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Abstract 

 

The Role of Metabolic Perturbations in Mediating the Effects of Ambient Air Pollution on Lung 

Cancer in the Cancer Prevention Studies 

 

By Sabrina S. Chow 

 

 

Background. Exposure to ambient air pollution is an established risk factor for lung cancer. 

Despite this, the identification of underlying biological mechanisms of air pollution 

carcinogenicity remains uncertain. To address these knowledge gaps, we applied high-resolution 

metabolomics to detect metabolic signatures of exogeneous air pollution exposures and 

endogenous processes involved in lung carcinogenesis in a well-established U.S. cancer cohort. 

Methods. A total of 1,360 participants (680 matched lung cancer and control pairs) within the 

established Cancer Prevention Study cohorts completed comprehensive questionnaires during 

enrollment and follow-up to assess changes in personal and lifestyle factors and medical 

conditions. Participant’s plasma metabolome from non-fasting blood samples was profiled with 

ultrahigh-performance liquid chromatography-tandem mass spectrometry. Assessment of 

exposure to six ambient air pollutants, including carbon monoxide (CO), nitrogen dioxide (NO2), 

particulate matter (PM10), fine particulate matter (PM2.5), sulfur dioxide (SO2), and ozone (O3), 

was conducted using spatiotemporally-resolved models based on residential address at blood 

draw. We conducted a metabolome-wide association study using multivariate linear regression 

models to assess associations of air pollution and lung cancer with a meet-in-the-middle 

approach. Metabolites significant at the FDR < 0.2 level in the air pollution model were analyzed 

in the lung cancer model. High-dimensional mediation analysis was used as a secondary analysis 

to compare results from the meet-in-the-middle analysis. Results. Among 1,232 metabolic 

features extracted, seven were significantly associated with air pollution exposure and lung 

cancer incidence at the FDR < 0.2 level in the meet-in-the-middle analysis. Six features were 

significant via high-dimensional mediation analysis. All confirmed metabolites are enriched 

within peptide, lipid, and amino acid pathways. The metabolites gamma-glutamylglutamine and 

gamma-glutamylmethionine were each significantly associated with CO, NO2, and PM10 

exposure and lung cancer incidence in both analyses. Conclusion. This is the largest prospective 

metabolomics study examining biological perturbations associated with air pollution exposure 

and lung cancer outcomes. The findings provide an indication of association between air 

pollution and lung cancer mediated via peptide metabolism. Findings from this study support 

future studies to further clarify the specific role of these identified metabolites and pathways as 

mediators of air pollution carcinogenicity.  
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Introduction 

 

Long-term exposure to ambient air pollution is a leading environmental risk factor for respiratory 

diseases, including asthma, chronic obstructive pulmonary disease (COPD), and lung cancer1-4. 

Despite declining trends in lung cancer incidence and mortality, it is estimated that almost 

240,000 individuals in the U.S. will be diagnosed with lung cancer in 2023, with almost 130,000 

individuals dying from lung cancer5. Epidemiological evidence demonstrating a potential causal 

association between ambient air pollution exposure and lung cancer mortality has been reported 

in numerous studies in large prospective cohorts around the world6-9. However, due to the 

complex composition of air pollution, the biological mechanisms of air pollution carcinogenicity 

and the processes that may lead to individual susceptibility are still understudied. This area of 

research is further limited due to a lack of sensitive biomarkers to measure internal exposure and 

corresponding health responses.  

 

High-resolution metabolomics (HRM), combining high-resolution mass spectrometry with 

chromatographic separation, has emerged over the past few decades as a key analytical platform 

in the identification of exogenous and endogenous metabolic features associated with air 

pollution-related exposures. While interest in metabolomics analyses is continuing to grow, 

concerns about the consistency and generalizability of results exist due to the variation across 

study cohorts, analytical platforms, and reported results10. Specifically, a majority of published 

studies using metabolomics has been in small-scale, panel-based studies using targeted 

metabolomics workflows10. More studies have recently used meet-in-the-middle (MITM) and 

high-dimensional mediation (HDMA) approaches for identifying potential intermediate 

biomarkers in prospective cohorts to help inform the causal pathway from external exposure to 

corresponding health response11. Molecular biomarkers associated with both exposure and 

response help validate causal hypotheses via the pathway perturbation paradigm12. Metabolic 

perturbations associated with air pollution exposure and adverse health outcomes such as asthma, 

coronary heart disease, as well as other respiratory and cardiovascular diseases have been 

proposed using MITM approaches12,13. However, no study has used either the MITM or HMDA 

approach to better understand potential biological pathways and intermediate markers for the air 

pollution and lung cancer relationship.  

 

To address these critical knowledge gaps, we conducted a metabolome-wide association study 

(MWAS) using untargeted HRM with participants in the Cancer Prevention Study-II (CPS-II) 

Nutrition and CPS-3 Cohorts, an established prospective cancer cohort managed by the 

American Cancer Society (ACS), to identify metabolic perturbations associated with ambient air 

pollution exposure and lung cancer incidence. Our results serve to create a foundation for further 

studies to understand biological mechanisms associated with long-term ambient air pollution and 

corresponding lung cancer risk.  

 

Methods 

 

Study Population and Design 

 



 

 

2 

 

Participants included in this study were a part of the Cancer Prevention Study (CPS)-II Nutrition 

and CPS-3 Cohorts. CPS-II was a prospective cohort established by ACS in 1982 that enrolled 

almost 1.2 million participants across all 50 states, the District of Columbia, and Puerto Rico. 

The CPS-II Nutrition Cohort, a subset of the original CPS-II Cohort, was established in 1992 to 

investigate the relationship between lifestyle factors, exposure, and cancer. This cohort includes 

nearly 200,000 men and women aged 50-74 years from 21 U.S. states. CPS-3 was launched in 

December 2013 as the next iteration of CPS and recruited over 300,000 participants aged 30-65 

years. Participants in both cohorts completed an initial questionnaire at time of enrollment and 

follow-up surveys every 2-3 years until study completion. Follow-up for the CPS-II Nutrition 

Cohort ended in 2015, and follow-up for CPS-3 will continue through 2043. Almost all 

participants in CPS-3 provided a non-fasting blood sample at enrollment between 2006 and 

2013, while 39,200 participants in the CPS-II Nutrition Cohort provided non-fasting blood 

samples between 1998 and 2001. All participants were cancer-free at enrollment. The cohort and 

sample collection processes for CPS-II and CPS-3 are described in detail elsewhere14,15. Study 

protocols for both cohorts were approved by the Emory University (Atlanta, GA) Institutional 

Review Board.  

 

In the current study, 1,162 individuals from the CPS-II Nutrition Cohort and 326 individuals 

from CPS-3 were included in the analysis. All participants were cancer-free at time of blood 

draw. During follow-up, 744 individuals between both cohorts were diagnosed and verified as 

lung cancer cases through medical records and state cancer registries. Cases with in-situ cases (n 

= 2) and missing air pollution assessment data (n = 61) were excluded from the final analysis. As 

a result, 521 and 159 lung cancer cases from the CPS-II Nutrition and CPS-3 Cohorts were 

included in the final analysis, respectively. Healthy controls were matched 1:1 to cases on sex, 

race/ethnicity, age at blood draw (± 6 months), and date of blood draw (± 30 days). A total of 

1,360 individuals were included in the current analysis (Supplement 3). 

 

Air Pollution Assessment 

 

All participants provided a residential address at time of blood draw, which was used to 

retrospectively assign individual-level exposures to six ambient air pollutants including carbon 

monoxide (CO), nitrogen dioxide (NO2), respirable particulate matter (PM10), fine particulate 

matter (PM2.5), ozone (O3), and sulfur dioxide (SO2). Spatiotemporally resolved models were 

used to generate participant-specific residential exposures to each of the air pollutants. 

Specifically, concentrations were assigned to geocoded census blocks based on participant 

residence at time of blood draw. The year of blood draw was used to calculate a one-year mean 

exposure window to estimate current level of exposure. Concentrations for all air pollutants were 

obtained from the Center for Air, Climate, and Energy Solutions (CACES) based on land use 

regression models.  

 

Metabolomic Profiling 

 

Metabolomic profiling on plasma samples was conducted at Metabolon, Inc. (Durham, NC) 

using ultrahigh-performance liquid chromatography-tandem mass spectrometry (UPLC-

MS/MS). Additional analysis protocols are described elsewhere16. As reported by Wang et al.17, 

serum samples were treated with methanol to precipitate proteins. Four sample fractions were 
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dried and reconstituted in different solvents for measurement under four different platforms. Two 

fractions were analyzed by separate reverse-phase UPLC-MS/MS methods with positive-ion-

mode electrospray ionization (ESI). One fraction was analyzed by reverse-phase UPLC-MS/MS 

method with negative-ion-mode ESI. The final analysis was by hydrophilic interaction 

chromatography UPLCMS/MS with negative-ion-mode ESI. Individual metabolites were 

identified by comparison with a chemical library consisting of >3,300 commercially available 

purified standard compounds. 

 

A total of 1,401 metabolites were detected. Duplicates of 24 samples and triplicates of 10 

samples from 34 CPS-II participants, as well as samples from Metabolon, were used as quality 

control observations to assess the reproducibility of the platform, using intraclass correlation 

coefficient (ICC) calculations. The median ICC was 0.8486, indicating high analytical 

reproducibility.  

 

Data Analysis 

 

Associations between single air pollutants and metabolic features were conducted using 

multivariable linear regression models. The relative concentration of each metabolite was log-

transformed, followed by auto-scaling to approximate a normal distribution, allowing for 

comparison on an equal scale. Based on existing literature and a priori criteria18,19, models were 

adjusted for age at blood draw (continuous), sex (categorical), body mass index (BMI; 

continuous), race (categorical: white, non-white, unknown), smoking status (categorical: never, 

former, current, and unknown), highest level of education (categorical: less than high school, 

high school graduate, some college/technical school/2-year degree, college graduate, graduate 

school, unknown), multivitamin use (recently, somewhat recently, rarely/never, unknown), 

average weekly servings of fruits and vegetables (continuous), alcohol use (categorical: none, <1 

per day, 1+ per day, unknown), and passive smoke exposure (yes, no, unknown). Benjamini-

Hochberg false discovery rate (FDR) procedures were used to control for multiple 

comparisons20. All associations observed at FDR < 0.2 were considered statistically significant.  

 

Using significant metabolic features from the air pollution MWAS, we then used a modified 

meet-in-the-middle (MITM) modeling to identify significant metabolic features associated with 

both ambient air pollution exposure and lung cancer incidence. Traditional MITM approaches 

use the same set of metabolites in the exposure and outcome MWAS, and then compare results 

to identify overlapping metabolites11,12. We used a modified MITM model, where in the outcome 

MWAS, instead of putting in the original set of metabolites, we only analyzed metabolites that 

were significant in exposure MWAS. Multivariable linear regression models were again used to 

examine the association between lung cancer status (case or control) and metabolic features. 

Models in this analysis were identical to the air pollution models.  

 

As a secondary analysis we conducted a high dimensional mediation analysis (HDMA) to 

compare significant metabolic features from the MITM analysis. We utilized the R package, 

HIMA, a novel package used for estimating and testing high-dimensional mediation effects in -

omics-related studies. Details on the development and statistical methods of the package are 

detailed elsewhere21. While the MITM approach is an exploratory analysis that looks at 

significant metabolites in exposure and outcome models separately, HDMA is a true mediation 
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analysis, which allows us to formally assess the steps in the causal association between air 

pollution exposure and lung cancer incidence. We also conducted several sensitivity analyses 

controlling for covariates such as occupational exposure, lung cancer stage and etiology, and 

found the results remained consistent. 

 

Results 

 

A total of 1,360 participants were included in the analysis, 1,042 from the CPS-II Nutrition 

Cohort and 318 from CPS-3. The average age of participants was 66.4 ± 8.83 years (Table 1). A 

majority of participants were former smokers (51.4%), followed by never smokers (33.4%), with 

most (68.7%) living with a smoker during their childhood (age 0-18 years). Just over 50% of the 

total study population completed some college, technical school, or a two-year degree (30%) or 

was a college graduate (22.6%). Levels to O3 had the largest variance among study participants 

(48.2 ± 6.5 ppb), followed by NO2 (12.1 ± 5.9 ppb) and PM10 (20.9 ± 5.9 µg/m3).  

 

We analyzed 1,401 metabolites that were detected from metabolomic profiling. Of these, 1,163 

were annotated with level 1 evidence by matching to authentic chemical references. After 

filtering for metabolites that were undetectable in more than 90% of samples (n = 170), 1,232 

metabolites were included in the analysis. Among these 1,232 metabolites, 257 metabolites were 

significantly associated with at least one air pollutant. Among these metabolites, 207 metabolites 

have been previously annotated with level 1 evidence by Metabolon, Inc., while 50 could not be 

annotated. Of metabolites with known identities, a majority are central in amino acid (28%), 

lipid (32%), and xenobiotic pathways (21%). The greatest number of significant metabolites 

were associated with PM2.5 (124), followed by NO2 (90) (Table 2). In the MITM analysis, three 

unique, annotated metabolites were significantly associated with at least one air pollutant and 

lung cancer risk (Table 3). Three metabolites were significantly associated with NO2 exposure 

and lung cancer risk, two of which occur along the gamma-glutamyl amino acid pathway. Five 

metabolites (three confirmed metabolites with known identities and two unknown) were 

significant in the HDMA approach. A majority of the known metabolites in the MITM and 

HDMA analyses were along peptide metabolism-related super pathways (33%), most notably the 

gamma-glutamyl amino acid sub pathway, and unidentified (33%) (Table 3). The remaining 

confirmed metabolites are along the amino acid, phenylalanine metabolism pathway (17%) and 

lipid, diacylglycerol pathway (17%).  

 

A single metabolite, gamma-glutamylglutamine, was positively associated with CO exposure in 

both the MITM and HDMA analyses (Table 3). This metabolite was also positively associated 

with NO2 and PM10 in the MITM analysis. Gamma-glutamylmethionine was significantly 

associated with NO2 and PM10 exposure in HDMA. Palmitoleoyl-linoleoyl-

glycerol (16:1/18:2) [1]* was the only metabolite in the MITM analysis that was negatively 

associated with an individual air pollutant (NO2). N-acetylphenylalanine and X-23654 were both 

negatively associated with NO2 and PM2.5 exposure in the HDMA analysis, respectively.  

 

We conducted a number of sensitivity analyses to examine the robustness of our model while 

adjusting for additional potential confounders. After including family history of lung cancer and 

lung cancer stage in our model, we observed no differences in the number of significant 
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metabolites. We also conducted a sensitivity analysis using a traditional MITM approach. With 

this analytical approach, we found no significant metabolites among any air pollutant.  

 

Discussion 

 

With 1,360 participants, we characterized and identified several metabolic perturbations 

associated with both air pollution exposure and lung cancer incidence. Notably, we identified 

several pathways, including glutathione, glutamine, methionine, diacylglycerol, and 

phenylalanine, that have been linked to both air pollution exposure and lung cancer incidence. 

These pathways have implications in air pollution and cancer-related oxidative stress, nucleic 

acid damage, and cancer cell proliferation. Based on our knowledge, this is the largest 

metabolomics study on air pollution and lung cancer to date. Given the hypothesis-generating 

nature of untargeted metabolomic investigations, however, future hypothesis testing studies are 

warranted to validate our findings and explore the potential development of significant 

metabolites as sensitive biomarkers for assessing internal exposures to air pollution and lung 

cancer incidence. These specific perturbations have been associated with multiple different 

cancer types, including osteosarcoma, pancreatic, and kidney22,23.  

 

A key finding was the identification of several metabolic perturbations associated with peptide 

metabolism, specifically gamma-glutamyl amino acid metabolism, in both the MITM and 

HDMA analyses. In the MITM approach, exposure to CO, NO2, and PM10 led to significant 

changes in metabolic intensities of gamma-glutamylglutamine and gamma-glutamyl methionine. 

Similarly, these perturbations were also significant in participants who later developed lung 

cancer. We saw consistent findings with HDMA, where gamma-glutamylglutamine and gamma-

glutamyl methionine mediated the association between CO, NO2, and PM10 exposure and lung 

cancer incidence. Gamma-glutamyl amino acids are formed when an amino acid and enzyme are 

catalyzed through gamma-glutamyl transpeptidase, with a gamma-glutamyl enzyme bound 

intermediate24, and are important mediators in glutathione (GSH) metabolism pathways25. GSH 

also has antioxidant scavenging properties and supports cellular regulation, such as gene 

expression, DNA and protein synthesis, cytokine production, and immune response25,26. This 

may indicate chronic exposures to air pollution may lead to changes in antioxidation and cellular 

processes. Cancerous tumors from individuals with non-small cell lung cancer (NSCLC), which 

make up more than 80% of lung cancer cases, have shown high levels of gamma-glutamyl 

transpeptidase compared to non-cancerous tissue, increasing the uptake of GSH in cells. Previous 

studies have hypothesized that elevated levels of GSH and GSH detoxifying enzymes assist with 

tumor chemoresistance27-29. Mitochondrial dysfunction, a common mechanism to cause cell 

death, has also been found to kill malignant NSCLC carcinomas, which are resistant to 

conventional chemotherapy30,31. In our analysis, we found that the intensity of statistically 

significant gamma-glutamyl amino acids were higher in lung cancer cases compared to controls, 

which could lead to downstream increased levels of glutamine and methionine. Glutamine is 

essential for not only nucleotide and amino acid synthesis, but also cancer cell growth and 

proliferation. One study with participants who had early-stage lung cancer (Ia and Ib) had 

increases in glutamine levels compared to controls, while another study with all lung cancer 

stages (I-IV) saw overall decreases in glutamine levels compared to controls32,33. GSH 

metabolism participates in a number of different biological processes, and our observed findings 

are consistent with previous lung carcinogenicity-related literature, demonstrating a potential 
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role of GSH metabolism in mediating the association between ambient air pollution and lung 

cancer incidence. The current study did not control for lung cancer stage, but future analyses 

looking at differences in gamma-glutamylglutamine intensity based on stage could provide 

additional insights on changes in perturbations in participants that are cancer-free.  

 

We also found that NO2 exposure and lung cancer incidence were both associated with increased 

perturbations of N-acetylphenylalanine, a downstream metabolite in phenylalanine metabolism, 

created when acetyl coenzyme A (acetyl-CoA) reacts with L-phenylalanine. Acetyl-CoA plays 

an important role in cancer cell growth, helping to provide necessary adenosine triphosphate 

(ATP) to promote cancer cell growth, while inhibiting normal cell growth34,35. Phenylalanine, a 

glycogenic amino acid, can produce glucose through the citric acid cycle, which cancer cells can 

utilize as an energy source during rapid proliferation. One study found that L-phenylalanine and 

phenylalanylphenyalanine metabolite levels were increase in lung cancer patients compared to 

controls and verified phenylalanylphenyalanine as a diagnostic biomarker for differentiating lung 

cancer and tuberculosis patients35. Perturbations in phenylalanine pathways have previously been 

associated with short-term and long-term traffic-related air pollution (TRAP), specifically 

NO2
36,37. Phenylalanine levels tend to be higher in advanced lung cancer cases. As an upstream 

amino acid for tyrosine and neurotransmitter production, high levels of phenylalanine are caused 

by downregulation of metabolism-related genes in NSCLC tumors38. This suggests that late-

stage lung cancer cells may not be able to metabolize phenylalanine33. 

 

Finally, we also found a perturbation associated with lipid metabolism, specifically 

diacylglycerol metabolism. Exposure to NO2 was associated with a significant decrease in 

palmitoleoyl-linoleoyl-glycerol (16:1/18:2) metabolic intensity, which is an intermediate 

metabolite in triacylglycerol synthesis. Previous studies consistently show how ambient air 

pollution exposure leads to oxidative stress, inflammation, and nucleic acid damage39-41. 

Diacylglycerols are secondary lipid messengers that transduce signals downstream of 

hematopoietic cell receptors and have implications in activation, proliferation, and migration of 

adaptive and innate immune cells42. Perturbations in diacylglycerols may influence cell 

signaling, leading to downstream affects that affect all systems in the body, including the 

respiratory and immune system.  

 

Our analysis included several notable strengths and limitations. This study, to our knowledge, is 

the first study that has examined metabolic perturbations associated with both air pollution 

exposure and lung cancer incidence, which also has the largest sample size among existing air 

pollution metabolomics applications. The CPS cohorts have been central in providing evidence 

of the association between long-term air pollution exposures and mortality6,8,43-46. Previous 

studies also mostly focus on lung cancer mortality43-45, while our study looked at incidence. Our 

study also utilized both a MITM and HDMA analytical approach to examine the association 

between ambient air pollution exposure and lung cancer incidence, discovering consistent results 

between both approaches. With multiple significant metabolites between the analytical 

approaches, this helps to not only validate the potential role that these perturbations play in the 

causal relationship between ambient air pollution and lung cancer, but also show the benefit of 

using both analytical methods in tandem when doing untargeted metabolomics work.    
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However, there are a number of limitations in our study, including those inherently relating to 

omics-based analysis techniques and retrospective air pollution assessment. Also, even though 

we used spatio-temporal air pollution models to estimate individual exposures based on 

residential address at time of blood draw, it is possible that residual exposure measurement error 

may still be present and serve to obscure true associations. Additionally, blood samples used for 

metabolic profiling and analysis were collected while all participants were cancer-free. In some 

cases, lung cancer diagnoses happened over 30 years after sample collection, which combined 

with an imperfect proxy of air pollution exposure, may introduce bias into our true risk 

estimation.  

 

In this analysis, we decided to conduct single air pollutant modelling, assuming that each 

pollutant individually affects lung cancer incidence. Even though single pollutant modeling may 

not capture the true effects of air pollutant mixtures, we were able to control for co-pollutant 

confounding, which stems from covariance among multiple air pollutants. Future studies should 

use advanced modelling approaches to model multiple pollutant exposures to better assess the 

association between air pollution mixtures and lung cancer incidence. Due to the high volume of 

metabolic features in metabolomics studies, this increases the likelihood of Type I errors. To 

minimize the chance of a high false discovery, we utilized a Benjamini-Hochberg False Positive 

correction to counteract the risk of false positives from multiple comparisons and Type 1 errors. 

Also, since the study population was predominantly white and older, our study may not be 

generalizable to the general U.S. population and additional studies should be done to test to 

reproducibility of identified perturbations and the generalizability and success of the conducted 

analytical methods in more diverse populations. 

 

Conclusions 

 

Using advanced metabolomics profiling MITM and HDMA analytical approaches, we were able 

to identify multiple metabolic perturbations that may mediate the association between ambient 

air pollution exposure and lung cancer incidence, with 1,360 participants in the CPS-II Nutrition 

and CPS-3 cohorts. These perturbations show an increased risk in oxidative stress, cell signaling 

and proliferation, and inflammation. Collectively, these results further showcase the use of 

metabolic markers and metabolomics as a novel analytical method for assessing how air 

pollution toxicity, at the molecular level, affects lung cancer outcomes. Further identification and 

understanding of these metabolic perturbations may help lead to the development of sensitive 

biomarkers and targeted interventions to mitigate long-term adverse health effects from an early 

stage.  
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Tables and Figures 

 

Table 1 Demographic Characteristics for Participants in CPS-II Nutrition and CPS-3 Cohorts  

(n = 1,360) 

  n = 1360 

Age at Blood Draw  
  Mean (SD) 66.4 (8.83) 

  Median [Min, Max] 68.0 [31.0, 85.0] 

Sex  
  Female 679 (49.9%) 

  Male 681 (50.1%) 

Race  
  White 1311 (96.4%) 

  Non-White 48 (3.5%) 

  Missing 1 (0.1%) 

BMI  
  Mean (SD) 26.5 (4.82) 

  Median [Min, Max] 25.8 [15.0, 50.9] 

  Missing 14 (1.0%) 

Passive Smoke Exposure  

  Yes 934 (68.7%) 

  No 350 (25.7%) 

  Missing 76 (5.6%) 

Average Weekly Consumption of Fruits and Vegetables  
  Mean (SD) 27.9 (15.9) 

  Median [Min, Max] 25.9 [0, 133] 

  Missing 46 (3.4%) 

Smoking Status  
  Never 454 (33.4%) 

  Current 154 (11.3%) 

  Former 699 (51.4%) 

  Missing 53 (3.9%) 

Highest Educational Level  
  Less than HS 53 (3.9%) 

  HS Graduate 263 (19.3%) 

  Some College/Tech School/2-year Degree 408 (30.0%) 

  College Graduate 307 (22.6%) 

  Graduate School 268 (19.7%) 

  Missing 61 (4.5%) 

Multivitamin Use  
  Recently 538 (39.6%) 

  Somewhat Recently 43 (3.2%) 

  Rarely/Never 340 (25.0%) 

  Missing 439 (32.3%) 
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Table 1 Demographic Characteristics for Participants in CPS-II Nutrition and CPS-3 Cohorts  

(n = 1,360) (Continued) 

 n = 1360 

Family History of Lung Cancer  

  Yes 118 (8.7%) 

  No 1184 (87.1%) 

  Missing 58 (4.3%) 

Passive Smoke Exposure  
  Yes 934 (68.7%) 

  No 350 (25.7%) 

  Missing 76 (5.6%) 

Alcohol Use  
  None 426 (31.3%) 

  <1 per day 553 (40.7%) 

  1+ per day 281 (20.7%) 

  Missing 100 (7.4%) 

Marital Status  
  Single 26 (1.9%) 

  Married 1051 (77.3%) 

  Other 283 (20.8%) 

Age at Lung Cancer Diagnosis  

  Mean (SD) 72.2 (10.5) 

  Median [Min, Max] 75.0 [33.0, 95.0] 

  Missing 677 (49.8%) 

Lung Cancer Stage  
  Localized 157 (11.5%) 

  Regional 171 (12.6%) 

  Distant 320 (23.5%) 

  Unknown 35 (2.6%) 

  Missing 677 (49.8%) 
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Table 2 Metabolic features significantly associated with air pollutant exposure models*  

(n = 1,360) 

Air pollutant FDR 

q < 0.2 

 Air Pollution Model MITMi HDMA 

CO Exposure 62 1 1 

NO2 Exposure 90 3 2 

O3 Exposure 44 0 1 

PM10 Exposure 72 0 1 

PM2.5 Exposure 124 0 1 

SO2 Exposure 16 0 0 

*Both Benjamini-Hochberg false discovery rate (FDR) procedure (q value) and raw p values were used to identify a reasonable 

number of significant metabolic features. 
iSignificant features at q < 0.2 in the air pollution model were put in the meet-in-the-middle model  
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Table 3 Metabolites significantly associated with air pollutant exposure and lung cancer incidence using meet-in-the-middle (MITM) 

and high dimensional mediation analysis (HDMA) analytical approaches 

Air 

pollutant 

Metabolites Platform Super 

Pathway 

Sub  

Pathway 

FDR 

MITM HDMA 

CO gamma-glutamylglutamine Pos Early Peptide Gamma-glutamyl Amino Acid 0.181 0.012 

NO2 N-acetylphenylalanine Pos Early Amino Acid Phenylalanine Metabolism - 0.085 

 gamma-glutamylmethionine Pos Early Peptide Gamma-glutamyl Amino Acid 0.172 0.002 

 palmitoleoyl-linoleoyl-

glycerol (16:1/18:2) [1]* 

Pos Early Amino Acid Phenylalanine Metabolism 0.132 - 

 gamma-glutamylglutamine Pos Early Peptide Gamma-glutamyl Amino Acid 0.132 - 

O3 X-26111 Negative Unknown Unknown - 0.0480 

PM10 gamma-glutamylmethionine Pos Early Peptide Gamma-glutamyl Amino Acid 0.207 0.003 

 gamma-glutamylglutamine Pos Early Peptide Gamma-glutamyl Amino Acid 0.207 - 

PM2.5 X-23654 Pos Early Unknown Unknown - 0.048 
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Figure 1 Volcano plots of associations between changes in metabolite intensities and air 

pollutants. X-axis denotes the coefficients of metabolite-pollutant associations. Y-axis denotes 

the negative natural log of false discovery rate (FDR) in metabolite-pollutant association. 

Different colors were used to represent different pathways where the metabolites are involved. 

Dark red dashed line represents FDR = 0.05 and blue dashed line represents FDR = 0.2. 

Metabolites labeled with red color were significant in the meet-in-the-middle (MITM) analysis, 

blue-labeled metabolites were significant in the high-dimensional mediation analysis (HDMA) 

analysis, and purple-labeled metabolites were significant in both the MITM and HDMA 

analyses.  
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Figure 2 Mechanistic figure depicting the metabolic pathways that lead to biological changes in 

the association between air pollution and lung cancer.  
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Supplemental Materials 

 

Supplement 1 Air pollution assessments of participants based on residential address at time of 

blood draw (n = 1,360) 

Air pollutant 

assessments 

Mean (SD) 25th 50th 75th Max 

NO2 
a (ppb) 12.1 (5.9) 7.7 11.2 15.3 37.8 

O3 
b (ppb) 48.2 (6.5) 44.4 47.1 51.5 68.4 

COc (ppm) 0.4 (0.2) 0.30 0.39 0.50 1.3 

SO2
d (ppm) 3.1 (1.8) 1.7 2.6 4.1 11.8 

PM10
e (µg/m3) 20.9 (5.9) 17.1 20.4 23.2 51.4 

PM2.5 
f (µg/m3) 12.2 (3.2) 9.9 11.9 14.0 25.2 
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Supplement 2 Pathway breakdown for combined significant metabolites in meet-in-the-middle 

(MITM) and high dimensional mediation analysis (HDMA) A. Super pathway breakdown, B. 

Sub pathway breakdown 

  

33%

17%

33%

17%

Peptide Amino Acid Unknown Lipid

33%

17%17%

33%

Gamma-glutamyl Amino Acid Diacylglycerol

Phenylalanine Metabolism Unknown
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Supplement 3 Summary of exclusion criteria for study participants included in final analysis. 

All participants that were matched to a participant that was excluded was also included from the 

final analysis.  
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