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Abstract

Primality Testing and Integer Factorization Using Elliptic Curves

By Andrew Wilson

Testing integers for primality and factoring large integers is an extremely im-
portant subject for our daily lives. Every time we use a credit card to make
online purchases we are relying on the difficulty of factoring large integers for the
security of our personal information. Similar encryption methods are used by
governments around the world to protect their classified information, stressing
the importance of the subject of primality testing and factoring algorithms to
both personal and national security. Elementary number theory has been a key
tool in the foundation of primality testing and factoring algorithms, specifically
the work of Euler and Fermat, whose developments on modular arithmetic give
us key tools that we still use today in the more complex primality tests and
factoring methods. More recently people have used deeper ideas from geometry,
namely elliptic curves, to develop faster tests and algorithms. In this thesis we
continue this trend, and develop new primality tests that utilize previous theory
of elliptic curves over finite fields. The primary point is that the points on these
curves form a special group, which breaks down when working over Z/NZ, when
N is not prime. Our theorems make use of the work of Kubert, Hasse, Mazur,
and many more to yield a primality test that gives no false positives.
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1 Introduction and Statement of Results

Number theory is a branch of Mathematics with a wide scope of topics, includ-
ing, but not limited to, the study of primes, divisibility, and factoring. One
of the most famous developments in abstract modern number theory was the
proof of Fermat’s Last Theorem by Andrew Wiles. Fermat’s Last Theorem
says that if a, b, and c are integers, then there are no solutions to the equation
an + bn = cn for n > 2. Wiles’s proof made use of elliptic curves, but with a
completely different goal in mind. We will focus more on applied number theory,
specifically on the theory of elliptic curves and their applications to primality
testing and factoring.

The seemingly simple task of determining if a number is prime or not, and
factoring large numbers turns out to be extremely difficult to complete in a
reasonable amount of time. Much of modern internet security and cryptogra-
phy utilizes the difficulty of the factoring problem. The most commonly used
encryption systems is called RSA, named after its creators Ron Rivest, Adi
Shamir, and Len Adleman [5]. The fundamental security of the encryption sys-
tem is based on the fact that even if someone knows a large number is the
product of two distinct large primes, it is still difficult to find those primes in a
reasonable amount of time, as we see in Section 2.1. This is where the theory
of elliptic curves comes in. Some of the fastest methods currently used to factor
large composite numbers, or test for primaility are based on the abstract theory
of points on elliptic curves. This is rather beautiful if we think about it, that
the extremely abstract number theoretical topic of the group of rational points
on an elliptic curve can be utilized for one of the most important problems in
modern security. In this paper we develop new techniques for proving the com-
positeness and factoring large numbers, by utilizing previous work in the study
of elliptic curves.

In Section 3 we introduce previous work on elliptic curves, and describe a
currently used elliptic curve primality test and factoring algortihm. In Section
4 we develop our own contributions to this field, first by extending the classi-
fication of all elliptic curves by Daniel Kubert into a more usable form for our
applied number theoretic goals. We then introduce and prove theorems that
check an integer N for compositeness; and finally, we prove that our test will
never fail; namely, our test never falsely concludes that a composite number N
is prime. In fact, to go even further, we demonstrate that we can detect all
composite integers without ever having to divide by more than 7.

2 Background Number Theory and Factoring
Algorithms

In this chapter we introduce some of the techniques of classical number theory
that have modern applications to internet and national security. We first begin
with a brief discussion of RSA, a protocol which inspires the questions considered
in this thesis. In Section 2, we introduce Fermat’s Little Theorem, which yields
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the most basic primality test other than trial division. In Section 3, we cover the
Rabin-Miller Test, which is a much more advanced test for primality, still used
in conjunction with modern primality testing algorithms. Finally in Section 4,
we explain Pollard’s p − 1 factoring algorithm, which is the stepping stone to
elliptic curve methods.

2.1 RSA

We now introduce RSA, the most commonly used public key crytographic sys-
tem [5]. As we will see, the fundamental security of RSA is based on the fact
that it is difficult to factor the product of two large primes. But first, before we
introduce how the system works, we must prove the following proposition from
Kraft and Washington [5].

Proposition 2.1. Let n = pq be the product of two distinct primes, and let d,
and e satisfy ed ≡ 1 (mod (p− 1)(q − 1)). Then for all integers m,

med ≡ m (mod n)

Before our proof we will give an example.

Example 2.2. Let p = 5 and q = 7 =⇒ N = 35 and (p− 1)(q − 1) = 24. We
want to find e and d such that ed ≡ 1 (mod 24). Notice e = d = 5 works, so
now let’s calculate

m5·5 (mod 35)

for a few m. Let m = 13. Then 1325 ≡ 132413 ≡ 13 (mod 35) by Euler’s
Theorem. Now let m = 25. We have 2525 ≡ (254)6 · 25 ≡ 257 ≡ 25 (mod 35).

Now we will prove the proposition.

Proof. First consider when gcd(m,n) = 1. Then by Euler’s Theorem, mφ(n) ≡ 1
(mod n), and because ed ≡ 1 (mod n) we can write med = m1+kφ(n) for some
integer k. Therefore,

med = m1+kφ(n) ≡ m(mφ(n))k ≡ m1k ≡ m (mod n).

However, we are not done, as we must treat when gcd(m,n) 6= 1, as Euler’s
Theorem would not apply. If gcd(m,n) = pq, then m ≡ 0 (mod n), and clearly
0ed ≡ 0 (mod n). So now, without loss of generality, assume gcd(m,n) = p.
Clearly, m ≡ 0 (mod p), so then med ≡ 0 (mod p). We know by Fermat’s
Little Theorem, that mq−1 ≡ 1 (mod q), and that

med = m1+k(p−1)(q−1) ≡ mmk̂(q−1) ≡ m1k̂ ≡ m (mod q).

Therefore, combining the above, we have that

p|med −m, and q|med −m.

Therefore, pq|med −m =⇒ med ≡ m (mod pq = n). [5]
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Now that we have proved the proposition, we will give an outline of how the
RSA encryption system works through example.

Example 2.3. (RSA)
In this example we want to send the message “TEST” using RSA, so only

the correct person can read the message. This works as follows. Person 1 picks
two large primes1 and calculates N = pq and φ(N) = (p − 1)(q − 1). They
then choose an encryption key e, with gcd(e, φ(N)) = 1, and find a d such that
ed ≡ 1 (mod (p− 1)(q − 1)). They then publish N and e, but keep d, p, and q
secret. For our case, we choose p = 8641 and q = 9749, so N = 84241109. We
choose e = 65537, and find that e · 49633793 ≡ 1 (mod (8641 − 1)(9749 − 1)),
so d = 49633793.

The next step is for person 2 to encrypt the message they want to send to
person 1, in our case, the message is “TEST”, which they represent by taking
the number corresponding to the position in the alphabet, giving “TEST” as
m = 2051920. Person 2 then computes c ≡ me (mod N), which for our example
is 205192065537 ≡ 81020401 (mod N). Person 2 then sends me = c to person 1.

Finally, person 1 computes m ≡ cd (mod N) using the decryption key d.
For our numbers, we get 8102040149633793 ≡ 2051920 as we want.

A few remarks about the process are in order. First, when choosing e, it can
be any integer with the condition that gcd(e, (p−1)(q−1)) = 1, it just happens
that 65537 is a popular choice because it is one more than a power of two, so it
is easy to compute x65537 by sucessive squaring [5]. Second, the security of the
system is based on the fact that it is not easy to factor N . If someone could
factor N , then they could easily find d by the Extended Euclidean Algorithm,
and then easily decrypt the message. We know that factoring N , when it is
the product of two large distinct primes, is a hard problem, so we rely on the
computational infeasibility of factoring N for our security. This stresses the
importance of factoring algorithms to data security, as the encryption must
stay one step ahead of the factoring algorithms. Right now, the best factoring
methods for numbers around 130 digits are either the Elliptic Curve Method
or the Number Field Sieve which work with running times of L(N)1+o(1),2 and

O(e(lnN)1/3(ln lnN)2/3(C+o(1))) for a small constant C, respectively, so we know
that picking primes p and q with ≈ 100 digits gives N sufficient size that the
best current factoring methods cannot break the code in any reasonable amount
of time [1].

2.2 Fermat’s Little Theorem

Before we consider modern methods for primality testing and factorization, we
must study more basic methods. The majority of the most basic primality
testing methods are based on Fermat’s Little Theorem [5].

1In practice these are usually over 100 digits
2L(x) = e

√
ln x ln ln x
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2.2.1 Fermat’s Little Theorem

We begin with the statement of Fermat’s Little Theorem.

Theorem 2.4 (Fermat’s Little Theorem). Let p be a prime. then for every
integer a, ap ≡ a (mod p). Moreover, if p - a, ap−1 ≡ 1 (mod p).

Before we prove the theorem, let’s look at an example.

Example 2.5. Consider p = 7. Notice

a (mod 7) a7 (mod 7)
0 07 ≡ 0 (mod 7)
1 17 ≡ 1 (mod 7)
2 27 ≡ 2 (mod 7)
3 37 ≡ 3 (mod 7)
4 47 ≡ 4 (mod 7)
5 57 ≡ 5 (mod 7)
6 67 ≡ 6 (mod 7)

As we can see from the table, all of the congruence classes modulo 7 are them-
selves when raised to a power of 7. One important note is that this is not true
for integers in general, and rather a property of primes.

Now we will prove the theorem.

Proof of Fermat’s Little Theorem. First notice that if a ≡ 0 (mod p) =⇒ 0p ≡
0 (mod p). Also notice that ap−1 ≡ 1 (mod p)

×a
=⇒ ap ≡ a (mod p), so it is suf-

ficient to show that ap−1 ≡ 1 (mod p). We begin with a Lemma.

Lemma 2.6. If a 6≡ 0 (mod p), then the set a, 2a, 3a, . . . , (p − 1)a (mod p)
contains each nonzero congruence class exactly once.

Proof. Let a 6≡ 0 (mod p). We will prove the Lemma by contradiction. Suppose
the set a, 2a, 3a, . . . , (p− 1)a has repeated elements.

⇐⇒ a · i ≡ a · j (mod p) where 1 ≤ i 6= j ≤ p− 1 (1)

⇐⇒ p|(a · i− a · j) = a(i− j) (2)

⇐⇒ p|(i− j) (3)

But i−j ∈ {1, 2, 3, . . . , p−2} so it cannot be that p|(i−j). So our assumption is
false, and the set a, 2a, 3a, . . . , (p− 1)a contains each nonzero congruence class
(mod p) exactly once.

Now consider the product of all of the elements of a, 2a, 3a, . . . , (p−1)a. Our
Lemma says that

p−1∏
i=1

i ≡
p−1∏
i=1

ai (mod p),
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because the two sets contain the same elements.

=⇒ (p− 1)!a ≡ (p− 1)! (mod p)

But notice, p - (p−1)!, because it does not divide any of 1, 2, . . . , p−1. Therefore,
(p− 1)! has a multiplicative inverse (mod p), and we can divide by (p− 1)! to
obtain

ap−1 ≡ 1 (mod p),

and this concludes the proof of Fermat’s Little Theorem.

2.2.2 Fermat Primality Test

Clearly, we can use Fermat’s Little Theorem as the most basic of primality tests,
because if we have a number N , that we wish to test for primality, and aN−1 6≡ 1
for any a 6≡ 0 (mod N), then N is clearly composite.

Example 2.7. We will show that 12 is not prime using this test. Notice 211 ≡
210 · 2 ≡ 322 · 2 ≡ 82 · 2 ≡ 4 · 2 ≡ 8 6≡ 1 (mod 12), so 12 is composite.

However, some numbers will pass this simple test for compositeness, leading
us to two definitions.

Definition. A composite integer n > 1 is called b-pseudoprime if bn−1 ≡ 1
(mod n).

To illustrate the issue with Fermat’s composite test, we give a few examples
of b-psdeudoprimes.

Example 2.8. Consider b = 2 and N = 341. We know 341 = 11 × 31, but
notice that 2340 ≡ (210)34 ≡ 134 ≡ 1 (mod 341), so if we only tried this, we
might wrongly conclude N is prime. However, notice that 3340 ≡ 56 (mod 341),
so we can tell 341 is composite.

Example 2.9. Now consider N = 1729 = 7× 13× 19. We try to show that n
is composite using 2.

21728 = (2108)16 ≡ 116 ≡ 1 (mod 1729)

So 2 does not work. Now let’s try another number like we did with the example
above.

51728 = (5108)16 ≡ 116 ≡ 1 (mod 1729)

So 5 also does not work.

Now one might ask, are there some numbers that are b-pseudoprimes for a
large percentage of b (mod N)? The answer is yes, which leads to the following
definition.

Definition. A composite integer N > 1 is called a Carmichael Number if
bN−1 ≡ 1 (mod N) for all integers b with gcd(b,N) = 1
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While it may not seem like there would be many Carmichael Numbers, there
are enough that the Fermat primality test is not nearly sufficient to be confident
a number is prime.

Example 2.10. Consider N = 561. Clearly N is divisible by 3, because the sum
of its digits are divisible by 3. But, suppose we did not know that, and want to
test for compositeness using the Fermat test. Let’s try with b = 16, 124, and 395.

16560 = (1670)8 ≡ 18 ≡ 1 (mod 561)

So 16 does not help us prove that 561 is composite. Now let’s try 124.

124560 = (124280)2 ≡ 12 ≡ 1 (mod 561)

Again, this does not help us. Finally let’s try 395.

395560 = (395140)4 ≡ 14 ≡ 1 (mod 561)

At this point we might ask whether 561 is a Carmichael Number, and the answer
is yes, but we will leave it at 3 examples.

Remark 2.11. Note that 1729 from our example above is also a Carmichael
Number, so while rare, they do appear often enough to cause problems with
these simple primality tests. In fact, it was proved by Alford, Granville and
Pomerance that there are infinitely many Carmichael numbers.[4]

There are improvements to the Fermat primality test, such as the Strong
Fermat Test, but we will not discuss these in this paper, rather let’s look at a
more advanced test.

2.3 Rabin-Miller Test

In this section we introduce the Rabin-Miller Test, which will either prove a
number is composite, or determine that it is “probably” prime. This is an
important distinction to make; many of the tests used will only determine
that a certain number is probably prime, not actually prove primality. The
Rabin-Miller test is very important for us, because later on, when using ellip-
tic curve algorithms, we want to be fairly sure that the number is prime for
the sake of time and computer memory. Now we introduce the algorithm [1].

Algorithm 2.12 (Rabin-Miller). Given and odd integer N ≥ 3, this algorithm
determines if N is composite or probably prime.

Step 1: Write N − 1 = 2t · q, and set c = 20.

Step 2: Use a random number generator to pick 1 < a < N . Set e = 0, b ≡ aq

(mod N). If b ≡ 1 (mod N) go to Step 4.
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Step 3: While b 6≡ ±1 (mod N) and e ≤ t−2, set b ≡ b2 (mod N) and e = e+1.
If the loop ends before b = N − 1, then N is composite, and end the
algorithm.

Step 4: Set c = c− 1. If c > 0 go to Step 2. If c = 0, then N is probably prime.

We now will try to illustrate the algorithm with an example.

Example 2.13. Let’s try to show that 1729 is composite using the Rabin-Miller
Test. First we write 1728 = 26 · 27, so t = 6, and q = 27. Next we choose a
random number 1 < a < 1729, say a = 1011. We now compute b = 101127 ≡ 818
(mod 1729). So we enter the while loop. We see that b2 ≡ 8182 ≡ 1, so we end
our loop, and b 6= 1728, so 1729 is composite! Notice how quickly the Rabin-
Miller Test succeeded, when we could not determine 1729 was composite from
the Fermat test.

However, there are numbers that are composite that also pass the Rabin-
Miller Test. We illustrate that with an example below.

Example 2.14. Consider N = 2047. The first step is to write 2047− 1 = 2046
as 21 · 1023. Now we use a random number generator to pick a number between
1 and 2047. Let a = 967. we set b = 9672046 ≡ 1013 (mod 2047). Now we do
successive squaring while e = 0 ≤ t− 2. For our case, we can’t do another step,
so we go back and choose a new random a. Continuing in this way, we eventually
determine that 2047 is probably prime. However, it is not! 2047 = 23 · 89, so
we see that the Rabin-Miller test fails for some composite numbers.

Now that we have a fairly advanced test for compositeness, we turn to the
issue of how to factor that number in the following section.

2.4 Pollard’s p− 1 Method

This subsection introduces a factoring method proposed in 1974 by John Pollard
[5], that was, at the time, one of the best method for factoring large numbers.
The idea is as follows; if the number N that we wish to factor has a prime factor
p, then by Fermat’s Little Theorem, if p - a,

ap−1 ≡ 1 (mod p),

so clearly p divides gcd(ap−1, N). The problem is we do not know p, so we
cannot compute ap−1. To get around this we choose a number k that is a
product of small primes to small powers. Then we compute gcd(ak− 1, N). We
hope that p − 1|k, so that p|ak − 1, and then gcd(ak − 1, N) ≥ p ≥ 1, and we
have found a factor of N . If gcd(ak − 1, N) = N , then we choose a new a, and
if gcd(ak − 1, N) = 1, we choose a larger k. We continue this process until we
have found a nontrivial factor of N [5].

Now let’s make this idea a bit clearer with a step by step algorithm from
Kraft and Washington.
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Algorithm 2.15 (Pollard’s p−1 Algorithm). Let N ≥ 2 be a composite integer
we want to factor.

Step 1: Choose an an integer a between 1 and N .

Step 2: Calculate gcd(a,N). If it is between 1 and N it is a nontrivial factor of
N . If it is 1, continue.

Step 3: Choose a k that is a product of small primes to small powers.

Step 4: Calculate gcd(ak − 1, N). If it is between 1 and N it is a nontrivial
factor of N . If it is 1, choose a new a or k. If it is N , choose a new k.

One final thing to notice about Pollard’s Method is that given infinite time,
the method will find a nontrivial factor of N , because eventually k will reach
p−1
2 , for some prime p|N . However, if p−1 is not the product of smaller primes

to small powers, the algorithm will take a long time to run, so it is quite limited
[5]. To illustrate the process, consider the following two examples.

Example 2.16. We will attempt to factor 1729, one of the Carmichael Num-
bers from section 2.2.

Step 1: Choose a = 2

Step 2: Compute gcd(2, 1729) = 1.

Step 3: Let’s pick k = 2 · 3 · 5 · 7 = 210

Step 4: Calculate gcd(2210 − 1, 1729) = 7, so we have found a factor!

We now know that 1729 = 7 · 247, and can either stop here, or plug 247 into
Pollard’s method.

Example 2.17. Now let’s try to factor N = 10585.

Step 1: Choose a = 2

Step 2: Compute gcd(2, 10585) = 1.

Step 3: Let’s pick k = 2 · 3 · 5 · 7 = 210

8



Step 4: Calculate gcd(230−1, 10585) = 1, so we will try going back and choosing
a new k.

Step 5: We choose k = 2 · 3 · 4 · 5 · 7 · 11.

Step 6: Calculate gcd(29240 − 1, 10585) = 145, so we have found a nontrivial
factor!

We have found that 10585 = 145 · 73, and can continue until we have a prime
factorization, or stop here.

We now understand how Pollard’s p−1 algorithm works, and can move on to
elliptic curve applications, since many of the elliptic curve factoring algorithms
are based on similar ideas to that of Pollard’s method.

3 Elliptic Curve Primality Testing and Factor-
ization

In this chapter we turn our focus from classical number theory to the study
of elliptic curves. We first will introduce the group law and Weierstrass Nor-
mal Form, and then will discuss the previous developments by Mazur, Nagell,
Lutz, and Kubert. We will then introduce the current factoring algorithms and
primality tests due to Lenstra and others.

3.1 Rational Points and the Group Law

If we let

ax3 + bx2y + cxy2 + dy3 + ex2 + fxy + gy2 + hx+ iy + j = 0

be the equation for a general cubic, we say that the cubic is rational if all of
its coefficients are rational numbers. In general, if we have two points on an
elliptic curve E, we can draw a line connecting the two points, which will give
rise to a third point at the third intersection of the line with the cubic, and if
two of the points are rational, then so is the third. This is the basis for our
group law on the group of rational points on an a certain elliptic curve E. Let
P and Q be two rational points on our curve E, and let P ∗ Q be the third
point of intersection of the line connecting P and Q on E. If we only have one
point P , we can get around this by taking the line tangent to P , and setting the
other intersection point as P ∗P . Now let’s add a point at infinity to the curve
E, and denote this point as O. This will be the zero element of our group of
rational points on E. We denote the group law by +, and to add P and Q, we
take the third intersection point P ∗Q, draw the vertical line to connect it to O,
and then take the third intersection point to be P +Q. Notice that P +O = P
because P ∗ O joined to O is itself P [9].
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We now will introduce the Weierstrass Normal Form, which is a special
form that any cubic equation with rational coefficients can be expressed in.
The general equation for a cubic in Weierstrass Normal Form is

y2 = x3 + ax2 + bx+ c.

The Weierstrass Normal Form [9] is the result of a birational transformation,
that puts our elliptic curve E into a more workable form. From the Weierstrass
Normal Form it is easy to derive formulas for adding or doubling points, which
we will use in our applications later on. First let’s show how to compute P +Q.
Let P = (xP , yP ) and Q = (xQ, yQ). The equation of the line connecting P and

Q is y = λx+ ν where λ =
yQ−yP
xQ−xP

and ν = yP − λxP = yQ − λxQ. Now to get

the coordinates of P ∗ Q, we know it must lie on y = λx + ν, so we plug this
into our equation for E. This gives

0 = x3 + (a− λ2)x2 + (b− 2λν)x+ (c− ν2).

But notice, we know two of the three roots of this equation, so this equation
factors as (x− xP )(x− xQ)(x− x+) where x+ is the x-coordinate of P ∗Q. By
multiplying out and equating the coefficients, we see that x+ = λ2−a−xP −xQ,
and thus y+ = λx+ +ν. Now suppose we have a point P = (x1, y1) and want to
compute 2P = P +P . To compute 2P we cannot just use the addition formula,
because our formula for λ would not make sense. Therefore we need to use
implicit differentiation to calculate the slope of the tangent line as follows,

λ =
dy

dx
=
f ′(x)

2y
.

If we substitute in our general Weierstrass equation for E, and plug λ into the
equations from above, we get

x2P = λ(x1, y1)2 − a− 2x1 =

(
3x21 + 2ax1 + b

2y1

)2

− a− 2x1,

or if we expand and simplify we get

x2P =
x41 − 2bx1 − 8cx1 + b2 − 4ac

4x31 + 4ax21 + 4bx1 + 4c
.[9]

To get y2P we notice that

λ(x1, y1) =
3x21 + 2ax1 + b

2y1
.

Now we can plug in to get

y2P = λ(x1, y1) · (x2 − x1) + y1.

10



Remark 3.1. It is often easier for us to find y2P by simply plugging in x2P
into E, but that will involve square roots, which looks a bit more complicated.
In practice if the square root was not defined that would mean that the group
law would break down. Later on we will attempt to break down the group law
to prove compositeness, so we do not need to worry about this square root.

We now must define an important quantity associated to the models of
elliptic curves.

Definition 3.2. Let E be an elliptic curve defined as

E : y2 = f(x) = x3 + ax2 + bx+ c.

Then the Discriminant of E is defined to be

D = −4a3c+ a2b2 + 18abc− 4b3 − 27c2

Remark 3.3. The discriminant is also often represented by ∆E .

Example 3.4. Let’s look at the curve

E : y2 = x3 − 11x2 − 120x+ 900.

We plug into our formula for D given above, to get the discriminant of E is

D = 12960000 = 28 · 34 · 54.

Notice that all of the points of finite order on E are given by

{(0,−30), (15, 0), (0, 30), (6, 0), (30,−120), (−10, 0), (30, 120),O},

where the set of points of order 4 is {(0,−30), (0, 30), (30, 120), (30,−120)} and
the other points have order 2. It is important to notice that all of the points of
order 2 have a y coordinate of 0, and that the y coordinate of all of the points
of order 4 divides D.

This example gives a glimpse of the Nagell-Lutz Theorem, an important
theorem in the following section, but first we have the following theorem about
rational points on E.

Theorem 3.5 (Mordell-Weil Theorem). Let E/Q be an elliptic curve defined
over Q as above. Then the rational points on E, along with the point O at
infinity form a finitely generated abelian group.

Remark 3.6. Points of finite order on such a curve is called the torsion subgroup
of E, which we will denote by Etor.

Remark 3.7. The proof of the Mordell-Weil Theorem is not simple, and in-
volves the theory of heights. However, the idea is that generally if a group
G is abelian, and G/2G is finitely generated, one would expect G to also be
finitely generated. However, this is not always true. An easier thoerem about
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rational points on elliptic curves corresponds to elliptic curves over the finite
field Fp := Z/pZ, where p is prime. Notice that if p - D, all formulas from
above hold. Clearly E/Fp is finitely generated because it has only finitely many
points, specifically p2 many. The applications of this thesis make use of this
fact, and more importantly, as we will see, that this property does not hold if p
were composite.

3.2 Theorems of Mazur, Nagell-Lutz, and Kubert

We now will mention a few key theorems that are the basis for the methods we
will use for primality testing and factorization in later sections. Some of the
proofs are beyond the scope of this paper, but we will discuss the importance
of these theorems. First we give a statement of the Nagell-Lutz Theorem.

Theorem 3.8 (Nagell-Lutz Theorem). Let

E : y2 = f(x) = x3 + ax2 + bx+ c

be a nonsingular cubic curve with integer coefficients, and let D be the discrim-
inant of the cubic polynomial f(x),

D = −4a3c+ a2b2 + 18abc− 4b3 − 27c3.

Let P = (x, y) be a rational point of finite order. Then x and y are integers;
and either y = 0, in which case P has order 2, or else y2 divides D.

It should be clear that this is an extremely powerful theorem. We now know
that the coordinates of any point of finite order in the group of rational points
on an elliptic curve E are integers. This gives us the ability to reduce this group
modulo N , which is the source of our primality testing and factoring algorithms.
The reduction is well defined when N is prime, but if N is composite, the group
law can break down. We now prove a weaker version of the theorem, following
the exposition in Silverman and Tate pages 49-55 [9].

Remark 3.9. The proof falls short of the claim in Theorem 3.8, we will prove
only that y|D. In practice, to compute the torsion subgroup of E the weaker
version is sufficient.

Proof of Theorem 3.8. As the remark stated above, here we prove Theorem 3.8
with y|D instead of y2|D. We begin the proof with a Lemma.

Lemma 3.10. Let P = (x, y) be a point on the elliptic curve

E : y2 = f(x) = x3 + ax2 + bx+ c,

such that P and 2P have integer coordinates. Then either y = 0 or y|D.

Proof. We will assume that y 6= 0. With y 6= 0, we know 2P 6= O, so let
2P = (u, v). By hypothesis, x, y, u, v ∈ Z. By our formula for doubling points
we have

2x+ u = λ2 − a

12



with λ = f ′(x)
2y . Because our points and coefficients are integers, we know

that λ is also an integer, which means 2y|f ′(x), so y|f ′(x). However, we know
y2 = f(x) =⇒ y|f(x). We now claim that

D = {(18b− 6a2)x− (4a3 − 15ab+ 27c)}f(x) + {(2a2 − 6b)x2

+(2a3 − 7ab+ 9c)x+ (a2b+ 3ac− 4b2)}f ′(x),
(4)

which we will not expand here, however it is quite easy to check by simply
plugging in. But this means we can write

D = r(x)f(x) + s(x)f ′(x),

where the coefficients of r(x) and s(x) are integers, and so they have integer
values at integer inputs. Thus y|D.

We will see how this lemma is used later on in our proof. Now let E be
defined as in the statement of the theorem. We define the order of a rational
number to be

ord
(m
n
pν
)

= ν,

where m and n are relatively prime to p and the fraction is in lowest terms.
We say the order is zero if and only if p does not divide the numerator or
denominator. Let (x, y) be a point on E with p|(denominator of x), so we have

x =
m

npµ
and y =

u

wpσ
,

where µ > 0 and p does not divide m,n, u, or w. If we plug into E and find a
common denominator we get

u2

w2p2σ
=
m3 + am2npµ + bmn2p2µ + cn3p3µ

n3p3µ
,

so we have

ord

(
u2

w2p2σ

)
= −2σ and ord

(
m3 + am2npµ + bmn2p2µ + cn3p3µ

n3p3µ

)
= −3µ.

The order of p on the left must equal the order on the right, so we have 2σ =
3µ =⇒ 2|µ and 3|σ, so µ = 2ν and σ = 3ν for some ν > 0. If we assume
instead that p divides the denominator of y we get the same result, so if p is in
the denominator of x or y, it is in the denominator of both. We now define

C(pν) := {(x, y) ∈ C(Q) : ord(x) ≤ −2ν and ord(y) ≤ −3ν} .

We now will make a smart subsitution; we set

t =
x

y
and s =

1

y
.
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Then E becomes
Ẽ : s = t3 + at2s+ bts2 + cs3.

Similarly, a line in the x, y plane corresponds to a line in the s, t plane. Say
y = λx+ ν, then we have

1

ν
=
λ

ν

x

y
+

1

y

so s = −λν t + 1
ν . We now denote the ring R as the set of all rational numbers

with no p in the denominator3, a fact we will use later.4 If we let (x, y) be
some point on E in C(pν), then we can convert it to coordinates in s and t, Let
P1 = (t1, s1), and P2 = (t2, s2) be distinct points coming from an x and y in
C(pν). Then if t1 = t2, P1 = −P2, P1 + P2 is also in C(pν). We now assume
t1 6= t2, and let s = αt+ β be the line intersecting P1 and P2. By plugging into
E and subtracting, we can factor out some (t2 − t1) and (s2 − s1) terms to get
an alternate formula for the slope α = s2−s1

t2−t1 . We get

α =
t22 + t1t2 + t21 + a(t2 + t1)s2 + bs22

1− at21 − bt21(s2 + s1)− c(s22 + s1s2 + s21)
,

where the numerator and denominator lie in p2νR, because t1, s1, t2, and s2 all
are in pνR. Therefore, α is a unit in R. If P1 = P2 then we have

α =
ds

dt

∣∣∣
P1

=
3t21 + 2at1s1 + bs21

1− at21 − 2bt1s1 − 3cs21
,

which is the same as the slope from above if we subsitute in t2 = t1. Now let
P3 = (t3, s3) be the third point on Ẽ and the line above. We plug into Ẽ to get

αt+ β = t3 + at2(αt+ β) + bt(αt+ β)2 + c(αt+ β)3.

We know that the roots of this equation if we subtract αt + β from both sides
and multiply out and collect terms are our points t1, t2, and t3, so we can rewrite
the right hand side as

K · (t− t1)(t− t2)(t− t3) = (1+aα+ bα2 + cα3)t3 +(aβ+2bαβ+3cα2β)t2 + . . . ,

where K is some constant. If we multiply out the left hand side of the above
equation and look at the coefficients of t3 and t2 we see

t1 + t2 + t3 = −aβ + 2bαβ + 3cα2β

1 + aα+ bα2 + cα3
.

Using β = s1 − αt1 we have a formula for t3. To find the formula for the
coordinates of P1 +P2 we draw the line through P3 and the zero element, which
in the t, s coordinate system is (0, 0). Therefore the coordinates of P1 + P2 are
(−t3,−s3). Now notice that s1 ∈ p3νR, α ∈ p2νR and t1 ∈ pνR. Therefore,

3These numbers are known as the p-integral rational numbers.
4R is clearly a ring because if α, β ∈ R then α± β, αβ ∈ R.
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β ∈ p3νR, and the denominator of t1 + t2 + t3 is a unit in R. We know from the
equation above that t1 + t2 + t3 ∈ p3νR, and we also know t1, t2 ∈ pνR, which
means that t3 ∈ pνR. This means that if P1, P2 ∈ pνR, then P3 ∈ pνR, and so
P1 + P2 ∈ pνR, so C(pν) is closed under addition and taking negatives, and so
it is a subgroup of C(Q). Therefore,

−t3 ≡ t1 + t2 (mod p3νR).

This means that we obtain a one-to-one homomorphism from C(pν) to the
quotient group pνR/p3νR, defined by

C(pν)

C(p3ν)
→ pνR

p3νR
,

P = (x, y) 7→ t(P ) =
x

y
.

We now can show that if P is some point of finite order, then x and y have integer
coefficients. We let P be some point of order m. Since P 6= O, we know m 6= 1.
Now let p be some prime, and suppose that P ∈ C(p). Then P = (x, y) is
contained in some smaller group C(pν) for some ν, with P 6∈ C(pν+1). Suppose
now that p - m. If we apply the congruence

−t3 ≡ t(P1 + P1) ≡ t1 + t1 ≡ t(P1) + t(P1) (mod p3νR).

m times, we get
t(mP ) ≡ mt(P ) (mod p3νR).

But notice that mP = O, so t(mP ) = t(O) = 0. But since p - m, m is a unit in
R, so

0 ≡ t(P ) (mod p3νR).

Therefore, P ∈ C(p3ν), which contradicts our assumption that it is not. Now
suppose that p|m, say m = pn, and consider the point P ′ = nP . Clearly,
P ′ has order p, and since P ∈ C(p), then P ′ ∈ C(p). Similarly to before,
let P ′ ∈ C(pν) but P ′ 6∈ C(pν+1) for some ν. Then as before, we find that
pt(P ′) ≡ 0 (mod p3ν=1R), so t(P ′) ≡ 0 (mod p3ν−1R). Clearly 3ν − 1 ≥ ν + 1,
which contradicts that P ′ 6∈ C(pν+1). Therefore, if P = (x, y) is a point of finite
order, P 6∈ C(p) for all primes p, so the denominators of the x and y coordinates
are not divisible by any prime, so they are 1, and x, y ∈ Z. To finish the proof
of the weaker version of the Nagell-Lutz theorem is easy, because if P has order
two, y = 0 and we are done. If not, 2P 6= O. But we know that 2P also has
finite order, so it has integer coordinates. We showed at the beginning of our
proof in Lemma 3.10 that if P and 2P have integer coordinates then y|D, and
this concludes the proof of the weaker version of the Nagell-Lutz Thoerem.

Let’s now look at a few examples to see how the Nagell-Lutz Theorem works.
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Example 3.11. Let E be defined as

E : y2 = x3 − 12x2 − 128x+ 1024.

By plugging in to our formula for D we see that D = 17825792 = 220 · 17, so we
must check y = 2, 22, 23, . . . , 210, because y2 must divide D. It is easy for us to
see right away that P = (0,−32) is a solution, because

(−32)2 = x3−12x2−128x+1024 =⇒ 1024 = x3−12x2−128x+1024 =⇒ x = 0.

However, it is faster if we plug in the 10 possible y values into a computer
program such as Maple that can quickly check for integer solutions. After doing
this we can see that there are 3 integer solutions, giving the set of points

{(0,−32), (16, 0), (0, 32),O}.

Example 3.12. Now let E be defined as

E : y2 = x3 − 28x2 + 264x+ 4096.

This curve has disciminant D = −222 · 132, so we must try more y values than
last time. However, the procedure is the same, where we run a Maple program
to check all of the possible y values such that y2|D. If we do this we see that
we get the set of points

{(0,−64), (32,−128), (32, 128), (0, 64),O}.

Now we turn to the work of Mazur, who classified all of the possible struc-
tures for the torsion subgroups of elliptic curves. We begin with the statement
of his theorem.

Theorem 3.13 (Mazur’s Theorem). Let E be a nonsingular rational cubic
curve, and suppose that E(Q) contains a point of finite order m. Then either

1 ≤ m ≤ 10 or m = 12.

More precisely, the set of all points of finite order in E(Q) forms a subgroup
which has one of the following two forms:

1. A cyclic group of order N with 1 ≤ N ≤ 10 or N = 12.

2. The product of a cyclic group of order two and a cyclic group of order 2N
with 1 ≤ N ≤ 4

Remark 3.14. Notice that now that we have Mazur’s Theorem it is easy to see
that the points in Example 3.11 form a cyclic group isomorphic to Z/4Z, and
the curve in Example 3.12 has the subgroup of points of finite order isomorphic
to Z/5Z. Also, the curve in the last example in Section 3.1 has the subgroup
Z2× Z4.
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The proof of Mazur’s theorem is beyond the scope of this paper; however,
it is important to note the importance of this theorem. Before we discuss that,
however, we need a definition.

Definition 3.15. Let E be an elliptic curve. Then the torsion subgroup of E,
Etor, is defined as:

Etor = {P = (x, y) ∈ E(Q) : P has finite order} ,

Mazur’s Theorem tells us that if an elliptic curve E has a torsion subgroup,
it is isomorphic to one of the above groups. This theorem is important in
proving Fermat’s Last Theorem, and a contributing factor to Barry Mazur being
awarded the National Medal of Science in 2011. A natural question one might
ask following Mazur’s Theorem is if there is then a way to classify all elliptic
curves with these torsion subgroups. The answer is yes, and in fact, Kubert
proposed a table before Mazur proved his result [6]. After Mazur’s Theorem
was proved, we then knew that Kubert’s table was complete. Now we state a
proposition from Kubert’s work, and include his table.

Theorem 3.16 (Kubert’s Boundedness Conjecture Over Q). Let E be an el-
liptic curve defined over Q. Let T be a subgroup of Etor(Q). Then T is param-
eterizable.

Table 1: Parametrization of Torsion Structures [6]

1. 0:y2 = x3 + ax2 + bx+ c;∆1(a, b, c) 6= 0,
∆1(a, b, c) = −4a3c+ a2b2 + 18abc− 4b3 − 27c2.

2. Z/2Z: y2 = x(x2 + ax+ b); ∆1(a, b) 6= 0, ∆1(a, b) = a2b2 − 4b3.

3. Z/2Z× Z/2Z: y2 = x(x+ r)(x+ s), r 6= 0 6= s 6= r.

4. Z/3Z: y2 + a1xy + a3y = x3; ∆(a1, a3) = a31a
3
3 − 27a43 6= 0.

The form E(b, c) is used in all parametrizations below where E(b, c) =
y2 + (1− c)xy − by = x3 − bx2, (0, 0) is a torsion point of maximal order,
∆(b, c) = α4b3 − 8α2b4 − α3b3 + 36αb4 + 16b5 − 27b4, and α = 1− c.

5. Z/4Z: E(b, c), c = 0, ∆(b, c) = b4(1 + 16b) 6= 0.

6. Z/4Z× Z/2Z: E(b, c), b = v2 − 1
16 , v 6= 0, ± 1

4 , c = 0.

7. Z/8Z×Z/2Z: E(b, c), b = (2d−1)(d−1), c = b/d, d = α(8α+2)/(8α2−1),
d(d− 1)(2d− 1)(8d2 − 8d+ 1) 6= 0.

8. Z/8Z: E(b, c), b = (2d− 1)(d− 1), c = b/d, ∆(b, c) 6= 0.

9. Z/6Z: E(b, c), b = c+ c2, ∆(b, c) = c6(c+ 1)3(9c+ 1) 6= 0.

17



10. Z/6Z × Z/2Z: E(b, c), b = c + c2, c = (10 − 2α)/(α2 − 9), ∆(b, c) =
c6(c+ 1)3(9c+ 1) 6= 0.

11. Z/12Z: E(b, c), b = cd, c = fd − f , d = m + τ , f = m/(1 − τ), m =
(3τ − 3τ2 − 1)/(τ − 1), ∆(b, c) 6= 0.

12. Z/9Z: E(b, c), b = cd, c = fd− f , d = f(f − 1) + 1, ∆(b, c) 6= 0.

13. Z/5Z: E(b, c), b = c, ∆(b, c) = b5(b2 − 11b− 1) 6= 0.

14. Z/10Z: E(b, c), b = cd, c = fd− f , d = f2/(f − (f − 1)2), f 6= (f − 1)2,
∆(b, c) 6= 0.

15. Z/7Z: E(b, c), b = d3 − d2, c = d2 − d, ∆(b, c) = d7(d − 1)7(d3 − 8d2 +
5d+ 1) 6= 0.

We now have a table that paramaterizes all of the possible curves that have
torsion subgroups. This is extremely powerful as we can now, simply by looking
at the equation of a curve, determine if it has a torsion subgroup. Before we
look further into the work of Kubert, and how it applies to our primality testing,
we require a lemma.

Lemma 3.17. If p is prime, then there are at most p2−1 many points of order
p on E(Fq), where q is prime, and q - ∆E

Proof. Here we will not prove the entire lemma, but rather simply show that for
primes p = 2, 3, 5 or 7, we have an upper bound on the number of points of order
p, we will need this in Section 4. We suppose for all cases that E(Fq) : y2 = f(x)
(mod q), with q prime, and P is a torsion point of order p. First consider p = 2.
Then we know that 2P = O, so we have

P = −P =⇒ (x, y) = (x,−y) =⇒ 2y = 0, f(x)

However, we know that for fields a polynomial f(x) has at most deg(f) roots[2],
so we know that there are 3 possible solutions, or at most 3 points of order 2
over Fq.

We now consider p = 3. We know that 3P = O so

2P = −P =⇒ x2P =
x41 − 2bx1 − 8cx1 + b2 − 4ac

4x31 + 4ax21 + 4bx1 + 4c
= x,

where we got x2P from the doubling formula in Section 3.1. Again, we know
that the equation x2P − x = 0 is a polynomial of degree 4, so over Fq it has at
most 4 roots. For each x value there are two possible y values, which means
there are at most 8 points of order 3.

Next we have p = 5. If we do successive doublings of P we have 4P = −P .
As with the p = 3 case, plugging into the doubling formula gives an equation
for x4P , which we can easily see has order less than or equal to 16. Again there
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are 2 possible y values for each x value, so we get at most 32 points of order 5.
Finally consider p = 7. Notice that P has order 7 ⇐⇒ 8P = P , so we

can use the doubling formula again, giving a polynomial equation for the x
coordinate of 8P . It is easy to see that polynomial has order at most 32, which
means at most 64 points of order 7. As we mentioned this proof does not show
the stronger bound of p2−1 for all primes p, but as the reader will see in Section
4, we simply need a bound for p = 2, 3, 5 or 7.

Before we continue on to our own primality tests, let us introduce the current
standards in elliptic curve factoring and primality testing.

3.3 Elliptic Curve Primality Tests and Factoring Algo-
rithms

In this section we introduce primality tests and factoring algorithms that use
the properties of elliptic curves we introduced above. The general idea of these
methods is to assume N is prime, and then find a contradiciton by breaking
down the group law. We begin with a primality test.

3.3.1 Goldwasser-Killian Test

The idea of the Goldwasser-Killian Test is to find an elliptic curve E with
m = |E(Z/NZ)|, where m has a large prime, or pseudo-prime, factor5. If q is
such a factor, we assume q is prime, and look for a point P such that

P ∈ E(Z/NZ)

m · P = OE

(m/q) · P 6= OE

If such a point P is found, we now need to prove that q is indeed prime, but
we have now reduced the problem of proving N is prime to proving q is prime.
So we can apply this recursively until we reach a number that can be factored
with other algorithms. As stated before, if N is not prime, the algorithm can
run forever, hence why it is more theoretical than applicable, but it will never
give a false answer. If the algorithm determines N to be prime, the sequence of
primes N0 = N,N1 = q, . . . , Ni, . . . , along with the curves Ei, and points Pi is
called the primality certificate of N . Now let’s state the formal algorithm from
Cohen [1].

Algorithm 3.18 (Goldwasser-Killian). [1] Let N 6= 1 be a positive integer
coprime to 6. This algorithm will try to prove that N is prime. If N is not
prime, the algorithm may detect it or may run indefinitely.

5Large meaning q|m with q > ( 4
√
N + 1)2
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Step 1: Set i = 0 and N = ni.

Step 2: If ni < 230, trial divide ni by the primes up to 215. If ni is not prime,
go to Step 9.

Step 3: Choose a and b randomly in Z/niZ and check that 4a3+27b2 ∈ (Z/niZ)∗.
Let E be the elliptic curve with the equation y2 = x3 + ax+ b.

Step 4: Compute m = |E(Z/niZ)|. If this cannot be computed go to Step 9.

Step 5: Check that m = 2q, where q passes the Rabin-Miller Test. If not go
back to Step 3.

Step 6: Choose a random x ∈ Z/niZ until the Legendre-Jacobi Symbol
(
x3+ax+b

ni

)
is equal to 0 or 1. Then compute y2 = x3 + ax + b. If this fails, go to
Step 9.

Step 7: Compute P1 = m · P , and P2 = (m/q) · P , where P is the point found
in Step 6. If the computations are not possible, then go to Step 9.
Otherwise, check that P1 = O. If not, go to Step 9. Check if P2 = O,
and if so, go back to Step 6.

Step 8: Set i = i+ 1, and ni = q, and go back to Step 2.

Step 9: If i = 0 then N is composite and stop the algorithm. If not, set i = i−1
and go back to Step 3.

We reiterate again here that this algorithm is primarily theoretical, and not
used for applications of primality testing. However, it does still indicate one of
the ways elliptic curves can be used to prove the compositeness or primality of
a number. In the next subsection we will introduce an elliptic curve factoring
method that is very applicable, and we will show an example of factoring using
the method.

3.3.2 Lenstra’s Elliptic Curve Factoring Algorithm

Here we look into a factoring algorithm using elliptic curves developed by H.W.
Lenstra which is one of the three most popular modern factoring methods along
with the quadratic sieve and the number field sieve [1]. Before we state the
algorithm, briefly recall the group law on elliptic curves. For an elliptic curve
E : y2 = x3 + ax+ b, the formula for a point P3 = P1 +P2 is x3 = λ2 − x1 − x2
and y3 = λx3 + ν where λ = y2−y1

x2−x1
and ν = y1 − λx1 = y2 − λx2. Notice

now, that these equations are obviously true in a field6, but if we are working
with E over Z/NZ, this may not always work, because x2 − x1 is not required
to have an inverse. However, this is exactly what we want. If x2 − x1 does
not have an inverse modulo N , then gcd(x2 − x1, N) is a non-trivial divisor of

6unless x2 = x1
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N . Therefore, we will now consider E over Z/NZ, assuming N is prime, and
look for a contradiction to that assumption. Now that we understand why this
method provides a non-trivial factorization of N , we can turn our focus to the
implementation of the algortihm.

Algorithm 3.19 (Lenstra’s Elliptic Curve Algorithm). [9] Let N ≥ 2 be a
number we wish to factor.

Step 1: Check gcd(6, N) 6= 1. If so, we have a non-trivial factor. Also check
that N 6= mr for some r ≥ 2.

Step 2: Choose random point P = (x1, y1) and integer a.

Step 3: Let b = y21 − x31 − ax1 (mod N), so

E : y2 = x3 + ax+ b

where P ∈ E.

Step 4: Check gcd(4a3 +27b2, N) = 1. If it is N , go back to 2 and choose a new
a, and if 1 < gcd(4a3 + 27b2, N) < N , it is a factor of N .

Step 5: Choose a number k which is a product of small primes, and compute

kP =
(
αk

δ2k
, βk

δ3k

)
by writing k in base 2 and adding up the terms modulo

N .

Step 6: Compute gcd(δk, N). If this is equal to 1, either choose a larger k, or a
new a. If it gcd(δk, N) = N , choose a smaller k.

The crucial step in this algorithm is computing kP (mod N), so let’s look a
little more closely at what is going on. The trick for computing kP is writing
k in base 2 as k = k0 + k1 · 2 + k2 · 22 + . . . + kr · 2r. Then from our doubling
formula, we need to compute

λ =
dy

dx
=
f ′(x)

2y

Here, if we cannot compute λ, we have a nontrivial factor of N , because
gcd(y,N) 6= 1. If we can compute λ, we do as follows all modulo N :

P0 = P

P1 = 2P0

P2 = 2P1 = 22P0

...
...

Pr = 2Pr−1 = 2rP0
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Then we can compute kP simply by summing up the table. If we let kiP
indicate the ith step in computing kP , then if we cannot compute kP , it’s
because gcd(xi − xi−1, N) 6= 1 from the addition formula, and we can stop the
algorithm here because we have a non-trivial factor of N [9]. The best way to
see how the algorithm works is in practice with the example below.

Example 3.20. We will atempt to factor N = 23 · 31 · 37 · 47 = 1239907. In
Maple, we use the built in mod function and compute 2i · P (mod N). For
this implementation, we only computed these values, and tested to see if the
algorithm failed at this point, before needing to add up the 2-adic expansion of
k · P . We test this method with a = 3, x1 = 1, y1 = 3, and k = 15. However,
our algorithm doesn’t work, and we only find the trivial factor of 1239907, so
we must go back and choose a new a7. We go back, and set a = 4, but again,
this doesn’t work. Now we go back, and set a = 5, and the algorithm works,
finding 37!

In this chapter we learned about the current elliptic curve primality tests
and factoring algorithms, and saw how the factoring algorithm works in practice.
What one might wonder now, is why, if we have so much information on the
forms of elliptic curves from the work of Kubert, Nagell, Lutz, and Mazur do
we choose our curves randomly? Instead, is there a way to utilize our previous
knowledge to better our tests for primality using elliptic curves? These questions
are answered in the following chapter.

4 New Developments

In the previous chapters we obtained the basic theory of elliptic curves, including
the theorems of Mazur, Nagell and Lutz, and Kubert. The theorem of Mazur
confirms a conjecture of Kubert that his list of parametrizations of Torsion
structures of elliptic curves is complete. In this chapter we use this classification
of all torsion subgroups to develop a new variant of elliptic curve primality
testing. We take points of known order, and seek to deduce non-primality of
N by breaking down the group law modulo N . In 4.1 we begin with some
lemmas to convert curves to a more usable form. Then in 4.2 we renormalize
Kubert’s table to apply our formulas in Weierstrass Normal Form, and in 4.3,
we introduce our new primality tests, and a theorem about their effectiveness.

4.1 Alternative Representations of Elliptic Curves

Before we begin with new methods of primality testing we record different forms
of elliptic curves in Weierstrass Form. Weierstrass equations come in various
forms, each of which are easier to use for certain applications. For example, the
form E : y2 + a1xy + a3y = x3 + a2x

2 + a4x + a6 is more convenient for pure
number theory, but we would like to have E in a different form that is easier

7For the method written in Maple we need to choose a new a here, but typically, we would
try to add up the powers of 2 times P , and if that also worked, we would then choose a new a
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to work with when testing for primality. We demonstrate the ability to move
between representations of E in a series of lemmas.

Lemma 4.1. If E is an elliptic curve of the form y2 +a1xy+a3y = x3 +a2x
2 +

a4x+ a6, with each ai ∈ F , where char(F ) 6= 2, then E can also be represented
by

E : y2 + a3y = x3 + (a2 +
1

4
a21)x2 + (a4 +

1

2
a1a3)x+ a6,

and a point on E (x, y) corresponds to the point (x, y + a1x
2 ).

Proof. Let E : y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6, with point (x, y). We

add and subtract
a21x

2

4 to the left hand side.

=⇒ y2 + a1xy + a3y +
a21x

2

4
− a21x

2

4
= (y +

1

2
a1x)2 − a21x

2

4
+ a3y = RHS.

Now we let y = y − a1x
2 , which gives

(y − a1x

2
+

1

2
a1x)2 − a21x

2

4
+ a3(y − a1x

2
) = y2 + a3y −

1

4
a1x

2 − 1

2
a1a3x.

Moving the y independent term to the RHS we get

E : y2 + a3y = x3 + (a2 +
1

4
a21)x2 + (a4 +

1

2
a1a3)x+ a6.

To complete the proof we simply update our point (x, y) by subsituting in for
y.

We will demonstrate how this looks with two examples.

Example 4.2. Let’s look at the curve

E : y2 + xy − 4y = x3 − 4x2.

Following the Lemma, we add and subtract
a21x

2

4 = x2

4 from both sides giving

y2 + xy +
x2

4
− x2

4
− 4y = x3 − 4x2

=⇒ (y − x

2
)2 − x2

4
− 4y = x3 − 4x2

=⇒ (y − x

2
)2 − 4y = x3 − 17

4
x2

We now substitute y = y − x
2 giving

(y − x

2
+
x

2
+
x2

4
)2 − 4(y − x

2
) = RHS

=⇒ y2 − 4y + 2x = RHS

=⇒ y2 − 4y = x3 − 17

4
x2 − 2x
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Example 4.3. Now consider

E : y2 + 4xy = x3.

Here we add and subtract 4x2 giving

y2 + 4xy + 4x2 − 4x2 = x3

=⇒ (y + 2x)2 − 4x2 = x3.

Setting y = y − 2x gives
y2 = x3 + 4x2

and we are done.

Now we turn to the next step of getting E into a more usable form with the
following Lemma.

Lemma 4.4. If E is an elliptic curve of the form E : y2 + a1xy + a3y =
x3 + a2x

2 + a4x + a6, with each ai ∈ F , and char(F ) 6= 2, then E can be
represented as

Ê : y2 = x3 + (a2 +
1

4
a21)x2 + (a4 +

1

2
a1a3)x+ a6 +

1

4
a23.

Further, if P = (x, y) is a point on E, then in the new representation of E, Ê,
P̂ = (x, y − a1x

2 −
a3
2 ).

Proof. Let E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6, with point P = (x, y).

Then by the above lemma we know that E can be represented as Ê : y2 +a3y =
x3 + (a2 + 1

4a
2
1)x2 + (a4 + 1

2a1a3)x+ a6 with P̂ = (x, y − a1x
2 ). Similarly to the

last lemma, we will complete the square on the LHS. We add and subtract
a23
4

from the LHS, giving

y2 + a3y +
a23
4
− a23

4
= (y +

a3
2

)2 + a3y −
a23
4

Letting y = y − a3
2 gives

((y − a3
2

) +
a3
2

)2 + a3(y − a3
2

)− a23
4

= y2 − 1

4
a23.

We now add the y independent term to the RHS to get

y2 = x3 + (a2 +
1

4
a21)x2 + (a4 +

1

2
a1a3)x+ a6 +

1

4
a23.

As before, we must apply the same subsitiution to P̂ giving P̃ = (x, y − a1x
2 −

a3
2 ).

Again, let’s illustrate the process with a few examples.
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Example 4.5. We will continue with the curve from the first example above,
which now looks like

E : y2 − 4y = x3 − 17

4
x2 − 2x,

with point P = (0, 0). Following the proof of the Lemma we add and subtract
4 from the left hand side giving

y2 − 4y + 4− 4 = RHS

Factoring gives

(y − 2)2 = x3 − 17

4
x2 − 2x+ 4.

We now let y = y + 2, and see that

(y + 2− 2)2 = x3 − 17

4
x2 − 2x+ 4

=⇒ y2 = x3 − 17

4
x2 − 2x+ 4.

We now update our point to get P̂ = (0,−2), which we can clearly see is a
solution of our new curve.

Example 4.6. In our second example let’s consider the curve

E : y2 − y = x3 − x2,

with point P = (0, 0). In this case we add and subtract 1/4 from the left hand
side giving

y2 − y +
1

4
− 1

4
= x3 − x2

=⇒ (y − 1

2
)2 = x3 − x2 +

1

4
.

We set y = y + 1
2 , which gives

(y +
1

2
− 1

2
)2 = RHS

=⇒ y2 = x3 − x2 +
1

4

We now keep track of P , updating as in the statement of the Lemma to get
P̂ = (0,− 1

2 )
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4.2 Generalization of Kubert’s Table to Weierstrass Nor-
mal Form

We begin our work on development of a new primaility test by first generalizing
Kubert’s classification of torsion structures of elliptic curves to Weierstrass Nor-
mal form, so we can use the well defined doubling points formula. To convert
the table we use the process from Section 4.1 as well as completing the square
and keeping track of substitutions. The analogous table is listed below.

Theorem 4.7 (Generalization of Kubert’s Boundedness Conjecture Over Q).
Let E be an elliptic curve defined over Q. Let T be a subgroup of Etor(Q). Then
T is parameterizable in Weierstrass Normal Form.

Table 2: Parametrization of Torsion Structures in Weierstrass Normal Form

1. 0:y2 = x3 + ax2 + bx+ c;∆1(a, b, c) 6= 0,
∆1(a, b, c) = −4a3c+ a2b2 + 18abc− 4b3 − 27c2.

2. Z/2Z: y2 = x(x2 + ax+ b); ∆1(a, b) 6= 0, ∆1(a, b) = a2b2 − 4b3.

3. Z/2Z× Z/2Z: y2 = x(x+ r)(x+ s), r 6= 0 6= s 6= r.

4. Z/3Z: y2 = x3 + αx2 + βx+ γ where β 6= 128α2

27 and γ = β
2

The form E(b, c) is used in all parametrizations below where E(b, c) : y2 =
x3 + 4[(1− c)2− 4b]x2− 128b(1− c)x+ 1024b2, (0,−32b) is a torsion point
of maximal order, ∆(b, c) = −4α3γ + α2β2 + 18αβγ − 4β3 − 27γ2 where
α = 4[(1− c)2 − 4b], β = −128b(1− c), and γ = 1024b2.

5. Z/4Z: E(b, c), c = 0, ∆(b, c) 6= 0.

6. Z/4Z× Z/2Z: E(b, c), b = v2 − 1
16 , v 6= 0, ± 1

4 , c = 0.

7. Z/8Z×Z/2Z: E(b, c), b = (2d−1)(d−1), c = b/d, d = α(8α+2)/(8α2−1),
d(d− 1)(2d− 1)(8d2 − 8d+ 1) 6= 0.

8. Z/8Z: E(b, c), b = (2d− 1)(d− 1), c = b/d, ∆(b, c) 6= 0.

9. Z/6Z: E(b, c), b = c+ c2, ∆(b, c) = c6(c+ 1)3(9c+ 1) 6= 0.

10. Z/6Z× Z/2Z: E(b, c), b = c+ c2, c = (10− 2α)/(α2 − 9), ∆(b, c) 6= 0.

11. Z/12Z: E(b, c), b = cd, c = fd − f , d = m + τ , f = m/(1 − τ), m =
(3τ − 3τ2 − 1)/(τ − 1), ∆(b, c) 6= 0.

12. Z/9Z: E(b, c), b = cd, c = fd− f , d = f(f − 1) + 1, ∆(b, c) 6= 0.

13. Z/5Z: E(b, c), b = c, ∆(b, c) 6= 0.

14. Z/10Z: E(b, c), b = cd, c = fd− f , d = f2/(f − (f − 1)2), f 6= (f − 1)2,
∆(b, c) 6= 0.
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15. Z/7Z: E(b, c), b = d3 − d2, c = d2 − d, ∆(b, c) 6= 0.

Clearly Kubert’s table looks a bit more complicated in Weierstrass Normal
Form, but from above, we have explicit formulas for doubling points once a curve
is in Weierstrass Normal Form. This makes it extremely easy computationally
to compute 2P , 4P , 8P , . . . , which we can use to test N for primality as follows.
We assume N is prime, and that all of our group laws will hold, and look for
a contradiction. We can take the torsion point of maximal order and compute
multiples for curves from our table until we find a contradiction and have proved
N is composite, or are satisfied with the probability that N is prime.

4.3 New Tests for Primality

In the previous sections we worked to convert elliptic curves into forms that
we said would make it easier for them to be exploited to prove compositeness
or primality of a number we wish to test, say N . In this section we develop
new tests, that make use of our extensive previous knowledge of the torsion
subgroups of elliptic curves, and the points on those curves. We begin with a
theorem.

Theorem 4.8. Suppose that E/Q is an elliptic curve with integer coefficients,
gcd(N,∆E) = 1, where ∆E is the discriminant, and suppose that ME(N) is

ME(N) = #
{

(x, y) ∈ Z/nZ× Z/nZ : y2 ≡ f(x) (mod n)
}
.

1. If ME(N) + 1 6≡ 0 (mod Ntor), then N is composite, where Ntor indicates
the order of Etor.

2. If point P has finite order m in E(Q) but {P, 2P, 3P, . . . ,mP} has less
than m points in Z/NZ, then N is composite.

3. If N + 1 − 2
√
N < ME(N) < N + 1 + 2

√
N does not hold, then N is

composite.

4. If there are more than p2 − 1 points with order p on E (mod N), where p
is prime, then N is composite.

Before we can prove this theorem we need a few theorems. First we need
Lagrange’s Theorem8[2].

Theorem 4.9 (Lagrange’s Theorem). If G is a finite group and H is a subgroup

of G, then |H| divides |G| and the number of left cosets of H in G equals |G||H| .

Lagrange’s theorem gives rise to an important Corollary for the proof of our
theorem.

8For a proof of Lagrange’s Theorem see Dummit and Foote
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Corollary 4.10. If G is a finite group and x ∈ G, then the order of x divides
the order of G.

Proof. Recall that the order of an element is the order of the subgroup gener-
ated by that element, so we simply apply Lagrange’s Theorem to the subgroup
generated by the element.

Now we require the following theorem on the reduction of E (mod p), where
p is prime.

Theorem 4.11. Let the group Etor be defined as:

Etor = {P = (x, y) ∈ E(Q)|P has finite order} ,

and the reduction modulo p map be defined as:

(x, y) 7→ (x̄ = x (mod p), ȳ = y (mod p)) ∈ Ē(Fp).

Then the reduction modulo p map Etor 7→ Ē(Fp) is an injective homomorphism.

Proof. To show that the reduction modulo p map is we seek to show that it is
a well defined map and

P1 + P2 + P3 = P̄1 + P̄2 + P̄3.[2]

Clearly this map is well defined, because by the Nagell-Lutz Theorem, if P has
finite order, then it has integer coordinates, and E has integer coefficients. To
show that P1 + P2 + P3 = P̄1 + P̄2 + P̄3 we need that P1 + P2 + P3 = O =⇒
P̄1 + P̄2 + P̄3 = O. We have a few different cases, first consder all points equal
to O. Then clearly O+O+O = O =⇒ Ō+ Ō+ Ō = O. Now consider if only
one of the points is equal to O. Suppose P1 = O, then P̄1 = O, and we have

O + P2 + P3 = O =⇒ P2 = −P3,

so if negativity is preserved, then P̄1+P̄2+P̄3 = O[3]. However, −P = (x,−y) =
(x̄,−y) = −P̄ , so negativity is preserved, and P̄1 + P̄2 + P̄3 = O. Next, we have
all points not equal to O. All points P1, P2, and P3 have integer coordinates,
and thus can be reduced modulo p.

Suppose that P1 + P2 + P3 = O, so they are all on a line, say y = λx + ν.
From Section 3.1 we have x3 = λ2 − a − x1 − x2 and y3 = −λx3 − ν. By
the Nagell-Lutz theorem, we have that x1, x2, x3, y3, and a are integers, and
therefore, λ and ν ∈ Z, so they can be reduced modulo p. So we have

x3 + ax2 + bx+ c− (λx− ν) = (x− x1)(x− x2)(x− x3)

=⇒ x3 + āx2 + b̄x+ c̄− (λ̄x− ν̄) = (x− x̄1)(x− x̄2)(x− x̄3).

Also, λ̄x̄1− n̄u = ȳ1 and similarly for x2 and x3. Therefore, the line y = λ̄x+ ν̄
intersects P̄1, P̄2, P̄3, meaning that P̄1 + P̄2 + P̄3 = O[3]. Now we have that it is
a homomorphism, it is easy to see that it is injective because clearly no integer
point would be reduced to the identity, because that would mean it was reduced
to infinity modulo p.

28



Example 4.12. In this example we will demonstrate the reduction modulo p
map. Consider the curve

E : y2 = x3 − 176x2 + 3072x+ 147456,

which we know from Table 2 has a torsion subgroup isomorphic to Z/6Z. The
points of finite order on this curve are the set

S = {(0,−384), (192, 1152), (48, 0), (192,−1152), (0, 384),O}.

The resultant points with E reduced over primes such that p - ∆E are shown
below.

(mod p) S (mod p)
(mod 5) {(0,−4), (2, 2), (3, 0), (2,−2), (0, 4),O}
(mod 23) {(0,−16), (8, 2), (2, 0), (8,−2), (0, 16),O}
(mod 167) {(0,−50), (25, 150), (48, 0), (25,−150), (0,−50),O}
(mod 293) {(0,−91), (192, 273), (48, 0), (192,−273), (0, 91),O}

Notice that for each prime we have always have 6 distinct points. However, if
we try to reduce our set S modulo 36, we find that we get the set

S̄ = {(0,−24), (12, 0), (12, 0), (12, 0), (0, 24),O},

which clearly does not have 6 distinct points. This is what we are exploiting in
our test.

Finally, we need Hasse’s Theorem.

Theorem 4.13 (Hasse’s Theorem). [8] Let E/Fq be an elliptic curve defined
over a finite field. Then

|#E(Fq)− q − 1| ≤ 2
√
q.

or equivalently
q + 1− 2

√
q ≤ #E(Fq) ≤ q + 1 + 2

√
q.

We will not give a proof of Hasse’s Theorem here as it is beyond the scope
of this thesis, but Silverman gives a complete proof in his book.[8] Now we can
prove Theorem 4.8 quite easily.

Proof of Theorem 4.8. 1. Let P be a point of maximum order, say ordE(p) =
d. We know from the corollary to Lagrange’s Theorem that the order of an
element must divide the order of the group. We also know from Theorem
4.11 that the reduction (mod p) map is injective, so d|Ntor. Now we
simply notice that

Ntor = 1 + #
{

(x, y) ∈ Z/nZ : y2 = x3 +Ax2 +Bx+ C ≡ 0 (mod N)
}
,

where the 1 is from the point at infinity, finishing the proof of the first
case.
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2. Suppose contrary to the statement of the second part of the theorem that
{P, 2P, 3P, . . . ,mP} has less than m points. Then iP ≡ kP (mod N) for
some i and k, and so N is composite.

3. If N + 1− 2
√
N < ME(N) < N + 1 + 2

√
N is not true, then this violates

Hasse’s Thoerem, so N is composite.

4. By lemma 3.17, there are at most p2−1 many points of order p for primes
p on E(FN ), with N prime; so if this fails, we know that N is not prime.

This concludes the proof of Theorem 4.8

Now let’s show how this might work with a simple example.

Example 4.14. We will try to prove that n = 9 is composite using this simple
test in order to illustrate what is going on. We choose the curve E : y2 =
x3−12x2−128x+1024, which we get from our generalization of Kubert’s table
with a Z/4Z torsion subgroup. We see that ∆E = 17825792, gcd(∆E , 9) = 1.
We know from Kubert that the point P = (0,−32) is a point of maximal
order, so ordE(P ) = 4. However, if we reduce E (mod 9), we get E : y2 =
x3 + 6x2 + 7x+ 7. We see all the possibilities for x in the table below.

x (mod 9) x2 (mod 9) x3 + 6x2 + 7x+ 7 (mod 8)
0 0 7
1 1 3
2 4 8
3 0 1
4 7 6
5 7 2
6 0 4
7 4 0
8 1 5

The quadratic residues (mod 9) are 0, 1, 4, and 7 so from the table we see that
there are 9 possible solutions, and one point at infinity. But 4 - 10, so n = 9 is
composite.

Example 4.15. We will now try to prove 39 is composite. We choose the curve
from Z/5Z in our generalization of Kubert’s with b = 1. This gives

E : y2 = x3 − 16x2 + 1024,

with discriminant ∆E = −11534336 = −220·11. We see easily that gcd(∆E , 39) =
1, and know from our table that P = (0,−32) is a point of order 5. Now using
maple we check to see how many solutions there are to

y2 ≡ x3 − 16x2 + 1024 (mod 39),

and find that there are 36 integer solutions. If we add the one point at infinity we
get a total of 37, but notice that 37 - ∆E , so we conclude that 39 is composite.
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Example 4.16. We can use the curve E : y2 = x3−16x2+2560x+25600, which
from our generlization of Kubert’s Table we know to have a torsion subgroup iso-
morphic to Z/5Z, to prove that 1729, one of the Carmichael Numbers, is compos-
ite. We find the discriminant is ∆E = −101580800000, and gcd(1729,∆E) = 1.
We use Maple again to find that there are 4104 solutions, plus one point at in-
finity, giving 4105. This means that 1729 passes the first test of Theorem 4.8, as
clearly 5|4105, but notice that 1729 + 1 + 2

√
1729 < 1814 < 4104 = ME(N), so

we know by condition 3 that 1729 is composite. Notice how simple and quickly
we could do this, whereas if we tried to use some of the most basic primality
tests from Section 2 we might have concluded incorrectly that 1729 was prime.

Example 4.17. Finally we will show that the Carmichael Number 15841 is com-
posite using the curve E : y2 = x3+32x2+5376x+50176 with torsion subgroup
isomorphic to Z/5Z. The discriminant of this curve is ∆E = −511079088128,
and gcd(15841,∆E) = 1, so we can use our test. We count solutions using
Maple, and find that there are 17316 solutions, plus one point at infinity, but
5 - 17317, so we know that 15841 is composite. We also can use our third condi-
tion to prove 15841 is composite, so our test detects the compositeness of 15841
in two ways, whereas many simple primality tests miss it entirely.

Remark 4.18. Computationally we begin to have difficulty counting solutions
for numbers over about 10,000. This is one of the aspects in which this test
needs to be further developed for it to be implemented efficiently, as the focus
of primality testing is on numbers significantly larger than 10,000.

A natural question that we might ask now that we have seen how this com-
positeness test works is how often we expect it to fail? We know from our
generalization of Kubert’s Table that (0,−32b) is a torsion point of maximal
order on 11 different curves. Let’s consider the family of curves with a torsion
subgroup isomorphic to Z/kZ where k ∈ {4, 5, 6, 7, 8, 9, 10, 12}. Then we know
that a point P of maximal order has coordinates (0,−32b). We also know that
(k − 1)P = −P so that P + (k − 1)P = O. Therefore, if

P ≡ (k − 1)P (mod N),

where N is an integer, then the test will detect that N is composite. So for
each curve we have the condition that 64b ≡ 0 (mod N) with gcd(N,∆E) = 1
implies compositeness. But we know that there are infinitely many b such that
N |b, so all that is left is for us to find curves with the discriminant condition
met. So it would seem extremely unlikely for us to miss a composite number
with this test. However, we can go further as the following theorem shows.

Theorem 4.19. If N is a composite number, then Theorem 4.8 will always
detect it.

Proof. For simplicity assume now thatN is squarefree, such thatN = q1q2 . . . qt,
where all the qi are distinct primes. Choose E : y2 = f(x) such that Z/pZ ⊆
Etor(Q), where p ∈ {2, 3, 5, 7}, and gcd(N,∆E) = 1. For each 1 ≤ i ≤ t define

Mi := #E(Fqi).
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We know that p|Ni for all i, because the order of an element divides the order
of the group by the corollary to Theorem 4.9, so define

M∗i := Mi − 1 = #{(x, y) (mod qi) : y2 ≡ f(x) (mod qi)}.

By the Chinese Remainder Theorem, there will be M∗1M
∗
2 . . .M

∗
t many solutions

modulo q1q2 . . . qt.

Case 1 (t ≡ 0 (mod 2)). N = q1q2 . . . qt, so then

#E(FN ) = M∗1M
∗
2 . . .M

∗
t + 1,

where the one is from the point at infinity. But notice, each M∗i ≡ −1 (mod p),
so then we have

M∗1M
∗
2 . . .M

∗
t + 1 ≡ (−1)t + 1 ≡ 2 (mod p) =⇒ p - #E(FN )

as long as p 6= 2, so N is composite.

Case 2 (t ≡ 1 (mod 2)). Notice here that modulo q1 we have p−1 many points
of order p, and similarly for q2, q3, . . . qt. Therefore, modulo q1q2 . . . qt we have
(p − 1)t many points of order p. But we know that t ≥ 3, because if not N
would be prime, which means there are at least (p− 1)3 many points of order p
modulo q1q2 . . . qt. For p > 3, (p−1)3 > p2−1, so we know that N is composite.

Remark 4.20. Notice that in this proof we did not address two cases: first, that
N is not square free, and second, that N is a prime power. However, these cases
do not worry us, because if N is not square free, say N = qa11 qa22 . . . qatt , then we
can set ni = qaii , and use the Chinese Remainder Theorem with N = n1n2 . . . nt.
If N is a prime power, say N = qa, then notice that if x is a solution to y2 = f(x)
(mod q), then so is x+ q, x+ 2q, . . . , so the number of solutions explodes.

Remark 4.21. If p = 5 earlier we showed that there are at most 32 points of
order 5. However, for t = 3, (5− 1)3 = 64 > 32, so we are still over the bound.
Similarly for p = 7, we get 63 = 216 > 64.

Remark 4.22. One thing to notice is that for the first case we said nothing
about when p = 2, and for the second, nothing about p = 2, 3. However, this
does not matter because we still showed that the test will work for p = 5 and 7
for both cases. Also, for the second case, it could easily be that (3−1)t > 32−1,
it is just not necessary. What this proof shows is that it is more likely to detect
compositeness if we use curves with torsion subgroups isomorphic to Z/5Z or
Z/7Z, something to keep in mind if we tried to implement this test efficiently.

Remark 4.23. The power of this theorem can not be understated, as we have
shown that we can detect all composite numbers while only ever having to divide
by 2, 3, 5, or 7.
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The beauty of this test is the utilization of previous study of elliptic curves to
minimize the computional difficulty, however, we still have a handful of difficult
tasks if we were to implement this test effectively. The primary issuee comes
with counting solutions as we remarked earlier in this section. In reality we
would be using this test for extremely large numbers, so it would be necessary
to find a more efficient way to count solutions. Work has been done in this
area, although it is beyond the scope of this thesis. What we can say, however,
is that there are theoretical point counting algortihms which run in polynomial
time in the logarithm of p, and have been able to count the points on an elliptic
curve over a 200 digit prime[1]. For more on point counting algorithms one
can look into the work of Schoof, Elkies, and Atkins, specifically Schoof’s 1995
article “Counting points on elliptic curves over finite fields”[7]. The work done
on this is rather incredible to be able to reduce the problem of point counting
to polynomial time in the logarithm of p, and makes us believe that our test
can be practical if implemented correctly.

5 Concluding Remarks

In this thesis we introduced the importance of primality testing and factoring
algorithms in Section 2.1, and used the rest of Section 2 to cover basic number
theory and the beginnnings of primality testing and factoring algorithms. We
began in Section 2.2 by proving Fermat’s Little Theorem and demonstrating
how it could be used for a very basic test for compositeness. In Section 2.3 we
described the more advanced Rabin-Miller test, which is often used as a first
step before plugging a number N into the more advanced tests from later in
the thesis. Finally Section 2.4 described Pollard’s p− 1 Method, which has the
structure that many of the more advanced tests try to mimic. In Section 3 we
began by describing the group law and doubling points formula. We then defined
the discriminant of a curve, and finally have the statement of the Mordell-Weil
Theorem. In Section 3.2 we focus on the work of Mazur, Nagell-Lutz, and Ku-
bert, which fully classifies the possible torsion structures as well as categorizes
all elliptic curves based on their torsion subgroups. Finally in Section 3.3 we
describe the Goldwasser-Killian Test, a current elliptic curve primality test, and
then follow by describing Lenstra’s elliptic curve factoring algorithm, one of the
methods in use today.

Section 4 is where we developed our own contributions. We began by prov-
ing that an elliptic curve E in one Weierstrass form can be easily converted to
another Weierstrass form that may be more preferable for certain applications.
In Section 4.2 we applied the work of Section 4.1 to generalize Kubert’s clas-
sification of elliptic curves to a more usable form in terms of primality testing.
Section 4.3, however, is where the most interesting developments were proven.
We began with Theorem 4.8, a new primality test with 4 separate conditions
to test that utilize our previous knowledge of elliptic curves and their torsion
structures. Most importantly though is Theorem 4.19, which shows that our
primality test detects all composite integers, and further, in the proof of The-
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orem 4.19 we noticed that we can detect any composite integer without ever
having to divide by more than 7. With more time we would next look into set-
ting up our test for efficient implementation, which includes finding better ways
to count the number of points on an elliptic curve, and attempt to quantify the
expected run time of our test using computational algebraic number theory.
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