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Abstract 

 
Evolving Healthcare Database Methods to Advance Pharmacoepidemiology 

By Julie Barberio  
 

 
The field of pharmacoepidemiology often uses real-world data (e.g., electronic health records, 
health insurance claims) to evaluate safety and effectiveness of products throughout drug 
development. Scientific and regulatory communities have been hesitant to rely on real-world 
evidence for regulatory and clinical decision-making due to the potential for epidemiologic 
biases, which threaten the validity of all observational research. The overarching goal of this 
dissertation was to evaluate multiple aspects of healthcare database research, assessing how 
pharmacoepidemiologic methods can be applied to appropriately chosen real-world data 
sources to inform medication safety and effectiveness. 
  
In Aim 1, we assessed fitness for regulatory purpose of a mother–infant linked cohort in the 
Japan Medical Data Center claims database for postapproval pregnancy safety studies. 
Although accurate identification of the complete mother–infant population was possible, 
limitations of gestational age estimation may impede valid assignment of pregnancy onset and 
delivery dates as needed to define critical in utero exposure windows. 
 
In Aim 2, we evaluated the risks of severe cytopenias in relapsed multiple myeloma patients 
who received sequential treatment with immunomodulatory agents (IMiDs) versus IMiD-free 
regimens in the Flatiron Health electronic health records database. Results suggest sequential 
exposure to IMiDs may increase the risks of severe cytopenias, specifically those related to 
white blood cells and especially among patients with recent cytopenia histories. 
 
In Aim 3, we investigated the impact of incomplete death information in United States claims 
data by comparing cardiovascular cumulative risk estimates from models in which death was 
treated as a censoring event (cause-specific) versus competing event (sub-distribution). 
Differences in cause-specific versus sub-distribution cumulative risks in the claims-based cohort 
increased over follow-up time and were largest in the oldest age group, where cardiovascular 
outcome and mortality risks were the highest. Simulation results demonstrated the differences in 
cumulative risks to increase in response to doubled and tripled mortality rates. 
 
The results of this dissertation demonstrate the importance of using appropriately chosen real-
world databases, high-quality study designs, and rigorous analytic methods to produce valid 
real-world evidence. With such methods, we can inform trustworthy uses of fit-for-purpose real-
world data for regulatory and clinical decision-making, which has important implications for real-
world populations (at the practice, provider, and patient levels). 
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CHAPTER 1: INTRODUCTION AND BACKGROUND 

In the United States, prescription medication use is common, with 46% of individuals reporting 

recent use of at least one prescription drug.1 The prevalence of prescription medication use 

increases with age, such that 85% of adults 60 years or older use at least one prescription drug 

(most commonly chronic disease medications, such as lipid-lowering drugs, beta-blockers, and 

antidiabetic drugs), with 35% of this age group using five or more prescription drugs.1, 2 

Prescription medications by definition are bioactive at the doses administered and have been 

proven to substantially reduce disease burden, improve quality of life, and extend survival time 

of patients. Approximately one-third of therapeutics approved by the Food and Drug 

Administration (FDA) are affected by postmarket safety events that were not detected before 

approval (i.e., new safety information became available after approval that led to either market 

withdrawal, addition of warnings on the drug’s label, or dissemination of safety communications 

by FDA).3 Adverse drug events, including adverse drug reactions and errors in medication use, 

account for 6–7% of hospitalizations in the United States.4 Patients hospitalized for adverse 

drug events, who are likely to be older and have more comorbidities, impose substantial 

financial burden to the healthcare system and are at an increased risk of death.4, 5 As of 2018, 

85 drug products had been withdrawn or removed from the market due to concerns about safety 

or ineffectiveness of the drug product or component(s) of the drug product that became 

apparent during the postapproval phase.6 

FDA requires premarketing clinical evaluation for all new drug products in the United States. 

Randomized controlled trials are the “gold-standard” assessment for new drug products, given 

that the comparative analysis and control of extraneous variables allow outcomes to be 

attributed to the product under study.7 Important limitations of premarketing clinical trials, 

however, impede the ability to identify and avoid all subsequent, postmarket adverse events. 

Although a new drug may demonstrate efficacy (i.e., the ability to treat the indicated condition 
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under ideal circumstances) in a premarketing clinical trial, its effectiveness (i.e., the ability to 

treat the indicated condition under the real-world circumstances of usual healthcare practice) 

demonstrated during the postmarketing phase may vary from efficacy for a number of reasons.8 

For example, clinical trial populations are often restricted to narrow patient groups (e.g., based 

on geographic area, age, pregnancy status, lack of comorbidities, or lack of use of concomitant 

medications) and are often healthier than the general patient population, and therefore event 

rates may not be reflective of those that would occur in the target population for the product 

under study. Whereas drug administration in premarketing clinical trials follows a strict protocol 

that is identical for all patients, the unpredictability of real-world physician, pharmacist, and 

patient use (e.g., due to errors in dose administration, prescription order transcription and 

dispensing, or adherence to the regimen as prescribed9) may also produce discrepancies in the 

event rates observed in clinical trial versus real-world populations. Furthermore, clinical trial 

populations are also constricted in terms of both magnitude and duration, which limits the ability 

to detect rare outcomes and outcomes with long induction periods between drug administration 

and outcome occurrence. Finally, premarket clinical trials do not typically evaluate 

polypharmacy and may therefore miss important drug-drug interactions, especially over time as 

new medications enter the market.10, 11 These limitations are compounded by the fact that FDA 

has accelerated drug approvals since the enactment of the Prescription Drug User Fee Act in 

1992, since then allowing for the approval of new drug products based on evidence from fewer 

premarket clinical trials that involve smaller patient groups and are of shorter duration.12-15 As a 

result, a greater emphasis has been placed on requirements for pharmaceutical companies to 

conduct postmarketing studies. Between 2009 and 2018, 91% of the 343 newly FDA-approved 

drugs had an associated postmarketing requirement at the time of FDA approval, with a median 

of five requirements per drug.16 Although about half of such postmarketing agreements required 

a new clinical trial to be conducted, these postmarket trials are often subject to some of the 

same limitations as premarket experimental studies.16  
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The field of pharmacoepidemiology addresses some of the limitations of clinical efficacy studies, 

using epidemiologic methods to study the “use of and effects of drugs” in large, non-

randomized, real-world samples.17 The scope of the field is wide and pertains to the 

quantification of information unavailable in premarket trials, including drug utilization and 

prescribing patterns, incidence of adverse and beneficial effects in real-world patient 

populations, and economic burden related to medication use. Pharmacoepidemiology often 

employs real-world data (e.g., electronic health records, medical registries, health insurance 

claims databases) to efficiently evaluate the safety and effectiveness of products throughout the 

drug development cycle, including at the phase of postmarketing use in the population.18, 19 

Real-world data, which are routinely collected as a part of the healthcare delivery process (i.e., 

the financing, insurance, and delivery of healthcare) and therefore widely available for a diverse 

set of patients, can offer cost, resource, and time advantages over conventional clinical trials 

when it comes to assessing drug products. Additionally, conducting observational studies using 

real-world data may in some cases be the only ethical way to investigate certain research 

questions (e.g., medication safety during pregnancy). Evidence derived from real-world data can 

be useful for detection of postmarket adverse drug events, and may also provide support for 

primary approval of new medications and approval of supplemental indications for 

medications.20, 21  

Concerns do exist in the scientific and regulatory communities, however, regarding the validity 

of scientific evidence generated from real-world data.22 Common criticisms about real-world 

data are generally consistent with the limitations of research using non-randomized data, 

including the availability of high quality, relevant data suitable to answer regulatory questions of 

interest, non-randomized allocation of drug products (which is susceptible to bias due to 

uncontrolled confounding), and missing information (especially as it relates to outcome and 

competing event data, which has implications for event risk estimation).23-26 The utility of 
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evidence generated from real-world data (i.e., real-world evidence) relies on the validity of the 

data and on the quality and suitability of the design and analysis methods implemented. 

Research that lacks internal validity may result in false positives regarding effectiveness or false 

negatives regarding safety, both of which have detrimental effects on real-world patient 

populations by either denying them the effective care that they need or by needlessly putting 

them at risk for adverse events. The passing of the 21st Century Cures Act in December 2016 

required FDA to evaluate the role of real-world data in supporting regulatory decision-making, 

which has important implications for the pharmaceutical industry and for clinical practice as 

well.27 Each aim of this dissertation will address a distinct methodological challenge facing 

epidemiologists in the pharmaceutical setting with regards to evaluating real-world database 

fitness for regulatory purpose (Aim 1), using real-world data to evaluate comparative safety of 

complex, non-randomized treatment regimens (Aim 2), and understanding the impact of missing 

death information on real-world evidence (Aim 3). As we will demonstrate, choice of a suitable 

real-world database, coupled with implementation of high-quality study design techniques and 

analytical methods, can offset the epidemiologic biases that threaten the validity of 

observational pharmacoepidemiology studies using real-world data.   

Overarching Goal and Specific Aims 

The overarching goal of this dissertation was to evaluate the validity of aspects of healthcare 

database research in the pharmaceutical industry and to assess how pharmacoepidemiologic 

methods can be applied to appropriately chosen real-world data sources to deliver influential 

and valid real-world-based evidence regarding medication safety and effectiveness. This goal 

was addressed by the following specific aims: 

1. Use the Duke-Margolis framework to assess whether a linked cohort of mothers and 

infants in a Japanese claims database is fit for purpose within the regulatory context of 
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estimating infant outcomes associated with in utero exposure to marketed medications. 

2. Evaluate the risk of developing cytopenias in relapsed multiple myeloma patients who 

received sequential treatment with immunomodulatory drugs as compared with those on 

an immunomodulatory drug-free regimen (within 3, 6, and 12 months of treatment 

initiation). 

3. Investigate the influence of specifying death as a health plan disenrollment censoring 

reason versus specifying death as a distinct competing event on cardiovascular 

cumulative risk estimates at early and late follow-up periods among new users of a 

medication under variations of population characteristics. 

Aim 1 served to demonstrate the assessment of real-world data fitness for regulatory purpose 

and inform the types of pregnancy studies (which could be tailored to various birth outcomes 

and in utero medication exposures) that may be validly conducted using a mother–infant linked 

population in a Japanese claims database. Aim 2 served to demonstrate how study design 

techniques and statistical modeling can be used to address comparative safety questions in the 

presence of confounding bias due to complex, non-randomized prescribing patterns and inform 

clinical decisions regarding regimen prescribing for relapsed multiple myeloma patients. Aim 3 

served to allow future researchers to predict the impact of not specifying death as a competing 

risk, because of missing information on death, on the validity of cumulative risk estimates based 

on characteristics of their patient population (particularly age and mortality rate). Overall, by 

demonstrating the situations in which real-world data may be used to generate valid answers to 

comparative safety and effectiveness questions with important implications for real-world 

populations (at the practice, provider, and patient levels), this dissertation serves to promote 

trust in fit-for-purpose real-world data.  
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CHAPTER 2: CHARACTERIZING FIT-FOR-PURPOSE REAL-WORLD DATA: AN 
ASSESSMENT OF A MOTHER–INFANT LINKAGE IN THE JAPAN MEDICAL DATA 
CENTER CLAIMS DATABASE 

Abstract 

Introduction: The potential for administrative databases to inform medication safety during 

pregnancy has been increasingly recognized. Mother–infant linkages in databases enable 

evaluation of infant outcomes. However, database availability, which has increased in recent 

years, does not inherently dictate suitability to generate evidence to inform regulatory decision 

making (whether the data are “fit for regulatory purpose”), emphasizing the importance of fit-for-

purpose real-world data evaluation.  

Objective: Use the Duke-Margolis framework to assess whether a linked cohort of mothers and 

infants in the Japan Medical Data Center (JMDC) claims database is fit for purpose within the 

regulatory context of estimating infant outcomes associated with in utero exposure to marketed 

medications. 

Methods: The Duke-Margolis framework considers whether a database is fit for regulatory 

purpose based on relevancy and quality. Relevancy relates to capacity to answer the research 

question, in terms of availability of critical data fields and a sufficiently sized, representative 

population. Quality relates to ability to validly answer the research question, in terms of data 

completeness, accuracy, and transparency. To assess these considerations, we estimated the 

number of pregnancies that could be linked to an infant among females ages 12–55 in the 

JMDC between January 2005 and March 2022 using two different linkage approaches. 

Descriptive characteristics were examined. 

Results: In terms of relevancy, we determined that critical data fields (maternal medication 

exposures, infant major congenital malformations, covariates) were available. Family 

identification codes permitted patient-level mother–infant linkage. 385,295 total valid mother–
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infant pairs were identified, representing about 2% of live births in Japan during the study 

period. About 41,000 congenital malformations were observed among these pairs. 57% of pairs 

involved a mother with continuous enrollment during pregnancy and 86% had at least one year 

of infant follow-up; 49% met both pregnancy and follow-up continuous enrollment. Comparison 

to publicly available data from Japan suggested preterm births were under-recorded (3.6% 

versus 5.6%) in this population. Overall congenital malformations were over-represented (10.8% 

versus 5.3%), yet the prevalence of each specific malformation subcategories was 

representative of rates in the general population. Maternal characteristics appeared mostly 

consistent with the population of same-aged females in Japan.  

In terms of quality, our methods were expected to accurately identify the complete set of 

mothers and infants in the JMDC enrolled in a shared health insurance plan. Females with 

evidence of a live birth delivery had a linkage rate of about 50%, which aligns with expectations 

of infant insurance coverage under the mother’s, versus another parent’s, plan. Cross-tabulation 

of values indicated for the relationship of the “mother” and “infant” to the insurance holder 

allowed for confirmation of plausible biologic mother–infant pairs. However, the completeness 

and accuracy of gestational age information was limited given the lack of live birth delivery 

codes for 60% of the cohort coupled with suppression of infant birth dates and inaccessibility of 

International Classification of Diseases codes with fifth level digits (where gestational week 

information would have been available) in the database.  

Conclusions: Results suggest the JMDC may be well-suited for descriptive studies of pregnant 

people in Japan (e.g., comorbidities, medication usage). More work is needed to identify a 

method to assign pregnancy onset and delivery dates so that in utero exposure windows can be 

defined more precisely as needed for many regulatory postapproval pregnancy safety studies. 
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Introduction  

Exclusion of pregnant people from clinical trials precludes the premarket availability of 

information regarding medication safety during pregnancy, thus postapproval safety studies are 

generally required by the United States Food and Drug Administration (FDA) when a new drug 

product is expected to be used among persons of childbearing age.28, 29 The requirement for 

postapproval safety investigation has conventionally been completed via the establishment of 

pregnancy exposure registries (typically sponsored by a single pharmaceutical company), but 

regulatory agencies have been demonstrating increasing interest in database approaches.30 

Pharmacoepidemiology often employs real-world data (e.g., electronic health records, medical 

registries, health insurance claims databases) to efficiently evaluate the safety and 

effectiveness of products throughout the drug development cycle, including at the phase of 

postmarketing use in the population.18, 19 Throughout, we use the inclusive terminology 

“pregnant people” to acknowledge that many people have uteri and can become pregnant (e.g., 

women, people who are non-binary, people who are transmasculine).31 

Administrative healthcare databases are an important source of pharmacoepidemiologic data 

for postapproval pregnancy safety studies. Designing a pregnancy-related cohort in a 

healthcare database according to the components of a hypothetical randomized clinical trial 

allows for this resource to be used for causal inference regarding medication safety during 

pregnancy.32-34 There are two key components of target trial emulation in pregnancy safety 

research: mother–infant linkages and pregnancy timing.35 Healthcare claims, which are 

collected for billing purposes, do not inherently indicate correspondence between mothers and 

their infants or pregnancy timing (e.g., estimated dates of conception and delivery) and 

therefore this information must be reconstructed by researchers who use the database.36-46 

First, linkage of pregnant people and their infants is required to emulate a pregnancy target trial 

as both exposure status and infant outcome evaluation must occur to study the 
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multigenerational impact of drug exposures during pregnancy on infant outcomes.35 Without 

valid linkage of pregnant people and their infants, the pregnant person’s record in isolation will 

not necessarily contain information regarding infant outcomes and the infant’s record in isolation 

will not contain information regarding maternal medication use during pregnancy. It is important 

to note that such linked populations in administrative claims databases are usually restricted to 

those with female gender codes in an attempt to identify the population with uteri who can 

become pregnant, given that this information is otherwise not directly available. This population 

is not necessarily restricted to cisgender females and we therefore recognize use of the binary 

“female” versus “male” gender classification to be suboptimal. Furthermore, while populations 

beyond cisgender females may identify as mothers, we acknowledge the term “mother” in itself 

to be gendered and non-inclusive.31 

Second, pregnancy timing information is required for a pregnancy target trial emulation because 

in a hypothetical randomized trial of pregnant people, trial enrollment and subsequent exposure 

randomization would need to occur at a specific gestational age, the specifics of which would 

depend on the outcome of interest.35 This is due to the fact that specific types of congenital 

malformations arise at different stages of fetal development (Figure 1).47 For example, as 

development of the heart occurs during the first trimester, it is during this critical period that 

cardiac malformations may originate; exposures occurring later in pregnancy are irrelevant for 

the study of cardiac malformations (but may be important for abnormalities of other body 

systems). 
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Figure 1. Sensitive periods of fetal development and related major structural and 
functional defects  

 
From MotherToBaby (2021)47 

Population-based, prospectively collected administrative healthcare databases allow 

researchers to construct large, diverse pregnancy cohorts with accurate prescription 

information, enabling the study of rare pregnancy outcomes while avoiding recall bias.19, 48-50 

This data resource has several advantages over medication-based pregnancy registries, which 

often suffer from difficulties with representative enrollment (due to the typical reliance on 

voluntary participation), long-term retention and loss to follow-up, and lack of an appropriate 

comparator group.51, 52 Furthermore, pregnant people are often not enrolled in pregnancy 

registries until later in pregnancy, thereby missing spontaneous abortions or stillbirths that may 

have occurred earlier in gestation and potentially resulting in a left truncated cohort, depending 

on the research question of interest.50 The use of pre-existing, routinely collected healthcare 

claims may address these concerns to some extent. Key drawbacks of using healthcare claims 

to examine medication safety during pregnancy are consistent with the general limitations of 
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research based on automated medical and prescription claims, such as the incomplete capture 

of key lifestyle factors (e.g., alcohol use, tobacco use, obesity, folate consumption), the lack of 

information on actual prescription medication consumption, and the possibility of loss to follow-

up of both pregnant individuals and infants due to changes in health plan enrollment.46 

Although the availability of large, detailed real-world databases (i.e., databases that are 

routinely collected as a part of the healthcare delivery process; e.g., health insurance claims, 

electronic health records) has continued to increase in the past decade, real-world data 

availability alone does not inherently dictate suitability to generate real-world evidence intended 

to inform regulatory decision-making. The passing of the 21st Century Cures Act in December 

2016 required the US FDA to evaluate the role of real-world data in supporting regulatory 

decision-making, which has important implications for the pharmaceutical industry and for 

clinical practice as well.27 In partial fulfillment of this requirement, the FDA released a framework 

on real-world evidence in December 2018.24 This framework introduced a three-part approach, 

which considers:  

“(1) whether the real-world data are fit for use, (2) whether the study design can 

provide adequate scientific evidence to answer or help answer the regulatory 

question, and (3) whether the study conduct meets FDA regulatory 

requirements.”24  

Similar real-world evidence frameworks have also been released by regulatory agencies in 

Canada, Europe, and Asia.53, 54 In Japan, the Pharmaceuticals and Medical Devices Agency 

(PMDA) has released and updated several guidelines in recent years to promote use of real-

world data throughout the drug life cycle, with a particular focus on assuring data reliability in 

postmarketing safety studies.55, 56 Understanding whether real-world data generated from the 

financing, insurance, and delivery of healthcare may be “meaningfully, validly, and 

transparently” used to answer a real-world safety and effectiveness question of regulatory 
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interest, henceforth referred to as “fit-for-purpose real-world data,” is an important prerequisite 

for using the data to inform decision-making by patients, physicians, practices, and regulatory 

agencies.25 To this end, the Duke-Margolis Center for Health Policy, in collaboration with FDA, 

has developed a framework for evaluating fitness for purpose of real-world evidence for 

regulatory decision-making.25, 26 The framework recommends evaluating whether real-world 

evidence is fit for regulatory purpose by considering four key perspectives: (1) the regulatory 

question of interest, (2) the clinical context, (3) considerations of the data, including the 

availability of relevant, high-quality data, and (4) the application of sufficient methodological 

approaches (Figure 2).25 

Figure 2. Considerations for generating real-world evidence that is fit for regulatory 
purposes  

Daniel et al (2018). Characterizing Real-World Data Quality and Relevancy for Regulatory Purposes. 

The objective of this analysis was to apply the Duke-Margolis framework, focusing particularly 

on the data considerations (Figure 3), to evaluate the fitness for purpose of a linked cohort of 

mothers and their infants in the health insurance claims database maintained by the Japan 

Medical Data Center (JMDC), within the specific regulatory context of estimating infant major 

congenital malformations associated with in utero exposure to marketed medications. 
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Figure 3. Considerations for whether real-world data are fit for regulatory purposes  

 
Daniel et al (2018). Characterizing Real-World Data Quality and Relevancy for Regulatory Purposes. 

The FDA has released guidelines regarding the use of real-world data to complement data 

obtained from pregnancy registries, specifically stating that database choice needs to consider 

“methods used to identify pregnancies, estimates of conception and gestational age, linkage to 

offspring records, and ascertainment and validation of pregnancy and birth outcomes.”57 

Furthermore, the FDA has committed to establishing standard practices for use of real-world 

data to assess pregnancy safety by 2027.58 The PMDA has recently expressed intentions to 

improve existing registry-based infrastructure for pregnancy safety research, but has yet to 

comment on the use of real-world data in this setting.59, 60 Although claims-based mother–infant 

linkages have been established in the US, there is value in adding and evaluating this resource 

in Japan due to the differences between Japan and the US in terms of standards of obstetric 

care, prescription medication recommendations in pregnancy, and the healthcare systems.61-63 

The results of this fit-for-purpose real-world data evaluation will be used to inform whether 

internally valid pregnancy surveillance studies (which could be tailored to various birth outcomes 

associated with in utero exposure to specific medications) may be conducted using a mother–

infant linked population in the JMDC claims database, which has implications for the 

dissemination of research results in practice. 
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Methods 

Study Population  

The data source for this analysis was the health insurance claims database maintained by the 

Japan Medical Data Center (JMDC). The JMDC is Japan’s largest claims database, making it a 

strong choice of real-world data to efficiently evaluate the safety and effectiveness of drug 

products in the Japanese population.64 The JMDC is compiled from over 1,400 private 

companies that belong to the Health Insurance Association, one of five payer organizations of 

the Japanese National Health Insurance System. All citizens of Japan are covered by the 

National Health Insurance System, provided either through their employer or through the 

government. All infants in Japan are enrolled in the National Health Insurance System within 

one month of birth. The national insurance covers most medical services, including drugs, with 

the exception of over-the-counter drugs, vaccinations, and cosmetic surgeries. A fixed fee is 

used for each medical service across the country, and co-payment ratios are defined by age 

groups (e.g., 30% of treatment cost for individuals ages 6–69 years). Japan does not use a 

primary care physician system; citizens are free to visit any medical facility at any time, with no 

referrals needed. The JMDC claims database includes all inpatient, outpatient, and pharmacy 

claims received from multiple insurers in Japan. Unique patient identifiers allow each patient to 

be tracked longitudinally, given that they are covered by a consistent payer. The claims contain 

diagnoses (classified according to the International Classification of Diseases, 10th Revision 

[ICD-10]), medical procedures, and prescribed medications, all with dates available.45  

Linkage of mothers and infants as required by the target trial framework is possible, assuming 

that the infant is a dependent on a shared insurance plan with the mother, via family 

identification variables assigned in the JMDC claims database to the insured individual and all of 

their dependents. In the Japanese National Health Insurance System, dependents may be any 

family member who is financially supported by the insured individual. This group is not limited to 
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the spouse and child(ren), and may additionally include other blood relatives (e.g., parents, 

siblings, grandparents), in-laws, or stepchildren of the insured individual.  

Critical pregnancy timing as needed for pregnancy target trial emulation may be estimated 

based on claims representing diagnoses and procedures at delivery, as well as those that occur 

at the beginning of and throughout a pregnancy.36-45 Delivery in itself is not necessarily always 

covered by the Japanese National Health Insurance System and therefore a delivery that does 

not require any surgical procedures or medications covered by the health insurance would not 

appear in Japanese claims. As a result, it is expected that the JMDC claims database will 

present an incomplete report of deliveries, particularly over-representing complicated deliveries 

requiring medical intervention. Furthermore, the National Health Insurance does not cover 

pregnancy confirmation tests or prenatal health visits, although these costs are subsidized by 

the government. Missing delivery and pregnancy care information is expected to impede the 

ability to estimate pregnancy timing in this database, which is vital for defining in utero 

medication exposure windows in pregnancy safety research. This missing information therefore 

provides an incomplete representation of interactions with the health system during pregnancy.  

The fitness for purpose of the JMDC claims database as a source of real-world data for the 

study of medication safety during pregnancy has not been evaluated. Ishikawa et al. recently 

created a mother–infant linked cohort in the JMDC claims database, but did not comment on the 

expected validity of the paired mothers and infants nor describe how various steps of their 

linkage process may have affected the generalizability of the cohort relative to the target 

population of all mothers and liveborn infants in the Japan.44, 45 For example, their requirement 

for continuous enrollment in the health plan in the year before the birth of the infant resulted in 

the exclusion of 36% of mother–infant pairs (approximately 27,500) and their inability to 

estimate pregnancy timing resulted in the exclusion of an additional 15% of mother–infant pairs 

(approximately 7,300). Furthermore, as nearly 1.7 million females in the JMDC (96%) remained 
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unlinked by Ishikawa et al., distinguishing between females without a pregnancy during the 

study period (not part of the target population of mothers and liveborn infants in Japan), females 

who experienced a pregnancy that ended in a fetal death (not part of the target population), and 

females with liveborn infants that could not be linked in the database (part of the target 

population) is an important prerequisite for understanding the fitness for purpose of the JMDC 

claims database for generating pregnancy-related real-world evidence. Finally, the number of 

infants in the JMDC claims database that remained unlinked by Ishikawa et al. (i.e., because 

their mother is covered by a different insurer) is unknown, which is also vital for understanding 

how well the matched infants represent the totality of infants covered by the JMDC. The present 

analysis will therefore expand upon previously published mother–infant cohorts using the JMDC 

claims database by adding a formal evaluation of database fitness for regulatory purposes, as 

outlined by the Duke-Margolis framework.25
   

Data Considerations  

We used the Duke-Margolis framework to evaluate the fitness for purpose of a mother–infant 

linkage in the JMDC claims database. The Duke-Margolis framework states that considerations 

for whether a source of real-world data is fit for regulatory decision-making, within a given 

context, involves the dimensions of (1) data relevancy and (2) data quality. The relevancy of a 

given real-world database relates to the capacity of the database to answer the regulatory 

research question, in terms of the availability of critical data fields and a sufficiently sized, 

representative population. This evaluation relates to the potential for selection bias in the study 

population. The quality of a real-world database relates to the ability of the data source to 

accurately, reliably, and transparently answer the regulatory question of interest. This evaluation 

relates to the potential for information bias in the study processes. Our analyses considered the 

relevancy of the JMDC claims database to be used to answer regulatory questions related to 

medication safety during pregnancy, as well as the quality of information available for (A) the 
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formation of the mother–infant matches and (B) the estimation of the gestational period, as 

required for pregnancy safety research.  

Statistical Analyses  

We performed two linkage methods to generate various descriptive statistics (frequencies, 

distributions, and completeness of data fields) that allowed us to assess the data relevancy and 

quality dimensions. The analyses were conducted as follows: (1) performed Linkage Method A 

to assess number of successful linkages relative to the estimated number of unique pregnancy 

episodes identifiable in the JMDC database, (2) performed Linkage Method B to assess number 

of successful linkages relative to all infants in the JMDC database, (3) examined the presence 

of pregnancy or delivery codes among successful linkages from Linkage Method B, (4) 

assessed validity of mother–infant linkages from Linkage Method B, (5) assessed annual valid 

pairs available from Linkage Methods A and B, and (6) described characteristics of the valid 

pairs linked via Linkage Method B, including both female characteristics and infant 

characteristics. 

Linkage Method A first identified potential pregnancy episodes, according to active pregnancy 

and delivery codes, and then determined the proportions that were successfully linked to infants 

to inform expected completeness of mother–infant pairs in the JMDC database. Active 

pregnancy codes were defined as diagnosis codes that indicated a person to be presently in a 

pregnant state and delivery codes were defined as diagnosis codes that indicated occurrence of 

a live birth delivery.65 All codes were defined according to ICD-10 (Table 1). 
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Table 1. Claims-based definitions for active pregnancy and live birth delivery episodes 

Category ICD-10 Diagnosis Codes 
 

Active Pregnancy  

O100–O104, O11, O120–O121, O13–O16, O20, O210–O212, O22 (not O228), O23 (not O233), 
O24 (not O243, O248), O25, O26 (not O269), O29 (not O294, O295, O298), O30 (not O308), 
O310 (not O313), O32, O33 (not O334, O338), O34 (not O345, O347), O350, O351, O353, 
O358, O359, O36, (not O367, O369), O40, O41, O42, O43, O441, O450, O459, O469, O47, 
O48, P07, Z33, Z349 

Live Birth Delivery  

O601, O603, O611, O619, O62 (not O628), O630, O631, O639, O64 (not O645, O649), O651, 
O654, O655, O66 (not O664–O668), O679, O68, O68, O69 (not O691), O70 (not O704), O71 
(not O718), O72, O73, O742, O743, O744, O749, O75 (not O754, O759), O80 (not O808), O81 
(not O812), O820, O821, O829, O830, O831, O839, O840, O842, O849, O85, O86 (not O868), 
O87, O88 (not O888), Z380–Z383 

ICD-10: International Classification of Diseases, Tenth Revision 

Linkage Method A was conducted as follows (Figure 4): 

1. Identified all females ages 12–55 between January 2005 and March 2022 with any code 

from the active pregnancy code list. Restriction to those with female gender was done in 

an attempt to identify the population with uteri who can become pregnant. This population 

is not necessarily restricted to cisgender females and we recognize this binary gender 

classification to be suboptimal. 

i. For each female, started from the first date of the pregnancy code and set as the first 

pregnancy start date.  

ii. Continued checking if the next pregnancy code date was within 294 days (estimated 

maximum end date); if not, set the date as a new pregnancy episode start date. 

iii. Repeated step 1i–ii, created a table for each female with each pregnancy episode 

start and end date.  

iv. Matched step 1iii table to infants (dependent members whose enrollment start 

month/year is the same as their birth month/year) with same family identification 

code. Required infant date of birth (set as 15th day of birth month) to be within 

pregnant episode start date and end date. A single pregnancy episode may have 

had multiple births and therefore a single mother may have had multiple infant pair 

matches (e.g., twins).  
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2. Identified all females ages 12–55 with any code from the delivery code list.  

i. For each female, started from the first date of the delivery code and set as the 

delivery date (pregnancy end date).  

ii. Continued checking if the next delivery code date is within 168 days; if not, set the 

date as a new delivery episode date. 

iii. Repeated step 2i–ii, created a table for each female with each delivery episode date.  

iv. Matched step 2iii table to infants (dependent members whose enrollment start 

month/year is the same as their birth month/year) with same family identification 

code. Required infant date of birth (set as 15th day of birth month) to be within ±60 

days of the delivery date. A single pregnancy episode may have had multiple births 

and therefore multiple pairs (e.g., twins).  

3. Of the family identification code pairs created in steps 1iv and 2iv, classified into mutually 

exclusive groups: 

i. Pairs identified in both 1iv and 2iv.  

ii. Pairs identified in only 1iv (and not 2iv). 

iii. Pairs identified in only 2iv (and not 1iv). 

Figure 4. Flow chart of cohort creation for Linkage Method A 

FamilyID: Family identification code 
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The process of Linkage Method B was opposite that of Linkage Method A; Linkage Method B 

began by identifying mother–infant pairs and then examined the prevalence of pregnancy and 

delivery codes among the pairs. Linkage Method B informed the proportion of infants in the 

JMDC that successfully matched with a mother, as well as the expected accuracy and 

completeness of delivery and gestational age information (which would rely on pregnancy and 

delivery codes). Specifically, Linkage Method B was conducted as follows (Figure 5): 

1. Identified all females ages 12–55 between January 2005 and March 2022 who had a 

matching family identification code to an infant (dependent member whose enrollment start 

month/year is the same as their birth month/year). Allowed females to match to multiple 

unique infants (e.g., siblings, multiples).  

2. Set delivery date as the 15th day of the infant birth month. 

3. Of the family identification code pairs identified, determined how many would have been 

identified based on presence of the following code types: 

i. Active pregnancy code(s). Maternal records included at least one code from the 

active pregnancy code list within the 294 days before the delivery date.  

ii. Completed pregnancy outcome code(s). Maternal records included at least one code 

from the delivery-related code list in ±60 days from the delivery date.  

4. Of those classified in 3i and 3ii, classified into mutually exclusive groups: 

i. Pairs who met both 3i and 3ii.  

ii. Pairs who met only 3i (and not 3ii).  

iii. Pairs who met only 3ii (and not 3i).  

iv. Pairs who met neither 3i nor 3ii.  
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Figure 5. Flow chart of cohort creation for Linkage Method B 

 
FamilyID: Family identification code  

Next, using the matched pairs created in Linkage Method B, we evaluated the relationship that 

the matched “mother” and “infant” both had to the insurance holder to inform validity of the 

assumed mother–infant relationships between pairings of females age 12–55 years with infants 

who shared a family identification code. In the JMDC claims database, a unique family 

identification variable is assigned to the insured individual and all of their dependents, 

regardless of relationship (which may include any family member who is financially supported by 

the insured individual and is not limited to the spouse and children). The JMDC enrollment data 

includes a separate variable that indicates an individual’s relationship to the insurance holder. 

By cross-referencing the values indicated for the “mother” and the “infant,” we were able to 

understand whether plausible mother–infant pairs were formed. Our categorization scheme for 

the assumed validity of mother–infant pairings, based on their relationships to the insurance 

holder, is shown in Figure 6. It is worth noting that we assumed incestuous mother–infant 

relationships, although biologically possible, to be implausible (e.g., if both members of the pair 

were indicated as a “child” of the insurance holder, it is biologically possible that the male 

insurance holder impregnated his own daughter. It is more likely, however, that this represents a 

sibling pair that was linked as a mother–infant pair by our algorithm in error). 



22 

 

 

Figure 6. Categorization of assumed validity of mother–infant pairings based on both 
individual’s relationship to the insurance holder 

 
*Although some of the "adopted child" infant relationships could be valid relationships between mother and child, these are not valid 
mother–infant pairs for the purposes of studying in utero exposures. 

Relationships considered to be confident biologic mother–infant pairs were those in which the 

infant was listed as the child of the insurance holder while the mother was either the insurance 

holder or the spouse (including common-law spouse) of the insurance holder, or the infant was 

listed as the insurance holder’s spouse’s child while the mother was listed as the spouse. 

Several relationships were considered to be “possible” mother–infant pairs, defined as pairs in 

which the mother and the infant possessed relationships to the insurance holder that could 

qualify them as a biologic mother–infant pair, but without additional family tree information we 

lacked the ability to confirm a mother–infant relationship (e.g., the mother is the sister of the 

insurance holder and the infant is the nephew/niece of the insurance holder).  

In an attempt to improve validity of the mother–infant linkages, two exclusions were made 

before proceeding with evaluation of descriptive characteristics. First, we excluded 

invalid/inconclusive pairings based on the mother’s and infant’s relationships to the insurance 

holder. We excluded all pairs whose relationships to the insurance holder qualified them as 
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either confidently not mother–infant pairs or pairs of unknown validity. We also excluded 

possible mother–infant pairs for which pregnancy and/or delivery codes were absent, given the 

lack of evidence for validity of these pairs. We acknowledge that retaining possible pairs with 

pregnancy or delivery codes could have resulted in inclusion of invalid pairs, but suspect that 

the overlap of pregnancy/delivery codes with the birth of the infant supports a biologic mother–

infant relationship. We also excluded infants who successfully matched with more than one 

mother, which could have occurred for infants involved in “possible” mother–infant pairs. 

Using the matched, valid pairs created in the two linkage methods, we created estimates of the 

number of annual births according to (1) all matched pairs from Linkage Method A, (2) all pairs 

from Linkage Method B, regardless of pregnancy and/or delivery codes and (2) only the pairs 

from Linkage Method B with pregnancy and/or delivery codes. 

Finally, using the matched, valid pairs created in Linkage Method B, we examined descriptive 

characteristics of the mother–infant linked cohort for (1) all pairs and (2) only those pairs with 

pregnancy and/or delivery codes. We chose to proceed with the Linkage Method B cohort for 

this analysis given that this method allows for direct identification of pairs of mothers and 

liveborn infants without reliance on the presence of diagnosis codes during pregnancy or at 

delivery. Linkage Method B is therefore expected to result in a more complete representation of 

the population of mothers and liveborn infants in the JMDC claims database, compared to 

Linkage Method A, due to the fact that prenatal care and delivery hospitalizations may not 

necessarily generate healthcare claims in Japan. The assessment windows for the various 

characteristics of interest are displayed in Figure 7. Maternal medical conditions were examined 

on maternal records according to available patient history before the delivery date and maternal 

medication exposures were examined on maternal records in the year before the delivery date. 

Maternal characteristics were assessed once per unique female. For females with more than 

one linked infant, a single delivery date was randomly selected to define the maternal covariate 
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assessment period. Infant major congenital malformations were examined on infant records in 

the year following the delivery date. Preterm birth was assessed on both maternal and infant 

records within the 60 days before or after the delivery date.  

Figure 7. Maternal and infant characteristics and assessment windows  

 
ACE-Is: Angiotensin-converting enzyme inhibitors. SSRIs: Selective serotonin reuptake inhibitors. 

These characteristics were defined using ICD-10 algorithms from the Global Burden of Disease 

(GBD) descriptive epidemiology study, which are provided by the Global Health Data Exchange 

(GHDx; Table 2).66, 67 Medication exposures were defined according to the Anatomical 

Therapeutic Chemical (ATC) classification system from the World Health Organization (WHO) 

(Table 3). 
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Table 2. Claims-based definitions for maternal medical conditions and infant major 
congenital malformations  

Category ICD-10 Diagnosis Codes 

Female Medical Conditions 

Alcohol use disorders E244, F100– F107, G312, G621, R780 

Anxiety disorders 
F40 (not F408), F41 (not F413), F420, F421, F429, F43 (not F438), F440 (not F443), 
F930 

Asthma J45, J46 

Breast cancer C50, Z123 

Cervical cancer C53 

Diabetes 
E10 (not E102, E108), E11 (not E112, E118), E12, E13 (not E132, E138), E14 (not 
E142, E147, E148), R730, R739 

Epilepsy  G40, G41 (not G418) 

Major depressive disorder  F32, F33 (not F338) 

Maternal hypertensive 
disorders 

O10 (not O109), O11, O120, O121, O13, O14, O15, O16 

Migraine G430 

Substance use disorders  
E244, F100– F107, F112, F120, F122, F127, F130, F131, F132, F140, F142, F150, 
F151, F152, F155, F157, F160, F161, F162, F170, F172, F180, F181, F182, F19 (not 
F194, F198), G312, G621, P961, R780, R782, R786, R787 

Infant Major Congenital Malformations  

Congenital heart 
anomalies 

Q20 (not Q209), Q21, Q22 (not Q229), Q23 (not Q239), Q24, Q25, Q26, Q27, Q28 (not 
Q289) 

Congenital 
musculoskeletal and limb 
anomalies 

Q650, Q651, Q652, Q658, Q659, Q660, Q661, Q680, Q681, Q682, Q688, Q69, Q70, 
Q711, Q713, Q714, Q715, Q716, Q719, Q721, Q723, Q724, Q727, Q729, Q730, Q731, 
Q738, Q740, Q741, Q742, Q743, Q749, Q750, Q755, Q759, Q761, Q762, Q764, Q769, 
Q77, Q78, Q798, Q799 

Digestive congenital 
anomalies 

Q380, Q383, Q384, Q386, Q387, Q388, Q39, Q400–Q403, Q410 (not Q418), Q421, 
Q423, Q429, Q43 (not Q431), Q44, Q450–Q458, Q790–Q795 

Down syndrome Q90 

Klinefelter syndrome Q980, Q981, Q984 

Neural tube defects Q00, Q01, Q054–Q059, Q070 

Orofacial clefts Q35, Q36, Q37, Q37 

Other chromosomal 
abnormalities 

Q748, Q751, Q754, Q758, Q796, Q87, Q91, Q922, Q923, Q926, Q928, Q929, Q932–
Q935, Q938, Q939, Q970, Q971, Q99 

Other congenital birth 
defects 

G712, Q02, Q03, Q04, Q06 (not Q063), Q07, Q10, Q11, Q12, Q13, Q14, Q15, Q17, 
Q18 (not Q187), Q270, Q30, Q31, Q32, Q33 (not Q335), Q34, Q381, Q382, Q385, 
Q430, Q459, Q662–Q668, Q680, Q683, Q684, Q685, Q740, Q752, Q753, Q760, Q765, 
Q766, Q767, Q80, Q810, Q811, Q812, Q523, Q525, Q53, Q552, Q633, Q653–Q656, 
Q818, Q819, Q82, Q83 (not Q830), Q84, Q85, Q860, Q890–Q898 

Turner syndrome  Q960, Q963, Q964, Q969 

Urogenital congenital 
anomalies 

P960, Q50, Q51 (not Q515–Q517), Q520–Q522, Q524, Q526, Q527, Q529, Q54 (not 
Q544), Q55 (not Q558), Q560–Q562, Q640, Q641 

Delivery Characteristics  

Preterm birth  P072, P073 

ICD-10: International Classification of Diseases, Tenth Revision 
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Table 3. Claims-based definitions for maternal medication exposures  

Category WHO ATC Code  

ACE-Is 
C09AA, C09AA01, C09AA02, C09AA03, C09AA04, C09AA06, C09AA07, C09AA08, C09AA10, 
C09AA12, C09AA14, C09AA16 

Anticonvulsants  

B05XA05, N02BG11, N03AA03, N03AB01, N03AB02, N03AB05, N03AB52, N03AC02, 
N03AD01, N03AE, N03AE01, N03AF01, N03AF03, N03AG01, N03AG04, N03AX03, N03AX09, 
N03AX11, N03AX12, N03AX13, N03AX14, N03AX15, N03AX16, N03AX17, N03AX18, 
N03AX22, N05BA01, N05BA06, N05BA09 

Anti-diabetics  

A10AB01, A10AB04, A10AB05, A10AB06, A10AC01, A10AC04, A10AD01, A10AD04, 
A10AD05, A10AD06, A10AE01, A10AE04, A10AE05, A10AE06, A10AE54, A10AE56, 
A10BA02, A10BA03, A10BB, A10BB01, A10BB02, A10BB03, A10BB09, A10BB12, A10BB31, 
A10BD, A10BD05, A10BD06, A10BD08, A10BD09, A10BD13, A10BD19, A10BF01, A10BF02, 
A10BF03, A10BG03, A10BH, A10BH01, A10BH02, A10BH03, A10BH04, A10BH05, A10BH08, 
A10BJ01, A10BJ02, A10BJ03, A10BJ05, A10BJ06, A10BK, A10BK01, A10BK02, A10BK03, 
A10BK05, A10BK07, A10BX, A10BX02, A10BX03, A10BX08, A10XA 

Methotrexate L04AX03 

Mycophenolate L04AA06 

Ribavirin J05AP01 

SSRIs N06AB05, N06AB06, N06AB08, N06AB10 

Statins C10AA01, C10AA03, C10AA04, C10AA05, C10AA07, C10AA08 

Warfarin B01AA03 
WHO ACT: World Health Organization Anatomical Therapeutic Chemical 

To quantitatively assess the representativeness of the mother–infant linked cohort relative to the 

target population of all mothers and liveborn infants in Japan, we leveraged publicly available 

data regarding the prevalence of maternal and infant health conditions from the GHDx and 

Japanese Vital Statistics. The GHDx is a public data catalog created and maintained by the 

Institute for Health Metrics and Evaluation, which provides global data on demographics and 

health conditions. As part of this data catalog, results from the GBD global descriptive 

epidemiology study are available from 1990 to 2019.67 The GBD study captures information on 

nearly 370 diseases and injuries in 204 countries and territories, with stratification available on 

age and sex. The GHDx GBD visualization tool (https://vizhub.healthdata.org/gbd-results/) was 

used to examine the prevalence of selected medical conditions among females age 10–54 (the 

closest age group to our cohort inclusion criteria) and the prevalence of infant (age <1 year) 

major congenital malformations in Japan from 2005–2019, to most closely match our data 

availability. We selected maternal medical conditions based on those likely to be important 

treatment indications or confounders in future analyses (Table 2). The total prevalent number of 
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cases and the total population size for each condition were used to generate annual prevalence, 

and the average across all years was calculated as a summary measure for each condition.  

Demographic characteristics for all annual births in Japan are available from the Japanese Vital 

Statistics natality data (https://www.e-stat.go.jp). This source offers a complete capture of births 

in Japan, as reporting is required by law. Information elicited on the live birth form includes 

maternal age, infant sex, infant weight, weeks of gestation, place of delivery (e.g., hospital or 

home), and geographic area of residence.68 We obtained the average maternal age, the 

distribution of infant sex, and gestational age category (preterm versus term) from 2010 to 2019 

(maximum data years available during our study period; note gestational age group was not 

available for 2011 to 2013).68 

Although we also would have liked to explore how well the mother–infant linked population in 

the JMDC represents the target population of all mothers and liveborn infants in Japan in terms 

of prescription medication utilization and healthcare utilization, the level of detail desired 

regarding these characteristics is not well-reported in the literature nor any publicly available 

Japanese data source. It is worth noting that we did explore the open data provided by the 

National Database of Health Insurance Claims and Specific Health Checkups of Japan. This 

source does annually report aggregated information regarding the number of monthly 

prescribed pharmaceutical products, according to product name and patient sex and age group. 

However, due to the ecological nature of this database, we were unable to determine the 

proportion of unique females of childbearing age receiving medications in each drug class. 

Finally, to quantitatively assess the representativeness of the mother–infant linked cohort 

relative to all mothers and liveborn infants in the JMDC database, we examined characteristics 

among the unlinked population. Understanding how those successfully matched may differ from 

unmatched and excluded infants and mothers is important for informing the generalizability (i.e., 

whether and how results would need to be reweighted to inform treatment decisions for all 
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mothers and liveborn infants in Japan) of future pregnancy safety and effectiveness studies 

conducted in such linked databases, which has important implications regarding to whom the 

results derived from this source of real-world data could be applied. Specifically, for females 

with evidence of a live birth delivery but without a successful linkage to their infant (i.e., those 

identified in Linkage Method A step 2, minus those linked to an infant in step 2iv), medical 

conditions, prescription medications, and enrollment characteristics were assessed relative to 

the delivery date. For infants without a successful linkage to their mother (i.e., all infants in the 

JMDC claims database minus those linked to a mother in Linkage Method B step 1), major 

congenital malformations and enrollment characteristics were assessed relative to the estimated 

date of birth (set as 15th day of birth month).  

Results 

There were 5,795,818 females ages 12–55 years and 717,034 infants identified during the study 

period. According to Linkage Method A, 643,483 unique pregnancy episodes were identified 

according to the presence of active pregnancy codes, among which 257,885 (40%) successfully 

linked with an infant. After removal of 19,307 pairs (8%) due to invalid relationships or duplicate 

infants, a total of 238,578 valid pairs remained. Additionally, Linkage Method A identified 

320,051 unique pregnancy episodes according to the presence of delivery codes, 178,751 

(56%) of which successfully linked with an infant. After removal of 12,766 pairs (7%) due to 

invalid relationships or duplicate infants, a total of 165,985 valid pairs remained. Comparison of 

the valid pairs from the active pregnancy and delivery code groups revealed a total of 276,027 

unique pairs identified via Linkage Method A.  

According to Linkage Method B, 446,441 total unique pairs were identified via family 

identification codes. Among these pairs, 300,706 (67%) possessed active pregnancy and/or 

delivery codes, with the remaining 145,705 pairs (33%) having neither active pregnancy nor 
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delivery codes. After removal of 61,116 (14%) due to invalid relationships or duplicate infants, a 

total of 385,295 valid pairs remained. These results are discussed in more detail in the context 

of the Duke-Margolis framework in the following sections.  

1. Data Relevancy  

The relevancy of a given real-world database relates to the capacity of the database to answer 

the regulatory research question, in terms of the availability of critical data fields and a 

sufficiently sized, representative population.  

1.1. Availability of Key Data Elements 

To assess data relevancy, we first considered whether critical data fields required to address 

the research question were available: the exposure (maternal medication exposure), the 

outcome (infant major congenital malformations), potential covariates of interest, and data fields 

permitting patient-level mother–infant linkage. 

1.1.1. Exposure (Maternal Medication Exposure) 

The Japanese National Health Insurance System covers most medical services, including drugs 

(except for over-the-counter drugs). The absence of information regarding over-the-counter 

medications in the JMDC claims database is not of concern given that the regulatory context for 

the present analysis states a particular interest in post-authorization examination of marketed 

medications. The JMDC claims database contains records of all prescribed medications, with 

detailed information available regarding dates of dispensing, the prescribed daily dose, and the 

number of days administered.45 These prescription claims are expected to offer a complete 

representation of all medications prescribed to mothers before and during pregnancy (i.e., high 

exposure sensitivity), as needed to define the exposure of interest. Prescription information 

obtained from claims data offers advantages over survey-based information collected as a part 

of pregnancy exposure registries, which is often subject to recall bias.46 However, all claims 
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databases have inherent limitations because the claims are collected for the purpose of 

payment and not research. Presence of a claim for a filled prescription does not indicate that the 

medication was consumed, which could contribute to low exposure positive predictive value. 

Importantly, exposure definition with respect to the etiologically relevant window requires 

knowledge of prescription consumption timing relative to gestational age (Figure 1) which is 

discussed in more detail as part of the data quality considerations. 

1.1.2. Outcome (Infant Major Congenital Malformations) 

The JMDC claims database contains diagnoses (classified according to ICD-10) and medical 

procedures from the inpatient and outpatient settings, all with dates available.45 All infants in 

Japan are enrolled in the National Health Insurance System within one month of birth and the 

JMDC claims database captures all infant medical visits. Capture of infants diagnosed with 

major congenital malformations, as needed to define the outcome of interest, is therefore 

expected to be complete. As previously stated, all claims databases have inherent limitations. 

Presence of a diagnosis code on a medical claim is not necessarily indicative of the presence of 

disease, as the diagnosis code may be incorrectly coded or included as rule-out criteria rather 

than actual diagnosis of a disease or condition. Similarly, the absence of a diagnosis code on a 

medical claim may not necessarily indicate the absence of a disease or condition, for example 

due to a missed diagnosis, an error in reporting, or the possibility that a condition present at 

birth is not clinically manifest until a later age. For the serious diagnoses we plan to consider, 

the presence of an associated claim will be assumed to validly indicate that the disorder was 

present and the absence of a claim will indicate the opposite. Validation of a JMDC claims-

based algorithm to identify any infant major congenital malformations against gold standard 

medical records in Japan found the positive predictive value to be 91.5% (95% CI 85.6%–

95.5%); negative predictive value was not reported.69 
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1.1.3. Covariates  

The JMDC claims database contains diagnoses (classified according to ICD-10) and medical 

procedures from the inpatient and outpatient settings, all with dates available.45 We therefore 

expect to be able to measure demographic characteristics and comorbidities, concomitant 

medications, and healthcare utilization characteristics as required to address confounding of the 

exposure-outcome association of interest. As previously mentioned, there are general 

limitations of using claims databases for research purposes (e.g., whether the presence versus 

absence of a diagnosis code corresponds to the true disease state). However, for the serious 

diagnoses and related concomitant medication usage likely to be considered as confounders of 

the relationship between maternal medication use and infant major congenital malformations, 

the presence of an associated claim will be interpreted as indicating that the procedure was 

conducted, the disease was present, or the drug was consumed. The absence of a claim will 

indicate the opposite. Missing data will be a concern mainly when lifestyle (e.g., alcohol use, 

smoking, physical activity) and biometrics (e.g., body mass index, blood pressure, cholesterol) 

are important covariates for a given analysis, because these items are not well captured in 

claims. Additionally, certain pregnancy-related characteristics that may be important 

confounders of the association between in utero medication exposure and infant major 

congenital malformations, such as reproductive history, are also not well-captured in claims 

databases.46 

1.1.4. Patient-Level Linking (Linkage of Maternal and Infant Records)  

Healthcare claims, which are collected for billing purposes, do not inherently indicate 

correspondence between mothers and their infants and therefore this information must be 

reconstructed by researchers.36-45 Linkage of mothers and infants in the JMDC claims database 

is possible if the two parties share a health insurer. Health insurance benefits are provided not 

only to the insured individual, but also to their dependent family members. A unique, shared 
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family identification variable is assigned to the insured individual and their enrolled dependents, 

enabling linkage of maternal and infant records based on this value. Further detail regarding the 

accuracy of mother–infant pairs formed using the family identification variable is discussed 

below as part of the data quality considerations.  

1.2. Representativeness  

The next data relevancy consideration relates to the ability of the persons in the database to 

accurately reflect the population of interest. Here, we assessed whether the persons in the 

linked mother–infant JMDC population were expected to be representative of the population of 

interest (i.e., pregnant people in Japan and their liveborn infants). Although mother–infant linked 

populations have previously been created in varied claims databases (e.g., the Medicaid 

Analytic eXtract,36 the IBM Watson Health MarketScan Databases,41 the Mini-Sentinel 

Distributed Database39), the representativeness of mothers and infants included in the cohort 

relative to the target population has not been assessed. Descriptive analysis of a mother–infant 

linkage in the Sentinel Distributed Database revealed that linked versus unlinked pairs had a 

higher average maternal age and were less likely to be preterm deliveries, but were otherwise 

similar according to most pre-pregnancy maternal comorbidities and features of healthcare 

utilization.70 It is not clear whether this observation would hold true for mother–infant linkages in 

other databases.  

We compared the distributions of the characteristics of the mother–infant linked cohort with the 

general Japanese population and with the unlinked mothers and infants in the JMDC claims 

database (Table 4).  
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Table 4. Prevalence of maternal medical conditions, medication use, and infant major 
congenital malformations in the Japan Medical Data Center (JMDC) claims database 
linked and unlinked populations, compared to the general Japan population 

 General Japan 
Population 

JMDC 
Linked, All 
Valid Pairs 

JMDC Linked, 
Valid Pairs 
with Codes 

JMDC 
Unlinked1 

Female Characteristics2   N = 287,444 N = 207,681 N = 119,676 

Demographic Characteristics3   
Age, years (mean) 31.7 32.3 (SD 5.0) 32.6 (SD 5.0) 32.6 (SD 5.0) 

Medical Conditions4  
Alcohol use disorders 0.5% (0.4%, 0.7%) 0.1% 0.1% 0.2% 
Anxiety disorders 3.5% (2.9%, 4.1%) 2.9% 3.5% 4.7% 
Asthma 4.1% (3.1%, 5.2%) 11.4% 13.5% 19.8% 
Breast cancer 0.6% (0.6%, 0.7%) 0.1% 0.1% 0.2% 
Cervical cancer 0.1% (0.1%, 0.1%) 0.1% 0.1% 0.2% 
Diabetes mellitus 1.9% (1.7%, 2.2%) 1.0% 1.3% 1.3% 
Idiopathic epilepsy 0.2% (0.1%, 0.3%) 0.6% 0.7% 0.6% 
Major depressive disorder 2.4% (2.1%, 2.8%) 2.2% 2.6% 3.5% 
Maternal hypertensive disorders 0.1% (0.0%, 0.1%) 5.9% 8.0% 8.9% 
Migraine 20.2% (17.4%, 23.4%) 3.6% 4.3% 5.7% 
Substance use disorders 1.5% (1.3%, 1.7%) 0.2% 0.2% 0.5% 

Medication Use     
ACE-Is Not reported 0.0% 0.0% 0.0% 
Anti-diabetics Not reported 1.2% 1.6% 1.2% 
Anticonvulsants Not reported 0.5% 0.7% 0.7% 
Methotrexate Not reported 0.0% 0.0% 0.0% 
Mycophenolate Not reported 0.0% 0.0% 0.0% 
SSRIs Not reported 0.5% 0.7% 0.6% 
Statins Not reported 0.1% 0.1% 0.1% 
Warfarin Not reported 0.0% 0.0% 0.0% 

Infant Characteristics5   N = 385,295 N = 275,352 N = 410,179 

Demographic Characteristics3     
Preterm versus term      

Preterm (<37 weeks) 5.6% 3.6% 4.1% 3.3% 
Term  94.3% 96.4% 95.9% 96.7% 

Sex      
Male 51.3% 51.2% 51.1% 51.3% 
Female 48.7% 48.8% 48.9% 48.7% 

Major Congenital Malformations4  
Any major congenital malformation6 5.3% (4.6%, 6.2%) 10.8% 11.1% 11.2% 
Congenital heart anomalies 1.2% (1.0%, 1.6%) 2.8% 3.0% 2.7% 
Congenital musculoskeletal/limb anomalies 2.1% (1.4%, 2.8%) 1.7% 1.7% 1.8% 
Digestive congenital anomalies 0.5% (0.4%, 0.6%) 0.5% 0.5% 0.5% 
Down syndrome 0.1% (0.1%, 0.1%) 0.2% 0.2% 0.1% 
Klinefelter syndrome 0.0% (0.0%, 0.0%) 0.0% 0.0% 0.0% 
Neural tube defects 0.0% (0.0%, 0.0%) 0.2% 0.2% 0.2% 
Orofacial clefts 0.2% (0.1%, 0.3%) 0.2% 0.2% 0.2% 
Other chromosomal abnormalities 0.7% (0.6%, 0.8%) 0.1% 0.2% 0.1% 
Other congenital birth defects 0.1% (0.0%, 0.1%) 6.2% 6.3% 6.7% 
Turner syndrome 0.1% (0.0%, 0.1%) 0.0% 0.0% 0.0% 
Urogenital congenital anomalies 0.9% (0.7%, 1.2%) 0.3% 0.4% 0.4% 

1Unlinked population represents two separate cohorts: (1) females with delivery codes without a paired infant and (2) infants without 
a paired mother.  
2Female characteristics assessed among total number of unique females. If a female had more than one delivery during the study 
period, a single delivery was randomly selected.  
3General Japan population data obtained from Japanese Vital Statistics. 
4General Japan population data obtained from the Global Burden of Disease Study. 
5Infant characteristics assessed among total number of unique infants (equivalent to total number of unique mother–infant pairs).  
6Does not equate to a simple sum of the individual major congenital malformation categories due to some infants possessing >1 
major congenital malformation.  
ACE-Is: Angiotensin-converting enzyme inhibitors. SSRIs: Selective serotonin reuptake inhibitors. 
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There were no differences between the JMDC population and the general Japan population in 

terms of maternal age or infant sex distribution. In the JMDC linked population, preterm birth 

was observed in 3.6% of mother–infant pairs, compared to 5.6% in the general Japan 

population. Restricting the JMDC population to those with pregnancy or delivery codes (which 

did include preterm birth codes) increased the preterm birth prevalence to 4.1%. Comparison of 

the JMDC linked population to the population of unlinked mothers and infants in the database 

did not reveal any differences in the distributions of maternal age or preterm birth. Although this 

differs from a previously published descriptive analysis of a mother–infant linkage in the Sentinel 

Distributed Database, which observed that linked versus unlinked pairs had a higher average 

maternal age and were less likely to be preterm, this discrepancy may be due to differences in 

the healthcare systems of the US versus Japan.70  

The population of valid pairs, compared to the general Japanese population of same-aged 

females in Japan, had a similar prevalence of anxiety disorders (2.9% versus 3.5%), diabetes 

mellitus (1.0% versus 1.9%), major depressive disorder (2.1% versus 2.4%), and cervical 

cancer (0.1% versus 0.1%). The prevalence of alcohol and substance use disorders were lower 

in the JMDC linked population compared with the general population, but these conditions are 

generally under-captured in claims databases.71, 72 Additionally, the prevalence of migraine was 

lower among the JMDC linked population compared with the general Japan population (3.6% 

versus 20.2%). Similar observations of lower migraine prevalence than the general Japanese 

population have been previously made in populations of JMDC patients, potentially due to the 

claims database representing migraine patients seeking medical care (i.e., the severe migraine 

population).73-75 Maternal hypertensive disorders were more common in the JMDC linked 

population (5.9%) as expected given that the general Japan prevalence (0.1%) was not 

restricted to pregnant people. Asthma was also more common in the JMDC linked population 

compared with the general Japan population (11.4% versus 4.1%), which may be attributable to 
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our assessment of medical conditions on all available patient history detecting a more prevalent 

lifetime history of asthma, rather than current asthma.76, 77 Notably, the prevalence of chronic 

conditions (anxiety disorders, asthma, major depressive disorder, migraine), as well as maternal 

hypertensive disorders, were higher among the JMDC linked population with pregnancy or 

delivery codes, as compared to the total linked population, perhaps due to this population 

having a greater likelihood of healthcare utilization. Restriction of the linked population to those 

with pregnancy or delivery codes, however, did not result in any major changes to the 

medication use prevalence. 

Total infant major congenital malformations were more prevalent in the JMDC linked population 

(10.8%) compared to the general Japan population (5.3%). This heightened prevalence in the 

JMDC linked population, compared to the general population, appeared to be driven by a higher 

prevalence of congenital birth defects in the “other” category (6.2% versus 0.1%); the 

prevalence of most of the alternative congenital malformation subtypes, however, were the 

same or similar between the two populations (e.g., congenital musculoskeletal and limb 

anomalies, digestive congenital anomalies, Down syndrome, orofacial clefts, Klinefelter 

syndrome, Turner syndrome). Other chromosomal abnormalities (0.1% versus 0.7%) and 

urogenital congenital anomalies (0.3% versus 0.9%) occurred less often in the JMDC population 

compared to the general Japan population. There were two ICD-10 codes used in the definition 

for other chromosomal abnormalities in the general Japan population that were unavailable in 

the JMDC claims database (Q95 and Q97.9), which may have contributed to the lower 

prevalence observed in the JMDC. Notably, removing other congenital birth defects from the 

total major congenital malformation prevalence resulted in a more similar estimate in the JMDC 

linked population (5.5%) compared with the general Japan population. We suspect that this 

“other” congenital birth defects category may be acting as a catch-all category that 

encompasses many congenital anomalies, both major and minor, therefore resulting in an 



36 

 

 

apparently higher prevalence in the JMDC claims database. Comparison of the prevalence of 

each major congenital malformation subtype to the prevalence reported in population-based 

literature from Japan supports the comparability of the JMDC linked pairs to the general Japan 

population in terms of the prevalence of specific major congenital malformation subtypes (Table 

5). It is unlikely that future pregnancy safety studies would specify the primary outcome of 

interest as “other” congenital birth defects, but rather would likely be using the alternative 

specific subtypes, and therefore we do not consider the observed heightened prevalence of 

“other” congenital birth defects to be a major flaw of the JMDC claims database.   

Table 5. Prevalence of infant major congenital malformations in the Japan Medical Data 
Center (JMDC) claims database linked and unlinked populations, compared to Japanese 
population-based literature estimates 

Major Congenital Malformations1 Japan Literature 
Mean (Min, Max) 

JMDC 
Linked, All 
Valid Pairs 

JMDC Linked, 
Valid Pairs 
with Codes 

JMDC 
Unlinked 

Congenital heart anomalies78-83 2.6% (0.3%, 5.0%) 2.8% 3.0% 2.7% 

Congenital musculoskeletal/limb anomalies80, 82, 83 0.7% (0.4%, 1.3%) 1.7% 1.7% 1.8% 

Digestive congenital anomalies80-85 0.4% (0.1%, 1.3%) 0.5% 0.5% 0.5% 

Down syndrome80-84, 86 0.3% (0.1%, 0.9%) 0.2% 0.2% 0.1% 

Neural tube defects80, 82-84, 87 0.1% (0.0%, 0.4%) 0.2% 0.2% 0.2% 

Orofacial clefts80-84 0.4% (0.2%, 1.0%) 0.2% 0.2% 0.2% 

Other chromosomal abnormalities80-84 0.3% (0.0%, 0.9%) 0.1% 0.2% 0.1% 

Turner syndrome80, 88 0.1% (0.0%, 0.2%) 0.0% 0.0% 0.0% 

Urogenital congenital anomalies80-85 0.6% (0.1%, 1.3%) 0.3% 0.4% 0.4% 

Total2 5.4% (1.2%, 12.2%) 6.0% 6.4% 6.0% 
1Literature estimates not available for Klinefelter syndrome and other congenital birth defects, which have been removed here and 
are not included in the totals. 
2Sum of individual categories computed as a descriptive summary to allow for comparison across sources. Does not equate to a 
total population prevalence due to some infants possessing >1 major congenital malformation. 

Restricting to mother–infant pairs with pregnancy or delivery codes did not result in substantial 

changes in the congenital birth defect prevalence (from 10.8% to 11.1%). The similar congenital 

birth defect prevalence between these two groups suggests that the presence of pregnancy and 

delivery codes, as needed for the definition of the gestational period and thereby the critical 

exposure window, may not vary according to occurrence of congenital birth defects (i.e., non-

differential with respect to outcome).  
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The population of unlinked mothers, compared to the population of all valid pairs, was more 

likely to have most of the medical conditions examined. Most notably, the unlinked versus linked 

had a higher prevalence of anxiety disorders (4.7% versus 2.9%), asthma (19.8% versus 

11.4%), and maternal hypertensive disorders (8.9% versus 5.9%). The prevalence of 

medication use was similar for the unlinked and linked populations across all medication classes 

examined. The population of unlinked infants, compared to the population of all valid pairs, had 

a slightly higher prevalence of major congenital malformations (11.2% versus 10.8%), which 

was mainly driven by a higher prevalence of other congenital birth defects (6.7% versus 6.2%). 

1.3. Sufficient Subjects  

Another component of data relevancy is the evaluation of whether there are sufficient persons in 

the data source that would allow for valid and precise estimation of the expected treatment 

effect. Here, we evaluated whether the linked population of mothers and infants was expected 

to be sufficiently large, with sufficient outcome events among the infants. Japan’s 

pharmaceutical market is one of the largest in the world, with further growth expected in the next 

decade, and the JMDC is Japan’s largest claims database, making it a strong choice of real-

world data to efficiently evaluate the safety and effectiveness of drug products in the Japanese 

population.64, 89 The JMDC is compiled from over 1,400 private companies that belong to the 

Health Insurance Association, one of the five payer organizations of the Japanese National 

Health Insurance System. All citizens of Japan are covered by the National Health Insurance 

System, provided either through their employer or through the government. As most included 

companies in the Health Insurance Association (the source of the JMDC claims database) are 

employer-based, the 29 million members are typically salaried workers and their families, all of 

whom are ages 74 years or younger. The most recent JMDC data release at the time of this 

analysis contained approximately 14 million individuals insured between January 2005 and 

March 2022.  
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According to comparison of the count of infants enrolled in a JMDC-covered health plan in their 

birth month (e.g., 86,897 members born in 2021) with annual live birth vital statistics data from 

the Japanese government (e.g., 811,622 live births in 202168), we estimated that the JMDC 

claims database captured around 4% of all annual live births in Japan from 2005 to 2022 

(annual range 0–11%) (Table 6). Notably, the percentage of annual live births in Japan that 

were captured in the JMDC database increased over the study period, such that in 2018 to 2021 

the JMDC captured 9–11% of live births in Japan.  

Table 6. Summary of annual births in the Japan Medical Data Center (JMDC) claims 
database among linked mother–infant pairs, compared to the general Japan population 

Year 
Total Annual 

Births in Japan 

Total Number 
of JMDC 

Covered at 
Birth 

Total Valid 
Pairs, 

Linkage 
Method A 

Total Valid 
Pairs, Linkage 

Method B 

Total Valid 
Pairs with 

Codes, 
Linkage 

Method B 

2005 1,062,530 4,167 1,002 1,714 981 

2006 1,092,674 4,585 1,267 1,893 1,253 

2007 1,089,818  4,765 1,410 2,015 1,398 

2008 1,091,156  6,062 1,960 2,901 1,934 

2009 1,070,036  8,903 3,380 4,857 3,336 

2010 1,071,305  14,614 6,068 9,170 6,000 

2011 1,050,807  18,518 8,212 11,913 8,181 

2012 1,037,232  24,735 10,819 15,791 10,770 

2013 1,029,817  34,879 15,344 22,465 15,301 

2014 1,003,609  38,265 16,790 23,784 16,767 

2015 1,005,721 52,451 21,433 30,824 21,408 

2016 977,242 64,121 26,168 37,098 26,154 

2017 946,146 78,747 31,502 44,359 31,500 

2018 918,400 86,014 33,335 46,191 33,327 

2019 865,239 88,590 32,913 45,301 32,842 

2020 840,835 89,644 31,797 42,741 31,724 

2021 811,622  86,897 29,017 37,619 28,889 

2022 799,728 11,077 3,610 4,659 3,587 

Total 17,763,917 717,034 276,027 385,295 275,352 

 

Of the total infants covered at birth in the JMDC database, we found that 54% (annual range 

41–64%) were validly linked to a mother according to Linkage Method B (Table 6). When we 

required the presence of pregnancy and/or delivery codes, the valid linkage rate for infants 
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covered at birth decreased to 38% (annual range 24–44%). 

Of the linked, valid pairs from Linkage Method B, the expected number of outcome events is 

presented in Table 7. Among all valid pairs, about 41,000 infant major congenital malformations 

were observed within one year of birth. The most common outcomes were congenital heart 

anomalies (N = 10,934) and other congenital birth defects (N = 23,954). All additional major 

congenital malformations subtypes had greater than 500 events, except for the rare events 

Klinefelter syndrome (N = 9) and Turner syndrome (N = 13), both of which are often diagnosed 

later in life. After excluding other congenital birth defects from the total prevalence (due to 

concerns previously described in 1.2. Representativeness), a total of 21,176 major congenital 

malformations occurred among all valid pairs. 

Table 7. Expected events of infant major congenital malformations among linked mother–
infant pairs in the Japan Medical Data Center (JMDC) claims database 

Outcome 
All Valid Pairs 
(N = 385,295) 

N 

Valid Pairs with Codes 
(N = 275,352) 

N 

Congenital heart anomalies 10,934 8,333 

Congenital musculoskeletal and limb anomalies 6,462 4,794 

Digestive congenital anomalies 1,799 1,373 

Down syndrome 628 456 

Klinefelter syndrome 9 8 

Neural tube defects 747 567 

Orofacial clefts 706 528 

Other chromosomal abnormalities 556 408 

Other congenital birth defects 23,954 17,404 

Turner syndrome 13 12 

Urogenital congenital anomalies 1,291 966 

Any major congenital malformation1 41,438 30,571 
1Does not equate to a simple sum of the individual major congenital malformation categories due to some infants possessing >1 
major congenital malformation. 

Of the linked, valid pairs from Linkage Method B, the expected numbers of mothers exposed to 

various prescription medications in the year before delivery are presented in Table 8. There 

were 3,395 mothers exposed to anti-diabetics during pregnancy and about 1,500 each exposed 

to anticonvulsants and SSRIs; other medication exposures occurred more rarely.  
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Table 8. Expected distribution of prescription medication exposure among linked 
mother–infant pairs in the Japan Medical Data Center (JMDC) claims database 

Prescription Medication 
All Valid Pairs 
(N = 385,295) 

N 

Valid Pairs with Codes 
(N = 275,352) 

N  

ACE-Is 35 35 

Anti-diabetics 3,395 3,366 

Anticonvulsants 1,567 1,429 

Methotrexate 15 13 

Mycophenolate 5 4 

SSRIs 1,511 1,399 

Statins 155 141 

Warfarin 46 44 
ACE-Is: Angiotensin-converting enzyme inhibitors. SSRIs: Selective serotonin reuptake inhibitors. 

Rothman and Greenland have derived a method to plan the size of an epidemiologic study 

based on precision (i.e., desired width of the confidence interval for the effect estimates), rather 

than power as has typically been done, to divert focus from statistical significance testing.90 

Given our knowledge of the sample size we would expect in future studies using the cohort of 

valid pairs from Linkage Method B (N = 385,295), we may use their equation to achieve the 

expected width of the confidence interval (ratio of upper to lower limit) and make an assessment 

of whether the value is sufficient.  Given the expected count of all infant major congenital 

malformations (N = 41,438) and the expected counts of mothers exposed to anti-diabetics (N = 

3,395), under the null (equal outcome event rates among those exposed and those unexposed), 

we would expect to obtain 95% confidence intervals with a ratio of upper/lower limit of 1.2 for 

the association between anti-diabetics and all major congenital malformations.90 If we wish to 

examine the association between a less common medication class (e.g., SSRIs, N = 1,511) and 

all major congenital malformations, this ratio increases to 1.3. If we were to examine specific 

major congenital malformations separately, the width of the expected confidence intervals would 

further increase (e.g., 1.8 for the association between SSRIs and congenital heart anomalies). 

The associations between anti-diabetics, anticonvulsants, or SSRIs with congenital heart 

anomalies, congenital musculoskeletal and limb anomalies, other congenital birth defects, or 
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total congenital anomalies (both with and without “other” congenital birth defects included) were 

the only exposure–outcome combinations with expected precision less than or equal to 2.2; all 

other medication exposures and congenital malformation outcomes resulted in insufficient 

precision estimates. These results suggest that the JMDC mother–infant linked population may 

have sufficient subjects to study some, but not all, in utero medication exposures and infant 

congenital malformations.  

1.4. Longitudinality 

The final component of data relevancy is the evaluation of whether there is sufficient follow-up 

time in the data source to estimate the treatment effect. We evaluated whether the mothers 

were under follow-up for the entire pregnancy (i.e., continuous enrollment) and the infants were 

under follow-up for a sufficient timeframe to observe outcomes. Mother–infant linkages in claims 

databases often require continuous health plan enrollment of mothers during pregnancy to 

ensure accurate and complete capture of prescription dispensing. It is also important to 

understand the proportion of infants that remain enrolled during the follow-up period to 

understand the proportion of censoring due to loss to follow-up that would occur in future 

studies of in utero medication exposures and infant major congenital malformations. We 

therefore assessed the percentage of mothers who had continuous enrollment during 

pregnancy, the distribution of pre-pregnancy continuous enrollment, and the expected 

percentage of infants who have at least a year of follow-up time. This evaluation of infant follow-

up allows for malformations to be detected throughout the first year of life, which is a generous 

follow-up period given that most (94%) congenital malformations are recorded in the first 90 

days of life.91  

Among the population of all valid pairs, 57% of mothers were continuously enrolled in their 

health plan throughout the pregnancy period, with 46% continuously enrolled both during 

pregnancy and in the 180 days before pregnancy (Table 9).  At least one year of infant follow-up 
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was available for 86% of valid pairs. We observed that 49% of valid pairs had both maternal 

continuous enrollment during pregnancy and at least one year of infant follow-up. Restriction of 

valid pairs to those with pregnancy or delivery codes did not change the distributions of pre-

pregnancy continuous enrollment or infant follow-up but did result in an increase of the 

proportion with continuous enrollment during pregnancy (68%), perhaps due to a greater 

likelihood for these females to be engaging with the healthcare system during pregnancy. These 

results suggest that future pregnancy safety studies in the JMDC claims database that require 

continuous enrollment during pregnancy may suffer from limited sample sizes and a potentially 

high proportion of censoring during the follow-up period. Given that all individuals in Japan are 

covered by the National Health Insurance, and that pregnancy-related care is subsidized under 

a government maternity voucher program, we do not suspect that lack of continuous enrollment 

in the JMDC claims database is reflective of gaps in the continuity of care received during 

pregnancy, but rather may be a result of changes in the contracts between the JMDC data 

vendor and the private companies that provide claims to the database.   

Table 9. Maternal and infant enrollment characteristics among linked mother–infant pairs 
in the Japan Medical Data Center (JMDC) claims database  

 

All Valid Pairs 
(N = 385,295) 

N (%) 

Valid Pairs with Codes 
(N = 275,352) 

N (%)  

Maternal continuous enrollment during pregnancy 218,560 (56.7%) 186,676 (67.8%) 
Length of pre-pregnancy continuous enrollment   

Not enrolled at pregnancy onset1 166,735 (43.3%) 88,676 (32.2%) 
≤30 days 7,227 (1.9%) 6,251 (2.3%) 
31–90 days 13,556 (3.5%) 11,702 (4.2%) 
91–180 days 18,913 (4.9%) 16,209 (5.9%) 
>180 days 178,864 (46.4%) 152,514 (55.4%) 

Length of infant follow-up   
≤30 days 0 (0.0%) 0 (0.0%) 
31–90 days 9,207 (2.4%) 7,154 (2.6%) 
91–180 days 14,649 (3.8%) 11,251 (4.1%) 
181–365 days 28,798 (7.5%) 21,936 (8.0%) 
≥366 days 332,641 (86.3%) 235,011 (85.4%) 

Both maternal continuous enrollment during 
pregnancy and at least 365 days of infant follow-up  

186,826 
(48.5%) 

158,838 
(57.7%) 

1Only females continuously enrolled during pregnancy were enrolled at the onset of pregnancy and therefore were eligible for 
assessment of pre-pregnancy continuous enrollment. 
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2. Data Quality  

The quality of a real-world database relates to ability of the data source to accurately, reliably, 

and transparently answer the regulatory question of interest. We considered two separate 

processes involved in the creation of a mother–infant linked population in the JMDC claims 

database as needed for target trial emulation that could impact data quality: (A) the formation of 

the mother–infant matches and (B) the estimation of the gestational period. 

2.A. Mother–Infant Matches  

As previously described, healthcare claims do not inherently indicate correspondence between 

mothers and their infants and therefore this information must be reconstructed by researchers to 

emulate a pregnancy target trial.35-45 Our consideration of whether a linked cohort of mothers 

and infants in the JMDC claims database is fit for regulatory purposes therefore involved 

assessment of the quality of these matches in terms of the completeness and accuracy as well 

as the transparency of the linkage process.  

2.A.1. Completeness 

The completeness of the data relates to the extent and potential mechanisms of missingness. In 

this example, we considered whether the mother–infant linkage process was expected to 

identify the complete set of mothers and infants in the JMDC. Our method is expected to 

capture all mothers and infants who were enrolled in a shared health insurance plan. All infants 

in Japan are enrolled in the National Health Insurance System within one month of birth, so 

even deliveries that may occur outside of the healthcare setting (only 0.2% of deliveries, 

according to Japan Vital Statistics68) would still be captured in the JMDC and linked to a mother 

given a shared insurance plan.  

It is important to consider the pregnancies that are identifiable in the JMDC that do not 

successfully link to an infant to understand the completeness of the linked pairs. We assessed 
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the number of mother–infant linkages relative to the estimated number of unique pregnancy 

episodes identifiable in the JMDC claims database to evaluate the proportion of pregnancies 

that did not link to an infant (Figure 8). The linkage rate was 56% for pregnancy episodes 

identified via live birth delivery codes, yet was only 40% for pregnancy episodes identified via 

active pregnancy codes (nearly half of which were found to be missing live birth delivery codes). 

These linkage rates are expected given the likelihood of liveborn infants to be covered under 

their mother’s insurance plan, as compared to the insurance plan of the other parent. The 

pregnancy episodes that lacked live birth delivery codes likely disproportionately included 

pregnancies that ended in non-live birth outcomes (e.g., spontaneous abortion, stillbirth), 

thereby resulting in the apparently lower linkage rate.  

Figure 8. Assessment of mother–infant linkages relative to total unique pregnancy 
episodes in the JMDC claims database 

 
FamilyID: Family identification code 

We also examined the number of mother–infant linkages relative to the number of annual infant 

births in the JMDC to evaluate the proportion of infants that do not link to a mother (see Table 

6). Of the annual live births captured in the JMDC (defined as an infant enrolled in the JMDC in 

the same month as the birth month), we found that 54% (annual linkage rate range 41–64%) 
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were able to be linked to a mother. This aligns with expectations of the proportion of infants who 

would be covered under their mother’s, versus other parent’s, health insurance plan. 

2.A.2. Accuracy 

The next data quality element is related to whether the data are expected to be accurate. This 

assessment involved considering the validity, logical plausibility, and consistency of the mother–

infant linked pairs.  

2.A.2.1. Validity 

One element of data accuracy is validity, which is a measure of concordance between a data 

field and a definitive measure. To assess validity of the linked mothers and infants, we 

considered whether the linkage process was expected to match up true mother–infant pairs 

(i.e., whether the family identification variable was a valid indicator of family relation). 

Unfortunately, the JMDC does not provide documentation related to the validity of the family 

identification variable, which limits our capability for comprehensive assessment. When an 

individual is enrolled as the insurance plan holder in a JMDC covered plan, they are assigned a 

unique identification variable. That same unique identifier is also entered as their family 

identification code, even if they do not have any dependents. When dependents are added to 

the plan, this shared family indication code is assigned to allow connection between the records 

of the dependent and the insurance plan holder for billing purposes. Given that the family 

identification codes are generated and used for billing, rather than research purposes, it is 

expected that they should correctly indicate correspondence between insured individuals and 

their dependents.  

2.A.2.2. Conformance 

Another element of data accuracy is conformance, which describes whether the data are 

congruent with standardized types, sizes, and formats. As stated above, there is unfortunately a 
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scarcity of detailed information available from the JMDC regarding the assignment and entry of 

family identification codes into the database. The family identification codes, however, are 

always assigned, regardless of the presence or number of dependents corresponding to an 

insured individual, and are never missing. This variable therefore presumably conforms to 

database rules. Furthermore, given that family identification codes are created and used for 

billing purposes, creation and maintenance of the claims database itself does not disrupt this 

information and it is thus expected to remain congruent with the standard.  

2.A.2.3. Logical Plausibility  

Data accuracy also implies that the recorded values are logically believable. In other words, 

whether the “mothers” and “infants” who were linked were plausible mother–infant pairs. As 

previously mentioned, health insurance benefits are provided not only to the insured individual, 

but also to their dependent family members. Figure 9 displays the results of the cross-tabulation 

of the value of the relationship to insurance holder for all pairs linked based on matching family 

identification codes (Linkage Method B), assuming incestuous relationships to be improbable.  

Of 446,411 total family matches between potential mothers and their infants, inspection of the 

combination of values for the relationship of both to the insurance holder revealed that 400,730 

(90%) were confident biological mother–infant pairs (i.e., the infant is listed as being the child of 

either the insurance holder themselves or the spouse of the insurance holder). For 0.5% (N = 

2,225) of the matches, a biological mother–infant relationship was possible but not definite (e.g., 

the “mother” is the sibling of the insurance holder and the “infant” is the nephew/niece of the 

insurance holder). Although only a small percentage, 2.5% (N = 11,340), of matches warranted 

exclusion due to being assumed implausible mother–infant pairs (e.g., the “mother” and the 

“infant” are both children of the insurance holder and are more likely to be siblings who were 

paired in error), indeterminate relationships in 32,116 (7%) pairs also warranted exclusion out of 

an abundance of caution due to the inability to determine the validity of the pair.  
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Figure 9. Value of variable indicating relationship to insurance holder for all linked pairs 
of females of childbearing age with members enrolled at birth who share family 
identification codes  

 
Although some of the "adopted child" infant relationships could be valid relationships between mother and child, these are not valid 
mother–infant pairs for the purposes of studying in utero exposures. 

Following restriction to only mother–infant linked pairs that possessed pregnancy or delivery 

codes (N = 300,703), the percentage of pairs that were confident matches increased to 93% (N 

= 278,225), and confident not mother–infant pairs were nearly eliminated (N = 34) (Figure 10). 

This observation supports that possible pairs with pregnancy or delivery codes were more likely 

to be valid mother–infant pairs, rather than invalid pairs.  
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Figure 10. Value of variable indicating relationship to insurance holder for linked pairs of 
females of childbearing age with members enrolled at birth who share family 
identification codes, restricted to those with pregnancy or delivery codes  

 
Although some of the "adopted child" infant relationships could be valid relationships between mother and child, these are not valid 
mother–infant pairs for the purposes of studying in utero exposures. 

Overall, this exercise in cross-referencing the relationships of the mothers and infants in each 

family identification code match allowed us to assess the assumed plausibility and supported an 

increased confidence in the validity of the mother–infant pairs. It is worth noting that, 

unfortunately, the JMDC documentation does not provide detail on the coding and use of this 

relationship variable (i.e., validity of the data field values, reasons for missingness) and 

therefore complete confidence in this assessment method is limited. 

2.A.2.4. Consistency 

The final element of data accuracy is data consistency, or the stability of a data value within a 

dataset. To assess consistency of the linked mothers and infants, we considered whether the 

data fields used for creation of the mother–infant pairs (i.e., family identification codes) were 

expected to be consistently used across the dataset. Unfortunately, as described above, our 

assessment was limited by the lack of detailed documentation from the JMDC regarding the 
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creation and use of the family identification variable. Useful information to assess the 

consistency here would include the date of inception of the current family identification coding 

version and whether this version covers the entire study period, such that assignment of codes 

would be expected to be consistent across all cohort members and over time. 

2.A.3. Transparency of Data Processing  

Observational research using real-world data has been criticized for lacking transparency in the 

details of the construction of the analytic cohort, which hinders the reproducibility of study 

results (i.e., the ability for independent researchers to obtain the same results when applying the 

same methodology to the same data source).92 There are many opportunities throughout the 

research process to make decisions regarding study design features, and the ability to 

reproduce an epidemiologic study using real-world data relies on the clear reporting of these 

design decisions.92, 93 Moreover, the unique demands involved with creating a novel mother–

infant linkage in an administrative healthcare database require additional study parameter 

decisions to be made to link mothers and infants, which can further impede reproducibility. In 

our scenario, we considered whether the mother–infant pairs may be created via transparent 

data processing. Fortunately, we can publish our linkage algorithm (steps in the approach, 

codes used) with full transparency. 

2.A.4. Provenance  

Finally, data provenance describes the origin of the data (as data move from the point of 

collection into the database). In our scenario, we considered whether processes of the data 

collection and database creation and preparation may have impacted the quality of the mother–

infant matches. This analysis was limited by the lack of detailed information regarding the 

actions of the vendor in terms of potential transformations performed on the family identification 

variable, but we have been informed that the JMDC does not perform any transformation 

processes to this variable after receiving the data from the payers.  
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2.B. Gestational Period  

Healthcare claims also do not inherently indicate pregnancy timing (e.g., estimated date of 

conception) and therefore this information must be reconstructed by researchers to allow for 

pregnancy target trial emulation.35-45 Consideration of whether a linked cohort of mothers and 

infants in the JMDC claims database is fit for regulatory use involved assessment of the quality 

of this gestational age estimation.  

2.B.1. Completeness 

The completeness of the data relates to the extent and potential mechanisms of missingness. 

Here, we considered whether information on the gestational period was expected to be 

available for the complete linked population. Complete information on infant date of birth is not 

available in the JMDC claims database. The JMDC reports only month and year of birth, 

removing the day to avoid the possibility of re-identification, meaning that estimation of infant 

date of birth is required according to maternal records of delivery date. As date of delivery is 

also not available in Japanese claims, delivery date/infant date of birth must be estimated 

according to diagnoses and procedures that indicate delivery, which do have associated dates 

available.94 Delivery is not necessarily always covered by the Japanese National Health 

Insurance System. When a delivery does not require any surgical procedures or medications 

that are covered by the health insurance, information regarding the delivery would not be 

reported to the health insurance system. Our examination of the presence of pregnancy and/or 

delivery codes among valid mother–infant pairs according to Linkage Method B revealed that 

57% of valid pairs lacked delivery codes (Figure 11). In this case, the 15th day of the infant birth 

month, for example, would need to be inserted as an estimated delivery date.  
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Figure 11. Assessment of pregnancy and delivery coding among mother–infant linkages 
in the JMDC claims database 

 
 

Following the estimation of delivery date, gestational age would also need to be estimated to 

back calculate an estimated pregnancy onset date (to allow for the correct designation of 

exposure windows and cohort entry). Estimation of gestational age in mother–infant claims 

linkages has previously been performed, and algorithms are available in the literature.36, 42, 65 

These algorithms often employ codes related to pregnancy milestones, which may also be 

limited in this cohort due to the observation that 38% of valid mother–infant pairs did not have 

any codes indicating an active pregnancy (Figure 11). In this situation, the gestational length of 

a term pregnancy may be imputed as a best guess, such that pregnancy onset date would be 

non-missing for the entire linked population (although this may compromise accuracy, as 

described in more detail below). Notably, dual imputation of delivery date and impaired 

estimation of gestational age is expected to be required in 29% of valid pairs for which both 

delivery and pregnancy codes were missing. 

2.B.2. Accuracy 

The next data quality element is related to whether the estimation of the gestational period was 

expected to be accurate. This assessment involved consideration of the validity, logical 

plausibility, and consistency of the data.  
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2.B.2.1. Validity 

As previously described, validity is a measure of concordance between a data field and a 

definitive measure. In this scenario, we considered whether the estimated gestational period is 

expected to reflect the true gestational period for each mother–infant pair. Inserting an 

estimated delivery date and gestational age for each mother–infant pair is expected to result in 

some mismeasurement, such that the assignments will not match the truth for some subset of 

pairs. Gestational timing information is vital for studying medication safety during pregnancy 

because fetal developmental timelines mean that there are specific windows of time during 

which exposures could cause specific congenital malformations.47 For example, exposures 

during the first trimester may cause cardiac malformations, due to the timing of fetal heart 

development, but exposures occurring later in pregnancy are unlikely relevant to this system. In 

a hypothetical randomized trial of medication safety during pregnancy on the risk of cardiac 

malformations, enrollment and exposure randomization would be anchored around this critical 

first trimester exposure window. 

Misclassification of the exposure window could arise in many ways in this cohort due to the 

limitations of gestational age validity. Figure 12 displays the estimated first trimester exposure 

window relative to the true first trimester exposure window when delivery and pregnancy timing 

information is available versus imputed, for term, preterm, and post-term deliveries.  
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Figure 12. Comparison of true first trimester exposure window with that estimated in the 
JMDC under various scenarios according to the availability of pregnancy and delivery 
codes 

 
1 Term delivery is defined here as 273 completed gestational days. 
2 When delivery code is missing, delivery date/infant date of birth is imputed as the fifteenth day of the infant birth month.  
3 When pregnancy code is missing, gestational age is imputed as the length of a term birth (273 days). 
4 Preterm delivery is defined here as 245 completed gestational days, but could be as short as 168 days. 
5 Post-term delivery is defined here as 287 completed gestational days, but could be a long as 294 days.   
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Reassuringly, for term deliveries (Figure 12A–D), which represent 94% of deliveries in Japan, 

even when both delivery codes and pregnancy codes indicating gestational timing are missing, 

the maximum exposure window misclassification results in a 15-day shift (which, compared to a 

90-day trimester, means that ≥85% of the true exposure window is covered by the estimated 

window). Exposure window misclassification is the worst for preterm deliveries that are missing 

codes indicating gestational timing (Figure 12G–H) as imputing a gestational length of 273 days 

for these pregnancies causes the first trimester exposure window to be shifted earlier in time. 

For a preterm birth with true gestational length of 245 days, imputing a term length would shift 

the exposure window 28 days earlier, causing 69% coverage of the true exposure window 

(Figure 12G). This overestimation of pregnancy start date worsens for extremely preterm births; 

a true gestational length of 168 days would result in the estimated exposure window shifting 

forward 105 days, which would miss the true exposure window completely. An additional 

forward shift of 15 days could occur if an infant was born on the 30th day of the month, but 

missing delivery codes require imputation of the 15th day of the month as the delivery date 

(Figure 12H). Finally, for post-term deliveries (Figure 12I–L), missing gestational length 

information causes a shorter than true gestational age to be imputed, shifting the estimated 

exposure window later in time relative to the truth. In the worst-case scenario, where both 

gestational age and delivery information are missing (Figure 12L), the estimated exposure 

window could be shifted up to 36 days later, resulting in only 60% coverage of the true exposure 

window. It is possible that misclassification of the exposure window could be associated with 

infant congenital malformation status (i.e., differential exposure misclassification) if there are 

shared mechanisms for congenital malformations and preterm birth. For example, it has been 

reported that preterm birth occurs more commonly among infants with cardiac malformations 

(23%) compared to those without (8%), which would result in greater exposure window 

misclassification rates among those with the outcome.95, 96  
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2.B.2.2. Conformance 

Another element of data accuracy is conformance, which describes whether the data are 

congruent with standardized types, sizes, and formats. In this scenario, we considered whether 

the information required to estimate gestational period (i.e., delivery and pregnancy codes) 

conforms with the standardized format. Japan uses ICD-10 codes that are congruent with the 

international standard. However, the JMDC does not support the fifth level digit of the code 

(where gestational week information is available), which is inconsistent with the standard 

availability in other claims databases. This lack of fifth level ICD-10 coding occurs because the 

JMDC standardizes diagnosis data using a linkage list between ICD-10 codes and standard 

disease names (unique to Japan) published by the Japanese government. In this linkage list, 

the ICD-10 fifth level is not available, and therefore the ICD-10 diagnosis codes in the JMDC 

claims database are limited to the fourth level. Furthermore, a series of ICD-10 Z3A codes are 

standardly used to specify the week of gestation in the fourth and fifth digits (e.g., Z3A29 

indicates 29 weeks of gestation), but are unavailable in the Japanese system. This limits our 

ability to finely estimate gestational age based on ICD-10 codes available in the JMDC claims 

database. Table 10 displays the translation of a gestational age algorithm defined in 

MarketScan using ICD-9 codes into ICD-10 codes as they are available in the JMDC claims 

database. The first four hierarchical steps in the MarketScan algorithm, which employ four 

different ICD-9 codes to assign gestational ages between 168 and 196 days, become collapsed 

into a single ICD-10 code (P07.2) in the JMDC claims database. A similar phenomenon occurs 

for steps 4 through 11, which assign gestational ages between 196 and 245 days. Finally, steps 

13 through 16 differentiate between post-term births under 42 weeks (287 days) and over 42 

weeks (294 days), which is not possible in the JMDC claims database. It is worth noting that, in 

many cases, the fifth level digit of the ICD-10 codes would have allowed for even finer 

discrimination of gestational weeks compared to the codes in the previous ICD-9 version.   
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Table 10. Mapping of ICD-9 gestational age algorithm to the Japan Medical Data Center 
(JMDC) ICD-10 availability  

 MarketScan Linkage Algorithm ICD-10 Mapping JMDC Availability 

Step 
ICD-9 
Code 

Description 
Estimated 

Gestational 
Age (Days) 

ICD-10 Code Description 
ICD-10 
Code 

Description 

1 765.21 <24 completed weeks 168 

P07.21 
  

Extreme immaturity of newborn, <23 
completed weeks 

P07.2 
Extreme immaturity 
(<28 weeks) 

P07.22 
Extreme immaturity of newborn, 23 
completed weeks 

2 765.22 24 completed weeks 168 P07.23 
Extreme immaturity of newborn, 24 
completed weeks 

P07.2 
Extreme immaturity 
(<28 weeks) 

3 765.23 25–26 completed weeks  182 

P07.24 
Extreme immaturity of newborn, 25 
completed weeks 

P07.2 
Extreme immaturity 
(<28 weeks) 

P07.25 
Extreme immaturity of newborn, 26 
completed weeks 

4 765.24 27–28 completed weeks  196 

P07.26 
Extreme immaturity of newborn, 27 
completed weeks 

P07.2 
Extreme immaturity 
(<28 weeks) 

P07.31 Preterm newborn, 28 completed weeks P07.3 
Other preterm infants 
(after 28 weeks) 

5 
765.0–
765.09 

Extreme immaturity 196 

P07.0–P07.03 Extremely low birth weight newborn  P07.0 
Extremely low birth 
weight  

P07.1–P07.18 Other low birth weight newborn  P07.1 Other low birth weight  

P07.30 Preterm newborn, unspecified weeks  P07.3 
Other preterm infants 
(after 28 weeks) 

6 765.25 29–30 completed weeks  210 
P07.32 Preterm newborn, 29 completed weeks 

P07.3 
Other preterm infants 
(after 28 weeks) 

P07.33 Preterm newborn, 30 completed weeks 

7 765.26 31–32 completed weeks  224 
P07.34 Preterm newborn, 31 completed weeks 

P07.3 
Other preterm infants 
(after 28 weeks) 

P07.35 Preterm newborn, 32 completed weeks 

8 765.27 33–34 completed weeks  238 
P07.36 Preterm newborn, 33 completed weeks 

P07.3 
Other preterm infants 
(after 28 weeks) 

P07.37 Preterm newborn, 34 completed weeks 

9 765.28 35–36 completed weeks  252 
P07.38 Preterm newborn, 35 completed weeks 

P07.3 
Other preterm infants 
(after 28 weeks) 

P07.39 Preterm newborn, 36 completed weeks 

10 
765.1–
765.19 

Other preterm infants 245 

P07.0–P07.03 Extremely low birth weight newborn  P07.0 
Extremely low birth 
weight  

P07.1–P07.18 Other low birth weight newborn  P07.1 Other low birth weight  

P07.30 Preterm newborn, unspecified weeks  P07.3 
Other preterm infants 
(after 28 weeks) 

11 765.20 
Preterm with 
unspecified weeks  

245 

P07.20 
Extreme immaturity of newborn, 
unspecified weeks 

P07.2 
Extreme immaturity 
(<28 weeks) 

P07.30 Preterm newborn, unspecified weeks  P07.3 
Other preterm infants 
(after 28 weeks) 

12 644.21 
Onset of delivery before 
37 completed weeks  

245 

O60.12X0 
  

Preterm labor second trimester with 
preterm delivery second trimester, not 
applicable or unspecified 

O60.1 
Preterm spontaneous 
labor with preterm 
delivery 

O60.13X0 
  

Preterm labor second trimester with 
preterm delivery third trimester, not 
applicable or unspecified 

O60.14X0 
Preterm labor third trimester with 
preterm delivery third trimester, not 
applicable or unspecified 

13 645.1x 

Post-term pregnancy, 
delivered, with or without 
mention of antepartum 
condition (>40 to 42 
completed weeks) 

287 O48.0 Post-term pregnancy O48- Prolonged pregnancy 

14 766.21 
Post-term infant (>40 to 
42 completed weeks) 

287 P08.21 Post-term newborn P08.2 
Post-term infant, not 
heavy for gestational 
age 

15 645.2x 
Prolonged pregnancy, 
delivered (>42 
completed weeks) 

294 O48.1 Prolonged pregnancy O48- Prolonged pregnancy 

16 766.22 
Prolonged gestation 
(>42 completed weeks) 

294 P08.22 Prolonged gestation of newborn P08.2 
Post-term infant, not 
heavy for gestational 
age 

17 NA 
Without any of the codes 
for pre-term or post-term 

273 NA 
Without any of the codes for pre-term or 
post-term 

NA 
Without any of the 
codes for pre-term or 
post-term 
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2.B.2.3. Logical Plausibility 

Data accuracy also implies that the recorded values are logically believable given data source 

and expert opinion. In other words, whether the estimated gestational period reflects a logically 

plausible gestational period for all mother–infant pairs. As previously mentioned, methods from 

the literature could be used to insert an estimated gestational age for each mother–infant pair.36, 

42, 65 For example, a fixed duration of 35 weeks may be assigned to all preterm births and a fixed 

duration of 40 weeks to all non-preterm births (which is based on the median gestational ages 

for these two groups).42 Because of this, it will be guaranteed that there are no logically 

implausible gestational ages (i.e., gestational age greater than post-term or less than the length 

of a viable live birth). 

2.B.2.4. Consistency 

The final element of data accuracy is data consistency, or the stability of a data value within a 

dataset or across linked datasets. In this scenario, we considered whether the information that 

will be used to estimate gestational period (i.e., pregnancy and delivery codes) is consistently 

used across all individuals. We do expect the use of pregnancy and delivery codes to be 

consistent across all mothers in the linked cohort as the current ICD-10 coding scheme has 

been in use in Japan since 1990, and therefore covers our entire study period.  

2.B.3. Transparency of Data Processing 

Our assessment of the quality of the gestational age estimation also considered whether the 

gestational period may be estimated via transparent data processing. As stated above for the 

creation of the mother–infant matches, we will be able to publish an algorithm for gestational 

period estimation (steps in the approach, codes used) with full transparency. 

2.B.4 Provenance 

Finally, data provenance describes the origin of the data (as data move from the point of 
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collection into the database). Provenance may involve processes of data recording and 

transformations as performed by the vendor. In our scenario, we considered whether processes 

of the data collection and database creation and preparation may impact the quality of the data 

elements involved in gestational age estimation. As described above, the way in which the 

JMDC standardizes diagnosis data from standard disease names (unique to Japan) to ICD-10 

diagnosis codes using a linkage list published by the Japanese government limits the maximum 

unit of ICD-10 information to the fourth level. This is expected to impact the quality of the 

gestational age estimation as coding of specific gestational week is not available.  

Summary of Assessment 

A summary of our assessment of the fitness for regulatory purpose of a linked cohort of mothers 

and infants in the JMDC claims database, within the context of estimating infant major 

congenital malformations associated with in utero exposure to marketed medications, according 

to the data considerations as outlined by the Duke-Margolis framework, is provided in Table 11.  

Table 11. Duke-Margolis framework for data fitness for purpose applied to the Japan 
Medical Data Center (JMDC) claims database mother–infant linked cohort  

Data Element Considerations Findings 

Data Relevancy 

Availability of Key 
Data  
 

Whether critical data fields required to 
address the research question are 
available: the exposure (maternal 
medication exposure), the outcome (infant 
major congenital malformations), potential 
covariates of interest, and data fields 
permitting accurate patient-level mother–
infant linkage. 

• Data fields for exposure, outcome, and 
potential covariates of interest were used 
to generate descriptive statistics and were 
expected to be complete. 

• Data fields for patient-level mother–infant 
linkage were used in Linkage Methods A 
and B. 

Representativeness  

Whether the patients in the linked mother–
infant JMDC population are expected to 
be representative of the population of 
interest (i.e., pregnant people in Japan 
and their liveborn infants). 

• Comparison to publicly available data from 
Japan suggested preterm births were 
under-recorded in this population (3.6% 
versus 5.6%). 

• Total congenital malformations were over-
represented in this population compared 
with the general Japan population (10.8% 
versus 5.3%), but the prevalence of each 
specific subtype was mostly consistent.  

• Maternal characteristics appeared mostly 
consistent with the population of same-
aged females in Japan.   
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Data Element Considerations Findings 

Sufficient Subjects 

Whether the linked population of mothers 
and infants is expected to be sufficiently 
large, with sufficient outcome events 
among the infants. 

• 385,295 total valid mother–infant pairs 
were identified, representing about 2% of 
live births in Japan during the study period.  

• About 41,000 total infant congenital 
malformations were observed among 
these pairs.  

• The prevalence of specific maternal 
medication exposures and infant 
congenital malformations varied widely, 
suggesting sufficient populations may be 
available to precisely estimate some, but 
not all, exposure–outcome associations. 

Longitudinality  

Whether the mothers are continuously 
enrolled for the entire pregnancy and the 
infants are under follow-up for a sufficient 
timeframe to observe outcomes. 

• 57% of mothers from valid pairs were 
continuously enrolled during pregnancy. 

• 86% of infants form valid pairs had at least 
a year of follow-up. 

• 49% of valid pairs met both pregnancy and 
follow-up continuous enrollment. 

Data Quality (Mother–Infant Matches) 

Completeness 

Whether the mother–infant linkage 
process is expected to identify the 
complete set of mothers and infants in the 
JMDC. 

• The linkage rate was 56% for pregnancy 
episodes that had codes indicating a live 
birth delivery. 

• Of the annual live births captured in the 
JMDC, we found that 54% were able to be 
linked to a mother. 

• These linkage rates align with expectations 
of the proportion of infants who would be 
covered under their mother’s, versus other 
parent’s, health insurance plan. 

Accuracy 

Validity: Whether the family identification 
variable is a valid indicator of family 
relation. 

• Family identification codes are generated 
and used for billing purposes and therefore 
expected to correctly indicate 
correspondence between insured 
individuals and their dependents. 

Conformance: Whether the family 
identification variable is congruent with 
standardized types, sizes, and formats. 

• Family identification codes are always 
assigned, regardless of the presence or 
number of dependents corresponding to an 
insured individual, and are never missing.  

• The creation and maintenance of the 
claims database itself does not disrupt 
family identification information. 

Logical Plausibility: Whether the “mothers” 
and “infants” who have been linked 
together are plausible mother–infant pairs. 

• Cross-tabulation of values indicated for the 
relationship of the “mother” and “infant” to 
the insurance holder allowed for 
confirmation of assumed mother–infant 
relationships in 90% of pairs.  

• Exclusion of invalid and indeterminate 
matches strengthened our confidence in 
the validity of mother–infant pairings. 

Consistency: Whether the data fields used 
for creation of the mother–infant pairs (i.e., 
family identification codes) are expected to 
be consistently used across the dataset. 

• There was a lack of detailed 
documentation from the JMDC regarding 
the creation and use of the family 
identification variable. 

Transparency of 
Data Processing  

Whether the mother–infant pairs may be 
created via transparent data processing. 

• Full transparency of the linkage algorithm 
is achievable. 

Provenance 

Whether processes of the data collection 
and database creation may impact the 
quality of the mother–infant matches. 

• The JMDC does not perform any 
transformations to the family identification 
variable after receiving the data from 
payers. 
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Data Element Considerations Findings 

Data Quality (Gestational Period Estimation) 

Completeness 

Whether information on the gestational 
period is expected to be available for the 
complete linked population. 

• The JMDC reports only month and year of 
birth, removing the day to avoid the 
possibility of re-identification.  

• 60% of valid pairs lacked a delivery code, 
meaning that delivery date/infant date of 
birth would need to be imputed. 

• 41% of valid pairs did not have any codes 
indicating an active pregnancy, which 
would hinder the ability to estimate 
gestational age. 

Accuracy 

Validity: Whether the estimated 
gestational period is expected to reflect 
the true gestational period for each 
mother–infant pair. 

• Estimations of delivery date and 
gestational age are expected to result in 
misclassification of the exposure window, 
the degree of which varies by preterm 
versus term status.  

Conformance: Whether information that 
will be used to estimate gestational period 
(i.e., codes) is congruent with 
standardized types, sizes, and formats. 

• The JMDC does not support the fifth level 
digit of the ICD-10 codes (where 
gestational week information would have 
been available), which is inconsistent with 
the standard availability in other claims 
databases and would limit the ability to 
finely estimate gestational age.  

Logical Plausibility: Whether the estimated 
gestational period reflects a logically 
plausible gestational period for all mother–
infant pairs. 

• Methods from the literature could be used 
to insert an estimated gestational age for 
each mother–infant pair, which would 
guarantee that there are no gestational 
ages greater than post-term or less than 
the length of a viable live birth. 

Consistency: Whether the information that 
will be used to estimate gestational period 
(i.e., codes) is consistently used across all 
individuals. 

• Pregnancy and delivery coding are 
expected to be consistent across all 
mothers in the linked cohort as the current 
ICD-10 coding scheme has been in use in 
Japan since 1990. 

Transparency of 
Data Processing  

Whether the gestational period may be 
estimated via transparent data processing. 

• Full transparency of the gestational age 
algorithm is achievable. 

Provenance 

Whether processes of data collection and 
database creation and preparation may 
impact the quality of the data elements 
involved in gestational age estimation. 

• The way in which the JMDC standardizes 
diagnosis data from standard disease 
names to ICD-10 limits the maximum unit 
of ICD-10 information to the fourth level. 

 

Discussion 

In this analysis, we have employed two linkage methods and examined descriptive 

characteristics to assess whether a linked cohort of mothers and infants in the JMDC claims 

database is fit for regulatory use within the context of estimating infant outcomes associated 

with in utero exposure to marketed medications. We assessed a series of data considerations 

related to the relevancy and quality of the database, as outlined according to the Duke-Margolis 
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framework for fit-for-purpose real-world data evaluation.25 Although complete and accurate 

identification of mothers and their liveborn infants who share a health insurance plan was 

possible, allowing for the creation of a large mother–infant cohort with detailed information 

regarding prescription dispensing during pregnancy, the limitations of gestational age 

information may impede the valid assignment of pregnancy onset and delivery dates as needed 

to define critical in utero exposure windows. These results suggest that additional research is 

needed to identify gestational age in this database before proceeding with pregnancy safety 

research to inform regulatory decision-making. 

Relevancy relates to capacity to answer the research question, in terms of availability of critical 

data fields and a sufficiently sized, representative population. In terms of relevancy, we 

determined that critical data fields (maternal medication exposures, infant major congenital 

malformations, covariates) were available. Family identification codes permitted patient-level 

mother–infant linkage. 385,295 total mother–infant pairs were identified, representing about 2% 

of live births in Japan during the study period. About 41,000 congenital malformations were 

observed among these pairs. It appears that a sufficiently sized population, in terms of expected 

precision of estimates, would be available to study associations between some maternal 

medication exposures (e.g., anti-diabetics, anticonvulsants, or SSRIs) and congenital 

malformations (e.g., congenital heart anomalies, congenital musculoskeletal and limb 

anomalies) that occurred more commonly in this population, yet not for others that occurred 

more rarely. 57% of mother–infant pairs involved a mother with continuous enrollment during 

pregnancy and 86% had at least one year of infant follow-up; 49% met both pregnancy and 

follow-up continuous enrollment. In Japan, all individuals are covered under the National Health 

Insurance system. Additionally, pregnancy-related care is covered under a government-

subsidized maternity voucher program. As a result, it is unexpected that a pregnant person in 

Japan would have any gaps in their continuity of care and therefore we expect that the low 
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continuous enrollment rates observed in this cohort may be more reflective of how care is 

captured by the database rather than how care is received for this population. Future studies 

may further investigate the continuous enrollment timing in this cohort, examining whether the 

linked females are losing their insurance coverage at the beginning of the fiscal year (indicating 

that their employer may have changed their contract with the JMDC data vendor) or at random 

(indicating that the female has changed insurance plans). Regardless of the source of the low 

continuous enrollment, if future pregnancy safety studies using this cohort were to require 

continuous enrollment during pregnancy, sample size and expected precision of estimates may 

be compromised due to exclusion of nearly half of the valid pairs. 

Comparison to publicly available data from Japan suggested total major congenital 

malformations were over-represented (10.8% versus 5.3%) in this population. Previous analysis 

in the JMDC claims database by Ishikawa et al. reported a prevalence of major congenital 

malformations of 5.3%, although the ICD-10 algorithms differed slightly those of the present 

analysis, especially for the category of “other” major congenital malformations.44, 45 In our cohort, 

exclusion of “other” congenital birth defects from the total major congenital malformation 

prevalence attenuated the observed over-representation of major congenital malformations in 

the JMDC (5.5%). It is not clear whether this over-representation, which is apparently driven by 

“other” congenital birth defects, is due to over-reporting of congenital abnormalities in the linked 

JMDC population (i.e., outcome misclassification, likely driven by alternative and minor 

congenital malformations being inadvertently lumped in with the catch-all “other” category) or if 

there is truly a higher prevalence of congenital abnormalities in this insurance population. For 

example, the members of the JMDC insured group are individuals with insurance through their 

employer, plus dependents, and therefore may represent a population at higher risk of 

congenital abnormalities compared with the general population (e.g., higher exposure to 

workplace hazards related to the risk of congenital abnormalities). Even if the higher proportion 
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of congenital abnormalities in the JMDC population, compared with the general population, is 

due to outcome misclassification (i.e., greater sensitivity), any such inaccuracy is unlikely to 

differ between those who were and were not exposed to prescription medications use during 

pregnancy (i.e., non-differential with respect to exposure). It is also unlikely that infants without 

congenital abnormalities would be reported as cases (i.e., specificity of the outcome is expected 

to be perfect or nearly perfect). In general, when specificity is perfect and sensitivity for the 

exposed and unexposed groups are equal, ratio measures of association are unbiased. Future 

studies may seek to confirm a known causal association between a medication exposure during 

pregnancy and infant congenital malformations in this cohort to assess the validity of outcome 

ascertainment and the ability to produce unbiased results.97  

Maternal characteristics appeared mostly consistent with the population of same-aged females 

in Japan. The prevalence of several chronic conditions (anxiety disorders, asthma, major 

depressive disorder, migraine), as well as maternal hypertensive disorders, increased when the 

JMDC linked population was restricted to those with pregnancy or delivery codes, as compared 

with the total linked population, indicating that those with chronic conditions may be more likely 

to interact with the healthcare system during pregnancy in a way that will generate claims. The 

population of unlinked mothers, compared to linked mothers, were more likely to have most of 

the medical conditions examined, but the prevalence of medication use was similar for the two 

populations across all medication classes examined. Finally, preterm births were under-

recorded (3.6% versus 5.6%) in this population. The gestational age at which an infant is born is 

associated with a variety of maternal characteristics (e.g., age at pregnancy, comorbid 

conditions, lifestyle factors, multiple pregnancy), as well as the infant’s risk of mortality and 

morbidity.98, 99 Given the observed over-representation of major congenital malformations in this 

cohort, this under-representation of preterm birth is unexpected; major congenital malformations 

are associated with an increased risk of preterm birth and therefore a greater prevalence of 
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preterm birth would have been expected in conjunction with the increased prevalence of major 

congenital malformations.100, 101 Furthermore, as preterm births may be more likely to 

accompany pregnancies and deliveries requiring medical intervention, we would have expected 

the JMDC claims database to have an over-representation of preterm birth given the policies for 

delivery coverage in the Japan National Health Insurance System. The observed lower 

prevalence of preterm birth in this population could be due to coding practices in the healthcare 

system or could be a true lower preterm birth prevalence in this privately employed population 

(e.g., socioeconomic characteristics).  

Quality relates to ability to validly answer the research question, in terms of data completeness, 

accuracy, and transparency. In terms of quality, our methods were expected to accurately 

identify the complete set of mothers and infants in the JMDC enrolled in a shared health 

insurance plan. Females with evidence of a live birth delivery, as well as infants enrolled in a 

JMDC-covered plan in their birth month, had linkage rates of about 50%, which align with 

expectations of infant insurance coverage under the mother’s, versus other parent’s, plan. 

Cross-tabulation of values indicated for the relationship of the “mother” and “infant” to the 

insurance holder allowed for confirmation of assumed biologic mother–infant pairs in 90% of all 

presumed mothers and infants matched via family identification codes. Exclusion of invalid and 

indeterminate matches (which resulted in a 14% reduction in the initially matched pairs; from 

446,411 to 385,295) was intended to strengthen our confidence in the validity of mother–infant 

pairings.  

The completeness and accuracy of gestational age information was limited given the lack of live 

birth delivery codes for 60% of the cohort and missing pregnancy-related codes for 41% of the 

cohort. Although linkage of mothers and infants based on family identification codes (Linkage 

Method B) bypasses dependence on pregnancy and live birth delivery codes to identify mothers 

(Linkage Method A), missing delivery date and pregnancy timing information, coupled with 
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suppression of infant birth dates and inaccessibility of ICD-10 codes with fifth level digits (where 

gestational week information would have been available) in the database, limits the ability to 

finely estimate gestational timing, and therefore critical exposure windows, as needed for 

regulatory post-approval pregnancy safety studies. The magnitude of potential exposure window 

misclassification in this cohort is difficult to quantify, as it could arise in many ways. For 

pregnancies with missing delivery date and gestational age information, these data would need 

to be imputed. The fifteenth day of the infant birth month may be used as an estimated delivery 

date, and a term gestational age may be used to estimate the pregnancy start date. The method 

of imputing a term gestational age for those without a preterm status indicator has previously 

been used in the literature, but does assume preterm status to be accurately and completely 

indicated in the claims database, which may not be the case in the JMDC claims database 

given the observed underrepresentation of preterm birth status.36, 42, 65 We suspect that for the 

majority (94%) of pregnancies, which involve term deliveries, missing delivery and gestational 

timing information is expected to result in only minor shifts of the exposure window such that 

most of the true exposure window is still covered by the estimated window. Additional 

fluctuations in delivery timing relative to the average length of term pregnancies may introduce 

further shifts to the estimated exposure window. Many pregnancy safety studies define 

exposure according to “ever” versus “never” use, either during any time in pregnancy or during 

each specific trimester. Claims-based algorithms have been found to have high positive (>96%) 

and negative (>99%) predictive values for classification of chronic medication exposures with 

this type of binary definition.102 If medication use status throughout pregnancy is expected to be 

constant, then this type of binary exposure definition would be expected to perform well, even in 

the face of a shifted exposure window. The most concerning scenario, however, occurs when a 

preterm birth lacks codes related to both delivery and gestational timing, which could cause the 

estimated exposure window to be shifted so much as to have no overlap with the true exposure 

window for extremely preterm births. This possibility is particularly of concern given that many 
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people cease or change prescription medication use when they learn that they are pregnant; 

prescription use as measured in the pre-pregnancy period likely will not accurately reflect first 

trimester exposures for medications not related to chronic conditions.96, 103  The magnitude and 

directionality of bias introduced due to misalignment of the estimated and true exposure 

windows depends on the specific research question of interest. For example, for a first trimester 

critical exposure window, shifting the exposure assessment window earlier in time means that 

exposure status will be measured before the true pregnancy has begun. This may result in 

either imperfect sensitivity of the exposure for medications with known teratogenic effects that 

are likely to be ceased upon the start of pregnancy or imperfect specificity of the exposure for 

medications likely to be initiated during the first trimester (e.g., medications to treat pregnancy-

related nausea and vomiting).104, 105 Alternative outcomes with different critical exposure 

windows (e.g., third trimester) will result in a different set of potential bias considerations. It is 

possible that estimation of gestational timing and the resulting exposure windows could be 

related to infant congenital malformation status (i.e., non-differential exposure misclassification), 

for example if those with congenital malformations are more likely to be born preterm.95, 96 

Additionally, socioeconomic factors are likely to be related to access to care and medication use 

during pregnancy, as well as the risk of major congenital malformations.106-109  

This analysis is not without limitations. First, it is important to note that the Duke-Margolis 

framework sets forth a list of considerations for assessing fitness for purpose of real-world data, 

but does not specify analysis plans nor provide quantitative thresholds for determining whether 

each relevancy and quality dimension is met. Our assessment here was therefore based on our 

own interpretation of the framework and our translation of the various dimensions into 

descriptive epidemiologic research questions based on our scientific and regulatory context. It is 

important to acknowledge that alternative assessment methods for each dimension could have 

been possible. However, communication with experts in the field of pregnancy safety, as well as 
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those familiar with Japan’s healthcare system and the JMDC database, helped to inform our 

chosen analyses. 

Next, our analysis identified pregnancy and delivery episodes based on diagnosis codes alone. 

It is possible that additional episodes could have been identified via incorporation of medical 

and surgical procedure codes. Previous work in the JMDC database also incorporated 

prescribed medications during hospitalizations likely to be associated with delivery.44, 45, 94 

Addition of procedures and prescribed medications to the delivery algorithm could result in 

reduction of the proportion of females without a delivery date based on live birth diagnosis 

codes alone (60%). It is not clear how often females would have a procedure coded during 

delivery in the absence of an accompanying diagnosis, and therefore we are unable to comment 

on the potential change to the proportion with an estimable delivery date due to the 

incorporation of delivery-related procedures. Future research may examine the impact of 

including procedures and medications on the delivery date and gestational age estimation.  

Additionally, in this analysis, Linkage Method A allowed us to observe the linkage rate to be 

56% for pregnancy episodes with evidence of a live birth delivery. The unlinked mothers in this 

scenario appear to correspond with expectations of infants being enrolled as dependents on 

their mother’s, versus other’s parents, insurance plan about half of the time. In comparison, the 

linkage rate was only 40% for pregnancy episodes identified according to codes indicating an 

ongoing, active pregnancy, which may not necessarily have ended in a live birth. The unlinked 

pregnant people in this scenario are expected to be a combination of (a) mothers whose 

liveborn infants are covered by a different health insurer, (b) pregnant people whose pregnancy 

ended in a spontaneous abortion or stillbirth, and (c) females who did not experience a 

pregnancy during the study period. It is important to understand unlinked females who are 

mothers who experienced a live birth delivery (part of the target population of all mothers and 

their liveborn infants in Japan) versus those who did not to understand how well this linked 
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cohort can represent the target population. Future research should query the unlinked females 

for diagnosis codes indicating the occurrence of spontaneous abortion and stillbirth to better 

understand this distribution of females in the JMDC population.110 Japanese Vital Statistics 

include required reporting of fetal deaths, which could serve as a comparison to the rates 

observed among the JMDC population.68 

Finally, this fit-for-purpose real-world data evaluation was limited by the information available 

from the data vendor. Our mother–infant pairs were created according to values indicated for 

the family identification and relationship to the insurance holder variables. Unfortunately, there is 

a scarcity of detailed information available from the JMDC regarding these variables, including 

potential for miscoding and reasons for missingness. Given that the family identification codes 

are used to identify relations between insurance plan holders and dependents for the purposes 

of billing, we expect these values (which are always non-missing) to be correctly coded. The 

accuracy of the relationship variable, however, is less clear given that insurance benefits are 

provided to all dependents, regardless of specific familial relationship, so there is less motivation 

from the billing viewpoint for this variable to be valid and non-missing.  

Overall, results suggest the JMDC claims database may be well-suited for descriptive studies of 

pregnant people in Japan (e.g., comorbidities, medication usage). More work is needed to 

identify a method to assign pregnancy onset and delivery dates so that in utero exposure 

windows can be defined more precisely as needed for many regulatory postapproval pregnancy 

safety studies.  
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CHAPTER 3: REAL-WORLD RISK OF SEVERE CYTOPENIAS IN MULTIPLE MYELOMA 
PATIENTS SEQUENTIALLY TREATED WITH IMMUNOMODULATORY DRUGS 

Abstract 

Background: Most multiple myeloma (MM) patients experience myelosuppression due to both 

underlying disease and treatment. Cytopenias are most commonly associated with regimens 

containing immunomodulatory agents (IMiDs). Most MM patients relapse and subsequent 

regimens could include IMiDs. The impact of sequential IMiD treatment on severe cytopenia risk 

is unknown, as studies have not examined risk across multiple lines of therapy (LOTs).  

Objective: To evaluate the risks of severe cytopenias in relapsed MM patients who received 

sequential IMiD treatment versus IMiD-free regimens. 

Methods: The Flatiron Health database contains de-identified electronic health records from 

patients treated at ~280 United States cancer clinics. Patients ≥18 years diagnosed with MM 

between 01 January 2011 and 31 December 2020 who received at least two LOTs were 

included. Four exposure groups were created according to whether IMiDs were received during 

LOTs 1 or 2. Those for which both LOTs contained IMiDs were considered “sequentially 

exposed”; those for which neither contained IMiDs were “never exposed.” Follow-up was from 

initiation of LOT 2 until the earliest of the outcome (grade 3 or 4 cytopenias, according to the 

Common Terminology Criteria for Adverse Events version 5.0), death, LOT end, or study end 

(31 December 2021). Inverse probability of treatment weighting models included age, diagnosis 

year, sex, race, body mass index, practice type, insurance type, region, stage, cytogenetic risk, 

pre-existing comorbidities, treatment history, prior maintenance therapy, relapse timing, and 

recent cytopenia history (≤90 days from LOT 2 start). Cumulative risks up to 12 months were 

estimated for each exposure group and risk differences (RD) were calculated. Analyses were 

repeated stratified by recent cytopenia history, age, and cytogenetic risk. 

Results: The cohort included 5,573 MM patients. Most (N = 2,082) were sequentially exposed 
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to IMiDs, with only 974 never exposed. Compared to those never exposed, those sequentially 

exposed were on average younger (mean 65 vs 69 years), diagnosed at a lower stage (ISS I 

24% vs 14%) and in later years (≥2016 47% vs 30%), had a better performance status (ECOG 

≤1 43% vs 33%), and had longer time to relapse (≥24 months 20% vs 13%). The cumulative risk 

of neutropenia at 1 year was substantially higher among those exposed versus unexposed to 

IMiDs at LOT 2 (21% [95% confidence interval [CI] 19%, 23%] vs 13% [95% CI 12%, 15%]) and 

stratification on prior IMiD exposure revealed a trend in which, compared to those never 

exposed, those sequentially exposed had the highest 1-year risk (RD 12% [95% CI 9%, 15%]), 

followed by those only recently exposed during LOT 2 (RD 8% [95% CI 4%, 11%]), then by 

those with only past exposure during LOT 1 (RD 5% [95% CI 1%, 8%]). A similar pattern was 

observed for leukopenia. In contrast, the 1-year risks of anemia, lymphocytopenia, and 

thrombocytopenia were similar among those treated with, versus without, IMiDs at LOT 2. 

Stratification on prior IMiD exposure did not meaningfully change the risks of anemia or 

lymphocytopenia, but did suggest an increased risk of thrombocytopenia among those receiving 

IMiDs at either or both LOT, versus never exposed.  

Risks of all severe cytopenias were substantially lower among those with no recent cytopenia 

history. The associations between sequential, versus never, exposure with leukopenia and 

neutropenia were even stronger among those with a history of the given cytopenia, but were 

attenuated for those with no history. Risks for cytopenias not related to white blood cells 

(anemia, thrombocytopenia) among those with no recent history did not exceed 10%, even for 

those sequentially exposed.   

Conclusions: Results suggest sequential exposure to IMiDs across two LOTs to be mainly of 

concern for risk of severe cytopenias related to white blood cells, particularly neutrophils, and 

especially among those with recent histories. Although adverse events due to cytopenias, such 

as infections, could not be accurately ascertained in this study, results suggest administering an 

IMiD-free regimen following an IMiD regimen may reduce severe cytopenia risk. 
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Background 

Although useful for efficient pharmacoepidemiologic research, real-world data, by virtue of being 

collected as a part of routine healthcare processes, rather than from regimented clinical trials, 

do not involve random allocation of treatment to individuals. Treatment decisions, in contrast, 

tend to emanate from a complex combination of patient characteristics and prescriber 

preferences. When real-world data are used to evaluate safety and effectiveness of drugs, the 

non-randomized treatment assignment, if not properly accounted for, may result in biases, 

including unmeasured confounding and confounding by indication. These challenges in real-

world data analysis and interpretation contribute to hesitancy of the scientific community to trust 

evidence generated from real-world data, as compared with evidence from randomized clinical 

trials. Analyses are further complicated by treatments that vary over time, for example if a 

regimen is changed because of an altered diagnosis or prognosis (e.g., a relapsed cancer case) 

or due to the approval of new drug treatment options.  

We will use the example of multiple myeloma (MM) to demonstrate how pharmacoepidemiologic 

techniques can be used to study risk of hematologic adverse events during treatment for a 

cancer recurrence. As a disease that is characterized by repeated relapses and remissions, MM 

is a strong use case for this example because the real-world comparative safety and 

effectiveness of MM treatments may differ from efficacy observed in clinical trial populations due 

to the complex treatment algorithm, which is informed by many patient-level (e.g., comorbidities, 

treatment history) and provider-level (e.g., practice type) characteristics. Key 

pharmacoepidemiologic methods in study design (e.g., active comparator, new user study 

design;111 alignment of treatment assignment, eligibility specification, and time zero of follow-

up34) and analysis (e.g., inverse probability of treatment weighting) allow us to make use of real-

world data for comparative safety analyses despite the lack of randomization at two treatment 

decision time points, provided the underlying assumptions hold.   
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Multiple myeloma is a hematologic cancer that begins in the plasma cells (white blood cells that 

produce antibodies) and impedes the body’s ability to fight infection. Patients with MM are 

characterized by the proliferation of malignant plasma cells in the bone marrow, proteins in the 

serum and/or urine, and associated bone and organ damage.112 With an estimated 34,470 new 

cases occurring in the United States in 2022, MM accounts for about 1.8% of all cancers and 

19% of hematologic cancers.113, 114 MM is most commonly diagnosed among older adults; the 

median age at diagnosis is 69 years.113 The overall 5-year relative survival for MM is 57.9%, 

with deaths most commonly occurring among MM patients at ages 75 to 84 years.113  

Most MM patients experience myelosuppression, or a reduction of bone marrow activity, which 

interferes with hemopoiesis (blood cell development) and results in a decreased production of 

blood cells (red blood cells, white blood cells, and platelets) (see Figure 13). This puts MM 

patients at an increased risk of hematologic complications, including cytopenias (abnormally low 

blood cell counts).115-119 Cytopenias may result from low counts of red blood cells (anemia), 

white blood cells (leukopenia, neutropenia, lymphocytopenia), or platelets (thrombocytopenia)120  

Figure 13. Development of blood stem cells into red blood cells, white blood cells, or 
platelets  

 
Image from the National Cancer Institute.121 
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Myelosuppression may be exacerbated by MM treatment regimens. There are many available 

drug treatments for MM, which may be given individually (monotherapy) or in combination with 

each other (e.g., doublet, triplet, quad, etc.; Table 12).122  

Table 12. Multiple myeloma treatment description by category  
Combination Class groups Description 

Monotherapy Monoclonal antibody Daratumumab OR elotuzumab  

PI Carfilzomib OR bortezomib OR ixazomib  

IMiD Thalidomide OR lenalidomide OR pomalidomide  

Steroid monotherapy Dexamethasone OR prednisone  

Targeted inhibitor Selinexor OR venetoclax 

Other Any other monotherapy not listed above, including clinical trial drugs 

Doublet Monoclonal antibody 
+ Dex 

Daratumumab OR elotuzumab; 
AND dexamethasone 

PI  
+ Dex 

Carfilzomib OR bortezomib OR ixazomib; 
AND dexamethasone 

IMiD  
+ Dex 

Thalidomide OR lenalidomide OR pomalidomide;  
AND dexamethasone 

Other Any other doublet not listed above, including clinical trial drugs 

Triplet Monoclonal antibody 
+ PI  
+ IMiD 

Daratumumab OR elotuzumab;  
AND carfilzomib OR bortezomib OR ixazomib; 
AND thalidomide OR lenalidomide OR pomalidomide   

PI  
+ IMiD  
+ chemotherapy 

Carfilzomib OR bortezomib OR ixazomib;  
AND thalidomide OR lenalidomide OR pomalidomide;  
AND bendamustine OR bendamustine HCl OR cisplatin OR 
cyclophosphamide OR etoposide OR melphalan OR panobinostat 
OR vincristine OR vincristine sulfate OR vorinostat OR doxorubicin 
pegylated liposomal   

Monoclonal antibody 
+ PI  
+ Dex 

Daratumumab OR elotuzumab; 
AND carfilzomib OR bortezomib OR ixazomib; 
AND dexamethasone 

Monoclonal antibody 
+ IMiD  
+ Dex 

Daratumumab OR elotuzumab;  
AND thalidomide OR lenalidomide OR pomalidomide;  
AND dexamethasone 

PI  
+ IMiD  
+ Dex 

Carfilzomib OR bortezomib OR ixazomib;  
AND thalidomide OR lenalidomide OR pomalidomide;  
AND dexamethasone 

PI  
+ chemotherapy  
+ Dex 

Carfilzomib OR bortezomib OR ixazomib; 
AND bendamustine OR bendamustine HCl OR cisplatin OR 
cyclophosphamide OR etoposide OR melphalan OR panobinostat 
OR vincristine OR vincristine sulfate OR vorinostat OR doxorubicin 
pegylated liposomal;  
AND dexamethasone 

IMiD  
+ chemotherapy  
+ Dex 

Thalidomide OR lenalidomide OR pomalidomide;  
AND bendamustine OR bendamustine HCl OR cisplatin OR 
cyclophosphamide OR etoposide OR melphalan OR panobinostat 
OR vincristine OR vincristine sulfate OR vorinostat OR doxorubicin 
pegylated liposomal;  
AND dexamethasone 

Other Any other triplet not listed above, including clinical trial drugs  

Quad Monoclonal antibody 
+ PI  
+ IMiD  
+ Dex 

Daratumumab OR elotuzumab;  
AND carfilzomib OR bortezomib OR ixazomib; 
AND thalidomide OR lenalidomide OR pomalidomide; 
AND dexamethasone 

Other Any other quad not listed above, including clinical trial drugs  
Dex: dexamethasone; IMiD: immunomodulatory imide drug; HCl: hydrochloride; PI: proteasome inhibitor 
Adapted from Braunlin et al.122 
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The recommended frontline treatment regimens for MM include immunomodulatory drugs 

(IMiDs; e.g., lenalidomide, pomalidomide, thalidomide), which are received by over 70% of MM 

patients.122-124 IMiDs have several mechanisms of anti-cancer action in MM, which are related to 

both direct cancer cell attack and indirect disruption of the actions of cancer cells in the bone 

marrow, including starving the cancer cell from nutrients and preventing ongoing inflammation 

and proliferation of the cancer cells.125, 126 Cytopenias are generally more commonly associated 

with regimens containing IMiDs than IMiD-free regimens.127-129 IMiDs have been linked to the 

downregulation of transcription factors involved in the development of myeloid cells (type of 

bone marrow cells) and the differentiation of downstream granulocytes (which give rise to 

neutrophils), thereby disrupting vital neutrophil processes and resulting in neutropenia (Figure 

13).130, 131 The impact of reduction in these transcription factors does not appear to impact 

lymphoid cells, which give rise to lymphocytes; other mechanisms for IMiD-related 

lymphocytopenia have not been described in the literature.132 Similar potential biologic 

mechanisms have been described for other downstream myeloid cells, erythrocytes (which give 

rise to red blood cells) and megakaryocytes (which give rise to platelets), which could contribute 

to IMiD-associated anemia and thrombocytopenia, although these processes are not well 

understood.133, 134  

The incidence of grades 3 or 4 cytopenias reported in randomized clinical trials of MM patients 

involving IMiD treatment arms is displayed in Table 13. In general, cytopenias occurred more 

commonly in IMiD arms than in placebo arms, especially in trial populations of relapsed and 

refractory MM patients compared with newly diagnosed MM patients. Neutropenia, leukopenia, 

thrombocytopenia, and anemia are recognized as common adverse reactions (≥20%) of 

lenalidomide in MM patients, based on data from randomized clinical trials.135-142 The risk of 

neutropenia in lenalidomide-treated MM patients has been observed to be as high as 60%, and 

may vary based on the combination of other drugs in the given treatment regimen.142, 143 
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Similarly, pomalidomide, which is indicated for relapsed and refractory MM patients in 

combination with dexamethasone, includes a hematology toxicology warning on its label, 

particularly for the high rates of neutropenia incidence (about 41–62%).144-148 In contrast, 

neutropenia does not appear to be a common side effect of thalidomide, affecting less than 10% 

of MM patients.149, 150  

Table 13. Incidence of treatment-related grades 3 or 4 cytopenias among multiple 
myeloma in randomized clinical trials patients involving treatment arms with 
immunomodulatory drugs 

ClinicalTrials.gov 

Identifier  
Treatment Arm N Anemia Leukopenia Neutropenia Lymphocytopenia Thrombocytopenia 

Newly Diagnosed        

NCT00033332149, 151 
Thalidomide + Dex 102 - 6 (6%) 10 (10%) - - 

Placebo 102 - 3 (3%) 10 (10%) - - 

NCT00057564150, 151 
Thalidomide + Dex 234 - - 8 (3%) - - 

Placebo 232 7 (4%) - 6 (3%) - - 

NCT00689936135, 152 Lenalidomide 532 97 (18%) 24 (5%) 148 (28%) 30 (6%) 44 (8%) 

 
IMiD Median 

Placebo Median 
 

18% 

4% 

6% 

3% 

10% 

7% 

6% 

- 

8% 

- 

Relapsed/refractory      

NCT00056160140 
Lenalidomide + Dex 177 23 (13%) - 73 (41%) - 26 (15%) 

Placebo 175 9 (5%) - 8 (5%) - 12 (7%) 

NCT00424047139 
Lenalidomide + Dex 176 15 (9%) - 52 (30%) - 20 (11%) 

Placebo 175 12 (7%) - 4 (2%) - 10 (6%) 

NCT01311687145, 148 
Pomalidomide + Dex 300 99 (33%) 27 (9%) 145 (48%) - 66 (22%) 

Placebo 150 55 (31%) 5 (3%) 24 (16%) - 39 (26%) 

NCT00833833147, 148 
Pomalidomide 107 25 (23%) 7 (7%) 51 (48%) 2 (2%) 24 (22%) 

Pomalidomide + Dex 112 24 (21%) 11 (10%) 46 (41%) 8 (7%) 21 (19%) 

NCT01053949144 Pomalidomide + Dex 84 30 (36%) - 52 (62%) - 23 (27%) 

NCT01712789146 Pomalidomide + Dex 676 223 (33%) 54 (8%) 336 (50%) - 163 (24%) 

 
IMiD Median 

Placebo Median 
 

28% 

7% 

8% 

3% 

48% 

5% 

2% 

- 

22% 

7% 

Dex: dexamethasone; IMiD: immunomodulatory imide drug 
- indicates that trial did not report this outcome 

 

https://clinicaltrials.gov/ct2/show/NCT00033332
https://clinicaltrials.gov/ct2/show/NCT00057564
https://clinicaltrials.gov/ct2/show/NCT00056160
https://clinicaltrials.gov/ct2/show/results/NCT01311687
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The majority of MM patients eventually relapse and subsequent treatment regimens may or may 

not include IMiDs.123 Treatment choice for relapsed MM is affected by many factors, including 

relapse timing and aggressiveness, treatment history (including whether the patient is refractory 

to a drug), and performance status.123 It is unknown how the risk of cytopenias may be impacted 

by exposure to sequential regimens containing IMiDs, as studies have not necessarily examined 

the comparative risk of adverse events across multiple lines of therapy. The novel IMiD drug-

free regimen developed by Amgen in collaboration with Janssen (carfilzomib, dexamethasone, 

and daratumumab [KdD]) has demonstrated efficacy for progression-free survival in a recent 

phase 3 study.153 It is important to understand whether there is a differential risk of cytopenias in 

MM patients who do versus do not receive sequential treatment with IMiDs to inform future 

treatment recommendations for relapsed MM patients. Real-world data provide an opportunity 

to efficiently evaluate comparative hematologic safety of marketed medication regimens for MM 

(i.e., as opposed to conducting postmarketing clinical trials, in which treatment randomization 

may not be ethical given knowledge of how treatments may not be well-tolerated in certain 

patient groups123). Demonstrating that real-world data can be used to address comparative 

safety questions subject to bias due to complex, non-randomized prescribing patterns is 

imperative for supporting the real-world data initiative and emphasizing how FDA, providers, 

and patients may rely on real-world data when comparable clinical trial data are not available.  

Methods 

Data Source 

The data source for this aim was the Flatiron Health enhanced datamart, which consists of 

longitudinal, de-identified electronic health records (EHR) contained in Amgen's Oncology 

Services Comprehensive Electronic Records database, generated by Flatiron Health (New 

York, NY, April 2016). The Flatiron database contains EHR from patients treated at about one 
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fourth of community-based oncology centers in the United States (about 280 cancer clinics 

across all 50 states, Puerto Rico, and the District of Columbia) and represents the largest 

United States real-world oncology data source, making it an ideal data source to examine 

effectiveness of oncology treatments in a representative dataset. Patients representing all payer 

types (i.e., Medicare, Medicaid, commercial, self-pay) are included in the database. Information 

available includes patient demographic characteristics (e.g., state of residence, insurance type, 

race, ethnicity) and diagnoses, laboratory tests, and treatment administrations, all with dates 

available. Additionally, treatment setting information is available, including unique practice 

identifiers and an indicator variable for whether the practice is a community or academic 

institution. The Flatiron database includes extracted data from structured (e.g., drug 

administrations, lab values) and unstructured EHR (e.g., physician notes, radiology reports), as 

well as detailed death information (based on linkage of the EHR with the Social Security Death 

Index and additional obituary data154). For cancer patients who are treated within the Flatiron 

network, the entire patient chart is available. EHR data are continuously captured so long as the 

patient is treated at a facility in the Flatiron network (allowing for the possibility of switching 

facilities within the network); treatment-related data missingness may occur for patients who 

move to be treated outside of the network. However, given that our study population involves 

cancer patients who receiving active treatment, most of whom are of advanced age, we do not 

expect these patients to be moving treatment facilities during the study period. Use of an EHR-

derived database as opposed to an insurance claims database for oncology research is 

advantageous due to the inclusion of detailed staging information and lab test results, which are 

not typically available in claims data. 

Study Population 

The study design schema is displayed in Figure 14. The cohort included patients ages 18 years 

or older with a recorded diagnosis of MM (ICD-9 203.0x; ICD-10 C90.0x) who initiated a new 
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LOT between 01 January 2011 and 31 December 2020 (one year before the end of the latest 

data availability at the time of this analysis, which allowed for the possibility of a minimum of one 

year of follow-up data within the database). All patients were required to have at least two LOTs 

following MM diagnosis. There was no restriction implemented for a maximum amount of time 

allowed to elapse between the MM diagnosis date and the start of the first LOT, as smoldering 

myeloma (a precancerous condition that may progress to MM, at which time treatment would be 

initiated) has ICD codes identical to those of MM and therefore is indistinguishable from MM in 

the electronic health records database. Patients with a flag indicating receipt of Line Zero were 

excluded. The Flatiron data uses a Line Zero indicator to indicate patients for whom treatment 

data may be missing (and therefore LOT 1 may not necessarily correspond to the patient’s true 

first treatment line). The start date of the second LOT was defined as the index date.  
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Figure 14. Summary of inclusion criteria and baseline variable assessment timing for 
cohort of multiple myeloma patients in the Flatiron Health database receiving at least two 
lines of therapy   

 
CTCAE: Common Terminology Criteria for Adverse Events. ECOG: Eastern Cooperative Oncology Group. IMiD: Immunomodulatory 
imide drug. ISS: International Staging System. LOT: Line of therapy. MM: Multiple myeloma. 

Outcome 

The outcome of interest was the first recorded occurrence of grade 3 or grade 4 cytopenias, 

defined using blood test results according to the National Cancer Institute Common Terminology 

Criteria for Adverse Events (CTCAE) version 5.0 (Table 14).155 We examined the following 

cytopenias: anemia, leukopenia (including subtypes neutropenia and lymphocytopenia), and 

thrombocytopenia. The laboratory tests relevant for the measurement of blood levels associated 

with each cytopenia were defined using Logical Observation Identifiers Names and Codes 

(LOINC) codes.156 
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Table 14. Cytopenia grading according to the National Cancer Institute's Common 
Terminology Criteria for Adverse Events 

Type Blood element Grade 1 Grade 2 Grade 3 Grade 4 

Anemia Hemoglobin  <LLN to 10 g/dL 8.0 to 10.0 g/dL <8.0 g/dL 
Life-
threatening 
consequences 

Leukopenia 
Total white blood 
cells 

<LLN to 
3,000/μL 

2,000 to 
3,000/μL 

1,000 to 
2,000/μL 

<1,000/μL 

Neutropenia Neutrophils 
<LLN to 
1,500/μL 

1,000 to 
1,500/μL 

500 to 1,000/μL <500/μL 

Lymphocytopenia Lymphocytes <LLN to 800/μL 500 to 800/μL 200 to 500/μL <200/μL 

Thrombocytopenia Platelets 
<LLN to 
75,000/μL 

50,000 to 
75,000/μL 

25,000 to 
50,000/μL 

<25,000/μL 

LLN = lower limit of normal 
From the Common Terminology Criteria for Adverse Events v5.0 (CTCAE).155  

Exposure 

The systematic set of drug treatments prescribed to a patient is referred to as a regimen, and 

each sequential regimen is referred to as a line of therapy (LOT). The Flatiron Health database 

contains variables indicating the name, number, and start and end dates of each LOT. These 

variables were defined based on an algorithm developed by a team of clinical experts 

(oncologists, engineers, biostatisticians) according to medications recorded in the EHR. The 

start date of the first LOT is defined as the date of the first drug episode given after the MM 

diagnosis (or at most 14 days before the MM diagnosis, to allow for delayed entry in the EHR, 

which is common) and after the start of the patient’s structured activity (i.e., recording of vital 

information, medication administration, non-canceled drug order, reported laboratory test/result). 

The regimen of a given LOT (and, consequently, the name of the LOT) is determined by all 

eligible drugs given within 28 days of the start of the LOT. De-escalation of a regimen beyond 

28 days after the start of the LOT is considered to be the same LOT (e.g., a patient is 

prescribed the triplet therapy of lenalidomide, bortezomib, and dexamethasone and is 

subsequently dropped off bortezomib, yet remains on the doublet therapy lenalidomide and 

dexamethasone). Treatment lines may be advanced due to disease progression or a variety of 

other reasons (e.g., toxicity, financial burden, patient choice). The administration of a new drug 
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treatment more than 28 days after the LOT start (with certain exceptions made for maintenance 

therapies and substitutions of biosimilar drugs) is considered to be a new regimen and therefore 

advances the treatment line. Additionally, if there is a gap of more than 90 days between 

consecutive episodes of the same regimen, it is assumed that treatment was stopped and then 

re-started and therefore the LOT is automatically advanced. LOT end dates are defined based 

on the earliest occurrence of the following: the day before the start of the next LOT, patient 

death, last structured patient activity, or end of data availability.  

Exposure was defined according to the treatment regimens received during the second LOT. An 

individual was considered exposed if the second LOT line contains IMiDs; an unexposed 

individual’s second LOT contained no IMiDs.  

Covariates 

See Figure 15 for a directed acyclic graph (DAG) summarizing the hypothesized relationships 

between study variables. Treatment decisions at both the first and second lines of therapy are 

impacted by various fixed, baseline patient characteristics that are also associated with 

cytopenia risk: patient age,143, 157, 158 body mass index,143 MM risk stratification (high- versus 

standard-risk, based on the International Staging System and cytogenetic abnormalities159),123, 

160 and pre-existing comorbidities123, 157, 161, 162 (renal disease,143, 158, 163-166 cardiovascular 

disease,143, 158, 167-169 liver disease,143, 169, 170 diabetes mellitus,143, 165, 171, 172 chronic systemic 

inflammatory diseases [rheumatoid arthritis, inflammatory bowel disease]171, 173, 174). Although 

providers may also consider receipt of other medications for treatment of the comorbidities at 

the time of MM-related treatment decisions, these other medications are not expected to impact 

risk of cytopenias and therefore have not been included in this DAG.   
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Figure 15. Directed acyclic graph of relationship between study variables 

 
X0: Index exposure at time 0 (second line of therapy) 
Y0: Cytopenias following the second line of therapy 
C0: Time-varying patient and clinic characteristics, assessed at the second line of therapy  
X-1: Previous exposure at time -1 (first line of therapy) 
T-1: Relapse timing (i.e., the time between start dates of the first and second lines of therapy)   
Y-1: Blood component levels following the first line of therapy, assessed before the second line of therapy   
C-1: Time-varying patient and clinic characteristics, assessed at the first line of therapy   
A-1: Receipt of autologous stem cell transplantation during the first line of therapy 
M-1: Receipt of maintenance therapy during the first line of therapy  
L-2: Time-fixed patient prognostic characteristics, assessed at the time of multiple myeloma diagnosis 
Y-2: Blood component levels before the first line of therapy  

Demographic variables such as sex (although a cytopenia risk factor143) and race are not 

expected to be associated with treatment decisions and therefore are not included as 

confounders in this analysis.175 Other characteristics of the patient environment, such as year, 

insurance type, and practice type, may impact the availability of, or provider preference for, 

certain treatments and are expected to be at least proxies of socioeconomic predictors of 

cytopenia risk. Given the inclusion of insurance type and practice type as socioeconomic 

proxies, we did not include geographic location as an additional confounder variable as we do 

not expect it to be independently associated with cytopenia risk and the literature does not 

support an association with IMiD prescribing.175 Time-varying patient characteristics such as 
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performance status (assessed by the Eastern Cooperative Oncology Group [ECOG] score)176-179 

and blood component levels also affect treatment choice at the first and second LOTs and are 

expected to impact the risk of developing cytopenias.158, 180  

Treatment at the first LOT is also driven by patient eligibility for autologous stem cell 

transplantation (ASCT), which is informed by patient age, performance status, and 

comorbidities.123 Transplant eligibility impacts whether a patient receives the ASCT (which 

would be preceded by induction therapy with the treatment assigned as the first LOT), a process 

during which the patient receives bone marrow stem cells from a healthy donor, which thereby 

impacts subsequent blood component levels. The impact of ASCT on cytopenia risk is transient, 

such that blood counts tend to normalize around 3–6 months post-ASCT. For this reason, we 

hypothesized ASCT to be directly associated with blood component levels during the first LOT 

and only indirectly associated with blood component levels during the second LOT.  

Treatment choice at the second LOT is also impacted by the history of treatment received at the 

first LOT, including whether the patient received ASCT and maintenance therapy during the first 

LOT and the time on treatment.123, 158, 162, 180 ASCT is typically followed by maintenance therapy 

(long-term monotherapy or combination therapy [based on patient risk stratification] with 

bortezomib, lenalidomide, thalidomide, or ixazomib, which aims to sustain treatment responses 

and delay relapse), which is also expected to impact subsequent blood component levels.181, 182 

Patients who received ASCT generally go on to receive maintenance monotherapy, while the 

non-transplant population tends to receive doublet or triplet maintenance therapy. Upon disease 

progression, treatment to which patients have not been refractory are prescribed. Patients are 

considered refractory to a treatment if disease progression occurs within 60 days of treatment 

initiation, or if progression occurs while on therapy without at least a minor response to the 

treatment occurring.180 The non-transplanted population is therefore more likely to require 

treatment with a different drug or combination of drugs, given increased likelihood for 
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refractoriness due to prior exposure to a greater number of drugs, which thereby influences 

second line treatment. Furthermore, patients that received ASCT tend to stay in remission 

longer than the non-transplanted population, allowing for them to be eligible to receive newer 

treatments approved later, which is an important factor in second line treatment decision. 

Receipt of maintenance therapy, and, further, whether the maintenance regimen contains 

IMiDs, are expected to impact the blood component levels and the risk of developing 

cytopenias.182 The timing of a MM relapse, generally a proxy for previous treatment response 

and aggressiveness of the relapse, affects the second line treatment decision (both directly in 

terms of treatment strategy and indirectly in terms of the evolution of new medications) and is 

expected to impact cytopenia risk due to the degree of underlying myelosuppression.158, 180, 183 

Patient characteristics, first LOT regimen, and receipt of ASCT and maintenance therapy all 

contribute to how long a patient stays in remission.   

Based on this DAG, the minimally sufficient set of variables to control for confounding in the 

association between X0 and Y0 is [L-2, C0, X-1, Y-1, T-1, M-1]. Age, body mass index, year, 

cytogenetic risk, year, international staging system (ISS) stage, and pre-existing comorbidities 

(cardiovascular diseases, diabetes mellitus, inflammatory diseases, liver diseases, and renal 

diseases) were assessed during the disease baseline period, defined as the 30 days before and 

after the date of MM diagnosis. Comorbidities were defined according to diagnosis codes from 

the International Classification of Diseases, using both the Ninth Revision (ICD-9) and Tenth 

Revision (ICD-10) (Table 15). 
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Table 15. Algorithms for definition of baseline comorbidities  
Characteristic ICD-9 Diagnosis ICD-10 Diagnosis  

Cardiovascular 
diseases 

402.x1, 404.x1, 404.x3, 410, 412, 415, 428, 
433.x0, 436, 437.0, 437.1, 438, 440, 441, 442, 
443, 444, 447, 451, 452, 453, 557 

I11.0, I13.0, I13.2, I21, I22, I25.2, I26, I50, 
I63.5, I63.8, I63.9, I65, I66, I67.2, I67.8, I69, 
I70, I71, I72, I73, I74, I77, I79, I80, I81, I82, 
K55.0, K55.1, K55.9 

Diabetes 250.0–250.3, 250.8, 250.9 E10 (not E10.2), E11, E13.2–E13.5, E13.8, 
E13.9, E14.0, E14.1, E14.6, E14.9 

Inflammatory 
disease 

340, 446, 555, 556, 579.0, 696, 710.0, 710.1, 
710.3, 714, 720.0 

G35, K50, K51, K90.0, L30, L40, L41, L42, 
L44, M05, M06, M08, M30, M31, M32.10, 
M33, M34.0, M34.1, M34.9, M45.9 

Liver disease 070.22, 070.23, 070.32, 070.33, 070.44, 
070.54, 070.6, 070.9, 570, 571, 573.3, 573.4, 
573.8, 573.9, 456.0–456.2, 572.2–572.8 

B18, K70, K71.3, K71.4, K71.5, K71.7, K73, 
K74, K76.0, K76.2, K76.3, K76.4, K76.8, 
K76.9, Z94.4, I85.0, I86.4, K70.4, K71.1, 
K72.1, K72.9, K76.5, K76.6, K76.7 

Renal disease  403.x1, 404.x2, 404.x3, 582, 583.0–583.7, 
585, 586, 588.0, V42.0, V45.1, V56 

I12.0, I13.1, N03.2–N03.7, N05.2–N05.7, N18, 
N19, N25.0, N49.0, N94.0, N99.2 

ICD-9: International Classification of Diseases, Ninth Revision. ICD-10: International Classification of Diseases, Tenth Revision. 

Body mass index was categorized as not overweight (<25.0), overweight (25.0 to <30), or obese 

(>30.0). An underweight category (<18.5) was not used due an insufficient number of patients 

meeting the underweight body mass index. Practice type (community or academic) was 

recorded once per patient record. Patients with both community and academic practices 

indicated in their record were included in a separate category. ECOG score (0: Fully active; 1: 

Restricted in physically strenuous activity but ambulatory and able to carry out work of a light or 

sedentary nature; 2: Ambulatory and capable of all self-care but unable to carry out any work 

activities; 3: Capable of only limited self-care; 4: Completely disabled. Scores of 3 and 4 were 

combined in the present analysis due to insufficient number of subjects with score of 4.176-179), 

blood component levels (grade 1–2, grade 3–4, or normal [Table 14]), and insurance category 

were assessed during the treatment baseline period, defined as the 90 days before to the 7 

days after the start date of the second LOT. The assessment period for blood component levels 

was limited at the start date of the first LOT such that pre-first LOT blood tests were not 

included. For these variables, if more than one value was available during the assessment 

period, the closest to the start of the second LOT was used. Insurance category is defined by 

Flatiron. If multiple payer categories were recorded on the date closest to the start of the second 

LOT, the following hierarchy approach was used to select the payer: Medicaid or other 
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government program, patient assistance program, workers compensation, self-pay, Medicare, 

commercial health plan, other payer, then unknown/missing. Finally, treatment history 

characteristics were assessed between the start and end dates of LOT 1. Separate 

dichotomous variables were created to indicate whether a patient received treatment with each 

of the following drug classes during LOT 1: IMiDs, proteasome inhibitors, chemotherapy, and 

corticosteroids. Receipt of maintenance therapy during LOT 1 was categorized dichotomously. 

Relapse timing was quantified as the time between the start dates of LOT 1 and LOT 2 and 

categorized as <6 months, 6–12 months, 12–18 months, 18–24 months, or 24+ months.  

Multiple imputation via chained equations was used to impute missing confounder information. 

Variables with missing information included body mass index, disease characteristics (ISS 

Stage, ECOG score, and cytogenetic risk at baseline), and baseline blood component levels. 

The proportions of missingness for each variable are displayed in Table 18. 

Statistical Analyses 

The cumulative risks (within 3, 6, and 12 months of treatment initiation) of each cytopenia were 

estimated for MM patients exposed and MM patients unexposed to IMiDs during the second 

LOT. Patients were followed from start date of the second LOT (index date) until the earliest 

occurrence of cytopenia, death (generalized to the month and year in the Flatiron data, defined 

here as the 15th day of the month), the end date of the second LOT (which, by definition, 

censors patients starting a third LOT), loss to follow-up (>30 days after the last clinical 

encounter), or the end of the study period (31 December 2021). Inverse probability of treatment 

weighting was used to control for confounding by treatment history at the first LOT and by 

patient and clinic characteristics as described above. Sub-distribution risk estimators were used 

to specify death as a competing event; the end of the second LOT, loss to follow-up, and 

administrative end of the study period were considered to be censoring events.184 Censoring 

was assumed to be informative and therefore inverse probability of censoring weights, involving 



87 

 

 

the same list of confounders described above, were used. The risk differences and risk ratios of 

each cytopenia (within 3, 6, and 12 months of treatment initiation) were estimated as the 

contrast of risks for the cumulative risk functions, comparing those exposed to IMiDs to those 

unexposed to IMiDs during the second LOT.  

We explored heterogeneity in the effect of the exposure (IMiDs during LOT 2) on the outcome 

(cytopenias) according to previous IMiD exposure during LOT 1. This allowed us to consider the 

risks in four groups, defined according to IMiD exposure across the two lines of therapy (see 

Table 16). Those with exposure pattern X-1 = 1, X0 = 1 received IMiDs as a part of both the first 

and second lines of therapy and therefore were considered “sequentially exposed” to IMiDs.  

Table 16. Treatment groups according to exposure to immunomodulatory drugs across 
two lines of therapy 

 

Effect Modifier 
LOT 1 (X-1) 

IMiDs (1) No IMiDs (0) 

Exposure 
LOT 2 (X0) 

IMiDs (1) X-1 = 1, X0 = 1 X-1 = 0, X0 = 1 

No IMiDs (0) X-1 = 1, X0 = 0 X-1 = 0, X0 = 0 
 

We examined the risk differences and risk ratios of cytopenia (within 3, 6, and 12 months of 

LOT 2 initiation) comparing those exposed to IMiDs versus those unexposed to IMiDs during the 

second LOT stratified by IMiDs status during LOT 1. We evaluated evidence of additive or 

multiplicative interaction between the first line and second line exposure to IMiDs on the risk of 

developing cytopenia by comparing these stratified risk differences and risk ratios, respectively. 

There is homogeneity, or no effect measure modification, on the additive scale when the risk 

difference contrasting receipt of IMiDs during LOT 2 with no receipt of IMiDs during LOT 2 

among those who received IMiDs during LOT 1 is equal to this same risk difference among 

those who did not receive IMiDs during LOT 1 (𝑅𝐷𝑋0(𝑋−1=1) = 𝑅𝐷𝑋0(𝑋−1=0)). There is 

homogeneity, or no effect measure modification, on the multiplicative scale when the risk ratio 

contrasting receipt of IMiDs during LOT 2 with no receipt of IMiDs during LOT 2 among those 
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who received IMiDs during LOT 1 is equal to this same risk ratio among those who did not 

receive IMiDs during LOT 1 (𝑅𝑅𝑋0(𝑋−1=1) = 𝑅𝑅𝑋0(𝑋−1=0)).  

We also examined the common referent risk differences and risk ratios, comparing the risks 

among those who received IMiDs as a part of either or both LOTs to those who were never 

exposed. In particular, for the risk differences: (1) 𝑅X−1 = 1,X0 = 1 − 𝑅X−1 = 0,X0 = 0, (2) 

𝑅X−1 = 1,X0 = 0 − 𝑅X−1 = 0,X0 = 0, and (3) 𝑅X−1 = 0,X0 = 1 − 𝑅X−1 = 0,X0 = 0. For the risk ratios: (1) 

𝑅X−1 = 1,X0 = 1

𝑅X−1 = 0,X0 = 0
, (2) 

𝑅X−1 = 1,X0 = 0

𝑅X−1 = 0,X0 = 0
, and (3) 

𝑅X−1 = 0,X0 = 1

𝑅X−1 = 0,X0 = 0
. 

We then repeated the above analyses, stratified on important risk factors for cytopenias as 

defined at the time of MM diagnosis: recent history of cytopenias (grade 1–4 cytopenia versus 

normal blood test result in the 90 days before to the 7 days after the start date of the second 

LOT), older age (≥75 years versus <75 years) and risk (high- versus normal-risk MM, as 

characterized by the International Staging System and the presence of cytogenetic 

abnormalities159, 185). 

As an exploratory analysis, we examined trends in prescribing of granulocyte colony-stimulating 

factor (G-CSF; generic name filgrastim) during the follow-up period among the exposure groups 

described above. Information regarding medications received, with dates, is available in 

Flatiron. Patients with neutropenia are at an increased risk of developing fever and infection due 

to low levels of neutrophils, a type of immune cell. G-CSF is used to stimulate neutrophil 

production, with the intent of preventing infection and neutropenic fevers.186, 187 We expected 

prescribing of G-CSF to be specific to neutropenia, and to be a marker of severe neutropenia. 
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Results 

Study Population 

A total of 13,421 patients were available in the Flatiron Health enhanced database. Of these 

patients, 5,573 MM patients received at least two LOTs and were thereby eligible for inclusion 

(Figure 16). 59% (N = 3,296) of patients received IMiDs during LOT 2. The majority (81%) of 

those receiving IMiDs during LOT 2 were prescribed lenalidomide (Table 17). Those receiving, 

compared to not receiving, IMiDs during LOT 2 were on average younger (mean 66 versus 68 

years) and diagnosed in later years (≥2016 54% vs 51%) (Table 18).  

Figure 16. Summary of attrition of cohort of multiple myeloma patients in the Flatiron 
Health database receiving at least two lines of therapy  

  
 

Table 17. Distribution of drugs received among those receiving IMiDs during the second 
line of therapy  

IMiD Drug(s) Received  N (%)  

Lenalidomide alone 2,681 (81.3%) 

Pomalidomide alone 502 (15.2%) 

Thalidomide alone 87 (2.6%) 

Lenalidomide and pomalidomide  22 (0.7%) 

Lenalidomide and thalidomide  4 (0.1%) 
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Table 18. Baseline characteristics according to IMiD exposure during the second line of 
therapy before and after inverse probability of treatment weighting  

 Before Weighting After Weighting1 

Characteristic 
No L2 IMiD  
n = 2,277 

Yes L2 IMiD  
n = 3,296 

SMD 
No L2 IMiD  
n = 5,569.25 

Yes L2 IMiD  
n = 5,577.21 

SMD 

Demographics       
Age at diagnosis (years), mean (SD) 67.7 (10.1) 66.2 (10.3) 0.14 66.8 (10.2) 66.8 (10.2) 0.00 
Sex           
    Female 1,034 (45.4) 1,529 (46.4) 0.02 2,573 (46.2) 2,571 (46.1) 0.00 
    Male 1,243 (54.6) 1,767 (53.6)  2,996 (53.8) 3,006 (53.9)  
Practice type           
    Academic 306 (13.4) 459 (13.9) 0.03 761 (13.7) 762 (13.7) 0.00 
    Community 1,914 (84.1) 2,770 (84.0)  4,682 (84.1) 4,689 (84.1)  

Both academic and community 57 (2.5) 67 (2.0)  126 (2.3) 126 (2.3)  
Year of diagnosis           
    2011 166 (7.3) 227 (6.9) 0.09 393 (7.1) 393 (7.0) 0.01 
    2012 196 (8.6) 265 (8.0)  464 (8.3) 467 (8.4)  
    2013 223 (9.8) 293 (8.9)  507 (9.1) 508 (9.1)  
    2014 267 (11.7) 356 (10.8)  627 (11.3) 625 (11.2)  
    2015 266 (11.7) 389 (11.8)  637 (11.4) 646 (11.6)  
    2016 288 (12.7) 433 (13.1)  728 (13.1) 728 (13.1)  
    2017 253 (11.1) 352 (10.7)  608 (10.9) 607 (10.9)  
    2018 232 (10.2) 399 (12.1)  634 (11.4) 630 (11.3)  
    2019 217 (9.5) 363 (11.0)  583 (10.5) 585 (10.5)  
    2020 169 (7.4) 219 (6.6)  389 (7.0) 388 (7.0)  
Insurance payer category       
    Commercial health plan 896 (39.4) 1,293 (39.2) 0.05 2,191 (39.3) 2,187 (39.2) 0.01 
    Medicaid or other government program 157 (6.9) 220 (6.7)  363 (6.5) 371 (6.7)  
    Medicare 433 (19.0) 578 (17.5)  1,019 (18.3) 1,018 (18.3)  
    Patient assistance program 184 (8.1) 265 (8.0)  455 (8.2) 452 (8.1)  

Other payer 199 (8.7) 297 (9.0)  497 (8.9) 496 (8.9)  
    Uninsured or insurance not documented  408 (17.9) 643 (19.5)  1,044 (18.8) 1,052 (18.9)  
Disease Characteristics        
ISS stage at diagnosis           
    Stage I 412 (18.1) 683 (20.7) 0.08 1,088 (19.5) 1,092 (19.6) 0.00 
    Stage II 446 (19.6) 643 (19.5)  1,099 (19.7) 1,102 (19.8)  
    Stage III 452 (19.9) 665 (20.2)  1,116 (20.0) 1,115 (20.0)  
    Unknown/not documented2 967 (42.5) 1,305 (39.6)  2,267 (40.7) 2,269 (40.7)  
Cytogenetic risk at diagnosis           
    High risk 258 (11.3) 432 (13.1) 0.05 2,437 (43.8) 2,445 (43.8) 0.00 
    Standard risk 1,005 (44.1) 1,437 (43.6)  687 (12.3) 689 (12.4)  
    Unknown/not documented 1,014 (44.5) 1,427 (43.3)  2,446 (43.9) 2,443 (43.8)  
BMI category at diagnosis           
    Not overweight 485 (21.3) 691 (21.0) 0.04 1,164 (20.9) 1,170 (21.0) 0.00 
    Overweight 637 (28.0) 881 (26.7)  1,521 (27.3) 1,523 (27.3)  
    Obese 622 (27.3) 904 (27.4)  1,537 (27.6) 1,532 (27.5)  
    Unknown/not documented 533 (23.4) 820 (24.9)  1,347 (24.2) 1,352 (24.2)  
ECOG score, Pre-LOT 2           
    0 436 (19.2) 712 (21.6) 0.10 1,157 (20.8) 1,152 (20.7) 0.00 
    1 671 (29.5) 928 (28.2)  1,589 (28.5) 1,593 (28.6)  
    2 267 (11.7) 309 (9.4)  581 (10.4) 581 (10.4)  
    3 or 4 65 (2.9) 77 (2.3)  143 (2.6) 143 (2.6)  
    Unknown/not documented 838 (36.8) 1,270 (38.5)  2,098 (37.7) 2,108 (37.8)  
Comorbidities        
Cardiovascular diseases     145 (6.4) 184 (5.6) 0.03 328 (5.9) 332 (5.9) 0.00 
Diabetes     171 (7.5) 261 (7.9) 0.02 428 (7.7) 430 (7.7) 0.00 
Inflammatory diseases     51 (2.2) 59 (1.8) 0.03 111 (2.0) 111 (2.0) 0.00 
Liver diseases     28 (1.2) 40 (1.2) 0.00 68 (1.2) 69 (1.2) 0.00 
Renal diseases     215 (9.4) 267 (8.1) 0.05 475 (8.5) 475 (8.5) 0.00 
LOT 1 Treatment History        
Maintenance therapy  391 (17.2) 607 (18.4) 0.03 1,015 (18.2) 1,006 (18.0) 0.00 
IMiD 1,303 (57.2) 2,082 (63.2) 0.12 3,405 (61.1) 3,395 (60.9) 0.01 
Proteasome inhibitor  1,532 (67.3) 2,381 (72.2) 0.11 3,914 (70.3) 3,916 (70.2) 0.00 
Chemotherapy  361 (15.9) 685 (20.8) 0.13 1,046 (18.8) 1,046 (18.8) 0.00 
Corticosteroid  2,005 (88.1) 3,070 (93.1) 0.18 5,069 (91.0) 5,077 (91.0) 0.00 
Relapse timing (months)        
    <6 751 (33.0) 1,019 (30.9) 0.10 1,765 (31.7) 1,774 (31.8) 0.00 
    6–12 602 (26.4) 1,008 (30.6)  1,602 (28.8) 1,605 (28.8)  
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 Before Weighting After Weighting1 

Characteristic 
No L2 IMiD  
n = 2,277 

Yes L2 IMiD  
n = 3,296 

SMD 
No L2 IMiD  
n = 5,569.25 

Yes L2 IMiD  
n = 5,577.21 

SMD 

    12–18 316 (13.9) 472 (14.3)  787 (14.1) 784 (14.1)  
    18–24 197 (8.7) 245 (7.4)  444 (8.0) 446 (8.0)  
    24+ 411 (18.1) 552 (16.8)  971 (17.4) 968 (17.4)  
Cytopenia History        
Hemoglobin level       
    Grade 1–2 anemia 1,318 (57.9) 1,807 (54.8) 0.13 3,132 (56.2) 3,133 (56.2) 0.00 
    Grade 3–4 anemia 98 (4.3) 83 (2.5)  183 (3.3) 186 (3.3)  
    Normal 650 (28.6) 1,047 (31.8)  1,695 (30.4) 1,692 (30.3)  
    Unknown/not documented 211 (9.3) 359 (10.9)  560 (10.1) 566 (10.2)  
Total white blood cell count       
    Grade 1–2 leukopenia 466 (20.5) 716 (21.7) 0.08 1,179 (21.2) 1,181 (21.2) 0.00 
    Grade 3–4 leukopenia 35 (1.5) 36 (1.1)  74 (1.3) 75 (1.3)  
    Normal 1,457 (64.0) 2,016 (61.2)  3,480 (62.5) 3,479 (62.4)  
    Unknown/not documented 319 (14.0) 528 (16.0)  835 (15.0) 843 (15.1)  
Absolute neutrophil count       
    Grade 1–2 neutropenia 154 (6.8) 224 (6.8) 0.03 394 (7.1) 390 (7.0) 0.01 
    Grade 3–4 neutropenia 39 (1.7) 57 (1.7)  89 (1.6) 94 (1.7)  
    Normal 1,370 (60.2) 1,930 (58.6)  3,301 (59.3) 3,297 (59.1)  
    Unknown/not documented 714 (31.4) 1,085 (32.9)  1,786 (32.1) 1,797 (32.2)  
Absolute lymphocyte count       
    Grade 1–2 lymphocytopenia 418 (18.4) 612 (18.6) 0.07 1,035 (18.6) 1,031 (18.5) 0.00 
    Grade 3–4 lymphocytopenia 112 (4.9) 172 (5.2)  280 (5.0) 282 (5.1)  
    Normal 1,358 (59.6) 1,867 (56.6)  3,231 (58.0) 3,234 (58.0)  
    Unknown/not documented 389 (17.1) 645 (19.6)  1,023 (18.4) 1,030 (18.5)  
Platelet count       
    Grade 1–2 thrombocytopenia 388 (17.0) 578 (17.5) 0.13 958 (17.2) 960 (17.2) 0.00 
    Grade 3–4 thrombocytopenia 65 (2.9) 41 (1.2)  107 (1.9) 109 (2.0)  
    Normal 1,420 (62.4) 2,008 (60.9)  3,434 (61.7) 3,437 (61.6)  
    Unknown/not documented 404 (17.7) 669 (20.3)  1,070 (19.2) 1,072 (19.2)  

IMiD: Immunomodulatory drug. SD: standard deviation. 
1Distribution of characteristics after weighting shown here as an example of confounder balance achievable in this cohort for 
illustrative purposes. In the actual analyses, an iterative process was used to recalculate weights after each iteration of multiple 
imputation for missing confounder information.  
2All characteristics with missing data are shown here with a “unknown/not documented” category. All missing values were imputed 
using multiple imputation.   

Patient characteristics were well-balanced after inverse probability of treatment weighting 

(Table 18). Treatment weights according to second LOT IMiD exposure group are summarized 

in Table 19. For both groups, the sum of the weights is approximately equal to the overall 

sample size (N = 5,573). The absence of very large weights does not support violations or near 

violations of positivity. Propensity score distributions according to second LOT IMiD exposure 

group are displayed in Figure 17. The probability of receiving an IMiD at the second LOT, given 

the measured covariates, was similar between those exposed and unexposed as indicated by 

the largely overlapping propensity score distributions. Neither treatment group had propensity 

scores of zero or one, which would indicate deterministic exposure assignment based on the 

measured covariates, thereby supporting the positivity assumption to be met in this cohort. The 
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non-overlap in the propensity score distributions was minor, suggesting there to be comparable 

exposed and unexposed individuals with similar propensity scores. 

Table 19. Summary of inverse probability of treatment weights according to IMiD 
exposure at the second line of therapy  

Exposed Minimum 
Percentiles 

Maximum Sum Mean Variance 
5th 25th 50th 75th 95th 

No 1.27 1.63 2.05 2.40 2.79 3.47 5.84 5570.95 2.46 0.34 

Yes 1.16 1.35 1.49 1.62 1.78 2.26 4.30 5577.08 1.69 0.09 
Distribution of inverse probability of treatment weights shown here as an example. In the actual analyses, an iterative process was 
used to recalculate weights after each iteration of multiple imputation for missing confounder information. These data display the 
result of a single, randomly chosen imputation for illustrative purposes.  

Figure 17. Propensity score distribution according to IMiD exposure at the second line of 
therapy  

 
Distribution of propensity scores shown here as an example. In the actual analyses, an iterative process was used to recalculate 
weights after each iteration of multiple imputation for missing confounder information. These data display the result of a single, 
randomly chosen imputation for illustrative purposes.  

Cohort characteristics stratified by IMiD exposure during LOT 1 are also presented in Table 20. 

Most (N = 2,082) were sequentially exposed to IMiDs, with only 974 never exposed. Compared 

to those never exposed, those sequentially exposed were on average younger (mean 66 versus 

69 years), diagnosed at a lower stage (ISS I 24% versus 14%) and in later years (≥2016 62% 

versus 43%), had a better performance status (ECOG ≤1 55% versus 42%), and had longer 

time to relapse (≥24 months 20% versus 13%).  
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Table 20. Baseline characteristics according to IMiD exposure during the first and/or 
second line of therapy  

 Yes L1 IMiD No L1 IMiD  

Characteristic 
Yes L2 IMiD 

n = 2,082 
No L2 IMiD 
n = 1,303 

Yes L2 IMiD 
n = 1,214 

No L2 IMiD 
n = 974 

SMD 

Demographics      
Age at diagnosis (years), mean (SD) 65.5 (10.5) 66.7 (10.0) 67.5 (9.9) 68.9 (10.0) −0.12 
Sex          
    Female 975 (46.8) 595 (45.7) 554 (45.6) 439 (45.1) 0.02 
    Male 1,107 (53.2) 708 (54.3) 660 (54.4) 535 (54.9)  
Practice type          
    Academic 280 (13.5) 178 (13.7) 179 (14.7) 128 (13.1) 0.03 
    Community 1,764 (84.7) 1,096 (84.1) 1,006 (82.9) 818 (84.0)  

Both academic and community 38 (1.8) 29 (2.2) 29 (2.4) 28 (2.9)  
Year of diagnosis          
    2011 133 (6.4) 95 (7.3) 94 (7.7) 71 (7.3) 0.18 
    2012 132 (6.3) 97 (7.4) 133 (11.0) 99 (10.2)  
    2013 162 (7.8) 109 (8.4) 131 (10.8) 114 (11.7)  
    2014 172 (8.3) 122 (9.4) 184 (15.2) 145 (14.9)  
    2015 203 (9.8) 136 (10.4) 186 (15.3) 130 (13.4)  
    2016 297 (14.3) 162 (12.4) 136 (11.2) 126 (12.9)  
    2017 237 (11.4) 174 (13.4) 115 (9.5) 79 (8.1)  
    2018 301 (14.5) 132 (10.1) 98 (8.1) 100 (10.3)  
    2019 289 (13.9) 160 (12.3) 74 (6.1) 57 (5.9)  
    2020 156 (7.5) 116 (8.9) 63 (5.2) 53 (5.4)  
Insurance payer category      
    Commercial health plan 872 (41.9) 538 (41.3) 421 (34.7) 358 (36.8) 0.08 
    Medicaid or other government program 133 (6.4) 77 (5.9) 87 (7.2) 80 (8.2)  
    Medicare 342 (16.4) 243 (18.7) 236 (19.4) 190 (19.5)  
    Patient assistance program 175 (8.4) 123 (9.4) 90 (7.4) 61 (6.3)  

Other payer 182 (8.7) 106 (8.1) 115 (9.5) 93 (9.6)  
    Uninsured or insurance not documented  378 (18.2) 216 (16.6) 265 (21.8) 192 (19.7)  
Disease Characteristics       
ISS stage at diagnosis          
    Stage I 491 (23.6) 273 (21.0) 192 (15.8) 139 (14.3) 0.08 
    Stage II 434 (20.9) 304 (23.3) 209 (17.2) 142 (14.6)  
    Stage III 398 (19.1) 235 (18.0) 267 (22.0) 217 (22.3)  
    Unknown/not documented1 759 (36.5) 491 (37.7) 546 (45.0) 476 (48.9)  
Cytogenetic risk at diagnosis          
    High risk 286 (13.7) 156 (12.0) 146 (12.0) 102 (10.5) 0.05 
    Standard risk 922 (44.3) 598 (45.9) 515 (42.4) 407 (41.8)  
    Unknown/not documented 874 (42.0) 549 (42.1) 553 (45.6) 465 (47.7)  
BMI category at diagnosis          
    Not overweight 427 (20.5) 272 (20.9) 264 (21.8) 213 (21.9) 0.04 
    Overweight 566 (27.2) 358 (27.5) 315 (26.0) 279 (28.6)  
    Obese 555 (26.7) 363 (27.9) 349 (28.8) 259 (26.6)  
    Unknown/not documented 534 (25.7) 310 (23.8) 286 (23.6) 223 (22.9)  
ECOG score, Pre-LOT 2          
    0 506 (24.3) 290 (22.3) 206 (17.0) 146 (15.0) 0.10 
    1 636 (30.6) 407 (31.2) 292 (24.1) 264 (27.1)  
    2 181 (8.7) 148 (11.4) 128 (10.5) 119 (12.2)  
    3 or 4 51 (2.5) 34 (2.6) 26 (2.1) 31 (3.2)  
    Unknown/not documented 708 (34.0) 424 (32.5) 562 (46.3) 414 (42.5)  
Comorbidities       
Cardiovascular diseases     101 (4.9) 70 (5.4) 83 (6.8) 75 (7.7) 0.02 
Diabetes     147 (7.1) 94 (7.2) 114 (9.4) 77 (7.9) 0.01 
Inflammatory diseases     30 (1.4) 28 (2.2) 29 (2.4) 23 (2.4) 0.05 
Liver diseases     26 (1.3) 17 (1.3) 14 (1.2) 11 (1.1) 0.00 
Renal diseases     128 (6.2) 80 (6.1) 139 (11.5) 135 (13.9) 0.00 
LOT 1 Treatment History       
Maintenance therapy  519 (24.9) 315 (24.2) 88 (7.3) 76 (7.8) 0.02 
Proteasome inhibitor  1,464 (70.3) 872 (66.9) 917 (75.5) 660 (67.8) 0.07 
Chemotherapy  128 (6.2) 74 (5.7) 557 (45.9) 287 (29.5) 0.02 
Corticosteroid  1,998 (96.0) 1,250 (95.9) 1,072 (88.3) 755 (77.5) 0.00 
Relapse timing (months)       
    <6 499 (24.0) 326 (25.0) 520 (42.8) 425 (43.6) 0.09 
    6–12 649 (31.2) 360 (27.6) 359 (29.6) 242 (24.9)  
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 Yes L1 IMiD No L1 IMiD  

Characteristic 
Yes L2 IMiD 

n = 2,082 
No L2 IMiD 
n = 1,303 

Yes L2 IMiD 
n = 1,214 

No L2 IMiD 
n = 974 

SMD 

    12–18 336 (16.1) 206 (15.8) 136 (11.2) 110 (11.3)  
    18–24 178 (8.6) 124 (9.5) 67 (5.5) 73 (7.5)  
    24+ 420 (20.2) 287 (22.0) 132 (10.9) 124 (12.7)  
Cytopenia History       
Hemoglobin level      
    Grade 1–2 anemia 1,090 (52.4) 728 (55.9) 717 (59.1) 590 (60.6) 0.13 
    Grade 3–4 anemia 51 (2.5) 52 (4.0) 32 (2.6) 46 (4.7)  
    Normal 724 (34.8) 402 (30.9) 323 (26.6) 248 (25.5)  
    Unknown/not documented 217 (10.4) 121 (9.3) 142 (11.7) 90 (9.2)  
Total white blood cell count      
    Grade 1–2 leukopenia 532 (25.6) 306 (23.5) 184 (15.2) 160 (16.4) 0.12 
    Grade 3–4 leukopenia 23 (1.1) 27 (2.1) 13 (1.1) 8 (0.8)  
    Normal 1,191 (57.2) 790 (60.6) 825 (68.0) 667 (68.5)  
    Unknown/not documented 336 (16.1) 180 (13.8) 192 (15.8) 139 (14.3)  
Absolute neutrophil count      
    Grade 1–2 neutropenia 179 (8.6) 109 (8.4) 45 (3.7) 45 (4.6) 0.04 
    Grade 3–4 neutropenia 50 (2.4) 30 (2.3) 7 (0.6) 9 (0.9)  
    Normal 1,209 (58.1) 782 (60.0) 721 (59.4) 588 (60.4)  
    Unknown/not documented 644 (30.9) 382 (29.3) 441 (36.3) 332 (34.1)  
Absolute lymphocyte count      
    Grade 1–2 lymphocytopenia 398 (19.1) 241 (18.5) 214 (17.6) 177 (18.2) 0.07 
    Grade 3–4 lymphocytopenia 98 (4.7) 53 (4.1) 74 (6.1) 59 (6.1)  
    Normal 1,189 (57.1) 784 (60.2) 678 (55.9) 574 (58.9)  
    Unknown/not documented 397 (19.1) 225 (17.3) 248 (20.4) 164 (16.8)  
Platelet count      
    Grade 1–2 thrombocytopenia 382 (18.4) 229 (17.6) 196 (16.1) 159 (16.3) 0.16 
    Grade 3–4 thrombocytopenia 27 (1.3) 44 (3.4) 14 (1.2) 21 (2.2)  
    Normal 1,231 (59.1) 795 (61.0) 777 (64.0) 625 (64.2)  
    Unknown/not documented 442 (21.2) 235 (18.0) 227 (18.7) 169 (17.4)  

IMiD: Immunomodulatory drug. SD: standard deviation. 
1All characteristics with missing data are shown here with a “unknown/not documented” category. All missing values were imputed 
using multiple imputation.   

Overall Treatment Effect  

The overall treatment effect for the associations between IMiD exposure during the second LOT 

and risks of severe cytopenias are displayed in Figure 18 and Table 21. The risks of 

neutropenia and leukopenia were substantially higher at 6 and 12 months, although not at 3 

months, among those exposed versus unexposed to IMiDs at LOT 2. For the severe 

neutropenia outcome, patients were followed for an average of 388 days (419 days for those 

exposed and 344 days for those unexposed). The 3-, 6-, and 12-month risks of neutropenia 

among those treated with, versus without, IMiDs at LOT 2, respectively, were 10.8% versus 

8.7%, 15.7% versus 10.6%, and 20.9% versus 13.3% (Figure 18A). For the severe leukopenia 

outcome, patients were followed for an average of 408 days (448 days for those exposed and 

350 days for those unexposed). The 3-, 6-, and 12-month risks of leukopenia among those 
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treated with, versus without, IMiDs at LOT 2, respectively, were 10.3% versus 10.1%, 13.8% 

versus 11.6%, and 17.3% versus 13.0% (Figure 18B). 

In contrast, the 3-, 6-, and 12-month risks of lymphocytopenia, anemia, and thrombocytopenia 

were similar among those treated with, versus without, IMiDs at LOT 2. For the severe 

lymphocytopenia outcome, patients were followed for an average of 345 days (385 days for 

those exposed and 285 days for those unexposed). The 3-, 6-, and 12-month risks of 

lymphocytopenia among those treated with, versus without, IMiDs at LOT 2, respectively, were 

21.0% versus 23.0%, 25.6% versus 27.2%, and 29.7% versus 31.2% (Figure 18C). For the 

severe anemia outcome, patients were followed for an average of 419 days (468 days for those 

exposed and 349 days for those unexposed). The 3-, 6-, and 12-month risks of anemia among 

those treated with, versus without, IMiDs at LOT 2, respectively, were 10.1% versus 11.5%, 

13.2% versus 13.7%, and 16.1% versus 16.4% (Figure 18D). For the severe thrombocytopenia 

outcome, patients were followed for an average of 424 days (473 days for those exposed and 

352 days for those unexposed). The 3-, 6-, and 12-month risks of thrombocytopenia among 

those treated with, versus without, IMiDs at LOT 2, respectively, were 7.4% versus 10.7%, 

10.8% versus 12.3%, and 13.8% versus 13.7% (Figure 18E).  
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Figure 18. Cumulative incidence of cytopenias following second line of therapy initiation 
in those exposed versus unexposed to immunomodulatory drugs during the second line 
of therapy  
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Table 21. Risks per 100, risk differences per 100, and risk ratios of cytopenias following 
second line of therapy initiation in those exposed versus unexposed to 
immunomodulatory drugs  

 
Exposed to IMiDs 

during LOT 2 
Risk / 100 (95% CI) 

Not Exposed to IMiDs 
during LOT 2  

Risk / 100 (95% CI) 

Risk Difference 
/ 100 (95% CI) 

Risk Ratio (95% CI) 

Anemia     
3 months 10.1 (9.1, 11.0) 11.5 (10.2, 12.8) -1.4 (-3.0, 0.1) 0.9 (0.8, 1.0) 
6 months  13.2 (12.0, 14.4) 13.7 (12.2, 15.2) -0.5 (-2.3, 1.2) 1.0 (0.8, 1.1) 
12 months 16.1 (14.8, 17.5) 16.4 (14.6, 18.3) -0.3 (-2.4, 1.8) 1.0 (0.9, 1.1) 

Leukopenia     
3 months 10.3 (9.2, 11.4) 10.1 (8.8, 11.3) 0.2 (-1.4, 1.8) 1.0 (0.9, 1.2) 
6 months  13.8 (12.6, 15.0) 11.6 (10.2, 13.0) 2.2 (0.4, 4.0) 1.2 (1.0, 1.4) 
12 months 17.3 (15.8, 18.7) 13.0 (11.4, 14.7) 4.2 (2.0, 6.4) 1.3 (1.1, 1.5) 

Neutropenia     
3 months 10.8 (9.8, 11.9) 8.7 (7.5, 10.0) 2.1 (0.4, 3.7) 1.2 (1.0, 1.5) 
6 months  15.7 (14.3, 17.0) 10.6 (9.2, 12.0) 5.1 (3.1, 7.0) 1.5 (1.3, 1.7) 
12 months 20.9 (19.4, 22.5) 13.3 (11.6, 15.1) 7.6 (5.4, 9.8) 1.6 (1.3, 1.8) 

Lymphocytopenia     
3 months 21.0 (19.6, 22.3) 23.0 (21.3, 24.7) -2.0 (-4.2, 0.1) 0.9 (0.8, 1.0) 
6 months  25.6 (24.0, 27.1) 27.2 (25.3, 29.2) -1.7 (-4.2, 0.8) 0.9 (0.9, 1.0) 
12 months 29.7 (28.1, 31.3) 31.2 (29.0, 33.5) -1.5 (-4.4, 1.3) 1.0 (0.9, 1.0) 

Thrombocytopenia      
3 months 7.4 (6.5, 8.3) 10.7 (9.4, 12.0) -3.3 (-4.8, -1.9) 0.7 (0.6, 0.8) 
6 months  10.8 (9.6, 12.0) 12.3 (10.9, 13.8) -1.5 (-3.3, 0.2) 0.9 (0.7, 1.0) 
12 months 13.8 (12.4, 15.2) 13.7 (12.1, 15.3) 0.1 (-1.9, 2.0) 1.0 (0.9, 1.2) 

 

Treatment Effect Stratified by Prior Exposure  

The treatment effect for the associations between IMiD exposure during the second LOT and 

risks of severe cytopenias, stratified by prior IMiD exposure during the first LOT, are displayed 

in Figure 19 and Table 22. There was no evidence of additive or multiplicative interaction 

between the first and second LOTs on the risks of any of the severe cytopenias under study 

based on the stratified RDs and RRs at 3, 6, and 12 months. For neutropenia and leukopenia, 

using the common referent approach revealed a trend in which the 3-, 6-, and 12-month risks 

were highest for those sequentially exposed and lowest for those never exposed (Figure 19A–

B). Interestingly, for both cytopenias, the risk among those with only past exposure during LOT 

1 was higher than that of those only currently exposed during LOT 2 at 3 and 6 months, yet 

these risks switched at 12 months. Stratification on prior IMiD exposure did not meaningfully 

change the risks of lymphocytopenia or anemia (Figure 19C–D).  Finally, for thrombocytopenia, 

those sequentially, versus never, exposed appeared to have an increased risk at 12 months 

(13.0% versus 10.8%), but not at 3 (7.4% versus 7.5%) and 6 months (10.5% versus 9.2%). 
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The risk among those with only past exposure, however, was the highest across the entirety of 

follow-up (Figure 19E).  

Figure 19. Cumulative incidence of cytopenias following second line of therapy initiation 
in those exposed versus unexposed to immunomodulatory drugs during the second line 
of therapy, stratified by first line of therapy exposure  
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Table 22. Risks per 100, risk differences per 100, and risk ratios of cytopenias following 
second line of therapy initiation in those exposed versus unexposed to 
immunomodulatory drugs, stratified by first line of therapy exposure  

 Exposed to IMiDs during LOT 1 Not Exposed to IMiDs during LOT 1 
 

Exposed to IMiDs 
during  
LOT 2 

Not Exposed to 
IMiDs during 

LOT 2 

Exposed to 
IMiDs during 

LOT 2 

Not Exposed to 
IMiDs during 

LOT 2 

Anemia  
   

3 months     
Risk /100 (95% CI) 9.7 (8.4, 10.9) 11.6 (10.1, 13.1) 10.7 (8.8, 12.6) 11.2 (9.0, 13.5) 
Stratified RD /100 (95% CI)  -1.9 (-3.8, -0.1) Ref -0.5 (-3.4, 2.4) Ref 
Stratified RR (95% CI)  0.8 (0.7, 1.0) Ref 1.0 (0.7, 1.2) Ref 
Common Ref RD /100 (95% CI) -1.6 (-4.1, 1.0) 0.4 (-2.3, 3.0) -0.5 (-3.4, 2.4) Ref 
Common Ref RR (95% CI) 0.9 (0.7, 1.1) 1.0 (0.8, 1.3) 1.0 (0.7, 1.2) Ref 

6 months      
Risk /100 (95% CI) 12.4 (11.0, 13.9) 13.8 (12.0, 15.6) 14.2 (12.0, 16.4) 13.6 (11.2, 16.0) 
Stratified RD /100 (95% CI)  -1.3 (-3.5, 0.8) Ref 0.6 (-2.5, 3.8) Ref 
Stratified RR (95% CI)  0.9 (0.8, 1.1) Ref 1.1 (0.8, 1.3) Ref 
Common Ref RD /100 (95% CI) -1.2 (-3.9, 1.6) 0.2 (-2.7, 3.1) 0.6 (-2.5, 3.8) Ref 
Common Ref RR (95% CI) 0.9 (0.7, 1.1) 1.0 (0.8, 1.2) 1.1 (0.8, 1.3) Ref 

12 months     
Risk /100 (95% CI) 15.1 (13.3, 16.8) 15.5 (13.4, 17.7) 17.8 (15.2, 20.4) 17.7 (14.5, 20.9) 
Stratified RD /100 (95% CI)  -0.5 (-2.9, 2.0) Ref 0.2 (-4.0, 4.3) Ref 
Stratified RR (95% CI)  1.0 (0.8, 1.1) Ref 1.0 (0.8, 1.3) Ref 
Common Ref RD /100 (95% CI) -2.6 (-6.1, 0.9) -2.1 (-5.9, 1.6) 0.2 (-4.0, 4.3) Ref 
Common Ref RR (95% CI) 0.9 (0.7, 1.0) 0.9 (0.7, 1.1) 1.0 (0.8, 1.3) Ref 

Leukopenia     

3 months     
Risk /100 (95% CI) 11.5 (10.2, 12.9) 11.7 (9.9, 13.4) 8.4 (6.9, 9.8) 8.0 (6.1, 9.9) 
Stratified RD /100 (95% CI)  -0.1 (-2.2, 2.0) Ref 0.3 (-2.0, 2.7) Ref 
Stratified RR (95% CI)  1.0 (0.8, 1.2) Ref 1.1 (0.7, 1.4) Ref 
Common Ref RD /100 (95% CI) 3.5 (1.3, 5.8) 3.7 (1.0, 6.3) 0.3 (-2.0, 2.7) Ref 
Common Ref RR (95% CI) 1.5 (1.1, 1.9) 1.5 (1.0, 1.9) 1.1 (0.7, 1.4) Ref 

6 months      
Risk /100 (95% CI) 15.0 (13.6, 16.5) 13.0 (11.1, 14.9) 11.8 (10.0, 13.7) 9.8 (7.7, 11.9) 
Stratified RD /100 (95% CI)  2.0 (-0.3, 4.4) Ref 2.0 (-0.7, 4.7) Ref 
Stratified RR (95% CI)  1.2 (1.0, 1.4) Ref 1.2 (0.9, 1.5) Ref 
Common Ref RD /100 (95% CI) 5.2 (2.7, 7.7) 3.2 (0.4, 6.0) 2.0 (-0.7, 4.7) Ref 
Common Ref RR (95% CI) 1.6 (1.2, 1.9) 1.3 (1.0, 1.7) 1.2 (0.9, 1.5) Ref 

12 months     
Risk /100 (95% CI) 17.9 (16.2, 19.6) 14.4 (12.2, 16.6) 16.1 (13.7, 18.6) 11.5 (9.1, 13.9) 
Stratified RD /100 (95% CI)  3.5 (0.7, 6.3) Ref 4.7 (1.2, 8.2) Ref 
Stratified RR (95% CI)  1.3 (1.0, 1.5) Ref 1.4 (1.0, 1.8) Ref 
Common Ref RD /100 (95% CI) 6.5 (3.6, 9.3) 3.0 (-0.2, 6.1) 4.7 (1.2, 8.2) Ref 
Common Ref RR (95% CI) 1.6 (1.2, 1.9) 1.3 (1.0, 1.6) 1.4 (1.0, 1.8) Ref 

Neutropenia     

3 months     
Risk /100 (95% CI) 12.5 (11.1, 13.8) 10.3 (8.6, 12.0) 8.2 (6.6, 9.9) 6.4 (4.7, 8.1) 
Stratified RD /100 (95% CI)  2.2 (-0.1, 4.4) Ref 1.8 (-0.6, 4.2) Ref 
Stratified RR (95% CI)  1.2 (1.0, 1.5) Ref 1.3 (0.9, 1.8) Ref 
Common Ref RD /100 (95% CI) 6.1 (4.0, 8.1) 3.9 (1.4, 6.3) 1.8 (-0.6, 4.2) Ref 
Common Ref RR (95% CI) 2.0 (1.4, 2.5) 1.6 (1.1, 2.2) 1.3 (0.9, 1.8) Ref 

6 months      
Risk /100 (95% CI) 17.0 (15.4, 18.6) 12.1 (10.3, 14.0) 13.6 (11.4, 15.8) 8.2 (6.2, 10.1) 
Stratified RD /100 (95% CI)  4.9 (2.4, 7.4) Ref 5.4 (2.4, 8.4) Ref 
Stratified RR (95% CI)  1.4 (1.2, 1.7) Ref 1.7 (1.2, 2.2) Ref 
Common Ref RD /100 (95% CI) 8.8 (6.4, 11.3) 4.0 (1.4, 6.5) 5.4 (2.4, 8.4) Ref 
Common Ref RR (95% CI) 2.1 (1.6, 2.7) 1.5 (1.1, 1.9) 1.7 (1.2, 2.2) Ref 

12 months     
Risk /100 (95% CI) 22.6 (20.7, 24.6) 15.1 (12.7, 17.5) 18.1 (15.7, 20.5) 10.6 (8.2, 13.0) 
Stratified RD /100 (95% CI)  7.5 (4.5, 10.5) Ref 7.5 (4.3, 10.7) Ref 
Stratified RR (95% CI)  1.5 (1.2, 1.8) Ref 1.7 (1.3, 2.2) Ref 
Common Ref RD /100 (95% CI) 12.1 (9.0, 15.1) 4.5 (1.2, 7.9) 7.5 (4.3, 10.7) Ref 
Common Ref RR (95% CI) 2.2 (1.6, 2.7) 1.4 (1.1, 1.8) 1.7 (1.3, 2.2) Ref 
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 Exposed to IMiDs during LOT 1 Not Exposed to IMiDs during LOT 1 
 

Exposed to IMiDs 
during  
LOT 2 

Not Exposed to 
IMiDs during 

LOT 2 

Exposed to 
IMiDs during 

LOT 2 

Not Exposed to 
IMiDs during 

LOT 2 

Lymphocytopenia     

3 months     
Risk /100 (95% CI) 20.8 (19.2, 22.5) 23.0 (20.7, 25.3) 21.4 (19.0, 23.8) 23.4 (20.5, 26.3) 
Stratified RD /100 (95% CI)  -2.1 (-5.1, 0.8) Ref -2.0 (-5.7, 1.7) Ref 
Stratified RR (95% CI)  0.9 (0.8, 1.0) Ref 0.9 (0.8, 1.1) Ref 
Common Ref RD /100 (95% CI) -2.6 (-6.0, 0.8) -0.4 (-4.3, 3.4) -2.0 (-5.7, 1.7) Ref 
Common Ref RR (95% CI) 0.9 (0.8, 1.0) 1.0 (0.8, 1.1) 0.9 (0.8, 1.1) Ref 

6 months      
Risk /100 (95% CI) 25.9 (23.9, 27.8) 27.5 (24.7, 30.2) 25.5 (22.8, 28.2) 27.5 (24.3, 30.6) 
Stratified RD /100 (95% CI)  -1.6 (-5.2, 1.9) Ref -2.0 (-5.9, 1.9) Ref 
Stratified RR (95% CI)  0.9 (0.8, 1.1) Ref 0.9 (0.8, 1.1) Ref 
Common Ref RD /100 (95% CI) -1.6 (-5.3, 2.1) 0.0 (-4.4, 4.4) -2.0 (-5.9, 1.9) Ref 
Common Ref RR (95% CI) 0.9 (0.8, 1.1) 1.0 (0.8, 1.2) 0.9 (0.8, 1.1) Ref 

12 months     
Risk /100 (95% CI) 29.9 (27.8, 32.0) 30.8 (27.6, 34.1) 29.5 (26.5, 32.5) 32.7 (28.8, 36.5) 
Stratified RD /100 (95% CI)  -0.9 (-5.0, 3.1) Ref -3.2 (-8.0, 1.6) Ref 
Stratified RR (95% CI)  1.0 (0.8, 1.1) Ref 0.9 (0.8, 1.0) Ref 
Common Ref RD /100 (95% CI) -2.8 (-7.2, 1.7) -1.8 (-7.0, 3.3) -3.2 (-8.0, 1.6) Ref 
Common Ref RR (95% CI) 0.9 (0.8, 1.0) 0.9 (0.8, 1.1) 0.9 (0.8, 1.0) Ref 

Thrombocytopenia      

3 months     
Risk /100 (95% CI) 7.4 (6.3, 8.4) 12.8 (11.0, 14.7) 7.4 (5.7, 9.0) 7.5 (5.7, 9.3) 
Stratified RD /100 (95% CI)  -5.5 (-7.5, -3.4) Ref -0.1 (-2.5, 2.2) Ref 
Stratified RR (95% CI)  0.6 (0.5, 0.7) Ref 1.0 (0.7, 1.3) Ref 
Common Ref RD /100 (95% CI) -0.1 (-2.2, 2.0) 5.3 (2.6, 8.0) -0.1 (-2.5, 2.2) Ref 
Common Ref RR (95% CI) 1.0 (0.7, 1.3) 1.7 (1.2, 2.2) 1.0 (0.7, 1.3) Ref 

6 months      
Risk /100 (95% CI) 10.5 (9.0, 11.9) 14.3 (12.2, 16.4) 11.4 (9.2, 13.6) 9.2 (7.1, 11.3) 
Stratified RD /100 (95% CI)  -3.8 (-6.3, -1.4) Ref 2.2 (-0.8, 5.1) Ref 
Stratified RR (95% CI)  0.7 (0.6, 0.9) Ref 1.3 (0.9, 1.6) Ref 
Common Ref RD /100 (95% CI) 1.3 (-1.3, 3.9) 5.1 (2.0, 8.2) 2.2 (-0.8, 5.1) Ref 
Common Ref RR (95% CI) 1.2 (0.8, 1.5) 1.6 (1.1, 2.0) 1.3 (0.9, 1.6) Ref 

12 months     
Risk /100 (95% CI) 13.0 (11.4, 14.6) 15.4 (13.2, 17.6) 15.6 (8.6, 22.6) 10.8 (8.6, 13.0) 
Stratified RD /100 (95% CI)  -2.4 (-5.0, 0.2) Ref 4.8 (-2.4, 12.0) Ref 
Stratified RR (95% CI)  0.8 (0.7, 1.0) Ref 1.5 (0.8, 2.1) Ref 
Common Ref RD /100 (95% CI) 2.2 (-0.5, 4.9) 4.6 (1.4, 7.8) 4.8 (-2.4, 12.0) Ref 
Common Ref RR (95% CI) 1.2 (0.9, 1.5) 1.4 (1.1, 1.8) 1.5 (0.8, 2.1) Ref 

 

Treatment Effect according to Cytopenia History  

The associations between IMiD exposure during the second LOT and risks of severe 

cytopenias, stratified by history of each given cytopenia, are displayed in Figure 20 and Table 

23. The risks of all severe cytopenias following second LOT initiation were substantially lower 

among those with no recent cytopenia history. There was no evidence of additive or 

multiplicative interaction between second LOT IMiD exposure and cytopenia history on the risks 

of any of the severe cytopenias based on the stratified RDs and RRs at 3, 6, and 12 months.  
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Figure 20. Cumulative incidence of cytopenias following second line of therapy initiation 
in those exposed versus unexposed to immunomodulatory drugs during the second line 
of therapy, stratified by recent history of the given cytopenia  
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Table 23. Risks per 100, risk differences per 100, and risk ratios of cytopenias following 
second line of therapy initiation in those exposed versus unexposed to 
immunomodulatory drugs, stratified by recent history of the given cytopenia  

 Exposed to IMiDs 
during LOT 2 (X0 = 1) 
Risk / 100 (95% CI) 

Not Exposed to IMiDs 
during LOT 2 (X0 = 0) 
Risk / 100 (95% CI) 

Risk Difference 
/ 100 (95% CI) 

Risk Ratio (95% CI) 

Cytopenia History     

Anemia     
3 months 13.9 (12.4, 15.4) 17.0 (15.1, 19.0) −3.2 (−5.7, −0.7) 0.8 (0.7, 0.9) 
6 months  17.9 (16.2, 19.7) 20.0 (17.7, 22.2) −2.1 (−4.9, 0.8) 0.9 (0.8, 1.0) 
12 months 21.4 (19.5, 23.3) 23.8 (21.1, 26.5) −2.4 (−5.6, 0.9) 0.9 (0.8, 1.0) 

Leukopenia     
3 months 21.4 (18.7, 24.2) 21.4 (17.7, 25.1) 0.1 (−4.7, 4.8) 1.0 (0.8, 1.2) 
6 months  27.4 (24.6, 30.2) 23.4 (19.5, 27.2) 4.0 (−0.8, 8.9) 1.2 (0.9, 1.4) 
12 months 30.9 (27.8, 34.0) 25.6 (21.3, 30.0) 5.3 (0.1, 10.5) 1.2 (1.0, 1.5) 

Neutropenia     
3 months 27.5 (23.0, 32.1) 24.6 (19.4, 29.9) 2.9 (−4.3, 10.0) 1.1 (0.8, 1.5) 
6 months  36.4 (30.4, 42.5) 28.6 (22.0, 35.2) 7.8 (−1.5, 17.2) 1.3 (0.9, 1.7) 
12 months 41.7 (35.5, 47.9) 33.3 (25.4, 41.3) 8.4 (−1.6, 18.4) 1.3 (0.9, 1.6) 

Lymphocytopenia     
3 months 41.1 (37.9, 44.2) 44.4 (40.2, 48.5) −3.3 (−9.0, 2.4) 0.9 (0.8, 1.1) 
6 months  47.3 (43.7, 50.8) 49.6 (45.4, 53.9) −2.3 (−8.3, 3.6) 1.0 (0.8, 1.1) 
12 months 51.4 (47.7, 55.2) 52.8 (48.4, 57.2) −1.4 (−7.5, 4.7) 1.0 (0.9, 1.1) 

Thrombocytopenia      
3 months 20.3 (17.3, 23.2) 26.7 (22.8, 30.7) −6.5 (−11.3, −1.7) 0.8 (0.6, 0.9) 
6 months  24.4 (21.0, 27.8) 29.1 (24.8, 33.3) −4.7 (−10.0, 0.6) 0.8 (0.7, 1.0) 
12 months 29.6 (25.8, 33.5) 30.8 (26.1, 35.4) −1.1 (−6.9, 4.6) 1.0 (0.8, 1.1) 

No Cytopenia History      

Anemia     
3 months 1.6 (0.9, 2.4) 3.1 (1.6, 4.6) −1.4 (−3.0, 0.2) 0.6 (0.2, 0.9) 
6 months  2.9 (1.9, 4.0) 4.0 (2.4, 5.6) −1.1 (−2.9, 0.8) 0.8 (0.3, 1.2) 
12 months 4.3 (3.0, 5.5) 4.6 (2.8, 6.4) −0.3 (−2.5, 1.9) 1.0 (0.5, 1.5) 

Leukopenia     
3 months 5.9 (4.9, 7.0) 6.4 (5.2, 7.7) −0.5 (−2.1, 1.2) 0.9 (0.7, 1.2) 
6 months  8.6 (7.3, 9.9) 7.8 (6.3, 9.2) 0.8 (−1.1, 2.8) 1.1 (0.8, 1.4) 
12 months 11.9 (10.3, 13.5) 8.9 (7.1, 10.7) 3.0 (0.5, 5.4) 1.4 (1.0, 1.7) 

Neutropenia     
3 months 8.2 (7.1, 9.2) 6.6 (5.4, 7.8) 1.6 (−0.1, 3.2) 1.2 (0.9, 1.6) 
6 months  12.5 (11.1, 13.9) 8.1 (6.7, 9.5) 4.4 (2.4, 6.4) 1.6 (1.2, 1.9) 
12 months 17.5 (16.0, 19.1) 10.8 (9.0, 12.6) 6.7 (4.5, 9.0) 1.6 (1.3, 1.9) 

Lymphocytopenia     
3 months 12.6 (11.3, 14.0) 14.6 (12.8, 16.3) −1.9 (−4.2, 0.3) 0.9 (0.7, 1.0) 
6 months  16.4 (14.9, 18.0) 18.3 (16.2, 20.4) −1.9 (−4.6, 0.8) 0.9 (0.8, 1.0) 
12 months 20.6 (18.7, 22.4) 22.4 (19.9, 24.9) −1.8 (−5.2, 1.5) 0.9 (0.8, 1.1) 

Thrombocytopenia      
3 months 3.0 (2.2, 3.7) 6.3 (5.0, 7.6) −3.3 (−4.8, −1.8) 0.5 (0.3, 0.6) 
6 months  6.1 (5.0, 7.3) 7.7 (6.3, 9.0) −1.5 (−3.4, 0.3) 0.8 (0.6, 1.0) 
12 months 8.4 (7.0, 9.8) 8.9 (7.4, 10.4) −0.5 (−2.6, 1.6) 1.0 (0.7, 1.2) 

 

The risks of all severe cytopenias following second LOT initiation according to first and/or 

second LOT IMiD exposure are displayed in Figure 21 and Table 24. All cytopenia risks were 

substantially lower among those with no recent cytopenia history. There was no evidence of 

additive or multiplicative interaction between the first and second LOT IMiD exposure and 

cytopenia history on the risks of any of the severe cytopenias under study based on the 

stratified RDs and RRs at 3, 6, and 12 months. 
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Figure 21. Cumulative incidence of cytopenias following second line of therapy initiation 
in those exposed versus unexposed to immunomodulatory drugs during the second line 
of therapy, stratified by exposure during the first line of therapy and according to recent 
history of the given cytopenia 
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Table 24. Risks per 100, risk differences per 100, and risk ratios of cytopenias following 
second line of therapy initiation in those exposed versus unexposed to 
immunomodulatory drugs, stratified by first line of therapy exposure and according to 
recent history of the given cytopenia 

 Exposed to IMiDs during LOT 1 Not Exposed to IMiDs during LOT 1 
 

Exposed to IMiDs 
during  
LOT 2 

Not Exposed to 
IMiDs during 

LOT 2 

Exposed to 
IMiDs during 

LOT 2 

Not Exposed to 
IMiDs during 

LOT 2 

Anemia  
   

Cytopenia History   
   

3 months     
Risk /100 (95% CI) 13.9 (11.9, 15.8) 17.7 (15.3, 20.2) 13.6 (10.8, 16.5) 16.2 (12.9, 19.4) 
Stratified RD /100 (95% CI)  -3.9 (-7.1, -0.6) Ref -2.5 (-6.7, 1.7) Ref 
Stratified RR (95% CI)  0.8 (0.6, 0.9) Ref 0.9 (0.6, 1.1) Ref 
Common Ref RD /100 (95% CI) -2.3 (-6.2, 1.7) 1.6 (-3.0, 6.1) -2.5 (-6.7, 1.7) Ref 
Common Ref RR (95% CI) 0.9 (0.6, 1.1) 1.1 (0.8, 1.4) 0.9 (0.6, 1.1) Ref 

6 months      
Risk /100 (95% CI) 17.6 (15.5, 19.7) 20.8 (17.8, 23.8) 18.1 (14.9, 21.2) 19.3 (15.4, 23.1) 
Stratified RD /100 (95% CI)  -3.2 (-7.1, 0.7) Ref -1.2 (-6.1, 3.7) Ref 
Stratified RR (95% CI)  0.8 (0.7, 1.0) Ref 0.9 (0.7, 1.2) Ref 
Common Ref RD /100 (95% CI) -1.7 (-6.1, 2.8) 1.6 (-3.9, 7.0) -1.2 (-6.1, 3.7) Ref 
Common Ref RR (95% CI) 0.9 (0.7, 1.1) 1.1 (0.8, 1.4) 0.9 (0.7, 1.2) Ref 

12 months     
Risk /100 (95% CI) 20.8 (18.3, 23.4) 23.5 (20.0, 27.1) 22.1 (18.9, 25.3) 24.8 (19.9, 29.8) 
Stratified RD /100 (95% CI)  -2.7 (-7.1, 1.7) Ref -2.7 (-8.3, 2.9) Ref 
Stratified RR (95% CI)  0.9 (0.7, 1.1) Ref 0.9 (0.7, 1.1) Ref 
Common Ref RD /100 (95% CI) -4.0 (-9.4, 1.4) -1.3 (-8.0, 5.4) -2.7 (-8.3, 2.9) Ref 
Common Ref RR (95% CI) 0.8 (0.7, 1.0) 1.0 (0.7, 1.2) 0.9 (0.7, 1.1) Ref 

No Cytopenia History   
   

3 months     
Risk /100 (95% CI) 1.6 (0.6, 2.6) 3.2 (1.3, 5.2) 1.2 (0.2, 2.3) 1.5 (0.1, 2.9) 
Stratified RD /100 (95% CI)  -1.6 (-3.8, 0.5) Ref -0.3 (-2.2, 1.6) Ref 
Stratified RR (95% CI)  0.6 (0.0, 1.1) Ref 1.1 (-0.9, 3.1) Ref 
Common Ref RD /100 (95% CI) 0.1 (-1.7, 1.8) 1.7 (-0.8, 4.2) -0.3 (-2.2, 1.6) Ref 
Common Ref RR (95% CI) 1.4 (-1.4, 4.3) 2.8 (-1.5, 7.1) 1.1 (-0.9, 3.1) Ref 

6 months      
Risk /100 (95% CI) 2.6 (1.4, 3.8) 4.1 (1.9, 6.2) 2.9 (0.7, 5.2) 2.7 (0.5, 5.0) 
Stratified RD /100 (95% CI)  -1.5 (-3.8, 0.9) Ref 0.2 (-3.1, 3.5) Ref 
Stratified RR (95% CI)  0.7 (0.2, 1.2) Ref 1.4 (-2.2, 5.1) Ref 
Common Ref RD /100 (95% CI) -0.1 (-2.7, 2.5) 1.3 (-2.0, 4.7) 0.2 (-3.1, 3.5) Ref 
Common Ref RR (95% CI) 1.2 (-0.5, 2.9) 1.9 (-1.4, 5.2) 1.4 (-2.2, 5.1) Ref 

12 months     
Risk /100 (95% CI) 4.1 (2.5, 5.7) 4.1 (1.9, 6.2) 4.4 (1.8, 6.9) 4.3 (1.7, 7.0) 
Stratified RD /100 (95% CI)  0.0 (-2.6, 2.7) Ref 0.0 (-4.0, 4.0) Ref 
Stratified RR (95% CI)  1.1 (0.4, 1.8) Ref 1.1 (-0.1, 2.4) Ref 
Common Ref RD /100 (95% CI) -0.2 (-3.1, 2.7) -0.2 (-3.8, 3.3) 0.0 (-4.0, 4.0) Ref 
Common Ref RR (95% CI) 1.0 (0.3, 1.8) 1.1 (0.1, 2.0) 1.1 (-0.1, 2.4) Ref 

Leukopenia     

Cytopenia History   
   

3 months     
Risk /100 (95% CI) 22.1 (18.8, 25.5) 22.1 (17.6, 26.6) 19.3 (14.2, 24.5) 18.3 (11.4, 25.1) 
Stratified RD /100 (95% CI)  0.0 (−5.6, 5.7) Ref 1.1 (−8.4, 10.5) Ref 
Stratified RR (95% CI)  1.0 (0.7, 1.3) Ref 1.1 (0.5, 1.7) Ref 
Common Ref RD /100 (95% CI) 3.9 (−3.7, 11.5) 3.9 (−4.5, 12.3) 1.1 (−8.4, 10.5) Ref 
Common Ref RR (95% CI) 1.3 (0.7, 1.8) 1.3 (0.7, 1.8) 1.1 (0.5, 1.7) Ref 

6 months      
Risk /100 (95% CI) 28.6 (24.9, 32.2) 23.7 (19.2, 28.3) 24.3 (18.4, 30.1) 20.5 (13.7, 27.2) 
Stratified RD /100 (95% CI)  4.9 (−0.9, 10.7) Ref 3.8 (−6.0, 13.5) Ref 
Stratified RR (95% CI)  1.2 (0.9, 1.5) Ref 1.2 (0.7, 1.8) Ref 
Common Ref RD /100 (95% CI) 8.1 (0.4, 15.8) 3.2 (−4.9, 11.4) 3.8 (−6.0, 13.5) Ref 
Common Ref RR (95% CI) 1.4 (0.9, 1.9) 1.2 (0.7, 1.6) 1.2 (0.7, 1.8) Ref 

12 months     
Risk /100 (95% CI) 31.0 (27.2, 34.8) 26.2 (20.5, 31.9) 30.5 (23.1, 38.0) 23.4 (14.5, 32.4) 



105 

 

 

 Exposed to IMiDs during LOT 1 Not Exposed to IMiDs during LOT 1 
 

Exposed to IMiDs 
during  
LOT 2 

Not Exposed to 
IMiDs during 

LOT 2 

Exposed to 
IMiDs during 

LOT 2 

Not Exposed to 
IMiDs during 

LOT 2 

Stratified RD /100 (95% CI)  4.8 (−2.0, 11.6) Ref 7.1 (−4.7, 19.0) Ref 
Stratified RR (95% CI)  1.2 (0.9, 1.5) Ref 1.4 (0.7, 2.0) Ref 
Common Ref RD /100 (95% CI) 7.6 (−2.2, 17.3) 2.8 (−7.6, 13.2) 7.1 (−4.7, 19.0) Ref 
Common Ref RR (95% CI) 1.4 (0.8, 1.9) 1.2 (0.7, 1.6) 1.4 (0.7, 2.0) Ref 

No Cytopenia History   
   

3 months     
Risk /100 (95% CI) 6.5 (5.1, 7.9) 7.5 (5.7, 9.3) 5.4 (4.0, 6.8) 5.2 (3.4, 6.9) 
Stratified RD /100 (95% CI)  −1.0 (−3.1, 1.2) Ref 0.2 (−2.1, 2.6) Ref 
Stratified RR (95% CI)  0.9 (0.6, 1.2) Ref 1.1 (0.6, 1.6) Ref 
Common Ref RD /100 (95% CI) 1.4 (−0.9, 3.6) 2.3 (−0.3, 4.9) 0.2 (−2.1, 2.6) Ref 
Common Ref RR (95% CI) 1.3 (0.7, 1.9) 1.5 (0.8, 2.2) 1.1 (0.6, 1.6) Ref 

6 months      
Risk /100 (95% CI) 8.8 (7.1, 10.4) 8.8 (6.7, 10.9) 8.5 (6.5, 10.4) 6.7 (4.7, 8.8) 
Stratified RD /100 (95% CI)  0.0 (−2.6, 2.6) Ref 1.8 (−1.0, 4.5) Ref 
Stratified RR (95% CI)  1.0 (0.7, 1.3) Ref 1.3 (0.8, 1.8) Ref 
Common Ref RD /100 (95% CI) 2.0 (−0.5, 4.6) 2.1 (−0.8, 4.9) 1.8 (−1.0, 4.5) Ref 
Common Ref RR (95% CI) 1.3 (0.8, 1.8) 1.3 (0.8, 1.9) 1.3 (0.8, 1.8) Ref 

12 months     
Risk /100 (95% CI) 11.9 (9.8, 14.0) 10.0 (7.5, 12.4) 12.1 (9.5, 14.6) 8.1 (5.9, 10.4) 
Stratified RD /100 (95% CI)  1.9 (−1.3, 5.1) Ref 4.0 (0.5, 7.4) Ref 
Stratified RR (95% CI)  1.2 (0.8, 1.6) Ref 1.5 (1.0, 2.1) Ref 
Common Ref RD /100 (95% CI) 3.8 (0.7, 6.8) 1.8 (−1.3, 4.9) 4.0 (0.5, 7.4) Ref 
Common Ref RR (95% CI) 1.5 (1.0, 2.0) 1.2 (0.8, 1.7) 1.5 (1.0, 2.1) Ref 

Neutropenia     

Cytopenia History   
   

3 months     
Risk /100 (95% CI) 28.1 (22.9, 33.3) 25.9 (19.4, 32.3) 25.1 (15.9, 34.2) 21.4 (12.7, 30.1) 
Stratified RD /100 (95% CI)  2.2 (−6.2, 10.6) Ref 3.7 (−9.2, 16.6) Ref 
Stratified RR (95% CI)  1.1 (0.7, 1.5) Ref 1.2 (0.5, 1.9) Ref 
Common Ref RD /100 (95% CI) 6.7 (−3.5, 16.9) 4.5 (−6.8, 15.7) 3.7 (−9.2, 16.6) Ref 
Common Ref RR (95% CI) 1.4 (0.7, 2.0) 1.3 (0.6, 2.0) 1.2 (0.5, 1.9) Ref 

6 months      
Risk /100 (95% CI) 36.7 (30.9, 42.5) 28.4 (21.6, 35.2) 34.0 (21.8, 46.3) 28.1 (16.8, 39.4) 
Stratified RD /100 (95% CI)  8.3 (−0.9, 17.5) Ref 5.9 (−11.2, 23.1) Ref 
Stratified RR (95% CI)  1.3 (0.9, 1.7) Ref 1.3 (0.6, 2.0) Ref 
Common Ref RD /100 (95% CI) 8.6 (−4.6, 21.7) 0.3 (−12.9, 13.5) 5.9 (−11.2, 23.1) Ref 
Common Ref RR (95% CI) 1.4 (0.7, 2.0) 1.1 (0.5, 1.6) 1.3 (0.6, 2.0) Ref 

12 months     
Risk /100 (95% CI) 43.2 (37.1, 49.4) 35.7 (25.4, 46.0) 38.5 (24.7, 52.3) 28.1 (16.8, 39.4) 
Stratified RD /100 (95% CI)  7.5 (−4.8, 19.8) Ref 10.4 (−7.2, 28.0) Ref 
Stratified RR (95% CI)  1.2 (0.8, 1.6) Ref 1.4 (0.7, 2.2) Ref 
Common Ref RD /100 (95% CI) 15.1 (1.5, 28.7) 7.6 (−7.9, 23.1) 10.4 (−7.2, 28.0) Ref 
Common Ref RR (95% CI) 1.6 (0.9, 2.4) 1.3 (0.6, 2.1) 1.4 (0.7, 2.2) Ref 

No Cytopenia History   
   

3 months     
Risk /100 (95% CI) 9.4 (8.0, 10.8) 7.8 (6.1, 9.6) 6.5 (4.9, 8.0) 4.8 (3.2, 6.3) 
Stratified RD /100 (95% CI)  1.6 (−0.7, 3.9) Ref 1.7 (−0.5, 4.0) Ref 
Stratified RR (95% CI)  1.2 (0.9, 1.6) Ref 1.4 (0.8, 2.0) Ref 
Common Ref RD /100 (95% CI) 4.6 (2.5, 6.8) 3.1 (0.7, 5.4) 1.7 (−0.5, 4.0) Ref 
Common Ref RR (95% CI) 2.0 (1.3, 2.8) 1.7 (1.0, 2.4) 1.4 (0.8, 2.0) Ref 

6 months      
Risk /100 (95% CI) 13.1 (11.3, 14.9) 9.5 (7.6, 11.4) 11.6 (9.5, 13.8) 5.9 (4.1, 7.6) 
Stratified RD /100 (95% CI)  3.6 (1.0, 6.2) Ref 5.8 (3.0, 8.6) Ref 
Stratified RR (95% CI)  1.4 (1.0, 1.7) Ref 2.0 (1.3, 2.8) Ref 
Common Ref RD /100 (95% CI) 7.2 (4.8, 9.7) 3.7 (1.2, 6.1) 5.8 (3.0, 8.6) Ref 
Common Ref RR (95% CI) 2.3 (1.5, 3.1) 1.7 (1.1, 2.3) 2.0 (1.3, 2.8) Ref 

12 months     
Risk /100 (95% CI) 18.4 (16.4, 20.5) 12.4 (9.8, 15.0) 16.4 (14.1, 18.6) 8.5 (6.2, 10.8) 
Stratified RD /100 (95% CI)  6.0 (2.7, 9.4) Ref 7.9 (4.8, 11.0) Ref 
Stratified RR (95% CI)  1.5 (1.1, 1.9) Ref 2.0 (1.4, 2.6) Ref 
Common Ref RD /100 (95% CI) 9.9 (6.7, 13.1) 3.9 (0.5, 7.3) 7.9 (4.8, 11.0) Ref 
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 Exposed to IMiDs during LOT 1 Not Exposed to IMiDs during LOT 1 
 

Exposed to IMiDs 
during  
LOT 2 

Not Exposed to 
IMiDs during 

LOT 2 

Exposed to 
IMiDs during 

LOT 2 

Not Exposed to 
IMiDs during 

LOT 2 

Common Ref RR (95% CI) 2.2 (1.5, 2.9) 1.5 (1.0, 2.0) 2.0 (1.4, 2.6) Ref 

Lymphocytopenia     

Cytopenia History   
   

3 months     
Risk /100 (95% CI) 41.0 (37.0, 45.0) 42.3 (37.2, 47.3) 42.2 (37.1, 47.4) 47.8 (40.6, 55.1) 
Stratified RD /100 (95% CI)  −1.3 (−8.0, 5.4) Ref −5.6 (−15.1, 3.9) Ref 
Stratified RR (95% CI)  1.0 (0.8, 1.1) Ref 0.9 (0.7, 1.1) Ref 
Common Ref RD /100 (95% CI) −6.9 (−15.9, 2.2) −5.6 (−14.2, 3.1) −5.6 (−15.1, 3.9) Ref 
Common Ref RR (95% CI) 0.9 (0.7, 1.0) 0.9 (0.7, 1.1) 0.9 (0.7, 1.1) Ref 

6 months      
Risk /100 (95% CI) 47.5 (43.0, 52.1) 48.2 (42.8, 53.6) 47.8 (41.8, 53.9) 52.8 (44.8, 60.9) 
Stratified RD /100 (95% CI)  −0.7 (−8.0, 6.6) Ref −5.0 (−15.2, 5.2) Ref 
Stratified RR (95% CI)  1.0 (0.8, 1.1) Ref 0.9 (0.7, 1.1) Ref 
Common Ref RD /100 (95% CI) −5.3 (−15.1, 4.5) −4.6 (−13.9, 4.7) −5.0 (−15.2, 5.2) Ref 
Common Ref RR (95% CI) 0.9 (0.7, 1.1) 0.9 (0.8, 1.1) 0.9 (0.7, 1.1) Ref 

12 months     
Risk /100 (95% CI) 52.7 (48.1, 57.4) 50.9 (45.0, 56.9) 50.2 (44.0, 56.4) 56.2 (47.6, 64.9) 
Stratified RD /100 (95% CI)  1.8 (−5.9, 9.5) Ref −6.1 (−16.8, 4.6) Ref 
Stratified RR (95% CI)  1.0 (0.9, 1.2) Ref 0.9 (0.7, 1.1) Ref 
Common Ref RD /100 (95% CI) −3.5 (−13.5, 6.4) −5.3 (−15.8, 5.2) −6.1 (−16.8, 4.6) Ref 
Common Ref RR (95% CI) 0.9 (0.8, 1.1) 0.9 (0.7, 1.1) 0.9 (0.7, 1.1) Ref 

No Cytopenia History   
   

3 months     
Risk /100 (95% CI) 12.6 (10.9, 14.2) 15.0 (12.5, 17.4) 12.9 (10.3, 15.5) 13.7 (10.8, 16.6) 
Stratified RD /100 (95% CI)  −2.4 (−5.4, 0.6) Ref −0.8 (−4.6, 3.1) Ref 
Stratified RR (95% CI)  0.8 (0.7, 1.0) Ref 1.0 (0.7, 1.2) Ref 
Common Ref RD /100 (95% CI) −1.1 (−4.4, 2.1) 1.3 (−2.8, 5.4) −0.8 (−4.6, 3.1) Ref 
Common Ref RR (95% CI) 0.9 (0.7, 1.2) 1.1 (0.8, 1.4) 1.0 (0.7, 1.2) Ref 

6 months      
Risk /100 (95% CI) 16.8 (15.0, 18.5) 18.8 (15.9, 21.7) 16.2 (13.3, 19.1) 17.5 (14.2, 20.9) 
Stratified RD /100 (95% CI)  −2.1 (−5.5, 1.4) Ref −1.3 (−5.5, 2.9) Ref 
Stratified RR (95% CI)  0.9 (0.7, 1.1) Ref 0.9 (0.7, 1.2) Ref 
Common Ref RD /100 (95% CI) −0.8 (−4.4, 2.9) 1.3 (−3.3, 5.9) −1.3 (−5.5, 2.9) Ref 
Common Ref RR (95% CI) 1.0 (0.8, 1.2) 1.1 (0.8, 1.4) 0.9 (0.7, 1.2) Ref 

12 months     
Risk /100 (95% CI) 20.5 (18.5, 22.5) 21.9 (18.6, 25.3) 20.6 (17.2, 24.0) 22.9 (19.0, 26.8) 
Stratified RD /100 (95% CI)  −1.5 (−5.6, 2.6) Ref −2.3 (−7.3, 2.7) Ref 
Stratified RR (95% CI)  0.9 (0.8, 1.1) Ref 0.9 (0.7, 1.1) Ref 
Common Ref RD /100 (95% CI) −2.4 (−6.9, 2.1) −0.9 (−6.2, 4.4) −2.3 (−7.3, 2.7) Ref 
Common Ref RR (95% CI) 0.9 (0.7, 1.1) 1.0 (0.7, 1.2) 0.9 (0.7, 1.1) Ref 

Thrombocytopenia      

Cytopenia History   
   

3 months     
Risk /100 (95% CI) 18.3 (15.2, 21.4) 30.0 (24.8, 35.3) 24.7 (16.5, 32.9) 22.8 (14.8, 30.8) 
Stratified RD /100 (95% CI)  −11.8 (−17.9, −5.6) Ref 1.9 (−9.5, 13.3) Ref 
Stratified RR (95% CI)  0.6 (0.5, 0.8) Ref 1.1 (0.6, 1.7) Ref 
Common Ref RD /100 (95% CI) −4.5 (−12.9, 3.9) 7.3 (−2.1, 16.6) 1.9 (−9.5, 13.3) Ref 
Common Ref RR (95% CI) 0.8 (0.5, 1.1) 1.4 (0.8, 1.9) 1.1 (0.6, 1.7) Ref 

6 months      
Risk /100 (95% CI) 22.6 (18.6, 26.6) 31.9 (26.2, 37.5) 28.2 (19.6, 36.7) 27.7 (17.6, 37.7) 
Stratified RD /100 (95% CI)  −9.3 (−16.3, −2.3) Ref 0.5 (−13.1, 14.1) Ref 
Stratified RR (95% CI)  0.7 (0.5, 0.9) Ref 1.1 (0.5, 1.6) Ref 
Common Ref RD /100 (95% CI) −5.1 (−15.4, 5.3) 4.2 (−7.4, 15.8) 0.5 (−13.1, 14.1) Ref 
Common Ref RR (95% CI) 0.8 (0.5, 1.2) 1.2 (0.7, 1.7) 1.1 (0.5, 1.6) Ref 

12 months     
Risk /100 (95% CI) 26.5 (21.9, 31.1) 32.8 (27.1, 38.5) 34.8 (25.0, 44.5) 29.7 (19.4, 39.9) 
Stratified RD /100 (95% CI)  −6.3 (−13.7, 1.1) Ref 5.1 (−10.1, 20.3) Ref 
Stratified RR (95% CI)  0.8 (0.6, 1.0) Ref 1.2 (0.6, 1.8) Ref 
Common Ref RD /100 (95% CI) −3.1 (−13.9, 7.6) 3.2 (−8.4, 14.7) 5.1 (−10.1, 20.3) Ref 
Common Ref RR (95% CI) 0.9 (0.6, 1.3) 1.1 (0.7, 1.6) 1.2 (0.6, 1.8) Ref 
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 Exposed to IMiDs during LOT 1 Not Exposed to IMiDs during LOT 1 
 

Exposed to IMiDs 
during  
LOT 2 

Not Exposed to 
IMiDs during 

LOT 2 

Exposed to 
IMiDs during 

LOT 2 

Not Exposed to 
IMiDs during 

LOT 2 

No Cytopenia History   
   

3 months     
Risk /100 (95% CI) 3.1 (2.1, 4.0) 7.7 (5.9, 9.5) 2.7 (1.6, 3.7) 4.1 (2.5, 5.7) 
Stratified RD /100 (95% CI)  −4.6 (−6.6, −2.6) Ref −1.4 (−3.3, 0.5) Ref 
Stratified RR (95% CI)  0.4 (0.3, 0.6) Ref 0.7 (0.3, 1.0) Ref 
Common Ref RD /100 (95% CI) −1.0 (−2.9, 0.9) 3.6 (1.2, 6.0) −1.4 (−3.3, 0.5) Ref 
Common Ref RR (95% CI) 0.8 (0.4, 1.2) 2.0 (1.0, 2.9) 0.7 (0.3, 1.0) Ref 

6 months      
Risk /100 (95% CI) 5.8 (4.4, 7.2) 9.0 (7.0, 11.0) 6.8 (4.4, 9.1) 5.3 (3.5, 7.1) 
Stratified RD /100 (95% CI)  −3.3 (−5.7, −0.8) Ref 1.5 (−1.5, 4.4) Ref 
Stratified RR (95% CI)  0.6 (0.4, 0.9) Ref 1.3 (0.7, 2.0) Ref 
Common Ref RD /100 (95% CI) 0.5 (−1.8, 2.7) 3.7 (1.0, 6.5) 1.5 (−1.5, 4.4) Ref 
Common Ref RR (95% CI) 1.1 (0.6, 1.6) 1.8 (1.0, 2.6) 1.3 (0.7, 2.0) Ref 

12 months     
Risk /100 (95% CI) 7.8 (6.3, 9.4) 10.0 (8.0, 12.1) 9.5 (6.8, 12.3) 6.8 (4.7, 8.9) 
Stratified RD /100 (95% CI)  −2.2 (−4.8, 0.4) Ref 2.7 (−0.7, 6.1) Ref 
Stratified RR (95% CI)  0.8 (0.6, 1.0) Ref 1.4 (0.8, 2.0) Ref 
Common Ref RD /100 (95% CI) 1.0 (−1.6, 3.6) 3.2 (0.3, 6.1) 2.7 (−0.7, 6.1) Ref 
Common Ref RR (95% CI) 1.2 (0.7, 1.6) 1.5 (0.9, 2.1) 1.4 (0.8, 2.0) Ref 

 

The associations between sequential, versus never, exposure with neutropenia and leukopenia 

were even stronger among those with a history of the given cytopenia but were attenuated for 

those with no history (Figure 21A–B). There were no substantial differences in the risks of 

cytopenias not related to white blood cells (anemia, thrombocytopenia) among those 

sequentially, versus never, exposed to IMiDs among the cytopenia-history-stratified groups 

(Figure 21D–E). Among those with no recent histories of anemia or thrombocytopenia, the post-

second LOT risks of these cytopenias did not exceed 10%, even for those sequentially exposed.   

Treatment Effect according to Age  

The cumulative incidence of each cytopenia among those exposed versus unexposed to IMiDs 

during the second LOT stratified according to age (75+ versus <75) are displayed in Figure 22 

and Table 25. Stratification by age did not appear to alter the relative risks of any cytopenias for 

those exposed, versus unexposed, to IMiDs during the second LOT. The cumulative risks of 

each cytopenia were not necessarily higher among those age 75+ compared to those age <75.  
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Figure 22. Cumulative incidence of cytopenias following second line of therapy initiation 
in those exposed versus unexposed to immunomodulatory drugs during the second line 
of therapy, according to age 
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Table 25. Risks per 100, risk differences per 100, and risk ratios of cytopenias following 
second line of therapy initiation in those exposed versus unexposed to 
immunomodulatory drugs, stratified by age 

 
Exposed to IMiDs 

during LOT 2  
Risk / 100 (95% CI) 

Not Exposed to IMiDs 
during LOT 2  

Risk / 100 (95% CI) 

Risk Difference 
/ 100 (95% CI) 

Risk Ratio (95% CI) 

Age 75+     

Anemia     
3 months 12.2 (10.1, 14.4) 11.5 (9.4, 13.7) 0.7 (−2.2, 3.6) 1.1 (0.8, 1.3) 
6 months  15.9 (13.2, 18.5) 13.9 (11.4, 16.4) 2.0 (−1.5, 5.5) 1.2 (0.9, 1.4) 
12 months 19.1 (16.1, 22.0) 16.6 (13.5, 19.8) 2.5 (−1.7, 6.6) 1.2 (0.9, 1.4) 

Leukopenia     
3 months 9.3 (7.3, 11.4) 8.5 (6.4, 10.6) 0.8 (−1.9, 3.6) 1.1 (0.8, 1.5) 
6 months  11.8 (9.6, 14.0) 9.3 (7.2, 11.4) 2.5 (−0.3, 5.3) 1.3 (0.9, 1.6) 
12 months 14.8 (12.0, 17.6) 10.0 (7.7, 12.3) 4.8 (1.2, 8.4) 1.5 (1.0, 2.0) 

Neutropenia     
3 months 10.3 (8.2, 12.5) 5.9 (4.2, 7.5) 4.5 (1.9, 7.0) 1.8 (1.2, 2.4) 
6 months  14.8 (12.3, 17.4) 6.9 (4.9, 8.8) 8.0 (4.8, 11.1) 2.2 (1.5, 2.9) 
12 months 18.2 (14.8, 21.6) 8.4 (6.0, 10.7) 9.9 (5.9, 13.9) 2.2 (1.5, 3.0) 

Lymphocytopenia     
3 months 19.3 (16.4, 22.2) 20.3 (17.1, 23.5) −1.0 (−5.0, 3.0) 1.0 (0.8, 1.1) 
6 months  23.2 (20.0, 26.5) 23.9 (20.6, 27.3) −0.7 (−5.1, 3.7) 1.0 (0.8, 1.2) 
12 months 28.0 (24.4, 31.6) 28.0 (24.1, 31.9) 0.0 (−5.1, 5.2) 1.0 (0.8, 1.2) 

Thrombocytopenia      
3 months 8.2 (6.1, 10.3) 8.0 (6.0, 10.0) 0.2 (−2.5, 2.9) 1.0 (0.7, 1.4) 
6 months  10.1 (7.8, 12.4) 8.7 (6.7, 10.8) 1.4 (−1.5, 4.3) 1.2 (0.8, 1.5) 
12 months 12.4 (10.0, 14.9) 10.2 (7.6, 12.8) 2.2 (−1.1, 5.6) 1.2 (0.9, 1.6) 

Age <75     

Anemia     
3 months 9.2 (8.0, 10.4) 11.3 (9.7, 12.9) −2.2 (−4.0, −0.3) 0.8 (0.7, 1.0) 
6 months  12.0 (10.6, 13.4) 13.4 (11.7, 15.1) −1.3 (−3.4, 0.7) 0.9 (0.8, 1.0) 
12 months 14.9 (13.3, 16.5) 15.9 (13.8, 18.0) −1.0 (−3.5, 1.5) 0.9 (0.8, 1.1) 

Leukopenia     
3 months 10.6 (9.3, 11.8) 10.9 (9.2, 12.5) −0.3 (−2.3, 1.7) 1.0 (0.8, 1.2) 
6 months  14.4 (13.0, 15.9) 12.7 (10.8, 14.5) 1.8 (−0.6, 4.1) 1.1 (0.9, 1.4) 
12 months 18.1 (16.4, 19.8) 14.4 (12.2, 16.7) 3.7 (0.8, 6.5) 1.3 (1.0, 1.5) 

Neutropenia     
3 months 11.0 (9.7, 12.2) 9.9 (8.3, 11.5) 1.0 (−1.0, 3.1) 1.1 (0.9, 1.3) 
6 months  16.0 (14.5, 17.5) 12.1 (10.3, 13.9) 3.8 (1.4, 6.3) 1.3 (1.1, 1.6) 
12 months 21.9 (20.2, 23.7) 15.4 (13.1, 17.6) 6.6 (3.7, 9.4) 1.4 (1.2, 1.7) 

Lymphocytopenia     
3 months 21.6 (19.9, 23.2) 24.3 (22.1, 26.4) −2.7 (−5.4, 0.0) 0.9 (0.8, 1.0) 
6 months  26.5 (24.6, 28.3) 28.7 (26.3, 31.1) −2.2 (−5.4, 0.9) 0.9 (0.8, 1.0) 
12 months 30.3 (28.4, 32.2) 32.4 (29.7, 35.2) −2.1 (−5.6, 1.3) 0.9 (0.8, 1.0) 

Thrombocytopenia      
3 months 7.1 (6.1, 8.1) 11.7 (10.1, 13.3) −4.6 (−6.4, −2.9) 0.6 (0.5, 0.7) 
6 months  11.0 (9.6, 12.4) 13.7 (11.9, 15.5) −2.7 (−4.9, −0.5) 0.8 (0.7, 0.9) 
12 months 14.1 (12.4, 15.8) 14.9 (13.0, 16.9) −0.8 (−3.3, 1.7) 0.9 (0.8, 1.1) 

 

The cumulative incidence of each cytopenia according to IMiD exposure during the first and/or 

second LOTs stratified according to age (75+ versus <75) are displayed in Figure 23 and Table 

26. Stratification by age did not alter the relative risks of any cytopenias for those sequentially, 

versus never, exposed to IMiDs.  
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Figure 23. Cumulative incidence of cytopenias following second line of therapy initiation 
in those exposed versus unexposed to immunomodulatory drugs during the second line 
of therapy, stratified by exposure during the first line of therapy and according to age 
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Table 26. Risks per 100, risk differences per 100, and risk ratios of cytopenias following 
second line of therapy initiation in those exposed versus unexposed to 
immunomodulatory drugs, stratified by first line of therapy exposure and according to 
age 

 Exposed to IMiDs during LOT 1 Not Exposed to IMiDs during LOT 1 
 

Exposed to IMiDs 
during  
LOT 2 

Not Exposed to 
IMiDs during 

LOT 2 

Exposed to 
IMiDs during 

LOT 2 

Not Exposed to 
IMiDs during 

LOT 2 

Anemia  
   

Age 75+  
   

3 months     
Risk /100 (95% CI) 9.7 (8.4, 10.9) 11.6 (10.1, 13.1) 10.7 (8.8, 12.6) 11.2 (9.0, 13.5) 
Stratified RD /100 (95% CI)  −1.9 (−3.8, −0.1) Ref −0.5 (−3.4, 2.4) Ref 
Stratified RR (95% CI)  0.8 (0.7, 1.0) Ref 1.0 (0.7, 1.2) Ref 
Common Ref RD /100 (95% CI) −1.6 (−4.1, 1.0) 0.4 (−2.3, 3.0) −0.5 (−3.4, 2.4) Ref 
Common Ref RR (95% CI) 0.9 (0.7, 1.1) 1.0 (0.8, 1.3) 1.0 (0.7, 1.2) Ref 

6 months      
Risk /100 (95% CI) 12.4 (11.0, 13.9) 13.8 (12.0, 15.6) 14.2 (12.0, 16.4) 13.6 (11.2, 16.0) 
Stratified RD /100 (95% CI)  −1.3 (−3.5, 0.8) Ref 0.6 (−2.5, 3.8) Ref 
Stratified RR (95% CI)  0.9 (0.8, 1.1) Ref 1.1 (0.8, 1.3) Ref 
Common Ref RD /100 (95% CI) −1.2 (−3.9, 1.6) 0.2 (−2.7, 3.1) 0.6 (−2.5, 3.8) Ref 
Common Ref RR (95% CI) 0.9 (0.7, 1.1) 1.0 (0.8, 1.2) 1.1 (0.8, 1.3) Ref 

12 months     
Risk /100 (95% CI) 15.1 (13.3, 16.8) 15.5 (13.4, 17.7) 17.8 (15.2, 20.4) 17.7 (14.5, 20.9) 
Stratified RD /100 (95% CI)  −0.5 (−2.9, 2.0) Ref 0.2 (−4.0, 4.3) Ref 
Stratified RR (95% CI)  1.0 (0.8, 1.1) Ref 1.0 (0.8, 1.3) Ref 
Common Ref RD /100 (95% CI) −2.6 (−6.1, 0.9) −2.1 (−5.9, 1.6) 0.2 (−4.0, 4.3) Ref 
Common Ref RR (95% CI) 0.9 (0.7, 1.0) 0.9 (0.7, 1.1) 1.0 (0.8, 1.3) Ref 

Age <75  
   

3 months     
Risk /100 (95% CI) 9.7 (8.4, 10.9) 11.6 (10.1, 13.1) 10.7 (8.8, 12.6) 11.2 (9.0, 13.5) 
Stratified RD /100 (95% CI)  −1.9 (−3.8, −0.1) Ref −0.5 (−3.4, 2.4) Ref 
Stratified RR (95% CI)  0.8 (0.7, 1.0) Ref 1.0 (0.7, 1.2) Ref 
Common Ref RD /100 (95% CI) −1.6 (−4.1, 1.0) 0.4 (−2.3, 3.0) −0.5 (−3.4, 2.4) Ref 
Common Ref RR (95% CI) 0.9 (0.7, 1.1) 1.0 (0.8, 1.3) 1.0 (0.7, 1.2) Ref 

6 months      
Risk /100 (95% CI) 12.4 (11.0, 13.9) 13.8 (12.0, 15.6) 14.2 (12.0, 16.4) 13.6 (11.2, 16.0) 
Stratified RD /100 (95% CI)  −1.3 (−3.5, 0.8) Ref 0.6 (−2.5, 3.8) Ref 
Stratified RR (95% CI)  0.9 (0.8, 1.1) Ref 1.1 (0.8, 1.3) Ref 
Common Ref RD /100 (95% CI) −1.2 (−3.9, 1.6) 0.2 (−2.7, 3.1) 0.6 (−2.5, 3.8) Ref 
Common Ref RR (95% CI) 0.9 (0.7, 1.1) 1.0 (0.8, 1.2) 1.1 (0.8, 1.3) Ref 

12 months     
Risk /100 (95% CI) 15.1 (13.3, 16.8) 15.5 (13.4, 17.7) 17.8 (15.2, 20.4) 17.7 (14.5, 20.9) 
Stratified RD /100 (95% CI)  −0.5 (−2.9, 2.0) Ref 0.2 (−4.0, 4.3) Ref 
Stratified RR (95% CI)  1.0 (0.8, 1.1) Ref 1.0 (0.8, 1.3) Ref 
Common Ref RD /100 (95% CI) −2.6 (−6.1, 0.9) −2.1 (−5.9, 1.6) 0.2 (−4.0, 4.3) Ref 
Common Ref RR (95% CI) 0.9 (0.7, 1.0) 0.9 (0.7, 1.1) 1.0 (0.8, 1.3) Ref 

Leukopenia     

Age 75+  
   

3 months     
Risk /100 (95% CI) 11.5 (10.2, 12.9) 11.7 (9.9, 13.4) 8.4 (6.9, 9.8) 8.0 (6.1, 9.9) 
Stratified RD /100 (95% CI)  −0.1 (−2.2, 2.0) Ref 0.3 (−2.0, 2.7) Ref 
Stratified RR (95% CI)  1.0 (0.8, 1.2) Ref 1.1 (0.7, 1.4) Ref 
Common Ref RD /100 (95% CI) 3.5 (1.3, 5.8) 3.7 (1.0, 6.3) 0.3 (−2.0, 2.7) Ref 
Common Ref RR (95% CI) 1.5 (1.1, 1.9) 1.5 (1.0, 1.9) 1.1 (0.7, 1.4) Ref 

6 months      
Risk /100 (95% CI) 15.0 (13.6, 16.5) 13.0 (11.1, 14.9) 11.8 (10.0, 13.7) 9.8 (7.7, 11.9) 
Stratified RD /100 (95% CI)  2.0 (−0.3, 4.4) Ref 2.0 (−0.7, 4.7) Ref 
Stratified RR (95% CI)  1.2 (1.0, 1.4) Ref 1.2 (0.9, 1.5) Ref 
Common Ref RD /100 (95% CI) 5.2 (2.7, 7.7) 3.2 (0.4, 6.0) 2.0 (−0.7, 4.7) Ref 
Common Ref RR (95% CI) 1.6 (1.2, 1.9) 1.3 (1.0, 1.7) 1.2 (0.9, 1.5) Ref 

12 months     
Risk /100 (95% CI) 17.9 (16.2, 19.6) 14.4 (12.2, 16.6) 16.1 (13.7, 18.6) 11.5 (9.1, 13.9) 
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 Exposed to IMiDs during LOT 1 Not Exposed to IMiDs during LOT 1 
 

Exposed to IMiDs 
during  
LOT 2 

Not Exposed to 
IMiDs during 

LOT 2 

Exposed to 
IMiDs during 

LOT 2 

Not Exposed to 
IMiDs during 

LOT 2 

Stratified RD /100 (95% CI)  3.5 (0.7, 6.3) Ref 4.7 (1.2, 8.2) Ref 
Stratified RR (95% CI)  1.3 (1.0, 1.5) Ref 1.4 (1.0, 1.8) Ref 
Common Ref RD /100 (95% CI) 6.5 (3.6, 9.3) 3.0 (−0.2, 6.1) 4.7 (1.2, 8.2) Ref 
Common Ref RR (95% CI) 1.6 (1.2, 1.9) 1.3 (1.0, 1.6) 1.4 (1.0, 1.8) Ref 

Age <75  
   

3 months     
Risk /100 (95% CI) 11.5 (10.2, 12.9) 11.7 (9.9, 13.4) 8.4 (6.9, 9.8) 8.0 (6.1, 9.9) 
Stratified RD /100 (95% CI)  −0.1 (−2.2, 2.0) Ref 0.3 (−2.0, 2.7) Ref 
Stratified RR (95% CI)  1.0 (0.8, 1.2) Ref 1.1 (0.7, 1.4) Ref 
Common Ref RD /100 (95% CI) 3.5 (1.3, 5.8) 3.7 (1.0, 6.3) 0.3 (−2.0, 2.7) Ref 
Common Ref RR (95% CI) 1.5 (1.1, 1.9) 1.5 (1.0, 1.9) 1.1 (0.7, 1.4) Ref 

6 months      
Risk /100 (95% CI) 15.0 (13.6, 16.5) 13.0 (11.1, 14.9) 11.8 (10.0, 13.7) 9.8 (7.7, 11.9) 
Stratified RD /100 (95% CI)  2.0 (−0.3, 4.4) Ref 2.0 (−0.7, 4.7) Ref 
Stratified RR (95% CI)  1.2 (1.0, 1.4) Ref 1.2 (0.9, 1.5) Ref 
Common Ref RD /100 (95% CI) 5.2 (2.7, 7.7) 3.2 (0.4, 6.0) 2.0 (−0.7, 4.7) Ref 
Common Ref RR (95% CI) 1.6 (1.2, 1.9) 1.3 (1.0, 1.7) 1.2 (0.9, 1.5) Ref 

12 months     
Risk /100 (95% CI) 17.9 (16.2, 19.6) 14.4 (12.2, 16.6) 16.1 (13.7, 18.6) 11.5 (9.1, 13.9) 
Stratified RD /100 (95% CI)  3.5 (0.7, 6.3) Ref 4.7 (1.2, 8.2) Ref 
Stratified RR (95% CI)  1.3 (1.0, 1.5) Ref 1.4 (1.0, 1.8) Ref 
Common Ref RD /100 (95% CI) 6.5 (3.6, 9.3) 3.0 (−0.2, 6.1) 4.7 (1.2, 8.2) Ref 
Common Ref RR (95% CI) 1.6 (1.2, 1.9) 1.3 (1.0, 1.6) 1.4 (1.0, 1.8) Ref 

Neutropenia     

Age 75+  
   

3 months     
Risk /100 (95% CI) 12.5 (11.1, 13.8) 10.3 (8.6, 12.0) 8.2 (6.6, 9.9) 6.4 (4.7, 8.1) 
Stratified RD /100 (95% CI)  2.2 (−0.1, 4.4) Ref 1.8 (−0.5, 4.2) Ref 
Stratified RR (95% CI)  1.2 (1.0, 1.5) Ref 1.3 (0.9, 1.8) Ref 
Common Ref RD /100 (95% CI) 6.1 (4.0, 8.1) 3.9 (1.4, 6.3) 1.8 (−0.5, 4.2) Ref 
Common Ref RR (95% CI) 2.0 (1.4, 2.5) 1.6 (1.1, 2.2) 1.3 (0.9, 1.8) Ref 

6 months      
Risk /100 (95% CI) 17.0 (15.4, 18.6) 12.1 (10.3, 14.0) 13.6 (11.4, 15.8) 8.2 (6.2, 10.1) 
Stratified RD /100 (95% CI)  4.9 (2.4, 7.4) Ref 5.4 (2.5, 8.4) Ref 
Stratified RR (95% CI)  1.4 (1.1, 1.7) Ref 1.7 (1.2, 2.2) Ref 
Common Ref RD /100 (95% CI) 8.8 (6.4, 11.3) 4.0 (1.5, 6.5) 5.4 (2.5, 8.4) Ref 
Common Ref RR (95% CI) 2.1 (1.6, 2.7) 1.5 (1.1, 1.9) 1.7 (1.2, 2.2) Ref 

12 months     
Risk /100 (95% CI) 22.7 (20.7, 24.6) 15.3 (12.8, 17.7) 18.1 (15.7, 20.5) 10.6 (8.2, 12.9) 
Stratified RD /100 (95% CI)  7.4 (4.3, 10.5) Ref 7.5 (4.3, 10.8) Ref 
Stratified RR (95% CI)  1.5 (1.2, 1.8) Ref 1.7 (1.3, 2.2) Ref 
Common Ref RD /100 (95% CI) 12.1 (9.0, 15.2) 4.7 (1.3, 8.1) 7.5 (4.3, 10.8) Ref 
Common Ref RR (95% CI) 2.2 (1.6, 2.7) 1.5 (1.1, 1.9) 1.7 (1.3, 2.2) Ref 

Age <75  
   

3 months     
Risk /100 (95% CI) 12.5 (11.1, 13.8) 10.3 (8.6, 12.0) 8.2 (6.6, 9.9) 6.4 (4.7, 8.1) 
Stratified RD /100 (95% CI)  2.2 (−0.1, 4.4) Ref 1.8 (−0.5, 4.2) Ref 
Stratified RR (95% CI)  1.2 (1.0, 1.5) Ref 1.3 (0.9, 1.8) Ref 
Common Ref RD /100 (95% CI) 6.1 (4.0, 8.1) 3.9 (1.4, 6.3) 1.8 (−0.5, 4.2) Ref 
Common Ref RR (95% CI) 2.0 (1.4, 2.5) 1.6 (1.1, 2.2) 1.3 (0.9, 1.8) Ref 

6 months      
Risk /100 (95% CI) 17.0 (15.4, 18.6) 12.1 (10.3, 14.0) 13.6 (11.4, 15.8) 8.2 (6.2, 10.1) 
Stratified RD /100 (95% CI)  4.9 (2.4, 7.4) Ref 5.4 (2.5, 8.4) Ref 
Stratified RR (95% CI)  1.4 (1.1, 1.7) Ref 1.7 (1.2, 2.2) Ref 
Common Ref RD /100 (95% CI) 8.8 (6.4, 11.3) 4.0 (1.5, 6.5) 5.4 (2.5, 8.4) Ref 
Common Ref RR (95% CI) 2.1 (1.6, 2.7) 1.5 (1.1, 1.9) 1.7 (1.2, 2.2) Ref 

12 months     
Risk /100 (95% CI) 22.7 (20.7, 24.6) 15.3 (12.8, 17.7) 18.1 (15.7, 20.5) 10.6 (8.2, 12.9) 
Stratified RD /100 (95% CI)  7.4 (4.3, 10.5) Ref 7.5 (4.3, 10.8) Ref 
Stratified RR (95% CI)  1.5 (1.2, 1.8) Ref 1.7 (1.3, 2.2) Ref 
Common Ref RD /100 (95% CI) 12.1 (9.0, 15.2) 4.7 (1.3, 8.1) 7.5 (4.3, 10.8) Ref 
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 Exposed to IMiDs during LOT 1 Not Exposed to IMiDs during LOT 1 
 

Exposed to IMiDs 
during  
LOT 2 

Not Exposed to 
IMiDs during 

LOT 2 

Exposed to 
IMiDs during 

LOT 2 

Not Exposed to 
IMiDs during 

LOT 2 

Common Ref RR (95% CI) 2.2 (1.6, 2.7) 1.5 (1.1, 1.9) 1.7 (1.3, 2.2) Ref 

Lymphocytopenia     

Age 75+  
   

3 months     
Risk /100 (95% CI) 20.8 (19.2, 22.5) 23.0 (20.7, 25.3) 21.4 (19.0, 23.8) 23.4 (20.5, 26.3) 
Stratified RD /100 (95% CI)  −2.1 (−5.1, 0.8) Ref −2.0 (−5.7, 1.7) Ref 
Stratified RR (95% CI)  0.9 (0.8, 1.0) Ref 0.9 (0.8, 1.1) Ref 
Common Ref RD /100 (95% CI) −2.6 (−6.0, 0.8) −0.4 (−4.3, 3.4) −2.0 (−5.7, 1.7) Ref 
Common Ref RR (95% CI) 0.9 (0.8, 1.0) 1.0 (0.8, 1.1) 0.9 (0.8, 1.1) Ref 

6 months      
Risk /100 (95% CI) 25.9 (23.9, 27.8) 27.5 (24.7, 30.2) 25.5 (22.8, 28.2) 27.5 (24.3, 30.6) 
Stratified RD /100 (95% CI)  −1.6 (−5.2, 1.9) Ref −2.0 (−5.9, 1.9) Ref 
Stratified RR (95% CI)  0.9 (0.8, 1.1) Ref 0.9 (0.8, 1.1) Ref 
Common Ref RD /100 (95% CI) −1.6 (−5.3, 2.1) 0.0 (−4.4, 4.4) −2.0 (−5.9, 1.9) Ref 
Common Ref RR (95% CI) 0.9 (0.8, 1.1) 1.0 (0.8, 1.2) 0.9 (0.8, 1.1) Ref 

12 months     
Risk /100 (95% CI) 29.9 (27.8, 32.0) 30.8 (27.6, 34.1) 29.5 (26.5, 32.5) 32.7 (28.8, 36.5) 
Stratified RD /100 (95% CI)  −0.9 (−5.0, 3.1) Ref −3.2 (−8.0, 1.6) Ref 
Stratified RR (95% CI)  1.0 (0.8, 1.1) Ref 0.9 (0.8, 1.0) Ref 
Common Ref RD /100 (95% CI) −2.8 (−7.2, 1.7) −1.8 (−7.0, 3.3) −3.2 (−8.0, 1.6) Ref 
Common Ref RR (95% CI) 0.9 (0.8, 1.0) 0.9 (0.8, 1.1) 0.9 (0.8, 1.0) Ref 

Age <75  
   

3 months     
Risk /100 (95% CI) 20.8 (19.2, 22.5) 23.0 (20.7, 25.3) 21.4 (19.0, 23.8) 23.4 (20.5, 26.3) 
Stratified RD /100 (95% CI)  −2.1 (−5.1, 0.8) Ref −2.0 (−5.7, 1.7) Ref 
Stratified RR (95% CI)  0.9 (0.8, 1.0) Ref 0.9 (0.8, 1.1) Ref 
Common Ref RD /100 (95% CI) −2.6 (−6.0, 0.8) −0.4 (−4.3, 3.4) −2.0 (−5.7, 1.7) Ref 
Common Ref RR (95% CI) 0.9 (0.8, 1.0) 1.0 (0.8, 1.1) 0.9 (0.8, 1.1) Ref 

6 months      
Risk /100 (95% CI) 25.9 (23.9, 27.8) 27.5 (24.7, 30.2) 25.5 (22.8, 28.2) 27.5 (24.3, 30.6) 
Stratified RD /100 (95% CI)  −1.6 (−5.2, 1.9) Ref −2.0 (−5.9, 1.9) Ref 
Stratified RR (95% CI)  0.9 (0.8, 1.1) Ref 0.9 (0.8, 1.1) Ref 
Common Ref RD /100 (95% CI) −1.6 (−5.3, 2.1) 0.0 (−4.4, 4.4) −2.0 (−5.9, 1.9) Ref 
Common Ref RR (95% CI) 0.9 (0.8, 1.1) 1.0 (0.8, 1.2) 0.9 (0.8, 1.1) Ref 

12 months     
Risk /100 (95% CI) 29.9 (27.8, 32.0) 30.8 (27.6, 34.1) 29.5 (26.5, 32.5) 32.7 (28.8, 36.5) 
Stratified RD /100 (95% CI)  −0.9 (−5.0, 3.1) Ref −3.2 (−8.0, 1.6) Ref 
Stratified RR (95% CI)  1.0 (0.8, 1.1) Ref 0.9 (0.8, 1.0) Ref 
Common Ref RD /100 (95% CI) −2.8 (−7.2, 1.7) −1.8 (−7.0, 3.3) −3.2 (−8.0, 1.6) Ref 
Common Ref RR (95% CI) 0.9 (0.8, 1.0) 0.9 (0.8, 1.1) 0.9 (0.8, 1.0) Ref 

Thrombocytopenia      

Age 75+  
   

3 months     
Risk /100 (95% CI) 7.4 (6.3, 8.4) 12.8 (11.0, 14.7) 7.4 (5.7, 9.0) 7.5 (5.7, 9.3) 
Stratified RD /100 (95% CI)  −5.5 (−7.5, −3.4) Ref −0.1 (−2.5, 2.2) Ref 
Stratified RR (95% CI)  0.6 (0.5, 0.7) Ref 1.0 (0.7, 1.3) Ref 
Common Ref RD /100 (95% CI) −0.1 (−2.2, 2.0) 5.3 (2.6, 8.0) −0.1 (−2.5, 2.2) Ref 
Common Ref RR (95% CI) 1.0 (0.7, 1.3) 1.7 (1.2, 2.2) 1.0 (0.7, 1.3) Ref 

6 months      
Risk /100 (95% CI) 10.5 (9.0, 11.9) 14.3 (12.2, 16.4) 11.4 (9.2, 13.6) 9.2 (7.1, 11.3) 
Stratified RD /100 (95% CI)  −3.8 (−6.3, −1.4) Ref 2.2 (−0.8, 5.1) Ref 
Stratified RR (95% CI)  0.7 (0.6, 0.9) Ref 1.3 (0.9, 1.6) Ref 
Common Ref RD /100 (95% CI) 1.3 (−1.3, 3.9) 5.1 (2.0, 8.2) 2.2 (−0.8, 5.1) Ref 
Common Ref RR (95% CI) 1.2 (0.8, 1.5) 1.6 (1.1, 2.0) 1.3 (0.9, 1.6) Ref 

12 months     
Risk /100 (95% CI) 13.0 (11.4, 14.6) 15.4 (13.2, 17.6) 15.6 (8.6, 22.6) 10.8 (8.6, 13.0) 
Stratified RD /100 (95% CI)  −2.4 (−5.0, 0.2) Ref 4.8 (−2.4, 12.0) Ref 
Stratified RR (95% CI)  0.8 (0.7, 1.0) Ref 1.5 (0.8, 2.1) Ref 
Common Ref RD /100 (95% CI) 2.2 (−0.5, 4.9) 4.6 (1.4, 7.8) 4.8 (−2.4, 12.0) Ref 
Common Ref RR (95% CI) 1.2 (0.9, 1.5) 1.4 (1.1, 1.8) 1.5 (0.8, 2.1) Ref 
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 Exposed to IMiDs during LOT 1 Not Exposed to IMiDs during LOT 1 
 

Exposed to IMiDs 
during  
LOT 2 
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IMiDs during 

LOT 2 

Age <75  
   

3 months     
Risk /100 (95% CI) 7.4 (6.3, 8.4) 12.8 (11.0, 14.7) 7.4 (5.7, 9.0) 7.5 (5.7, 9.3) 
Stratified RD /100 (95% CI)  −5.5 (−7.5, −3.4) Ref −0.1 (−2.5, 2.2) Ref 
Stratified RR (95% CI)  0.6 (0.5, 0.7) Ref 1.0 (0.7, 1.3) Ref 
Common Ref RD /100 (95% CI) −0.1 (−2.2, 2.0) 5.3 (2.6, 8.0) −0.1 (−2.5, 2.2) Ref 
Common Ref RR (95% CI) 1.0 (0.7, 1.3) 1.7 (1.2, 2.2) 1.0 (0.7, 1.3) Ref 

6 months      
Risk /100 (95% CI) 10.5 (9.0, 11.9) 14.3 (12.2, 16.4) 11.4 (9.2, 13.6) 9.2 (7.1, 11.3) 
Stratified RD /100 (95% CI)  −3.8 (−6.3, −1.4) Ref 2.2 (−0.8, 5.1) Ref 
Stratified RR (95% CI)  0.7 (0.6, 0.9) Ref 1.3 (0.9, 1.6) Ref 
Common Ref RD /100 (95% CI) 1.3 (−1.3, 3.9) 5.1 (2.0, 8.2) 2.2 (−0.8, 5.1) Ref 
Common Ref RR (95% CI) 1.2 (0.8, 1.5) 1.6 (1.1, 2.0) 1.3 (0.9, 1.6) Ref 

12 months     
Risk /100 (95% CI) 13.0 (11.4, 14.6) 15.4 (13.2, 17.6) 15.6 (8.6, 22.6) 10.8 (8.6, 13.0) 
Stratified RD /100 (95% CI)  −2.4 (−5.0, 0.2) Ref 4.8 (−2.4, 12.0) Ref 
Stratified RR (95% CI)  0.8 (0.7, 1.0) Ref 1.5 (0.8, 2.1) Ref 
Common Ref RD /100 (95% CI) 2.2 (−0.5, 4.9) 4.6 (1.4, 7.8) 4.8 (−2.4, 12.0) Ref 
Common Ref RR (95% CI) 1.2 (0.9, 1.5) 1.4 (1.1, 1.8) 1.5 (0.8, 2.1) Ref 

 

Treatment Effect according to Cytogenetic Risk  

The risks of each cytopenia associated with second LOT IMiD exposure were not different 

between patients with high versus standard cytogenetic risk at baseline (Figure 24 and Table 

27). The relative risks of each cytopenia for those exposed, versus unexposed, to IMiDs during 

the second LOT were not impacted by stratification on cytogenetic risk.  
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Figure 24. Cumulative incidence of cytopenias following second line of therapy initiation 
in those exposed versus unexposed to immunomodulatory drugs during the second line 
of therapy, according to cytogenetic risk 
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Table 27. Risks per 100, risk differences per 100, and risk ratios of cytopenias following 
second line of therapy initiation in those exposed versus unexposed to 
immunomodulatory drugs, stratified by cytogenetic risk  

 
Exposed to IMiDs 

during LOT 2 
Risk / 100 (95% CI) 

Not Exposed to IMiDs 
during LOT 2 

Risk / 100 (95% CI) 

Risk Difference 
/ 100 (95% CI) 

Risk Ratio (95% CI) 

High Risk     

Anemia     
3 months 12.4 (9.8, 14.9) 13.7 (10.7, 16.8) −1.4 (−4.8, 2.1) 0.9 (0.7, 1.2) 
6 months  15.4 (12.5, 18.3) 16.4 (12.9, 19.8) −1.0 (−5.1, 3.1) 0.9 (0.7, 1.2) 
12 months 17.7 (14.5, 20.8) 19.6 (15.5, 23.7) −1.9 (−6.7, 2.8) 0.9 (0.7, 1.1) 

Leukopenia     
3 months 12.9 (10.3, 15.4) 13.8 (10.4, 17.1) −0.9 (−5.0, 3.2) 0.9 (0.7, 1.2) 
6 months  16.3 (13.5, 19.1) 15.5 (11.8, 19.1) 0.8 (−3.6, 5.3) 1.1 (0.8, 1.4) 
12 months 19.9 (16.6, 23.1) 16.7 (12.5, 21.0) 3.1 (−2.0, 8.2) 1.2 (0.9, 1.6) 

Neutropenia     
3 months 12.6 (10.0, 15.2) 11.9 (8.8, 15.1) 0.7 (−3.0, 4.4) 1.1 (0.7, 1.4) 
6 months  17.7 (14.4, 21.0) 14.0 (10.5, 17.5) 3.7 (−0.5, 7.9) 1.3 (0.9, 1.6) 
12 months 23.6 (19.6, 27.7) 16.5 (12.0, 21.0) 7.1 (1.5, 12.7) 1.5 (1.0, 1.9) 

Lymphocytopenia     
3 months 24.9 (21.9, 27.9) 28.4 (24.3, 32.5) −3.5 (−8.5, 1.5) 0.9 (0.7, 1.0) 
6 months  30.2 (26.9, 33.4) 32.9 (28.5, 37.3) −2.7 (−8.2, 2.8) 0.9 (0.8, 1.1) 
12 months 35.1 (31.2, 38.9) 35.9 (30.7, 41.0) −0.8 (−7.2, 5.6) 1.0 (0.8, 1.2) 

Thrombocytopenia      
3 months 9.4 (6.8, 12.0) 15.2 (11.8, 18.7) −5.8 (−9.9, −1.8) 0.6 (0.4, 0.8) 
6 months  13.5 (10.7, 16.3) 17.1 (13.2, 21.0) −3.7 (−8.1, 0.8) 0.8 (0.6, 1.0) 
12 months 18.3 (15.0, 21.7) 18.1 (13.9, 22.3) 0.2 (−4.6, 5.1) 1.0 (0.7, 1.3) 

Standard Risk     

Anemia     
3 months 9.3 (8.2, 10.5) 10.8 (9.3, 12.4) −1.5 (−3.3, 0.3) 0.9 (0.7, 1.0) 
6 months  12.5 (11.2, 13.9) 12.9 (11.2, 14.7) −0.4 (−2.5, 1.7) 1.0 (0.8, 1.1) 
12 months 15.6 (14.0, 17.3) 15.3 (13.2, 17.5) 0.3 (−2.3, 2.9) 1.0 (0.9, 1.2) 

Leukopenia     
3 months 9.6 (8.4, 10.8) 9.2 (7.7, 10.6) 0.4 (−1.4, 2.3) 1.1 (0.8, 1.3) 
6 months  13.1 (11.7, 14.5) 10.6 (9.0, 12.3) 2.5 (0.5, 4.5) 1.2 (1.0, 1.5) 
12 months 16.6 (15.0, 18.2) 12.1 (10.2, 14.1) 4.4 (1.9, 6.9) 1.4 (1.1, 1.6) 

Neutropenia     
3 months 10.3 (9.1, 11.5) 8.0 (6.6, 9.3) 2.4 (0.5, 4.2) 1.3 (1.0, 1.6) 
6 months  15.1 (13.6, 16.7) 9.7 (8.1, 11.3) 5.4 (3.1, 7.7) 1.6 (1.3, 1.9) 
12 months 20.2 (18.3, 22.1) 12.5 (10.6, 14.5) 7.7 (4.9, 10.4) 1.6 (1.3, 1.9) 

Lymphocytopenia     
3 months 19.8 (18.2, 21.5) 21.4 (19.4, 23.4) −1.6 (−4.2, 0.9) 0.9 (0.8, 1.0) 
6 months  24.2 (22.5, 26.0) 25.6 (23.3, 27.8) −1.3 (−4.2, 1.6) 0.9 (0.8, 1.1) 
12 months 28.2 (26.3, 30.0) 29.8 (27.2, 32.4) −1.6 (−4.8, 1.6) 0.9 (0.8, 1.1) 

Thrombocytopenia      
3 months 6.8 (5.8, 7.9) 9.6 (8.2, 11.1) −2.8 (−4.5, −1.2) 0.7 (0.6, 0.9) 
6 months  10.0 (8.7, 11.4) 11.2 (9.5, 12.8) −1.1 (−3.1, 0.8) 0.9 (0.7, 1.1) 
12 months 12.5 (11.0, 14.0) 12.6 (10.9, 14.3) −0.1 (−2.2, 2.0) 1.0 (0.8, 1.2) 

 

The were no differences in the risks of each cytopenia associated with first and/or second LOT 

IMiD exposure (Figure 25 and Table 28). The relative risks of each cytopenia for those 

sequentially, versus never, exposed to IMiDs were not impacted by stratification on cytogenetic 

risk.  
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Figure 25. Cumulative incidence of cytopenias following second line of therapy initiation 
in those exposed versus unexposed to immunomodulatory drugs during the second line 
of therapy, stratified by exposure during the first line of therapy and according to 
cytogenetic risk 
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Table 28. Risks per 100, risk differences per 100, and risk ratios of cytopenias following 
second line of therapy initiation in those exposed versus unexposed to 
immunomodulatory drugs, stratified by first line of therapy exposure and according to 
cytogenetic risk 

 Exposed to IMiDs during LOT 1 Not Exposed to IMiDs during LOT 1 
 

Exposed to IMiDs 
during  
LOT 2 

Not Exposed to 
IMiDs during 

LOT 2 

Exposed to 
IMiDs during 

LOT 2 

Not Exposed to 
IMiDs during 

LOT 2 

Anemia  
   

High Cytogenetic Risk   
   

3 months     
Risk /100 (95% CI) 9.7 (8.4, 10.9) 11.6 (10.1, 13.1) 10.7 (8.8, 12.6) 11.2 (9.0, 13.5) 
Stratified RD /100 (95% CI)  −1.9 (−3.8, −0.1) Ref −0.5 (−3.4, 2.4) Ref 
Stratified RR (95% CI)  0.8 (0.7, 1.0) Re 1.0 (0.7, 1.2) Ref 
Common Ref RD /100 (95% CI) −1.6 (−4.1, 1.0) 0.4 (−2.3, 3.0) −0.5 (−3.4, 2.4) Ref 
Common Ref RR (95% CI) 0.9 (0.7, 1.1) 1.0 (0.8, 1.3) 1.0 (0.7, 1.2) Ref 

6 months      
Risk /100 (95% CI) 12.4 (11.0, 13.9) 13.8 (12.0, 15.6) 14.2 (12.0, 16.4) 13.6 (11.2, 15.9) 
Stratified RD /100 (95% CI)  −1.4 (−3.5, 0.8) Ref 0.6 (−2.5, 3.8) Ref 
Stratified RR (95% CI)  0.9 (0.8, 1.1) Ref 1.1 (0.8, 1.3) Ref 
Common Ref RD /100 (95% CI) −1.1 (−3.9, 1.6) 0.2 (−2.7, 3.1) 0.6 (−2.5, 3.8) Ref 
Common Ref RR (95% CI) 0.9 (0.7, 1.1) 1.0 (0.8, 1.2) 1.1 (0.8, 1.3) Ref 

12 months     
Risk /100 (95% CI) 15.1 (13.4, 16.8) 15.5 (13.4, 17.7) 17.8 (15.2, 20.4) 17.6 (14.4, 20.8) 
Stratified RD /100 (95% CI)  −0.4 (−2.9, 2.0) Ref 0.2 (−4.0, 4.4) Ref 
Stratified RR (95% CI)  1.0 (0.8, 1.1) Ref 1.0 (0.8, 1.3) Ref 
Common Ref RD /100 (95% CI) −2.6 (−6.1, 0.9) −2.1 (−5.9, 1.6) 0.2 (−4.0, 4.4) Ref 
Common Ref RR (95% CI) 0.9 (0.7, 1.0) 0.9 (0.7, 1.1) 1.0 (0.8, 1.3) Ref 

Standard Cytogenetic Risk   
   

3 months     
Risk /100 (95% CI) 9.7 (8.4, 10.9) 11.6 (10.1, 13.1) 10.7 (8.8, 12.6) 11.2 (9.0, 13.5) 
Stratified RD /100 (95% CI)  −1.9 (−3.8, −0.1) Ref −0.5 (−3.4, 2.4) Ref 
Stratified RR (95% CI)  0.8 (0.7, 1.0) Ref 1.0 (0.7, 1.2) Ref 
Common Ref RD /100 (95% CI) −1.6 (−4.1, 1.0) 0.4 (−2.3, 3.0) −0.5 (−3.4, 2.4) Ref 
Common Ref RR (95% CI) 0.9 (0.7, 1.1) 1.0 (0.8, 1.3) 1.0 (0.7, 1.2) Ref 

6 months      
Risk /100 (95% CI) 12.4 (11.0, 13.9) 13.8 (12.0, 15.6) 14.2 (12.0, 16.4) 13.6 (11.2, 15.9) 
Stratified RD /100 (95% CI)  −1.4 (−3.5, 0.8) Ref 0.6 (−2.5, 3.8) Ref 
Stratified RR (95% CI)  0.9 (0.8, 1.1) Ref 1.1 (0.8, 1.3) Ref 
Common Ref RD /100 (95% CI) −1.1 (−3.9, 1.6) 0.2 (−2.7, 3.1) 0.6 (−2.5, 3.8) Ref 
Common Ref RR (95% CI) 0.9 (0.7, 1.1) 1.0 (0.8, 1.2) 1.1 (0.8, 1.3) Ref 

12 months     
Risk /100 (95% CI) 15.1 (13.4, 16.8) 15.5 (13.4, 17.7) 17.8 (15.2, 20.4) 17.6 (14.4, 20.8) 
Stratified RD /100 (95% CI)  −0.4 (−2.9, 2.0) Ref 0.2 (−4.0, 4.4) Ref 
Stratified RR (95% CI)  1.0 (0.8, 1.1) Ref 1.0 (0.8, 1.3) Ref 
Common Ref RD /100 (95% CI) −2.6 (−6.1, 0.9) −2.1 (−5.9, 1.6) 0.2 (−4.0, 4.4) Ref 
Common Ref RR (95% CI) 0.9 (0.7, 1.0) 0.9 (0.7, 1.1) 1.0 (0.8, 1.3) Ref 

Leukopenia     

High Cytogenetic Risk   
   

3 months     
Risk /100 (95% CI) 11.5 (10.2, 12.9) 11.7 (9.9, 13.4) 8.4 (6.9, 9.8) 8.0 (6.1, 9.9) 
Stratified RD /100 (95% CI)  −0.1 (−2.2, 2.0) Ref 0.3 (−2.0, 2.7) Ref 
Stratified RR (95% CI)  1.0 (0.8, 1.2) Ref 1.1 (0.7, 1.4) Ref 
Common Ref RD /100 (95% CI) 3.5 (1.3, 5.8) 3.6 (1.0, 6.3) 0.3 (−2.0, 2.7) Ref 
Common Ref RR (95% CI) 1.5 (1.1, 1.9) 1.5 (1.0, 1.9) 1.1 (0.7, 1.4) Ref 

6 months      
Risk /100 (95% CI) 15.0 (13.6, 16.5) 13.0 (11.1, 14.9) 11.8 (10.0, 13.7) 9.8 (7.7, 11.9) 
Stratified RD /100 (95% CI)  2.0 (−0.3, 4.4) Ref 2.0 (−0.7, 4.8) Ref 
Stratified RR (95% CI)  1.2 (1.0, 1.4) Ref 1.2 (0.9, 1.6) Ref 
Common Ref RD /100 (95% CI) 5.2 (2.7, 7.7) 3.2 (0.3, 6.0) 2.0 (−0.7, 4.8) Ref 
Common Ref RR (95% CI) 1.6 (1.2, 1.9) 1.3 (1.0, 1.7) 1.2 (0.9, 1.6) Ref 

12 months     
Risk /100 (95% CI) 17.9 (16.2, 19.6) 14.4 (12.2, 16.6) 16.2 (13.8, 18.6) 11.5 (9.1, 14.0) 
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Stratified RD /100 (95% CI)  3.5 (0.7, 6.3) Ref 4.7 (1.1, 8.3) Ref 
Stratified RR (95% CI)  1.3 (1.0, 1.5) Ref 1.4 (1.0, 1.8) Ref 
Common Ref RD /100 (95% CI) 6.4 (3.5, 9.3) 2.9 (−0.3, 6.1) 4.7 (1.1, 8.3) Ref 
Common Ref RR (95% CI) 1.6 (1.2, 1.9) 1.3 (0.9, 1.6) 1.4 (1.0, 1.8) Ref 

Standard Cytogenetic Risk   
   

3 months     
Risk /100 (95% CI) 11.5 (10.2, 12.9) 11.7 (9.9, 13.4) 8.4 (6.9, 9.8) 8.0 (6.1, 9.9) 
Stratified RD /100 (95% CI)  −0.1 (−2.2, 2.0) Ref 0.3 (−2.0, 2.7) Ref 
Stratified RR (95% CI)  1.0 (0.8, 1.2) Ref 1.1 (0.7, 1.4) Ref 
Common Ref RD /100 (95% CI) 3.5 (1.3, 5.8) 3.6 (1.0, 6.3) 0.3 (−2.0, 2.7) Ref 
Common Ref RR (95% CI) 1.5 (1.1, 1.9) 1.5 (1.0, 1.9) 1.1 (0.7, 1.4) Ref 

6 months      
Risk /100 (95% CI) 15.0 (13.6, 16.5) 13.0 (11.1, 14.9) 11.8 (10.0, 13.7) 9.8 (7.7, 11.9) 
Stratified RD /100 (95% CI)  2.0 (−0.3, 4.4) Ref 2.0 (−0.7, 4.8) Ref 
Stratified RR (95% CI)  1.2 (1.0, 1.4) Ref 1.2 (0.9, 1.6) Ref 
Common Ref RD /100 (95% CI) 5.2 (2.7, 7.7) 3.2 (0.3, 6.0) 2.0 (−0.7, 4.8) Ref 
Common Ref RR (95% CI) 1.6 (1.2, 1.9) 1.3 (1.0, 1.7) 1.2 (0.9, 1.6) Ref 

12 months     
Risk /100 (95% CI) 17.9 (16.2, 19.6) 14.4 (12.2, 16.6) 16.2 (13.8, 18.6) 11.5 (9.1, 14.0) 
Stratified RD /100 (95% CI)  3.5 (0.7, 6.3) Ref 4.7 (1.1, 8.3) Ref 
Stratified RR (95% CI)  1.3 (1.0, 1.5) Ref 1.4 (1.0, 1.8) Ref 
Common Ref RD /100 (95% CI) 6.4 (3.5, 9.3) 2.9 (−0.3, 6.1) 4.7 (1.1, 8.3) Ref 
Common Ref RR (95% CI) 1.6 (1.2, 1.9) 1.3 (0.9, 1.6) 1.4 (1.0, 1.8) Ref 

Neutropenia     

High Cytogenetic Risk   
   

3 months     
Risk /100 (95% CI) 12.5 (11.1, 13.8) 10.3 (8.6, 12.0) 8.2 (6.6, 9.9) 6.4 (4.7, 8.1) 
Stratified RD /100 (95% CI)  2.2 (−0.1, 4.4) Ref 1.8 (−0.6, 4.2) Ref 
Stratified RR (95% CI)  1.2 (1.0, 1.5) Ref 1.3 (0.9, 1.8) Ref 
Common Ref RD /100 (95% CI) 6.1 (4.0, 8.1) 3.9 (1.4, 6.3) 1.8 (−0.6, 4.2) Ref 
Common Ref RR (95% CI) 2.0 (1.4, 2.5) 1.6 (1.1, 2.2) 1.3 (0.9, 1.8) Ref 

6 months      
Risk /100 (95% CI) 17.0 (15.4, 18.6) 12.1 (10.3, 14.0) 13.6 (11.4, 15.8) 8.2 (6.3, 10.1) 
Stratified RD /100 (95% CI)  4.9 (2.4, 7.4) Ref 5.4 (2.4, 8.4) Ref 
Stratified RR (95% CI)  1.4 (1.2, 1.7) Ref 1.7 (1.2, 2.2) Ref 
Common Ref RD /100 (95% CI) 8.8 (6.4, 11.3) 4.0 (1.4, 6.5) 5.4 (2.4, 8.4) Ref 
Common Ref RR (95% CI) 2.1 (1.6, 2.7) 1.5 (1.1, 1.9) 1.7 (1.2, 2.2) Ref 

12 months     
Risk /100 (95% CI) 22.6 (20.6, 24.6) 15.3 (12.8, 17.7) 18.1 (15.7, 20.6) 10.6 (8.2, 13.0) 
Stratified RD /100 (95% CI)  7.4 (4.2, 10.5) Ref 7.5 (4.3, 10.8) Ref 
Stratified RR (95% CI)  1.5 (1.2, 1.8) Ref 1.7 (1.3, 2.2) Ref 
Common Ref RD /100 (95% CI) 12.0 (9.0, 15.1) 4.7 (1.3, 8.1) 7.5 (4.3, 10.8) Ref 
Common Ref RR (95% CI) 2.2 (1.6, 2.7) 1.5 (1.1, 1.9) 1.7 (1.3, 2.2) Ref 

Standard Cytogenetic Risk   
   

3 months     
Risk /100 (95% CI) 12.5 (11.1, 13.8) 10.3 (8.6, 12.0) 8.2 (6.6, 9.9) 6.4 (4.7, 8.1) 
Stratified RD /100 (95% CI)  2.2 (−0.1, 4.4) Ref 1.8 (−0.6, 4.2) Ref 
Stratified RR (95% CI)  1.2 (1.0, 1.5) Ref 1.3 (0.9, 1.8) Ref 
Common Ref RD /100 (95% CI) 6.1 (4.0, 8.1) 3.9 (1.4, 6.3) 1.8 (−0.6, 4.2) Ref 
Common Ref RR (95% CI) 2.0 (1.4, 2.5) 1.6 (1.1, 2.2) 1.3 (0.9, 1.8) Ref 

6 months      
Risk /100 (95% CI) 17.0 (15.4, 18.6) 12.1 (10.3, 14.0) 13.6 (11.4, 15.8) 8.2 (6.3, 10.1) 
Stratified RD /100 (95% CI)  4.9 (2.4, 7.4) Ref 5.4 (2.4, 8.4) Ref 
Stratified RR (95% CI)  1.4 (1.2, 1.7) Ref 1.7 (1.2, 2.2) Ref 
Common Ref RD /100 (95% CI) 8.8 (6.4, 11.3) 4.0 (1.4, 6.5) 5.4 (2.4, 8.4) Ref 
Common Ref RR (95% CI) 2.1 (1.6, 2.7) 1.5 (1.1, 1.9) 1.7 (1.2, 2.2) Ref 

12 months     
Risk /100 (95% CI) 22.6 (20.6, 24.6) 15.3 (12.8, 17.7) 18.1 (15.7, 20.6) 10.6 (8.2, 13.0) 
Stratified RD /100 (95% CI)  7.4 (4.2, 10.5) Ref 7.5 (4.3, 10.8) Ref 
Stratified RR (95% CI)  1.5 (1.2, 1.8) Ref 1.7 (1.3, 2.2) Ref 
Common Ref RD /100 (95% CI) 12.0 (9.0, 15.1) 4.7 (1.3, 8.1) 7.5 (4.3, 10.8) Ref 
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Common Ref RR (95% CI) 2.2 (1.6, 2.7) 1.5 (1.1, 1.9) 1.7 (1.3, 2.2) Ref 

Lymphocytopenia     

High Cytogenetic Risk   
   

3 months     
Risk /100 (95% CI) 20.8 (19.2, 22.5) 23.0 (20.7, 25.3) 21.4 (19.0, 23.8) 23.4 (20.5, 26.3) 
Stratified RD /100 (95% CI)  −2.1 (−5.1, 0.8) Ref −2.0 (−5.7, 1.7) Ref 
Stratified RR (95% CI)  0.9 (0.8, 1.0) Ref 0.9 (0.8, 1.1) Ref 
Common Ref RD /100 (95% CI) −2.6 (−6.0, 0.8) −0.4 (−4.3, 3.4) −2.0 (−5.7, 1.7) Ref 
Common Ref RR (95% CI) 0.9 (0.8, 1.0) 1.0 (0.8, 1.1) 0.9 (0.8, 1.1) Ref 

6 months      
Risk /100 (95% CI) 25.9 (23.9, 27.8) 27.5 (24.7, 30.2) 25.5 (22.8, 28.1) 27.5 (24.3, 30.6) 
Stratified RD /100 (95% CI)  −1.6 (−5.1, 1.9) Ref −2.0 (−5.9, 1.9) Ref 
Stratified RR (95% CI)  0.9 (0.8, 1.1) Ref 0.9 (0.8, 1.1) Ref 
Common Ref RD /100 (95% CI) −1.6 (−5.3, 2.1) 0.0 (−4.4, 4.4) −2.0 (−5.9, 1.9) Ref 
Common Ref RR (95% CI) 0.9 (0.8, 1.1) 1.0 (0.8, 1.2) 0.9 (0.8, 1.1) Ref 

12 months     
Risk /100 (95% CI) 29.9 (27.8, 32.0) 30.8 (27.6, 34.1) 29.5 (26.5, 32.5) 32.7 (28.9, 36.5) 
Stratified RD /100 (95% CI)  −0.9 (−5.0, 3.1) Ref −3.2 (−8.0, 1.6) Ref 
Stratified RR (95% CI)  1.0 (0.8, 1.1) Ref 0.9 (0.8, 1.0) Ref 
Common Ref RD /100 (95% CI) −2.8 (−7.2, 1.6) −1.9 (−7.0, 3.2) −3.2 (−8.0, 1.6) Ref 
Common Ref RR (95% CI) 0.9 (0.8, 1.0) 0.9 (0.8, 1.1) 0.9 (0.8, 1.0) Ref 

Standard Cytogenetic Risk   
   

3 months     
Risk /100 (95% CI) 20.8 (19.2, 22.5) 23.0 (20.7, 25.3) 21.4 (19.0, 23.8) 23.4 (20.5, 26.3) 
Stratified RD /100 (95% CI)  −2.1 (−5.1, 0.8) Ref −2.0 (−5.7, 1.7) Ref 
Stratified RR (95% CI)  0.9 (0.8, 1.0) Ref 0.9 (0.8, 1.1) Ref 
Common Ref RD /100 (95% CI) −2.6 (−6.0, 0.8) −0.4 (−4.3, 3.4) −2.0 (−5.7, 1.7) Ref 
Common Ref RR (95% CI) 0.9 (0.8, 1.0) 1.0 (0.8, 1.1) 0.9 (0.8, 1.1) Ref 

6 months      
Risk /100 (95% CI) 25.9 (23.9, 27.8) 27.5 (24.7, 30.2) 25.5 (22.8, 28.1) 27.5 (24.3, 30.6) 
Stratified RD /100 (95% CI)  −1.6 (−5.1, 1.9) Ref −2.0 (−5.9, 1.9) Ref 
Stratified RR (95% CI)  0.9 (0.8, 1.1) Ref 0.9 (0.8, 1.1) Ref 
Common Ref RD /100 (95% CI) −1.6 (−5.3, 2.1) 0.0 (−4.4, 4.4) −2.0 (−5.9, 1.9) Ref 
Common Ref RR (95% CI) 0.9 (0.8, 1.1) 1.0 (0.8, 1.2) 0.9 (0.8, 1.1) Ref 

12 months     
Risk /100 (95% CI) 29.9 (27.8, 32.0) 30.8 (27.6, 34.1) 29.5 (26.5, 32.5) 32.7 (28.9, 36.5) 
Stratified RD /100 (95% CI)  −0.9 (−5.0, 3.1) Ref −3.2 (−8.0, 1.6) Ref 
Stratified RR (95% CI)  1.0 (0.8, 1.1) Ref 0.9 (0.8, 1.0) Ref 
Common Ref RD /100 (95% CI) −2.8 (−7.2, 1.6) −1.9 (−7.0, 3.2) −3.2 (−8.0, 1.6) Ref 
Common Ref RR (95% CI) 0.9 (0.8, 1.0) 0.9 (0.8, 1.1) 0.9 (0.8, 1.0) Ref 

Thrombocytopenia      

High Cytogenetic Risk   
   

3 months     
Risk /100 (95% CI) 7.4 (6.3, 8.4) 12.8 (10.9, 14.7) 7.4 (5.7, 9.0) 7.5 (5.7, 9.3) 
Stratified RD /100 (95% CI)  −5.5 (−7.5, −3.4) Ref −0.1 (−2.5, 2.2) Ref 
Stratified RR (95% CI)  0.6 (0.5, 0.7) Ref 1.0 (0.7, 1.3) Ref 
Common Ref RD /100 (95% CI) −0.1 (−2.2, 2.0) 5.3 (2.6, 8.0) −0.1 (−2.5, 2.2) Ref 
Common Ref RR (95% CI) 1.0 (0.7, 1.3) 1.7 (1.2, 2.2) 1.0 (0.7, 1.3) Ref 

6 months      
Risk /100 (95% CI) 10.5 (9.0, 11.9) 14.3 (12.2, 16.4) 11.4 (9.2, 13.6) 9.2 (7.1, 11.3) 
Stratified RD /100 (95% CI)  −3.8 (−6.3, −1.3) Ref 2.2 (−0.8, 5.1) Ref 
Stratified RR (95% CI)  0.7 (0.6, 0.9) Ref 1.3 (0.9, 1.6) Ref 
Common Ref RD /100 (95% CI) 1.3 (−1.3, 3.9) 5.1 (2.0, 8.2) 2.2 (−0.8, 5.1) Ref 
Common Ref RR (95% CI) 1.2 (0.8, 1.5) 1.6 (1.1, 2.0) 1.3 (0.9, 1.6) Ref 

12 months     
Risk /100 (95% CI) 12.9 (11.4, 14.5) 15.4 (13.2, 17.6) 15.5 (9.0, 21.9) 10.8 (8.6, 13.0) 
Stratified RD /100 (95% CI)  −2.5 (−5.1, 0.2) Ref 4.6 (−2.1, 11.4) Ref 
Stratified RR (95% CI)  0.8 (0.7, 1.0) Ref 1.4 (0.8, 2.1) Ref 
Common Ref RD /100 (95% CI) 2.1 (−0.6, 4.8) 4.6 (1.4, 7.8) 4.6 (−2.1, 11.4) Ref 
Common Ref RR (95% CI) 1.2 (0.9, 1.5) 1.4 (1.1, 1.8) 1.4 (0.8, 2.1) Ref 
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Standard Cytogenetic Risk   
   

3 months     
Risk /100 (95% CI) 7.4 (6.3, 8.4) 12.8 (10.9, 14.7) 7.4 (5.7, 9.0) 7.5 (5.7, 9.3) 
Stratified RD /100 (95% CI)  −5.5 (−7.5, −3.4) Ref −0.1 (−2.5, 2.2) Ref 
Stratified RR (95% CI)  0.6 (0.5, 0.7) Ref 1.0 (0.7, 1.3) Ref 
Common Ref RD /100 (95% CI) −0.1 (−2.2, 2.0) 5.3 (2.6, 8.0) −0.1 (−2.5, 2.2) Ref 
Common Ref RR (95% CI) 1.0 (0.7, 1.3) 1.7 (1.2, 2.2) 1.0 (0.7, 1.3) Ref 

6 months      
Risk /100 (95% CI) 10.5 (9.0, 11.9) 14.3 (12.2, 16.4) 11.4 (9.2, 13.6) 9.2 (7.1, 11.3) 
Stratified RD /100 (95% CI)  −3.8 (−6.3, −1.3) Ref 2.2 (−0.8, 5.1) Ref 
Stratified RR (95% CI)  0.7 (0.6, 0.9) Ref 1.3 (0.9, 1.6) Ref 
Common Ref RD /100 (95% CI) 1.3 (−1.3, 3.9) 5.1 (2.0, 8.2) 2.2 (−0.8, 5.1) Ref 
Common Ref RR (95% CI) 1.2 (0.8, 1.5) 1.6 (1.1, 2.0) 1.3 (0.9, 1.6) Ref 

12 months     
Risk /100 (95% CI) 12.9 (11.4, 14.5) 15.4 (13.2, 17.6) 15.5 (9.0, 21.9) 10.8 (8.6, 13.0) 
Stratified RD /100 (95% CI)  −2.5 (−5.1, 0.2) Ref 4.6 (−2.1, 11.4) Ref 
Stratified RR (95% CI)  0.8 (0.7, 1.0) Ref 1.4 (0.8, 2.1) Ref 
Common Ref RD /100 (95% CI) 2.1 (−0.6, 4.8) 4.6 (1.4, 7.8) 4.6 (−2.1, 11.4) Ref 
Common Ref RR (95% CI) 1.2 (0.9, 1.5) 1.4 (1.1, 1.8) 1.4 (0.8, 2.1) Ref 

 

Exploratory Analysis 

G-CSF initiation occurred on the index date (second LOT start date) for 26 patients, who were 

therefore excluded from this analysis. The incidence of G-CSF prescribing following initiation of 

the second LOT was similar among those exposed, versus unexposed, to IMiDs across the 

entirety of follow-up (3 months 6.1% versus 7.5%, 6 months 9.3% versus 9.2%, 12 months 

11.3% versus 10.7%) (Table 29 and Figure 26).  

Table 29. Risks per 100, risk differences per 100, and risk ratios of G-CSF prescribing 
following second line of therapy initiation in those exposed versus unexposed to 
immunomodulatory drugs  

 Exposed to IMiDs 
during LOT 2  

Risk /100 (95% CI) 

Not Exposed to IMiDs 
during LOT 2 

Risk /100 (95% CI) 

Risk Difference 
/100 (95% CI) 

Risk Ratio (95% CI) 

3 months 6.1 (5.2, 6.9) 7.5 (6.3, 8.7) -1.4 (-2.8, 0.0) 0.8 (0.7, 1.0) 
6 months  9.3 (8.2, 10.4) 9.2 (7.9, 10.6) 0.0 (-1.6, 1.7) 1.0 (0.8, 1.2) 
12 months 11.3 (10.0, 12.6) 10.7 (9.2, 12.3) 0.6 (-1.4, 2.5) 1.1 (0.9, 1.2) 
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Figure 26. Cumulative incidence of G-CSF prescribing following second line of therapy 
initiation in those exposed versus unexposed to immunomodulatory drugs during the 
second line of therapy  

 

 

Stratification on prior IMiD exposure did not meaningfully change the incidence of G-CSF 

prescribing (Table 30 and Figure 27). 

Figure 27. Cumulative incidence of G-CSF prescribing following second line of therapy 
initiation in those exposed versus unexposed to immunomodulatory drugs during the 
second line of therapy, stratified by exposure during the first line of therapy  
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Table 30. Risks per 100, risk differences per 100, and risk ratios of G-CSF prescribing 
following second line of therapy initiation in those exposed versus unexposed to 
immunomodulatory drugs, stratified by first line of therapy exposure  

 Exposed to IMiDs during LOT 1 Not Exposed to IMiDs during LOT 1 
 

Exposed to 
IMiDs during 

LOT 2 

Not Exposed to 
IMiDs during 

LOT 2 

Exposed to 
IMiDs during 

LOT 2 

Not Exposed to 
IMiDs during 

LOT 2 

3 months     
Risk /100 (95% CI) 6.7 (5.5, 7.8) 8.0 (6.5, 9.5) 5.1 (3.8, 6.3) 6.6 (4.8, 8.4) 
Stratified RD /100 (95% CI)  -1.3 (-3.2, 0.6) Ref -1.5 (-3.6, 0.6) Ref 
Stratified RR (95% CI)  0.8 (0.6, 1.1) Ref 0.8 (0.5, 1.1) Ref 
Common Ref RD /100 (95% CI) 0.1 (-1.9, 2.1) 1.4 (-1.0, 3.9) -1.5 (-3.6, 0.6) Ref 
Common Ref RR (95% CI) 1.0 (0.7, 1.4) 1.2 (0.8, 1.7) 0.8 (0.5, 1.1) Ref 

6 months      
Risk /100 (95% CI) 9.7 (8.3, 11.1) 9.6 (7.8, 11.4) 8.4 (6.7, 10.2) 8.6 (6.4, 10.7) 
Stratified RD /100 (95% CI)  0.1 (-2.1, 2.2) Ref -0.1 (-2.7, 2.5) Ref 
Stratified RR (95% CI)  1.0 (0.8, 1.2) Ref 1.0 (0.7, 1.3) Ref 
Common Ref RD /100 (95% CI) 1.1 (-1.4, 3.6) 1.1 (-1.9, 4.0) -0.1 (-2.7, 2.5) Ref 
Common Ref RR (95% CI) 1.1 (0.8, 1.5) 1.1 (0.8, 1.5) 1.0 (0.7, 1.3) Ref 

12 months     
Risk /100 (95% CI) 11.3 (9.7, 12.9) 11.3 (9.3, 13.3) 11.0 (9.0, 13.0) 9.8 (7.3, 12.2) 
Stratified RD /100 (95% CI)  0.0 (-2.5, 2.5) Ref 1.3 (-1.7, 4.3) Ref 
Stratified RR (95% CI)  1.0 (0.8, 1.2) Ref 1.1 (0.8, 1.5) Ref 
Common Ref RD /100 (95% CI) 1.6 (-1.2, 4.3) 1.6 (-1.7, 4.8) 1.3 (-1.7, 4.3) Ref 
Common Ref RR (95% CI) 1.2 (0.9, 1.5) 1.2 (0.8, 1.5) 1.1 (0.8, 1.5) Ref 

 

Discussion 

Overall, exposure to IMiDs during the second LOT, compared with no iMiD in the second LOT, 

increased the risk of severe leukopenia and neutropenia, but not anemia, lymphocytopenia, and 

thrombocytopenia. It appears that the association with leukopenia (which is based on counts of 

total white blood cells) may be driven by neutrophil counts, rather than other types of white 

blood cells (e.g., lymphocytes), given the observed association for neutropenia yet not for 

lymphocytopenia. Proposed biologic mechanisms in the literature are consistent with these 

results, as IMiDs have been linked with disruption of blood cell development processes specific 

to granulocytes (which give rise to neutrophils), yet not to those that give rise to lymphocytes.130-

132 No strong evidence of biologic mechanisms relating IMiDs to development of red blood cells 

or platelets has been published, perhaps supporting why we did not observe treatment-related 

differences for the risks of cytopenias related to these blood cell types.133, 134 

Results also suggest sequential exposure to IMiDs across two LOTs to be mainly of concern for 
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risk of severe cytopenias related to white blood cells, especially neutrophils, given the observed 

trends in the common referent relative risks for leukopenia and neutropenia only. The specificity 

of this finding to this type of white blood cell, as described above, is supported by biological 

mechanisms related to IMiD suppression of neutrophil production.130-132 The mechanism by 

which first LOT IMiD exposure may impact post-second LOT neutrophil production, independent 

of its effect on post-first LOT neutrophil production, is not clear as previous studies, to our 

knowledge, have not described neutropenia risks associated with sequential IMiD exposure. A 

pharmacologic study using a mouse model to inhibit the transcription factors involved in the 

IMiD-associated granulocytes development pathway found the effects to be reversible following 

removal of the inhibitor, with no evidence of long-term impairment; the impact of IMiD removal 

and re-treatment in MM patients, however, has not been examined.132 

For all cytopenias under study, the risks were substantially higher among those with, compared 

to without, a recent history. We expect this to be indicative of an underlying propensity for the 

myelosuppression, rather than a continuation of the previously experienced low blood cell 

counts, given the acuteness of cytopenia episodes (i.e., due to corrections with dosing and 

regimen adjustments, which are expected to recover blood counts within one month), evidenced 

in our study by the observation that only a subset of patients with cytopenias during the first 

LOT had cytopenias during the second LOT as well.135, 143, 188-192 However, future research, 

perhaps in an experimental setting in which regimented blood testing at regular intervals is 

possible, should examine blood count trajectories through the treatment course for MM patients. 

Results suggest sequential exposure to IMiDs across two LOTs to be associated with a 

heightened risk of severe cytopenias related to white blood cells, especially neutrophils, for 

those who have a recent history of these blood cell deficiencies. Given the observation that the 

risks of cytopenias not related to white blood cells (anemia, thrombocytopenia) among those 

with no recent history were low (<10%), even for those sequentially exposed, it does not appear 
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that prescribing choices at the second line of therapy need be concerned with whether the 

choice to administer an IMiD will impact risks of these cytopenias for those without a history. 

We also explored the impact on the resulting relative risks of stratifying on patient age (75+ 

versus <75) and cytogenetic risk at baseline. We did not find stratification on patient age 

category to notably alter the cumulative risks or relative risks of any of the cytopenias under 

study for those exposed, versus unexposed, to IMiDs during the first and/or second LOTs. 

Patient age is a known risk factor for cytopenia, so we had expected to observe at least 

heightened cumulative risks of each cytopenia in the age 75+ strata.143 However, perhaps this 

binary stratification is not meaningful and instead a differential risk would have been observed at 

an alternative categorization. In any case, results suggest that clinicians need not have special 

concern with prescribing sequential IMiDs on the risk of white blood cell cytopenias, especially 

neutropenia, for older versus younger adults independently of cytopenia history. We also did not 

find stratification on cytogenetic risk at baseline to alter the cumulative risks or relative risks of 

any of the cytopenias under study for those exposed, versus unexposed, to IMiDs during the 

first and/or second LOTs. This suggests, similarly to age, that baseline cytogenetic risk (which is 

generally used as a tool for disease prognosis prediction, not necessarily for hematologic 

adverse event prediction) does not alter the IMiD-cytopenia relationship and therefore may not 

need to be a consideration when deciding whether it is safe to prescribe a sequential IMiD 

treatment in terms of cytopenia risk.159  

Despite the associations observed for risks of severe neutropenia following second LOT 

initiation among those with varying first and second LOT IMiD exposure, no meaningful 

differences in the prescribing of G-CSF were observed. Given that G-CSF is used to counteract 

neutropenia by stimulating neutrophil production, we had expected the cumulative incidence of 

G-CSF prescribing to mimic the patterns observed for severe neutropenia incidence.186, 187 

Treatment-related cytopenia episodes are addressed via interruptions in the treatment regimen 
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or reductions in treatment dosage to allow for recovery of blood cell counts back to normal 

levels.143, 188 G-CSF support is often a recommended treatment only after the failure of dose 

delays or reductions alone to recover neutrophil levels.143, 188 Randomized clinical trials involving 

IMiD treatment arms have reported that dose reductions and delays due to neutropenia may 

occur in 4–7% and 9–23% of MM patients, respectively.146, 147 Unfortunately, we were unable to 

examine dose reductions and delays as endpoints in our analysis due to the limitations of the 

data available in the Flatiron database. It is possible that patients exposed, versus unexposed, 

to IMiDs have their excess neutropenia incidence addressed via dose changes, such that the 

remaining patients needing the extra support of G-CSF are a similar proportion to those also 

requiring this support in the unexposed group.  

This analysis is not without limitations. First, as the Flatiron database compiles EHR data from 

oncology clinics only, diagnoses and blood draws occurring in other settings will be under-

recorded. In addition to having implications on the ascertainment of our study outcomes (as well 

as observed rates of G-CSF prescribing in the exploratory analysis), the under-reporting of 

diagnoses and laboratory results from other settings hinders our ability to examine additional, 

clinically relevant safety endpoints that are important consequences of cytopenias, such as 

hospitalizations and infections. We expect, however, the diagnoses, medication administrations, 

and laboratory tests that occurred in the oncology clinic setting to be well-captured and highly 

accurate. Additionally, as our study population constituted cancer patients of advanced age 

receiving active therapy, it is unlikely for patients to be attending alternative care facilities for 

their cancer treatment and therefore we expect the Flatiron database to offer a complete picture 

of the disease-related variables under study.  

Next, the Flatiron database was also subject to additional limitations in terms of the availability 

and completeness of covariate data. There were additional potential confounders of the IMiD-

cytopenia associations that we would have liked to control for, such as bone lytic lesions or 
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bone marrow plasma counts, which are unavailable in the Flatiron database. As a result, there 

is a possibility of at least some residual confounding due to these unmeasured confounders. For 

the confounding variables that were available in the Flatiron database, some were subject to 

missingness. For example, between 10–30% of patients were missing one of the baseline blood 

component level tests and around 40% of patients did not have a record of MM clinical 

characteristics (i.e., ECOG score, ISS, cytogenetics). This level of missingness is similar to that 

observed in clinical trials; pooled analyses of MM clinical trials have reported missingness for 

cytogenetics and ISS to be around 15–25%.193, 194 In our analyses, missing confounder 

information was addressed using multiple imputation. Although this method could result in some 

confounder misclassification, it is generally less biased than other missing data methods (e.g., 

complete case analysis, missing indicator method).195 Multiple imputation was implemented 

under the assumption that the data were missing at random, such that the reason for 

missingness is independent of the values themselves, conditional on the measured covariates. 

It is possible that this assumption could have been violated, as it has been suggested that 

missingness of clinical characteristics in electronic health records databases may be due to an 

unrecorded determination by the physician that the patient is unlikely to be at risk of that 

covariate.196 We do expect, however, that conditional on the values of the observed covariates, 

the missingness is unlikely to be dependent on the missing values themselves (e.g., a blood test 

to detect cytopenias may only be ordered for patients considered likely to have cytopenia, which 

may be defined by the set of their measured characteristics such as age, treatment history, 

performance status).197 

Given that the cytopenia outcomes were defined using blood tests, there is some concern 

regarding potential outcome misclassification. Although care for MM patients is typically 

regimented to involve regular follow-up, it is possible for the timing and frequency of laboratory 

tests to vary at the clinic, physician, or patient level. Furthermore, certain bloodwork may not be 
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conducted on a schedule (as it would in a clinical trial), and rather may occur in response to 

certain patient symptoms or other factors. If patients with symptoms are more likely to visit the 

clinic and have blood testing performed, they may be more likely to have the cytopenia outcome 

observed (i.e., informative presence198). This informative presence bias may result in imperfect 

sensitivity of the cytopenia outcome (i.e., some individuals with cytopenia may not have their 

outcome observed). Furthermore, IMiD versus non-IMiD exposure status may be associated 

with testing frequency, given that treatment guidelines do advise monitoring blood component 

levels for patients receiving IMiDs, causing the outcome misclassification to potentially be 

differential with respect to the exposure.135, 148 In particular, weekly blood component testing is 

recommended for the first eight weeks of IMiD treatment, and monthly thereafter.135, 148 

However, because treatment guidelines do suggest assessing complete blood counts monthly 

for all MM patients, blood component testing may occur at similar frequencies between patients 

receiving and not receiving IMiDs beyond the first two months after treatment initiation.199 In any 

case, we do expect that patients without cytopenia would be unlikely to be recorded as having 

cytopenia (i.e., specificity of the outcome is expected to be perfect or nearly perfect). We 

therefore expect the cytopenia outcome events in this cohort to be under-captured, as a result 

of the imperfect sensitivity and perfect specificity. Compared to neutropenia risks among MM 

patients treated with IMiDs in randomized clinical trials (40–60%), the neutropenia risks 

observed in our analysis (10–20%, except among those with a recent neutropenia history, for 

which the risks were 25–40%) do support an underestimation of the cytopenia outcomes in this 

population.139, 140, 144-148 In the present analyses, patients were censored upon loss to follow-up, 

which was defined as greater than 30 days after the last clinical encounter, which we expect to 

have diminished the number of patients missing a recorded blood test during the follow-up 

period. Inverse probability of censoring weights were used to account for potentially differential 

rates of loss to follow-up, for example if those receiving IMIDs were more likely to be kept under 

more regular care than those on non-IMiD regimens.135, 148 Future studies may further explore 
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the presence and timing of blood component tests during the follow-up period, stratified by IMiD 

exposure status, to understand the potential for bias due to differential misclassification of the 

outcome. Should differential testing rates be supported by the data, potential use of inverse 

probability weighting may help to reduce bias due to non-random blood component testing in 

future studies with this cohort.200 

This analysis is also limited by missingness of the exact date of death. Date of death is only 

reported at the granularity of month and year in the Flatiron database for de-identification 

purposes. The fifteenth day of the month was therefore imputed as the estimated date of death. 

This is the method suggested by Flatiron to best approximate the actual death date. We 

acknowledge, however, that this could have resulted in potential misclassification of the death 

date, which may have altered follow-up time (resulting in either counting of additional follow-up 

time beyond patient death or premature stopping of follow-up time before the patient has died). 

We do not expect, however, this misclassification to be related to either the exposure or the 

outcome.  

Next, in the present analysis, we observed that 10–60% of MM patients experienced one of the 

cytopenias of interest during the first LOT, prior to the index date. We assumed the prior 

experience of cytopenias to be an indicator of a predisposition for future myelosuppression and 

a consideration for second LOT prescribing and therefore treated these variables as 

confounders, and explored as effect modifiers, in our analyses. We further assumed that the 

experience of cytopenias during the first LOT would be an acute event that would have been 

resolved before the initiation of the second, therefore qualifying the experience of cytopenias 

during the second LOT as incident episodes of the outcome.143, 188, 201 Randomized clinical trials 

of MM patients treated with IMiDs have reported dose interruptions and reductions associated 

with any adverse event to occur, respectively, for 66–73% and 22–59% of patients.139, 140, 144-147, 

150 Although less often described in the clinical trial literature, dose interruptions in response to 



130 

 

 

cytopenias specifically have been reported to occur for 5–23% of patients, while dose 

reductions in response to cytopenias occurred for only 4–9% of patients.146, 147 G-CSF 

prescribing in response to IMiD-associated neutropenia incidence has been reported in 22–58% 

of MM patients.128, 139, 140, 145, 147 With these actions, blood counts are expected to be restored 

within one month, with rapid resolution of neutropenia within one week expected with receipt of 

G-CSF.135, 190-192, 202 It is possible, however, that first LOT cytopenias could have failed to 

resolve, which would make the observed occurrence of cytopenias during the second LOT a 

continuation of the previous episode, rather than an incident event. If physicians are aware that 

a patient is experiencing a cytopenia episode at the time of second LOT prescribing, they may 

be more likely to prescribe a non-IMiD regimen given the known myelosuppressive effects of 

IMiDs. This would result in an artificially inflated rate of cytopenias in those unexposed to IMiDs 

during the second LOT and would therefore likely bias any IMiD-associated cytopenia relative 

risk towards the null. However, we do expect this to occur rarely, if ever, given that physicians 

would likely be testing blood counts and delaying treatment start were a patient to exhibit active 

cytopenia. Reassuringly, our stratified analyses based on recent cytopenia histories allowed us 

to examine the associations between receipt of IMiDs and risks of cytopenias in a population 

restricted to those with incident cytopenias post-second LOT. There were no differences in the 

relative risks among the strata with no recent cytopenia history compared with the main 

analyses. 

Another potential threat to validity is channeling bias (a type of confounding).203 It is of concern 

that physicians may use prognostic characteristics to make decisions regarding second line 

(and subsequent) treatment for relapsed MM patients (e.g., age, ECOG performance status, 

comorbidities, history of treatment response123), in which case specific regimens may be 

channeled to, and others withheld from, patients at a heightened risk for cytopenia. Data on 

important prognostic characteristics that may bias second line treatment decisions were 
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available and were used to create inverse probability weights. Additionally, year of availability of 

the various drug combinations could result in selective prescribing, such that patients with 

increasing disease severity and at an increased cytopenia risk could be preferentially prescribed 

newer drug combinations.204 For this reason, year of MM diagnosis was included in the 

treatment model to address this type of confounding. Finally, it is possible that the treatment 

center where care was received could be an important determinant of treatment choice and a 

proxy for socioeconomic cytopenia risk factors. For this reason, sensitivity analyses were 

performed in which patients were clustered within treatment centers. The results of these 

multilevel models were not different from those of the main analyses. It is possible that inclusion 

of practice type (academic versus community) in our treatment models may have adequately 

addressed variation in treatment-related cytopenia risk due to features of the healthcare system, 

and therefore the additional clustering within treatment center did not alter results. Future work 

may examine the impact of the healthcare system, at the level of the treatment center as well as 

the physician, on prescribing patterns and cytopenia risks in MM patients.    

This analysis is also limited by a lack of flexibility in the definitions of the LOT variables, which 

are pre-defined by Flatiron. However, given that the complex algorithm used to define each 

component of LOT (e.g., start date, end date, name) was developed by a team of clinical 

experts, we expect these features to be well-classified and clinically relevant. Although a 

validation study using data on 100 MM patients through September 2017 found suboptimal 

agreement of Flatiron-algorithm-defined versus clinician-defined LOT variables (81% agreement 

for first LOT, 43% agreement for second LOT), several components of the Flatiron algorithm 

have been implemented and/or amended since then and therefore validity is expected to be 

improved.205 Use of the Flatiron pre-defined variables, despite possible misclassification, is 

preferable over re-defining the LOT variables using our own algorithm as it will facilitate 

comparability with other studies conducted in this database in the literature.  
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We considered two features of the Flatiron LOT algorithm to assess the impact of the inflexibility 

of the LOT variables. First, although the Flatiron algorithm allows the start date of the first LOT 

to occur up to 14 days before MM diagnosis (to allow for delayed entry of the diagnosis in the 

EHR), clinical guidance has suggested that delayed entry is quite common and, in some cases, 

may be as long as 28 days. For this reason, we examined the distribution of time between MM 

diagnosis and first LOT start date for evidence of tapering off as the number of days before MM 

diagnosis increases, which would provide evidence that we do not need to be concerned about 

missing a large proportion of MM patients whose first LOT begins more than 14 days before 

their recorded MM diagnosis. This analysis revealed that >90% of MM patients started their first 

LOT on or up to 90 days after their diagnosis date, with 6.5% of patients initiating their first LOT 

after 90 days but within one year of their diagnosis date and 2% initiating a year or more after 

their diagnosis date. The remaining <1.5% (N = 66) of patients had their first LOT start date 

recorded up to 14 days before their diagnosis date. There was no evidence of a decrease in 

patients with LOT start days as the number of days before MM diagnosis increased; the number 

of patients starting the first LOT was evenly distributed from one up to 14 days before diagnosis. 

It is therefore possible that extending the pre-diagnosis first LOT start window up to 28 days 

could have identified additional eligible patients of similar magnitude as the 0- to 14-day 

window. Instead, however, these patients would have their first drug episode the occurred within 

the eligible window counted as their first LOT start date, therefore shifting the recorded start 

date later in time relative to the true start date. This would result in an artificially shorter time to 

cytopenia incidence in these patients. Given that we do not anticipate this potential issue to 

impact a large number of patients, and do not expect the recording of the first LOT initiation 

relative to the diagnosis date to be differential with respect to the IMiD exposure or the 

cytopenia outcomes, we are not concerned about potential bias in this circumstance.  

Next, Flatiron names the LOT based on all drugs received within 28 days of the start of the LOT. 
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Clinical guidance has suggested extending this another week to allow for variability in the 

scheduling of patient follow-up visits (at which point regimen adjustments would occur) and 

delayed entry of medications in the EHR. Certain changes are allowed beyond 28 days, but do 

not update the LOT name. For example, the addition of an IMiD to a regimen that did not 

previously contain an IMiD within 90 days of the LOT start does not advance the LOT number 

and does not result in an updated LOT name. Similarly, de-escalation of a regimen (e.g., from a 

triplet to a doublet) beyond 28 days after the start of the LOT is also considered to be the same 

LOT, so does not update the LOT name. It is therefore theoretically possible that patients who 

begin on an IMiD-containing regimen could have their IMiD removed. Given these scenarios, it 

is possible that some patients could be labeled as using a non-IMiD regimen, yet be taking an 

IMiD (imperfect sensitivity), while others may be labeled as taking an IMiD regimen, yet not 

being taking an IMiD (imperfect specificity). The impact of this potential exposure 

misclassification is unknown, but could potentially be differential with respect to the outcome 

given that patients who are at an increased risk of cytopenias may be more likely to have their 

regimen altered. However, there would be no bias if regimen changes of this nature were to 

occur in direct response to a cytopenia diagnosis, as the regimen as recorded before the 

change would be reflective of the patient’s true exposure.  

This analysis may also suffer from violations of counterfactual model sequential consistency.206 

Within the IMiD exposure group, an individual may be exposed to lenalidomide, pomalidomide, 

or thalidomide, each of which may be associated with a different risk of developing cytopenias. 

For example, neutropenia is a common adverse event associated with both lenalidomide and 

pomalidomide, affecting as many as 60% of MM patients.128, 129, 135-148 In contrast, neutropenia 

does not appear to be a common side effect of thalidomide, affecting less than 10% of MM 

patients.149, 150 Exposure to thalidomide was low in this cohort (less than 3%), which likely 

reduces the impact of outcome variance among the IMiD-exposed due to the receipt of 
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thalidomide versus lenalidomide or pomalidomide. In addition to the receipt of different IMiDs 

drugs, patients may also receive different doses of these drugs, in different combinations with 

other drug classes, which may also contribute to differential cytopenia risk.187 There may also be 

treatment-related outcome variance among those unexposed to IMiDs. For example, 

thrombocytopenia, anemia, and neutropenia are common adverse events associated with 

proteasome inhibitors.187, 207-209 Chemotherapy is also known to have myelosuppressive 

effects.210, 211 The inclusion of all IMiDs in one group does, however, assist with counterfactual 

model sequential positivity, as patient groups contraindicated for lenalidomide (e.g., those 

refractory to lenalidomide) may still be prescribed pomalidomide.123 Future analyses may 

consider more specifically-defined exposure and active comparator definitions (e.g., specific 

drugs, combinations, and doses) to address issues with consistency. This type of analysis may 

not be possible in the Flatiron database given sample size limitations.  

Overall, this analysis informs whether relapsed MM patients who are sequentially exposed to 

IMiDs are at an increased risk of hematologic complications, compared with those who received 

IMiD-free regimens, which has important implications for real-world treatment decisions. Results 

suggest that sequential exposure to IMiDs across two LOTs may be mainly of concern for risk of 

severe cytopenias related to white blood cells, particularly neutrophils, and especially among 

those with recent histories. Although dose delays and infections due to cytopenia are 

unavailable for this cohort, results suggest that administering an IMiD-free regimen following an 

IMiD regimen may reduce severe cytopenia risk. 
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CHAPTER 4: INFLUENCE OF INCOMPLETE DEATH INFORMATION ON CUMULATIVE 
RISK ESTIMATES IN UNITED STATES CLAIMS DATA 

Abstract 

Background: Administrative claims databases often do not capture date or fact of death, so 

studies using these data may inappropriately treat death as a censoring event—equivalent to 

other withdrawal reasons—rather than a competing event. Understanding the influence of not 

distinguishing between disenrollment and death on cumulative risk estimates is necessary to 

inform evaluations of real-world data suitability. 

Objective: To investigate the influence of specifying death as a censoring event versus 

competing event on cumulative risk estimates. 

Method: We examined 1-, 3-, and 5-year cumulative risk of a composite outcome (myocardial 

infarction, stroke, and hospitalization for congestive heart failure) among initiators of 

antihypertensive medications telmisartan (exposure) and ramipril (referent) ages ≥55 in Optum 

claims, which reliably captures death, from 2003 to 2020. The cohort was created according to 

eligibility criteria of a published real-world data emulation of a randomized clinical trial 

(NCT00153101). Inverse probability of treatment weighting was used to adjust for patient 

characteristics. Censoring occurred upon disenrollment or end of study. We compared 

cumulative risk estimates from models where death was treated as a censoring event (cause-

specific risk) versus competing event (sub-distribution risk). We examined whether the absolute 

difference between the two estimates depended on age strata and mortality rate in the claims-

based analysis and in simulations.  

Results: 34,527 patients were included (7,282 telmisartan, 27,245 ramipril). 5,495 events 

occurred over 86,629 person-years. Mortality rates per 1,000 person-years were 8.7 for ages 

55–64, 22.2 for ages 65–74, and 68.9 for ages ≥75. The difference in cumulative risks increased 

over time, as event and mortality risks increased. Results were similar for both exposure 
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groups. For ramipril users (selected results), sub-distribution and cause-specific cumulative risk 

estimates per 100, respectively, were 16.9 (16.3, 17.4) and 17.4 (16.8, 18.0) at year 3 

(difference = 0.6) and were 24.2 (23.5, 25.0) and 25.5 (24.7, 26.3) at year 5 (difference = 1.3). 

The increase in the difference in cumulative risks over time was greatest for the oldest age 

group: among ramipril users, 5-year sub-distribution and cause-specific cumulative risk 

estimates per 100, respectively, were 16.2 (15.1, 17.3) and 16.4 (15.3, 17.5) among ages 55–64 

(difference = 0.2) and were 39.7 (37.9, 41.4) and 43.2 (41.3, 45.2) among ages ≥75 (difference 

= 3.6). Simulation results, from both fully synthetically simulated and plasmode-simulated 

cohorts, demonstrated the differences in cause-specific versus sub-distribution cumulative risks 

to increase with increasing mortality rate. 

Conclusions: Differences in cumulative risks due to censoring of death, as compared to 

treating death as a competing event, increased with greater follow-up time and older age, where 

event and mortality risks were higher, in both claims-based and simulation-based approaches. 

We suggest researchers consider baseline cohort mortality risk associated with treatment 

indication when deciding whether real-world data with incomplete death information can be used 

without concern.   
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Background 

Healthcare claims databases are a useful source of real-world data for pharmacoepidemiologic 

research, as unique identifiers allow patients to be tracked longitudinally while their varied 

providers continue to record diagnoses and prescribe medications. A main limitation of claims 

databases is the potential lack of a stable patient population due to the constant enrollment and 

disenrollment of members of the health plan (i.e., due to change/loss of employment, employer 

changing health plans), which is common among those who are commercially insured.212 

Patient outcomes can only be tracked in healthcare claims databases so long as an individual is 

enrolled in the health plan; loss to follow-up occurs upon health plan disenrollment. Difficulties 

arise when attempting to use claims data to examine the safety or effectiveness of a drug 

product that is expected to have a long induction period when confronted with loss to follow-up. 

Further complications arise because loss to follow-up occurs for heterogeneous reasons, which 

are typically unknown to the researcher. Insurance plan members exhibiting use of preventative 

healthcare services (e.g., influenza vaccination, screening tests) and those with chronic 

diseases and new cancer diagnoses have been observed to be more likely to remain enrolled in 

their health plan.213-215 Experience of acute conditions (e.g., myocardial infarction, stroke, 

coagulopathy), emergency department visits, and overnight hospitalizations, however, have 

been associated with increased risk of within-year health plan disenrollment. This disenrollment 

could have been due to patient death, which was not well-captured.215 Age, geographic region, 

and health insurance plan type, a proxy for socioeconomic status, are also related to 

disenrollment behavior.215, 216 

Longitudinal analysis in claims data is further complicated by the fact that health plan 

disenrollment may not be readily distinguishable from patient death. The distinction between 

disenrollment and death has important implications for pharmacoepidemiologic research. When 

a patient disenrolls from their health plan, and either enrolls in an alternative health plan, or 
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remains alive and uninsured, the researcher is unable to observe the occurrence of the outcome 

of interest and the observation is therefore censored. Alternatively, if the patient dies before the 

outcome has occurred, the patient will never be able to experience the outcome and therefore 

has experienced a competing event (i.e., event that precludes the outcome of interest). 

The Optum Research Database and the Truven MarketScan Research Database are two of the 

largest national, commercial administrative healthcare databases in the United States and both 

are commonly used for pharmacoepidemiologic research. In the Optum Research Database, 

which is linked with supplemental death information from the Social Security Administration, it is 

possible to identify individuals whose health plan enrollment ceases due to death, and therefore 

death may be appropriately specified as a competing event. Censoring occurs for patients 

whose disenrollment reason is not death (regardless of whether they subsequently die). In 

contrast, the Truven Health MarketScan Commercial Database does not capture complete 

death information, such that an individual who dies outside of the healthcare setting will appear 

the same as an individual who has disenrolled for other reasons. According to the Centers for 

Disease Control and Prevention, only 30% of all deaths occurred in an inpatient hospital facility 

in 2020.217 The majority of deaths are therefore “ignored” as competing events and instead 

treated as censoring events because they appear the same as other causes of disenrollment.  

When death is considered to be a censoring event, the usual Kaplan-Meier survival estimator 

quantifies a cause-specific risk of the outcome for a population in which a hypothetical 

intervention has eliminated death.218 Individuals who experience the competing event are 

assumed to remain “biologically” at risk for the event of interest, but are removed from the risk 

set given that their unobserved follow-up removes them from being “methodologically” at risk for 

the outcome.219 In this sense, individuals who die are treated in the same way as individuals 

who disenroll from their health plan and remain alive and biologically at risk of the outcome. The 

Kaplan-Meier estimator upweights future events by allocating each censored observation to all 
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subsequent events, implying that unobserved events occurred for censored individuals.220 

Alternatively, when the possibility that individuals may die without experiencing the outcome is 

taken into account, the sub-distribution risk can be estimated as the risk of the outcome in the 

presence of the naturally occurring competing event. Individuals who experience the competing 

event methodologically remain in the risk set, acting as a placeholder for the proportion of the 

population that cannot biologically experience the outcome.218 In general, censoring patients 

who have experienced a competing event will yield a larger cumulative risk estimate than 

analyses accounting for the competing event via sub-distribution risks.221-228 The magnitude of 

the difference between the cause-specific versus sub-distribution risks has been observed to be 

related to the competing event rate, the association between the exposure and the competing 

event, and the proportion of censoring due to the competing event.224, 225, 229  

Despite established competing risk methodology, clinical studies often fail to address competing 

risks.230-232 It is important to understand the influence of the inability to distinguish between 

disenrollment and death, as compared to the ability to specify death as a distinct competing 

event, on cumulative risk estimates. We explore whether the influence may depend on patient 

age strata and the underlying population mortality rate, as part of a claims-based analysis as 

well as a series of simulations in which more extreme mortality rates can be observed, to inform 

future analytic choices with these databases. Given knowledge of a patient cohort’s underlying 

risk of death at various time points of interest, these results will advise whether we (a) need to 

use a data source with complete death information for event risk estimates or (b) can use a data 

source without complete death information available without worrying that the competing event 

of death will substantially influence event risk estimates. The ability to predict how results may 

change under various scenarios when death information is incomplete will be vital for generating 

informative real-world evidence and for ensuring the delivery of reliable treatment information to 

patients, providers, and healthcare practices. 
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Methods 

We created a claims-based cohort to examine the influence of treating death as a censoring 

event, as compared to a competing event, on cumulative risk estimates both overall and 

according to patient age group. Given that not only mortality rate, but also outcome and 

censoring rates, may differ between age groups, we then conducted a series of simulations to 

determine whether the impact of not specifying death as a competing risk depends specifically 

on mortality rate. Finally, an exploratory analysis was performed in which the strength and 

directionality of the associations between a predictor variable with death and with disenrollment 

were varied to examine the interplay of the rates of these events. The details of these analyses 

are provided below.  

Data Source 

The claims-based analysis used the Optum Clinformatics® Data Mart (CDM), a proprietary 

research database containing de-identified medical and pharmacy claims of insured United 

States employees and their dependents from affiliated commercial and Medicare Advantage 

plans. There were approximately ten million annual patients in the database from April 2000 

through December 2020, and a total of 83.7 million unique patients. Linkage of the Optum 

database to the Social Security Administration Death Master File, which captures death data 

from funeral directors, postal authorities, financial institutions, and relatives of deceased 

individuals, supplements death information from discharge statuses and diagnosis codes.   

Study Population 

An active comparator, new user cohort was created according to inclusion/exclusion criteria of 

the Ongoing Telmisartan Alone and in Combination with Ramipril Global Endpoint Trial 

(ONTARGET), using Optum data from 01 January 2003 through 31 March 2021 (the latest data 

availability at the time of study initiation). The ONTARGET trial was a randomized, active-
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controlled, multinational, double-blind study testing the comparative efficacy of anti-hypertensive 

drugs telmisartan and ramipril for reducing the risk of cardiovascular adverse events 

(ClinicalTrials.gov: NCT00153101).233, 234 Chronic hypertension is an established risk factor for 

cardiovascular morbidity and mortality.235, 236 Various anti-hypertensive treatment options are 

available, including angiotensin-converting enzyme inhibitor (ACE-Is; e.g., ramipril) or 

angiotensin receptor blocker (ARBs; e.g., telmisartan), which address hypertension by lowering 

blood pressure. These varied hypertension treatment options may have different associations 

with the cardiovascular complications of hypertension. Prior to the ONTARGET trial, ACE-Is had 

been shown to reduce cardiovascular adverse events in patients with vascular disease, but the 

role of ARBs for this indication in this patient population was not known.233 The primary objective 

of the ONTARGET trial was therefore to determine whether telmisartan was at least as effective 

as ramipril at reducing risk of cardiovascular events. The results of ONTARGET supported the 

receipt of a secondary approval for telmisartan for cardiovascular risk reduction.237  

The ONTARGET trial population, which represents a population at a fairly high risk for vascular 

events, has previously been replicated in MarketScan by Fralick et al., notably limited by the 

inability to account for patient death as a competing event (however, the exclusion of individuals 

with a limited life expectancy from the study cohort likely limited the occurrence of this 

competing event).238, 239 We chose this example as we were interested in applying this research 

question to a real-world example for which the lack of death information may have been 

important. The claims-based study replication by Fralick et al. was part of an effort to determine 

whether administrative healthcare data can achieve similar results as corresponding 

randomized clinical trials. The variable definitions of this high-profile study are well-described, 

and used the International Classification of Diseases, 9th Revision (ICD-9) only. Given our study 

period, conversion of the 10th Revision (ICD-10) was undertaken using forward and reverse 

mapping algorithms.238  The schema for cohort creation is displayed in Figure 28.  

https://clinicaltrials.gov/ct2/show/NCT00153101
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Figure 28. Summary of inclusion criteria and baseline covariate assessment timing for 
Optum cohort of initiators of telmisartan or ramipril   

 
ARB: angiotensin receptor blocker; ACE-I: angiotensin converting enzyme inhibitor; CAD: coronary artery disease; CHF: congestive 
heart failure; CVD: cerebrovascular disease; DM: diabetes mellitus; MI: myocardial infarction; PAD: peripheral artery disease; 
PTCA: percutaneous transluminal coronary angiography; TIA: transient ischemic attack 
Figure generated based on Schneeweiss et al. (2019).240 

Patients 55 years or older who filled a new prescription of telmisartan or ramipril (both used for 

the treatment of hypertension) between 01 January 2003 and 31 March 2020 after 180 days 

(baseline period) of continuous enrollment in a participating health plan with no fills for any ACE-

I or ARB were eligible for cohort inclusion. Cohort entry ended on 31 March 2020 to ensure a 

minimum of one year of potential follow-up until the end of data availability. The index date was 

defined as the date of the prescription fill. All patients were required to have a diagnosis of 

coronary artery disease, peripheral artery disease, cerebrovascular disease, or diabetes 

mellitus during the baseline period, in accordance with ONTARGET. Consistent with the trial 

design, patients were excluded if they had a diagnosis of liver disease, syncope, stroke, or 

subarachnoid hemorrhage, or a hospitalization for congestive heart failure during the baseline 

period. Additionally, patients with recent myocardial infarction (within 2 days before the index 
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date), transient ischemic attack (within 7 days before the index date), or percutaneous 

transluminal coronary angioplasty (within 30 days before the index date) were also excluded. 

Although Fralick et al., consistent with the ONTARGET trial design, excluded individuals with a 

limited life expectancy (i.e., those with a cancer diagnosis, or living in a hospice, palliative care 

facility, or a nursing home), we relaxed this exclusion criteria and instead included this variable 

as a covariate so that we could ensure sufficient patient deaths were observed in the cohort. 

The codes used to define the cohort inclusion criteria are included in Table 31. All variables 

were defined according to the presence of one inpatient or two outpatient diagnosis codes (at 

least one day apart, with the maximum number of days apart specified according to the variable 

assessment period), in any position. 

Table 31. Algorithms for study inclusion criteria and covariates  
Characteristic  ICD-9 Diagnosis Codes ICD-10 Diagnosis Codes Other 

Acute myocardial infarction 410 I21 NA 

Angina 411, 413 I20, I24, I25.110, I25.700, I25.710, 
I25.720, I25.730, I25.790 

NA 

Anxiety 293.84, 300.0, 300.2, 300.3, 308.0, 
309.24, 309.81 

F06.4, F40–F42, F43.0, F43.10, 
F43.12, F43.22 

NA 

Asthma 493 J45 NA 

Atrial fibrillation  427.31 I48.91 NA 

Coronary artery bypass 
graft or percutaneous 
coronary intervention  

V45.81, V45.82 
  

Procedure codes: 00.66, 36 

Z95.1, Z98.61  

 

Procedure codes: O210–O213, 
O21K0Z, 21L, O270–O273, 02C0–
02C3, 02QB3ZZ, 02QB4ZZ, 
02QC3ZZ, 02QC4ZZ, 3E07017, 
3E070PZ, 3E07317, 3E073PZ 

CPT: 33510–33523, 33533–
33536, 92982 
92995, 92980, 92981 
 

HCPCS: G0290, G0291 
 

Cancer 140–165, 170–175, 179–203, 
238.6, 273.3 

C00–C26, C30–C34, C37–C41, 
C43–C45, C47–C58, C60–C86, 
C88, C90, C91, C96, D47.Z9 

NA 

Cerebrovascular disease 362.34, 430–438 G45–G46, H34.0, I60–I69 NA 

Chronic obstructive 
pulmonary disease  

491, 492, 496 J41–J44 NA 

Colonoscopy Procedure codes: 45.23 Procedure codes: 0DJD8ZZ CPT: 45378–45392 
 

HCPCS: G0105 

Congestive heart failure  398.91, 402.x1, 403.x1, 403.x3, 428 I09.81, I11.0, I13.0, I13.2, I50 NA 

Coronary artery disease  413, 414.0 
 

Procedure codes: 36.0, 36.19, 36.2 

I20.1, I20.8, I20.9, I25.10, I25.70–
I25.81 
 

Procedure codes: 0210–0213, 
0270–0273, 02C0–02C3, 3E07 

CPT: 33510–33536, 92986, 
92987 

Creatinine test NA NA CPT: 82565 

Dementia  290, 294, 330, 331 E75.0–E75.1, E75.25, E75.29, 
E75.4, F01.5, F02.80, F02.81, 
F03.90, F03.91, F04, F06.1, F06.8, 
F84.2, G30, G31, G91, G93.7, G94 

NA 

Depression 293.83, 296.2–296.3, 298.0, 300.4, 
309.0, 309.1, 309.28, 311 

F06.30, F32 (not F32.8), F33 (not 
F33.9), F34.1, F43.21, F43.23 

NA 

Diabetes mellitus  250 E11, E13 NA 

Fecal occult blood test NA NA CPT: 82270, 82274 
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Characteristic  ICD-9 Diagnosis Codes ICD-10 Diagnosis Codes Other 

HCPCS: G0107, G0328 

Hemoglobin A1C test NA NA CPT: 83036 

Hemorrhagic stroke 430, 431 I60, I61 NA 

Hyperlipidemia 272.0, 272.2, 272.4 E78.0, E78.2, E78.4, E78.5 NA 

Hypertension 401, 403 I10, I12, I16.9 NA 

Influenza vaccine V04.8, V04.81, V06.6 Z25.1 CPT: 90655, 90656, 90657, 
90658, 90660 
 

HCPCS: G0008 

Ischemic heart disease 410, 411.0, 412, 414, 429.71, 
429.79 

I21–I22, I23.0, I24.0, I24.1, I25.9, 
I51.0 

NA 

Ischemic stroke  433.x1, 434.x1 I63  NA 

Liver disease  070.22, 070.23, 070.32, 070.33, 
070.44, 070.54, 070.6, 070.9, 
456.0–456.2, 570–572, 573.3, 
573.4, 573.8, 573.9, V42.7 

B18, I85, I86.4, K70, K71.1, K71.3, 
K71.4, K71.5, K71.7, K72–K74, 
K76.2–K76.9 (not K76.82), Z94.4 

NA 

Metabolic panel NA NA CPT: 80053 

Obesity  278.00, 278.01, 278.03, 539, 649.1, 
649.2, V85.3, V85.4 

E66, K95, O99.21, O99.84, Z68.3–
Z68.4 

CPT: 43644, 43645, 43770, 
43842, 43843, 43845, 43846, 
43847, 43999 
 

Drugs: benzphetamine 
hydrochloride, diethylpropion 
hydrochloride, orlistat, 
phendimetrazine tartrate, 
phentermine hydrochloride, 
sibutramine hydrochloride 
monohydrate 

Osteoarthritis  715 M15–M19 NA 

Other renal disease  274.10, 403, 404, 440.1, 442.1, 
453.3, 572.4, 580, 587, 593, 753.0, 
753.3, 791.2, 791.3, 866.00, 
866.01, 866.1 

I12, I13, I70.1, I72.2, I82.3, K76.7, 
M10.30, N00, N01, N13, N13 (not 
N13.2, N13.3, N13.6), N26.9, N28 
(not N28.84–N28.86), Q60.5, 
Q60.6, Q63, R82.1, R82.3, 
S37.001A, S37.002A, S37.009A, 
S37.011A, S37.012A, S37.019A, 
S37.021A, S37.022A, S37.029A 

NA 

Peripheral vascular disease  785.4, 093.0, 437.3, 440, 441, 443, 
444.2, 444.81, 447.1, 557.1, 557.9, 
V43.4 
 

Procedure codes: 38.48 

I70, I71, I73.1–I73.9, I77.1, I79.0, 
I79.2, K55.1, K55.8, K55.9, Z95.8, 
Z95.9 

CPT: 37205, 75962 

Pneumonia 480–486, 487.0, 507 A22.1, A37.x1, B25.0, B44.0, 
B77.81, J10.0, J11.0, J12–J18, J69 

NA 

Prostate antigen test NA NA CPT: 4152, 84153, 84154 
HCPCS: G0103 

Sepsis  038, 995.91, 995.92 A40.3, A40.9, A41, R65.20, R65.21 NA 

Sleep apnea 327.23 G47.33 NA 

Sleep disorder 307.4, 327.0, 327.2, 347, 780.5 F51, G47.0, G47.10, G47.20, 
G47.3–G47.4, G47.8, G47.9 

NA 

Smoking 305.1, 649.0, 989.84, V15.82 F17.200, O99.33, T65.2xxA, 
Z87.891 

CPT: 99406, 99407 
 

HCPCS: S9075, S9453 
 

Drugs: nicotine, varenicline 
tartrate 

Syncope 780.2 R55 NA 

Thyroid function test NA NA CPT: 84436, 84439, 84443, 
84479, 80091, 80092 

Transient ischemic attack 435 G45, G46.0, G46.1, G46.2, I67.84 NA 

Transthoracic 
echocardiogram 

Procedure codes: 88.72, 00.24 Procedure codes: B240ZZ3, 
B241ZZ3, B244, B245, B246, B24D  

CPT: 93306–93308, 93312–
93318, 93320, 93321, 93350, 
93351, 93355, 93662 

Urinary incontinence  788.3, 788.91 N39.3–N39.4, R32, R39.81 NA 

CPT: Current Procedural Terminology. HCPCS: Healthcare Common Procedure Coding System. ICD-9: International Classification 
of Diseases, Ninth Revision. ICD-10: International Classification of Diseases, Tenth Revision. NA: Not applicable.  
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Outcome 

The outcome of interest was defined as a composite outcome of the following cardiovascular 

safety events, according to the primary discharge diagnosis code for an inpatient visit: 

myocardial infarction, stroke, and hospitalization for congestive heart failure (Table 32). This 

definition is consistent with the ONTARGET trial primary endpoint. 

Table 32. Composite cardiovascular safety outcome algorithm   

Composite Outcome Component ICD-9 Diagnosis Codes ICD-10 Diagnosis Codes 

Myocardial infarction  410.xx I21 

Stroke 
430, 431, 433.x1, 434.x1, 
436 

I60, I63, I67.89 

Hospitalization for congestive heart 
failure  

398.91, 402.x1, 404.x1, 
404.x3, 428.x 

I09.81, I11.0, I13.0, I13.2, I50 

ICD-9: International Classification of Diseases, Ninth Revision. ICD-10: International Classification of Diseases, Tenth Revision. 

Exposure 

The study medication of interest was the ARB telmisartan (Micardis), which was approved as an 

antihypertensive medication in 1998. Telmisartan may be prescribed alone or in combination 

with other antihypertensive agents, and is typically administered as a once daily oral dose of 40 

milligrams.241 The comparator medication was the ACE-I ramipril (Altace), which was approved 

to treat hypertension in 1991. Ramipril is normally administered as a 10 milligram once daily oral 

dose, although patients are usually initiated at lower dosages to ensure it is well-tolerated.242 

Both medications have similar toxicity and adverse event profiles. For this analysis, patients 

who initiated telmisartan either as monotherapy or in combination with other antihypertensive 

medications (except for ramipril) were both considered to meet cohort entry criteria. 

Exposure was treated as time-fixed, according to assignment at index (initial prescription fill 

date); telmisartan versus ramipril status was assumed to remain constant throughout the follow-

up period, such that treatment discontinuation and exposure group switches and were not 

considered. Although this differs from the exposure definition used in the Fralick et al. cohort 
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(which defined treatment according to assignment at index, with added censoring variables for 

treatment switching and discontinuation during the follow-up period), we decided to define 

exposure based on treatment initiation alone for simplicity given that estimation of the treatment 

effect was not the primary goal of this study. We did not incorporate additional censoring 

variables for treatment switching and discontinuation, so that the analyses could focus on the 

relationships between the study outcome, death, disenrollment, and their respective predictors.  

Covariates 

To address confounding, we adjusted for about 70 patient characteristics (Table 33), as 

specified by Fralick et al., by using inverse probability of treatment weighting.238 Although this 

differed from the propensity score matching method used by Fralick et al., inverse probability of 

treatment weighting allowed for preservation of the sample size, which was important for 

ensuring we were able to evaluate the influence of mortality in this cohort. The demographic 

characteristics, measures of healthcare utilization, concomitant medication use, and 

comorbidities specified in Table 33 were measured during the six months before the index date 

(baseline period) and included in the inverse probability of treatment weighting model. The 

codes used to define the baseline comorbidities are included in Table 31 and the drugs used to 

define baseline medication use are included in Table 34. All baseline comorbidities were 

defined according to the presence of one inpatient or two outpatient diagnosis codes (minimum 

one day apart, maximum 180 days apart), in any position.  
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Table 33. List of baseline characteristics  

Category Characteristics  

Demographic 
characteristics 

• Age 

• Sex 

• Year of cohort entry 

Healthcare 
utilization 

• Any general practitioner visits  

• Any emergency department visits 

• Any cardiologist visits 

• Number of unique medications 
dispensed 

• Prostate specific antigen test 

• Colonoscopy  

• Fecal occult blood test 

• Influenza vaccine 

• Hemoglobin A1C test 

• Creatinine test 

• Comprehensive metabolic 
panels 

• Thyroid function test 

• Transthoracic echocardiograms 

Baseline 
medication 
use 

• Angiotensin converting enzyme 
inhibitors 

• Angiotensin receptor blockers 

• Antiarrhythmics 

• Anticonvulsants 

• Antidepressants 

• Antihyperlipidemic medications 

• Antiparkinsonian medications 

• Antiplatelet agents 

• Antipsychotics 

• Anxiolytics/hypnotics 

• Benzodiazepines 

• Beta-blockers 

• Bisphosphonates 

• Calcium channel blockers 

• Chronic obstructive pulmonary 
disease/asthma medications 

• Cox-2 inhibitors 

• Digoxin 

• Heparins 

• Loop diuretics 

• Nitrates 

• Nonsteroidal anti-inflammatory 
drugs 

• Opioids 

• Oral anticoagulant 

• Oral steroids 

• Other diuretics 

• Statins 

• Thiazides 

 Baseline 
comorbidities 
 

• Acute myocardial infarction 

• Angina 

• Anxiety 

• Asthma 

• Atrial fibrillation 

• Congestive heart failure 

• Chronic obstructive pulmonary 
disease 

• Coronary artery bypass 
graft/percutaneous coronary 
intervention 

• Dementia 

• Depression 

• Diabetes 

• Hemorrhagic stroke 

• Hyperlipidemia 

• Hypertension 

• Ischemic heart disease  

• Ischemic stroke  

• Limited life expectancy (those 
with a cancer diagnosis, or living 
in a hospice, palliative care 
facility, or a nursing home) 

• Obesity 

• Obstructive sleep apnea 

• Osteoarthritis 

• Peripheral vascular disease 

• Pneumonia 

• Renal disease (non-diabetic) 

• Sepsis/septicemia 

• Sleep disorder 

• Smoking 

• Transient ischemic attack 

• Urinary incontinence 
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Table 34. Baseline medication use definitions 

Medication Class  Drugs  

Angiotensin converting 
enzyme inhibitors  

Benazepril, captopril, enalapril, fosinopril, lisinopril, moexipril, perindopril, quinapril, ramipril, 
trandolapril 

Angiotensin receptor 
blockers 

Azilsartan, candesartan, eprosartan, irbesartan, losartan, olmesartan, telmisartan, valsartan 

Antiarrhythmics Amiodarone, dofetilide, dronedarone, flecainide, ibutilide, mexiletine, moricizine, 
procainamide, propafenone, quinidine, tocainide 

Anticonvulsants Carbamazepine, divalproex, eslicarbazepine, ethotoin, ethosuximide, ezogabine, felbamate, 
fosphenytoin, gabapentin, lacosamide, lamotrigine, levetiracetam, mephenytoin, 
mephobarbital, methsuximide, oxcarbazepine, perampanel, phenobarbital, phenytoin, 
pregabalin, primidone, rufinamide, tiagabine, topiramate, valproic acid, vigabatrin, 
zonisamide 

Antidepressants Amitriptyline, amoxapine, bupropion, citalopram, clomipramine, desipramine, 
desvenlafaxine, doxepin, duloxetine, fluoxetine, fluvoxamine, imipramine, isocarboxazid, 
levomilnacipran, maprotiline, mirtazapine, nefazodone, nortriptyline, paroxetine, phenelzine, 
protriptyline, sertraline, tranylcypropine, trazodone, trimipramine, venlafaxine, vilazodone, 
vortioxetine 

Antihyperlipidemic Alirocumab, cholestyramine, clofibrate, colesevelam, colestipol, ethyl eicosapentaenoic 
acid, ezetimibe, evolocumab¸ fenofibrate, gemfibrozil, haloperidol, lomitapide, mipomersen, 
niacin, nicotinamide, omega-3 acid ethyl esters 

Antiparkisons Amantadine, benztropine, biperiden, carbidopa, levodopa, pergolide, pramixepole, 
procyclidine, rasagiline, ropinirole, rotigotine, tolcapone, trihexyphenidyl  

Antiplatelets Aspirin, clopidogrel, cilostazol, dipyridamole, prasugrel, ticlopidine, ticagrelor 

Antipsychotics  Aripiprazole, asenapine, chlorpromazine, clozapine, fluphenazine, haloperidol, iloperidone, 
loxapine, lurasidone, mesoridazine, molindone, olanzapine, paliperidone, perphenazine, 
pimozide, promazine, propiomazine, quetiapine, risperidone, thioridazine, thiothixene, 
triflupromazine, trifluoperazine, ziprasidone  

Anxiolytics Buspirone, chloral hydrate, diphenhydramine, doxylamine, eszopiclone, ethclorvynol, 
glutethimide, meprobamate, methaqualone, zaleplon, zolpidem  

Benzodiazepines Alprazolam, chlordiazepoxide, clonazepam, clorazepate, diazepam, estazolam, flurazepam, 
halazepam, lorazepam, midazolam, oxazepam, quazepam, temazepam, triazolam 

Beta-blockers Acebutolol, atenolol, betaxolol, bisoprolol, carteolol, carvedilol, esmolol, labetalol, 
metoprolol tartrate, metoprolol succinate, nadolol, nebivolol, propranolol, penbutolol, 
pindolol, sotalol, timolol 

Bisphosphonates Alendronate sodium, alendronate sodium/cholecalciferol (vitamin d3), etidronate disodium, 
ibandronate sodium, pamidronate disodium, risedronate sodium, risedronate 
sodium/calcium carbonate, zoledronic acid 

Calcium channel 
blockers 

Amlodipine, bepridil, clevidipine, diltiazem, felodipine, isradipine,  
mibefradil, nicardipine, nifedipine, nimodipine, nisoldipine, verapamil 

COPD Ashma Med Albuterol, arformoterol, budesonide/formoterol, formoterol, fluticasone/salmeterol, 
ipratropium, levalbuterol, metaproterenol, mometasone/formoterol, montelukast, 
pirbuterol,salmeterol, terbutaline, theophylline, tiotropium, zafirlukast, zileuton 

Cox-2 inhibitors Celecoxib, rofecoxib, valdecoxib 

Digoxin Digoxin 

Heparins Heparin, dalteparin, enoxaparin, tinzaparin 

Loop diuretics  Bumetanide, ethacrynic acid, furosemide, torsemide 

Nitrates Isosorbide dinitrate, isosorbide mononitrate, nitroglycerin 

NSAIDs Diclofenac, etodolac, flurbiprofen, ibuprofen, indomethacin, ketorolac, meloxicam, 
naproxen, piroxicam, sulindac 

Opioids Codeine, fentanyl, hydrocodone, hydromorphone, meperidine, morphine, oxycodone, 
oxymorphone, propoxyphene, tramadol 

Oral anticoagulants  Apixaban, dabigatran, rivaroxaban, warfarin 

Oral steroids Betamethasone, cortisone, dexamethasone, hydrocortisone, methylprednisolone, 
prednisone, prednisolone, triamcinolone 

Other diuretics  Amiloride, eplerenone, spironolactone, triamterene 

Statins Atorvastatin, fluvastatin, lovastatin, pravastatin, simvastatin, rosuvastatin, lovastatin 
niacin, ezetimibe simvastatin, pravastatin aspirin, pitavastatin 

Thiazides Bendroflumethiazide Chlorothiazide Chlorthalidone Hydrochlorothiazide Hydroflumethiazide 
Indapamide Methyclothiazide Metolazone Polythiazide Trichlormethiazide 
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Statistical Analyses 

The analyses were conducted as follows: (1) we compared estimates of the absolute treatment 

effect on a composite cardiovascular outcome when death was a censoring event versus 

competing event in the Optum cohort, (2) we evaluated whether the difference in treatment 

effect estimates depended on age stratum in the Optum cohort, (3) we evaluated whether the 

treatment effect estimate differences depended on the underlying mortality rate of the 

population in fully-simulated cohorts, (4) we evaluated whether the differences in treatment 

effect estimates depended on the underlying mortality rate of the population in plasmode-

simulated cohorts, and (5) we evaluated whether the differences in treatment effect estimates 

depended on predictors of death and disenrollment in fully-simulated cohorts. 

First, using the Optum cohort, we emulated the treatment effect as generated in Fralick et al.238 

We examined the cumulative risks and risk differences (at 1, 3, and 5 years) of the composite 

study outcome among initiators of telmisartan versus ramipril. Patients were followed up from 

the date of their prescription fill (index date) until the earliest occurrence of the outcome of 

interest, disenrollment from the health plan, death, or the administrative end of the study period. 

Censoring occurred upon disenrollment from the health plan or the end of the study period. We 

assumed these occurrences of loss to follow-up to be differential, given that disenrollment, 

exposure assignment, and incidence of the outcome are expected to be common effects of 

various measured and unmeasured characteristics (e.g., demographic characteristics, chronic 

diseases, acute conditions).213-216, 243 Given the assumed informative censoring, we included an 

inverse probability of censoring weighting model, which included the same list of covariates 

included in the inverse probability of treatment weighting model.243  

We varied whether death was treated as a competing event or a censoring event. Cumulative 

outcome risks were estimated in two ways: 
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1. Cause-specific cumulative risk functions were estimated according to the Kaplan Meier 

estimator.244 Death was specified as a censoring event, in addition to disenrollment 

before death. Death times were folded under disenrollment such that if death occurred 

before disenrollment, death time was assigned as disenrollment time, as it would appear 

in a database without death information. The cause-specific cumulative risk function was 

estimated as the complement of the Kaplan Meier survival estimator, which is given 

by:245 

𝑆(𝑡) = ∏ (1 −
𝑑(𝑡𝑘)

𝑛(𝑡𝑘)
)

𝑡𝑘<𝑡

 

Where 𝑑(𝑡𝑘) is the number of events at time 𝑡𝑘 and 𝑛(𝑡𝑘) is the number at risk 

at time 𝑡𝑘.  

2. Sub-distribution cumulative risk functions were estimated according to the Aalen-

Johansen estimator.184 Death was specified as a competing event and disenrollment 

before death was specified as a censoring event. The Aalen-Johansen cumulative risk 

function is given by:245 

𝑅𝑗(𝑡) = ∑ 𝑆(𝑡𝑘 − 1)
𝑑𝑗(𝑡𝑘)

𝑛(𝑡𝑘)
)

𝑡𝑘<𝑡

 

Where 𝑆(𝑡) is the Kaplan-Meier survival function at time 𝑡, 𝑑𝑗(𝑡𝑘) is the number 

of events of type 𝐽 = 𝑗 at time 𝑡𝑘, and 𝑛(𝑡𝑘) is the number at risk at time 𝑡𝑘. 

At each increment of follow-up (1, 3, and 5 years), we calculated the difference between the 

cause-specific estimator and the sub-distribution estimator for both treatment-specific 

cumulative risks and for the risk differences (telmisartan versus ramipril, consistent with the 

ONTARGET trial design). Confidence intervals for the difference in cumulative risks and the 

difference in risk differences were calculated based on 2,000 bootstrap resamples from the 

Optum cohort. It is worth noting that we assumed all death events to be completely captured 
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and specified as competing events. In actuality, it is possible that death events may have been 

undercounted, in which case missed death events would have been inadvertently treated as 

censoring events. We discuss this in more detail as part of the study limitations.  

Next, we performed an age-stratified analysis, repeating the above analyses for three age 

groups: (1) 55 to 64 years, (2) 65 to 74 years, and (3) 75 years or greater. The differences 

between treatment effect estimates when specifying death as a competing event versus as a 

censoring event were expected to be greater in older age strata, where the mortality and 

outcome rates were higher, compared with younger age strata.246, 247 All analyses were 

completed using the “causalRisk” R package.248 

Simple Simulation  

Given that older age strata may be associated with higher outcome rates in addition to higher 

mortality rates, we next conducted a series of simulations to determine the influence of mortality 

rate specifically on the difference between cause-specific and sub-distribution risk estimates.246, 

247 We explored various alternative mortality rates that may be consistent with other patient 

cohorts. We created fully synthetic simulated cohorts according to parameters observed in the 

Optum cohort. Simulations were completed using the R package “lava,” which uses structural 

equation models with latent variables.249 A binary exposure corresponding to telmisartan (X = 1) 

or ramipril (X = 0) was generated from a binomial distribution with P(X = 1) = 0.20. Times to 

composite cardiovascular safety endpoint (Y1: scale = 0.00021, shape = 0.90), death (Y2: scale 

= 0.0000024, shape = 1.23) or disenrollment (Y0: scale = 0.00071, shape = 1.02) were 

simulated according to Cox Weibull distributions. Dummy variables were created for a single 

categorical confounder, which was generated according to the observed age distribution in the 

Optum cohort (C1: ages 65–74 years [35%]; C2: ages 75+ years [23%]; ages 55–64 years as 

reference group). The associations between treatment and the predictor variables (treatment 

and age) were simulated according to logistic regression models, using the observed odds 
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ratios (ORs) from the Optum cohort with the youngest age group as the reference group (OR = 

1.34 for 75+ years; OR = 1.43 for 65–74 years). The associations between death and the 

predictor variables (treatment and age) were simulated according to a proportion hazards 

regression model, using the observed hazard ratios (HRs) from the Optum cohort (HR = 0.87 for 

treatment; HR = 2.83 for 65–74 years; HR = 8.80 for 75+ years). The associations between 

disenrollment and the predictor variables (treatment and age) were simulated according to a 

proportional hazards regression model, using the observed hazard ratios from the Optum cohort 

(HR = 1.15 for treatment; HR = 0.64 for 65–74 years; HR = 0.50 for 75+ years). Finally, the 

associations between the composite cardiovascular safety event and the predictor variables 

(treatment and age) were simulated according to a proportional hazards regression model, 

using the observed hazard ratios from the Optum cohort (HR = 0.93 for treatment; HR = 1.64 for 

65–74 years; HR = 3.16 for 75+ years). Death rates were manipulated by multiplying the scale 

parameter of the Cox Weibull distribution for time to death to double and triple the mortality rate. 

We examined the impact of doubling and tripling the mortality rate on the cumulative risk of the 

cardiovascular safety endpoint according to the cause-specific and sub-distribution models. The 

models were constructed as previously described and incorporated inverse probability of 

treatment and censoring weighting models, both of which included only age category. For each 

scenario, we generated 1,000 Monte Carlo simulations and calculated the difference between 

the cause-specific estimator and the sub-distribution estimator at each time, averaged across all 

simulations. 

Plasmode Simulation 

We then conducted plasmode simulations as an expansion of the simulation work described 

above.250 Many important features of healthcare claims are not completely understood, and 

therefore cannot be replicated in fully synthetic simulated data (e.g., numerous covariates with 

complex covariance structures, intricate patient follow-up and censoring patterns). To address 
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this complexity, plasmode simulations start with real data sets, generated from natural 

processes, and augments them with simulated data. The plasmode simulation approach is 

advantageous as it allows the investigator to manipulate features such as event rates, 

confounding strength, and exposure effect, while maintaining a realistic data set with 

resemblance to the observed complex data structure.250-252  

We sampled individuals with replacement from the Optum cohort and maintained the existing 

covariate values. The observed covariate structure was used to predict time to death, under the 

baseline, double, and triple mortality rates. We examined the impact on the cumulative risk of 

the cardiovascular safety endpoint according to the cause-specific and sub-distribution models 

under each mortality rate manipulation. The models were constructed as previously described 

and incorporated inverse probability of treatment and censoring weighting models, both of which 

included the full list of confounder variables from the primary analysis (Table 33). For each 

scenario, we generated 1,000 Monte Carlo simulations of 34,000 individuals (approximate 

estimated sample size of Optum cohort). The average difference between each estimator was 

calculated at each time as the difference between the cause-specific estimator and the sub-

distribution estimator, averaged across all simulations.  

Exploratory Analysis 

As an exploratory analysis, we investigated the impact on the resulting difference between the 

cause-specific and sub-distribution cumulative risks of a predictor variable’s relationship with 

death and disenrollment as part of a fully synthetic simulation. Manipulating the strength and 

directionality of the associations between a predictor variable with death and with disenrollment 

allowed for examination of the interplay of the rates of these events, as compared to previous 

simulation analyses in which the mortality rate was manipulated in isolation. There is a wide 

variety of patient characteristics available in healthcare claims databases, which may be strong 

predictors of death and/or disenrollment. This exploratory analysis was targeted at exploring the 



154 

 

 

situation in which a given data source is missing information on death, but information is 

available on characteristics that are strongly related to death. Hypothesizing about potential 

variables that are strongly related to death, and, further, whether these variables are also 

strongly related to disenrollment, may help contribute to research decisions regarding whether a 

data source with incomplete death information is fit for regulatory purpose.  

The base cohort was created according to the parameters of the simple simulation described 

above. We additionally introduced a binary variable X with P(X = 1) = 0.50, which was 

associated with neither the exposure nor the outcome and therefore was not included in 

subsequent inverse probability weighting models. In the baseline model, X was set to be 

associated with neither death nor disenrollment (HR = 1.0 for death; HR = 1.0 for disenrollment). 

We then manipulated the magnitude and directionality of the associations between X with death 

and with disenrollment in three key ways: (1) strong protective association with both [HR = 0.2 

for death; HR = 0.2 for disenrollment], (2) strong harmful association with both [HR = 5.0 for 

death; HR = 5.0 for disenrollment], (3) strong associations with opposite directionality [HR = 5.0 

for death; HR = 0.2 for disenrollment]. As an example, scenario (1) may be met by measures of 

preventative service utilization (although, likely not to the extent of the exemplar hazard ratios 

used here) such that a patient who is using preventative care services is likely to remain on their 

insurance (i.e., be less likely to disenroll) and also to be healthier (i.e., less likely to die). 

Scenario (2) may be met by an indicator of recent death of a patient’s spouse (although 

unavailable in claims data, this type of measure could be present in other healthcare 

databases), which could be expected to strongly predict subsequent death of the patient as well 

as disenrollment from their health plan (i.e., if they were a dependent on their spouse’s 

insurance plan). Finally, for scenario (3), a patient who is very sick and/or elderly is at an 

increased risk of death, but is unlikely to switch insurance given nearness to end of life. We 

examined the impact of each of these scenarios on the resulting cumulative risks of the 
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cardiovascular safety endpoint according to the cause-specific and sub-distribution models. 

Results 

Optum Cohort 

There were 689,403 patients identified who filled a prescription for either telmisartan or ramipril 

between 01 January 2003 and 31 December 2020. Following the application of study inclusion 

and exclusion criteria, 34,527 patients remained and were included in the analytic cohort (7,282 

telmisartan, 27,245 ramipril; Figure 29).  

Figure 29. Summary of cohort enrollment of initiators of telmisartan or ramipril between 
01 January 2003 and 31 December 2020 in Optum according to inclusion criteria 

  
ACE-I: angiotensin converting enzyme inhibitor; ARB: angiotensin receptor blocker; CABG: coronary artery bypass graft; CAD: 
coronary artery disease; CHF: congestive heart failure; CVD: cerebrovascular disease; DM: diabetes mellitus; MI: myocardial 
infarction; PAD: peripheral artery disease; PCI, percutaneous coronary intervention; TIA: transient ischemic attack 

Cohort characteristics before and after inverse probability of treatment weighting are displayed 

in Table 35. Compared to those prescribed telmisartan, patients prescribed ramipril were more 

likely to be male (ramipril 60%, telmisartan 44%), to enter the cohort between 2003–2008 

(ramipril 52%, telmisartan 37%), and to have a history of CAGB or PCI (ramipril 6%, telmisartan 

3%). Alternatively, telmisartan users were more likely than ramipril users to have hypertension 

(ramipril 50%, telmisartan 71%) and renal disease (ramipril 4%, telmisartan 7%) and to have 
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visited a general practitioner during the baseline period (ramipril 12%, telmisartan 18%). These 

characteristics were well-balanced after inverse probability of treatment weighting. 

Table 35. Characteristics of Optum cohort of initiators of telmisartan or ramipril between 
01 January 2003 and 31 December 2020 before and after inverse probability of treatment 
weighting  

  Unweighted Weighted 

Characteristic 

Ramipril  
n = 27,245 

Telmisartan  
n = 7,282 

SMD 
Ramipril  

n = 34547.55 
Telmisartan  
n = 34282.01 

SMD 

Demographics           
Age, mean (SD) 67.2 (8.5) 68.5 (8.5) -0.15 67.5 (8.6) 67.7 (8.4) -0.02 
Male 16,414 (60.3) 3,176 (43.6) 0.34 19,581 (56.7) 19,201 (56.0) 0.02 
Cohort year               
    2003–2008 14,171 (52.0) 2,697 (37.0) 0.38 16,866 (48.8) 16,566 (48.3) 0.01 
    2009–2014 7,987 (29.3) 2,099 (28.8) 0.00 10,101 (29.2) 10,071 (29.4) 0.00 
    2015–2020 5,087 (18.7) 2,486 (34.1) 0.00 7,581 (21.9) 7,636 (22.3) 0.00 

Comorbidities           
Acute myocardial infarction 672 (2.5) 57 (0.8) 0.13 728 (2.1) 663 (1.9) 0.01 
Angina 1,383 (5.1) 184 (2.5) 0.13 1,566 (4.5) 1,520 (4.4) 0.00 
Anxiety 693 (2.5) 222 (3.1) 0.03 921 (2.7) 930 (2.7) 0.00 
Asthma 661 (2.4) 252 (3.5) 0.06 914 (2.6) 966 (2.8) 0.01 
Atrial fibrillation 1,616 (5.9) 279 (3.8) 0.10 1,906 (5.5) 2,159 (6.3) 0.03 
COPD 1,651 (6.1) 452 (6.2) 0.01 2,117 (6.1) 2,174 (6.3) 0.01 
CABG/PCI 1,698 (6.2) 211 (2.9) 0.16 1,907 (5.5) 1,853 (5.4) 0.00 
Dementia 678 (2.5) 157 (2.2) 0.02 840 (2.4) 861 (2.5) 0.01 
Depression 1,238 (4.5) 337 (4.6) 0.00 1,577 (4.6) 1,619 (4.7) 0.01 
Diabetes mellitus 16,192 (59.4) 4,838 (66.4) 0.15 21,042 (60.9) 20,795 (60.7) 0.00 
Hemorrhagic stroke 130 (0.5) 22 (0.3) 0.03 153 (0.4) 193 (0.6) 0.02 
Hyperlipidemia 13,003 (47.7) 3,437 (47.2) 0.01 16,438 (47.6) 16,185 (47.2) 0.01 
Hypertension 13,510 (49.6) 5,154 (70.8) 0.44 18,704 (54.1) 18,768 (54.8) 0.01 
Ischemic heart disease 9,441 (34.7) 1,722 (23.7) 0.24 11,160 (32.3) 10,982 (32.0) 0.01 
Ischemic stroke 858 (3.2) 192 (2.6) 0.03 1,057 (3.1) 1,139 (3.3) 0.02 
Limited life expectancy  1,997 (7.3) 491 (6.7) 0.02 2,501 (7.2) 2,504 (7.3) 0.00 
Obesity 1,157 (4.3) 510 (7.0) 0.12 1,670 (4.8) 1,700 (5.0) 0.01 
Obstructive sleep apnea 632 (2.3) 331 (4.6) 0.12 962 (2.8) 976 (2.9) 0.00 
Osteoarthritis 1,806 (6.6) 665 (9.1) 0.09 2,462 (7.1) 2,458 (7.2) 0.00 
Peripheral vascular disease 2,671 (9.8) 794 (10.9) 0.04 3,470 (10.0) 3,524 (10.3) 0.01 
Pneumonia 500 (1.8) 125 (1.7) 0.01 628 (1.8) 653 (1.9) 0.01 
Renal disease (non-diabetic) 1,068 (3.9) 523 (7.2) 0.14 1,607 (4.7) 1,678 (4.9) 0.01 
Sepsis/septicemia 232 (0.9) 72 (1.0) 0.01 311 (0.9) 314 (0.9) 0.00 
Sleep disorder 1,333 (4.9) 519 (7.1) 0.09 1,858 (5.4) 1,886 (5.5) 0.01 
Smoking 1,394 (5.1) 313 (4.3) 0.04 1,705 (4.9) 1,627 (4.8) 0.01 
Transient ischemic attack 582 (2.1) 146 (2.0) 0.01 733 (2.1) 754 (2.2) 0.01 
Urinary incontinence 229 (0.8) 76 (1.0) 0.02 306 (0.9) 307 (0.9) 0.00 

Baseline medication use           
Antiarrhythmics 516 (1.9) 114 (1.6) 0.03 632 (1.8) 739 (2.2) 0.02 
Anticonvulsants 2,381 (8.7) 769 (10.6) 0.06 3,142 (9.1) 3,008 (8.8) 0.01 
Antidepressants 4,721 (17.3) 1,256 (17.3) 0.00 5,992 (17.3) 6,078 (17.7) 0.01 
Antihyperlipidemic 3,831 (14.1) 1,002 (13.8) 0.01 4,852 (14.0) 4,971 (14.5) 0.01 
Antiparkison 447 (1.6) 125 (1.7) 0.01 578 (1.7) 615 (1.8) 0.01 
Antiplatelets 4,148 (15.2) 863 (11.9) 0.10 5,031 (14.6) 5,163 (15.1) 0.01 
Antipsychotics 464 (1.7) 101 (1.4) 0.03 569 (1.7) 581 (1.7) 0.00 
Anxiolytics 1,595 (5.9) 474 (6.5) 0.03 2,069 (6.0) 2,015 (5.9) 0.00 
Benzodiazepines 2,603 (9.6) 729 (10.0) 0.02 3,346 (9.7) 3,356 (9.8) 0.00 
Beta-blockers 10,082 (37.0) 2,750 (37.8) 0.02 12,847 (37.2) 12,968 (37.8) 0.01 
Bisphosphonates 926 (3.4) 290 (4.0) 0.03 1,219 (3.5) 1,200 (3.5) 0.00 
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  Unweighted Weighted 

Characteristic 

Ramipril  
n = 27,245 

Telmisartan  
n = 7,282 

SMD 
Ramipril  

n = 34547.55 
Telmisartan  
n = 34282.01 

SMD 

Calcium channel blockers 4,292 (15.8) 2,040 (28.0) 0.30 6,352 (18.4) 6,432 (18.8) 0.01 
COPD/asthma medication 2,368 (8.7) 766 (10.5) 0.06 3,150 (9.1) 3,309 (9.7) 0.02 
Cox-2 inhibitors 1,043 (3.8) 192 (2.6) 0.07 1,236 (3.6) 1,256 (3.7) 0.00 
Digoxin 407 (1.5) 91 (1.3) 0.02 500 (1.5) 484 (1.4) 0.00 
Heparins 170 (0.6) 41 (0.6) 0.01 211 (0.6) 223 (0.7) 0.01 
Loop diuretics 2,642 (9.7) 815 (11.2) 0.05 3,476 (10.1) 3,449 (10.1) 0.00 
Nitrates 1,975 (7.3) 395 (5.4) 0.07 2,365 (6.9) 2,420 (7.1) 0.01 
NSAIDs 3,147 (11.6) 1,022 (14.0) 0.07 4,172 (12.1) 4,146 (12.1) 0.00 
Opioids 6,784 (24.9) 1,879 (25.8) 0.02 8,678 (25.1) 8,605 (25.1) 0.00 
Oral anticoagulant 1,686 (6.2) 408 (5.6) 0.02 2,105 (6.1) 2,393 (7.0) 0.04 
Oral steroids 3,113 (11.4) 1,017 (14.0) 0.08 4,150 (12.0) 4,123 (12.0) 0.00 
Other diuretics 1,329 (4.9) 441 (6.1) 0.05 1,769 (5.1) 1,793 (5.2) 0.01 
Statins 13,689 (50.2) 3,448 (47.4) 0.06 17,149 (49.6) 16,917 (49.4) 0.01 
Thiazides 2,294 (8.4) 881 (12.1) 0.12 3,189 (9.2) 3,342 (9.8) 0.02 

Healthcare Utilization           
General practitioner visit 3,197 (11.7) 1,322 (18.2) 0.18 4,519 (13.1) 4,437 (13.0) 0.00 
Emergency department visit 5,194 (19.1) 1,369 (18.8) 0.01 6,571 (19.0) 6,681 (19.5) 0.01 
Unique medications, mean (SD) 2.8 (-2.2) 3.0 (-2.2) -0.09 2.9 (2.2) 2.9 (2.2) -0.02 
Cardiologist visits 1,648 (6.1) 536 (7.4) 0.05 2,182 (6.3) 2,200 (6.4) 0.00 
Prostate specific antigen test 5,557 (20.4) 1,114 (15.3) 0.13 6,670 (19.3) 6,520 (19.0) 0.01 
Colonoscopy 1,527 (5.6) 401 (5.5) 0.00 1,933 (5.6) 2,019 (5.9) 0.01 
Fecal occult blood test 1,915 (7.0) 477 (6.6) 0.02 2,387 (6.9) 2,388 (7.0) 0.00 
Influenza vaccine 4,118 (15.1) 1,249 (17.2) 0.06 5,382 (15.6) 5,343 (15.6) 0.00 
Hemoglobin A1C test 14,505 (53.2) 4,349 (59.7) 0.13 18,858 (54.6) 18,631 (54.4) 0.00 
Creatinine test 1,883 (6.9) 469 (6.4) 0.02 2,354 (6.8) 2,377 (6.9) 0.00 
Comprehensive metabolic panel 14,472 (53.1) 4,338 (59.6) 0.13 18,833 (54.5) 18,773 (54.8) 0.01 
Thyroid function test 8,465 (31.1) 2,509 (34.5) 0.07 11,001 (31.8) 11,164 (32.6) 0.02 
Transthoracic echocardiogram 6,618 (24.3) 1,331 (18.3) 0.15 7,963 (23.1) 8,036 (23.5) 0.01 
SD: standard deviation; SMD: standardized mean difference; CABG: coronary artery bypass graft; COPD: chronic obstructive 
pulmonary disease; PCI, percutaneous coronary intervention 

Mortality rates and risks (at 1, 3, and 5 years) for the overall cohort and according to age group 

are displayed in Table 36. Mortality rates per 1,000 person-years were 8.7 for ages 55–64, 22.2 

for ages 65–74, and 68.9 for ages ≥75.  

Table 36. Summary of mortality risks per 100 and rates in the Optum cohort overall and 
according to age group 

 

Total 
N 

Deaths 
Person-
Years 

Rate per 
1,000 

Person-
Years 

Cumulative 
Risk / 100, 1 

year (95% CI) 

Cumulative 
Risk / 100, 3 

years (95% CI) 

Cumulative 
Risk / 100, 5 

years (95% CI) 

Overall 34,197 2,712 95,497 28.4 0.9 (0.8, 1.0) 3.3 (3.1, 3.5) 6.2 (5.9, 6.5) 

Age 55–64 14,102 315 36,277 8.7 0.2 (0.1, 0.3) 0.9 (0.7, 1.1) 1.9 (1.6, 2.2) 

Age 65–74 11,787 800 36,034 22.2 0.7 (0.5, 0.8) 2.7 (2.4, 3.0) 5.0 (4.5, 5.4) 

Age 75+ 8,308 1,597 23,185 68.9 2.4 (2.0, 2.7) 8.2 (7.5, 8.8) 14.4 (13.5, 15.4) 
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A total of 5,495 outcome events occurred over 86,629 person-years. Average follow-up time in 

the overall cohort was 3.16 years (3.21 years for ramipril users, 2.99 years for telmisartan 

users). Cumulative risk estimates were similar for both exposure groups (Table 37). For ramipril 

users, sub-distribution and cause-specific cumulative risk estimates per 100, respectively, were 

7.2 (95% 6.9, 7.6) and 7.3 (7.0, 7.7) at year 1 (difference = 0.1), were 16.9 (16.3, 17.4) and 17.4 

(16.8, 18.0) at year 3 (difference = 0.6), and were 24.2 (23.5, 25.0) and 25.5 (24.7, 26.3) at year 

5 (difference = 1.3) (Figure 30 and Table 38). For telmisartan users, sub-distribution and 

cause-specific cumulative risk estimates per 100, respectively, were 6.3 (5.5, 7.0) and 6.3 (5.5, 

7.0) at year 1 (difference = 0.0), were 17.0 (15.5, 18.4) and 17.4 (15.9, 18.8) at year 3 

(difference = 0.4), and were 23.5 (21.8, 25.2) and 24.4 (22.6, 26.2) at year 5 (difference = 0.9). 

Comparison of the risk differences from the cause-specific versus sub-distribution models in the 

overall cohort across the 5 years of follow-up did not result in absolute differences per 100 

greater than 0.4 (Table 37 and Table 38).  

Table 37. Cumulative risks and risk differences per 100 (telmisartan versus ramipril) of 
composite comparing cause-specific versus sub-distribution risk of composite outcome 
in the Optum cohort at 1, 3, and 5 years 

Risk Time Treatment Group Events 
Cumulative Risk / 100 

(95% CI) 
Risk Difference / 100 

(95% CI) 

Sub-Distribution 

1 year 
Ramipril 1,778 7.2 (6.9, 7.6) 

−1.0 (−1.8, −0.2) 
Telmisartan 424 6.3 (5.5, 7.0) 

3 years  
Ramipril 3,498 16.9 (16.3, 17.4) 

0.1 (−1.5, 1.6) 
Telmisartan 887 17.0 (15.5, 18.4) 

5 years  
Ramipril 4,394 24.2 (23.5, 25.0) 

−0.7 (−2.7, 1.2) 
Telmisartan 1,101 23.5 (21.8, 25.2) 

Cause-Specific 

1 year 
Ramipril 1,778 7.3 (7.0, 7.7) 

−1.0 (−1.9, −0.2) 
Telmisartan 424 6.3 (5.5, 7.0) 

3 years  
Ramipril 3,498 17.4 (16.8, 18.0) 

−0.1 (−1.7, 1.5) 
Telmisartan 887 17.4 (15.9, 18.8) 

5 years  
Ramipril 4,394 25.5 (24.7, 26.3) 

−1.1 (−3.1, 0.9) 
Telmisartan 1,101 24.4 (22.6, 26.2) 
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Figure 30. Cumulative risk estimates from the sub-distribution and cause-specific models 
in the Optum cohort  

 
 

Table 38. Difference in cumulative risks per 100 and difference in risk differences per 100 
(telmisartan versus ramipril) comparing cause-specific versus sub-distribution risk of 
composite outcome in the Optum cohort at 1, 3, and 5 years  

Risk Time Treatment Group 
Difference in Cumulative 

Risks / 100 (95% CI) 
Difference in Risk 

Differences / 100 (95% CI) 

1 year 
Ramipril 0.1 (0.1, 0.1) 

0.0 (0.0, 0.0) 
Telmisartan 0.0 (0.0, 0.0) 

3 years  
Ramipril 0.6 (0.6, 0.6)  

−0.1 (−0.2, −0.1)  
Telmisartan 0.4 (0.4, 0.4) 

5 years  
Ramipril 1.3 (1.3, 1.3) 

−0.4 (−0.4, −0.4) 
Telmisartan 0.9 (0.9, 0.9) 

 

Cumulative risk estimates and risk difference estimates at 1, 3, and 5 years from sub-

distribution and cause-specific models are displayed according to age category in Table 39 and 

Figure 31. The increase in the difference in cumulative risks over time was greatest for the 

oldest age group (Table 40 and Figure 32). Among ramipril users, 5-year sub-distribution and 

cause-specific cumulative risk estimates per 100, respectively, were 16.2 (15.1, 17.3) and 16.4 

(15.3, 17.5) among ages 55–64 (difference = 0.2) and were 39.7 (37.9, 41.4) and 43.2 (41.3, 

45.2) among ages ≥75 (difference = 3.6). Differences in the risk differences per 100 from the 

cause-specific versus sub-distribution models across the 5 years of follow-up did not exceed an 

absolute value of 1.0, even in the oldest age group (Table 40 and Figure 33).   
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Table 39. Cumulative risks and risk differences per 100 of composite outcome at 1, 3, and 
5 years from the sub-distribution and cause-specific models in the Optum cohort by age 
category  

Age 
Group 

Treatment 
Group 

Events 

Sub-Distribution Cause-Specific 

Cumulative Risk 
/ 100 (95% CI) 

Risk Difference 
/ 100 (95% CI) 

Cumulative Risk 
/ 100 (95% CI) 

Risk Difference 
/ 100 (95% CI) 

1 Year 

55–64  
Ramipril 453 4.5 (4.1, 4.9) 

−1.0 (−2.1, −0.0) 
4.5 (4.1, 5.0) 

−1.0 (−2.1, −0.0) 
Telmisartan 87 3.5 (2.6, 4.4) 3.5 (2.6, 4.4) 

65–74 
Ramipril 580 6.8 (6.2, 7.3) 

−0.4 (−2.0, 1.2) 
6.8 (6.3, 7.4) 

−0.4 (−2.0, 1.2) 
Telmisartan 146 6.4 (4.9, 7.9) 6.4 (5.0, 7.9) 

75+  
Ramipril 745 13.0 (12.1, 14.0) 

−2.8 (−4.8, −0.9) 
13.3 (12.4, 14.3) 

−3.0 (−5.0, −1.1) 
Telmisartan 191 10.2 (8.5, 11.9) 10.3 (8.6, 12.0) 

3 Years 

55–64  
Ramipril 857 10.7 (10.0, 11.5) 

−0.1 (−2.5, 2.3) 
10.8 (10.1, 11.6) 

−0.1 (−2.5, 2.3) 
Telmisartan 176 10.6 (8.4, 12.8) 10.7 (8.5, 13.0) 

65–74 
Ramipril 1,176 16.3 (15.3, 17.2) 

1.3 (−1.4, 3.9) 
16.7 (15.7, 17.7) 

1.2 (−1.5, 3.9) 
Telmisartan 332 17.6 (15.2, 20.0) 17.9 (15.4, 20.3) 

75+  
Ramipril 1,465 29.1 (27.7, 30.6) 

−2.5 (−6.2, 1.2) 
30.6 (29.1, 32.2) 

−2.7 (−6.6, 1.3) 
Telmisartan 379 26.7 (23.4, 30.0) 28.0 (24.5, 31.5) 

5 Years 

55–64  
Ramipril 1,047 16.2 (15.1, 17.3) 

−1.1 (−4.0, 1.8) 
16.4 (15.3, 17.5) 

−1.1 (−4.0, 1.8) 
Telmisartan 223 15.1 (12.5, 17.7) 15.3 (12.6, 18.0) 

65–74 
Ramipril 1,512 23.8 (22.5, 25.0) 

−0.0 (−3.2, 3.2) 
24.7 (23.4, 26.0) 

−0.4 (−3.7, 2.9) 
Telmisartan 406 23.8 (20.9, 26.7) 24.3 (21.3, 27.3) 

75+  
Ramipril 1,465 39.7 (37.9, 41.4) 

−3.0 (−7.7, 1.6) 
43.2 (41.3, 45.2) 

−3.9 (−9.0, 1.1) 
Telmisartan 379 36.6 (32.5, 40.8) 39.3 (34.8, 43.8) 

 

Figure 31. Cumulative risk estimates from the sub-distribution and cause-specific models 
in the Optum cohort by age category  
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Table 40. Difference in cumulative risks per 100 and difference in risk differences per 100 
(telmisartan versus ramipril) comparing cause-specific and sub-distribution risk of 
composite outcome in the Optum cohort at 1, 3, and 5 years by age category  

Age Group Treatment Group 
Difference in Cumulative 

Risks / 100 (95% CI) 
Difference in Risk 

Differences / 100 (95% CI) 

1 Year  

55–64  
Ramipril 0.0 (0.0, 0.0) 

0.0 (0.0, 0.0) 
Telmisartan 0.0 (0.0, 0.0) 

65–74 
Ramipril 0.1 (0.1, 0.1) 

0.0 (0.0, 0.0) 
Telmisartan 0.0 (0.0, 0.0) 

75+  
Ramipril 0.3 (0.3, 0.3) 

−0.2 (−0.2, −0.2) 
Telmisartan 0.1 (0.1, 0.1) 

3 Years  

55–64  
Ramipril 0.1 (0.1, 0.1) 

0.0 (0.0, 0.0) 
Telmisartan 0.1 (0.1, 0.1) 

65–74 
Ramipril 0.4 (0.4, 0.4) 

−0.1 (−0.1, −0.1) 
Telmisartan 0.3 (0.3, 0.3) 

75+  
Ramipril 1.5 (1.5, 1.5) 

−0.2 (−0.2, −0.2) 
Telmisartan 1.3 (1.3, 1.3) 

5 Years  

55–64  
Ramipril 0.2 (0.2, 0.2) 

0.0 (0.0, 0.0) 
Telmisartan 0.2 (0.2, 0.2) 

65–74 
Ramipril 0.9 (0.9. 0.9) 

−0.4 (−0.4, −0.4) 
Telmisartan 0.6 (0.6, 0.6) 

75+  
Ramipril 3.6 (3.6, 3.6) 

−0.9 (−1.0, −0.9) 
Telmisartan 2.6 (2.6, 2.7) 

 

Figure 32. Difference in cumulative risks per 100 of the composite outcome at 1, 3, and 5 
years from the cause-specific versus sub-distribution models in the Optum cohort, 
according to treatment category and age group  
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Figure 33. Absolute difference in risk differences per 100 (telmisartan versus ramipril) of 
the composite outcome at 1, 3, and 5 years from the cause-specific versus sub-
distribution models in the Optum cohort, according to age group  

 
 

Simple Simulation 

The average overall and age-stratified mortality rates and risks from the baseline fully 

synthetically simulated cohorts, and under the doubling and tripling of the mortality rates, are 

displayed in Table 41. 

Table 41. Summary of average mortality risks per 100 and rates in the fully synthetic 
simulated cohorts overall and according to age group 

Mortality 
Rate 

Rate per 1,000 Person-
Years (95% CI) 

Cumulative Risk / 
100, 1 year (95% CI) 

Cumulative Risk / 
100, 3 years (95% CI) 

Cumulative Risk / 
100, 5 years (95% CI) 

Overall      

Baseline  32.1 (31.5, 32.8) 2.3 (2.2, 2.4) 8.7 (8.5, 8.9) 16.0 (15.7, 16.3) 

Double 60.7 (59.8, 61.6) 4.5 (4.3, 4.6) 16.2 (15.9, 16.4) 28.0 (27.6, 28.4) 

Triple 86.5 (85.4, 87.7) 6.6 (6.4, 6.7) 22.6 (22.3, 22.9) 37.2 (36.8, 37.6) 

Age 55–64      

Baseline  8.8 (8.2, 9.4) 0.7 (0.6, 0.7) 2.5 (2.3, 2.7) 4.7 (4.4, 5.0) 

Double 17.6 (16.7, 18.4) 1.3 (1.2, 1.4) 5.0 (4.7, 5.3) 9.2 (8.7, 9.6) 

Triple 26.3 (25.3, 27.3) 2.0 (1.8, 2.1) 7.4 (7.1, 7.8) 13.5 (12.9, 14.0) 

Age 65–74      

Baseline  25.4 (24.5, 26.4) 1.9 (1.7, 2.0) 7.0 (6.6, 7.3) 12.6 (12.2, 13.1) 

Double 50.4 (49.0, 51.8) 3.7 (3.5, 3.9) 13.4 (13.0, 13.8) 23.7 (23.1, 24.3) 

Triple 75.1 (73.4, 76.7) 5.5 (5.2, 5.7) 19.4 (19.0, 19.9) 33.3 (32.6, 34.0) 

Age 75+      

Baseline  78.5 (76.5, 80.5) 5.6 (5.3, 5.9) 20.0 (19.4, 20.6) 34.2 (33.5, 35.0) 

Double 153.4 (150.5, 156.3) 10.9 (10.5, 11.3) 36.0 (35.3, 36.7) 56.7 (55.9, 57.5) 

Triple 225.2 (221.3, 229.1) 15.9 (15.4, 16.5) 48.9 (48.1, 49.6) 71.5 (70.8, 72.3) 
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The average cumulative risk estimates and risk difference estimates at 1, 3, and 5 years from 

sub-distribution and cause-specific models from the fully synthetically simulated cohorts under 

baseline, doubling, and tripling of the mortality rate are displayed in Table 42 and Figure 34. As 

expected, the difference in cumulative risks increased with the increasing mortality rate, such 

that the difference was greatest when the mortality rate was tripled (Table 43 and Figure 35). 

For ramipril users, at year 5 the average cause-specific and sub-distribution risks per 100 were, 

respectively, 26.0 (25.5, 26.4) and 23.9 (23.5, 24.3) under the baseline mortality rate (difference 

= 2.1) and were 25.9 (25.4, 26.4) and 20.8 (20.4, 21.2) under the tripled mortality rate 

(difference = 5.1). The average difference in the risk differences per 100 from the cause-specific 

versus sub-distribution models across the 5 years of follow-up did not exceed an absolute value 

of 0.7, even when the mortality rate was tripled (Table 43 and Figure 36).   

Table 42. Average cumulative risks and risk differences per 100 of composite outcome at 
1, 3, and 5 years from the sub-distribution and cause-specific models in the fully 
synthetically simulated cohorts by mortality rate manipulation 

Mortality Rate 
Treatment 

Group 

Sub-Distribution Cause-Specific 

Cumulative Risk 
/ 100 (95% CI) 

Risk Difference / 
100 (95% CI) 

Cumulative Risk 
/ 100 (95% CI) 

Risk Difference / 
100 (95% CI) 

1 Year  

Baseline 
Ramipril 6.9 (6.7, 7.1) 

−0.5 (−0.8, −0.1) 
7.0 (6.8, 7.2) 

−0.5 (−0.9, −0.1) 
Telmisartan 6.4 (6.1, 6.8) 6.5 (6.2, 6.9) 

Double  
Ramipril 6.8 (6.6, 7.0) 

−0.4 (−0.8, −0.1) 
7.0 (6.8, 7.2) 

−0.5 (−0.9, −0.1) 
Telmisartan 6.4 (6.0, 6.7) 6.5 (6.2, 6.9) 

Triple  
Ramipril 6.7 (6.5, 6.9) 

−0.4 (−0.8, 0.0) 
7.0 (6.8, 7.2) 

−0.5 (−0.9, −0.1) 
Telmisartan 6.3 (6.0, 6.6) 6.5 (6.2, 6.9) 

3 Years  

Baseline 
Ramipril 16.7 (16.3, 17.0) 

−1.0 (−1.6, −0.3) 
17.5 (17.2, 17.8) 

−1.1 (−1.8, −0.4) 
Telmisartan 15.7 (15.2, 16.3) 16.4 (15.8, 17.0) 

Double  
Ramipril 15.9 (15.6, 16.2) 

−0.8 (−1.5, −0.2) 
17.5 (17.2, 17.9) 

−1.1 (−1.8, −0.4) 
Telmisartan 15.1 (14.6, 15.6) 16.4 (15.8, 17.0) 

Triple  
Ramipril 15.3 (15.0, 15.6) 

−0.7 (−1.4, −0.1) 
17.6 (17.2, 17.9) 

−1.1 (−1.8, −0.4) 
Telmisartan 14.5 (14.0, 15.1) 16.4 (15.8, 17.0) 

5 Years  

Baseline 
Ramipril 23.9 (23.5, 24.3) 

−1.2 (−2.0, −0.3) 
26.0 (25.5, 26.4) 

−1.5 (−2.4, −0.6) 
Telmisartan 22.7 (22.0, 23.4) 24.4 (23.7, 25.2) 

Double  
Ramipril 22.2 (21.8, 22.6) 

−0.9 (−1.8, −0.1) 
25.9 (25.5, 26.4) 

−1.5 (−2.5, −0.6) 
Telmisartan 21.3 (20.5, 22.0) 24.4 (23.6, 25.3) 

Triple  
Ramipril 20.8 (20.4, 21.2) 

−0.8 (−1.6, 0.1) 
25.9 (25.4, 26.4) 

−1.5 (−2.6, −0.5) 
Telmisartan 20.0 (19.3, 20.7) 24.4 (23.5, 25.2) 
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Figure 34. Average cumulative risk estimates of the composite outcome from the sub-
distribution and cause-specific models in the fully synthetically simulated cohorts under 
manipulations of the mortality rate  

 

Table 43. Average difference in cumulative risks per 100 and difference in risk 
differences per 100 (telmisartan versus ramipril) comparing cause-specific and sub-
distribution risk of composite outcome in the fully synthetically simulated cohorts at 1, 3, 
and 5 years by mortality rate manipulation   

Mortality Rate Treatment Group 
Difference in Cumulative 

Risks / 100 (95% CI) 
Difference in Risk 

Differences / 100 (95% CI) 

1 Year  

Baseline 
Ramipril 0.1 (0.1, 0.1) 

0.0 (0.0, 0.0) 
Telmisartan 0.1 (0.1, 0.1) 

Double  
Ramipril 0.2 (0.2, 0.2) 

0.0 (−0.1, 0.0) 
Telmisartan 0.2 (0.2, 0.2) 

Triple  
Ramipril 0.3 (0.3, 0.3) 

−0.1 (−0.1, 0.0) 
Telmisartan 0.2 (0.2, 0.3) 

3 Years  

Baseline 
Ramipril 0.9 (0.8, 0.9) 

−0.2 (−0.2, −0.1) 
Telmisartan 0.7 (0.6, 0.8) 

Double  
Ramipril 1.6 (1.5, 1.7) 

−0.3 (−0.4, −0.2) 
Telmisartan 1.3 (1.2, 1.4) 

Triple  
Ramipril 2.3 (2.2, 2.4) 

−0.4 (−0.5, −0.2) 
Telmisartan 1.9 (1.8, 2.0) 

5 Years  

Baseline 
Ramipril 2.1 (2.0, 2.2) 

−0.3 (−0.5, −0.2) 
Telmisartan 1.7 (1.6, 1.9) 

Double  
Ramipril 3.7 (3.6, 3.9) 

−0.6 (−0.8, −0.3) 
Telmisartan 3.2 (3.0, 3.4) 

Triple  
Ramipril 5.1 (4.9, 5.3) 

−0.7 (−1.1, −0.4) 
Telmisartan 4.4 (4.1, 4.7) 
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Figure 35. Average difference in cumulative risk estimates per 100 of the composite 
outcome at 1, 3, and 5 years from the cause-specific versus sub-distribution models in 
the fully synthetically simulated cohorts under manipulations of the mortality rate, 
according to treatment category  

 

Figure 36. Average difference in risk difference estimates per 100 (telmisartan versus 
ramipril) of the composite outcome at 1, 3, and 5 years from the cause-specific versus 
sub-distribution models in the fully synthetically simulated cohorts under manipulations 
of the mortality rate  
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The average age-stratified cumulative risk estimates from the cause-specific and sub-

distribution models given the baseline, double, and triple mortality rates are displayed in Table 

44 and Figure 37. In the youngest age group, where the baseline mortality rate was the lowest, 

tripling of the mortality rate (which resulted in a mortality rate similar to that of the baseline 

mortality rate in the 65–74 age group) did not produce substantial differences in the cause-

specific versus sub-distribution risks. Among ramipril users age 55–65, the average 5-year sub-

distribution and cause-specific cumulative risk estimates per 100, respectively, were 15.6 (15.0, 

16.2) and 16.5 (15.9, 17.2) under the tripled mortality rate (difference = 1.0). The largest 

differences in response to the doubling and tripling of the mortality rate were observed in the 

oldest age group, for which the baseline mortality rate was even greater than the tripled 

mortality rates of the other groups (Table 41). Among ramipril users age 75+, the average 5-

year sub-distribution and cause-specific cumulative risk estimates per 100, respectively, were 

37.3 (36.4, 38.2) and 43.5 (42.5, 44.6) under the baseline mortality rate (difference = 6.2), were 

32.5 (31.6, 33.3) and 43.5 (42.3, 44.8) under the doubled mortality rate (difference = 11.1), and 

were 28.6 (27.8, 29.4) and 43.6 (42.2, 45.0) under the tripled mortality rate (difference = 14.9). 

The largest average age-stratified difference in the risk differences per 100 from the cause-

specific versus sub-distribution models under the doubling and tripling of the mortality rates was 

an absolute value of 2.0, which occurred in the oldest age group (Table 45).   
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Figure 37. Average cumulative risk estimates of the composite outcome from the sub-
distribution and cause-specific models in the fully synthetically simulated cohorts under 
manipulations of the mortality rate and according to age strata 
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Table 44. Average cumulative risks and risk differences per 100 of composite outcome at 
1, 3, and 5 years from the sub-distribution and cause-specific models in the fully 
synthetically simulated cohorts by mortality rate manipulation 

Risk 
Time 

Mortality 
Rate 

Treatment 
Group 

Sub-Distribution Cause-Specific 

Cumulative Risk / 
100 (95% CI) 

Risk Difference / 
100 (95% CI) 

Cumulative Risk / 
100 (95% CI) 

Risk Difference / 
100 (95% CI) 

Age 55−64 

1 year 

Baseline 
Ramipril 4.2 (3.9, 4.4) 

−0.3 (−0.8, 0.2) 
4.2 (3.9, 4.4) 

−0.3 (−0.8, 0.2) 
Telmisartan 3.9 (3.4, 4.3) 3.9 (3.4, 4.3) 

Double  
Ramipril 4.1 (3.9, 4.4) 

−0.3 (−0.8, 0.2) 
4.2 (3.9, 4.4) 

−0.3 (−0.8, 0.2) 
Telmisartan 3.9 (3.4, 4.3) 3.9 (3.4, 4.3) 

Triple  
Ramipril 4.1 (3.9, 4.4) 

−0.3 (−0.8, 0.2) 
4.2 (3.9, 4.4) 

−0.3 (−0.8, 0.2) 
Telmisartan 3.8 (3.4, 4.3) 3.9 (3.4, 4.3) 

3 years 

Baseline 
Ramipril 10.7 (10.2, 11.1) 

−0.7 (−1.7, 0.3) 
10.8 (10.3, 11.2) 

−0.7 (−1.7, 0.3) 
Telmisartan 10.0 (9.2, 10.8) 10.1 (9.2, 10.9) 

Double  
Ramipril 10.6 (10.1, 11.0) 

−0.7 (−1.6, 0.3) 
10.8 (10.3, 11.2) 

−0.7 (−1.7, 0.3) 
Telmisartan 9.9 (9.1, 10.7) 10.1 (9.2, 10.9) 

Triple  
Ramipril 10.5 (10.0, 10.9) 

−0.7 (−1.6, 0.3) 
10.8 (10.4, 11.2) 

−0.7 (−1.7, 0.2) 
Telmisartan 9.8 (9.0, 10.6) 10.1 (9.2, 10.9) 

5 years 

Baseline 
Ramipril 16.2 (15.6, 16.8) 

−1.0 (−2.4, 0.4) 
16.5 (15.9, 17.2) 

−1.0 (−2.4, 0.4) 
Telmisartan 15.2 (14.0, 16.5) 15.5 (14.3, 16.8) 

Double  
Ramipril 15.9 (15.3, 16.5) 

−0.9 (−2.3, 0.5) 
16.5 (15.9, 17.2) 

−1.0 (−2.5, 0.4) 
Telmisartan 15.0 (13.8, 16.2) 15.5 (14.2, 16.8) 

Triple  
Ramipril 15.6 (15.0, 16.2) 

−0.9 (−2.2, 0.5) 
16.5 (15.9, 17.2) 

−1.1 (−2.5, 0.4) 
Telmisartan 14.7 (13.5, 15.9) 15.5 (14.2, 16.8) 

Age 65−74 

1 year 

Baseline 
Ramipril 6.7 (6.4, 7.0) 

−0.5 (−1.1, 0.2) 
6.7 (6.4, 7.1) 

−0.5 (−1.1, 0.2) 
Telmisartan 6.2 (5.7, 6.8) 6.3 (5.7, 6.8) 

Double  
Ramipril 6.6 (6.3, 6.9) 

−0.4 (−1.1, 0.2) 
6.7 (6.4, 7.1) 

−0.5 (−1.1, 0.2) 
Telmisartan 6.2 (5.6, 6.7) 6.3 (5.7, 6.8) 

Triple  
Ramipril 6.6 (6.3, 6.9) 

−0.4 (−1.0, 0.2) 
6.7 (6.4, 7.1) 

−0.4 (−1.1, 0.2) 
Telmisartan 6.2 (5.6, 6.7) 6.3 (5.8, 6.8) 

3 years 

Baseline 
Ramipril 16.6 (16.0, 17.1) 

−1.0 (−2.1, 0.1) 
17.1 (16.5, 17.6) 

−1.1 (−2.2, 0.0) 
Telmisartan 15.6 (14.6, 16.5) 16.0 (15.0, 16.9) 

Double  
Ramipril 16.1 (15.6, 16.6) 

−0.9 (−2.0, 0.2) 
17.1 (16.5, 17.6) 

−1.1 (−2.2, 0.0) 
Telmisartan 15.2 (14.2, 16.1) 16.0 (15.0, 17.0) 

Triple  
Ramipril 15.6 (15.1, 16.1) 

−0.8 (−1.9, 0.2) 
17.1 (16.5, 17.6) 

−1.1 (−2.2, 0.0) 
Telmisartan 14.8 (13.9, 15.6) 16.0 (15.0, 16.9) 

5 years 

Baseline 
Ramipril 24.3 (23.6, 24.9) 

−1.3 (−2.7, 0.1) 
25.6 (24.9, 26.4) 

−1.6 (−3.0, −0.1) 
Telmisartan 23.0 (21.7, 24.2) 24.1 (22.8, 25.4) 

Double  
Ramipril 23.0 (22.4, 23.7) 

−1.1 (−2.5, 0.3) 
25.6 (24.9, 26.4) 

−1.6 (−3.1, 0.0) 
Telmisartan 21.9 (20.7, 23.1) 24.1 (22.8, 25.4) 

Triple  
Ramipril 21.9 (21.3, 22.5) 

−0.9 (−2.2, 0.3) 
25.7 (24.9, 26.4) 

−1.6 (−3.1, 0.0) 
Telmisartan 21.0 (19.9, 22.0) 24.1 (22.8, 25.4) 

Age 75+ 

1 year 

Baseline 
Ramipril 12.3 (11.8, 12.8) 

−0.8 (−1.7, 0.2) 
12.6 (12.0, 13.1) 

−0.8 (−1.8, 0.1) 
Telmisartan 11.5 (10.7, 12.3) 11.7 (10.9, 12.6) 

Double  
Ramipril 12.0 (11.5, 12.5) 

−0.7 (−1.7, 0.2) 
12.6 (12.0, 13.1) 

−0.8 (−1.8, 0.2) 
Telmisartan 11.2 (10.4, 12.0) 11.7 (10.9, 12.6) 

Triple  
Ramipril 11.7 (11.2, 12.2) 

−0.7 (−1.6, 0.3) 
12.6 (12.0, 13.1) 

−0.8 (−1.9, 0.2) 
Telmisartan 11.0 (10.2, 11.9) 11.7 (10.9, 12.6) 

3 years 

Baseline 
Ramipril 27.7 (27.0, 28.5) 

−1.4 (−2.8, 0.1) 
30.3 (29.5, 31.1) 

−1.8 (−3.4, −0.2) 
Telmisartan 26.4 (25.1, 27.6) 28.5 (27.1, 29.8) 

Double  
Ramipril 25.5 (24.8, 26.2) 

−1.0 (−2.4, 0.4) 
30.3 (29.5, 31.2) 

−1.8 (−3.5, −0.2) 
Telmisartan 24.5 (23.3, 25.7) 28.5 (27.1, 29.9) 

Triple  
Ramipril 23.6 (22.9, 24.3) 

−0.8 (−2.1, 0.7) 
30.3 (29.4, 31.2) 

−1.8 (−3.6, 0.0) 
Telmisartan 22.8 (21.6, 24.0) 28.5 (27.0, 30.1) 

5 years 

Baseline 
Ramipril 37.3 (36.4, 38.2) 

−1.3 (−3.1, 0.4) 
43.5 (42.5, 44.6) 

−2.3 (−4.4, −0.2) 
Telmisartan 36.0 (34.5, 37.5) 41.2 (39.4, 43.0) 

Double  
Ramipril 32.5 (31.6, 33.3) 

−0.7 (−2.4, 0.9) 
43.5 (42.3, 44.8) 

−2.3 (−4.7, 0.0) 
Telmisartan 31.7 (30.3, 33.1) 41.2 (39.3, 43.1) 

Triple  
Ramipril 28.6 (27.8, 29.4) 

−0.3 (−1.9, 1.2) 
43.6 (42.2, 45.0) 

−2.4 (−5.0, 0.2) 
Telmisartan 28.3 (26.9, 29.6) 41.2 (39.0, 43.3) 
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Table 45. Average difference in cumulative risks per 100 and difference in risk 
differences per 100 (telmisartan versus ramipril) comparing cause-specific and sub-
distribution risk of composite outcome in the fully synthetically simulated cohorts at 1, 3, 
and 5 years by mortality rate manipulation, according to age strata  

Risk Time Mortality Rate Treatment Group 
Difference in Cumulative 

Risks / 100 (95% CI) 
Difference in Risk 

Differences / 100 (95% CI) 

Age 55−64   

1 year  

Baseline 
Ramipril 0.0 (0.0, 0.0) 

0.0 (0.0, 0.0) 
Telmisartan 0.0 (0.0, 0.0) 

Double  
Ramipril 0.0 (0.0, 0.0) 

0.0 (0.0, 0.0) 
Telmisartan 0.0 (0.0, 0.0) 

Triple  
Ramipril 0.0 (0.0, 0.0) 

0.0 (0.0, 0.0) 
Telmisartan 0.0 (0.0, 0.0) 

3 years  

Baseline 
Ramipril 0.1 (0.1, 0.1) 

0.0 (−0.1, 0.0) 
Telmisartan 0.1 (0.1, 0.1) 

Double  
Ramipril 0.2 (0.2, 0.3) 

0.0 (−0.1, 0.0) 
Telmisartan 0.2 (0.2, 0.2) 

Triple  
Ramipril 0.3 (0.3, 0.4) 

−0.1 (−0.1, 0.0) 
Telmisartan 0.3 (0.2, 0.3) 

5 years  

Baseline 
Ramipril 0.3 (0.3, 0.4) 

−0.1 (−0.1, 0.0) 
Telmisartan 0.3 (0.2, 0.3) 

Double  
Ramipril 0.6 (0.6, 0.7) 

−0.1 (−0.2, 0.0) 
Telmisartan 0.5 (0.4, 0.6) 

Triple  
Ramipril 1.0 (0.9, 1.0) 

−0.2 (−0.3, 0.0) 
Telmisartan 0.8 (0.7, 0.9) 

Age 65−74   

1 year  

Baseline 
Ramipril 0.1 (0.1, 0.1) 

0.0 (0.0, 0.0) 
Telmisartan 0.0 (0.0, 0.1) 

Double  
Ramipril 0.1 (0.1, 0.1) 

0.0 (0.0, 0.0) 
Telmisartan 0.1 (0.1, 0.1) 

Triple  
Ramipril 0.2 (0.2, 0.2) 

0.0 (−0.1, 0.0) 
Telmisartan 0.1 (0.1, 0.2) 

3 years  

Baseline 
Ramipril 0.5 (0.5, 0.5) 

−0.1 (−0.2, 0.0) 
Telmisartan 0.4 (0.4, 0.5) 

Double  
Ramipril 1.0 (0.9, 1.1) 

−0.2 (−0.3, −0.1) 
Telmisartan 0.8 (0.7, 0.9) 

Triple  
Ramipril 1.5 (1.4, 1.5) 

−0.3 (−0.4, −0.1) 
Telmisartan 1.2 (1.1, 1.3) 

5 years  

Baseline 
Ramipril 1.4 (1.3, 1.5) 

−0.2 (−0.4, −0.1) 
Telmisartan 1.1 (1.0, 1.3) 

Double  
Ramipril 2.6 (2.5, 2.8) 

−0.4 (−0.7, −0.2) 
Telmisartan 2.2 (1.9, 2.4) 

Triple  
Ramipril 3.8 (3.6, 4.0) 

−0.6 (−1.0, −0.3) 
Telmisartan 3.1 (2.8, 3.5) 

Age 75+   

1 year  

Baseline 
Ramipril 0.3 (0.3, 0.3) 

−0.1 (−0.1, 0.0) 
Telmisartan 0.3 (0.2, 0.3) 

Double  
Ramipril 0.6 (0.6, 0.6) 

−0.1 (−0.2, 0.0) 
Telmisartan 0.5 (0.4, 0.6) 

Triple  
Ramipril 0.9 (0.8, 0.9) 

−0.2 (−0.3, −0.1) 
Telmisartan 0.7 (0.6, 0.8) 

3 years  

Baseline 
Ramipril 2.6 (2.4, 2.7) 

−0.4 (−0.7, −0.2) 
Telmisartan 2.1 (1.9, 2.3) 

Double  
Ramipril 4.8 (4.5, 5.1) 

−0.8 (−1.2, −0.4) 
Telmisartan 4.0 (3.6, 4.4) 

Triple  
Ramipril 6.7 (6.4, 7.1) 

−1.1 (−1.7, −0.4) 
Telmisartan 5.7 (5.2, 6.2) 

5 years  

Baseline 
Ramipril 6.2 (5.9, 6.5) 

−1.0 (−1.6, −0.4) 
Telmisartan 5.3 (4.8, 5.7) 

Double  
Ramipril 11.1 (10.5, 11.6) 

−1.6 (−2.6, −0.6) 
Telmisartan 9.5 (8.7, 10.3) 

Triple  
Ramipril 14.9 (14.1, 15.8) 

−2.0 (−3.5, −0.6) 
Telmisartan 12.9 (11.7, 14.1) 
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Plasmode Simulation  

The average overall and age-stratified mortality rates and risks from the plasmode-simulated 

cohorts, under the baseline, doubled, and tripled mortality rates, are displayed in Table 46. 

Table 46. Summary of average mortality risks per 100 and rates in the plasmode-
simulated cohorts overall and according to age group 

Mortality Rate 
Rate per 1,000 
Person-Years 

Cumulative Risk / 
100, 1 year (95% CI) 

Cumulative Risk / 
100, 3 years (95% CI) 

Cumulative Risk / 
100, 5 years (95% CI) 

Overall      

Baseline  28.9 (27.9, 30.0) 1.8 (1.6, 1.9) 7.8 (7.5, 8.1) 15.0 (14.5, 15.6) 

Double 52.4 (51.0, 53.9) 3.5 (3.3, 3.7) 14.0 (13.6, 14.5) 25.3 (24.6, 26.0) 

Triple 72.9 (71.3, 74.8) 5.1 (4.8, 5.3) 19.3 (18.8, 19.9) 33.2 (32.4, 34.0) 

Age 55–64      

Baseline  8.3 (7.3, 9.3) 0.5 (0.4, 0.6) 2.3 (2.0, 2.7) 4.7 (4.1, 5.3) 

Double 16.3 (15.1, 17.6) 1.0 (0.9, 1.2) 4.5 (4.1, 5.0) 9.0 (8.3, 9.8) 

Triple 24.1 (22.5, 25.8) 1.5 (1.3, 1.7) 6.7 (6.2, 7.3) 13.0 (12.2, 14.0) 

Age 65–74      

Baseline  24.1 (22.6, 25.9) 1.5 (1.2, 1.7) 6.4 (5.9, 7.0) 12.5 (11.7, 13.3) 

Double 46.2 (44.1, 48.7) 2.9 (2.6, 3.2) 12.1 (11.4, 12.9) 22.6 (21.6, 23.8) 

Triple 66.9 (64.5, 70.0) 4.3 (3.9, 4.7) 17.3 (16.5, 18.2) 31.2 (30.2, 32.4) 

Age 75+      

Baseline  70.4 (67.3, 73.9) 4.5 (4.1, 5.0) 18.1 (17.1, 19.1) 32.1 (30.8, 33.4) 

Double 128.4 (123.7, 133.0) 8.6 (8.0, 9.3) 31.4 (30.2, 32.5) 50.9 (49.4, 52.4) 

Triple 179.4 (174.0, 185.1) 12.5 (11.8, 13.3) 41.7 (40.5, 43.0) 63.2 (61.8, 64.6) 
 

The average cumulative risk estimates and risk difference estimates at 1, 3, and 5 years from 

sub-distribution and cause-specific models in the plasmode cohorts under baseline, doubling, 

and tripling of the mortality rate are displayed in Table 47 and Figure 38. As expected, doubling 

and tripling the mortality rate resulted in an increase in the difference in cumulative risks of the 

cause-specific versus sub-distribution model at 1, 3, and 5 years (Table 48 and Figure 39). For 

ramipril users, at year 5 the average cause-specific and sub-distribution risks per 100 were, 

respectively, 19.1 (18.4, 19.8) and 18.0 (17.4, 18.7) under the baseline mortality rate (difference 

= 1.1) and were 17.8 (17.1, 18.6) and 15.5 (14.9, 16.2) under the tripled mortality rate 

(difference = 2.3). The average difference in the risk differences per 100 from the cause-specific 

versus sub-distribution models across the 5 years of follow-up did not exceed 0.0, even when 

the mortality rate was tripled (Table 48 and Figure 40).   
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Table 47. Average cumulative risks and risk differences per 100 of composite outcome at 
1, 3, and 5 years from the sub-distribution and cause-specific models in the plasmode-
simulated cohorts by mortality rate manipulation 

Mortality Rate 
Treatment 

Group 

Sub-Distribution Cause-Specific 

Cumulative Risk 
/ 100 (95% CI) 

Risk Difference / 
100 (95% CI) 

Cumulative Risk 
/ 100 (95% CI) 

Risk Difference / 
100 (95% CI) 

1 Year   

Baseline 
Ramipril 6.6 (6.2, 6.9) 

0.0 (−0.7, 0.7) 
6.7 (6.3, 7.0) 

0.0 (−0.7, 0.7) 
Telmisartan 6.6 (5.9, 7.2) 6.7 (6.0, 7.3) 

Double  
Ramipril 6.5 (6.1, 6.8) 

0.0 (−0.7, 0.7) 
6.6 (6.3, 7.0) 

0.0 (−0.7, 0.7) 
Telmisartan 6.5 (5.8, 7.1) 6.6 (6.0, 7.3) 

Triple  
Ramipril 6.4 (6.0, 6.7) 

0.0 (−0.7, 0.7) 
6.6 (6.2, 6.9) 

0.0 (−0.7, 0.7) 
Telmisartan 6.4 (5.7, 7.0) 6.6 (5.9, 7.2) 

3 Years   

Baseline 
Ramipril 13.8 (13.3, 14.3) 

0.2 (−1.0, 1.3) 
14.3 (13.8, 14.9) 

0.2 (−1.0, 1.4) 
Telmisartan 14.0 (12.9, 15.0) 14.5 (13.4, 15.5) 

Double  
Ramipril 13.1 (12.6, 13.6) 

0.2 (−1.0, 1.2) 
14.0 (13.5, 14.6) 

0.2 (−1.1, 1.3) 
Telmisartan 13.3 (12.3, 14.2) 14.2 (13.1, 15.2) 

Triple  
Ramipril 12.5 (12.0, 13.0) 

0.2 (−1.0, 1.2) 
13.8 (13.2, 14.4) 

0.1 (−1.1, 1.3) 
Telmisartan 12.7 (11.7, 13.6) 13.9 (12.8, 14.9) 

5 Years   

Baseline 
Ramipril 18.0 (17.4, 18.7) 

0.3 (−1.1, 1.8) 
19.1 (18.4, 19.8) 

0.3 (−1.2, 1.9) 
Telmisartan 18.3 (17.1, 19.7) 19.4 (18.1, 21.0) 

Double  
Ramipril 16.6 (16.0, 17.3) 

0.3 (−1.1, 1.7) 
18.4 (17.8, 19.2) 

0.3 (−1.3, 1.9) 
Telmisartan 16.9 (15.6, 18.2) 18.7 (17.3, 20.2) 

Triple  
Ramipril 15.5 (14.9, 16.2) 

0.2 (−1.0, 1.6) 
17.8 (17.1, 18.6) 

0.3 (−1.3, 2.1) 
Telmisartan 15.7 (14.6, 17.0) 18.1 (16.7, 19.6) 

 

Figure 38. Average cumulative risk estimates of the composite outcome from the sub-
distribution and cause-specific models in the plasmode-simulated cohorts under 
manipulations of the mortality rate  
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Table 48. Average difference in cumulative risks per 100 and difference in risk 
differences per 100 (telmisartan versus ramipril) comparing cause-specific and sub-
distribution risk of composite outcome in the plasmode-simulated cohorts at 1, 3, and 5 
years by mortality rate manipulation   

Mortality Rate Treatment Group 
Difference in Cumulative 

Risks / 100 (95% CI) 
Difference in Risk 

Differences / 100 (95% CI) 

1 Year  

Baseline 
Ramipril 0.1 (0.1, 0.1) 

0.0 (0.0, 0.1) 
Telmisartan 0.1 (0.1, 0.2) 

Double  
Ramipril 0.2 (0.2, 0.2) 

0.0 (−0.1, 0.1) 
Telmisartan 0.2 (0.1, 0.3) 

Triple  
Ramipril 0.2 (0.2, 0.3) 

0.0 (−0.1, 0.1) 
Telmisartan 0.2 (0.2, 0.3) 

3 Years  

Baseline 
Ramipril 0.5 (0.5, 0.6) 

0.0 (−0.1, 0.1) 
Telmisartan 0.5 (0.4, 0.7) 

Double  
Ramipril 1.0 (0.9, 1.0) 

0.0 (−0.2, 0.2) 
Telmisartan 0.9 (0.8, 1.1) 

Triple  
Ramipril 1.3 (1.2, 1.4) 

0.0 (−0.2, 0.3) 
Telmisartan 1.3 (1.1, 1.5) 

5 Years  

Baseline 
Ramipril 1.1 (1.0, 1.2) 

0.0 (−0.2, 0.3) 
Telmisartan 1.1 (0.9, 1.4) 

Double  
Ramipril 1.8 (1.7, 2.0) 

0.0 (−0.4, 0.5) 
Telmisartan 1.8 (1.5, 2.3) 

Triple  
Ramipril 2.3 (2.1, 2.6) 

0.0 (−0.5, 0.6) 
Telmisartan 2.3 (1.9, 2.9) 

 

Figure 39. Average difference in cumulative risk estimates per 100 of the composite 
outcome at 1, 3, and 5 years from the cause-specific versus sub-distribution models in 
the plasmode-simulated cohorts under manipulations of the mortality rate, according to 
treatment category  

 

 



173 

 

 

Figure 40. Average difference in risk difference estimates per 100 (telmisartan versus 
ramipril) of the composite outcome at 1, 3, and 5 years from the cause-specific versus 
sub-distribution models in the plasmode-simulated cohorts under manipulations of the 
mortality rate  

 

 

The average age-stratified cumulative risk estimates from the cause-specific and sub-

distribution models given the baseline, double, and triple mortality rates in the plasmode-

simulated cohorts are displayed in Table 49 and Figure 41. In the youngest age group, where 

the baseline mortality rate was the lowest, tripling of the mortality rate (which resulted in a 

mortality rate similar to that of the baseline mortality rate in the 65–74 age group) did not 

produce substantial differences in the cause-specific versus sub-distribution risks (Table 50). 

Among ramipril users age 55–65, the average 5-year sub-distribution and cause-specific 

cumulative risk estimates per 100, respectively, were 10.9 (10.1, 11.9) and 11.4 (10.5, 12.5) 

under the tripled mortality rate (difference = 0.5). The largest differences in response to the 

doubling and tripling of the mortality rate were observed in the oldest age group, for which the 

baseline mortality rate was even greater than the tripled mortality rates of the other groups 

(Table 46). Among ramipril users age 75+, the average 5-year sub-distribution and cause-

specific cumulative risk estimates per 100, respectively, were 29.4 (27.8, 30.9) and 32.6 (30.6, 

34.3) under the baseline mortality rate (difference = 3.2), were 25.7 (24.3, 27.2) and 30.7 (28.7, 
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32.7) under the doubled mortality rate (difference = 5.0), and were 23.0 (21.7, 24.4) and 29.0 

(27.1, 31.1) under the tripled mortality rate (difference = 6.0). The largest average age-stratified 

difference in the risk differences per 100 from the cause-specific versus sub-distribution models 

under the doubling and tripling of the mortality rates was an absolute value of 0.1, which 

occurred in the oldest age group (Table 50).   

Figure 41. Average cumulative risk estimates of the composite outcome from the sub-
distribution and cause-specific models in the plasmode-simulated cohorts under 
manipulations of the mortality rate and according to age strata 
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Table 49. Average cumulative risks and risk differences per 100 of composite outcome at 
1, 3, and 5 years from the sub-distribution and cause-specific models in the plasmode-
simulated cohorts by mortality rate manipulation 

Risk 
Time 

Mortality 
Rate 

Treatment 
Group 

Sub-Distribution Cause-Specific 

Cumulative Risk / 
100 (95% CI) 

Risk Difference / 
100 (95% CI) 

Cumulative Risk / 
100 (95% CI) 

Risk Difference / 
100 (95% CI) 

Age 55−64 

1 year 

Baseline 
Ramipril 3.9 (3.6, 4.4) 

0.0 (−0.9, 1.0) 
4.0 (3.6, 4.4) 

0.0 (−0.9, 1.0) 
Telmisartan 4.0 (3.1, 4.8) 4.0 (3.1, 4.9) 

Double  
Ramipril 3.9 (3.6, 4.3) 

0.0 (−0.9, 1.0) 
3.9 (3.6, 4.4) 

0.0 (−0.9, 1.0) 
Telmisartan 3.9 (3.1, 4.8) 4.0 (3.1, 4.8) 

Triple  
Ramipril 3.9 (3.5, 4.3) 

0.0 (−0.9, 1.0) 
3.9 (3.6, 4.4) 

0.0 (−0.9, 1.0) 
Telmisartan 3.9 (3.1, 4.8) 4.0 (3.1, 4.8) 

3 years 

Baseline 
Ramipril 8.5 (7.8, 9.2) 

0.1 (−1.5, 1.8) 
8.5 (7.9, 9.3) 

0.1 (−1.5, 1.8) 
Telmisartan 8.6 (7.2, 10.2) 8.7 (7.3, 10.3) 

Double  
Ramipril 8.3 (7.7, 9.1) 

0.1 (−1.4, 1.7) 
8.5 (7.8, 9.2) 

0.1 (−1.4, 1.8) 
Telmisartan 8.4 (7.1, 10.0) 8.6 (7.2, 10.2) 

Triple  
Ramipril 8.2 (7.5, 8.9) 

0.1 (−1.4, 1.8) 
8.4 (7.7, 9.2) 

0.2 (−1.4, 1.9) 
Telmisartan 8.3 (7.0, 9.8) 8.6 (7.2, 10.1) 

5 years 

Baseline 
Ramipril 11.5 (10.7, 12.6) 

0.3 (−1.9, 3.0) 
11.7 (10.8, 12.8) 

0.3 (−2.0, 3.0) 
Telmisartan 11.8 (10.0, 14.2) 12.0 (10.1, 14.4) 

Double  
Ramipril 11.2 (10.4, 12.2) 

0.3 (−1.7, 2.8) 
11.6 (10.6, 12.6) 

0.3 (−1.9, 2.8) 
Telmisartan 11.5 (9.7, 13.8) 11.8 (9.9, 14.3) 

Triple  
Ramipril 10.9 (10.1, 11.9) 

0.3 (−1.7, 2.7) 
11.4 (10.5, 12.5) 

0.3 (−1.8, 2.8) 
Telmisartan 11.2 (9.4, 13.4) 11.7 (9.8, 14.1) 

Age 65−74 

1 year 

Baseline 
Ramipril 6.2 (5.7, 6.8) 

0.0 (−1.1, 1.2) 
6.3 (5.7, 6.9) 

0.0 (−1.1, 1.2) 
Telmisartan 6.2 (5.3, 7.3) 6.2 (5.3, 7.4) 

Double  
Ramipril 6.2 (5.6, 6.7) 

0.0 (−1.1, 1.2) 
6.3 (5.7, 6.8) 

0.0 (−1.1, 1.2) 
Telmisartan 6.1 (5.2, 7.2) 6.2 (5.3, 7.4) 

Triple  
Ramipril 6.1 (5.5, 6.6) 

0.0 (−1.1, 1.2) 
6.2 (5.7, 6.8) 

0.0 (−1.1, 1.2) 
Telmisartan 6.1 (5.1, 7.2) 6.2 (5.3, 7.3) 

3 years 

Baseline 
Ramipril 13.8 (12.9, 14.6) 

0.1 (−1.6, 2.0) 
14.1 (13.3, 15.0) 

0.1 (−1.7, 2.2) 
Telmisartan 13.9 (12.4, 15.6) 14.3 (12.7, 16.0) 

Double  
Ramipril 13.2 (12.4, 14.1) 

0.1 (−1.6, 2.0) 
13.9 (13.0, 14.9) 

0.1 (−1.8, 2.2) 
Telmisartan 13.3 (11.8, 15.0) 14.0 (12.5, 15.8) 

Triple  
Ramipril 12.7 (11.9, 13.6) 

0.1 (−1.6, 2.0) 
13.7 (12.8, 14.7) 

0.1 (−1.8, 2.2) 
Telmisartan 12.8 (11.3, 14.4) 13.8 (12.2, 15.6) 

5 years 

Baseline 
Ramipril 18.2 (17.2, 19.4) 

0.2 (−1.9, 2.8) 
19.1 (17.9, 20.3) 

0.2 (−2.0, 2.9) 
Telmisartan 18.5 (16.6, 20.7) 19.3 (17.3, 21.7) 

Double  
Ramipril 17.1 (16.1, 18.1) 

0.2 (−1.9, 2.6) 
18.6 (17.4, 19.7) 

0.2 (−2.2, 3.0) 
Telmisartan 17.3 (15.4, 19.4) 18.8 (16.7, 21.2) 

Triple  
Ramipril 16.1 (15.0, 17.1) 

0.1 (−1.8, 2.5) 
18.1 (16.9, 19.3) 

0.2 (−2.3, 2.8) 
Telmisartan 16.2 (14.4, 18.3) 18.2 (16.1, 20.7) 

Age 75+ 

1 year 

Baseline 
Ramipril 11.9 (11.0, 12.8) 

0.1 (−1.8, 1.9) 
12.2 (11.3, 13.1) 

0.1 (−1.9, 2.0) 
Telmisartan 11.9 (10.3, 13.6) 12.2 (10.5, 14.0) 

Double  
Ramipril 11.6 (10.7, 12.5) 

0.1 (−1.8, 1.9) 
12.1 (11.1, 13.1) 

0.1 (−1.9, 2.0) 
Telmisartan 11.6 (10.0, 13.3) 12.2 (10.4, 13.9) 

Triple  
Ramipril 11.3 (10.4, 12.2) 

0.1 (−1.8, 1.8) 
12.0 (11.1, 13.0) 

0.1 (−1.9, 2.0) 
Telmisartan 11.4 (9.7, 13.0) 12.0 (10.3, 13.8) 

3 years 

Baseline 
Ramipril 23.7 (22.4, 25.0) 

0.2 (−2.4, 3.0) 
25.3 (23.9, 26.7) 

0.2 (−2.5, 3.3) 
Telmisartan 23.9 (21.4, 26.3) 25.5 (22.9, 28.3) 

Double  
Ramipril 21.7 (20.4, 22.9) 

0.2 (−2.5, 2.9) 
24.4 (22.9, 25.9) 

0.2 (−2.8, 3.5) 
Telmisartan 21.9 (19.5, 24.2) 24.7 (21.9, 27.4) 

Triple  
Ramipril 20.1 (18.8, 21.3) 

0.2 (−2.3, 2.8) 
23.6 (22.1, 25.2) 

0.1 (−2.7, 3.5) 
Telmisartan 20.2 (18.0, 22.5) 23.8 (21.2, 26.7) 

5 years 

Baseline 
Ramipril 29.4 (27.8, 30.9) 

0.2 (−2.8, 3.7) 
32.6 (30.6, 34.3) 

0.4 (−3.2, 4.3) 
Telmisartan 29.7 (26.9, 32.7) 32.9 (29.8, 36.5) 

Double  
Ramipril 25.7 (24.3, 27.2) 

0.3 (−2.8, 3.3) 
30.7 (28.7, 32.7) 

0.2 (−3.6, 4.2) 
Telmisartan 26.0 (23.3, 28.7) 31.0 (27.6, 34.8) 

Triple  
Ramipril 23.0 (21.7, 24.4) 

0.2 (−2.3, 3.1) 
29.0 (27.1, 31.1) 

0.3 (−3.5, 4.7) 
Telmisartan 23.2 (20.7, 25.9) 29.4 (26.1, 33.3) 
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Table 50. Average difference in cumulative risks per 100 and difference in risk 
differences per 100 (telmisartan versus ramipril) comparing cause-specific and sub-
distribution risk of composite outcome in the plasmode-simulated cohorts at 1, 3, and 5 
years by mortality rate manipulation, according to age strata  

Risk Time Mortality Rate Treatment Group 
Difference in Cumulative 

Risks / 100 (95% CI) 
Difference in Risk 

Differences / 100 (95% CI) 

Age 55−64   

1 year  

Baseline 
Ramipril 0.0 (0.0, 0.0) 

0.0 (0.0, 0.0) 
Telmisartan 0.0 (0.0, 0.0) 

Double  
Ramipril 0.0 (0.0, 0.0) 

0.0 (0.0, 0.0) 
Telmisartan 0.0 (0.0, 0.1) 

Triple  
Ramipril 0.0 (0.0, 0.1) 

0.0 (0.0, 0.0) 
Telmisartan 0.0 (0.0, 0.1) 

3 years  

Baseline 
Ramipril 0.1 (0.1, 0.1) 

0.0 (−0.1, 0.1) 
Telmisartan 0.1 (0.0, 0.2) 

Double  
Ramipril 0.1 (0.1, 0.2) 

0.0 (−0.1, 0.1) 
Telmisartan 0.2 (0.1, 0.3) 

Triple  
Ramipril 0.2 (0.2, 0.3) 

0.0 (−0.1, 0.2) 
Telmisartan 0.2 (0.1, 0.4) 

5 years  

Baseline 
Ramipril 0.2 (0.1, 0.3) 

0.0 (−0.1, 0.2) 
Telmisartan 0.2 (0.1, 0.4) 

Double  
Ramipril 0.4 (0.3, 0.5) 

0.0 (−0.2, 0.3) 
Telmisartan 0.4 (0.2, 0.6) 

Triple  
Ramipril 0.5 (0.4, 0.7) 

0.0 (−0.3, 0.4) 
Telmisartan 0.5 (0.3, 0.9) 

Age 65−74   

1 year  

Baseline 
Ramipril 0.1 (0.0, 0.1) 

0.0 (−0.1, 0.1) 
Telmisartan 0.1 (0.0, 0.1) 

Double  
Ramipril 0.1 (0.1, 0.2) 

0.0 (−0.1, 0.1) 
Telmisartan 0.1 (0.1, 0.2) 

Triple  
Ramipril 0.2 (0.1, 0.2) 

0.0 (−0.1, 0.1) 
Telmisartan 0.2 (0.1, 0.2) 

3 years  

Baseline 
Ramipril 0.4 (0.3, 0.5) 

0.0 (−0.2, 0.2) 
Telmisartan 0.4 (0.3, 0.6) 

Double  
Ramipril 0.7 (0.6, 0.8) 

0.0 (−0.2, 0.3) 
Telmisartan 0.7 (0.5, 1.0) 

Triple  
Ramipril 1.0 (0.8, 1.2) 

0.0 (−0.3, 0.4) 
Telmisartan 1.0 (0.7, 1.3) 

5 years  

Baseline 
Ramipril 0.9 (0.7, 1.1) 

0.0 (−0.3, 0.4) 
Telmisartan 0.8 (0.6, 1.3) 

Double  
Ramipril 1.5 (1.3, 1.8) 

0.0 (−0.5, 0.6) 
Telmisartan 1.5 (1.1, 2.1) 

Triple  
Ramipril 2.0 (1.7, 2.4) 

0.0 (−0.7, 0.8) 
Telmisartan 2.0 (1.5, 2.7) 

Age 75+   

1 year  

Baseline 
Ramipril 0.3 (0.2, 0.4) 

0.0 (−0.2, 0.4) 
Telmisartan 0.3 (0.2, 0.6) 

Double  
Ramipril 0.5 (0.4, 0.6) 

0.0 (−0.2, 0.4) 
Telmisartan 0.5 (0.3, 0.9) 

Triple  
Ramipril 0.7 (0.6, 0.8) 

0.0 (−0.2, 0.4) 
Telmisartan 0.7 (0.5, 1.1) 

3 years  

Baseline 
Ramipril 1.6 (1.4, 1.8) 

0.0 (−0.4, 0.6) 
Telmisartan 1.6 (1.2, 2.2) 

Double  
Ramipril 2.7 (2.4, 3.1) 

0.1 (−0.7, 0.9) 
Telmisartan 2.8 (2.1, 3.6) 

Triple  
Ramipril 3.5 (3.1, 4.1) 

0.0 (−1.0, 1.2) 
Telmisartan 3.6 (2.8, 4.7) 

5 years  

Baseline 
Ramipril 3.2 (2.7, 3.7) 

0.0 (−0.9, 1.3) 
Telmisartan 3.2 (2.4, 4.3) 

Double  
Ramipril 5.0 (4.3, 5.8) 

0.1 (−1.4, 1.9) 
Telmisartan 5.0 (3.9, 6.7) 

Triple  
Ramipril 6.0 (5.3, 7.1) 

0.1 (−1.7, 2.4) 
Telmisartan 6.1 (4.6, 8.2) 
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Exploratory Analysis 

The results of the exploratory analysis, in which we manipulated the associations between an 

exogenous variable X with both disenrollment and death in fully synthetically simulated cohorts, 

are shown in Table 51–Table 52 and Figure 42–Figure 44. The baseline scenario, in which 

variable X has a null association with both disenrollment and death, serves as a comparison for 

the alternative scenarios (and is identical to the baseline scenario for the mortality manipulation; 

Figure 42A). Among ramipril users, the average 5-year sub-distribution and cause-specific 

cumulative risks per 100 under the baseline scenario were 23.9 (23.5, 24.3) and 26.0 (25.5, 

26.4), respectively (difference = 2.1). In the next scenario, for which X had a strong protective 

association with both death and disenrollment (HR = 0.2 for death; HR = 0.2 for disenrollment), 

the average differences between the cause-specific and sub-distribution models across follow-

up were less than that of the baseline scenario (Figure 42B). The average difference in 5-year 

cumulative risks per 100 under this scenario for ramipril users was 1.2. Alternatively, when 

predictor X had a strong harmful association with both death and disenrollment (HR = 5.0 for 

death; HR = 5.0 for disenrollment), the average differences in cumulative risks were increased 

compared to the baseline scenario (5-year difference in cumulative risks per 100 among ramipril 

users = 2.0; Figure 42C). Finally, the average differences in cumulative risks comparing the 

cause-specific and sub-distribution models were greatest when predictor X had strong 

associations of opposite directionality with death and disenrollment (5-year difference in 

cumulative risks per 100 among ramipril users = 5.0; Figure 42C). Across all four scenarios at 5 

years, the largest average difference in risk differences per 100 from the cause-specific versus 

sub-distribution models was an absolute value of 0.7 (Table 52 and Figure 44). 
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Figure 42. Average cumulative risk estimates of the composite outcome from the sub-
distribution and cause-specific models in the fully simulated cohorts under 
manipulations of the associations between variable X with disenrollment and death  

 
 

Table 51. Average cumulative risks and risk differences per 100 of composite outcome at 
1, 3, and 5 years from the sub-distribution and cause-specific models in the fully 
synthetically simulated cohorts under manipulations of the associations between 
variable X with disenrollment and death 

Predictor 
Relationship 

Treatment 
Group 

Sub-Distribution Cause-Specific 

Cumulative Risk / 
100 (95% CI) 

Risk Difference 
/ 100 (95% CI) 

Cumulative Risk / 
100 (95% CI) 

Risk Difference 
/ 100 (95% CI) 

1 Year  

HR X-Death=1 
HR X-Disenroll=1 

Ramipril 6.9 (6.7, 7.1) 
−0.5 (−0.8, −0.1) 

7.0 (6.8, 7.2) 
−0.5 (−0.9, −0.1) 

Telmisartan 6.4 (6.1, 6.8) 6.5 (6.2, 6.9) 

HR X-Death=0.2 
HR X-Disenroll=0.2 

Ramipril 6.9 (6.8, 7.1) 
−0.5 (−0.8, −0.1) 

7.0 (6.8, 7.2) 
−0.5 (−0.9, −0.1) 

Telmisartan 6.5 (6.2, 6.8) 6.5 (6.2, 6.9) 

HR X-Death=5 
HR X-Disenroll=5 

Ramipril 6.8 (6.6, 7.0) 
−0.4 (−0.9, 0.0) 

7.0 (6.8, 7.2) 
−0.5 (−0.9, −0.1) 

Telmisartan 6.3 (6.0, 6.7) 6.5 (6.2, 6.9) 

HR X-Death=5 
HR X-Disenroll=0.2 

Ramipril 6.7 (6.6, 6.9) 
−0.4 (−0.8, 0.0) 

7.0 (6.8, 7.2) 
−0.5 (−0.9, −0.1) 

Telmisartan 6.3 (6.0, 6.6) 6.6 (6.2, 6.9) 

3 Years  

HR X-Death=1 
HR X-Disenroll=1 

Ramipril 16.7 (16.3, 17.0) 
−1.0 (−1.6, −0.3) 

17.5 (17.2, 17.8) 
−1.1 (−1.8, −0.4) 

Telmisartan 15.7 (15.2, 16.3) 16.4 (15.8, 17.0) 

HR X-Death=0.2 
HR X-Disenroll=0.2 

Ramipril 17.0 (16.7, 17.3) 
−1.0 (−1.6, −0.4) 

17.5 (17.2, 17.8) 
−1.1 (−1.7, −0.5) 

Telmisartan 16.0 (15.5, 16.5) 16.4 (15.9, 16.9) 

HR X-Death=5 
HR X-Disenroll=5 

Ramipril 15.8 (15.5, 16.2) 
−0.8 (−1.6, 0.0) 

17.5 (17.1, 17.9) 
−1.1 (−2.0, −0.2) 

Telmisartan 15.0 (14.4, 15.7) 16.4 (15.7, 17.1) 

HR X-Death=5 
HR X-Disenroll=0.2 

Ramipril 15.4 (15.1, 15.6) 
−0.8 (−1.4, −0.2) 

17.6 (17.2, 17.9) 
−1.1 (−1.8, −0.4) 

Telmisartan 14.6 (14.1, 15.1) 16.5 (15.9, 17.0) 

5 Years  

HR X-Death=1 
HR X-Disenroll=1 

Ramipril 23.9 (23.5, 24.3) 
−1.2 (−2.0, −0.3) 

26.0 (25.5, 26.4) 
−1.5 (−2.4, −0.6) 

Telmisartan 22.7 (22.0, 23.4) 24.4 (23.7, 25.2) 

HR X-Death=0.2 
HR X-Disenroll=0.2 

Ramipril 24.8 (24.5, 25.2) 
−1.3 (−2.0, −0.6) 

26.0 (25.6, 26.3) 
−1.5 (−2.3, −0.8) 

Telmisartan 23.5 (22.9, 24.1) 24.5 (23.8, 25.1) 

HR X-Death=5 
HR X-Disenroll=5 

Ramipril 22.4 (21.9, 22.9) 
−0.9 (−2.0, 0.2) 

25.9 (25.3, 26.5) 
−1.5 (−2.7, −0.2) 

Telmisartan 21.5 (20.6, 22.5) 24.4 (23.4, 25.5) 

HR X-Death=5 
HR X-Disenroll=0.2 

Ramipril 20.9 (20.6, 21.3) 
−0.9 (−1.6, −0.2) 

26.0 (25.5, 26.4) 
−1.5 (−2.4, −0.7) 

Telmisartan 20.1 (19.5, 20.7) 24.4 (23.7, 25.2) 



179 

 

 

Table 52. Average difference in cumulative risks per 100 and difference in risk 
differences per 100 (telmisartan versus ramipril) comparing cause-specific and sub-
distribution risk of composite outcome in the fully synthetically simulated cohorts at 1, 3, 
and 5 years under manipulations of the associations between variable X with 
disenrollment and death  

Predictor 
Relationship 

Treatment Group 
Difference in Cumulative Risks / 

100 (95% CI) 
Difference in Risk Differences / 

100 (95% CI) 

1 Year  

HR X-Death=1 
HR X-Disenroll=1 

Ramipril 0.1 (0.1, 0.1) 
0.0 (0.0, 0.0) 

Telmisartan 0.1 (0.1, 0.1) 

HR X-Death=0.2 
HR X-Disenroll=0.2 

Ramipril 0.1 (0.1, 0.1) 
0.0 (0.0, 0.0) 

Telmisartan 0.1 (0.0, 0.1) 

HR X-Death=5 
HR X-Disenroll=5 

Ramipril 0.3 (0.3, 0.3) 
−0.1 (−0.1, 0.0) 

Telmisartan 0.2 (0.2, 0.2) 

HR X-Death=5 
HR X-Disenroll=0.2 

Ramipril 0.3 (0.3, 0.3) 
−0.1 (−0.1, 0.0) 

Telmisartan 0.2 (0.2, 0.3) 

3 Years  

HR X-Death=1 
HR X-Disenroll=1 

Ramipril 0.9 (0.8, 0.9) 
−0.2 (−0.2, −0.1) 

Telmisartan 0.7 (0.6, 0.8) 

HR X-Death=0.2 
HR X-Disenroll=0.2 

Ramipril 0.5 (0.5, 0.5) 
−0.1 (−0.1, −0.1) 

Telmisartan 0.4 (0.4, 0.4) 

HR X-Death=5 
HR X-Disenroll=5 

Ramipril 1.7 (1.6, 1.8) 
−0.3 (−0.5, −0.2) 

Telmisartan 1.4 (1.3, 1.5) 

HR X-Death=5 
HR X-Disenroll=0.2 

Ramipril 2.2 (2.1, 2.3) 
−0.3 (−0.5, −0.2) 

Telmisartan 1.9 (1.8, 2.0) 

5 Years  

HR X-Death=1 
HR X-Disenroll=1 

Ramipril 2.1 (2.0, 2.2) 
−0.3 (−0.5, −0.2) 

Telmisartan 1.7 (1.6, 1.9) 

HR X-Death=0.2 
HR X-Disenroll=0.2 

Ramipril 1.2 (1.1, 1.2) 
−0.2 (−0.3, −0.1) 

Telmisartan 1.0 (0.9, 1.0) 

HR X-Death=5 
HR X-Disenroll=5 

Ramipril 3.5 (3.3, 3.6) 
−0.6 (−0.9, −0.4) 

Telmisartan 2.9 (2.7, 3.1) 

HR X-Death=5 
HR X-Disenroll=0.2 

Ramipril 5.0 (4.9, 5.2) 
−0.7 (−1.0, −0.4) 

Telmisartan 4.4 (4.1, 4.6) 

Figure 43. Average difference in cumulative risk estimates per 100 of the composite 
outcome at 1, 3, and 5 years from the cause-specific versus sub-distribution models in 
the fully synthetically simulated cohorts under manipulations of the associations 
between variable X with disenrollment and death 
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Figure 44. Average difference in risk difference estimates per 100 (telmisartan versus 
ramipril) of the composite outcome at 1, 3, and 5 years from the cause-specific versus 
sub-distribution models in the fully synthetically simulated cohorts under manipulations 
of the associations between variable X with disenrollment and death 

 
 

The average age-stratified cumulative risk estimates from the cause-specific and sub-

distribution models under manipulations of the predictors and death and disenrollment are 

displayed in Table 53–Table 54 and Figure 45. In the youngest age strata, manipulating the 

relationships of variable X with death and disenrollment did not result in differences between the 

cause-specific and sub-distribution risk estimates, likely due to the low mortality rate (Figure 

45A–D). The average difference in cumulative risks among the 65–74 age group was minor in 

the baseline scenario and first two manipulations, but more pronounced in the scenario in which 

X had strong relationships of opposite directionality with death and disenrollment, although the 

differences remained minor (Figure 45E–H). Finally, in the oldest age group, more pronounced 

differences were observed across the scenarios (Figure 45I–L). Among ramipril users age 75+, 

the average 5-year cause-specific and sub-distribution risks per 100, respectively, were 43.5 

(42.5, 44.6) and 37.3 (36.4, 38.2) under the baseline scenario (difference = 6.2) and were 43.6 

(42.4, 44.7) and 29.5 (28.7, 30.2) under the scenario in which X had strong associations of 

opposite directionality with death and disenrollment (difference = 14.1). 
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Figure 45. Average cumulative risk estimates of the composite outcome sub-distribution 
and cause-specific models in the fully synthetically simulated cohorts under 
manipulations of the associations between variable X with disenrollment and death and 
according to age strata 
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Table 53. Average cumulative risks and risk differences per 100 of composite outcome at 
1, 3, and 5 years from the sub-distribution and cause-specific models in the fully 
synthetically simulated cohorts under manipulations of the associations between 
variable X with disenrollment and death and according to age strata 

Risk 
Time 

Predictor 
Relationship 

Treatment 
Group 

Sub-Distribution Cause-Specific 

Cumulative Risk / 
100 (95% CI) 

Risk Difference / 
100 (95% CI) 

Cumulative Risk / 
100 (95% CI) 

Risk Difference 
/ 100 (95% CI) 

Age 55−64 

1 
year 

HR X-Death=1 
HR X-Disenroll=1 

Ramipril 4.2 (3.9, 4.4) 
−0.3 (−0.8, 0.2) 

4.2 (3.9, 4.4) 
−0.3 (−0.8, 0.2) 

Telmisartan 3.9 (3.4, 4.3) 3.9 (3.4, 4.3) 

HR X-Death=0.2 
HR X-Disenroll=0.2 

Ramipril 4.2 (3.9, 4.4) 
−0.3 (−0.8, 0.2) 

4.2 (3.9, 4.4) 
−0.3 (−0.8, 0.2) 

Telmisartan 3.9 (3.4, 4.3) 3.9 (3.5, 4.3) 

HR X-Death=5 
HR X-Disenroll=5 

Ramipril 4.1 (3.9, 4.4) 
−0.3 (−0.9, 0.3) 

4.2 (3.9, 4.4) 
−0.3 (−0.9, 0.3) 

Telmisartan 3.9 (3.3, 4.4) 3.9 (3.4, 4.4) 

HR X-Death=5 
HR X-Disenroll=0.2 

Ramipril 4.1 (3.9, 4.3) 
−0.3 (−0.8, 0.2) 

4.2 (3.9, 4.4) 
−0.3 (−0.8, 0.2) 

Telmisartan 3.8 (3.4, 4.3) 3.9 (3.4, 4.3) 

3 
years 

HR X-Death=1 
HR X-Disenroll=1 

Ramipril 10.7 (10.2, 11.1) 
−0.7 (−1.7, 0.3) 

10.8 (10.3, 11.2) 
−0.7 (−1.7, 0.3) 

Telmisartan 10.0 (9.2, 10.8) 10.1 (9.2, 10.9) 

HR X-Death=0.2 
HR X-Disenroll=0.2 

Ramipril 10.7 (10.4, 11.1) 
−0.7 (−1.5, 0.1) 

10.8 (10.4, 11.2) 
−0.7 (−1.5, 0.1) 

Telmisartan 10.0 (9.3, 10.7) 10.1 (9.4, 10.8) 

HR X-Death=5 
HR X-Disenroll=5 

Ramipril 10.6 (10.0, 11.1) 
−0.7 (−1.9, 0.6) 

10.8 (10.2, 11.3) 
−0.7 (−2.0, 0.6) 

Telmisartan 9.9 (8.8, 11.0) 10.1 (9.0, 11.2) 

HR X-Death=5 
HR X-Disenroll=0.2 

Ramipril 10.4 (10.1, 10.8) 
−0.6 (−1.4, 0.2) 

10.8 (10.4, 11.2) 
−0.7 (−1.5, 0.1) 

Telmisartan 9.8 (9.1, 10.5) 10.1 (9.3, 10.8) 

5 
years 

HR X-Death=1 
HR X-Disenroll=1 

Ramipril 16.2 (15.6, 16.8) 
−1.0 (−2.4, 0.4) 

16.5 (15.9, 17.2) 
−1.0 (−2.4, 0.4) 

Telmisartan 15.2 (14.0, 16.5) 15.5 (14.3, 16.8) 

HR X-Death=0.2 
HR X-Disenroll=0.2 

Ramipril 16.4 (15.9, 16.8) 
−1.0 (−2.1, 0.0) 

16.5 (16.1, 17.0) 
−1.0 (−2.1, 0.0) 

Telmisartan 15.4 (14.4, 16.3) 15.5 (14.5, 16.4) 

HR X-Death=5 
HR X-Disenroll=5 

Ramipril 16.0 (15.2, 16.8) 
−0.9 (−2.8, 1.0) 

16.5 (15.7, 17.4) 
−1.1 (−3.0, 0.9) 

Telmisartan 15.1 (13.4, 16.8) 15.5 (13.7, 17.3) 

HR X-Death=5 
HR X-Disenroll=0.2 

Ramipril 15.5 (15.0, 16.0) 
−0.9 (−1.9, 0.2) 

16.5 (16.0, 17.1) 
−1.0 (−2.2, 0.1) 

Telmisartan 14.6 (13.7, 15.6) 15.5 (14.5, 16.5) 

Age 65−74 

1 
year 

HR X-Death=1 
HR X-Disenroll=1 

Ramipril 6.7 (6.4, 7.0) 
−0.5 (−1.1, 0.2) 

6.7 (6.4, 7.1) 
−0.5 (−1.1, 0.2) 

Telmisartan 6.2 (5.7, 6.8) 6.3 (5.7, 6.8) 

HR X-Death=0.2 
HR X-Disenroll=0.2 

Ramipril 6.7 (6.4, 7.0) 
−0.5 (−1.1, 0.1) 

6.7 (6.4, 7.1) 
−0.5 (−1.1, 0.1) 

Telmisartan 6.2 (5.7, 6.8) 6.3 (5.8, 6.8) 

HR X-Death=5 
HR X-Disenroll=5 

Ramipril 6.6 (6.3, 6.9) 
−0.5 (−1.1, 0.2) 

6.7 (6.4, 7.1) 
−0.5 (−1.1, 0.2) 

Telmisartan 6.2 (5.6, 6.7) 6.3 (5.7, 6.9) 

HR X-Death=5 
HR X-Disenroll=0.2 

Ramipril 6.6 (6.3, 6.9) 
−0.4 (−1.0, 0.2) 

6.7 (6.4, 7.1) 
−0.5 (−1.1, 0.2) 

Telmisartan 6.2 (5.6, 6.7) 6.3 (5.8, 6.8) 

3 
years 

HR X-Death=1 
HR X-Disenroll=1 

Ramipril 16.6 (16.0, 17.1) 
−1.0 (−2.1, 0.1) 

17.1 (16.5, 17.6) 
−1.1 (−2.2, 0.0) 

Telmisartan 15.6 (14.6, 16.5) 16.0 (15.0, 16.9) 

HR X-Death=0.2 
HR X-Disenroll=0.2 

Ramipril 16.8 (16.3, 17.3) 
−1.1 (−2.0, −0.1) 

17.1 (16.6, 17.6) 
−1.1 (−2.1, −0.1) 

Telmisartan 15.8 (14.9, 16.6) 16.0 (15.2, 16.8) 

HR X-Death=5 
HR X-Disenroll=5 

Ramipril 16.0 (15.4, 16.6) 
−0.9 (−2.1, 0.4) 

17.1 (16.4, 17.8) 
−1.1 (−2.4, 0.2) 

Telmisartan 15.1 (14.1, 16.2) 16.0 (14.9, 17.1) 

HR X-Death=5 
HR X-Disenroll=0.2 

Ramipril 15.6 (15.1, 16.1) 
−0.8 (−1.8, 0.1) 

17.1 (16.6, 17.6) 
−1.1 (−2.2, 0.0) 

Telmisartan 14.8 (13.9, 15.6) 16.0 (15.1, 16.9) 

5 
years 

HR X-Death=1 
HR X-Disenroll=1 

Ramipril 24.3 (23.6, 24.9) 
−1.3 (−2.7, 0.1) 

25.6 (24.9, 26.4) 
−1.6 (−3.0, −0.1) 

Telmisartan 23.0 (21.7, 24.2) 24.1 (22.8, 25.4) 

HR X-Death=0.2 
HR X-Disenroll=0.2 

Ramipril 24.9 (24.3, 25.6) 
−1.5 (−2.6, −0.3) 

25.7 (25.1, 26.3) 
−1.6 (−2.8, −0.4) 

Telmisartan 23.5 (22.5, 24.5) 24.1 (23.1, 25.1) 

HR X-Death=5 
HR X-Disenroll=5 

Ramipril 23.2 (22.4, 24.1) 
−1.1 (−2.7, 0.6) 

25.7 (24.7, 26.6) 
−1.6 (−3.4, 0.3) 

Telmisartan 22.2 (20.7, 23.6) 24.1 (22.5, 25.7) 

HR X-Death=5 
HR X-Disenroll=0.2 

Ramipril 21.8 (21.2, 22.3) 
−1.0 (−2.1, 0.2) 

25.7 (25.0, 26.3) 
−1.6 (−2.9, −0.2) 

Telmisartan 20.8 (19.8, 21.8) 24.1 (22.9, 25.3) 

Age 75+ 

1 
year 

HR X-Death=1 
HR X-Disenroll=1 

Ramipril 12.3 (11.8, 12.8) 
−0.8 (−1.7, 0.2) 

12.6 (12.0, 13.1) 
−0.8 (−1.8, 0.1) 

Telmisartan 11.5 (10.7, 12.3) 11.7 (10.9, 12.6) 

HR X-Death=0.2 
HR X-Disenroll=0.2 

Ramipril 12.4 (11.9, 12.9) 
−0.8 (−1.8, 0.2) 

12.6 (12.0, 13.1) 
−0.8 (−1.8, 0.2) 

Telmisartan 11.6 (10.8, 12.4) 11.7 (10.9, 12.6) 

HR X-Death=5 
HR X-Disenroll=5 

Ramipril 11.8 (11.2, 12.3) 
−0.7 (−1.7, 0.4) 

12.6 (12.0, 13.1) 
−0.8 (−1.9, 0.3) 

Telmisartan 11.1 (10.2, 12.0) 11.7 (10.8, 12.7) 

HR X-Death=5 Ramipril 11.7 (11.2, 12.2) −0.7 (−1.6, 0.3) 12.6 (12.0, 13.1) −0.8 (−1.8, 0.2) 
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Risk 
Time 

Predictor 
Relationship 

Treatment 
Group 

Sub-Distribution Cause-Specific 

Cumulative Risk / 
100 (95% CI) 

Risk Difference / 
100 (95% CI) 

Cumulative Risk / 
100 (95% CI) 

Risk Difference 
/ 100 (95% CI) 

HR X-Disenroll=0.2 Telmisartan 11.0 (10.2, 11.8) 11.8 (10.9, 12.6) 

3 
years 

HR X-Death=1 
HR X-Disenroll=1 

Ramipril 27.7 (27.0, 28.5) 
−1.4 (−2.8, 0.1) 

30.3 (29.5, 31.1) 
−1.8 (−3.4, −0.2) 

Telmisartan 26.4 (25.1, 27.6) 28.5 (27.1, 29.8) 

HR X-Death=0.2 
HR X-Disenroll=0.2 

Ramipril 28.8 (28.0, 29.5) 
−1.5 (−2.9, −0.1) 

30.3 (29.5, 31.1) 
−1.8 (−3.2, −0.3) 

Telmisartan 27.3 (26.1, 28.5) 28.5 (27.3, 29.8) 

HR X-Death=5 
HR X-Disenroll=5 

Ramipril 25.1 (24.2, 25.9) 
−0.9 (−2.6, 0.9) 

30.3 (29.2, 31.3) 
−1.8 (−3.9, 0.3) 

Telmisartan 24.2 (22.8, 25.7) 28.5 (26.7, 30.3) 

HR X-Death=5 
HR X-Disenroll=0.2 

Ramipril 23.8 (23.1, 24.5) 
−0.8 (−2.2, 0.5) 

30.3 (29.4, 31.2) 
−1.8 (−3.4, −0.1) 

Telmisartan 23.0 (21.9, 24.1) 28.5 (27.2, 29.9) 

5 
years 

HR X-Death=1 
HR X-Disenroll=1 

Ramipril 37.3 (36.4, 38.2) 
−1.3 (−3.1, 0.4) 

43.5 (42.5, 44.6) 
−2.3 (−4.4, −0.2) 

Telmisartan 36.0 (34.5, 37.5) 41.2 (39.4, 43.0) 

HR X-Death=0.2 
HR X-Disenroll=0.2 

Ramipril 40.0 (39.1, 40.8) 
−1.7 (−3.3, 0.0) 

43.5 (42.6, 44.4) 
−2.3 (−4.0, −0.5) 

Telmisartan 38.3 (36.9, 39.7) 41.2 (39.8, 42.7) 

HR X-Death=5 
HR X-Disenroll=5 

Ramipril 32.9 (31.8, 33.9) 
−0.5 (−2.7, 1.6) 

43.5 (42.1, 44.9) 
−2.3 (−5.1, 0.6) 

Telmisartan 32.3 (30.5, 34.2) 41.2 (38.8, 43.7) 

HR X-Death=5 
HR X-Disenroll=0.2 

Ramipril 29.5 (28.7, 30.2) 
−0.7 (−2.1, 0.8) 

43.6 (42.4, 44.7) 
−2.3 (−4.6, −0.1) 

Telmisartan 28.8 (27.6, 30.0) 41.2 (39.4, 43.1) 

 

Table 54. Average difference in cumulative risks per 100 and difference in risk 
differences per 100 (telmisartan versus ramipril) comparing cause-specific and sub-
distribution risk of composite outcome in the fully synthetically simulated cohorts at 1, 3, 
and 5 years under manipulations of the associations between variable X with 
disenrollment and death and according to age strata 

Risk Time Predictor Relationship 
Treatment 

Group 
Difference in Cumulative 

Risks / 100 
Difference in Risk 
Differences / 100 

Age 55−64   

1 year  

HR X-Death=1 
HR X-Disenroll=1 

Ramipril 0.0 (0.0, 0.0) 
0.0 (0.0, 0.0) 

Telmisartan 0.0 (0.0, 0.0) 

HR X-Death=0.2 
HR X-Disenroll=0.2 

Ramipril 0.0 (0.0, 0.0) 
0.0 (0.0, 0.0) 

Telmisartan 0.0 (0.0, 0.0) 

HR X-Death=5 
HR X-Disenroll=5 

Ramipril 0.0 (0.0, 0.0) 
0.0 (0.0, 0.0) 

Telmisartan 0.0 (0.0, 0.0) 

HR X-Death=5 
HR X-Disenroll=0.2 

Ramipril 0.0 (0.0, 0.0) 
0.0 (0.0, 0.0) 

Telmisartan 0.0 (0.0, 0.0) 

3 years  

HR X-Death=1 
HR X-Disenroll=1 

Ramipril 0.1 (0.1, 0.1) 
0.0 (−0.1, 0.0) 

Telmisartan 0.1 (0.1, 0.1) 

HR X-Death=0.2 
HR X-Disenroll=0.2 

Ramipril 0.1 (0.1, 0.1) 
0.0 (0.0, 0.0) 

Telmisartan 0.1 (0.0, 0.1) 

HR X-Death=5 
HR X-Disenroll=5 

Ramipril 0.2 (0.2, 0.3) 
−0.1 (−0.1, 0.0) 

Telmisartan 0.2 (0.1, 0.2) 

HR X-Death=5 
HR X-Disenroll=0.2 

Ramipril 0.4 (0.3, 0.4) 
−0.1 (−0.1, 0.0) 

Telmisartan 0.3 (0.3, 0.4) 

5 years  

HR X-Death=1 
HR X-Disenroll=1 

Ramipril 0.3 (0.3, 0.4) 
−0.1 (−0.1, 0.0) 

Telmisartan 0.3 (0.2, 0.3) 

HR X-Death=0.2 
HR X-Disenroll=0.2 

Ramipril 0.2 (0.2, 0.2) 
0.0 (−0.1, 0.0) 

Telmisartan 0.1 (0.1, 0.2) 

HR X-Death=5 
HR X-Disenroll=5 

Ramipril 0.5 (0.5, 0.6) 
−0.1 (−0.2, 0.0) 

Telmisartan 0.4 (0.3, 0.5) 

HR X-Death=5 
HR X-Disenroll=0.2 

Ramipril 1.1 (1.0, 1.1) 
−0.2 (−0.3, 0.0) 

Telmisartan 0.9 (0.8, 1.0) 

Age 65−74   

1 year  

HR X-Death=1 
HR X-Disenroll=1 

Ramipril 0.1 (0.1, 0.1) 
0.0 (0.0, 0.0) 

Telmisartan 0.0 (0.0, 0.1) 

HR X-Death=0.2 
HR X-Disenroll=0.2 

Ramipril 0.0 (0.0, 0.0) 
0.0 (0.0, 0.0) 

Telmisartan 0.0 (0.0, 0.0) 

HR X-Death=5 
HR X-Disenroll=5 

Ramipril 0.1 (0.1, 0.2) 
0.0 (−0.1, 0.0) 

Telmisartan 0.1 (0.1, 0.1) 

HR X-Death=5 
HR X-Disenroll=0.2 

Ramipril 0.2 (0.2, 0.2) 
0.0 (−0.1, 0.0) 

Telmisartan 0.1 (0.1, 0.2) 

3 years  
HR X-Death=1 
HR X-Disenroll=1 

Ramipril 0.5 (0.5, 0.5) 
−0.1 (−0.2, 0.0) 

Telmisartan 0.4 (0.4, 0.5) 
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HR X-Death=0.2 
HR X-Disenroll=0.2 

Ramipril 0.3 (0.3, 0.3) 
−0.1 (−0.1, 0.0) 

Telmisartan 0.2 (0.2, 0.3) 

HR X-Death=5 
HR X-Disenroll=5 

Ramipril 1.1 (1.0, 1.2) 
−0.2 (−0.4, −0.1) 

Telmisartan 0.9 (0.8, 1.0) 

HR X-Death=5 
HR X-Disenroll=0.2 

Ramipril 1.5 (1.4, 1.6) 
−0.3 (−0.4, −0.1) 

Telmisartan 1.2 (1.1, 1.4) 

5 years  

HR X-Death=1 
HR X-Disenroll=1 

Ramipril 1.4 (1.3, 1.5) 
−0.2 (−0.4, −0.1) 

Telmisartan 1.1 (1.0, 1.3) 

HR X-Death=0.2 
HR X-Disenroll=0.2 

Ramipril 0.8 (0.7, 0.8) 
−0.1 (−0.2, −0.1) 

Telmisartan 0.6 (0.5, 0.7) 

HR X-Death=5 
HR X-Disenroll=5 

Ramipril 2.5 (2.3, 2.6) 
−0.5 (−0.8, −0.2) 

Telmisartan 2.0 (1.7, 2.2) 

HR X-Death=5 
HR X-Disenroll=0.2 

Ramipril 3.9 (3.7, 4.1) 
−0.6 (−0.9, −0.3) 

Telmisartan 3.3 (3.0, 3.6) 

Age 75+   

1 year  

HR X-Death=1 
HR X-Disenroll=1 

Ramipril 0.3 (0.3, 0.3) 
−0.1 (−0.1, 0.0) 

Telmisartan 0.3 (0.2, 0.3) 

HR X-Death=0.2 
HR X-Disenroll=0.2 

Ramipril 0.2 (0.2, 0.2) 
0.0 (−0.1, 0.0) 

Telmisartan 0.2 (0.1, 0.2) 

HR X-Death=5 
HR X-Disenroll=5 

Ramipril 0.8 (0.7, 0.9) 
−0.2 (−0.3, 0.0) 

Telmisartan 0.7 (0.6, 0.7) 

HR X-Death=5 
HR X-Disenroll=0.2 

Ramipril 0.9 (0.8, 0.9) 
−0.2 (−0.3, −0.1) 

Telmisartan 0.7 (0.6, 0.8) 

3 years  

HR X-Death=1 
HR X-Disenroll=1 

Ramipril 2.6 (2.4, 2.7) 
−0.4 (−0.7, −0.2) 

Telmisartan 2.1 (1.9, 2.3) 

HR X-Death=0.2 
HR X-Disenroll=0.2 

Ramipril 1.5 (1.4, 1.6) 
−0.3 (−0.4, −0.1) 

Telmisartan 1.2 (1.1, 1.4) 

HR X-Death=5 
HR X-Disenroll=5 

Ramipril 5.2 (4.9, 5.5) 
−0.9 (−1.5, −0.4) 

Telmisartan 4.3 (3.8, 4.7) 

HR X-Death=5 
HR X-Disenroll=0.2 

Ramipril 6.5 (6.2, 6.8) 
−0.9 (−1.5, −0.4) 

Telmisartan 5.6 (5.1, 6.0) 

5 years  

HR X-Death=1 
HR X-Disenroll=1 

Ramipril 6.2 (5.9, 6.5) 
−1.0 (−1.6, −0.4) 

Telmisartan 5.3 (4.8, 5.7) 

HR X-Death=0.2 
HR X-Disenroll=0.2 

Ramipril 3.5 (3.4, 3.7) 
−0.6 (−0.9, −0.2) 

Telmisartan 3.0 (2.7, 3.2) 

HR X-Death=5 
HR X-Disenroll=5 

Ramipril 10.6 (10.0, 11.2) 
−1.7 (−2.8, −0.7) 

Telmisartan 8.9 (8.0, 9.8) 

HR X-Death=5 
HR X-Disenroll=0.2 

Ramipril 14.1 (13.4, 14.7) 
−1.7 (−2.8, −0.5) 

Telmisartan 12.4 (11.4, 13.4) 

 

Discussion 

Overall, specification of death as a censoring event, as compared to a competing event, was 

observed to have a greater impact on cumulative risk estimation in later years of follow-up. In 

the main analyses using the overall Optum cohort, cumulative risk curves for both the 

telmisartan and ramipril groups overlapped for the first three years of follow-up, meaning that 

the cause-specific risk estimator was approximating the sub-distribution model. However, the 

cumulative risk curves diverged slightly in later years of follow-up, such that at year 5 the 

difference in the cause-specific model was a difference of about 1% in risk for both treatment 

groups. This is as expected given that, by definition, the cumulative risk of mortality increases 
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across follow-up; about 6% of the overall cohort had died at year 5 compared to less than 1% at 

year 1. Therefore, at year 5, compared to year 1, there is expected to be a greater upweighting 

of outcome events in the cause-specific risk estimator given the greater total proportion of 

censoring due to death that has occurred by that time.220 

Stratification on patient age group further demonstrated the relationship between difference in 

cumulative risks due to specification of death as a censoring event, as compared to as a 

competing event. In general, the cumulative risk curves for both treatment groups were 

observed to be completely overlapping for the entirety of the follow-up period in the youngest 

age group (where the mortality risks and rates were notably lower than those of the overall 

cohort), indicating there to be no difference in the cause-specific risk estimator. The cumulative 

risk curves were observed to diverge slightly for the 65–74 age group (for which the mortality 

risk and rates, although higher than that of the youngest age group, were still lower than that of 

the overall cohort), and even more so for the 75+ age group, especially in later follow-up where 

the risk of mortality was the highest. The largest difference in cumulative risks observed was in 

the 75+ age group at 5 years, and was a difference in about 3–4% in the cumulative risk of the 

outcome for both treatment groups.  

The simulations allowed us to examine the influence on resulting cumulative risk estimates of 

mortality rate specifically, while maintaining outcome and censoring rates, which may not have 

been the case in the age-stratified Optum analyses. Additionally, the simulations allowed us to 

expand upon the age-stratified results of the Optum cohort, which were based on a limited 

range of mortality risks (<1% in the youngest age group at year 1 to 14% in the oldest age 

group at year 5), by introducing a greater range of mortality risks (up to nearly 40% risk of 

mortality at year 5 under tripling of the mortality rate). Simulation results, from both the fully 

synthetically simulated and plasmode-simulated cohorts, corroborated the previously observed 

patterns by demonstrating differences in cumulative risks due to censoring on death to increase 
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with increasing mortality rate, independently of outcome and censoring rates. 

In exploratory analyses, in which we manipulated the relationships that an exogenous variable 

had with death and with disenrollment, the largest difference in cumulative risks was observed 

when the variable was strongly, directly associated with death yet strongly, inversely associated 

with disenrollment. Characteristics in claims that may meet this variable definition include older 

age, limited life expectancy, and markers of frailty (e.g., supplemental oxygen, mobility aids), 

which are expected to correspond to patients at an increased risk of death yet a decreased 

likelihood of disenrollment, likely given their nearness to end of life and dependence on 

healthcare.215 The presence of this variable likely resulted in increased difference in cumulative 

risks via its relative impacts on the mortality and disenrollment rates, which would have resulted 

in a greater proportion of overall censoring events in the cause-specific model being due to 

death rather than disenrollment. Notably, in the overall Optum cohort, including mortality as a 

censoring event meant that about 10% of loss to follow-up was truly a competing event; this 

proportion ranged from about 2% in the youngest age group to nearly 30% in the oldest age 

group. In the exploratory simulations, when the associations between the predictor variable with 

death and disenrollment were of shared directionality, manipulating the associations from null to 

strongly protective to strongly harmful did not alter the proportion of loss to follow-up in cause-

specific models that was due to death (about 6% across these three scenarios for the overall 

simulated cohorts). However, when the variable was strongly, directly associated with death yet 

strongly, inversely associated with disenrollment, this proportion increased to about 25% (and 

was greater than 50% in the oldest age group). This observation suggests the difference in 

cumulative risks due to censoring on a competing event to be driven not only by the rate of the 

competing event, but also by this rate relative to the rate of other censoring events. Future work 

may consider how the ratio of competing events to censoring events may impact differences in 

cumulative risks and how quantitative bias analyses using estimations of this ratio may be used 
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to adjust for such differences when true death information is incomplete or unavailable.229 

Across the Optum overall and age-stratified analyses, the difference in the cause-specific 

versus sub-distribution models was similar for the telmisartan and ramipril groups, such that the 

resulting difference in this difference was quite small; the difference in the risk differences did 

not exceed 1.0%. We suspect this observation is due to the similar mortality and censoring rates 

of the two treatment groups. Future work may further examine how differentially varying the 

mortality rates of the treatment groups (i.e., varying the association between exposure and the 

competing event) to make the mortality and censoring rates dissimilar may impact the difference 

in the cause-specific risk differences. This type of treatment-specific competing event rate 

manipulation has not previously been explored in a claims-based setting in an age-stratified 

manner, but would be meaningful to inform database choices specifically for comparative safety 

and effectiveness research.224  

Few studies have explored the impact of ignoring competing events under simulated scenarios, 

and, to our knowledge, none have demonstrated the impact in relation to patient cohort age 

strata and mortality rate.224, 225, 229 In a cohort of older adults with a prior hip fracture, Berry et al. 

examined the cumulative risk and hazard ratio of second hip fracture associated with age (at 1, 

3, 5, and 10 years), varying the mortality risk between 10 and 85%. It was observed that as the 

risk of mortality increased, the magnitude of difference between models that did, versus did not, 

account for the competing events increased accordingly.225 An increase in the difference 

between the sub-distribution and cause-specific risk models over follow-up time was also noted, 

similar to our analyses.225 

This analysis has several limitations. First, as this study is based on the analysis of automated 

medical and prescription claims data, our analysis is subject to the inherent limitations of using 

claims data for research purposes. Particularly, the diagnoses and prescription medications 

reported in claims data may not be an accurate reflection of an individual’s health and 
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medication usage. For the severe conditions in this analysis, we do expect the associated 

diagnoses, procedures, and medication usage to be accurately recorded. Nevertheless, given 

that the primary goal of this analysis was not to estimate a treatment effect, but rather to 

demonstrate a methodological issue, we are not concerned about the impact of systematic 

issues in claims data coding on our ability to demonstrate differences in sub-distribution versus 

cause-specific models.  

It is also important to consider that our analysis assumed the sub-distribution model to be the 

gold standard, meaning that all death events were assumed to be completely captured and 

specified as competing events. In reality, it is possible that death events may have been 

undercounted, in which case some missed death events would have been indirectly treated as 

censoring events. In November 2011, the Social Security Administration Death Master File, 

which supplements Optum’s claims-based death information, implemented changes to suppress 

death records received from states.253 This change resulted in the removal of 4.2 million historic 

death records, and the loss of about 1 million annual deaths.254 This would impact our estimates 

of the gold standard parameters, such that the sub-distribution risk estimators may not have 

been accurately accounting for all death events as assumed. Instead, some of the death events 

that were not reported from the states were likely indirectly treated as disenrollment censoring 

events. As a result, our sub-distribution cumulative risks would be overestimated due to the 

inappropriate censoring of true death events, especially for the oldest age group where the 

mortality rate is the highest. This would result in our estimates of the difference in the cause-

specific, compared to sub-distribution, risks being conservative estimates of the difference.  

Finally, it is worth noting that our analysis demonstrated an extreme scenario in which all death 

events were inappropriately counted as censoring events, whereas in reality, a database with 

incomplete death information may actually allow for a partial account of the competing event of 

death. If a proportion, but not all, of the death events were to be counted as competing events, 
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the difference in the cause-specific, compared to the sub-distribution, risk estimator would be 

maximized at what was observed under our extreme scenario of censoring on all deaths. This 

may be reassuring, especially for cohorts with mortality rates similar to or less than those of our 

younger age strata, given that the difference observed in our analyses for these groups were 

already low to negligible. If researchers remain unsure about the impact of incomplete, yet not 

entirely missing, death information, sensitivity analyses are possible in which a varying 

proportion of censoring events may be assumed to be unobserved deaths. Correction factors 

and machine learning techniques have been proposed in the literature as methods to address 

incomplete death information.255, 256 

Overall, this analysis demonstrates how the effect estimates derived from real-world data may 

be impacted by the inability to distinguish death from other reasons for loss to follow-up, such as 

health plan disenrollment. Our claims-based cohort analysis and simulations allowed us to 

compare estimates obtained when death was specified as a competing event, as would be 

possible in a death-information-linked data source, versus when death was specified as a 

censoring event, as would occur in other healthcare databases with missing or incomplete death 

information, under variations in population characteristics, consistent with different patient 

cohorts. These results encourage appropriate fit-for-purpose database choices, which has 

important implications for ensuring the delivery of reliable information to patients, providers, and 

healthcare practices. We recommend future researchers consider their patient cohort’s 

underlying mortality rate when deciding whether a data source lacking complete death 

information is a viable option. As we observed the difference in risk differences across time for 

all age groups to be less than an absolute value of 1%, these considerations are particularly 

relevant for descriptive research questions aimed at summarizing disease occurrence, rather 

than for measures of association (assuming mortality and censoring rates to be similar between 

the treatment groups of interest). In general, if mortality rate is high or follow-up is long, a data 
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source with complete death information is preferable for cumulative risk estimation, given the 

substantial cumulative risk overestimation that would occur were all deaths to be censored. If 

mortality rate is low or follow-up time is short enough such that the risk of mortality remains low 

throughout the entirety of follow-up, a data source with incomplete death information may be 

used without worrying that the competing event of death will substantially influence event risk 

estimations. The choice of database should be made on a case-by-case basis depending on the 

research needs, taking into consideration where larger sample sizes may be available, 

depending on the patient population and treatment effect of interest, and what types of external 

data sources can be linked. If a data source lacking complete death information seems to 

provide advantages over one with complete death information, relative to the research needs, 

and the research team is confident that mortality risk is low across follow-up, then the data 

source with incomplete death information may be used without concern. 
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CHAPTER 5: SUMMARY OF RESULTS AND FUTURE RESEARCH  

The overarching goal of this dissertation was to evaluate the validity of aspects of healthcare 

database research in the pharmaceutical industry and to assess how pharmacoepidemiologic 

methods can be applied to appropriately chosen real-world data sources to deliver valid real-

world-based evidence regarding medication safety and effectiveness. Although premarketing 

efficacy trials are vital for informing whether a new drug product has the ability to treat the 

indicated condition, the variability of circumstances in the real world (e.g., physician prescribing 

and dosing choices, patient comorbidities and behavior, polypharmacy, etc.) necessitate 

evaluation of effectiveness of the drug in routine clinical practice. Understanding how data 

generated from the financing, insurance, and delivery of healthcare can be appropriately used to 

measure the real-world safety and effectiveness of drug products has implications for patients, 

physicians, practices, and regulatory agencies.  

To address the overarching dissertation goal, we proposed the following aims. Aim 1 involved 

the creation and assessment of a mother–infant claims linkage and served to determine the 

suitability of this data source to produce valid, reproducible estimates of infant outcomes 

associated with in utero medication exposure. Aim 2 evaluated the comparative hematologic 

safety of multiple myeloma treatment regimens following two lines of therapy and served to 

demonstrate how pharmacoepidemiologic methods can be used to address comparative safety 

questions in the face of confounding bias due to complex, non-randomized prescribing patterns. 

Aim 3 used claims-based and plasmode-simulated study cohorts to demonstrate the impact on 

cumulative risk estimates of specifying death as a censoring event, rather than as a competing 

event, as would occur in databases with incomplete death information. This aim served to allow 

future researchers to predict the impact of incomplete death information based on patient 

population characteristics (particularly age and mortality rate). In this chapter, we review the 

major findings of each aim, followed by a discussion of potential future research directions. 
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Review of Major Findings 

In Aim 1, we used the Duke-Margolis framework to assess whether a linked cohort of mothers 

and infants in the Japan Medical Data Center (JMDC) claims database is fit for purpose within 

the regulatory context of estimating infant outcomes associated with in utero exposure to 

marketed medications. The Duke-Margolis framework considers whether a database is fit for 

regulatory purpose based on relevancy and quality. To assess these considerations, we 

estimated the number of pregnancies that could be linked to an infant among females 12–55 

years in the JMDC claims database between January 2005 and March 2022 using two different 

linkage approaches and examined descriptive characteristics. In terms of relevancy, we 

determined that critical data fields (maternal medication exposures, infant major congenital 

malformations, covariates) were available. A total of 385,295 valid mother–infant pairs were 

identified and about 41,000 congenital malformations were observed among these pairs. 

Comparison to publicly available data from Japan suggested that preterm births were under-

recorded (3.6% versus 5.6%) in this population. Although overall congenital malformations were 

over-represented (10.8% versus 5.3%) in this population, the prevalence of specific 

malformation subcategories were consistent with the general population. Maternal 

characteristics appeared mostly consistent with the population of same-aged females in Japan. 

In terms of quality, our methods were expected to accurately identify the complete set of 

mothers and infants in the JMDC enrolled in a shared health insurance plan. Examination of 

values indicated for the relationship of the “mother” and “infant” to the insurance holder allowed 

for confirmation of assumed biologic mother–infant pairs. However, the completeness and 

accuracy of gestational age information was limited given the lack of live birth delivery codes for 

60% of the cohort coupled with suppression of infant birth dates and inaccessibility of 

International Classification of Diseases codes with fifth level digits (where gestational week 

information would have been available) in the database. These results suggest that the JMDC 
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claims database may be well-suited for descriptive studies of pregnant people in Japan (e.g., 

comorbidities, medication usage), but more work is needed to identify a method to assign 

pregnancy onset and delivery dates so that in utero exposure windows can be defined more 

precisely as needed for many regulatory postapproval pregnancy safety studies. 

In Aim 2, we sought to evaluate the risks of severe cytopenias in relapsed multiple myeloma 

patients who received sequential treatment with regimens containing immunomodulatory agents 

(IMiDs) versus IMiD-free regimens. The Flatiron Health database was used to identify a cohort 

of 5,573 patients at least 18 years of age who were diagnosed with multiple myeloma between 

January 2011 and December 2020 and subsequently received at least two lines of therapy 

(LOTs). Those for which both LOTs contained IMiDs were considered “sequentially exposed”; 

those for which neither contained IMiDs were “never exposed.” Inverse probability of treatment 

weighted cumulative risks up to 12 months were estimated for each exposure group and risk 

differences were calculated. Analyses were repeated stratified by recent cytopenia history, age, 

and cytogenetic risk. The 1-year risks of neutropenia and leukopenia were substantially higher 

among those exposed versus unexposed to IMiDs at LOT 2 and stratification on prior IMiD 

exposure revealed a trend in which, compared to those never exposed, those sequentially 

exposed had the highest 1-year risk, followed by those only recently exposed during LOT 2, 

then by those with only past exposure during LOT 1. This observation did not hold for severe 

cytopenias not related to white blood cells (anemia, lymphocytopenia, and thrombocytopenia). 

The associations between sequential, versus never, exposure with neutropenia and leukopenia 

were even stronger among those with a history of the given cytopenia, but were attenuated for 

those with no history. These results suggest sequential exposure to IMiDs across two LOTs to 

be mainly of concern for risk of severe cytopenias related to white blood cells, particularly 

neutrophils, and especially among those with recent histories. 

In Aim 3, we sought to investigate the influence of specifying death as a censoring event versus 
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as a competing event on cumulative risk estimates. The Optum claims database, which reliably 

captures death, was used to create a cohort of 34,527 initiators of antihypertensive medications 

telmisartan (exposure) and ramipril (referent) who were at least 55 years old between 2003 and 

2020, reflecting the eligibility criteria of a published real-world data emulation of a randomized 

clinical trial. We compared the 1-, 3-, and 5-year inverse probability of treatment-weighted 

cumulative risks of a composite outcome (myocardial infarction, stroke, and hospitalization for 

congestive heart failure) from models in which death was treated as a censoring event (cause-

specific risk) versus competing event (sub-distribution risk). We examined whether the absolute 

difference between the two estimates depended on age strata and mortality rate in the claims-

based analysis and in simulated cohorts. In the Optum cohort, differences in cumulative risks 

due to censoring of death, as compared to treating death as a competing event, increased with 

greater follow-up and increasing age, where event and mortality risks were higher. Simulation 

results from both a fully synthetically simulated and a plasmode-simulated cohort demonstrated 

the differences in cause-specific versus sub-distribution cumulative risks to increase with 

increasing mortality rate. These results suggest that researchers should consider baseline 

cohort mortality risk associated with treatment indication when deciding whether real-world data 

with incomplete death data can be used for cumulative risk estimation without concern. 

Future Directions  

There are several potential research questions generated based on the results of this 

dissertation that may be worthwhile to explore. The results of Aim 1 revealed limitations of the 

completeness and accuracy of gestational age information in the JMDC claims database given 

the lack of live birth delivery codes for the majority (60%) of the cohort. Missing delivery date 

information, coupled with suppression of infant birth dates and inaccessibility of ICD-10 codes 

with fifth level digits (where gestational week information would have been available), limits the 
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ability to finely estimate gestational timing, and therefore critical exposure windows, as needed 

for regulatory post-approval pregnancy safety studies. We suspect that for the majority (94%) of 

pregnancies that involve term deliveries, missing delivery and gestational timing information will 

result in only minor shifts of the exposure window. However, were an extremely preterm birth to 

lack codes related to both delivery and gestational timing, the estimated exposure window could 

be shifted so much as to have zero overlap with the true exposure window. Future work may 

explore methods to assign pregnancy onset and delivery dates so that in utero exposure 

windows can be defined more precisely. In particular, as our analysis identified pregnancy and 

delivery episodes based on diagnosis codes alone (which refer to the condition or disease being 

treated), but did not incorporate procedure codes (which refer to what was done or given to a 

patient in the inpatient setting, such as surgeries and medication administrations). Future 

studies may examine how including procedure codes may aid in estimation of delivery date and 

gestational age, especially for the nearly 60% of females in this cohort who were missing 

delivery diagnosis codes.  

Finally, the population of unlinked pregnant people in the JMDC claims database is expected to 

be a combination of (a) mothers whose liveborn infants are covered by a different health insurer, 

(b) pregnant people whose pregnancy ended in a spontaneous abortion or stillbirth, and (c) 

females who did not experience a pregnancy during the study period. Our analyses did not 

explore the distribution of these groups within this population and therefore future work may 

query the unlinked pregnant people for diagnosis codes indicating the occurrence of 

spontaneous abortion and stillbirth to better understand this population.110  

In Aim 2, within the IMiD exposure group, an individual could have been exposed to 

lenalidomide, pomalidomide, or thalidomide, each of which may be associated with a different 

risk of developing cytopenias.128, 129, 135-148  Furthermore, patients may receive different doses of 

these drugs, in different combinations with other drug classes, which may also contribute to 
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differential cytopenia risk.187 There may also be treatment-related outcome variance among 

those unexposed to IMiDs due to the differential cytopenia risks associated with other mutliple 

myeloma treatment drug classes (e.g., protesaome inhibitors, chemotherapy).187, 207-211 These 

considerations may contribute to violations of counterfactual model sequential consistency.206 

Future analyses may consider more precisely defined exposure and active comparator 

definitions (e.g., drugs, combinations, and doses) to address potential issues with consistency.  

Additionally, we considered the possibility that the treatment center where care was received 

could be a determinant of treatment choice and a proxy for socioeconomic cytopenia risk 

factors. For this reason, sensitivity analyses were performed in which patients were clustered 

within treatment centers, but the results of these multilevel models were not different from those 

of the main analyses. Future work may examine the impact of the healthcare system, at the 

level of the treatment center as well as the physician, on prescribing patterns and cytopenia 

risks among multiple myeloma patients.    

In Aim 3, across the Optum overall and age-stratified analyses, as well as the simulated 

cohorts, the differences in the cause-specific versus sub-distribution models were similar for the 

telmisartan and ramipril groups, such that the resulting difference in the risk differences were 

quite small. We suspect this observation is due to the similar mortality and censoring rates of 

the two treatment groups. Future work may examine how differentially varying the mortality 

rates of the treatment groups (i.e., varying the association between exposure and the competing 

event) to make the mortality and censoring rates dissimilar may impact the difference in the 

cause-specific versus sub-distribution risk differences.  

Additionally, the simulated cohorts allowed us to examine the influence on resulting cumulative 

risk estimates of mortality rate specifically, while maintaining outcome and censoring rates, 

which may not have been the case in the age-stratified Optum analyses. Additional exploratory 

analyses manipulated the relationships that an exogenous variable had with death and with 
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disenrollment, which likely resulted in an increased difference in cumulative risks from cause-

specific versus sub-distribution models via its relative impacts on the mortality and disenrollment 

rates. These results suggested the difference in cumulative risks due to censoring on a 

competing event to be driven not only by the rate of the competing event, but also by this rate 

relative to the rate of other censoring events. Future work may consider how the ratio of 

competing events to censoring events may impact differences in cumulative risks and how 

quantitative bias analyses using estimations of this ratio may be used to adjust for such 

differences when true death information is incomplete or unavailable.229 

Conclusions 

Overall, by demonstrating the situations in which evidence from routine healthcare delivery 

services may be used to generate valid answers to comparative safety and effectiveness 

questions, this dissertation serves to promote the advancing of pharmacoepidemiologic 

methods and the understanding of appropriate uses for real-world data, which has important 

implications for ensuring the delivery of valid treatment information to patients, providers, and 

regulators. Patients and providers rely on the accuracy of regulatory decisions regarding the 

approval and labeling of medications as they reach shared decisions about treatments, with the 

goal of ensuring patients receive safe and effective care to alleviate disease burden and 

improve quality of life. Regulatory agencies have historically relied on clinical trial data for 

decision-making, especially for informing medication efficacy, but have been increasingly 

exploring approaches for supplementing such information with real-world data. The passing of 

the 21st Century Cures Act in December 2016 required FDA to evaluate the role of real-world 

data in supporting regulatory decision-making.27 Since this legislation, several frameworks have 

been published by FDA, as well as by regulatory agencies in Canada, Europe, and Asia, 

describing how real-world evidence may be properly integrated in regulatory decision-making.53, 
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54, 257 Each aim of this dissertation addressed a distinct methodological challenge that 

epidemiologists in the pharmaceutical setting face with regards to using real-world data, which 

hinder its credibility for use in decision-making, including fitness for regulatory purpose of real-

world databases, non-randomized allocation of drug products, and missing information, 

especially as it relates to outcome and competing event data.23-26 As was demonstrated, 

appropriate selection of a data source that completely and accurately records all critical data 

elements and the implementation of high-quality study design techniques and rigorous analytical 

methods can combat the challenges that threaten the validity of observational 

pharmacoepidemiology studies using real-world data. With such methods, we can inform 

trustworthy uses of fit-for-purpose real-world data for regulatory and clinical decision-making, 

which ultimately supports the delivery of valid and timely treatment information to patients and 

providers. 
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