change in orientation of the particles and

the magnitude of the displacement. However for both ∆rNA and D2
min there

seems to be a degree of positive correlation with |∆θ|. . . . . . . . . . . . 124

A.2 |∆θ|, as a function of the polydispersity for each size distribution. We can

see that there is no clear relation between |∆θ| and polydispersity, averaging

to a value of 0.046. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
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Chapter 1

Introduction

Soft condensed matter refers to any material in states of matter that are neither

simple liquids nor crystalline solids[1]. These types of materials are defined by having

properties of both liquid and solids. An example would be a pile of shaving cream,

composed of air and soapy water, and if left undisturbed in a pile will hold its shape,

but can be sheared and made to flow if enough force is applied. Such materials are

ubiquitous, occurring naturally such a wide variety of natural oils, biological tissue,

sea foam, and mud and soil. On the other hand, these materials are also incredibly

useful for industry, for example: lubricants, cements, polymers and adhesives. Soft

materials are also various products used in our daily life, like mayonnaise, toothpaste,

whipped cream and jello. Mayonnaise, for example, is an emulsion, with the egg

yolk acting as a surfactant, that stabilizes the oil droplets against coalescence with

continuous phase liquid, usually vinegar or lemon juice.

While many soft matter systems are often characterized by their microscopic

length scale, and the importance of thermal fluctuations, not all systems share these

features, for example: granular systems and foams, whose particles are too big to

be affected by thermal forces, and for which its particle’s size can be placed on the

macroscopic scale. Figure 1.1 shows various common examples of soft condensed
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(a) (b)

(c) (d)

Figure 1.1: Examples of soft condensed matter systems. Starting from the top left (a)
toothpaste, a colloid composed sodium fluoride, antibacterial agents, etc., as the dispersed
phase with water as the dispersion medium. (b) Mayonnaise, an emulsion made from oil,
egg yolk and vinegar. (c) Shaving cream, a foam made using soaps and oils. (d) A pile
of sand, glass marbles, rods, plastic spheres and an ellipsoid as an example of a granular
system.

matter.

Below are some systems classified under the soft condensed matter umbrella, in

which different forces and mechanism come into play, and which occur at a wide range

of scales:

• Colloids: A phase separated mixture, generally consisting of solid particles be-

tween 1 nm to 10 µm in size, dispersed in a liquid medium. At these scales

the thermal motion is relevant. Some examples of colloids include: toothpaste,

paint, blood, etc [1]. Figure 1.1(a) shows toothpaste, a colloid that has sodium

fluoride, antibacterial agents, etc., as the dispersed phase, with water as the

dispersion medium.

• Emulsions: Similar to colloids, an emulsion is a mixture of more than one liquid,

which are normally immiscible, with one of them being dispersed as droplets.

Surface forces are now relevant, while thermal forces depend on the particle
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scale. Some examples include: mayonnaise, vinaigrettes, ointments, etc. Figure

1.1(b) has mayonnaise as an example of an emulsion, with the water in an egg

yolk acting as the dispersion medium and the oil as the dispersed phase.

• Foams: For this case the disperse medium is a gas and the continuum medium is

a liquid. Examples of foams include: shaving creams, foam at the tops of beers,

etc. Figure 1.1(c) shows shaving cream, a household example for air-in-liquid

foam, in this case the liquid enclosing the air is soapy water.

• Granular systems: a conglomeration of discrete solid macroscopic particles, in

air or vacuum. The lower limit for the particle size is about 100 µm; for these

scales thermal fluctuations are not important, but friction is. A wide variety of

these systems are present in both nature and industry, with the grains having

a wide diversity of shapes, sizes, roughness, etc. Example of these systems

include: sand, gravel, log dams, glaciers, etc. The last picture in Fig. 1.1(d)

shows a pile of sand, glass marbles, rods, plastic spheres and an ellipsoid as an

example of a granular system. Sand grains size generally ranges from 0.0625 mm

to 2 mm, while the glass marbles where 2 cm and 5 cm in diameter. The plastic

spheres were 7 cm across.

The physics of soft matter has been a field that has developed over the last few

decades, and characterizing the various properties and behaviour of these kind of

systems is still the focus of many researchers, with the challenges arising from the

complex ways in which the constituents components of these systems can interact,

often requiring a multidisciplinary approach.

Among soft condensed matter, there are also amorphous materials, and among

these materials there are amorphous solids, or disordered solids. As the name implies,

these kinds of materials do not posses any kind of long range order or structure, in con-

trast to crystalline solids, characterized by their periodic crystal structure[2, 3]. Due
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to their spatial heterogeneity, robust and coherent theoretical frameworks are scarce

compared to the “traditional” condensed matter, which leverages the periodicity of

crystalline structures to build and elegant and coherent theoretical description[3].

Amorphous materials can be at times composed by particles with a variety of

properties, such as aspect ratio, concavity, roughness, density, and particle size among

many other features. We will focus particularly on the size diversity of the particles

in a system, and to quantify this we will use polydispersity. For a given particle size

distribution P (r), with r being the particle’s radius, polydispersity is defined as:

δ =
√

⟨∆r2⟩/⟨r⟩ (1.1)

where ∆r = r − ⟨r⟩, and the moments of r (and ∆r) are given by ⟨rn⟩ =
∫
rnP (r)dr

(and ⟨∆rn⟩ =
∫
∆rnP (r)dr). Fig.1.2 shows a variety of polydisperse circle distribu-

tions.

Examples of highly polydisperse systems are abundant in both nature and in

industry, such as gravel, soil [4], sea ice [5], sand [6], and for industry, we have a wide

variety of gels, foams, emulsion and colloids [7–9]. Additional examples were also

mentioned above.

In summary, polydispersity plays an important role in the behaviour of various

colloidal, granular, and emulsion systems, with the higher polydispersity values re-

sulting in qualitatively different behaviour from more conventional monodisperse and

low bidisperse systems, which will be shown in this dissertation. These changes in be-

haviour means that models and ideas that work in systems with lower polydispersity

might not work to the same degree in systems with higher polydispersity. Consider-

ing that many natural and industrial systems have a high diversity of particle sizes,

achieving a better understanding of the effect of polydispersity on these systems is of

vital importance.
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(a) (b)

(c) (d)

Figure 1.2: Examples of polydisperse distributions of circles. Figs.(a) and (b) show a pair
of Gaussian size distributions with polydispersity δ = 0.5, and δ = 0.25, respectively, both
with average radius ⟨R⟩ = 1. Figs. (c) and (d) show two bidisperse distributions with size
ratio 1 : 2.6, and with polydispersity δ = 0.32 and δ = 0.5, respectively.
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Figure 1.3: Phase diagram of hard spheres as a function on the volume fraction, Φ. .
Solid arrows indicate equilibrium states, whereas dashed arrows are non-equilibrium states.
We note that for the glassy state to exist, some polydispersity is required in the system.
The bottom inset images are confocal micrographs. Republished with permission of IOP
Publishing, Ltd, from “The physics of the colloidal glass transition”, Gary L. Hunter and
Eric R. Weeks [11]; permission conveyed through Copyright Clearance Center,Inc..

1.1 Colloidal crystals and glasses

Among the examples given above for soft materials, both colloids and emulsions were

listed. To reiterate, these materials consist of a continuum liquid medium, with a

dispersed phase. For colloids, the dispersed phase is made of solid particles, for

emulsions this phase is made of another immiscible liquid. The sizes of these particles

usually range between 10nm to 10µm in radius, which makes these systems directly

observable using optical microscopy methods (see Fig.1.3), as well as other indirect

observation methods, like light scattering [10]. Due to their size colloidal particles

interact with each other and their environment through a variety of forces, repulsive

forces are often present in these systems (such as surface tensions, present in steric

stabilized colloidal suspensions) and attractive forces (such as depletion, which occurs

when particles many times smaller than the dispersed medium are present in high

enough concentration).

Due to these systems being large enough to be imaged directly, they have be-
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come an essential tool for modeling systems which are many times smaller[12–14]. Of

these systems we are particularly interested in the use of colloids and emulsions to

model both crystals and glasses. Modeling of glasses is of particular interest as the

continuous transition from viscous liquid to a ”solid” glass, has yet to be fully under-

stood [15, 16]. This glass transition is different from crystallization, which has a well

defined thermodynamic transition and the formation of a crystalline structure [15].

The first time colloidal suspensions were used to model crystals with a glass transition

was in the 1980s[12, 13]. In contrast to “regular” glasses, which undergo a transition

as a function of temperature, their colloidal counterpart undergo this transition as

a function of concentration. At a high enough concentration colloidal systems will

begin to self aggregate and form crystals, and with a polydispersity of at least 5%,

these systems can also undergo their own glass transition. This has made them great

modeling tools to study the glass transition, as well as the various properties of glasses

and crystal with defects.

Emulsions are often used for a similar purpose, these systems too have been use

to great success to model various glassy and crystalline systems, due to their size

allowing for direct imaging. Simultaneously these particles are still susceptible to

a variety of forces used to model different systems. Emulsion models can also be

assembled into a variety of configurations to probe the different properties of glassy

and crystal systems. One particular advantage of using emulsion droplets to model

particles arrays, is the control over the radii of these droplets that can be achieved [17–

20], allowing for excellent degree of control over the size distribution of the droplets

composing the model glass.

As mentioned before in this subsection, in order to achieve a glass transition in

these model systems a certain degree of polydispersity must be present. Extensive

research has been dedicated to analyzing the effect of polydispersity on the glass

transition, the changing properties of both crystals and glasses, and the extent the
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a) b)

d)

f)

h)

c)

e)

g)

Figure 1.4: Force needed to compress an array of droplets as the distance between the walls
decreases. We can see that the maximum force needed to deform the droplets decreases
the more glassy the array of droplet becomes. This behaviour will be further discussed in
Chapter 2.
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introduction of differently size particles can produce in perfectly ordered systems.

Figure 1.4 shows how the properties of a crystal/glass is affected by the amount of

defects and polydispersity of its constituent particles. As the system becomes more

glassy the maximum amount of force that needs to be exerted to compress the material

is lowered.

Among the many questions still present regarding the behaviour of these glassy

materials is their mechanical response to applied stress, particularly to an applied

compressive force. In Chapter 2 we use numerical methods to simulate an array

of colloidal particles, and characterize their response to compression under different

conditions, both for a crystalline aggregate as well as bidisperse and polydisperse

systems with a Gaussian distribution. The work presented on Chapter 2 has been

published in “Physical Review E”[21].

1.2 Amorphous flow: Shearing of soft glassy ma-

terials

The flow and dynamics of amorphous materials such as foams, colloidal glasses, or

granular systems display complex flow features. This behaviour is due to the spatial

heterogeneity in the system. A variety of common granular flow systems are shown in

Fig. 1.5. At low enough applied strain, the system will respond like an elastic solid,

undergoing minute elastic deformations, however once enough force is applied to the

system, the particles are made to flow in something that more closely resembles a

liquid. Due to the complexity of particles interactions a global model of granular

flow is still being developed, although various pictures of these dynamics have started

to emerge [22–26]. In these models, flows occurs through a succession of elastic

deformations and local irreversible plastic plastic deformations, which eventually lead

to a macroscopic rearrangement in the material [27–29].
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(a) (b)

(c) (d)

Figure 1.5: Examples of granular flow. Fig. 1.5(a) shows a landslide in Alaska after
an earthquake, photo by icefogger, republished under creative commons license, original
picture link(circletocircle.blog/2022/05/11/alaska-time/). Fig.(b) shows a stream of rocks
in New Zealand after a particularly heavy storm, picture by Donna Field. Figs.1.5(c) and
(d) show examples of granular flow in a Skittles factory (photo courtesy of Mars Wrigley)
and a water bottling facility respectively (Image capture from StrongPoint Automation on
youtube). Most granular flows find in both nature and industry correspond to this regime
of densely packed particles interacting through contact forces,
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Figure 1.6: Sketch of macroscopic response of amorphous materials to external load. Fail-
ure and steady flow correspond to brittle and ductile materials respectively. At a certain
maximum amount of stress the material yields and begins to deform. If the system begins
to flow the stress now fluctuates around at a steady state stress value.

As stress is applied, the material will begin to deform elastically. At this point, if

we stop applying stress, the material will go back to its initial configuration, respond-

ing like a Hookean solid. However, if we apply stress past a threshold the material

deform plastically and either begin to flow, if the material is ductile, or fail/break if

the material is brittle. In Fig.1.6 we show a sketch of what this curve can look like for

some materials. Once plastic deformations begin to occur locally, the release of stress

will propagate in certain directions, which might trigger further plastic deformations

close to the yielding point as stress is released through the system. Therefore local

stress relaxation can trigger cascading events that have long range effects. For these

systems therefore the local behaviour and rearrangement for the particles plays a ma-

jor role in the macroscopic behaviour of the material. An example of a propagation

stress releasing event in a brittle material is shown in Fig. 1.7. On the other hand if

the material is ductile this applied stress will result in a granular flow, where a flow
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a) b) c)

Figure 1.7: A brittle crystalline formation of droplets yielding under applied stress. Prior
to reaching the stress limit the array deforms elastically. Once the stress threshold is
reached the stress is released locally resulting in cascade of stress relaxation in the form of
a propagating fracture. This phenomenon will be further discussed in Chapter 2.

similar to what is observed in traditional liquid is observed. In this regime particles

interact with each other through friction and collisions. This liquid like behaviour

is well illustrated by Figs. 1.5. The examples in Fig.1.5(a) shows a stream of rocks

in New Zealand after a particularly heavy storm, and Fig.1.5(b) shows a landslide in

Alaska after an earthquake. In an industrial setting, Figs.1.5(c) and (d) show exam-

ples of granular flow in a Skittles factory and a water bottling facility respectively.

Most granular flows find in both nature and industry correspond to this regime of

densely packed particles interacting through contact forces, and which flow once a

stress threshold has been crossed.

The properties of deformation and flow in granular materials is, as stated earlier,

tightly related to the complex network of inter particle interactions, therefore the

properties of the particles which constitute the systems are highly relevant[30, 31].

When compared to more monodisperse systems, the behaviour of highly polydisperse

amorphous systems and their response to applied stress, have been shown to be
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qualitatively different for both brittle materials[20], and sheared granular systems[32].

In Chapter 3 we study the quasi 2D granular flow of polydisperse particles. We

investigate the effect of polydispersity on the plastic deformation of the amorphous

system, such as non-affine flow, and particle rearrangement.

1.3 Amorphous Flow: Hopper discharge and Clog-

ging

As mentioned previously in this chapter amorphous and granular materials are ubiq-

uitous in our daily lives, nature and industry. It therefore follows that the flow of

these systems takes up an equally important role[6, 33–35]. However due to the com-

plexity of inter particle interactions the dynamics of these systems are still not very

well understood[36], for example the flow of sand differs qualitatively from a flowing

fluid[36–38]. More specifically the flow of granular media through narrow openings

has great importance to various industrial fields, like the agricultural, culinary and

mining industries[9, 39–44]. See Figs. 1.8 for a variety of examples.

A particularly important difference from fluid flow is the clogging of a granular

system when the exit orifice is below a critical width for the opening, which, depending

on a variety of factors, occurs when the exit orifice is in the 3 − 6 granular particle

diameter range[42, 45]. The interruption of the flow is stopped, is due to the formation

of arches of particles, in two dimensions, or of domes, in 3D. To give an everyday

example to this behaviour, recall how often do we shake a salt holder to break up the

arches and pour the salt. Determining when a clog can occur is, as can be imagined,

incredibly useful not only to predict when the flow will stop, but the size of the exit

can also induce intermittent interruptions in the flow, and affect the mean flow rate

itself[42, 45, 46].

The mean flow rate is a function of the difference between the opening size to the
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Figure 1.8: Examples of clogging in variety of systems. Fig.(a) shows the outflow of non-
frictional spheres out of a 2D hopper. Fig.(b) shows sheep flow through a narrow gate, with
an obstacle in front of it. Republished with permission of Springer Nature under a Creative
Commons license, from Scientific Reports, “Clogging transition of many-particle systems
flowing through bottlenecks”, Iker Zuriguel et al. [45]. Finally Fig.(c) shows a traffic clog
in Indonesia, original photo by Fikir Yusuf.

critical size at which clogging occurs[39, 42]. We note that experiments suggest that

rather than there being a critical opening size, the probability of the hopper clogging

becomes exponentially small[47, 48]. There is a wide variety of factors that affect the

clogging process, some intrinsic to the hopper or particles themselves, such particle

shape and size[49–51], friction between the particles and the hopper[45], particle

softness[49, 52], among others[45]. On the other hand, the clogging probability and

flow properties are also affected by driving forces, like gravity, and by forces which

might lead to the break up of the arch or dome structures, like shaking[45, 49]. We are

particularly interested in the effect cohesive forces have on the clogging probability

and discharge of a 2D hopper system. Cohesive forces between particles are fairly

common in granular systems, for example small powders are subjected to cohesive

forces due to electrostatic charges and Van der Waals forces[53]. In larger particles

particles tend to clump together due the effect of liquid capillary bridges[54]. These

cohesive effects can greatly affect hopper flow and clogging[55, 56].
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(a)

(b)

Figure 1.9: Fig.(a): Clogging probability(P ) for systems of soft spheres, as a function of
hopper opening of particle diameter(w/d) for various ratio of particle softness and gravi-
tional strength. Republished with permission of American Physical Society, from ”Clogging
of soft particles in two-dimensional hoppers”, Xia Hong, Meghan Kohne, Mia Morrell, Hao-
ran Wang, and Eric R. Weeks, Phys. Rev. E 96, 062605 (2017)[52]. Fig(b) Clogging
probability JN (D) as a function of hopper opening to particle size ratio D, for hoppers
loaded with N particles. Republished with permission of the EPL Editorial Office, from
“Jamming and critical outlet size in the discharge of a two-dimensional silo”[47].
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In Chapter 4 we study the interplay between these cohesive forces, which in-

crease the clogging probability and gravity, the driving force that pushes the particles

through the hopper. We investigate this relation by varying cohesive forces, gravita-

tional forces and the size of the hopper exit, using simulations, as well as experimental

data provided by our collaborators.

1.4 Dissertation Outline

The rest of this dissertation will be organized in four Chapters. In these chapters we

explore how amorphous materials are affected by interparticle cohesive forces (Ch.2

and Ch.4), and how polydispersity affects the amorphous materials when an external

load is applied (Ch.2 and Ch.3).

In Chapter 2 we use simulations to study the mechanical response of droplets

rafts under compression, for mostly monodisperse crystal structures, as well as more

polydisperse glassy materials. We characterize the response of these materials, by

measuring the amount of plastic deformation events, and by measuring the force

needed to trigger such events for different material properties like polydispersity,

size, and aspect ratio. In Chapter 3 we carry out experiments to study the quasi

2D granular flow for highly polydisperse distributions of disks. We use a variety of

differently sized disks to build multiple disk distributions with different size ratio and

polydispersity. We then investigate the effect polydispersity has on the flow properties

and plastic deformations of the system, using the different disk distributions. In

Chapter 4 we study the amorphous flow of a quasi 2-d hopper, and how cohesive

forces affect the outflow of particles. We characterize this outflow by studying the

clogging probability as well as measuring the amount of particles remaining in a clog,

while varying the gravitational and cohesive forces, as well as the hopper width.

Finally in Chapter 5 we review the conclusions of our projects, possible future
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projects relating to the research presented, the impact this work will have.
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Chapter 2

Compression and fracture of

ordered and disordered droplet

rafts

The work presented in this chapter has been published in “PHYSICAL REVIEW

E” [21].

We simulate a two-dimensional array of droplets being compressed between two

walls. The droplets are adhesive due to an attractive depletion force. As one wall

moves toward the other, the droplet array is compressed and eventually induced

to rearrange. The rearrangement occurs via a fracture, where depletion bonds are

quickly broken between a subset of droplets. For monodisperse, hexagonally ordered

droplet arrays, this fracture is preceded by a maximum force exerted on the walls,

which drops rapidly after the fracture occurs. In small droplet arrays a fracture is

a single well-defined event, but for larger droplet arrays, competing fractures can be

observed. These are fractures nucleated nearly simultaneously in different locations.

Finally, we also study the compression of bidisperse droplet arrays. The addition of

a second droplet size further disrupts fracture events, showing differences between
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ideal crystalline arrays, crystalline arrays with a small number of defects, and fully

amorphous arrays. These results are in good agreement with previously published

experiments.

2.1 Introduction

As previously mentioned in Chapter 1 of this dissertation, foams, emulsions, and

colloids are often used as models for systems such as crystals and glasses [16, 57].

Foams are gas bubbles in a liquid, with the gas-liquid interfaces stabilized by sur-

factant molecules. Emulsions are similar in that they are droplets of one liquid in

a second immiscible liquid, with surfactants stabilizing the liquid-liquid interfaces.

Colloids are composed of solid particles in a liquid. The first published work using

bubbles to model crystals was done by Bragg and Nye [58] and Bragg and Lomer

[59]. These soft matter systems can be used to study fundamental questions about

order to disorder transitions [20, 60–67], jamming [63, 67–71], and crystal nucleation

and melting [12, 72–74]. More recently foams have also been used to study biological

systems [75–78].

A key feature of these systems is their response to external stress. The mechanical

response of these dispersions can be tuned by varying the composition [69, 79–82]. It

is also well known that materials become harder to deform as the volume fraction of

the particulate phase is increased (that is, the colloidal particles, droplets, or bubbles,

depending on the material) [83, 84]. Once a volume fraction threshold is reached, the

system responds like a soft solid [80, 83, 85, 86]. However, if enough force is applied,

the system will plastically deform and flow. The relation between macroscopic flow

and local plastic events has been the focus of much work [80, 82, 87–89].

One concern using soft materials as models for crystals is that in contrast to atoms

which are all identical, the components of a soft material are typically somewhat poly-
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disperse. Nonetheless, one can use low polydispersity (nominally “monodisperse”)

soft materials to model crystals [19, 58]. Such model systems allow one to investigate

the effect of local plastic deformations and disorder [20, 90], which are connected to

the bulk properties of the crystal, such as yield stress [19, 20, 61, 63].

The mechanical properties of a glass, like crystals, is heavily dependent on its

microscopic structure, and this has been studied in a variety of soft materials serving

as model glasses [57, 60, 62, 64, 67, 74, 90–95]. Prior studies examined how the

disordered structure of a glass affects a sample’s mechanical properties [61, 96–98].

It is of interest to contrast crystals and glasses; for example numerical studies have

shown that adding even a small amount of defects into a crystal drastically changes

the mechanical properties of the resulting system [57, 60, 62, 64, 67, 90, 93–95].

Experimental work by Ono-dit-Biot et al. examined the ability of quasi-two-

dimensional crystalline and noncrystalline samples to fracture under compression

[19, 20]. The experiments consisted of a monolayer of oil droplets suspended in an

aqueous solution. The droplets packed into a raft held together by depletion forces.

The raft was then horizontally compressed between two parallel walls, causing the

droplets to rearrange. Nominally monodisperse rafts formed hexagonal close packed

configurations. During the compression process, the hexagonal packing would un-

dergo coordinated fracture events. Each such fracture allowed the crystal to reduce

the number of rows by one, fitting into the narrower space imposed by the confining

walls, while maintaining hexagonal order after the fracture event concluded. How-

ever, when smaller droplets, which act as defects, were substituted into the droplet

array, the coordinated fracture events were replaced by a series of smaller intermit-

tent fractures. With a sufficiently large number of defects, the samples behaved much

more like a glass than like a disordered crystal.

The goal of this chapter is to computationally replicate and extend the experi-

mental results of Ono-dit-Biot et al. [19, 20]. In particular, we expand on the prior
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results by simulating a larger number of droplets with a greater variety of starting

configurations, allowing us to understand system size effects that were untested in

the experiments. Furthermore, we investigate the influence of experimental imperfec-

tions: namely, the role of imperfectly parallel compressing walls, and understanding

the role of polydispersity of particle sizes. We also present analytic calculations which

highlight the importance of attractive interactions between droplets to the observed

results.

Our simulations include the three key forces present in the experimental work.

The first of these is a repulsive force between the droplets (or the droplets and the

walls), that is due to surface tension. Second, an attractive force due to depletion

from micelles present in the experiments and modelled here with the Asakura-Oosawa

model [99]. Third, a dissipative viscous force acting on moving droplets, although

this is minimal given the small velocities considered. Our simulations reproduce the

experimental observations, namely the fracture events and their dependence on the

particle size distribution. We also investigate a new phenomenon where the crystal

fractures in multiple locations nearly simultaneously, disrupting the packing post-

fracture, which occurs more frequently in larger droplet arrays. Our work suggests

that this phenomenon was likely suppressed in the experiments due to a slight tilt of

the relative orientations of the two walls, taking them out of parallel by ∼ 0.2◦−1.0◦.

2.2 Computational methods

2.2.1 Simulation forces

Our goal is to have a simulation which captures the key features of the prior work

of Ono-dit-biot et al. [19, 20]. We use the Durian “bubble model” [87] to simulate

the droplets’ motions as the array is compressed. In particular, we use the modified

version presented by Tewari et al. in Ref. [100] which allows droplets to have differ-
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ent numbers of nearest neighbors; our code is specifically adapted from that used in

Hong et al. [52, 101]. The athermal bubble model simulates the interactions between

droplets in a viscous medium. The model replaces the details of each droplet’s defor-

mation with a simple pairwise repulsive interaction. The model assumes negligible

inertial effects (appropriate for low-mass bubbles or slow-moving emulsion droplets),

and viscous interactions. For our work we add the effect of attractive depletion in-

teractions between adjacent particles as well as between particles and the walls.

The first step in our simulation is to generate the droplets. For nominally monodis-

perse simulations, we assign droplet radii according to a normal distribution with

mean ⟨R⟩ = 1 and width δ = 1.25 × 10−3. This value is small enough to represent

a single droplet size, while still allowing for some randomness that is inherent in the

experiment. For a bidisperse distribution, we generate droplets with radii Rlarge = 1

and Rsmall = 0.765, the same radius ratio as in the experimental work [20]. In all

cases, the droplets are initially arranged in a hexagonal closed packed lattice, with p

rows and q columns. Rows are defined as a set of q droplets aligned parallel to the

walls. An example is shown in Fig. 2.1 with p = 4 rows by q = 5 columns.

Each droplet is modeled as a sphere, and the simulation starts by calculating all

forces acting on each droplet. The first is an elastic repulsive force between droplets.

If droplets i and j overlap, the repulsive force is:

F⃗ contact
ij = f0

[
1

|r⃗i − r⃗j|
− 1

|Ri +Rj|

]
r⃗ij, (2.1)

where Ri is the droplet radius, their positions are r⃗i, and the difference vector is

r⃗ij = r⃗i − r⃗j. An overlap occurs when a neighbor j is close enough to the droplet i

such that |r⃗ij| < Ri + Rj. Here, f0 acts as a spring constant, the origin of which is

the surface tension induced Laplace pressure. In particular, Eqn. 2.1 avoids the need

to simulate the actual deformation of the droplets by replacing the deformation with
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Figure 2.1: Snapshots for a twenty droplet simulation. In this simulation the droplet is
arranged in a p = 4 by q = 5 configuration.

this effective force which is valid at low deformations, the regime of interest. This

linear (Hookean) response was observed in the experiments [19].

The second interaction force between neighboring droplets is a viscous force, if

the two droplets are moving at different velocities:

F⃗ viscous
ij = b(v⃗i − v⃗j) (2.2)

with b being the viscous coefficient, and v⃗i the velocity of a given particle. This force

acts on each droplet in a direction that tries to bring their velocities into agreement:

for example, if droplet i is motionless then the viscous force from droplet j acting on

i is in the direction of vj. Additionally droplets are affected by the viscous drag of

the surrounding medium, and is calculated as:

F⃗ drag
i = −bv⃗i (2.3)
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where b = 1 as in Eqn 2.2. This force and acts in opposition to the displacement of i

bubble.

A final important force in the experiment is the depletion force: an attractive

force acting between droplets that are sufficiently close. In the experiment, this is

due to small surfactant micelles. In the simulation this is modeled as an effective

force between neighboring droplets, which in this case are droplets with distance

rij < Ri + Rj + 2as. Here as is the radius of the depletant which thus sets the

range of the attractive interaction. The depletion forces are calculated using the

Asakura-Oosawa model [99]. In Figs. 2.2 we show a sketch of how depletion force

acts, Fig. 2.2.(a), as well as the excluded and overlapping volumes, Fig. 2.2(b).

The first step needed to calculate the depletion interactions is to calculate the

overlapping volume between a pair of spheres with a radius R′
i ≡ Ri + as [102]:

Voverlap(rij, R
′
i, R

′
j) =

π

12rij

(
R′

i +R′
j − rij

)2×(
r2ij + 2rij

(
R′

i +R′
j

)
− 3(R′

i
2
+R′

j
2
) + 6R′

iR
′
j

)
.

(2.4)

Using the overlap volume we can obtain the associated Helmholtz free energy,

which we then differentiate to get the depletion force:

F⃗ dep
ij =

ϕc

8a3s

∂Voverlap(rij, R
′
i, R

′
j)

∂rij
r̂ij, (2.5)

where the direction of the force is attractive between the two particles. In this formula,

ϕc is a constant related to the temperature and volume fraction of the depletant. In

the simulation we set as =
⟨R⟩
20

= 1/20. The formula for ∂Voverlap/∂rij is:

∂Voverlap(rij, R
′
i, R

′
j)

∂rij
=

π

4

r2ij − 2(R′
i
2
+R′

j
2
) +

(
R′

i
2 −R′

j
2

rij

)2
 .

(2.6)
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(a)

Excluded Volume

Overlap Volume
(b)

Figure 2.2: Illustrations of how the depletants act when in high enough concentration. In
(a) we see how the resulting pressure of depletants pushed together droplets which surfaces
are within one depletant diameter away from each other. In (b) we show the excluded
volumes in which depletants don’t fit in. Overlapping volumes occur when two excluded
volumes overlap, this results in a net gain of available volume for the depletants, which
increases the net entropy of the system, lowering the Helmholtz free energy, resulting in an
attractive force between the droplets.
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In addition to calculating the droplet-droplet interactions, we also need to cal-

culate the droplet-wall interactions for droplets sufficiently close to the wall. The

repulsive force from the wall is given by

F⃗wall,repel
i = f0⟨R⟩

(
r−1
wall,i −R−1

i

)
n̂wall, (2.7)

where rwall,i is the distance from the droplet center to the wall. Note this force diverges

as rwall → 0, preventing any droplets from passing through the wall. In particular

this form differs from Eqn. 2.1 by using the unit normal vector n̂wall rather than r⃗wall,

which is what leads to the divergence. The magnitude of the attractive depletion

force between a droplet and the wall is given by:

Fwall,dep
i =

πϕc

8a3s
(Ri + 2as − rwall,i)(Ri + rwall) (2.8)

for every droplet with rwall,i < Ri + 2as. We will summarize these two terms into:

Fwall
i = Fwall,repel

i + Fwall,dep
i ,

noting that the two components point in opposite directions (and thus Fwall
i can be

zero if these two components are in balance).

The Durian Bubble Model is originally for massless bubbles [87], and in our sit-

uation we treat droplets in a low Reynolds number limit for which inertial effects

are negligible. Accordingly, the net force is always zero; the velocity of each particle

is always such that the velocity-dependent viscous forces balance the other forces.

Thus, we combine Eqns. 2.1, 2.2, and 2.5 and solve for the velocity:

v⃗i =
1

Ni + 1
⟨v⃗j⟩+

1

b(Ni + 1)

[∑
j

(
F contact
ij − F dep

ij

)
r̂ij + Fwall

i n̂wall

]
, (2.9)
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where Ni are the total number of neighbors for particle i. We use fourth order Runge-

Kutta to solve this differential equation for the velocities at each time step.

2.2.2 Model parameters

The model sketched above has many parameters. In this section we discuss how these

parameters are set based on comparison with the prior experimental work (Refs. [19,

20]) and on computational convenience. We start by fixing our simulation parameters

as b = 1, ⟨R⟩ = 1, vwall = 10−4, ϕc = 10−4, f0 = 10, and as = 0.05. Using several

nondimensional ratios we can make various comparisons to the experiment.

First, the range of the depletion force is given by the ratio of the size of the

micelles and the size of the droplets. In the experiments the mean droplet radius

⟨R⟩exp ≈ 20 µm, and depletion micelles which have size aexps ≈ 5 nm, the experimental

range is αexp
1 ≈ 2.5× 10−4. In the simulations the range of the depletion interaction

is set to:

αsim
1 =

as
⟨R⟩

= 0.05. (2.10)

Here αsim
1 is larger than αexp

1 , although still much less than 1. This choice avoids

numerical instabilities which would occur if the depletion force was too short range.

Second, we need to understand the relative importance of the depletion and viscous

forces. In the experiment, this ratio of forces is

αexp
2 =

vwallη

W
≈ 10−5,

where the viscosity η ≈ 1 × 10−3 Pa·s, the depletion energy per unit area between

two droplets W ≈ 1× 10−6J/m2, and the speed of the wall vwall ≈ 3× 10−7m/s [19].

In the simulation, the same ratio is

αsim
2 =

bvwallas
ϕc

= 0.05. (2.11)



28

In both the simulation and in the original experiments, the depletion force is stronger.

That being said, in the simulations, the effect of viscosity is more significant than in

the experiment. This choice is to keep the simulation computational time reasonable;

reducing the viscosity coefficient b would require a smaller integration time step.

Finally we compare the forces of repulsion and depletion in the experiment:

αexp
3 =

k

W
∼ 104,

where k ≈ 10−3N/m is the spring constant associated with the oil droplets’ surface

tension [84, 103]. In our simulations we have:

αsim
3 =

f0as
ϕc

= 0.5× 104.

These are the same order of magnitude; the factor of 0.5 difference means that the

simulated droplets are slightly softer than the experimental droplets. Adjusting the

ratio in the simulation would again increase the computational costs, so we judge

our parameter choices to be a reasonable compromise between computational costs

and adequately capturing the experimental limits (short range attractive forces, small

viscous forces compared to depletion, large repulsive forces compared to depletion).

2.2.3 Simulation timescales

We need to choose the simulation time step carefully to allow for the correct integra-

tion of all interactions. As shown in Eqns. 2.1, 2.2, and 2.5, the magnitude of the

different forces are set by the constants f0, ϕc, and b for repulsive, depletion, and vis-

cous forces respectively. From these constants, together with the speed of the walls,

vwall, average droplet radii, ⟨R⟩ and the depletant radius, as, we can define three

different time scales: τ1 = ⟨R⟩b
f0

= 10−1, τ2 = ba2s/ϕc = 25, and τ3 = ⟨R⟩/vwall = 104.

τ1 is the time scale for two overlapping droplets to push apart in the absence of the
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depletion force, and is the fastest time scale. τ2 is the time scale for two overlapping

droplets to pull together due to the depletion force, which is slower than τ1 because

as noted above, the depletion force is weaker than the repulsive force. Finally, τ3 is

the time scale for the walls to move a distance ⟨R⟩. Given these results, we set the

simulation time step to be ∆t = τ1 = 0.1. We have checked that simulations run with

smaller time steps give the same results as those run with ∆t = 0.1. The implication

of τ1 ≪ τ3 is that during rearrangements, the walls will move a negligible distance.

2.2.4 Simulation goals

Given that the simulation parameters are chosen to match the experiment to a reason-

able extent, it is worth stating what we wish to replicate. The experiment measures

forces exerted on the moving walls, and relate these forces to the effective spring

constant of two interacting droplets due to the depletion force [19]. Our wall forces

likewise must relate to the effective spring constant in our simulation, so we consider

this in Secs. 2.3 and 2.4. This is not a replication per se so much as allowing us

to illuminate the importance of both compressive and tensile forces acting between

droplets. That being said, one important experimental observation to replicate is the

relationship between the wall forces, array size, and effective spring constant acting

between a pair of droplets, which will be examined in Sec. 2.4-A.

One experimental observation to replicate is how the forces on the walls are

changed when the droplet array has a mixture of particle sizes. When the exper-

imental droplet array consisted of a nearly 50/50 mixture of large and small droplets,

the array rearranged in a nearly continuous sequence of small fracture events; how-

ever, this observation was limited to a 23-droplet array [20]. We wish to replicate the

observations and extend them to larger array sizes.

Finally, moving beyond replication, we will examine how the fractures depend on

the system size, droplet polydispersity, and wall tilt angles: factors that are easier to



30

vary smoothly in the simulation as compared to experiment.

2.3 Analytical results

We wish to understand the force required to compress the droplet array. We start

by considering the effective spring constant between two droplets. We then consider

compressing three droplets. Due to the attractive depletion force, compressing three

droplets requires one effective spring to be stretched while the other two are com-

pressed. In this section we take Ri = Rj = R = 1.

2.3.1 Effective spring constant: two droplets

For two droplets in contact the balance of repulsive and attractive forces in equilibrium

lead to a harmonic interaction with an effective spring constant. Balancing Eqns. 2.1

and 2.5, the equilibrium distance between two particles can be approximated as:

deq = 2R− 2as

(
L2

2R2
− 1

)−1

. (2.12)

using:

L2 =
8f0a

3

πϕc

(2.13)

We can use two of the nondimensional ratios analyzed in Sec. 2.2.2, the range of the

depletion forces α1 and the ratio of repulsion to depletion forces α3, to write

L2

R2
=

8

π
α2
1α3 =

100

π
= 31.8. (2.14)
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By substitution of Eqn. 2.14 into Eqn. 2.12, we see that the term multiplying as has

a small value for our simulations so we will define:

ϵ =

(
L2

2R2
− 1

)−1

≈ 0.0671. (2.15)

We can then finally write the equilibrium position as:

deq = 2(R− asϵ) ≈ 2(1− 0.00336) ≈ 1.993. (2.16)

As expected the equilibrium position would be at 2R if depletion wasn’t present. With

depletion, the equilibrium position is adjusted by a small fraction of the depletant

radius as. With the parameters used in the simulations the particles overlap but just

slightly. (In the experiment, this implies that the droplets would be slightly deformed

due to the depletion force. Given that αexp
3 ∼ 104, the experimental deformation is

likely unobservable.)

At this point we can calculate the effective spring constant response for monodis-

perse droplet-droplet interactions due the balance of depletion and repulsion. Using

both Eqn. 2.1 and 2.5, and doing a small displacement from equilibrium ∆rij, results

in the force increasing by:

∆F =

(
f0
2R

− Rπϕc

8a3s

)
∆rij = k1∆rij, (2.17)

which leads to

k1 ≈ 4.69 (2.18)

as the effective spring constant for droplet-droplet interactions. The depletion force

slightly reduces the spring constant from that due purely to repulsion, which is

f0/(2R) = 5.

We can similarly calculate the energy associated with breaking a depletion bond.
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In this case we must calculate the work needed to separate two droplets from their

equilibrium separation, deq, up to the the point where depletion turns off, doff =

Ri +Rj + 2as.

Edepletion = − ϕc

8a3s

∫ doff

deq

∂Voverlap

∂rij
drij =

ϕc

8a3s
Voverlap|deqdoff

The minus sign is due to the fact that the motion to separate the droplets opposes

the depletion force. Since there is no overlapping volume at doff = Ri +Rj + 2as, we

have only the equilibrium volume:

Edepletion =
ϕc

8a3s
Voverlap(deq). (2.19)

However since the equilibrium distance is less than the radius of the droplets, we

must also take into account the repulsive force’s work, which assists in separating the

droplets:

Wrep = f0

∫ Ri+Rj

deq

(
1− rij

Ri +Rj

)
drij, (2.20)

and so the corrected term for the energy needed to break a bond between two droplets

is the difference between Eqns. 2.19 and 2.20:

E1 =
ϕc

8a3s
Voverlap(deq)−

f0(Ri +Rj − deq)
2

2(Ri +Rj)
. (2.21)

Using Eqns. 2.12 and 2.14, we can simplify this further to:

E1 =
ϕc

8a3s
Voverlap(deq)−

2f0a
2
sϵ

2

R
. (2.22)

We can now replace all the values by the corresponding constants, and for deq and L2

from Eqns. 2.12 and 2.14, respectively, which gives us the energy stored per bond in
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the monodisperse case:

E1 = 0.00173. (2.23)

We can repeat a similar calculation for the effective spring constants and bond

energy present at the walls, and obtain:

kwall
eff = 9.57 = 2.04k1, (2.24)

and

Ewall
1 = 0.00340 = 1.965E1. (2.25)

2.3.2 Equivalent spring model for three droplets

We next consider the compression of three monodisperse droplets in an equilateral

triangle arrangement, shown schematically in Fig. 2.3(a). In this case we start with

two rows of droplets and the compression causes a rearrangement to one row. As the

top wall moves towards the bottom wall, the droplet cluster attaches to the two walls

due to depletion forces. Initially the bonds to the walls are all under tension due

to the depletion force, pulling on the two walls. As the distance between the walls

continues to decrease, the droplets go through equilibrium (panel b) with the spacing

between each pair of droplets being deq (Eqn. 2.12). As the compression proceeds, the

force continues to rise as the distance between the walls decreases (panel c). During

this process, the diagonal bonds compress while the horizontal bond between the

two droplets on the bottom wall is under tension. Eventually this horizontal bond

breaks, which allows the diagonal compressed bonds to relax (panel d); from this

point onward the droplets will continue to move with only the viscosity resisting their

motion until they are reduced to a single row of droplets (not shown). In Fig. 2.3(e)

we plot the force on the walls as a function of the distance. Time is advancing from

right to left. The linear rise of the force from position (a) to (c) indicates that the
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a)

b)

c)

d)

e)

a)

b)c)d)

Figure 2.3: (a-d): Consecutive snapshots of the row reduction for three droplets: note
that time increases from right to left, to match panel (e). Blue bonds are under tension,
whereas red indicates compression. In panel (a), as the walls move together, the three
droplets attach to the walls due to depletion and thus exert tension on the walls, resulting
in the negative force peak seen in panel (e) at distance (2 +

√
3)R ≈ 3.73. As the top wall

continues to move closer to the bottom wall, the droplets go through equilibrium [panel
(b)], and eventually the walls begin compressing the droplets [panel (c)], leading to rise in
the force on the walls. At the peak of the force, the horizontal bond between the two left
particles is under tension. When this bond between the two bottom droplets breaks, the
force rapidly drops [panel (d)].
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the array is compressed elastically, until the vertical bond breaks at (c) and the row

reduction occurs.

To explain the elastic rise in force [position (a) to (c) in Fig. 2.3(e)], we note

that each droplet bond has spring constant k1, which can be used to calculate the

equivalent spring constant for the triangular array. For these three droplets, the

compression force between the two left droplets and the left wall is half that of the

compression force of the single droplet on the right and the adjacent wall. To find

a relationship between the force F exerted by the walls on the droplet pack and the

horizontal displacement of the walls from the equilibrium position (when F = 0),

we start by considering the situation sketched in Fig. 2.4(a): the left two droplets

only move in the y direction, with the top droplet moving up by ∆y and the bottom

moving down by ∆y; and the right droplet moves left by ∆x under the action of

the force F . (To be clear, this is in the reference frame where the left droplets do

not move horizontally. In practice, all three droplets move horizontally under the

influence of the walls, with the net horizontal displacement between the right droplet

and the left droplets as ∆x.)

A free body diagram for the top droplet is shown in Fig. 2.4(b). For the moment we

will consider the vertical bond between the two left droplets to have spring constant

k2 in order to illustrate the role of tension, but since the spring constant is the same

(for small displacements) whether under tension or compression, we will eventually

set k2 = k1. The distance between the top droplet and right droplet is initially deq.

When the droplets begin to move, the change in this distance is

∆r ≈ ∆x cos θ −∆y sin θ. (2.26)

This expression is valid in the limit where ∆x,∆y ≪ req, and changes to the angle θ

due to droplet movement can be ignored as they are a second order correction. This
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formula for ∆r has been chosen with signs so that ∆r > 0 when the droplets are

being compressed, consistent with the direction of the force indicated in Fig. 2.4(b).

Balancing the two forces in the vertical direction gives

∆y =
k1 sin θ cos θ

k1 sin
2 θ + 2k2

∆x, (2.27)

which relates the horizontal and vertical displacements.

If we take the extreme case where k2 → ∞, Eqn. 2.27 gives us ∆y → 0, as no

matter how much we push, the two vertical droplets are stuck together at a fixed

separation. On the other hand if there is no adhesion force, then k2 = 0 and ∆y =

cot θ∆x, which corresponds to the droplets displacing as needed to accommodate the

right droplet moving leftwards (and thus keeping ∆r = 0). Finally for the case we

consider in the simulations, k1 = k2 and θ = 30◦, giving:

∆y =

√
3

9
∆x ≡ C∆x. (2.28)

This is indeed the relation between the displacements that we observe in the three

droplet simulation.

Substitution of Eqn. 2.28 into Eqn. 2.26 for ∆r, and balancing the horizontal

forces in Fig. 2.4(b), leads to

F = 2k1 cos θ(cos θ − C sin θ)∆x. (2.29)

This expression relates the wall force F to the compression ∆x of the three droplets;

the term in front of ∆x is an effective spring constant equal to (4/3)k1. Note that

the term with C, which allows for the vertical motion of the two left side droplets,

reduces the effective spring constant slightly (as the ratio of the second term to the

first is C tan θ = 1/9). Again to understand the role of the tension force between
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Figure 2.4: (a) Sketch of small displacements of three droplets. (b) Free body diagram of
forces acting on the top left droplet. F/2 is from the wall, with the other F/2 contribution
acting on the bottom droplet. The vertical spring is stretched by 2∆y, so accordingly the
force indicated as 2k2∆y is a tension force from the bottom droplet. The k1∆r force is a
compression force from the right side droplet. As the droplets are monodisperse θ = 30◦.
Changes in θ for small ∆x and ∆y can be ignored to first order.
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the two vertically oriented droplets, we consider the limits for C. If k2 → ∞ then

C = 0 and the effective spring constant is equal to (3/2)k1. Intriguingly, this is the

result one gets for two springs in parallel, in series with one spring, which apart from

the diagonal connections is what we see in Fig. 2.4(a). In contrast, if k2 = 0, then

C = cot θ and the term in parentheses would be zero, thus resulting in F = 0. Thus

the tension bond plays an important role in generating the wall force.

In addition to the spring-like interaction of the three compressed droplets, there

are also spring-like interactions with the walls. At the left side wall, because there

are two droplets, the effective wall interaction behaves with spring constant of 2kwall;

on the right side we have simply kwall. These three springs act in series, so thus the

overall effective spring constant the system has is

1

keq
=

1

2kwall
+

1

kwall
+

1

2k1(cos2 θ − C sin θ cos θ)
(2.30)

which simplifies to 0.673k1 = 3.16 using Eqns. 2.18 and 2.24. This is the value

we measure from the slope of the elastic regime in Fig. 2.3(e), matching to the three

significant figures we have been using. The close agreement is perhaps a bit surprising,

given that the analytic calculation has been assuming small displacements whereas the

simulation uses the full form of the depletion interaction. The agreement also confirms

that our wall speed is slow enough that viscous forces are not adding significantly to

our measured wall force.

We can also relate the energy required to break one depletion bond (Eqn. 2.22)

to the force peak Fp. Ignoring energy stored in compressive interactions, the elastic

energy keq∆x2/2 gets converted into breaking ∆n bonds, so we have

E1∆n =
1

2
keq∆x2 =

F 2
max

2keq
. (2.31)

From the data in Fig. 2.3, we have ∆n = 1, keq = 3.16, and Fmax = 0.110 leading to
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E1 = 0.00191 which is 10% larger than the prediction of Eqn. 2.22. The discrepancy

is precisely because of the extra energy stored in the compressed droplets. The extra

energy gets converted into droplet motion once the bonds under tension are broken.

2.4 Computational results for large droplet arrays

2.4.1 Equivalent spring model for nominally monodisperse

crystals

We will next consider the general case of a nominally monodisperse rectangular array

of droplets with p rows and q columns. We will consider the specific example of a 7×7

array but also, where relevant, discuss results from simulations with other numbers of

droplets. Figure 2.5 shows this 7× 7 droplet array undergoing a row reduction from

p = 7 to p = 6 rows. A video of the compression process for this particular simulation

is available in the Supplemental Materials Movie S1 of the paper this Chapter is

based on[21]. All simulations are initialized by placing the droplets in a perfectly

ordered array; one such initial state is shown in Fig. 2.5(a), which corresponds to

the system before a fracture. The red lines indicate compression forces and the blue

lines indicate tension forces. The tension is caused by the depletion forces between

droplets along the vertical direction (parallel to the walls), therefore separating the

droplets apart, pulling against the depletion force which holds the crystal together.

In Fig. 2.5(b) the global fracture has broken the crystals into four distinct pieces.

The forces decrease in magnitude, indicated by the light pink and light blue lines,

showing the compression and tension in the crystal has been relieved during the

fracture. Each piece moves as an essentially solid assembly; the relative position of

the droplets within this assembly does not matter, and droplets at the boundaries

move similarly to those in the middle. Finally in Fig. 2.5(c) a new crystal with p = 6

rows forms, with tension pulling the droplets back into a hexagonal configuration.
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a) b) c)

Figure 2.5: A 7 × 7 droplet array in its initial configuration undergoing a row reduction.
In (a) we can see that the array is being compressed between the walls, as evidenced by the
red compression bonds. The blue tension bonds run parallel to the walls, with the depletion
force preventing the crystal from spreading along the direction of the walls. In (b) a global
fracture has occurred, splitting the crystal into four separate pieces and relaxing the forces;
many droplets are close to their equilibrium separation distance. In (c) the crystal settles
into a 6× 8 hexagonal-close-packed configuration and the depletion forces pull the droplets
and walls closer together. The extra droplet is in the second column. Movie S1 in the
Supplemental Material of the paper this chapter is based on[21], depicts the compression
process for the array shown in this figure.

In this case the walls experience a tension force from the attractive depletion bonds

which are not yet at their equilibrium position.

Clearly during the compression process the force exerted by the droplet packing on

the walls varies in both magnitude and direction. In Fig. 2.6 we plot the force exerted

on the left wall as the crystal is compressed and undergoes row reduction. Note that

time increases from right to left, as the horizontal axis is the distance between the

walls which decreases with time. We wish to understand the features of this graph,

and will start with the easiest: during the compression force minima (F < 0) occur.

These correspond to the droplets nestling into a new hexagonal arrangement, being

pulled in together by depletion forces, and pulling on the wall as the droplets settle

into this more compact arrangement. An example of this corresponds to Fig. 2.5(c)
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Figure 2.6: Force on the left wall as a function of the distance between the walls for a 7×7
monodisperse droplet array. The distance starts large and decreases, so time increases from
right to left. Each successive peak is taller than the last, due to the increased amount of
bonds that need to be broken. The blue and red slope are used to obtain keq, as in seen in
the inset.

where all the bonds perpendicular to the wall are under tension: the more compact

configuration exerts this tension on the walls due to the attractive depletion force.

We next turn to the question discussed previously for two and three droplets: what

is the effective spring constant of this droplet array? The inset in Fig. 2.6 shows the

increase of the force from zero as a function of the compression from the equilibrium

position for the first row reduction (red) and the last (blue). The dashed lines in the

inset show the linear fit used to obtain the keq for that row transition. We can see that

once the walls begin compressing the crystal the force rises monotonically, with the

crystal responding elastically until finally a catastrophic fracture event occurs. This

is due to the tension forces being sufficient to break the depletion bonds between the

droplets along the fracture. At large compression (blue data points) the force is less

than expected, as when the array is down to two layers, being compressed into one
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layer, the bonds at the ends of the array break first and relieve some of the wall force

while the bonds in the middle are still intact. That is, the fracture does not occur

everywhere simultaneously.

The effective spring constant is larger when the droplet array has fewer rows and

more columns. This can be understood by a generalization of the spring model to

bigger arrays. We have a rectangular array of p rows (parallel to the walls) and q

columns; the equivalent spring constant is therefore that of a matrix of p springs

in series and q springs in parallel. The interactions with the two walls, with spring

constant kwall ≈ 2k1, has the effect of adding an additional row. This leads to the fol-

lowing equation that relates the equivalent spring constant keq to the spring constant

of a single droplet k1:

keq =
q

p+ 1
k1 (2.32)

In general Eqn. 2.32 is a simplification as it ignores the effect of the springs under

tension, as described for three droplets in Sec. 2.3.2. Nonetheless this is a useful

approximation. For the red slope in Fig. 2.6 we get k1 = 5.27, and for the blue slope

we get k1 = 7.65. The higher k1 for the blue data is because at this point the droplet

array is quite wide and to compress the array requires nontrivial motions at the edges

of the array as will be discussed below. These large edge motions lead to viscous

forces which increase keq and thus the measured k1. These measured values for k1

are about 12-15% larger than the true value of k1, illustrating the enhanced elasticity

due to the tension bonds.

For each row reduction we perform a linear regression on the force as a function

of compression distance and obtain the corresponding value of the equivalent spring

∆F = keq∆x. The graph of keq is shown in Fig. 2.7 and is linear as a function of

q/(p + 1) as predicted by Eq. 2.32. As the crystal is compressed q/(p + 1) grows

and therefore keq grows as we have a larger number of springs arranged in parallel
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Figure 2.7: Linear fit for the compression of the equivalent spring constants, as a function
of the aspect ratio of the array q/(p + 1) for 49 droplet array. Using Eqn. 2.32 and the
linear fit gives us the spring constant for a single droplet, k1 = 7.08± 0.6.
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and fewer in series. The linear fit of this graph gives k1 = 7.08 ± 0.5, which is

higher than our theoretical k1 = 4.69 (Eq. 2.18). This procedure was repeated for

different runs with the same crystal configuration (thus different realizations of our

slight polydispersity), as well as for arrays containing 20 to 400 particles, obtaining a

mean value of k1 ≈ 6.1. As with the individual measurement of keq discussed above,

the likely cause of the higher k1 is due to the viscous forces acting on the larger

droplet array, as well as the breakdown of the approximations used to calculate k1.

To understand how the viscous forces affect our system, consider a row reduction

transitioning from p to p − 1 rows, for example as shown in Fig. 2.5 with p = 7

initially. The number of columns q is a function of the total number of droplets N

and p, and thus increases from q = N/p to q′ = N/(p − 1). We will continue by

analysing the vertical displacement, parallel to the rows, of one of the droplets at the

edge of the configuration – that is, at the top or bottom of a row. Before the row

reduction the rows of the array have length 2Rq, and 2Rq′ afterwards. Taking the

center of the array to be our origin, the displacement of an edge droplet during this

row reduction is:

dedge =
N

p− 1

2R

2
− N

p

2R

2
(2.33)

where we have divided by two as the array expands symmetrically around the origin.

The time needed for this transition to occur is the time needed for the walls to move

the distance of one row, t =
√
3R/vwall. Dividing Eqn. 2.33 by t we obtain:

vedge =
vwall√

3

(
N

p(p− 1)

)
. (2.34)

Based on Eqn. 2.34 we can see that the speed of an edge droplet depends on the size

of the array, as well as which transition it is. Replacing Eqn. 2.34 into Eqn. 2.11 for

αsim
2 we have:

αedge
2 =

1√
3

(
N

p(p− 1)

)
αsim
2 . (2.35)
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For the first transition in Fig. 2.5, we have N = 49, p = 7 and thus αedge
2 =

αsim
2 49/(42

√
3) ≈ 2αsim

2 . For the last row reduction starting with p = 2, this be-

comes αedge
2 = αsim

2 49/(2
√
3) ≈ 14αsim

2 ≈ 0.7. This shows that during the last row

reduction, for the edge droplets the viscous forces are now comparable to the depletion

forces, even for an array of modest size with N = 49.

We verified this computationally using N = 49 and using half and double our

usual value of vwall. As expected, the simulations running at double the wall speed

had more significant viscous effects for the last row reductions, while the simulations

running at half the wall speed had less noticeable viscous effects.

The next feature of Fig. 2.6 to explain is the peaks in the force. As the number of

rows is reduced and the number of columns increases, Fig. 2.6 shows the force required

for the fracturing increases significantly. This is because more depletion bonds need

to be broken.

As we did previously for the three droplet case, we can obtain the depletion energy

per bond from the force peaks for each transition, continuing from Eqn. 2.31 which

we can rewrite as:

Fmax =
√

2E1keq∆n (2.36)

where ∆n is the number of bonds broken during the row reduction. To rewrite this

equation we will use Eqn. 2.32 to replace keq with k1 and N = p × q to eliminate

q. We will additionally assume that the number of broken bonds per transition is

∆n = 2q, which is true when the array fractures into equilateral triangles, as was the

case in the original experiments. This leads to:

Fmax = 2N

√
k1E1

p3 + p2
(2.37)

To test this we plot in Fig. 2.8 the force peaks Fmax divided by the total number

of droplets N in each simulation as a function of the (p3 + p2)−1/2 for a wide range
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Figure 2.8: Evolution of the normalized peak height as a function of (p3 + p2)−1/2 for a
different variety of starting configurations. The solid line represent the values predicted
by Eqn. 2.37. The discrepancies at the right side are due to the increasing influence of
viscous forces, which become more significant for large arrays with small p. The right-most
data correspond to p = 4. The hollow diamond and hexagonal markers correspond to
18 × 18 and 16 × 16 arrays, with wall speeds half of those used for all other simulations.
For the compression of bigger arrays at low p, the decreased speed, and therefore, decreased
viscosity, results in smaller force peaks.

of N and p. The solid line shows the prediction of Eqn. 2.37 using k1 and E1 from

Eqs. 2.18 and 2.31.

Figure 2.8 shows that most force peaks exceed the expected value corresponding

to Eq. 2.37. There are several reasons for this difference. First, Eq. 2.37 uses k1 which

neglects the influence of the tension bonds. Second, viscosity dissipates some of the

energy the walls put into the system, which is more significant for bigger arrays and

when the arrays have fewer rows p [thus higher (p3 + p2)−1/2]. With fewer rows, the

bubbles at the ends of the array must move faster to reach the new configuration,

while the wall keeps moving at the same speed; see Eqn. 2.35. Equation 2.35 also

shows that larger arrays (larger N) have larger viscous forces, in agreement with what



47

is seen in Fig. 2.8. The effect of viscosity is further evidenced by the smaller peaks

corresponding to simulations of 16 × 16 and 18 × 18, ran at vwall = 5 · 10−5, half of

the wall speed for all other simulations. Third, there are situations where ∆n > 2q

(caused by more complex fracture events) which will be discussed in Sec. 2.4.3, which

thus increases Fmax.

To summarize, we have successfully replicated the experimental observation that

each successive row reduction requires greater compression, as there are more deple-

tion bonds that need to be broken [20]. Like the experiments, we successfully relate

the spring constant of a single droplet to the array aspect ratio dependence of the

wall forces [19]. Our results also illuminate the influence of viscosity (in Fig. 2.8),

which is more observable in the simulations due to the larger nondimensional number

αsim
2 (Eqn. 2.11).

The equivalent spring model is therefore a useful tool for understanding the char-

acteristics of a nominally monodisperse droplet array as it is compressed. In the

next section we will take a closer look at the behavior of arrays which are no longer

considered monodisperse.

2.4.2 Bidisperse aggregates

As seen in the previous section, a raft made up of low polydisperse droplets is a

model crystalline packing. In this section we introduce defects and increase the poly-

dispersity of the simulated samples to study these new aggregates during compression,

which more closely resemble glassy materials.

We start by analyzing the behaviour of bidisperse aggregates. In these arrays the

particles can have a radius of either R = 1 or R = 0.765 (to match the experiments

of Ref. [20]). We define the defect fraction ϕ as:

ϕ = Nsmall/Ntotal (2.38)
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where Nsmall is the number of smaller droplets in the aggregate, and Ntotal is the total

number of droplets. The defect fraction ϕ varies from zero to one. In the case where

ϕ = 0 or ϕ = 1, we return to the monodisperse case seen in the previous section,

corresponding to a crystal made exclusively of large or small droplets.

Figure 2.9 shows how the force profile changes as we substitute differently sized

particles in a 20 droplet array, becoming progressively more disordered as the fraction

of defects rises from ϕ = 0 to ϕ = 0.5. (The compression process is shown in Movies S2

and S3 in the Supplemental Material of our published work[21]). Figure 2.9(a) shows

the force profile for the monodisperse droplet aggregate shown in Fig. 2.9(b), which as

discussed in the previous section shows clear force peaks connected to well-defined row

reductions. Introducing a single small droplet results in a force profile and droplet

array shown in Figs. 2.9(c,d). This single defect causes the appearance of smaller

peaks, signalling additional smaller fracture events and thus a more disordered row

reduction. Figures 2.9(e-h) show the force profile and initial droplet configuration for

ϕ = 0.25 and ϕ = 0.50. Introducing more defects introduces more small force peaks.

At a defect fraction of ϕ = 0.5 there are no distinct “row reductions”, but rather a

nearly continuous series of small fractures.

In the prior experimental work, Ono-dit-Biot et al. developed a predictive model

for the number of peaks in the force profile for a compressed aggregate [20]:

∆N(ϕ)

∆Npeak

= 2
√

(1− ϕ)ϕ, (2.39)

where ∆N(ϕ) = N(ϕ) − N(0) is the excess number of peaks N(ϕ) observed for a

given defect concentration over the number of peaks N(0) for the original aggregate

(N(0) is the number of starting rows minus one), and ∆Npeak is a fitting parameter

to the highest amount of peaks for a given droplet configuration.

The prediction given by Eqn. 2.39 describes the simulation data well, as shown
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a) b)

d)

f)

h)

c)

e)

g)

Figure 2.9: Evolution of the force profile as the defect fraction ϕ increases. The more
bidisperse the aggregates becomes the noisier the force profile is; the individual fracture
events involving many droplets split into a broad sequence of smaller fractures. The images
in the right columns are snapshots from the state prior to compression of the system at
distance 8.
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Figure 2.10: ∆N(ϕ) normalized by the fitting parameter ∆Npeak for five different droplet
arrays. The dashed line corresponds to the prediction of Eqn. 2.39. Four of the data
sets correspond to simulation data, while the points with the star marker are from the
experimental data of Ono-dit-Biot et al. [20]. The experimental droplet array consists of
23 particles in three columns containing 8, 7, and 8 particles.

for four examples in Fig. 2.10 where the data have been scaled in each case by the

∆Npeak that best fits each data set. Furthermore, this data collapse agrees with

the experimental results of Ref. [20] (star symbols in Fig. 2.10), and extends their

3 × 8 array results up to an 18 × 20 droplet array. Above this size, the peaks from

individual fracture events begin to blur together around ϕ ≈ 0.5, making it challenging

to correctly measure N(ϕ).

Additionally we can take the derivative Eqn. 2.39 with respect to ϕ:

∆N(ϕ)

∆Npeak

′

=
1√
ϕ

1− 2ϕ√
1− ϕ

, (2.40)

which indicates the increase in peaks in an array as a function of the defect fraction.
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We also note that when ϕ → 0 and ϕ → 1, ∆N(ϕ)
∆Npeak

′
→ ∞, which means that for

larger arrays, even a small amount of bidispersity produces a greater amount of peaks

compared to smaller arrays.

We can also consider how the bidisperse sample compares with a nominally single-

component sample composed of polydisperse particles. To do this, we use particles

with sizes distributed according to a Gaussian, characterized by polydispersity δ de-

fined as the standard deviation of the distribution divided by the mean. Addition-

ally we can calculate the polydispersity of the bidisperse arrays using the following

equation[104]:

δ = (Rsmall −Rbig)

√
(1− ϕ)ϕ

(1− ϕ)Rbig + ϕRsmall

(2.41)

Figure 2.11 shows the amount of fracture events occurring during the whole compres-

sion as a function of polydispersity. The blue squares correspond to the Gaussian

distribution, and the red circles correspond to the bidisperse distributions considered

above, now plotted as a function of δ calculated from each distribution’s standard

deviation and mean size. For the discrete bidisperse data set, we have used the 4× 5

droplet case previously shown in Fig. 2.10. The continuous polydispersity case has

many more fracture events than the bidisperse distributions with equivalent δ. Ex-

amining the individual movies, the increase in fracture events is because the case

of continuous polydispersity acts to introduce weak points into the array in many

locations simultaneously. That is, the continuous polydispersity case is somewhat

analogous to a bidisperse array with ϕ ≈ 0.5 and a size ratio that grows with increas-

ing Gaussian width δ.

2.4.3 Competing fractures

The larger disorder in the fracture process when adding defects is expected. We ad-

ditionally observe a new behavior in droplet aggregates even with low polydispersity
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Figure 2.11: Npini→1(the amount of fracture events from the initial number of rows to one)
as a function of the polydispersity δ for the discrete 4× 5 bidisperse case used in Fig.2.10,
and a continuous size distribution. The amount of fractures events depends on the chosen
size distribution, with the discrete case increasing somewhat lineally, while the continuous
case grows nonlinearly. The dashed line corresponds to the prediction of Eqn. 2.39. For
the bidisperse case δ(ϕ) is not symmetric between ϕ and (1− ϕ), so thus Eqn. 2.39 has two
branches as shown [105].



53

not seen in Ref. [20]: competing fractures. In Sec. 2.4.1 we focused on the compressed

crystal undergoing single coordinated fractures resulting in a change from one hexag-

onal array to a smaller array with one fewer row. However, sometimes two or more

fractures nucleate at multiple sites in the array. As the droplet raft is further com-

pressed, these fractures propagate leading to misalignment: the compressed array,

upon completion of the fractures, is no longer hexagonal. Instead, we see holes or

other defects in the structure. An example of competing fractures can be seen in

Fig. 2.12. For this particular example in the first snapshot [Fig. 2.12(a)] the droplets

are compressed throughout the whole array, with some variability due to the minimal

underlying droplet polydispersity. This pressure is alleviated by breaking depletion

bonds, as seen in Fig. 2.12(b): but this occurs mainly on the upper portion of the

array, while the lower half remains compressed. Eventually the lower end starts an-

other fracture event, but the second fracture does not align with the first fracture,

as seen in Fig. 2.12(c). This results in a disorderly row reduction as seen in the last

snapshot Fig. 2.12(d).

A similar example is present in Fig. 2.13 for a 36 droplet case. Upon compression, a

fracture originates first at the “top” of the array, with a secondary fracture nucleating

later at the “bottom.” Both fractures fail to align, causing again a disorderly collapse

in the crystal. Another example of competing fractures in large arrays is presented

in Supplemental Material Movie S4 of the published work this chapter is based on,

showing the compression of a 121 particle array [21].

While Fig. 2.12 is a small droplet array, we would expect that in larger arrays

there are more potential sites for fracture events to start. Furthermore, even if a

fracture starts in one location, it propagates to other locations at a finite speed: it is

possible that the fractures can’t spread fast enough to cover the whole crystal before

another fracture event is nucleated elsewhere. To test this suggestion, we measure the

fraction of row reductions that occur via competing fractures for different numbers of
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a) b) c) d) e)

Figure 2.12: Successive images of of a 20 droplet aggregate undergoing a second row
reduction, from the original 4 rows by 5 columns configuration. By panel (c) we can see the
formation of two fractures, which are misaligned as they propagate through out the array.
Thus the collapse in (d) is disordered, and the final packing with a defect in (e).

a) b) c) d) e)

Figure 2.13: Successive images of a 36 droplet aggregate, undergoing its third row reduction
from the original six by six configuration. By panel (c) we can see the formation of two
fractures, which are misaligned as they propagate through out the array. Thus the collapse
in (d) is disordered, and the final packing with a defect in (e).
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droplets N and plot this in Fig. 2.14. This fraction is defined by averaging over several

simulations with the same N but varying the random seed for the polydispersity. In

particular, for each simulation run we count the number of row reductions that have

multiple competing fractures. The one exception is that we ignore the very last row

reduction (2 → 1) which is always clean; thus if we start with p rows, there are

p − 2 total row reductions which could potentially have competing fractures. Then

we calculate the average fraction of row reductions with competing fractures over all

runs with the same starting configuration. The data points are plotted as a function of

1/N1/2 and exhibit a fairly linear trend: larger arrays have more competing fractures,

with an extrapolation to all fracture events being competing fractures in the N → ∞

limit. The limit where no competing fractures occurs corresponds to a 3 × 3 array

(N = 9) for which there is no longer a possibility for competing fractures; the array

is too small to fit two fracture events. Overall, Fig. 2.14 confirms the basic idea, that

larger arrays have more potential ways for competing fractures to occur.

We investigate how the presence of competing fractures is influenced by the initial

droplet array aspect ratio, defined as AR = q/p. The results are shown in Fig. 2.15

based on calculations with N = 144 droplets. A lower aspect ratio corresponds

to a “taller” initial configuration with many rows, and as expected the initial row

reductions have only a small amount of competing fractures. As the array becomes

wider, competing fractures become more prevalent, similar to the wide array shown in

Fig. 2.12. This confirms that for a wider configuration the compression from the wall

at the far ends of the crystal can produce separate fracture events. The data should be

interpreted with caution: the “taller” configurations with aspect ratio less than 1 will

be compressed and pass through the “wider” configurations, and thus some number

of the competing fractures observed for the taller configurations occur when the array

is at a later compression stage and is thus wider. This likewise is a factor in the data

of Fig. 2.14, that the larger N arrays sample higher aspect ratio configurations during
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Figure 2.14: The fraction of row reductions observed to have competing fractures as a
function of 1/N1/2, using the number of droplets N . The data correspond to initially
square arrays such as the array in Fig. 2.5(a). The error bars reflect the standard deviation
over five runs.
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Figure 2.15: The fraction of competing fractures as a function of aspect ratio using
N = 144 droplet configurations. The aspect ratio is defined as q/p, with a low aspect
ratio corresponding to “tall” configurations (many rows parallel to the walls, with the walls
starting quite far apart), and high aspect ratios to “wide” configurations (few rows between
walls that start close together). The error bars reflect the standard deviation over five runs.

their compression which have the higher propensity for competing fractures.

Competing fractures were not seen in the experiments of Refs. [19, 20]. We spec-

ulate that this may be due to the experimental challenge of aligning the two glass

pipettes that serve as the compressing walls. To test this hypothesis, we study the

dependence of competing fractures on the relative angle of the moving wall to the

stationary wall, with 0◦ representing perfectly parallel alignment. The data are shown

in Fig. 2.16 for arrays with 20 to 180 droplets as indicated. As the angle of the wall

increases, the frequency of competing fractures decreases, reaching a minimum close

to an angle of 0.2◦. This is due to the wall compressing on one side of the array first,

which results in fractures nucleating on that side first, and spreading throughout the

crystal as the wall continues moving. However, at still higher angles, close to the 0.2◦
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(°)

Figure 2.16: The fraction of competing fracture as a function of the angle between the
two walls, for three different droplet array sizes as indicated. The data suggest a slight
angle between the walls can dramatically decrease the frequency of competing fractures.

angle for the arrays shown in Fig. 2.16, the compression is sufficiently uneven that the

number of rows between the walls becomes less well-defined, leading to an increase

in competing fractures. A tilt angle of 0.2◦ is plausible for the experiments, and may

have biased the experimental observations towards single fractures.

2.5 Conclusions

We have simulated a variety of two-dimensional arrays of droplets with attractive

interactions as they undergo compression. Inspired by the prior experimental work

of Refs. [19, 20], we reproduce and extend their key results. First, we show how

the effective elastic properties of the droplet arrays are related to the intrinsic spring

constant acting between a pair of contacting droplets. In particular, some of these

springs are compressed and others are under tension; the tension bonds act to increase
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the overall spring constant exhibited by the droplet array. Second, we confirm how

the force required to initiate a fracture event scales with the aggregate size, extending

the results to more droplets than the experiments studied. Third, we find that in-

tentionally adding defects into the otherwise hexagonally ordered array dramatically

increases the number of fracture events, while at the same time decreasing the force

required to initiate those fractures. The dependence of the fracture events on defects

is in quantitative agreement with the model developed in Ref. [20], and with the simu-

lations we were able to extend the size of the cluster studied by an order of magnitude

more droplets. Of interest is that the number of excess fractures scales as
√
ϕ for a

small fraction ϕ of defects. The derivative of this diverges as ϕ → 0, indicating that

for a perfect crystal, adding in any density of defects dramatically increases the ease

of breaking the crystal. The maximum disorder occurs when the sample is composed

of an equal mixture of two sizes of droplets, in reassuring agreement with the decades

of simulations which have used mixtures of equal numbers of two particle sizes to

model glasses, for example in the classic papers of Kob and Andersen [106, 107].

Our simulations also found a phenomenon not observed in experiments, which is

the presence of competing fractures. This occur when two independent fracture events

start in different locations, and when they propagate through the sample, they do not

match in the middle. Competing fractures result in the post-fracture array being more

disordered. These are more prevalent for larger droplet arrays, giving some sense of

why they might not have been observed in the experiments. We demonstrated that if

the two walls compressing the crystalline aggregate are slightly tilted with respect to

each other, this helps bias the formation of cracks toward the more compressed side. A

tilt angle of ∼ 0.2◦ is optimal in the simulations for suppressing competing fractures,

and this is entirely plausible to have been present in the experimental work [19]. This

also suggests that in real crystals undergoing compression, slight mis-alignment of

compressing surfaces could affect how samples fracture. Note that in our simulations,
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symmetry is broken by the slight polydispersity of droplet sizes – introduced to match

the experimental polydispersity. Such polydispersity would not be present in ideal

crystals. Nonetheless, thermal fluctuations might facilitate multiple sites for fractures

to be initiated.
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Chapter 3

Amorphous flow of highly

polydisperse disks

The work presented in this chapter has been submitted for publication to “PHYSICAL

REVIEW E”, and a preprint of this paper has been uploaded to arXiv [108]. We

study the particle-scale motion of highly polydisperse hard disks flowing in a two-

dimensional bent channel. We use various size distributions of particles, in which the

largest particles are up to five times larger than the smallest. The disks are pushed

through an L-shaped channel to drive the particle rearrangements. Although the

mean flow is essentially independent of the polydispersity, the motion of individual

particles becomes more nonaffine on average for higher polydispersity samples. We

characterize the nonaffine motion, finding a qualitative difference in the behavior of

small and larger particles: the smaller disks have more nonaffine motion, induced by

the larger particles.

3.1 Introduction

The behaviour and properties of amorphous materials and their flow has been a sub-

ject of extensive study for decades [86, 87, 90, 109–112]. These amorphous materials
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are extremely common, both in nature and industry, in the form of emulsions, gran-

ular media, food products and foams, among many others [89, 113]. Much prior

research has been dedicated to the study of the flow and rheological properties of

these materials, however most of this work has been done on systems with particles

of similar sizes and properties [83, 109, 111, 112, 114–123]. In contrast with these

model systems, many natural systems and materials have components with a range

of sizes. For example, the size ratio between the largest and smallest particles can

be a factor of 10 or more [4, 5, 124–126]. The presence of disparate-sized particles

is known to affect the flow behavior of various systems, including sand and gravel

deposition [6, 33–35], hopper flow [127–129], and geophysical phenomena such as

avalanches, land slides, and glacier flow [5, 115, 130–133]. Mixtures of various size

components can also determine consistency and texture in food products [113, 134].

The above mentioned examples all have highly polydisperse particle size distri-

butions, that is the broadness in particle size in a given distribution. These systems

show complex structural and dynamical properties due to their spatial heterogeneity.

The study of these kinds of systems has led to interesting physical behavior when

compared to their monodisperse counterparts. As an example, polydisperse hard

spheres can phase separate into multiple crystalline phases [135]. In active matter,

polydispersity leads to the emergence of new phases [136]. Experimental and compu-

tational studies on the compression and stretching of particle rafts have shown that

polydispersity greatly affects their structural properties, such as their compressional

yielding threshold [20, 21]. In granular materials, force chains become drastically

more heterogeneous in more polydisperse systems, affecting the material’s jamming

point and rheological properties [137–140]. In particulate suspensions, the polydis-

persity of the particles strongly impacts the viscosity of the suspension: for example,

adding small particles can lower the viscosity [141].

Previous studies of sheared soft materials typically wish to avoid crystalline order,
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so often a bidisperse mixture of particles is used, or a single type of particle with

mild polydispersity [109–111, 111, 112, 114–121]. Polydispersity δ is defined as the

standard deviation of the particle radii divided by the mean radius. A frequently

studied system is bidisperse, with equal numbers of small and large particles with

size ratio 1 : 1.4, yielding δ = 0.17 [57, 116, 117, 142, 143].

Two prior studies examined highly polydisperse emulsions (δ ≥ 0.5), with the size

ratio between the largest and smallest particles as large as 10 : 1 [32, 144]. These

studies found that large and small particles play different roles in the flow of the

sample, with large particles moving more smoothly, while small particles move more

erratically. This has implications for how particles are mixed and also consequences

for the rheological response: highly polydisperse systems have well-mixed small parti-

cles and are easier to flow [32]. These two studies only considered emulsion droplets

at high volume fractions (above jamming); because the droplets are soft they can

still flow, but leaving unanswered the question as to whether these prior observations

generalize to hard particles at packing fractions below jamming.

In this chapter we will show the effect particle size distribution has in the flow, non-

affine displacement, and local particle rearrangement in sheared granular materials.

The granular particles used for this work, consist of hard cast acrylic disks. We

use 11 different particle size distributions with varying polydispersity, ranging from

δ = [0.2, 0.48]. We push mixtures of these disks through an L-shaped channel to cause

the particles to rearrange, and study individual particle motions during this flow. We

find that large particles are more likely to follow the mean flow, and more likely to

perturb the motion of nearby smaller particles so that the latter do not follow the

mean flow. Our observations confirm the prior understanding [32, 144], extending

those observations to hard particles. We additionally find that the influence of the

perturbation from the larger particles extends only a short distance from the surface

of the large particles, about 2-3 small particle diameters.
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This chapter consists of 5 sections; Section 2 will review the experimental set up

and image analysis procedure. Section 3 will characterize the properties of the flow in

the case of the lowest polydisperse size distribution. Section 4 will analyze the local

particle rearrangements and non affine displacements for all particle size distributions.

Finally, Section 5 will look at these properties again but taking into account the spa-

tial heterogeneity, using a spatially dependent time step which achieves a somewhat

homogeneous strain field. This spatially dependent time step is then used to calculate

the displacement properties of the particles studied in the previous sections.

3.2 Experimental methods

The particles in the experiment were made using cast acrylic sheets (thickness of

2.9 mm). The disks used in the experiments were produced by cutting the acrylic

sheets using a laser cutter. Frosted rectangles were etched on the center of disks

during the cutting procedure, to facilitate tracking. Each rectangle is proportional to

the diameter of its corresponding particle, to simplify not only positional tracking and

particle size identification, but rotational orientation as well, which can be researched

in future projects. As a final step, the frosted rectangles were painted red using a

felt-tip marker, to make particle tracking easier. A sample of finalized particles is

shown in Fig 3.1(a). Here we can see a wide variety of particles with radii ranging

from 0.635 cm to 2.22 cm. It is worth noting that the thickness of the sheet and the

smallest radius have been chosen so that the particles don’t tip over when pushed.

The largest particle on the left has a diameter of 5.7 cm, with its rectangle being 3.5

cm long.

The experimental device used for this project consists of a large square aluminum

base, with each side measuring 53.3 cm, on which we can screw-in several divisions.

This work will focus on the ‘L’ configuration with the dimensions given in Fig. 3.2.
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a)

b)

Figure 3.1: Sample image illustrating the process used for image analysis and particle
tracking. (a) Photograph of the experimental device with a size distribution already in place
under normal lightning conditions. (b) Photograph of the same frame using green/yellow
lightning to highlight the red rectangles painted on the particles. We have superimposed
blue rings to illustrate the results of our particle tracking. The largest particle on the left
has a diameter of 5.7 cm, with its rectangle being 3.5 cm long.
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This configuration consists of a track of total length 75.4 cm, bent at a right angle at

the 37.7 cm mark, and with a 20.5 cm width opening. To push the particles through

our experimental setup at a steady velocity we use mechanical plungers, with a set

speed of vp = 0.22 cm/s, and maximal extension of 10.7 cm.

In order to ensure a two dimensional flow of the disks confined to the surface of

the device and prevent the particles from flowing over one another, a transparent

acrylic sheet is screwed on top of the experimental apparatus. This sheet can be

easily removed to facilitate the placements of particles into the device.

To record the particles, we used a MOKOSE UC70 camera with 2100×2100 pixel

resolution, operated at 6 frames per second. The camera is placed directly above the

experimental device. We light the experiment using an array of colored LED lights,

diffused through a screen, to achieve as homogeneous a light source as possible. The

LED lights were set to a yellow/green color, to make the red rectangles on the particles

contrast better against the reflective aluminum background, and later on during video

processing we can obtain a bright highlight of the rectangle by subtracting the green

channel from the red channel.

We also measure the relevant friction coefficients in the experiment. The friction

coefficients between the particles and the aluminum base are measured by tilting the

surface until the disks move, and measuring the subsequent velocity of the sliding

disks. We obtain µstatic ≈ 0.5 and µdynamic ≈ 0.3. The value of µdynamic combined

with the low plunger speed we use allows us to calculate the stopping time at ∆tstop ∼

7×10−4 s. Essentially, when the plunger stops moving, particles stop instantaneously;

inertia is negligible. The negligible effect of inertia in this experiment is comparable to

the “quasi-static” conditions setup in the Chapter 2. The friction coefficients between

the acrylic particles themselves are also measured: µstatic ≈ 0.4 and µdynamic ≈ 0.3.
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  37.7 cm
20.5
 cm

(a)

(b)

Figure 3.2: Top down schematic of the experimental device, set up in the ”L” configuration.
Plungers have been placed at each end of the flow geometry, this allows us to push the
particles back and forth. The plungers both move at a set speed vp = 0.22cm/s and
maximal extension of 10.7 cm. In Fig. (a) we show the dimensions of our system. Fig. (b)
shows as red quarter circle, what we call the closed corner, or the bottom right corner. The
purple 3/4 circle represents the “upper right corner” or “open corner”. Finally the dashed
square shows an approximate area of what we will refer later on as the “central” area, region
or zone. The dashed square and circular circle are illustrative representations meant to give
an approximate location of the these canal features.
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3.2.1 Experimental procedure

To set up the experiment, the particles from a chosen size distribution are randomly

placed in the surface of the configuration, which we then cover with the previously

mentioned acrylic sheet. The particles are then pushed through the experimental

device in a cyclical manner; a diagram explaining the experimental process is shown

in Fig. 3.3. First one of the plungers will push the particles through the canal, the

plunger at the other end is fully retracted, leaving enough space for the particles to

move into. Once the first plunger has pushed to its maximum extension, it will retract

fully back to its initial position, leaving space for the particles in the next cycle. After

the first plunger has fully retracted, the plunger on the other end becomes active,

repeating this procedure.

The above described procedure repeated is 10 times per experiment. During the

first two cycles, we observe that the area fraction rises nontrivially due to particle

rearrangements. Accordingly, we only analyze the final eight cycles for which the

area fraction has reached a steady state. Once a run is completed, we remove the top

cover, randomize the position of the particles using a random number generator for the

positions, and carry out the next run of the experiment using the same procedure. For

each size distribution, we carry out five runs, each with randomized initial positions.

3.2.2 Particle size distributions

At this point it is important to describe the features of the particle size distributions

chosen for this project. As mentioned above, our aim is to study the effect of particle

size diversity on the flow of our particles. The quantity which characterizes the size

variety in a particle size distribution(P (R)) is the polydispersity (δ):

δ =
√

⟨∆R2⟩/⟨R⟩ (3.1)
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Bottom 
plunger pushes

Top 
plunger pushes

Bottom
 plunger
retracts

Top
plunger
retracts

Figure 3.3: A top down sketch of the experimental device, setup in the “L” configuration.
Plungers have been placed in such a manner as to block the outlets and study the sloshing
back and forth of a given particle configuration.
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Where R is a the radius of a given particle, ∆R = R − ⟨R⟩, and the moments of R

(and ∆R) are given by ⟨Rn⟩ =
∫
RnP (R)dR (and ⟨∆Rn⟩ =

∫
∆RnP (R)dR).

Size Distribution Size Ratio Number Ratio δ
Bidisperse 3:2 1:1 0.20

T1 4:3:2 1:8:8 0.23
T2a 6:3:2 1:24:24 0.27
T2b 6:3:2 1:18:18 0.29
T2c 6:3:2 1:11:11 0.32
T2d 6:3:2 1:9:9 0.35
T3 8:3:2 1:26:26 0.35
T4 10:3:2 1:28:28 0.42
C1 6 to 2 1 to 25 0.31
C2 8 to 2 1 to 50 0.40
C3 10 to 2 1 to 55 0.48

Table 3.1: Table with all the disks size distributions used in this Chapter. The first
column shows the name of each distribution, in the second and third column we
show the size and number ratio for all particles, respectively. The last column shows
polydispersity of each distribution. For the C1 size ratio is; 2 : 3 : 4 : 5 : 6, for C2;
2 : 3 : 4 : 5 : 6 : 7 : 8, and for C3; 2 : 3 : 4 : 5 : 6 : 7 : 8 : 9 : 10. For more information
about the number ratio of C1,C2 and C3, Fig. 3.4 shows a histogram with the amount
of particles of each size in these distributions.

Specifically, there are a total of nine different radii that we use. In terms of

a = 0.3175 cm (an eighth of an inch), the smallest particles have a radius R0 = 2a =

0.635 cm, and the other radii are defined by Rn = (n+2)a, up to R8 = 3.175 cm. More

precisely these radii are [0.64, 0.95, 1.27, 1.59, 1.91, 2.22, 2.54, 2.86, 3.18] cm, labeled

R0 to R8 respectively. Table 3.1 contains information about the size ratio, number

ratio and polydispersity of each size distributions. The bidisperse distribution has

equal numbers ofR0 andR1 sized particles, and as mentioned before is the distribution

with lowest polydispersity which does not crystallize. The tridisperse distributions,

labeled T1 through T4, are built using R0 and R1 particles with added particles of

greater size. These larger particles are R2 for T1, R4 for the T2 sets, R6 for T3, and

finally R8 for the T4 distribution. Note that the T2 sets are composed of 4 subsets,

each containing different amount of R4 particles, and thus different polydispersity,
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Figure 3.4: Histogram for the three continuous distribution of particles, C1, C2 and C3.
These distributions are built using particles sizes “continuously”, starting from R0 and R1,
to a larger particle size, including all radii in between.

but same size ratio between particles. Fig. 3.4 shows a histogram of the particle

counts for the continuous distribution, labeled C1, C2 and C3. These distributions

are built with equal numbers of R0 and R1 particles, and lowering number of larger

particles, continuously including all sizes in between R0 and the largest particle of

that distribution(R4 for C1,R6 for C2, and R8 for C3).

3.2.3 Image analysis

The first step in our image analysis is to split each frame of a recording into its

corresponding RGB values. We then subtract the green channel from the red channel,

which results in the red rectangle of each particle to be strongly highlighted against a

mostly dark background. Once all the frames in the recording have been processed we

proceed to identify the particle in each frame, by identifying group of connected pixels
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above an intensity threshold. From each group we take the center of mass, total pixel

count, area, and orientation, among other quantities, which we then used to filter

out falsely identified particles. After we have identified the particles in each frame,

we tracked their trajectory using standard software [145]. In Fig. 3.1(a) we show an

example of a raw image of our disk particles, and in Fig. 3.1(b) the same frame is

shown, but using our particular lighting conditions described above, and using using

a variety of image adjustment methods, to further highlight the red rectangles of the

disks. In Fig. 3.1(b), we also shown superimposed rings, colored in cyan, to reflect

the results of our particle tracking method. Note that while we have measured the

orientation of each particle, we did not see anything of strong interest, for further

information please refer to App. A.

3.3 Results

3.3.1 Mean Flow

We first consider the mean flow properties of our samples. We start by calculating

the displacements of the particles using a time scale ∆t = 5 s which corresponds to

roughly a tenth of the total duration of a cycle (the disks moving in one direction as

one plunger pushes on them). During this time interval, the plunger moves ∆rp =

vp∆t = 1.1 cm, slightly less than the diameter of the smallest particles (1.27 cm).

We then spatially bin the data with a resolution ∆w = 1.6 cm, which is the mean

diameter of the two particle species in the bidisperse sample. Within each bin, we find

the mean displacement vector, averaging over all particles and all times. To compute

this average, we also exploit the symmetry of the back-and-forth motion in the “L”

(Fig. 3.3), and thus reorient the data so that the active plunger is always at the lower

right corner. The result is the vector field ∆r⃗mean(x, y) shown in Fig. 3.5. We see

plug-like flow on the lower right inlet, corresponding to the active plunger, which
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Figure 3.5: Mean displacement field ∆r⃗mean(x, y). The displacements are calculated using
∆t = 5s. The bold line on the scale bar indicates ∆rp = vp∆t = 1.1cm, the displacement
corresponding to the plunger motion over ∆t. On the lower right inlet, we observe a plug
like flow closer to the plunger, which then turns into a more shear like flow as the particles
turn the corner. Closer to the lower left corner we see an area with almost no displacements,
signified by the shorter arrows with the darker color.
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enforces that all particles contacting it move with the plunger velocity Vp. In the

corner region of the “L” particles change the direction of their motion. The particles

in the lower left corner barely move on average, whereas the particles in the middle

of the corner region move significantly, resulting in a velocity gradient. In the upper

outlet region, the motion of the particles is slightly slower near the sidewalls. To

conserve particle flux, this means that particles near the center of the outlet region

are moving slightly faster than the plunger speed.

Note that Fig. 3.5 is averaged over all particle size distributions. We separately

compute the mean flow field for each particle size distribution and find that the

different flow fields are nearly the same within the noise, with no systematic variation.

Accordingly, to reduce the noise, we consider ∆r⃗mean(x, y) as a useful reference mean

flow for all experiments.

3.3.2 Non affine displacement and local particle rearrange-

ment

Of course, the flow field shown in Fig. 3.5 is averaged over all particles and all times;

at any specific moment, individual particles are often found moving in different di-

rections, and it is only their average which is a smooth function of space. As an

example, we can look at Figs. 3.6(a,b) which show the displacement of particles for

two different distributions, bidisperse and T4, for a single frame. The T4 distribution

is constructed by adding five large particles to the bidisperse distribution, where the

large particles are five times larger than the smallest particles. In Figs. 3.6(a,b), the

length of the arrow and also the color of the particle signify the magnitude of the

displacement, with darker colors for larger displacements.

Starting with the displacement of bidisperse case shown in Fig. 3.6(a), we observe

many of the characteristics highlighted in Fig. 3.5. These characteristics include

plug-like flow near the plunger inlet and shear-like flow on the outlet side. Of course,
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Bidisperse T4

(a) (b)

(d)(c)

(f)(e)

Figure 3.6: Snapshots showing the different quantities measured in the flow for the bidis-
perse size distribution (left column panels) and the T4 size distribution (right panels). From
top to bottom, (a,b) display the displacement of each particle, (c,d) show the nonaffine dis-
placement, and (e,f) show D2

min for each disk. The plunger at lower right enforces that
contacting particles move with velocity vp, and thus have displacements ∆rp = 1.1cm. For
the bidisperse distribution, regions of higher nonaffine motion (∆rNA or D2

min) are typically
associated with locations of higher strain. For the tridisperse distribution, the largest par-
ticles generally have less nonaffine motion, but nearby smaller particles often have more
nonaffine motion. For both distributions, the flow near the moving plunger (lower right) is
plug flow: thus no shearing and no nonaffine motion.
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Fig. 3.5 shows the mean displacement field ∆rmean(x, y) which is an average over data

such as Fig. 3.6(a). At the specific time shown in the latter, the lower left corner has

very small displacements, with some particles at the corner being completely still.

There are also a few particles with displacements larger than that of the plunger,

∆rp = 1.1 cm. Another interesting feature is the difference in displacements between

neighboring particles: in contrast to Fig. 3.5 where the colors change smoothly as a

function of space, for the discrete particles there are instances in Fig. 3.6(a,b) where

a region has a mixture of colors.

To quantify these behaviors of individual particles at individual moments in time,

we consider nonaffine displacements of the particles, ∆⃗rNA. An affine or linear dis-

placements is defined by a linear mapping that preserves points, straight lines, and

planes. For the motion of particles an affine displacement is generally described by:

∆x

∆y

 = A

x
y

+ b. (3.2)

WhereA is a constant matrix and b is a constant vector. The displacements described

by Eq. 3.2 include describes many kinds of transformations such as translations and

rotations, but can also describe dilatation and shearing[146]. Non- affine displace-

ments are then transformations which are not lineal, are often associated with plastic

deformations in a material, and are often used to characterize plastic deformations in

materials and granular flows[28, 32, 144].

As stated before, to analyze the motion of our particles, we will study the non-

affine component of motion, by subtracting off the mean displacement(affine) over a

∆t. We will refer to this quantity as ∆rNA, the non-affine displacement, and for the

mean displacement , we will use the previously calculated mean displacement field.

More specifically, we use the following formula to calculate the non-affine displacement

of a single particle i at a time t:
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∆r⃗iNA(t) = ∆r⃗i(t)−∆r⃗mean(x, y), (3.3)

where ∆r⃗i(t) is the displacement for the particle i at time t and ∆r⃗mean(x, y) is

the mean displacement at the corresponding to particle’s i initial position (x, y), as

shown in Fig. 3.5. The non-affine displacement, ∆rNA helps us better understand the

effect on the flow of particles caused by local rearrangements, compared to the mean

background displacement, and has been used multiple time to characterize amorphous

materials and systems with defects [32, 112, 144, 147–151].

Figures 3.6(c,d) show a vector map for the nonaffine displacements for the data

corresponding to panels (a,b). As we did for Figs. 3.6(a,b), the arrows are the non-

affine displacements, and darker particle colors indicate a larger magnitude of ∆rNA.

We see that most particles with high nonaffine displacements occur closer to the

central area and close to the walls in the upper section. In the bidisperse flow this

occurs due to the rearrangement of particles as the flow changes from plug-like flow

to shear-like, and the particles need to navigate the turn around the corner. For the

more polydisperse sample, this behavior is still present. However, the flow is also

disrupted by the larger particles. This is seen as most instances of nonaffine motion

now occur around the larger particles, other than the lower right region where there

is plug-like flow. Another interesting note is that while large particles cause a disrup-

tion in the surrounding flow, these large particles themselves have small ∆rNA values

compared to their neighbors.

A simple way to explain this behavior is to picture a large particle as it moves

around the corner. The mean flow is shown in Fig. 3.5, and for a sufficiently large

particle near the top right corner, it would exist in regions where the mean flow

changes both in magnitude and direction. Given that the large particle feels forces

from a variety of adjacent smaller particles, it makes sense that the large particle

will, on average, still follow the mean flow expected for the large particle’s center.
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However, any nearby smaller particles will try to move according to the local flow

field they experience. If a smaller particle is close to the larger particle but in a

normally faster section of the flow field, the smaller particle will need to move around

the larger particle. In contrast, a small particle in a slower local flow will be pushed

out of the way by the larger particle [32].

Of course, it is possible that large particles could locally induce a smooth flow of

themselves and their neighboring particles. To look for this, we consider an alternate

definition of nonaffine motion introduced by Falk and Langer in 1998 [28] and widely

used since then [112, 118, 121, 152, 153].

The key idea is to examine a local group of particles and fit their displacements

to a strain tensor using a least-squares fit. The least squares fit error, D2
min, then

quantifies the extent to which that local group of particles is not well described by

a simple strain tensor, and thus serves as a measure of the nonaffine motion of that

group of particles. To compute this quantity, we select a particle n = 0 and a set of

its nearest neighbors and fit the displacements of all of these particles at a specific

time t to a local strain tensor ϵij. The fitting is least squares where we find ϵij to

minimize the quantity

D2(t,∆t) =
∑
n

∑
i

{
rin(t)− ri0(t)−

∑
j

(δij + ϵij)

×[rjn(t−∆t)− rj0(t−∆t)]
}2
,

(3.4)

where n indexes the neighbors of the reference particle with the index n = 0. The

indices i, j refer to the spatial coordinate components, ϵi,j is the best least-squares fit

strain matrix characterizing the region, and δij is the Kronecker delta. The residual

error after least squares fitting, D2
min, is our measure of local nonaffine motion [28].

Here, rather than defining the affine flow through the space- and time-averaged flow,

the affine flow is determined locally in space and time.
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For random packing of highly polydisperse particles D2
min is strongly dependent

on the number of nearest neighbors included in the sum over n in Eq. 3.4: more

neighbors allow for more deviations from the mean strain matrix, increasing D2
min

[32]. Following prior work by Jiang et al. [32], we use the Nnbs = 15 closest particles

as the nearest neighbors, defining the distance between particles as surface-to-surface:

d0n = |r⃗n − r⃗0| −Rn −R0 (3.5)

where, as before, r⃗0 is the position of the reference particle, r⃗n the position of neighbor

n, and R0 and Rn their respective radii. Using Eq. 3.5, particles in contact are at

distance d0n = 0 cm. This definition allows us to fairly compare the D2
min of particles

of different sizes and across multiple size distributions.

Using Nnbs = 15 results in 2 layers of neighbors for the smallest particles, and a

single full layer for the largest particles. Other methods were used to define the local

interaction range, including only the first neighbors, first and second neighbors, and

first Voronoi layer particles. However for these methods Nnbs has a strong dependence

on particle size. Alternatively, for the fixed Nnbs method, we tried different Nnbs

values, such as Nnbs = 11 and Nnbs = 20, which return similar results. In Fig. 3.7

we show an example of the 15 closest neighbors for both the smallest and largest

particles.

When compared to the non-affine displacement defined in Eq. 3.3, D2
min is calcu-

lated based on the displacement of a reference particle’s neighboring particles, and

does not refer to the mean displacement field at all. Similarly to the non-affine dis-

placements, D2
min has been used several times to characterize the deformations and

distortions in amorphous materials and granular flows[28, 118, 144, 152].

Figures 3.6(e,f) show the particles shaded according to their value of D2
min, where

darker colors indicate higher values. A similar behavior to Figs. 3.6(c,d) is observed
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Figure 3.7: Two examples of our neighbor definition. We use the closest 15 particles
as neighbors of the reference particle. Magenta indicates the reference particle. Yellow
indicates the neighbors of our largest particle, R8, on the left. The cyan particles show the
neighbors for the smallest particle, R0, on the right.
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for D2
min. For the bidisperse case [Fig. 3.6(e)] the highest values for D2

min occur close

to the upper right corner where particles navigate the turn. The region with the

second highest levels of D2
min is in the central zone. In Fig. 3.6(f), corresponding

to the T4 case, the larger particles are again seen to have an effect on the flow.

Here, the particles with the largest D2
min are small particles that are close to large

particles, showing that large particles disrupt the displacements of their neighbors.

The proximity to the upper right corner appears less relevant. The large particles,

while enhancing the D2
min of their neighbors, have a lower D2

min value themselves.

As mentioned above, a high amount of the phenomena related to particle rear-

rangement and non affine motion happens in the central area, therefore, we will define

our central region as the area covered by a 23.7 cm square, matching the lower left

corners of this square and the experimental device. An illustration of this square

region is shown in Fig 3.2(b).

Our goal is to understand the role of particle size, and Figs. 3.6 (d,f) suggest

that larger particles have less nonaffine motion. We know that the flow pattern is

spatially heterogeneous, as will be discussed in more detail in Sec. 3.3.4. Nevertheless,

we wish to find the average nonaffine motion as a function of particle size. To do

this, we pick a particle radius from a given experimental condition. We calculate the

values of ∆rNA/⟨R⟩ and D2
min/⟨R⟩2 for all particles of that size and all times. We

then find the mean values of these as a function of (x, y), similar to how we find the

flow field ∆r⃗mean(x, y). Finally, we average the resulting fields over (x, y). We do

this for all particle radii and all particle size distributions, with the results shown in

Fig. 3.8. The one exception to this procedure is for the three largest particle sizes

in the C3 particle size distribution, for which their small numbers do not give us

adequate statistics. Accordingly, we average the observations of these three particle

sizes together to calculate the nonaffine motion as a function of (x, y), and then plot

the (x, y) averaged results at the mean radius of the three particle sizes. Figure 3.8
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shows that the smaller particles have higher values of ∆rNA and D2
min, whereas the

larger particles have smaller values. This points to the previously given explanation,

where large particles move according to the average displacement field to which they

are subjected but cause other particles either to have to detour around them or be

bumped out of the way.

To study how large particles affect the motions of their neighbors, we measure

the mean values of ∆rNA and D2
min conditioned on the distance a particle has from

a particle of a specific size. These results are plotted as a function of the edge to

edge distance dij in Fig. 3.9. Figures 3.9(a,b) show the results for the bidisperse

distribution. There is a minimum at contact between the particles, followed by a

peak, and then a valley at dij = 2R0. These oscillations are more pronounced for the

neighbors of particles with radius R1, the larger of the two species in the bidisperse

distribution [the top red curves in panels (a,b)]. Similar trends are stronger for the

tridisperse distribution T4, shown in Fig. 3.9(c,d). Here, the largest particles (size

R8) strongly increase the nonaffine motion of their neighbors [the top blue curves

in panels (c,d)]. These results confirm the conceptual picture sketched above that

the large particles act as obstacles moving with the “wrong” velocity for some of

their neighbors, forcing those neighbors to move nonaffinely. For larger separations

dij, the measures level out towards the average (albeit with noise). The “signal” of

the perturbation appears to be short-ranged and is within the noise for dij ≳ 3 cm,

a distance equal to 2.4R0 = 1.6R1 in terms of the two smallest particle sizes. This

short-ranged influence is comparable to that seen in a prior experiment which studied

the oscillatory shear of emulsions [144], although simulations of a 2D emulsion model

found longer range influences out to approximately 5 particle diameters [32].

The heights of the first peak in Figs. 3.9 are a good measure of the effect a particle

has on the flow of its neighbors. We can then characterize this disturbance of flow

caused by particles of size R by calculating the difference in value between these
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(a)

(b)

Figure 3.8: (a) The mean magnitude of the nonaffine motion |∆rNA|/⟨R⟩ and (b)
D2

min/⟨R⟩2, both as a function of the normalized particle size R/⟨R⟩. Smaller particles have
higher |∆rNA| and D2

min than larger particles. This is because larger particles are more
likely to follow the mean flow, which forces smaller particles to maneuver around these
large particles. To have enough data for a meaningful result, we average the observations
of the three largest particles in C3 together.
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peaks and the average ∆rNA and D2
min, for each particle size R, and for every size

distribution. Here we will nondimensionalize all lengths by the mean radius ⟨R⟩ for

the relevant particle size distribution. Figure 3.10 shows the normalized differences in

peaks for (a) ∆rNA and (b)D2
min as a function of size R, and with the different symbols

corresponding to the different size distributions studied. As hinted both by Figs. 3.6

and Figs. 3.9, the larger a particle, the larger the effect it will have on its neighbors,

clearly shown in the growth of ∆rNA and D2
min for larger R/⟨R⟩. The imperfect data

collapse suggests there may be influences of the particle size distribution, although

there is no clear trend.

The data shown in Figs. 3.8 and 3.10 show opposite trends as a function of

R, and these opposite trends emphasize our conceptual story. Larger particles are

subjected to the mean flow of all of their surrounding neighbors, resulting in less

nonaffine motion, confirmed in Fig. 3.8. These larger particles thus disrupt the flow

of their neighboring smaller particles, forcing these smaller particles in a competition

between following the mean flow and following the motion of their larger neighbor.

Thus, the larger particles cause more nonaffine motion for their neighbors, confirmed

in Fig. 3.10. These results agree with prior observations of softer particles [32, 144].

This chapter focuses on the larger particles and it is plausible that the larger

those particles are, the more strongly the overall particle motion is affected. We test

this conjecture by calculating the mean values of the spatial averaging of ∆rNA and

D2
min for all particles as a function of the polydispersity δ of the corresponding size

distribution, plotted in Fig. 3.11. Surprisingly, ∆rNA/⟨R⟩ is not affected by changes

in polydispersity. The values for the distributions studied average to ⟨∆rNA/⟨R⟩⟩ =

0.37±0.01. Comparing this to the data shown in Fig. 3.8, it appears that the smaller

nonaffine motion for the few larger particles is balanced by the increased nonaffine

motion of the more numerous smaller particles. On the other hand, Fig. 3.11(b) shows
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Figure 3.9: ∆rNA is shown in (a,c) and D2
min in (b,d), both as a function of distance(d0i)

from the edge of a reference particle with radius R to all other particles. The top panels
(a,b) correspond to the bidisperse distribution, and the bottom panels (c,d) to the T4
distribution. At d0i = 0, there’s a valley for all cases, corresponding to particles in direct
contact to the reference, resulting in low ∆rNA and D2

min, due to the tight packing. There’s
a another valley at d0i = 2R0, which in this case corresponds to a buffer of one R0 between
the particles, but are otherwise in close packing, causing the minimum. In between these
valleys we find a peak at dij ∼ 0.75 cm. These peaks are a good tool to measure the effect
the reference particle has on its closest neighbors. This measurement is affected by particle
size, an effect that can be seen for all distributions shown here, with larger particles having
higher peaks. This can be seen by the differently colored curves. As shown in the legend, the
blue curve correspond to the R8 particles, while red and black to R0 and R1, respectively.
The dashed line shows the average value for all particles.
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(a)

(b)

Figure 3.10: These graphs show how particles of size R/⟨R⟩ influence the motion of their
neighbors. (a) Peak (∆rNA − ⟨∆rNA⟩)/⟨R⟩. (b) Peak (D2

min − ⟨D2
min⟩)/⟨R⟩2. The symbols

correspond to distinct particle size distributions, given by the legend in (a). The peak
height is measured from data similar to that shown in Fig. 3.9, where the peak is measured
for d0j < 2R0 from the reference particle. Larger particles have stronger influences on their
neighbors. Error bars are only shown when the error bar is larger than the scatter symbol.
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(a)

(b)

Figure 3.11: (a) ∆rNA/⟨R⟩, and (b) D2
min/⟨R⟩2, as a function of the polydispersity for each

size distribution. For ∆rNA/⟨R⟩, we see no relation to polydispersity, averaging to a value
of 0.37. On the other hand D2

min/⟨R⟩2 shows a positive relation with polydispersity. The
dashed line is a least-squares fit to the data; see text for details.
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that D2
min/⟨R⟩2 has a positive relation with polydispersity. We fit the data using

D2
min/⟨R⟩2 = mδ + b (3.6)

with slope m = 0.11 and intercept b = 0.09. We note that this behavior is affected

primarily by the polydispersity of a size distribution and not the size ratio itself, as

evidenced by T2 family of distributions. All T2 distributions have the same size ratio

but their ⟨D2
min⟩/⟨R⟩2 values correlate mainly to their polydispersity. Conversely, two

distributions with similar polydispersity but different size ratios Rmax/Rmin, T3 and

T2d, have similar values of ⟨D2
min⟩/⟨R⟩2.

3.3.3 Time scale dependence

All of the results above have used a set time scale ∆t0 = 5 s for calculating dis-

placements. To briefly investigate the influence of this choice, we study how the

results of Fig. 3.11 depend on ∆t. We compute the average values for ∆rNA/⟨R⟩ and

D2
min/⟨R⟩2 for different ∆t/∆t0. Here, to enhance the signal, we take the averages

only over particles in the central region of the channel (the square region between the

inner and outer corners of Fig. 3.5). The data are plotted in Fig. 3.12 for all time

intervals. All size distributions show a similar growth in values for increasing time

intervals. The data in Fig. 3.12(a) for ∆rNA/⟨R⟩ nearly superimpose on each other,

which is expected as seen in Fig. 3.11(a): this measure of nonaffine motion is not

sensitive to polydispersity, and this fact holds true for all ∆t. On the other hand, in

Fig. 3.12(b) the D2
min/⟨R⟩2 are slightly separated by polydispersity, in agreement with

Fig. 3.11(b). The differences with polydispersity are more apparent in Fig. 3.11(b);

the logarithmic axis of Fig. 3.12(b) reduces the distance between the curves.
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Figure 3.12: Average ∆rNA/⟨R⟩, Fig.(a), and D2
min/⟨R⟩2, panel Fig.(b), for the central

zone for various time intervals, on log-log scale, for all size distributions. The lines indicate
power-law scaling with exponents as labeled. All distributions share similar exponents and
their corresponding curves do not cross each other for the observed ∆t.
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The time scale dependence of the nonaffine motion is well fit by power laws:

∆rNA/⟨R⟩ ∼
(

∆t

∆t0

)α1

(3.7)

D2
min/⟨R⟩2 ∼

(
∆t

∆t0

)α2

(3.8)

with α1 = 0.74 and α2 = 1.47. Given that ∆rNA has units of length and D2
min units

of length squared, it is reasonable that α2 ≈ 2α1. Given that these power laws well-

describe the data for each individual particle size distribution, we conclude that our

observations of the character of the nonaffine motion are fairly robust over time scales

∆t up to the duration of our experiments.

In the following section we will study the stress field and shearing rates throughout

the canal in an effort to better account for the spatial heterogeneity of the flow

configuration.

3.3.4 Strain clock

For the bidisperse sample, we have noted throughout the previous subsection that

there is more nonaffine motion near the top right corner, where there is more shearing.

Given that the strain rate is not spatially homogeneous, one can conjecture that the

data are confounded by the specific locations of the particles. To quantify this, we

need to define a local strain rate. We can then compare the data which uses the fixed

time interval ∆t0 = 5 s to define displacements and the data calculated using a fixed

strain increment. We will first consider our fixed ∆t0 and examine the local strain

rate.

The starting point is the mean displacement field ∆r⃗mean(x, y,∆t) where now we

explicitly include the ∆t dependence. We then use the following equation to calculate

the strain tensor:

DFi,j(x, y,∆t) =
∂∆ri(∆t)

∂rj
(3.9)
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Figure 3.13: Color maps for ∆t = 5 s, Fig.(a), |DF (∆t = 5 cm)|, Fig.(b) and |D2
min(∆t =

5 cm) on the top row. On the bottom row we show the quantities but with ∆t(x.y),
Fig.(d), such that |DF (∆t(x, y))| ≈ df0, Fig (e). The final color map, Fig.(f) corresponds
toD2

min(∆t(x, y)). We see at the top row thatD2
min is strongly correlated to |DF (∆t = 5 s)|,

while in the case for ∆t(x, y), the time interval matrix correlates strongly to D2
min(∆t(x, y)).

In this last case we manage to obtain a somewhat more spatially homogeneous matrix closer
to the center areas.
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where i, j are the spatial coordinate indices and ∆ri(∆t) is the displacement in the i

coordinate for a time step ∆t. This tensor contains information on the strain of the

flow of the particles and is the non-symmetric version of the Cauchy strain tensor.

To measure the total strain at a given position, we calculate the Frobenius norm of

the strain tensor:

|DF (x, y,∆t)| =

√√√√∑
i,j

(
∂∆xi(∆t)

∂xj

)2

. (3.10)

This then is a scalar which quantifies the amount of strain occurring over the time

scale ∆t at each location (x, y).

Figure 3.13(a-c) shows the results for fixed ∆t. Panel (a) shows ∆t and is uniform,

reflecting that ∆t is constant. Panel (b) shows that there are regions of high strain,

especially near the upper right corner. The lower right inlet region is not shown, as this

region is mostly plug flow and uninteresting (|DF | ≈ 0). Panel (c) then shows that

for fixed ∆t, indeed much of the nonaffine motion measured by D2
min/⟨R⟩2 is located

in the regions with large |DF |. The diagonal from lower left corner to upper right

corner has more strain: as shown in Fig. 3.5, the velocity is changing direction and

magnitude in this diagonal region. Naturally, particles will be required to rearrange,

and Fig. 3.13(c) confirms that D2
min/⟨R⟩2 is larger here.

To consider the case of constant strain interval rather than constant time interval,

we return to the |DF (x, y,∆t)| data. We then define ∆t(x, y) through |DF (x, y,∆t)| =

df0 = 0.1, where df0 is a small strain. The choice of df0 is somewhat arbitrary, but

is chosen so that a good portion of ∆t(x, y) is a comparable order of magnitude to

∆t0 = 5 s. ∆t(x, y) is quantized by our imaging rate (6 images per second), so in

practice we find the ∆t(x, y) that minimizes the difference between |DF (x, y,∆t)|

and df0. ∆t(x, y) is shown in Fig. 3.13(d), where a strong dependence on position

is apparent. Near the bottom right where there is plug flow, and near the top left

where there is also a small region of plug-like flow, ∆t must be large to achieve any



93

significant local strain. By allowing ∆t to depend on the position, we achieve our

goal |DF | ≈ df0, as shown in panel (e), with residual noise due to the quantization

of ∆t.

Next, we calculate ∆r⃗NA/⟨R⟩ and D2
min/⟨R⟩2 for all particles and use the entire

range of time scales ∆t. Finally, we examine D2
min(x, y)/⟨R⟩2 where at each (x, y)

we use the data calculated with ∆t = ∆t(x, y) to ensure the strain increment is df0.

The results for D2
min(x, y)/⟨R⟩2 are shown in Fig. 3.13(f). The resulting D2

min is a

smoother function of (x, y).

For much of the channel, this confirms that D2
min/⟨R⟩2 is to an extent determined

by the amount of strain that occurs at a given position. The exception is the top left

region, which has a patch where little strain occurs: the particles in this location tend

to move in a group at constant velocity. This causes D2
min to be larger nearby and

within this group. To exclude this region from the subsequent analysis, we will restrict

our attention to locations with ∆t ≤ 17 s. This excludes the plug-flow region at the

bottom right inlet location, as well as the center of the dark patch in Fig. 3.13(d).

As just discussed, having ∆t(x, y) we can calculate ∆r⃗NA/⟨R⟩ and D2
min/⟨R⟩2 for

all particles based on a fixed strain increment df0. We then average over all particles

within a given sample and plot these averages as a function of the polydispersity of

the corresponding size distribution in Fig. 3.14. Similar to Fig. 3.11(a), ∆rNA/⟨R⟩ is

not dependent on polydispersity. Similar to Fig. 3.11(b), D2
min/⟨R⟩2 shows a positive

relation with polydispersity. In this case we find D2
min/⟨R⟩2 = mδ+ b with m = 0.09.

The different value from the Fig. 3.11(b) result are because the magnitude of D2
min

depends strongly on the choice of ∆t (or df0), as shown in Fig. 3.12(b), so we do

not expect a strict equivalence here. The point, instead, is that analyzing the data

using a fixed strain increment leads to a similar result as the analysis with a fixed

time increment and shows that the spatial heterogeneity of our flow is not a critical

confounding factor.



94

For much of the channel, this confirms that D2
min/⟨R⟩2 is to an extent determined

by the amount of strain that occurs at a given position. The exception is the top left

region, which has a patch where little strain occurs: the particles in this location tend

to move in a group at constant velocity. This causes D2
min to be larger nearby and

within this group. To exclude this region from the subsequent analysis, we will restrict

our attention to locations with ∆t ≤ 17 s. This excludes the plug-flow region at the

bottom right inlet location, as well as the center of the dark patch in Fig. 3.13(d).

As just discussed, having ∆t(x, y) we can calculate ∆r⃗NA/⟨R⟩ and D2
min/⟨R⟩2 for

all particles based on a fixed strain increment df0. We then average over all particles

within a given sample and plot these averages as a function of the polydispersity of

the corresponding size distribution in Fig. 3.14. Similar to Fig. 3.11(a), ∆rNA/⟨R⟩ is

not dependent on polydispersity. Similar to Fig. 3.11(b), D2
min/⟨R⟩2 shows a positive

relation with polydispersity. In this case we find D2
min/⟨R⟩2 = mδ+ b with m = 0.09.

The different value from the Fig. 3.11(b) result are because the magnitude of D2
min

depends strongly on the choice of ∆t (or df0), as shown in Fig. 3.12(b), so we do

not expect a strict equivalence here. The point, instead, is that analyzing the data

using a fixed strain increment leads to a similar result as the analysis with a fixed

time increment and shows that the spatial heterogeneity of our flow is not a critical

confounding factor.

3.4 Conclusions

In this chapter we have explored how polydispersity affects nonaffine displacement

and particle rearrangement in granular flows. Consistent with previous work that

studied similar systems [32, 144], we find that large particles tend to move similarly

to mean flow, as they average over the forces from the many discrete particles they

are contacting. This then disrupts the flow of smaller neighboring particles, which
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(b)

(a)

Figure 3.14: (a) ∆rNA/⟨R⟩ and (b) D2
min/⟨R⟩2 as a function of polydispersity for all size

distributions. In this figure ∆rNA/⟨R⟩ and D2
min/⟨R⟩2 are calculated for each particle using

∆t(x, y). In contrast, Fig. 3.11 shows similar results using a fixed ∆t = 5 s. The dashed
line in (b) is a least-squares fit to the data; see text for details.
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need to navigate around the larger particles, thus causing the smaller particles to

move nonaffinely.

These observations are true even for the bidisperse case, highlighting that even

when the two particle sizes are quite similar (size ratio 1 : 1.5 in our case), there is

nonetheless a measurable difference in their nonaffine motion. Increasing the polydis-

persity of the particle size distribution quantitatively increases the observable effects.

As polydispersity changes from 0.20 to 0.48, D2
min/⟨R⟩2 increases by nearly 30%

[Fig. 3.14(b)]. For broad size distributions with particle sizes varying by a factor of 5,

Fig. 3.8 shows the largest particles have on average a magnitude of nonaffine motion

|∆r⃗NA| that is 16% smaller than that of the smallest particles; and likewise while the

data are noisier, D2
min is smaller for the larger particles. Finally, Fig. 3.10 shows that

the smallest particles barely perturb the motion of their neighbors, whereas the largest

particles significantly enhance the nonaffine motion in their immediate vicinity. The

range of this enhancement is fairly short, about 2-3 small particle diameters.

Our analysis shows some differences between globally nonaffine motion (∆r⃗NA) and

locally nonaffine motion (D2
min). The former compares particle motion to the spatially

smooth mean flow, whereas the latter compares particle motion to a flow defined

locally in space and time. The globally nonaffine motion is not significantly influenced

by the particle polydispersity, suggesting that enhanced nonaffine motion for smaller

particles is balanced by a decreased nonaffine motion for the larger particles. The

locally nonaffine motion has the dependence on sample polydispersity. Both types of

nonaffine motion are strongly enhanced in the presence of large particles. As noted

in prior work, this implies that mixing can be enhanced in these mixtures of particle

sizes [32].

We also see that while large and small particles play different roles, it appears

that polydispersity is the most significant factor determining the results; the size ra-

tio Rmax/Rmin between the largest and the smallest particles matters less. This is
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seen in the comparison of tridisperse distributions with fixed particle sizes but differ-

ing polydispersity, where polydispersity changes the results in a predictable way. In

contrast, data from size distributions with different Rmax/Rmin but matched polydis-

persity have essentially equivalent results.

In summary, we find that the flow of highly polydisperse materials is dramatically

more complex than the flow of less polydisperse materials. This suggests that mod-

els of localized rearrangements in the flow of amorphous materials may need to be

adjusted to account for the roles of particle size and overall polydispersity [28, 154].

Not all particles are equivalent; not all particle size distributions are equivalent.
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Chapter 4

Clogging of cohesive particles in a

two-dimensional hopper

We investigate the clogging of frictionless cohesive particles in a two-dimensional

hopper using simulations and experimental data. The magnitude of the effective

gravitational force, the cohesive strength between droplets, and the size of the hopper

opening are varied. We find that stronger cohesion leads to enhanced clogging. These

results are confirmed both in simulations and experiments. We also investigate the

number of particles that can flow before a clog occurs and find that increasing cohesive

strength decreases the number of particles which escape the hopper. By balancing the

effective gravitational force with the cohesive strength we obtain a cohesive length

scale which we find can effectively collapse our data onto a single curve. These

results indicate that, for cohesive granular materials, particle size alone is insufficient

to describe clogging and a cohesive length scale must be be taken into account.

4.1 Introduction

Hoppers and silos have widespread usage in a variety of industries[55, 155, 156],

which makes the flow of granular materials through constricted outlets a widely re-
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searched subject, with a focus in the clogging of these systems and the clogging

frequency[45, 47, 48, 157–161]. Often times the ratio of the hopper opening to the

particles’ diameter, w/d is used as a parameter to characterize clogging[48, 161]. How-

ever, there remain a wide variety of parameters known to affect the flow and clogging

in a hopper besides particle size and exit width, such as friction [162–164], particle

softness [52, 101, 165–168], particle shape [51, 169–171], effective gravity [8, 172, 173]

and hopper angle [174–176].

Inter-particle cohesive interaction is an often observed phenomena in granular

materials. There can be multiple causes for this behaviour, for example in small pow-

ders, electrostatic and Van der Waals forces will create an attractive force between the

particles[53]; in larger particles, cohesion can arise due to liquid capillary bridges [54].

These cohesive forces can significantly impact flow properties [55, 56, 177]. While co-

hesion is an important parameter, it is typically difficult to control. Recently, Gans

et al. have developed a ‘cohesion controlled granular material’ and have used this

experimental model system to study the impact of cohesion on properties of granular

materials including the flow rate of materials through a silo [178, 179]. These results

indicate that, for systems with a cohesive component, the use of cohesion length scale

was needed to describe the characteristics of the flow[179]. Additionally, Zhang et

al. investigated the clogging of wet granular materials and found that liquid cohesion

increasing clogging probability, which could be predicted using an effective aggregate

size instead of the particle size [180].

In this chapter, we study the flow of cohesive particles through a quasi 2-D hopper.

We will use simulations as well as experiments done by our collaborators, to study

the flow dependence on various conditions including hopper width opening, effective

buoyancy, the inter-particle cohesion, and the size distribution of the particles in the

hopper.

The following chapter will be split in 2 sections. Section 4.2 will detail the methods
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used in the experiments, as well as the numerical methods utilized in the simulations.

In Section 4.3 we will analyze the out-flowing particle mass, as well as the clogging

probability for different depletion strengths and effective gravity.

4.2 Methods

4.2.1 Computational methods

As in Chapter 2, for the simulations of the hopper we use a quasi 2D “Durian bubble

model” [87], as modified in Refs. [21, 52], where we have added gravity to the forces

being simulated. This model considers soft particles with large viscous forces acting

on them, such that all other forces balance the viscous drag force. Thus at each time

step the equations of motion are solved for the velocity rather than the acceleration.

For each particle i the equation to solve is:

∑
j

[
F⃗ contact
ij + F⃗ visc

ij

]
+ F⃗wall

i + F⃗ grav
i + F⃗ drag

i = 0, (4.1)

where F⃗ contact
ij is the contact force between droplets i and j, as seen in Eq. 2.1:

F⃗ contact
ij = f0

[
1

|r⃗i − r⃗j|
− 1

|Ri +Rj|

]
r⃗ij. (4.2)

Here r⃗i is the position of the i droplet, with radius Ri, and f0 is the spring constant of

a droplet. F⃗ visc
ij is the viscous interaction between two contacting droplets, referring

back to Eq. 2.2:

F⃗ viscous
ij = b(v⃗i − v⃗j), (4.3)

with b being the viscous coefficient, and v⃗i the velocity of a given particle. This force

acts on each droplet in a direction that tries to bring their velocities into agreement:

for example, if droplet i is motionless then the viscous force from droplet j acting on
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i is in the direction of vj. We also define the viscous drag on a the bubble i as:

F⃗ drag
i = −bvv⃗i (4.4)

where b is the same constant used for F⃗ visc
ij . As with the forces previously mentioned

in this chapter, the adhesive depletion force is calculated in the same way as in chapter

2, Eq. 2.5, based on the Asakura-Oosawa model [99]:

F⃗ dep
ij =

ϕc

8a3s

∂Voverlap(rij, R
′
i, R

′
j)

∂rij
r̂ij, (4.5)

where ϕc is the constant related to the depletion strength, and is analogous with the

micelle concentration Cm in the experiments. R′
i is defined as R′

i ≡ Ri + as, where

as = 1/20 is the depletant radius. Finally ∂Voverlap/∂rij is the overlap between two

particles. F⃗wall
i acts on droplets which overlap the wall and includes a repulsive force,

an attractive depletion force, and a viscous force. The forces previously mentioned

were discussed in further detail in chapter 2.

In addition we also must include the gravitational pull on a droplet:

F⃗ grav
i = −ρgR3

i ŷ, (4.6)

where we set ρ = 1 as the droplet’s density, and g is the gravitational constant which

drives the particles through the hopper exit. Additionally we must also calculate the

depletion forces at the hopper exit, which is non trivial due to asymmetric geometry.

The calculations are based on the overlapping volume of a sphere with radius R′ =

R+ as and a triangular prism, which results in a repulsive force away from the point

at the hopper exit.

The time step is defined by t0 = b⟨R⟩/2f0, which is the timescale for two droplets

to push apart, limited by inter-droplet viscous interactions. To best match our ex-

perimental counterpart, we generate 190 particles with a hopper wedge at an angle
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of 45◦, and a droplet polydispersity set at 0.01. The width of the hopper openings

ranges from w = 4R in the lowest depletion case to w = 15R for the highest deple-

tion case. A simulation is initialized by generating the particles at random positions

above the hopper exit, which are then allowed to free fall towards the exit and settle.

Once the particles are static, the hopper exit is opened. Eq. 4.1 can be rewritten as

a first order differential equation for the velocity, which is solved using a fourth-order

Runge-Kutta algorithm and a time step of t0 = 0.05, as previously stated. Simula-

tions end when all droplets have exited the hopper, or when the maximum speed of

all particles in the hopper is below 10−12; the latter case defines a clog. For these

simulations the choice of parameters for depletion strength and gravity were made

based both on previous simulations involving cohesive forces in Chapter 2[21], and

hopper simulations[52], with the overall goal of maintaining a range of parameters in

line with the experiments. One set of simulations keeps g = 0.01 constant and varying

the width of the opening w and depletion strength ϕc, from ϕc = 0 to ϕc = 3×10−4. A

second set of simulations keeps w/⟨R⟩ = 3 constant and varies g and ϕc. In Fig. 4.1(a)

we show a representative image of the hopper simulations where the flow has stopped

due to a clog.

4.2.2 Experimental methods

Experimentally, the role of the inter-particle interactions is investigated using mono-

disperse cohesive oil droplets as a model system. Our collaborators, Johnathan Hog-

garth and Kari Dalnoki-Veress at McMaster University, vary the size of the droplets,

the size of the hopper opening, the cohesion between the droplets, and the effective

buoyancy.

In previous studies, Ono-dit-Biot et al. developed a model system using oil

droplets in a surfactant solution to control inter-particle cohesion of a frictionless

system [18, 20], which chapter 2 replicated and expands upon. The surfactant has
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(c) (d)

(b)

Figure 4.1: (d) Representative image showing a clog in simulations, with a colour
overlay: Red droplets indicate the clogging arch, blue droplets represent remaining
droplets, yellow droplets remain attached to the aggregate due to cohesion. In this
particular simulation w/d = 3.25, and w/δ = 5.00. (b) Representative experimental
image showing a clog, with w/d = 8.8 while w/δ = 2.86±0.07. (c) Side and top view
schematic diagram of the experimental chamber. Droplets are deposited and float
to the bottom of the top slide while the chamber is held horizontal. (d) During the
experiment, the chamber is rotated to a desired tilt angle which drives the droplets
due to the buoyant force.
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two roles in the system. First of all, the surfactant stabilizes the droplets against

coalescence. Second, when added in excess, the surfactant forms micelles which act

as a depletant causing an attractive interaction [18, 181, 182]. Critically, the con-

centration of surfactant allows for precise control of the cohesive force by tuning the

concentration of micelles within the solution without the need to change any other

system properties.

Experimentally, a quasi-2D hopper is made by coating a glass slide with a ∼100

µm layer of SU-8 photoresist and photolithography is used to pattern a hopper with

walls at 45◦ angles. For the experiments, the hopper opening width spanned from 100

µm to 500 µm, with most experiments performed at 150 µm or 200 µm. Experimental

chambers are made by sandwiching a 3D printed spacer between the slide with the

2D hopper and a glass microscope slide. A schematic diagram of the experimental

chamber is shown in Fig. 4.1 (c) and (d). The chamber is placed on a rotation stage

such that hopper can be rotated to a specific tilt angle. Additionally, a camera is

placed on the same rotation stage such that the hopper remains in focus regardless

of the angle.

Chambers are filled with an aqueous solution of the surfactant, sodium dodecyl

sulfate (SDS), and sodium chloride (NaCl) to screen ionic interactions. The concen-

tration of SDS varied from 7 mM to 265 mM while the concentration of NaCl was

held constant at 1.5% (w/w). SDS micelles act as a depletant which causes an attrac-

tive interaction between oil droplets that increases linearly with the concentration of

micelles, Cm [18, 181, 182]. The droplets rise in the chamber due to buoyancy and fill

the hopper. The chamber is initially held horizontally and droplets are deposited in

a loosely packed pattern. After 190 ± 5 droplets have been deposited, the pipette is

removed away from the hopper and the chamber is rotated to a desired tilt angle, θ,

which initiates the flow of droplets through the hopper. Droplets are monitored over

time for the presence of clogs. A representative image of an experiment where a clog
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occurred is shown in Fig. 4.1 (b). Once all the the droplets flow through the hopper,

or if a clog is detected, the experiment is considered completed and the chamber is

rotated past 90◦, which clears the chamber of the droplets. Once the hopper is emp-

tied, the chamber is rotated back to horizontal and the process of filling the hopper

with droplets is repeated. The process of filling the hopper with droplet, tilting to

run an experiment, and emptying once complete, was fully automated and repeated

20 times for a specific set of parameters.

4.3 Results

We first investigate the combined impact of the effective gravitational forces and co-

hesion by observing clogging probability using different g and ϕc parameters, while

keeping the width to droplet diameter constant at w/d=3. In Fig. 4.2 (a) we show

Pclog as a function of g, for a variety of different depletion strengths. We see that

for a constant cohesion strength (corresponding to a single curve), an increase in

the gravitational forces corresponds to a decrease in the clogging probability. We can

additionally compare the same g value for different values of ϕc, and find that increas-

ing cohesion increases the clogging probability. These results are physically intuitive:

increasing the gravitational force destabilizes a potential arch, thus decreasing the

potential to clog. Furthermore, increasing the cohesive strength stabilizes arches and

increases the likelihood of a clog. We can compare these results to those obtained by

our collaborators through experiments, Fig. 4.2(b). To vary the effective gravitational

forces, our collaborators tilt their hopper at different angles θ, resulting in an effective

buoyancy of

Fg =
4π

3
R3∆ρgexp sin θ, (4.7)

where gexp = 9.8m/s2 is the gravitational acceleration, ∆ρ is the different in

densities of the oil droplets and water, and R is the droplets radii. Cohesive strength
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(a) (b)

(d)(c)

Figure 4.2: Clogging probability of (a) simulations and (b) experiments with w/d =
3.0 for a range of cohesive strengths as a function of strength of the effective gravita-
tional forces g, and effective buoyant forces sin θ. Solid lines represent fits of Eq. 4.8 to
the data. The value of the driving force where the probability of clogging is Pclog = 1/2
as a function the cohesive strength is shown for c) simulation and d) experiment.

is varied through the micelle concentration Cm. As in Fig. 4.2(a) for a constant

cohesion strength, an increase in effective buoyancy results in a decrease clogging

probability.

We use a sigmoidal function to fit both the simulation and experimental data:

Pclog =
[
1 + e(g−g0)/α

]−1
, (4.8)

where g0 represents the value at which the gravitational force results in Pclog = 0.5

and α is a measure of the width of the transition. For the experiments sin θ and Cm

are varied, which are analogous to the simulation parameters through g ↔ sin θ and

ϕc ↔ Cm. In Eq. 4.8 the argument in the exponential, (g−g0) becomes (sin θ−sin θ0)
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for the experiments. We then plot the points corresponding to Pclog = 0.5, g0 and

sin θ0 as a function of ϕc and Cm, in Fig. 4.2 (c) and (d), respectively. The trend

for both simulation and experiment is monotonically increasing, which is expected:

for the probability of clogging to remain constant (Pclog = 0.5), the force driving the

droplets though the hopper must increase with increasing cohesion, which is reinforces

clogging mechanisms.

To capture the interplay between the driving gravitational forces and the cohesive

forces in our systems we will use the ‘granular capillary length’, δ. This cohesive

length scale was proposed by Ono-dit-Biot and co-workers [18], and sets a balance

between inter-particle cohesion and the effect of gravity. The cohesive granular length

is analogous to the capillary length associated with liquids and is defined by:

δ =

√
A
ρg

, (4.9)

where ρ is the effective density (ρ = 1 for our simulations, and ρ = ∆ρ for the exper-

iments). For the experiments g in Eq. 4.9 is g = gexp sin θ, while in our simulations,

our g in Eq. 4.6 is the same g in Eq. 4.9. A is the cohesive force per unit length,

analogous to the surface tension in a continuous liquid, and is defined by:

A =
Fc

Rπ
. (4.10)

Where R is the droplet radius, and Fc is the force needed to pull apart two bubbles.

For our simulations we calculate Fc using Eq. 2.12, the equilibrium separation deq,

for two droplets at given ϕc, and inserting it into Eq. 2.5. Our collaborators obtain

A by directly measuring Fc. Previously, the granular capillary length has been used

to describe the spreading of oil droplets in both two- and three-dimensions [18, 183].

We note that for the simulations, when the force needed to separate two droplets,Fc,

is equal to a single droplets weight, is when the depletion forces are strong enough
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to hold one droplet. Using Eqs. 4.6, 4.9 and 4.10, we can obtain the value of δ for

which Fc = Fg, which results in δ = (
√
π)−1 ≈ 0.6.

We next vary the vary the opening width for a variety of depletion strengths, while

keeping g constant. In this manner we probe the direct effect that varying depletion

strength has on the clogging probability. For this data set we will again use a sigmoid

formula, similar to Eq. 4.8, but with a w/d dependence:

Pclog =
[
1 + exp ((w/d− w∗/d)α−1)

]−1
, (4.11)

where w∗ is the opening width for which Pclog = 0.5, and as before α is the approx-

imate width of the transition. In Fig. 4.3 we show Pclog as a function of w/d for

different ϕc values, where we have used Eq. 4.11 to fit the data for each ϕc value.

Similar to what we observed for Figs. 4.2, as the depletion strength increases, the

hopper must have a wider exit. These results are physically intuitive: increasing the

cohesive strength stabilizes any potential arches, thus increasing the potential to clog.

Furthermore, widening the hopper exit makes the formation of any arches less likely

and decreasing the probability of a clog.

Having obtained the w∗ from the data set shown in Fig. 4.3, using Eq. 4.11, we

plot these points as a function of δ, as shown in Fig. 4.4. As hinted by Fig. 4.3, w0

grows with δ, albeit very slowly for δ < δ(ϕc = 7.5 · 10−5), showing that depletion

has minimal effect on clogging. On the other hand for δ > δ(ϕc = 7.5 · 10−5), we

see a rapid increase in clogging probability as δ increases. These two behaviours are

indicators of different physics affecting the clogging probability. As we mentioned

previously, δcrit ∼ 1 is when the depletion and gravitational forces are at equilibrium

for a pair of droplets. Therefore, it is intuitive that we see a change in behaviour

around this value of δ, and this is seen in Fig. 4.4, for δ(ϕc = 7.5 · 10−5) = 0.90. We

then fit each of these data points separately. For the high depletion rate the clogging
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Figure 4.3: Clogging probability for a range of cohesive strengths as a function of the
hopper opening width over the droplets diameter(w/d), for constant g. Solid lines
represent fits of Eq. 4.11 to the data. For increasing ϕc wider hopper exits are needed
in order to avoid clogging, meaning that the particles clog easier if they are more
cohesive.

probability is mostly dominated by the cohesive forces and we have fit the opening

width linearly, with w∗
high = mhighδ, with mh = 5.92. On the other hand for the low

depletion regime, we use the mean value of the opening widths such that, w∗
low = 5.19.

This is due depletion effects being negligible in this range. For convenience we will

redefine δ∗ as a split function for high and low cohesion cases as follows:

δ∗ =


Clow for δ < δcrit

δ for δ > δcrit.

(4.12)

where Clow = 5.19/mhigh ≈ 0.87598213 ∼ R, and we define δcrit to be at the intersec-

tion of our two fits:

δcrit = Clow = 0.876. (4.13)

Our collaborators experiments are all in the high depletion regime, where δ > δcrit.

Having a better understanding of the effect of cohesive and driving forces on the
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*

Figure 4.4: w∗/d as a function of δ. Close to δ ≈ 1 there’s a change in the behaviour
for w∗/d, as we expected. We have therefore chosen to fit these behaviours differently.
The black dashed line represents the linear fit for low cohesion, while the red dashed
line is the linear fit for high cohesion.
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clogging probability, we now turn to the impact on the amount of particles that exit

the hopper before a clog occurs. Experiments and simulations were performed with

various values of the driving force and cohesive strengths while changing w/d. We

characterize the flow of the droplets by finding the number of particles which flow

through a hopper prior to a clog, or the mean avalanche size, ⟨s⟩. Typically, ⟨s⟩ is

plotted as a function of w/d in cases where cohesion is negligible [161]. However, for

our system with strong inter-particle cohesion, we propose that the critical length-

scale that determines clogging is not the droplet diameter d, but rather the cohesive

length scale δ∗, which will collapse our data for the clogging probability. We note

that this assumption is consistent with observations made by Gans et al. when

investigating the flow of cohesive particles through a silo [179] and other works [18,

20, 21, 183]. We further justify the use of this length scale because as the cohesion

is increased the relevant parameter is not the droplet size, but rather the size of

cohesively stabilized aggregates which depends on buoyancy and cohesion – one can

think of a small stable aggregate as re-normalizing w/d to w/δ∗ since d is no longer

the relevant parameter. For our simulations the droplet diameter is d = 2R = 2, and

our values for δ range from 0 to 1.9. Additionally, we have performed simulations

at ϕc = 10−4 and g = 0.01, with N = 95 and N = 285. To be able to compare

avalanche sizes for different droplet numbers, the avalanche size has been normalized

and then multiplied N = 190, since most simulations use this number of droplets.

In our collaborator’s experiments the droplet diameters range from 52 µm to 67 µm,

and the values of δ range from 30.5± 0.3 µm to 260± 10 µm [18].

A plot of ⟨s⟩ as a function of w/δ is shown in Fig. 4.5 (a) and (b) for simulations

and experiments, respectively. For both data sets, the number of particles present

within the hopper is a limiting factor and therefore our plot in Figs. 4.5 show a plateau

at an avalanche size of 190 droplets. The plateau does not imply that we have reached

a critical value for which clogging never occurs, but instead have reached a region
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(a)

(c) (d)

(b)

Figure 4.5: Figs. (a) and (b) show the mean avalanche size before a clog occurs plotted
against the dimensionless ratio w/δ∗, for simulations and experiments, respectively.
The solid line is a fit to Eq. 4.17. Figs. (c) and (d) shows ln(⟨s⟩+ 1) as a function of
w/δ∗, for simulations and experiments respectively. Using Eq. 4.18 we were able to fit
the data, dashed lines in Figs.(c) and (d), and obtain the parameter to plot Eq. 4.17
in Figs.(a) and (b). Dashed lines show a plateau at 190 droplets. For the simulations
the empty symbols are data point with variable g, whereas the stripped data points
are simulations with N = 95 for the circles, and N = 285 for the squares.

where the probability of clogging for our small number of particles vanishes.

In previous studies of 2D hopper flow of cohesionless particles, Janda et al. pro-

posed a model to describe the average avalanche size as a function of the dimensionless

ratio of hopper opening to particle size, w/d [47]. They proposed that the probability

that an avalanche will contain s particles is

nw/d(s) = ps(1− p) (4.14)
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where p is the probability of a single particle passing through the hopper opening. It

is assumed that each particle acts independently of each other. The average avalanche

size can be written as

⟨s⟩ = 1− p

p
. (4.15)

The clogging probability is dependent on a particle being able to form a stable arch,

which in turn is dependent on the size of the particle and hopper opening. Using the

results from two different simulation techniques [184, 185] leads to an equation for

the probability of a particle to clog:

1− p = A exp (−Bx2), (4.16)

where A and B are fitting parameters and x = w/d is the dimensionless ratio of the

hopper opening compared to droplet size. The average avalanche size can then be

obtained from Eqs. 4.14 through 4.16 as:

⟨s⟩ = A−1 exp
(
Bx2

)
− 1, (4.17)

In the work by Janda et al. using non-cohesive particles, x = w/d, which is

modified to x = w/δ∗ for the cohesive particles of this chapter, shown in Figs. 4.5

(a) and (b). Eq. 4.17 can also be rewritten as a linear equation which expresses the

mean avalanche size as:

ln (⟨s⟩+ 1) = lnA−1 +Bx2. (4.18)

We plot ln (⟨s⟩+ 1) as a function of (w/δ∗)2 in Fig 4.5 (c) and (d) and use Eq. 4.18

to obtain fit parameters A = 0.12± 0.03 and B = 0.029 ± 0.001 for simulation data

and A = 0.4± 0.1 and B = 0.70± 0.09 for experimental data. When fitting our data

we use values for which ⟨s⟩ is less than 75% of the total particles in the hopper as

this lets us focus on the region where the plateau has less influence on our data. The
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ability of our data to collapse onto a master curve as well as the goodness of fit to

Eq. 4.17 and 4.18, when using the ratio of the width to the cohesive length, w/δ∗,

justifies the assumption that this non-dimensional length scale describes the clogging

process of cohesive particles.

To further investigate the importance of w/δ∗ to our system, the probability of

clogging as a function of w/δ∗ is plotted in Fig. 4.6. Similar to the treatment of ⟨s⟩,

using w/δ∗ collapses our data onto a single master curve. Taking further influence

from Janda et al.[47], the probability of clogging for a hopper containing N particles

is:

Pclog = 1− exp (−N/⟨s⟩). (4.19)

By substituting ⟨s⟩ with Eq. 4.17 and using x = w/δ∗ in Eq. 4.19 the probability of

clogging can be written as:

Pclog =
[
1− exp

(
−NA exp(−B(w/δ∗)2)

)]
. (4.20)

Where N = 190 is the number of particles in the hopper, and A and B are the same

fit parameters found in Eqs. 4.17 and 4.18. We find that Eq. 4.20 is a satisfactory

description of the data. The agreement between the theory, the simulation and ex-

perimental data further confirms that the critical parameter describing clogging is

given by w/δ, for high cohesion systems.

4.4 Conclusions

In conclusion, we have observed the clogging of frictionless cohesive particles in a 2D

hopper and outlined the impact of the cohesive strength and effective buoyancy on

the ability for the particles to flow. We find a clear positive correlation between the

cohesive strength and the probability of clogging. Furthermore, we have demonstrated
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(a)

(b)

Figure 4.6: Probability of clogging as a function of w/δ∗. The data for both simu-
lations and experiments collapses onto one master curve. The dashed line represents
a fit to Eq. 4.20 using A = 0.12 ± 0.03 and B = 0.029 ± 0.001, for the simulations,
and A = 0.4± 0.1 and B = 0.70± 0.09 for the experiments. For the simulations the
empty symbols are data point with variable g, whereas the stripped data points are
simulations with N = 95 for the circles, and N = 285 for the squares.
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that a fundamental cohesive length scale which can be obtained by balancing the

cohesive strength with the effective buoyant force is critical to describing clogging.

The transitions between the low and high depletion clogging regimes occurs at δcrit =

0.89, which is close to the δ for which a droplet can hold the weight of another

droplet through depletion. When plotting both the mean avalanche size and the

clogging probability as a function of a dimensionless ratio w/δ∗, our data collapsed on

a master curve underscoring the importance of cohesion in hopper flow. Additionally,

previously derived equations by Janda et al., which used the hopper width to droplet

diameter ratio w/d, can be used to described our data accurately by using w/δ∗ in

place of w/d. Critically, when examining flow through large hopper opening sizes,

such as in the simulations shown in Fig. 4.1(a), although the hopper opening is

w/d = 3.25 and significant clogging would not be expected for cohesionless systems,

the cohesion in our system leads to a value of w/δ∗ = 2.50, and we observe clogging

occurring readily. Of note is that the simulation and experimental data do not collapse

into each other despite δ∗ successfully collapsing each data set separately. This is most

due to the systems having different particle characteristics which are known to affect

clogging, mainly the softness of the particles[52, 101]. Finally we assert that when

cohesion is strong between particles, the relevant length scale to predict clogging can

no longer be obtained through the particle diameter, but instead a cohesive length

scale needs to be taken into account.



117

Chapter 5

Conclusions

The study of the plastic deformation of materials under stress has been a subject

of extensive research for centuries. Due to their large presence in the industrial and

natural world better understanding how these materials react is incredibly impor-

tant. For example, natural disasters like avalanches and mudslides are amorphous

systems in which a material is plastically deformed under stress, and then continue

to flow as granular material. Understanding the mechanism in which these events

are triggered and being able to predict when they could happen is invaluable. On

the other hand, in an industrial setting, understanding when a brittle material will

fail under load is of extreme importance, and so is understanding the flow of gran-

ular particles. As an example, understanding the flow of particles through a bottle

neck can potentially save resources and avoid industrial accidents, but can also be

used to improve evacuation times in largely crowded venues. My goal is to better

understand these materials at the particle length scale, that is to say, what are the

properties of individual particles, and how these properties affect the behaviour of

the system as a whole. However the field studying this subject is enormous. If each

Chapter in this dissertation where to be a single pebble, then the whole field would

be a mosaic. With each added piece helping create a better, more brilliant picture.
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In my first project, Chapter 2, we investigated the response of a simulated brittle

quasi 2D material under compression, and how changes in the size, aspect ratio of

these materials, and the polydispersity its constituent particles, affect the response

the system has to external compressive stress. As a reminder, we simulated a 2D

array of droplets with attractive interactions as they are compressed between two

walls. Using this method we show that elastic properties of the droplet arrays are

related to the intrinsic spring constant acting between a pair of contacting droplets.

The attractive interactions between the droplets increase the overall stiffness of the

array. We also confirm that the force requires to initiate a fracture event, a plastic

deformation, scales with the aggregate size. Thirdly we found that increasing the

polydispersity in the system dramatically increases the number of fracture events,

while decreasing the force needed to initiate those fractures. We found that adding

in any density of defects in an otherwise monodisperse hexagonally packet crystal,

dramatically increases the ease of breaking the crystal. The results of these work are

consistent with previous experimental work[19, 20], and help better understand the

properties of various crystal and glassy materials, and how the presence of defects can

affect their response to external stress. I believe this simulation method to be robust

enough to be easily expanded to 3D arrays, which can be achieved by adding the same

equations of motion already used in a third direction, and appropriately expanding

the arrays containing the particles positions and velocities. Additionally this code can

also be used to study a materials response to extensional and torsional stress, which

can be done by simply reversing the direction of the walls, for extensional stresses,

or once the 3D code has been implemented, by twisting the particles adjacent to the

wall about a center point in the wall. Doing so would allow us to probe the response

of materials such as bulk metals, crystals and glasses. Modifying the simulation to

achieve this goals is not a particularly complex task, and improving the computational

speeds, coupled with improved hardware would permit the simulation of even larger
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arrays. On the other hand larger forces which could deform particles would not be

well suited for this code, and even with more efficient code and improved hardware,

arrays more than an order of magnitude higher could prove to be extremely slow to

simulate. In summary we have provided a simulation framework in which various

crystal and glassy structures can be proved under a variety stresses. Additionally

we have shown the relation between the particles properties and particle distribution

properties, and various properties relating to fracture events in the crystal and glassy

arrays.

My second project focused on the 2D flow of acrylic disks, and how polydispersity

affected the properties of the flow. Consistent with previous work that studied similar

systems[32], we found that large particles tend to move more with the overall flow

of their vicinity, due to being subjected to the average motion of all their neighbors,

but simultaneously disrupt the flow of smaller neighboring particles. This smaller

particles need to navigate around their larger particles neighbors. We verify this by

measuring the non-affine displacements and D2
min in the immediate vicinity of all par-

ticles, and separately based on a particle’s size. We found this effect to be visible for

the studied particle size distributions. Furthermore, we found that local non-affine

behaviour (D2
min) is strongly affected by the polydispersity of its constituent particles’

size distribution, with the size ratio between particles playing a minor role in com-

parison. On the other hand the global non-affine motion(∆r⃗NA) is not significantly

influenced by the particle polydispersity, suggesting that enhanced nonaffine motion

for smaller particles is balanced by a decreased nonaffine motion for the larger parti-

cles. Both types of nonaffine motion are strongly enhanced in the presence of large

particles. As noted in prior work, this implies that mixing can be enhanced in these

mixtures of particle sizes [32]. The research presented in Chapter 3, helps better

understand how granular flows are affected by the polydispersity of their constituent

particles.
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We believe that the experimental procedure developed here can be of further use

in the future. One option is to fabricate a few more particles and build particle

distributions with larger size ratios and higher polydispersity. Additionally, using the

currently available particles, it is possible to study the flow of disks through more

flow configurations, such as the “X” and “T” configurations, with a variety of ways

in which the plungers can be placed. Additionally the flow of non circular shapes,

like ellipses, rods, or concave shapes, can be easily done with the resources available,

and are of great interest to the field of granular flow[137, 186–190]. If resources

are available adding force sensors to the plunger would add another dimension of

available information. In a similar manner using photoelastic disks would enable us

to probe to complex contact network during the flow, and how non-conventional flow

geometries apply stress into the system, the mechanism and force chains by which

these stress is spread through out the system and how polydispersity can affect further

affect these force chains. Fabricating photoelastic disks can be done either by cutting

out the shapes out of a sheet of photoelastic material, or casting the particles out of

urethane [191], using either of this methods it is possible to select samples appropriate

for the load the particles will have to bear. Current limitations for this method are

the need to achieve a mirrored surface below the particles such that the light is cross

polarized and the diffraction patterns can be recorded and measures. Additionally,

post-processing of these images needs very high resolution and additional numerical

calculations if a better analysis of the pressure and internal forces and stress fields

in the particles is desired. However, a simpler image intensity analysis can be done

to get information about the distribution of the average stress and force chains in

the samples. If possible, using force sensors and the above described photoelastic

materials method would be a good next step, as probing further the forces and stresses

in the system can further help understand the non-affine behavior of the particle flow.

The last project in this dissertation, Chapter 4, focuses on gravity driven granular
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flow through a bottleneck for cohesive particles. We were able to verify that stronger

cohesive strengths lead to higher clogging probabilities, while higher gravitational

forces facilitate the flow of particles and decreases clogs. Furthermore we were able

to use the cohesive length scale, analogous to the capillary length of surface tension

forces, to accurately predict the behaviour of the hopper, and managed to successfully

collapse the clogging probability using this cohesive length scale. We were able to

identify two regimes of low and high cohesion. The former is characterized by weakly

reinforcing the clogging mechanisms, with the frequency of clogs still being determined

mainly by the particle to hopper opening size ratio. For high cohesion the clogging

and amount of particles remaining in a clog, are dependent primarily on the cohesion

length scale. We then assert that when cohesion is strong between particles, the

relevant length scale to predict clogging can no longer be obtained through the particle

diameter, but instead a cohesive length scale needs to be taken into account.

Further simulations can probe the effect the hopper exit angle has on the flow,

since depletion interactions in the proximity to the exit are non trivial. On the

other hand exploring the effect that polydispersity has on these systems is also of

great interest, due to the effect differently sized particles have on the formation of

structures. Finally, the software used for these hopper simulations is robust and

versatile enough to be used to explore many hopper systems, and the version used

in this dissertation is based on previous versions used to probe the effect of particle

softness[52, 101]. As such expanding the software to be used probing cohesion forces

others than depletion, or using droplets that have different properties.

To summarize my dissertation and its impact, we have shown the effect polydis-

persity has on plastic deformations of glassy materials and granular systems. In both

cases higher polydispersity lead to changes in the properties of the materials; for com-

pressed arrays the material becomes easier to deform, while for granular flows, local

non-affine rearrangement and particle motion are affected by polydispersity. Both
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these projects can help predict the behavior of samples under similar conditions. On

the other hand we studied the effect of attractive forces on both crystals and granular

hopper flow, and have characterized both systems based on the strength of cohesive

forces in the systems. In both cases, cohesive forces are shown to be important pa-

rameters that govern the behavior of the systems, and can be used to predict the

force needed to deform the system, for crystalline arrays, and predict the clogging

probability and avalanche size of cohesive hoppers. Identifying these key parameters,

such as polydispersity and cohesiveness, has been shown to be important in predicting

the behavior of granular materials and systems.
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Appendix A

Effect of polydispersity on the

rotation of hard disks

As mentioned in Chapter 3, in this appendix we analyze the change in orientation of

the acrylic disks as these are pushed through the canal. We use the same methods

described in Chapter 3, where we measure the orientation angle of the disk θ(t) at a

given time, and compare it to the angle of the same disk a ∆t later, θ(t + ∆t). We

then take the absolute value of this difference:

|∆θ| = |θ(t+∆t)− θ(t)|.

For this Appendix we have chosen to keep using ∆t = 5s as in Ch. 3 Sec. 3.3.2, and

similarly have parsed our data in bins using the same widths as before, and following

the same methodology.

First we analyze the change in angle for bidisperse and T4 distributions. In

Fig. A.1(a,b), we have plotted the |∆θ| against displacement, which shows no clear

relation between |∆θ| and the displacement of the particles, for particles in the center

zone (the central square as indicated by Fig. 3.2) and for particles outside this region.

On the other hand, we can see for Figs. A.1(c-f), there is a positive relation
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Bidisperse T4

(d)

(f)

(c)

(a) (b)

(e)

Figure A.1: Figures showing the correlation between averaged |∆θ| against different quan-
tities measured in the flow for the bidisperse size distribution (left column panels) and the
T4 size distribution (right panels). From top to bottom, (a,b) display the correlation be-
tween |∆θ| and the displacement of the particles, (c,d) show |∆θ| vs nonaffine displacement,
and (e,f) show |∆θ| vs D2

min. The red data points correspond to the bins in the central zone
as outlined by Fig. 3.2, while the blue data points correspond to all bins outside this area.
Regarding the displacements (a,b), there does not seem to be a strong correlation between
change in orientation of the particles and the magnitude of the displacement. However for
both ∆rNA and D2

min there seems to be a degree of positive correlation with |∆θ|.
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Figure A.2: |∆θ|, as a function of the polydispersity for each size distribution. We can
see that there is no clear relation between |∆θ| and polydispersity, averaging to a value of
0.046.

between |∆θ| and both ∆rNA and D2
min, with particles in the central region having on

average larger |∆θ| values. Similar behavior was observed for the other distributions

not shown here.

Next, we study the relation between polydispersity and |∆θ|, and as done in Chap-

ter 3, we averaged |∆θ| in the center zone and plotted it against each distributions’

polydispersity, as seen in Fig. A.2. Similarly to what was observed for ∆rNA, there

does not seem to be clear a relation between |∆θ| and polydispersity.
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[38] Yoël Forterre and Olivier Pouliquen. Flows of Dense Granular Me-

dia. Annual Review of Fluid Mechanics, 40(Volume 40, 2008):1–24, Jan-

uary 2008. ISSN 0066-4189, 1545-4479. doi: 10.1146/annurev.fluid.40.

111406.102142. URL https://www.annualreviews.org/content/journals/

10.1146/annurev.fluid.40.111406.102142. Publisher: Annual Reviews.

[39] W. Edwards. Deming and Arnon L. Mehring. The Gravitational Flow of Fer-

tilizers and Other Comminuted Solids. Industrial & Engineering Chemistry,

21(7):661–665, July 1929. ISSN 0019-7866. doi: 10.1021/ie50235a013. URL

https://doi.org/10.1021/ie50235a013. Publisher: American Chemical So-

ciety.

[40] F. C. Franklin and L. N. Johanson. Flow of granular material through

a circular orifice. Chemical Engineering Science, 4(3):119–129, June 1955.

https://doi.org/10.1130/0091-7613(1995)023<1107:EDCSAA>2.3.CO;2
https://doi.org/10.1130/0091-7613(1995)023<1107:EDCSAA>2.3.CO;2
https://link.aps.org/doi/10.1103/RevModPhys.68.1259
https://link.aps.org/doi/10.1103/RevModPhys.68.1259
https://royalsocietypublishing.org/doi/10.1098/rsta.2009.0171
https://royalsocietypublishing.org/doi/10.1098/rsta.2009.0171
https://www.annualreviews.org/content/journals/10.1146/annurev.fluid.40.111406.102142
https://www.annualreviews.org/content/journals/10.1146/annurev.fluid.40.111406.102142
https://doi.org/10.1021/ie50235a013


133

ISSN 0009-2509. doi: 10.1016/0009-2509(55)80003-6. URL https://www.

sciencedirect.com/science/article/pii/0009250955800036.

[41] R. T. Fowler and J. R. Glastonbury. The flow of granular solids through ori-

fices. Chemical Engineering Science, 10(3):150–156, May 1959. ISSN 0009-2509.

doi: 10.1016/0009-2509(59)80042-7. URL https://www.sciencedirect.com/

science/article/pii/0009250959800427.

[42] W. A. Beverloo, H. A. Leniger, and J. van de Velde. The flow of granular

solids through orifices. Chemical Engineering Science, 15(3):260–269, Septem-

ber 1961. ISSN 0009-2509. doi: 10.1016/0009-2509(61)85030-6. URL https:

//www.sciencedirect.com/science/article/pii/0009250961850306.

[43] A. W. Jenike. Quantitative design of mass-flow bins. Powder Technology, 1

(4):237–244, December 1967. ISSN 0032-5910. doi: 10.1016/0032-5910(67)

80042-1. URL https://www.sciencedirect.com/science/article/pii/

0032591067800421.

[44] R. M. Nedderman. Statics and Kinematics of Granular Materials.

Cambridge University Press, Cambridge, 1992. ISBN 978-0-521-40435-

8. doi: 10.1017/CBO9780511600043. URL https://www.cambridge.

org/core/books/statics-and-kinematics-of-granular-materials/

3D238E75C21D9B8B99302744D6200F8C.

[45] Iker Zuriguel, Daniel Ricardo Parisi, Raúl Cruz Hidalgo, Celia Lozano, Al-

varo Janda, Paula Alejandra Gago, Juan Pablo Peralta, Luis Miguel Fer-

rer, Luis Ariel Pugnaloni, Eric Clément, Diego Maza, Ignacio Pagonabarraga,

and Angel Garcimart́ın. Clogging transition of many-particle systems flow-

ing through bottlenecks. Sci Rep, 4(1):7324, December 2014. ISSN 2045-

https://www.sciencedirect.com/science/article/pii/0009250955800036
https://www.sciencedirect.com/science/article/pii/0009250955800036
https://www.sciencedirect.com/science/article/pii/0009250959800427
https://www.sciencedirect.com/science/article/pii/0009250959800427
https://www.sciencedirect.com/science/article/pii/0009250961850306
https://www.sciencedirect.com/science/article/pii/0009250961850306
https://www.sciencedirect.com/science/article/pii/0032591067800421
https://www.sciencedirect.com/science/article/pii/0032591067800421
https://www.cambridge.org/core/books/statics-and-kinematics-of-granular-materials/3D238E75C21D9B8B99302744D6200F8C
https://www.cambridge.org/core/books/statics-and-kinematics-of-granular-materials/3D238E75C21D9B8B99302744D6200F8C
https://www.cambridge.org/core/books/statics-and-kinematics-of-granular-materials/3D238E75C21D9B8B99302744D6200F8C


134

2322. doi: 10.1038/srep07324. URL https://www.nature.com/articles/

srep07324. Number: 1 Publisher: Nature Publishing Group.

[46] Kirsten Harth, Jing Wang, Tamás Börzsönyi, and Ralf Stannarius. Intermittent
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