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Abstract 

 

Association of BMI and Obesity Related Traits in Relation to the  

Metabolomic Profile of Blood Plasma 

By Robert Yardley Eagar 

 

 

Background:  Approximately 35% of American adults currently suffer from obesity, 

which is known to cause numerous negative health outcomes, including type 2 diabetes 

and cardiovascular diseases.  Prior studies have reported changes in metabolite profile 

associated with obesity and overweight.  Modern high throughput metabolomic studies 

have recently increased the ability to detect changes in the metabolite profile, allowing 

for the garnering of novel associations and verifying changes in amino acid 

concentrations with overweight and obesity. 

 

Methods:  Data utilized in this project was obtained through the Emory Twin Study.  

Participant data including a medical history and complete physical exam were paired with 

blood plasma metabolomic data, including over 20,000 metabolomic markers obtained 

through high-performance liquid chromatography – mass spectrometry.  A twin specific 

linear mixed effects regression model was fit to identify biomarkers associated with BMI 

and waist-to-hip ratio (WHR).  Metabolomic features were annotated via the Metlin 

database and Mummichog pathway analysis. 

 

Results:  Among 92 twin pairs and 3 singletons, WHR was directly associated 

(Bonferroni corrected p-value <0.05) with three metabolomic features: glutamate, acoric 

acid, and quinoclamine.  The glutathione metabolism pathway was also significantly 

associated with WHR.  BMI had a significant direct association with mevalonic acid 

(MVA) and an undefined porphyrin and a significant inverse association with 2,3-dinor 

Prostaglandin E1.  Further significant associations with BMI were not conclusively 

annotated. 

 

Discussion:  Metabolites associated with WHR were significant between twin pairs only, 

suggesting greater significance of genetic factors than environmental factors.  The 

glutathione metabolism pathway, which contains glutamate, contributes to oxidative 

stress.  Acoric acid and quinoclamine are not associated with normal human metabolism 

and demonstrate the need for a targeted approach to verification of annotation.  Of the 

metabolites significantly associated with BMI, MVA was the only metabolite with a clear 

metabolic pathway association.  MVA, which is known to be directly associated with in 

vivo cholesterol synthesis, was directly associated with BMI within twin pairs, 

suggesting environmental effects alter the relationship between MVA and BMI.  Future 

studies should aim to ascertain the identities of significantly associated metabolites and 

the evaluation of the causal relationship between metabolomic markers and obesity. 
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Background 

Issues associated with obesity have grown drastically in the developed world during the 

end of the twentieth century and have shown no signs of abatement at the beginning of 

this century, with an estimated 34.9% of America adults currently suffering from obesity 

(1).  Carriage of excess fat and body weight associated with obesity is known to lead to 

numerous negative health outcomes, ranging from cardiovascular disease to type 2 

diabetes and certain types of cancer (2).  Since heart disease, a disease associated with 

obesity, remains the leading cause of death in the United States with over 611,000 

associated mortalities in 2013 (3), identifying potential biomarkers associated with 

obesity may provide significant insights into targeted pathways for pharmaceutical 

intervention that may reduce the burden of cardiac illness. 

 

Metabolite biomarkers in the form of small molecules in blood plasma provide an 

attractive target for early diagnosis without developing clinical symptoms, but for an 

easily diagnosed illness such as overweight or obesity, metabolite biomarkers provide a 

more useful insight into the metabolomic pathways of disease etiology.  Such biomarkers 

have already been successfully evaluated as diagnostic tools for various diseases and 

infections, including lung adenocarcinoma and hepatitis (4, 5).  Metabolite biomarkers 

can provide identification of diseases at an early stage, offering great clinical utility by 

allowing for an earlier course of treatment (6).  Further, small metabolite biomarkers may 

provide insight as to potential therapeutic targets to allow for a reduction in the overall 

burden of disease (7). 
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Findings of early targeted studies have laid the foundation for field of metabolomics.  

Focusing on diabetic and obese subjects and concentrations of 20 plasma amino acids, 

Felig et al. demonstrated significant increases in the concentration of valine, isoleucine, 

tyrosine, and phenylalanine and a reduction in the concentration of glycine in 10 obese 

subjects paired against age and sex matched controls, further noting that the 

concentration elevations in obese individuals were directly correlated with serum insulin 

(8).  Weight loss in three obese subjects after therapeutic starvation resulted in a 

reduction in the concentration of branched chain amino acids valine, leucine, and 

isoleucine as well as phenylalanine and tyrosine with a concordant increase in 

concentration of glycine.  Of the three subjects, one reverted to original weight and had 

an accompanying revision of his amino acid profile, supporting the importance in current 

obesity to metabolite profile. 

 

Modern metabolomic methods have advanced well beyond the measurement of 20 amino 

acids.  Current technologies employed focus on several critical areas in the measurement 

of low molecular weight compounds:  separation, identification, and quantification (9).  

Separation, after initial removal of high molecular weight compounds through 

precipitation, centrifugation, and filtration, relies upon chromatographic techniques.  A 

mixture of methods of separation have been deployed in modern studies, including gas 

chromatography (GC), high performance liquid chromatography (HPLC), ultra-

performance liquid chromatography (UPLC), and capillary electrophoresis (CE).  

Separation methods largely rely on the principles of separation by molecular mass, 

charge, and charge or dipole moment.  As a fundamental rule, larger molecules will be 
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retained in a chromatography column for longer periods, but differences in specific 

column and solvent affinity will alter trends in elution (retention) time through a column.  

Identification and quantification rely on the utilization of spectroscopic techniques.  As a 

standalone technology to quantify large metabolites, nuclear magnetic resonance (NMR), 

particularly proton NMR (1H NMR), offers the only non-destructive means to analyze 

metabolomic samples.  However, the sensitivity of 1H NMR is relatively poor when used 

as a broad spectrum analytical tool, showing far more effectiveness at characterizing the 

structural nature of metabolites in a targeted approach.  In higher throughput studies, 

mass spectrometry (MS) is the analytical tool of choice.  By ionizing eluded compounds, 

measuring time of flight, and imputing signal strength, MS can provide concentration 

data on a vast wealth of metabolite simultaneously.  Modern metabolomics studies 

employ chromatographic methods with MC to provide high-throughput data that may be 

annotated via internal standards in targeted studies, or a mixture of internal standards and 

wider annotation via metabolite databases in non-targeted studies.   

 

One recent review regarding the changes in metabolite profile focused on patients 

undergoing Roux-en-Y gastric bypass (RYGB), providing further insight into starvation 

studies that are no longer within the realm of normal physiological conditions.  In one 

study, blood serum samples were analyzed for 10 obese diabetic patients who underwent 

RYGB prior to surgery and 12 months post-operation (10).  Metabolites were measured 

via 1H NMR and GC-MS.  Findings in this study support those of the 1969 Felig et al. 

study that deployed therapeutic starvation instead of gastric bypass surgery:  reductions in 

the concentration of leucine, isoleucine, valine, and glucose were observed (8).  Further, 
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the RYGB study also observed significant reductions in lactate and contrasting increases 

in phosphatidylcholine.  These findings reiterate the potential for changes in obesity 

status to alter the metabolomic profile of subjects. 

 

Larger targeted studies have provided new insights.  Participants in the KORA 

(Cooperative Health Research in the Region of Augsburg) study were studied to ascertain 

the association of fate free mas index (FFMI) with serum metabolites (11).  Metabolite 

profiles were obtained from 965 participants in the KORA S4 study and 890 weight-

stable subjects in the follow-up KORA F4 study.  Targeted metabolites consisted of 190 

serum metabolites, including amino acids, acylcarnities, phosphatidylcholines, 

sphingomyelins, and hexose.  FFMI was directly associated with higher concentrations of 

branched chain amino acids.  Higher ratios of branched chain amino acids were detected 

with respect to glucogenic amino acids with increased FFMI.  Phosphatidylcholines also 

decreased in chain length / saturation with increasing FFMI, but these correlations did not 

exist among obese subjects, likely due to significant changes in skeletal muscle 

metabolism. 

 

Findings surrounding phosphatidylcholines have extended to other studies as well.  A 

study authored by Wahl, et al. evaluated 80 obese and 40 normal weight children, ages 6-

15 years old, in a targeted study of 163 metabolites by liquid chromatography – mass 

spectrometry (LC/MS) (12).  Obesity was found to decrease concentration of 

lysophosphatidylcholines, associated with proinflammatory and proatherogenic 

conditions; glutamine, methionine, and proline.  Increases were noted for acylcarnities, 
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which are involved in fatty acid oxidation and organic acid metabolism.  Opposite 

findings regarding the association between concentration of lysophosphatidylcholines and 

obesity were documented in a non-targeted study of 14 health MZ twins in an untargeted 

LC/MS study, which also reported decreases in ether phospholipids, known for their 

antioxidant properties (13). 

 

While the data garnered from targeted metabolomic studies provides easily quantifiable 

concentrations of select metabolites that can be compared to phenotypic traits, there are 

limits to a targeted approach.  Targeted studies must identify metabolites of interest prior 

to the collection of data.  Such selection can be clinically justified from known 

associations, but expanding current knowledge of metabolic correlations requires 

identifying novel metabolite associations.  In this regard, untargeted studies, which 

review the entire metabolic profile of a subject within the limitations of chromatographic 

and spectroscopic techniques, provide invaluable insight into metabolomics.  Untargeted 

studies rely on determining the identity of metabolites correlated with phenotypic traits of 

interest via select internal standards and annotation via pathway analysis and online 

databases of metabolites.  Overall, targeted metabolomic studies currently provide more 

accurate data without concern of misidentification, while untargeted studies can provide a 

significantly larger breadth of information at the potential cost of acuity.  Advancements 

in the field will eventually see the combination targeted and untargeted approaches to 

improve accuracy of detection and continue to increase the number of metabolites 

analyzed (14). 
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As such, untargeted metabolomic studies have succeeded in providing insight regarding 

the etiology of disease.  These findings are particularly notable with type 2 diabetes, 

which is the most prevalent disease burden associated with overweight and obesity (15).  

In an untargeted study of 447 fasting plasma metabolites, 42 metabolic byproducts from 

carbohydrates, lipids, and proteins has been found to be significantly associated with type 

2 diabetes (16).  While numerous diabetes associated metabolites are common with 

obesity, mouse model studies have demonstrated differences in biomarkers between the 

exclusively obese and those also affected by diabetes (17).  In an effort to address early 

childhood obesity risk, cord blood metabolites have been evaluated to identify differences 

in children with rapid postnatal weigh gain (18).  Among 16 altered biomarkers, reduced 

levels of tryptophan associated metabolites, serotonin, tryptophan betaine, and tryptophyl 

leucine were present in children in the top quartile of postnatal weigh gain and mid-

childhood BMI exceeding the 85th percentile. 

 

Combining study participants from three studies in the United States and China, non-

targeted metabolomic assays of 317 metabolites in blood samples from 947 participants 

have yielded confirmatory evidence of BMI associations with metabolites as well as 

several novel metabolite correlations (19).  Non-targeted metabolomic data was collected 

using LC-MS and GC-MS before comparison to a chemical reference library of 2,500 

standards.  Significant associations were found for a total of 37 metabolites with BMI, 

including 12 amino acids, 19 lipids, and 6 other compounds.  Of note, 18 new metabolite 

BMI associations were identified, including seven that were highly correlated with the 

amino acids valine, tyrosine, phenylalanine, leucine, or isoleucine.  These findings 
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suggest an undirected metabolomic study among adults will yield obesity related 

biomarkers that may be directed towards better understanding the pathophysiology of 

obesity, and that continued evaluation of the association of obesity related traits and 

aforementioned amino acids is of specific interest to this study. 

 

A recent twin study utilizing 1H NMR to analyze the concentration of 56 metabolites 

among 286 twins (20).  Further, this study utilized between twin and within twin 

modeling in an effort to differentiate between environmental and genetic influence in 

metabolomic profile.  Waist circumference was found to be positively correlated with 

branched chain amino acids, phenylalanine, tyrosine, alanine, and pyruvate, while glycine 

and citrate were found to be negatively correlated.  Environmental and genetic 

contributions to changes in phenotypic association with metabolite concentration were 

found to be largely similar, with the exemption of phenylalanine, which was found to be 

more strongly associated with genetic factors than environmental factors.  This ability to 

differentiate between environmental and genetic drivers behind phenotypic associations 

with metabolite concentrations the hallmark benefit of twin studies.  This project utilizes 

a twin modeling approach to isolate changes in metabolite profiles between twin pairs, 

which carry genetic implications, and within twin pairs, which carry environmental and 

exposure implications due to shared genetic background. 
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Methods 

Data Collection 

This project utilized data collected as part of the Emory Twin Study (ETS) of 

cardiovascular disease, which recruited 307 male monozygotic and dizygotic twin pairs 

from the Vietnam Era Twin (VET) Registry.  All participants in the VET Registry were 

born between 1946 and 1956 and served in the U.S. military during the time of the 

Vietnam War (1964-1975).  Details regarding the construction of the Registry are well 

documented (21).  All participants in the ETS signed an informed consent and the study 

was approved by the Emory Institutional Review Board. 

 

A medical history was obtained from all twins, and a complete physical exam was 

performed, including measures of height, waist circumference, and hip circumference 

(22).  Metabolomic data was collected from the fasting blood samples of participants in 

this cohort, including over 20,000 metabolomic markers.  Blood plasma metabolites were 

evaluated for relative abundance using high-performance liquid chromatography – mass 

spectrometry (HPLC-MS) (23).  Processed metabolomic data was evaluated for 92 twin 

pairs and 3 singletons.   

 

Blood plasma aliquots were treated with acetonitrile to precipitate protein and an internal 

standard before being centrifuged at 13,000 g for 10 minutes at 4°C.  Supernatant was 

transferred to autosampler vials.  Anion exchange (AE) columns were equilibrated to 

initial conditions for 1.5 minutes before sample injection.  MS data were collected from a 

Thermo LTQ-Velos Orbitrap mass spectrometer (Thermo Fisher, San Diego,CA).  A 10 
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minute gradient was utilized to collect data within the mass/charge ratios (m/z) of 85-

2000 in positive ionization mode.  Using a dual-column procedure, three technical 

replicates were run for each sample.  Adaptive processing software (apLCMS) was used 

to process LC-MS data to align and extract peaks and perform quantification of 

metabolites (24).  Data filtering, normalization, diagnostics, and summarization were 

performed using the computer package MSPrep (25).  Missing data were imputed from 

half the minimum observed value for each metabolite across all samples and raw 

abundance values were log transformed.  Batch effect was corrected using the ComBat 

algorithm within MSPrep (26).  

 

Specific Aims 

The objective of this project was to determine the association of concentrations of small 

metabolites in blood plasma with the obesity related factors of BMI and waist-to-hip ratio 

(WHR).  This study will utilized linear mixed effects regression to evaluate metabolic 

differences in blood plasma associated with obesity (27).  With the goal of identifying 

biomarkers that may be utilized as risk predictors for obesity, BMI and WHR were 

treated as dependent variables in this study.  

 

Statistical Methods 

The general form of the multiple regression model fitted is 𝐸(𝑌𝑖𝑗) = 𝛽0 + 𝛽𝐶𝑍 +

𝛽𝑤(𝑋𝑖𝑗 − 𝑋̅𝑖) + 𝛽𝐵𝑋̅𝑖 (27).  In this study, 𝑌𝑖𝑗 represented metabolite concentration, 𝑋𝑖𝑗 

represented obesity related factor level, and 𝑋̅𝑖 represented the mean value of 𝑋for twin 

pair 𝑖. Z represented the covariate matrix.  𝛽0 represented the intercept.  𝛽𝐶 represented 
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the correlation coefficient of covariates .  Current smoking and age were controlled for in 

the linear regression model.  The within-pair coefficient 𝛽𝑤 represented the expected 

change in 𝑌 for a unit change in the difference between the individual 𝑋 and mean value 

of 𝑋for the twin-pair.  This estimate provided for an understanding for the difference in 

outcome that may be explained by the difference in 𝑋 between co-twins, which can be 

explained by unshared environmental factors (the exposome).  The between-pair 

coefficient 𝛽𝐵 gave the expected change in 𝑌 for a unit change in mean value of 𝑋, 

controlling for individual difference from the average.  This estimate demonstrated the 

difference in outcome that is explained by between-pair difference in 𝑋, or the population 

level effect of common genetic, maternal, and shared environmental effects. 

 

All variables except smoking status, which was coded in a binary fashion (current vs non-

current smoker), were treated as continuous in this model.  Normal distributions were 

verified for all continuous phenotypic variables by measure of skewness and visual 

inspection of distribution.  Predicted mean for each twin pair and predicted difference for 

each individual was calculated after a random split of subject IDs.  Phenotypic variable 

distributions were further verified for normal distribution after splitting.  Metabolite 

concentrations were measured by log transformed peak intensity. 

 

A Bonferroni-corrected p value of 0.05 as applied to adjust for multiple testing of 12,527 

(p < 4.09×10-6) negatively charged ion features and 7,508 positively charged ion features 

(p < 6.83×10-6)  (28).  Metabolite identities were determined by referencing against the 

Metlin database with a 10ppm tolerance, with positively and negatively charged adducts 
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selected for respective features.  Pathway and network analysis was performed using 

Mummichog, a software product that bypasses traditional identification before network 

analysis in favor of utilizing network enrichment algorithms to identify metabolites (29).  

All features with a significant raw association (p < 0.05) with BMI and WHR were 

selected for input to Mummichog.  The respective MS mode was selected for each batch 

of input features, and a 10ppm tolerance for instrumentation was selected.  All remaining 

options were allowed to remain as defaults.  

 

All statistical analyses were performed in the R statistical environment version 3.2.3 

(http://www.r-project.org/).  

http://www.r-project.org/
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Results 

The average participants in the ETS for whom metabolomic data was collected and 

analyzed was 55.84 (3.25) years old at the time of data collection (Table 1).  31.6% of 

participants were current smokers, while the average participant had a BMI of 29.48 

(4.69) and a WHR of 0.95 (0.06).  Age, BMI, and WHR were found to be approximately 

normally distributed by measures of skew and visual analysis of scatter plots.  

Participants were further randomly split into two groups for statistical modeling.  The 

phenotypic characteristics of each randomly split group were very similar to the larger 

study cohort, with the exception of a higher proportion of current smokers in split 1.  

Since current smoking was a binary control variable, this difference was not of concern to 

modeling. 

 

Q-Q plots were created for each statistical model to evaluate global inflation (see sample 

Figure 1 and Figure 2).  No extremely abnormal tail deviance was observed in Q-Q 

plots, which supported the validity of the LME model utilized in this project.  The 

inflation factor varied from 0.89 to 1.04 for each regression, representing moderate 

deflation to minimal inflation.  The lack of significant global inflation further supported 

the use of the LME model. 

 

WHR was significantly associated with three metabolite features at a Bonferroni 

corrected p-value <0.05 (Table 2).  Manhattan plots were constructed for each 

association and ion charge (Figure 3).  Annotation of these metabolomic features was 

performed using the Metlin Database (Table 3).  Concentrations of glutamate, acoric 
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acid, and quinoclamine were found to be directly associated with WHR.  All significant 

associations were between twin pairs.  These metabolic features were not significantly 

associated with BMI (Bonferroni p-value ~1) (Table 6).  Analysis via Mummichog 

indicated the glutathione metabolism pathway was significantly associated (p-value 7×10-

5) among positive ion adducts with WHR (Figure 5).  Further pathway analysis did not 

reveal clear associations between other metabolic pathways and WHR. 

 

BMI was significantly associated with six metabolite features at a Bonferroni corrected p-

value <0.05 (Table 4).  Manhattan plots were constructed for each association and ion 

charge (Figure 4).  These metabolic features were not significantly associated with WHR 

(Bonferroni p-value ~1) (Table 6).  Annotation of these metabolomic features was 

performed using the Metlin Database (Table 5).  All significant features were within twin 

pairs.  Concentrations of mevalonic acid and an undefined porphyrin were found to be 

directly associated with BMI, but precise identification of the porphyrin is not possible 

from MS data due to numerous porphyrins sharing the same molecular formula but 

presenting different structural forms.  Concentrations of 2,3-dinor Prostaglandin E1 was 

inversely associated with BMI.  Annotation of the metabolite with m/z 260.9158 as 

thallium is demarcated by being the only ±10ppm adduct in the Metlin database, while 

the metabolite with m/z 411.2385 has a 0ppm delta match with a grayanotoxin I adduct 

and a 2ppm delta match with a variety of peptide fragments sharing the same molecular 

formula bur presenting different structural forms.  Analysis via Mummichog did not yield 

clear metabolic pathway associations with BMI. 
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Discussion 

The three metabolites that were found to be significantly associated with WHR were 

found to have only a significant association between twin pairs.  This finding suggests 

that variations in glutamate, acoric acid, and quinoclamine with WHR are controlled 

more by genetic factors than by environmental factors or exposures.  Glutamate further 

falls on the glutathione metabolism pathway.  Deficiency in glutathione contributes to 

oxidative stress, which plays a significant role in aging and the etiology of both chronic 

and infectious disease(30).  The direct association of WHR with glutamate is, however, 

not a de facto indicator of a protective effect of increased WHR against oxidative stress, 

as increase concentrations of glutamate may be indicative of controls on the citric acid 

cycle where the transamination of α-ketoglutarate gives glutamate, which can be used in 

glycolysis and glycogenesis processes.  Acoric acid and quinoclamine have not been 

previously associated with biological pathways.  Acoric acid is a naturally occurring 

analogue of vasopressin, but has no normal function in human metabolism.  It is a 

documented hemostatic, but is not usually ingested (31).  Quinoclamine is a commonly 

used herbicide in liverwort control, but literature does not demonstrate any associations 

between quinoclamine and overweight (32).  Both acoric acid and quinoclamine could 

thus by false annotations.  Further review through the use of targeted standards would be 

suitable to verify these associations with WHR. 

 

The limitations of annotation of untargeted metabolomics data is also relevant to finding 

of metabolites associated with BMI.  Of the seven statistically significant associations 

noted, all of which were within twin pairs, only mevalonic acid has a clear association 
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with a metabolic pathway.  Three annotations were extremely suspect or limited in value 

by nature.  M/z +619.2557 is likely an undefined porphyrin, but MS is limited in that it 

can only deliver a mass charge ratio and relative abundance.  Differentiating between 

different structural forms of metabolites would require the utilization of additional 

technologies, such as IR spectroscopy and 1H NMR, which were not applied in this study.  

Similarly, m/z -411.2385 was annotated as either an undefined peptide, due to numerous 

peptide chains sharing the same molecular formula as its adduct.  However, this feature 

may alternatively correspond to grayanotoxin I, a rhododendron born poison associated 

with mad honey, but the data are insufficient to support a conclusion that humors the 

presence of a rare neurotoxin in measurable concentration in numerous study participants 

(33).  The annotation of m/z -260.9158 is suspect for its larger 8ppm delta from a known 

adduct in the Metlin database and the further lack of metabolic justification for the 

presence of measurable quantities of thallium in blood serum of study participants. 

 

Mevalonic acid (MVA) was found to have a direct correlation with BMI within twin 

pairs, suggesting an environmental effect modifies the relationship between MVA and 

BMI.  Early studies into the relationship between MVA concentration in blood plasma 

focused on its mechanism in cholesterol control.  MVA, an obligate precursor of 

cholesterol, was found to vary significantly in concentration throughout the day and with 

diet (34).  MVA has been previously documented as being directly associated with 

obesity as a marker of increased in vivo cholesterol synthesis, but the role of 

environmental factors in altering MVA concentration has not been reported (35).  

However, elevated concentrations in overweight may be of critical importance in 
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understanding the etiology of atherosclerosis.  Several placebo controlled randomized 

prospective trials have demonstrated that lowering plasma cholesterol does not lead to 

reduced risk of cardiovascular disease, raising the “mevalonate hypothesis” (36).  The 

mevalonate hypothesis posits the stimulation of endothelial cells by the MVA pathway 

results in the production of both cholesterol and free radicals, but that only the latter are 

lead to arthrosclerosis through the production of oxidized cholesterol.  Further analysis 

that controls for use of statin drugs should be employed in the analysis of this pathway, as 

MVA may provide a future target to protect against atherosclerosis.  Additionally, 

untargeted pathway analysis of MVA utilizing raw feature abundance may yield 

additional findings that are masked due to the relative insignificant association of relevant 

pathway metabolites with obesity and overweight. 

 

This project utilized a cross-sectional analysis of the metabolomic profile associated with 

obesity related traits.  The findings of this study are thus limited to identifying 

metabolomic features that are correlated with obesity, but cannot provide insight as to the 

causal relationship between changes in serum metabolite profile and obesity.  Future 

follow-up studies that track the metabolomic profile of individuals an extended number 

of years may offer additional insights regarding how increased weight alters metabolite 

profile and may provide metabolite markers that warn of an increased likelihood to 

become obese or overweight.  Such precursors of obesity and overweight may be useful 

in clinical prevention, while changes in metabolite profile due to obesity may be suitable 

for further metabolic pathway analysis to understand the effects of obesity on the body 

and provide insights as to possible pharmacologic targets. 
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The annotation of high-throughput untargeted metabolomics data has improved 

substantially with the availability of large reference databases.  However, the high-

resolution assays detect a large number of features not being uniquely mapped to known 

chemicals.   The untargeted approach utilized in this study yielded eight statistically 

significant features associated with the obesity related traits of WHR and BMI.  

However, reliable annotation and pathway analysis yielded viable annotation for only a 

quarter of these significant features, highlighting the ongoing difficulties of analyzing 

LC-MS data without combining further analytical techniques, such as the use of 

additional targeted standards or pairing LC-MS with NMR for structural analysis (14).  

While the employment of additional analytical tools will resolve several of the issues 

faced by this study, some associations will remain difficult to resolve, such as 

determining associations of peptide features, due to the numerous sequences that have 

similar molecular weights, but future studies may aim to quantify the association of 

general protein synthesis pathways with obesity related traits as well as replicate the 

findings of significance of the peptide adducts identified in this study. 
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Tables 

 

Table 1.  Phenotypic Characteristics of Twins, ETS 

 Overall Split 1 Split 2 

 (n = 187) (n = 93) (n = 94) 

Age (years) 55.84 (3.25) 56.00 (3.27) 55.87 (3.25) 

Current Smoker 59 (31.6%) 34 (36.6%) 25 (26.6%) 

BMI (kg/m2) 29.48 (4.69) 29.25 (4.58) 29.72 (4.80) 

Waist Circumference 

(cm) 

99.76 (11.92) 98.94 (11.44) 100.57 (12.39) 

Hip Circumference 

(cm) 

104.55 (8.87) 104.20 (8.12) 104.88 (9.58) 

WHR 0.9528 (0.06258) 0.9480 (0.06713) 0.9577 (0.06434) 

mean (SD) or n (%); 1 subject missing BMI measure 

 

Table 2.  Significant Metabolomic Features Associated Between Pairs with WHR, 

Bonferroni p<0.05 

Ion M/Z Retention T-Score SE 
Bonferroni 

p-value 

Raw         

p-value 

+ 148.0605 134.2859 5.096 1.125 0.014 1.84×10-6 

+ 286.2011 71.7878 5.266 0.761 0.008 1.03×10-6 

- 243.9574 141.9256 4.964 0.778 0.039 3.15×10-6 

 

Table 3.  Annotation of Significant Metabolomic Features Associated with WHR 

Ion M/Z Retention 
Suspect 

Identity 
Adduct Formula Δ ppm 

+ 148.0605 134.2859 Glutamate [M+H]+ C5H9NO4 0 

+ 286.2011 71.7878 Acoric acid [M+NH4]
+ C15H24O4 0 

- 243.9574 141.9256 Quinoclamine [M+K-2H]- C10H6ClNO2 0 
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Table 4.  Significant Metabolomic Features Associated Within Pairs with BMI, 

Bonferroni p<0.05 

Ion M/Z Retention 
T-

Score 
SE 

Bonferroni 

p-value 

Raw        

p-value 

+ 149.0807 129.7626 5.211 0.053 0.009 1.20×10-6 

+ 619.2557 598.0935 -6.168 0.048 <0.001 1.99×10-8 

- 260.9158 14.6074 5.300 0.043 0.015 8.34×10-7 

- 325.2019 11.2376 5.376 0.040 0.008 6.07×10-7 

- 411.2385 12.3239 5.317 0.039 0.010 7.75×10-7 

 

Table 5.  Annotation of Significant Metabolomic Features Associated with BMI 

Ion M/Z Retention 
Suspect 

Identity 
Adduct Formula Δ ppm 

+ 
149.0807 129.7626 

Mevalonic 

acid 
[M+H]+ C6H12O4 0 

+ 
619.2557 598.0935 

Undefined 

porphyrin 

[M+H-

2H2O]+ 
C36H38N4O8 0 

- 260.9158 14.6074 Thallium [M+Na-2H]- Tl 8 

- 
325.2019 11.2376 

2,3-dinor-

PGE1 
[M-H]- 

C18H30O5 

 
0 

- 
411.2385 12.3239 

Undefined 

peptide 
[M-H2O-H]- C23H34N4O4 2 

- 
411.2385 12.3239 

Grayanotoxin 

I 
[M-H]- C22H36O7 0 



 

 

2
5
 

Table 6.  Cross Reference of Significant Metabolomic Features Associated with WHR and BMI 

Ion M/Z Retention Significant 

WHR BMI 

Within Pairs Between Pairs Within Pairs Between Pairs 

T-Score P-value T-Score P-value T-Score P-value T-Score P-value 

+ 148.0605 134.2859 BP, WHR 1.6596 0.100 5.0962 1.81×10-6 2.2220 2.88×10-2 3.4605 8.19×10-4 

+ 149.0807 129.7626 WP, BMI -1.1151 0.267 0.3279 0.744 5.2117 1.20×10-6 -3.9972 1.29×10-3 

+ 286.2011 71.7878 BP, WHR -0.0626 0.950 5.2359 1.03×10-6 1.4852 0.141 3.2126 1.81×10-3 

+ 619.2557 598.0935 WP, BMI 0.5495 0.584 -0.4209 0.675 -6.1682 1.99×10-8 -4.3906 3.02×10-5 

- 243.9574 141.9256 BP, WHR 2.0212 0.046 4.964 3.15×10-6 1.3084 0.194 3.7712 2.87×10-4 

- 260.9158 14.6074 WP, BMI 0.3847 0.701 -2.081 4.02×10-2 5.2996 8.34×10-7 -3.8854 1.92×10-4 

- 325.2019 11.2376 WP, BMI -0.8870 0.377 0.343 0.732 5.3759 6.07×10-7 -3.856 2.13×10-4 

- 411.2385 12.3239 WP, BMI -0.9154 0.362 0.3473 0.729 5.317 7.75×10-7 -4.117 8.35×10-5 

*BP – Between Pairs, WP – Within Pairs 
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Figures 
 

 
Figure 1.  Q-Q Plot of LME Regression of WHR Between Pair Effects for Negative 

Charge Ions 
 

 
Figure 2. Q-Q Plot of LME Regression of WHR Within Pair Effects for Negative Charge 

Ions 
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Negative, Between Pair    Negative, Within Pair 

 
Positive, Between Pair    Positive, Within Pair 

 

Figure 3.  Manhattan Plots of Association Strength by M/Z, WHR 
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Negative, Between Pair    Negative, Within Pair 

 
Positive, Between Pair    Positive, Within Pair 

 

Figure 4.  Manhattan Plots of Association Strength by M/Z, BMI 

 

 

Figure 5.  Mummichog Output Pathway, WHR Between Twin Pairs, Positive Ion 


