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Abstract

Efficient Solvers for Nonlinear Problems in Imaging

By James Lincoln Herring

Nonlinear inverse problems arise in numerous imaging applications, and solving them

is often difficult due to ill-posedness and high computational cost. In this work, we

introduce tailored solvers for several nonlinear inverse problems in imaging within a

Gauss–Newton optimization framework.

We develop a linearize and project (LAP) method for a class of nonlinear problems

with two (or more) sets of coupled variables. At each iteration of the Gauss–Newton

optimization, LAP linearizes the residual around the current iterate, eliminates one

block of variables via a projection, and solves the resulting reduced dimensional prob-

lem for the Gauss–Newton step. The method is best suited for problems where the

subproblem associated with one set of variables is comparatively well-posed or easy

to solve. LAP supports iterative, direct, and hybrid regularization and supports

element-wise bound constraints on all the blocks of variables. This offers various

options for incorporating prior knowledge of a desired solution. We demonstrate the

advantages of these characteristics with several numerical experiments. We test LAP

for two and three dimensional problems in super-resolution and MRI motion correc-

tion, two separable nonlinear least-squares problems that are linear in one block of

variables and nonlinear in the other. We also use LAP for image registration subject

to local rigidity constraints, a problem that is nonlinear in all sets of variables. These

two classes of problems demonstrate the utility and flexibility of the LAP method.

We also implement an efficient Gauss–Newton optimization scheme for the prob-

lem of phase recovery in bispectral imaging, a univariate nonlinear inverse problem.

Using a fixed approximate Hessian, matrix-reordering, and stored matrix factors,

we accelerate the Gauss–Newton step solve, resulting in a second-order optimization



method which outperforms first-order methods in terms of cost per iteration and

solution quality.
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Chapter 1

Introduction

Models are used to describe many real world phenomena across a broad range of dis-

ciplines, and data collected for a given phenomenon can be viewed as transformation

of some ground truth by an appropriate model. Inconveniently, the data collected

about this ground truth is almost always obscured by the presence of noise and inac-

curacy arising in the data collection process. This presents a challenge for scientists

and mathematicians: how to best recover a close approximation to the ground truth

given a set of inexact data and some idea of the mathematical model that relates the

two. Problems of this kind are widely studied and are known as inverse problems.

Often, the model relating the ground truth and collected data is nonlinear resulting in

nonlinear inverse problems. Efficient solutions to problems of this form are necessary

in a number of fields including medicine, engineering, research science, technology,

and many others.

One common approach to solving nonlinear inverse problems is numerical opti-

mization. In this dissertation, we develop tailored solvers within a Gauss–Newton

optimization framework for solving nonlinear inverse problems with a focus on appli-

cations in medical and astronomical imaging. The contributions of this dissertation

can be summarized into two categories, both under the larger umbrella of nonlinear
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inverse problems. The first of these is the Linearize And Project (LAP) method for

nonlinear inverse problems with two or more sets of nontrivially coupled variables

representing different physical quantities. The method is applicable to a broad range

of coupled inverse problems, and we demonstrate its utility through numerical exper-

iments on several problems arising in the field of imaging including super-resolution,

motion correction for magnetic resonance imaging, and locally rigid image registra-

tion. The second category develops tailored solvers for a specific astronomical imaging

application: the univariate nonlinear inverse problem of phase recovery in bispectral

imaging.

We summarize the contributions of LAP as follows:

• We propose an efficient iterative method called LAP for coupled nonlinear prob-

lems that computes the Gauss–Newton step at each iteration by eliminating

one block of variables through projection and solving the reduced problem it-

eratively. Since projection is performed after linearization, any block can be

eliminated. This strategy makes the LAP framework more flexible than existing

projection-based approaches, e.g., by supporting various types of regularization

strategies and the option to impose constraints for all variables.

• We test LAP for separable least-squares problems, a specific class of nonlin-

ear coupled problems. Here, the problem is linear in one set of variables and

nonlinear in the other. Our test problems are 2D and 3D motion correction

problems in imaging: super-resolution (Sect. 4.2) and magnetic resonance imag-

ing (Sect 4.3). We compare LAP with variable projection (VarPro) and block

coordinate descent (BCD), two common approaches for this type of problem.

We show that LAP outperforms these methods for these problems in terms of

solution quality, CPU time, and computational cost.

• We show LAP is applicable to general nonlinear coupled problems by applying
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it to the problem of 2D and 3D image registration subject to rigid motion

constraints on some portion of the image domain (Sect. 5.1). This coupled

problem is nonlinear in both sets of variables. LAP results in better optimization

behavior for the problem than solving for the Gauss–Newton step using a fully

coupled, unprojected approach. This is most observable for 3D examples, where

the fully coupled strategy can result in poor registration results.

• We demonstrate LAP’s flexibility for different regularization strategies. For

separable least-squares examples, this includes Tikhonov regularization using

the gradient operator with a fixed regularization parameter and a hybrid reg-

ularization approach proposed by [9] that simultaneously computes the search

direction and selects an appropriate regularization parameter at each iteration.

For the locally rigid image registration problem, we couple LAP with a nonlin-

ear, hyperelastic regularizer from [5] that enforces invertibility of the solution

transform while modeling highly nonlinear deformations.

• We use projected Gauss–Newton to implement element-wise lower and upper

bound constraints with LAP on the optimization variables for the 2D and 3D

super-resolution problems. These constraints allow us to introduce prior knowl-

edge of a solution into our optimization, a desirable property when solving

ill-posed problems. This is a distinct advantage over VarPro, where previously

proposed methods resort to approximate gradients for incorporating inequality

constraints on some blocks of variables.

For the problem of phase recovery in bispectral imaging, we make the following

contributions:

• We develop tailored solvers for the Gauss–Newton step for the univariate nonlin-

ear problem of phase recovery in bispectral imaging (Sect. 6.1.3). This problem

is poly-convex due to a modulus in the objective function. We implement an
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efficient solver for the step in the Gauss–Newton optimization for four exist-

ing objective functions proposed for solving the phase recovery problem. Using

approximations to the Hessians, matrix reordering, and incomplete factoriza-

tion, we increase the efficiency of Gauss–Newton optimization schemes for this

problem.

• Numerical experiments show our methods produce superior solution images

in less time than commonly used first-order optimization schemes from the

literature for solving the phase recovery problem. We compare our scheme

with gradient descent and nonlinear conjugate gradient (NLCG) for example

problems generated using simulated speckle data. We show our tailored Gauss–

Newton solver is faster than its competitors in terms of time per iteration and

iterations to convergence, and that the resulting solution images are comparable

or better.

We present the work in the following order. Ch. 2 presents the background ma-

terial for the dissertation. It introduces the following: the nonlinear forward model

and its associated inverse problem; Gauss–Newton optimization for nonlinear inverse

problems and the extension to projected Gauss–Newton; the ill-posedness of many

nonlinear inverse problems and need for regularization; and the mathematical descrip-

tion of images and their transformation. Ch. 3 extends the general nonlinear forward

model to coupled nonlinear problems and presents the linearize and project (LAP)

method for coupled nonlinear problems within the Gauss–Newton framework. It also

includes a brief introduction of variable projection (VarPro) and block coordinate

descent (BCD), two methods for solving coupled nonlinear least-squares problems,

a specific sub-class of coupled nonlinear problems. Ch. 4 shows the results of nu-

merical experiments comparing LAP with VarPro and BCD for coupled nonlinear

least-squares problems in super-resolution and motion correction for magnetic reso-

nance imaging. Ch. 5 tests LAP for the fully nonlinear coupled problem of image
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registration subject to local rigidity constraints. Results are compared with registra-

tion using a fully coupled solver for the Gauss–Newton step. Ch. 6 introduces the

univariate nonlinear problem of phase recovery in bispectral imaging and presents

a tailored Gauss–Newton approach that we apply to four different optimization for-

mulations for solving the problem. Lastly, we conclude in Ch. 7 with some closing

remarks and a view to future work.
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Chapter 2

Background

In this chapter, we introduce the mathematical framework necessary for the methods

and problems discussed in the subsequent chapters. We begin by presenting the gen-

eral nonlinear forward model of interest with a brief discussion of the numerous appli-

cations in which problems of this type arise. We then introduce the nonlinear inverse

problem corresponding to the forward model. Next, we discuss our numerical opti-

mization strategy for solving the nonlinear inverse problems of interest. We present

the Gauss–Newton method, a common second-order method for solving nonlinear in-

verse problems. This discussion includes our choice of line search, the convergence

properties of the method for exact and inexact Gauss–Newton, and a discussion of

stopping criteria. We then extend the method to projected Gauss–Newton, which

allows for the imposition of element-wise bound constraints on the variables in the

resulting solution. After ending the discussion about optimization, we introduce the

idea of regularization as a means to treat the ill-posedness of our problems of interest

and include a broad discussion of the various types of regularization. Lastly, we define

the mathematical framework for images that is necessary to pose and implement the

imaging examples included in this work.

Before beginning, we make some notes about notation necessary for the presenta-
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tion of the material in this and future chapters.

Vectors and matrices are referenced using bold font, e.g. x denotes a vector and

A a matrix. The lone exception is F , which is used to denote Fourier transform or

block Fourier transform matrices in Chapters 4 and 6. Specific entries of vectors and

matrices are denoted by subindices outside of brackets, e.g. [x]j denotes the jth entry

of the vector x. Subindices without brackets indicate index in a list or summation,

e.g. Aj is the jth term in the list A1, . . . ,AN . Iteration indices will be denoted by a

superscripts in parentheses, e.g. x(k) denotes the vector x at the kth iteration. Vector

superscripts without parentheses are used to indicate dimensions for coordinate pairs

or triples stored in vector notation, e.g. for vectors x1 and x2, we reference the jth

coordinate by the pair ([x1]j, [x
2]j). No exponential powers are used for matrices in

this work.

For continuous variables, we used standard math font, e.g. the function Φ(x) of

the vector x or an image T (x) : Rd → R of a coordinate x. We also use standard

math font for single variables, points in space, or coordinate pairs, e.g. a regularization

parameter α, the point x ∈ Rd, or coordinate pair (x, y). When used in each of these

ways, context is provided for the given symbol.

Cursive math font is used for sets, function spaces, and functionals, e.g. x ∈ Cx
for a vector in the set Cx, y ∈ V for the function in the function space V , and

D(y;T,R) for a distance functional in terms of a transformation y and continuous

image functions T and R. Again, the exception to this rule is F , which is used for

Fourier transform matrices in Ch. 4 and 6. As with standard math font, context is

provided when a symbol is introduced.

Lastly, we use ‖ · ‖ to indicate the Euclidean 2-norm and omit the subscript in

practice, e.g. ‖x‖ is the 2-norm of the vector x. For the few cases when another

norm is used, a subscript will be included for clarity, e.g. the infinity norm ‖ · ‖∞.
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2.1 Nonlinear Inverse Problems

We are interested in nonlinear problems with the discrete forward model

d = F (x) + η, (2.1)

where d ∈ Fm is observed data, F (·) : Fn → Fm is a nonlinear forward operator

subject to x ∈ Fn, and η ∈ Fm is identically distributed Gaussian white noise. F is a

field, either R or C depending on the problem. Problems of this type are ubiquitous

across the sciences and arise in applications for modeling, statistical regression, inverse

problems, etc. [48, 50].

Given the forward model above, we are interested in solving the following nonlinear

inverse problem: given a set of noisy data d and a known forward operator F (·),

recover x which is unknown. This problem can be formulated mathematically as the

nonlinear least-squares optimization problem

min
x

{
Φ(x) =

1

2
‖r(x)‖2

}
. (2.2)

Here, Φ(x) is the objective function we aim to minimize, and r(x) = d−F (x) ∈ Fm

is the residual measuring the data misfit of a given solution x. The goal then is to

find the solution x∗ which minimizes the 2-norm of the residual. We note that other

fit to data terms are than the 2-norm are used in other applications, but least-squares

is the most common and the focus of our work.

In many applications, inverse problems such as (2.2) are ill-posed. That is, the

problems do not satisfy at least one of the criteria in Hadamard’s definition of well-

posedness [15, 31]:

1. For all possible data realizations, a solution exists

2. For all possible data realizations, the solution is unique
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3. The solution depends continuously on the data

Our problems of interest violate one or more of these criteria. The first two are

concerned with the existence of a solution. The third criteria is particularly relevant

in light of the presence of error in the forward model. If the solution to the problem

does not depend continuously on the data, there is no guarantee that a minimizer

x∗ to (2.2) for a set of noisy data is close to the true solution to the noise-free

problem, xtrue. For many applications (particularly imaging), the exact minimizer to

a noise-affected problem provides a poor-quality solution. Another concern is non-

convexity of the objective function Φ(·). This means that even if a global minimizer

x∗ to (2.2) exists and is a good solution, optimization methods may converge to

local minima instead. All of these issues require additional consideration in the setup

and solving of our nonlinear problems of interest. Common solutions include the

introduction of regularization and constraints. These techniques treat the issues above

by incorporating prior knowledge of a desired solution into a problem. This restricts

the space where we search for a solution and helps mitigate some of the negative effects

of ill-posedness. We discuss both of these options later in Sect. 2.3 and Sect. 2.4. We

begin now by introducing the Gauss–Newton method as our optimization approach

to solving (2.2).

2.2 Gauss–Newton Method

Optimization problems of the form (2.2) are well studied, and summaries of the

numerous methods for solving them can be found in optimization textbooks [2, 50].

All these methods are iterative, staring from an initial guess x(0) and generating

a sequence of iterates x(0),x(1),x(2), . . . that converges to a solution under certain

conditions. At each iterate x(k), the methods generate the next iterate by adding a

step update γ(k)p(k). Here, the parameter γ(k) > 0 determines the step length and
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p(k) the step direction. The subsequent (k + 1)th iterate is then given by

x(k+1) = x(k) + γ(k)p(k) for k = 0, 1, 2, . . .

Choices for the step direction and length are based on the derivates of the objective

function Φ(x(k)) at the current iterate, and both are chosen with the goal of making

some sufficient descent towards minimizing the objective function. Different methods

for solving (2.2) are characterized by the way they use the derivative information

to choose both the direction and length. For some methods, step direction and

length are computed simultaneously, e.g. trust-region methods [50]. For others,

the direction and step are considered separately, e.g gradient descent, quasi-Newton

methods, Newton’s method, and coordinate descent methods [50]. In these cases,

the step direction is calculated and followed by a separate line search problem to

determine the optimal step length in the chosen direction. It is beyond the scope

of this dissertation to cover the myriad of options available to choose step direction

and length. Well known methods for nonlinear problems include the Gauss–Newton

method, Levenberg–Marquardt method, Newton and quasi-Newton schemes, trust

region methods, etc. For background on the most common methods, we refer the

reader to [2, 50].

For the problems in this dissertation, we limit ourselves to Gauss–Newton opti-

mization using a backtracking Armijo linesearch, which we now introduce. We begin

with a discussion of the Gauss–Newton step direction, followed by a discussion of the

line search.

2.2.1 Gauss–Newton Step

The Gauss–Newton step at the iterate x(k) of (2.2) requires computing the first and

second derivatives of the objective function Φ(x(k)). Expressions for these derivatives



11

rely on the Jacobian of the residual r(k) = r(x(k)) defined as

J(x(k)) =

[
∂[r(k)]i
∂[x(k)]j

]
ij

for i = 1, 2, · · · ,m and j = 1, 2, · · · , n.

For simplicity of notation, we will refer to this matrix as J (k) = J(x(k)) in most cases,

but the reader should remain aware of its dependence on the current solution x(k) at

each iterate. For many problems, the entries of this Jacobian matrix are explicitly

computed and stored at each iteration. However, for some large-scale problems this

may prove infeasible, and the Jacobian and its transpose are available only implicitly

as function calls returning their matrix-vector product with a given input vector.

Our work presents problems for cases when the Jacobian is available both explicitly

and implicitly. Using the above expression for the Jacobian, the first and second

derivatives of Φ(x(k)) are

∇Φ(x(k)) = J (k)>r(k)

∇2Φ(x(k)) = J (k)>J (k) +
m∑
j=1

[r(k)]j∇2[r(k)]j.
(2.3)

Note that computing the Jacobian allows us to compute the gradient ∇Φ(x(k)) via

a matrix-vector product. Additionally, we know the first term of ∇2Φ(x(k)) simply

by computing the Jacobian. This information is available whether J (k) is available

explicitly or implicitly via a function call to a matrix-vector product. The derivatives

above provide the necessary information to compute the step p(k) for Newton’s method

for nonlinear least-squares, given by solving

∇2Φ(x(k))p = −∇Φ(x(k)).

This is equivalent to choosing the update step by exactly optimizing a second-order

approximation of the objective function at the current iterate. Newton’s method offers
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local superlinear convergence under certain conditions, but also presents a number

of issues. Firstly, the summation term in the second derivative requires computing

the Hessian ∇2[r(k)]j for each entry of the residual, which is often computationally

burdensome. Additionally for some iterates, the Newton step may not result in a

reduction of the objective function, i.e., p = −(∇2Φ(x(k)))−1∇Φ(x(k)) is not a descent

direction. This occurs if ∇2Φ(x(k)) is not positive definite, which can happen if J (k)

is not full rank or if the spectrum of the summation term
m∑
j=1

[r(k)]j∇2[r(k)]j forces

the real part of the spectrum of ∇2Φ(x(k)) to be less than or equal to zero.

Gauss–Newton offers an alternative to the Newton’s method step update. The

method uses the Jacobian term of the second derivative in (2.3) as an approximation

for the Hessian,

H(k) = J (k)>J (k) ≈ ∇2Φ(x(k)),

and omits the second summation term in∇2Φ(x(k)). The Gauss–Newton optimization

step p(k) is then the solution of the linear system

H(k)p(k) = −∇Φ(x(k)). (2.4)

We frequently write this as the normal equations,

J (k)>J (k)p(k) = −J (k)>r(k). (2.5)

This corresponds to a linear approximation of the residual (or a quadratic approxima-

tion to the objective function) and is reasonable in situations when the Jacobian term

contains most of the significant information about the Hessian. Indeed, this is true

when the residual [r(k)]j is small or nearly linear, i.e., ∇2[r(k)]j is small. In this case,

the Gauss–Newton can be shown to have similar convergence properties to Newton’s

method [50]. The Gauss–Newton approximation to the Hessian also has the benefit
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that the resulting approximate Hessian is symmetric positive definite provided J (k)

is full rank. Positive definite-ness of the Hessian guarantees that the resulting step

update results in a reduction of the objective function. This is straightforward to see

noting that if J (k)>J (k) is symmetric positive definite, so is its inverse. Taking the

Cholesky factorization of that inverse, R>R = (J (k)>J (k))−1, we then get

p(k)>∇Φ(x(k)) = −∇Φ(x(k))>(J (k)>J (k))−1∇Φ(x(k))

= −∇Φ(x(k))>R>R∇Φ(x(k))

= −‖R∇Φ(x(k))‖2

< 0.

(2.6)

If the J (k) is not full rank, the inequality above is not strict. In that case, we lose the

guarantee of a descent direction, but the system can still be solved explicitly using an

appropriate direct method (e.g pseudo-inverse) or an iterative solver. Lastly, we note

that the system (2.5) is the normal equations corresponding to the linear least-squares

problem

p(k) = arg min
p
‖J (k)p+ r(k)‖2. (2.7)

The two formulations are equivalent in the case when J (k) has full rank or when solved

iteratively using methods generating iterates from the same subspace. Solving this

least-squares formulation avoids the need to explicitly compute the gradient J (k)>r(k)

and the approximate Hessian J (k)>J (k). For problems where J (k) is ill-posed, the

least-squares formulation may also have preferable numerical properties to the normal

equations approach.

Both (2.5) and (2.7) can be solved using either by direct, matrix-factorization or

iterative solvers. Our work uses both approaches for different problems to develop

methods for solving the Gauss–Newton step accurately and efficiently. When using

an iterative solver, computing the Gauss–Newton step exactly or to a high accuracy
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may be impractical or prohibitively expensive. Additionally, recall that the Gauss–

Newton step problem assumes a quadratic model of the objective function. This may

not be an accurate model of the nonlinear objective function at a given iterate. For

these reasons, it is common to solve the step problem in (2.5) or (2.7) to a low accu-

racy such as 10−1 or 10−2 when using iterative methods. Such strategies are known

as inexact Newton methods [50]. The choice between solving the normal equations

and least-squares formulation for the Gauss–Newton step depends on the problem,

and we use both formulations on a case by case basis. In some cases, the choice is

dictated by the regularizer for a given problem, which determines whether the prob-

lem fits conveniently into the least-squares formulation. For others, computational

considerations motivate the choice.

2.2.2 Armijo Line Search

Having established in (2.6) that the Gauss–Newton step is a descent direction, we

turn our attention to determining step length parameter γ(k) > 0 in that direction

at each iterate. The ideal choice of γ(k) for a given iterate x(k) and step p(k) is the

global minimizer of the problem

min
γ>0

{
Ψ(γ) = Φ(x(k) + γp(k))

}
.

Often, finding this global minimizer is prohibitively expensive. In practice, we com-

promise by settling for a γ(k) parameter that sufficiently decreases the objective func-

tion Φ(·) while incurring minimal cost. One popular condition for defining “sufficient

decrease” is the Armijo condition, given by the inequality

Φ(x(k) + γ(k)p(k)) ≤ Φ(x(k)) + c1γ
(k)∇Φ(x(k))>p(k) (2.8)

for some chosen constant c1 ∈ (0, 1). For implementation, we set c1 = 10−4 per the
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recommendation in [50]. In many cases, a further condition is introduced to prevent

the step γ(k) from being too small. One such condition is the curvature condition

that requires the step γ(k) to satisfy the following inequality:

∇Φ(x(k) + γ(k)p(k))>p(k) ≥ c2∇Φ(x(k))>p(k), (2.9)

for some constant c2 ∈ (c1, 1). This inequality prevents the selection of a γ(k) pa-

rameter for which the derivative Φ′(x(k) + γp(k)) with respect to γ is too negative.

This is sensible because if this value is very negative, the objective function could be

further minimized by choosing γ larger. Together, the criteria in (2.8) and (2.9) are

known as the Wolfe conditions. A line search that satisfies the Wolfe conditions is

necessary for the convergence results of the Gauss–Newton method, which we discuss

in the next section. Other conditions for ensuring that the step size is not too small

include the strong Wolfe conditions and Goldstein conditions [50]. Note that line

search methods satisfying both the Armijo and curvature conditions require evalu-

ating the objective function and its gradient during the line search. For large-scale

problems, these evaluations can make these line search strategies too expensive.

For our implementation of the Gauss–Newton method, we forego the curvature

condition and require only that the Armijo condition in (2.8) be satisfied. We then

adopt a backtracking line search strategy to ensure the chosen γ(k) is not too small.

The backtracking chooses an initial step length γ0 and a backtracking parameter

ρ. It then iteratively backtracks until the chosen parameter results in a sufficient

decrease of the objective function. For the Gauss–Newton method, it is logical to

choose γ0 = 1 following from the step length of Newton’s method. We backtrack by

a factor of two using ρ = 0.5. Note that this backtracking strategy only requires the

evaluation of the objective function, not its gradient. This results in a line search

strategy which is comparatively inexpensive and effective in practice. An algorithm
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for the backtracking Armijo line search can be seen in Alg. 1.

Algorithm 1 Backtracking Armijo line search algorithm

1: Given x, p; choose γ0 > 0, ρ, c1 ∈ (0, 1); set γ = γ0

2: while Φ(x+ γp) > Φ(x) + c1γ∇Φ(x)>p do

3: γ = ργ

4: end while

5: return γ

2.2.3 Stopping Criteria

Another consideration when implementing the Gauss–Newton method is the choice

of stopping criteria to judge when the method reaches a suitable solution and should

terminate. Ideally, one would simply measure the norm of the distance of the current

iterate x(k) from the true solution xtrue and stop the method when this value falls

below some tolerance ε,

‖x(k) − xtrue‖2 < ε.

However, this approach is impractical in practice because the true solution is typically

unavailable. Additionally, convergence to the true solution is usually infeasible due

to error and perturbations in the data, i.e., the exact minimizer to the optimization

problem, x∗, may be further than ε from the true solution, xtrue.

Instead, we look at a number of other potential criteria for stopping the method.

One idea is to measure the norm of the gradient at the current iterate and stop the

method when this value falls below a chosen tolerance,

‖∇Φ(x(k))‖2 < ε1.

This choice follows from the fact that the first-order optimality condition for Gauss–

Newton dictates that the gradient should converge to the zero vector when the method
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reaches a minimum.

Another option is to stop the method when iteration stagnates. This stops the

method when the norm of the difference between successive iterates falls below some

selected tolerance,

‖x(k+1) − x(k)‖2 < ε2.

Similarly, one can monitor stagnation in the reduction of the objective function for

successive iterates by monitoring

|Φ(x(k+1))− Φ(x(k))| < ε3.

We note that neither of the criteria using successive iterates guarantees that the

method has reached a minimum. For instance, these values may fall below the pre-

scribed tolerance if the step length γ(k) is too short, resulting in a small change in

successive iterates. This behavior may not necessarily occur at a minimum. Further-

more, none of the of the three criteria above guarantee that any minimum reached is

the global minimizer to the problem.

In practice, we use a combination of the criteria above and stop the Gauss–Newton

method when any two of the three are fulfilled. The tolerance parameters ε1, ε2, and

ε3 are chosen distinctly and defined by the user at the initiation of the method. We

vary these tolerances depending on the problem. Further details are provided on a

case by case basis in the Ch. 4–6.

2.2.4 Gauss–Newton Algorithm

Combining the sections above, we now present an algorithm for the Gauss–Newton

method. This can be found below in Alg. 2. The algorithm is presented in pseudo-code

and does not include the various input parameters for the line search and stopping

criteria discussed in the previous sections.
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Algorithm 2 Gauss–Newton Method with Backtracking Armijo Line Search

1: Given x(0)

2: for k = 0, 1, 2, . . . do

3: Compute Φ(x(k)), J (k), r(k)

4: Solve for step p(k) using Eq. 2.5 or Eq. 2.7

5: Determine step length γ(k) using Backtracking Armijo Line Search

6: Update x(k+1) = x(k) + γ(k)p(k)

7: if Stopping Criteria then

8: return x(k+1)

9: end if

10: end for

2.2.5 Convergence

Lastly, we discuss the convergence behavior of the Gauss–Newton method. The con-

vergence behavior of the method depends on many things including the objective

function, its derivatives, the initial guess for x(0) for the method, and the line search

strategy. Also, we must address our use of an inexact solution for the Gauss–Newton

step, p(k), at each iteration. This section recalls some of the convergence results for

the Gauss–Newton and inexact Gauss–Newton methods from the literature. We begin

by presenting convergence results for the method using an exact solution to the step

problem. After, we address the issue of inexact Gauss–Newton steps. For proof of

these results and further analysis of the convergence properties of the Gauss–Newton

method, we refer the reader again to [2, 50].

Gauss–Newton can be shown to be globally convergent under certain assumptions,

i.e., the iteration is guaranteed to find a minimizer (not necessarily global). For

the Gauss–Newton method using a line search that satisfies the Wolfe conditions, if

the Jacobian J(x) has singular values bounded away from zero, i.e., has full rank,
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for every x in the region of interest and the residual functions rj(x) are Lipschitz

continuous for every j = 1, . . . ,m within a neighborhood of the level set L = {x |

Φ(x) ≤ Φ(x0)}, the method is globally convergent to a minimizer [50]. We note

that the Armijo line search outlined in Sec. 2.2.2 does not necessarily fulfill the Wolfe

conditions required for this result. We also lose this result if J(x) is rank deficient

for some x in the region of interest. This may be a problem in practice.

The speed of convergence of the Gauss–Newton method is governed by the prox-

imity of the current iterate x(k) to the exact minimizer x∗ and by how much the

J (k)>J (k) term dominates the summation term of the Hessian in (2.3), i.e., how non-

linear the problem is. If the summation term in the Hessian is the zero matrix,

Gauss–Newton converges quadratically in the neighborhood of the true solution, and

for problems when the summation term is small, similar superlinear or quadratic-like

convergence is observable. Outside the neighborhood of the solution, convergence is

linear. This emphasizes the importance of a good initial guess, x(0), for the Gauss–

Newton method. For the numerical experiments in Ch. 4–6, we make note of how

each initial guess is chosen on a case by case basis. The near-quadratic convergence

behavior of the method in the neighborhood of the solution is also observable in

the iteration convergence plots for many of the problems presented in those chapters.

Fig. 4.8 shows this clearly for a problem where the initial guess is far from the solution,

thus convergence is slow for a number of iterations followed by rapid convergence.

The convergence results above assume exact solutions to the Gauss–Newton step

problem in (2.5) and (2.7). However for large-scale problems, exact solutions to these

problems may be expensive or infeasible. The proposed solution is to solve the prob-

lem for the Gauss–Newton step to a low accuracy using an iterative method. This

idea is the basis of inexact Newton methods. Inexact Newton methods can also be

shown to be globally convergent to a minimizer under similar assumptions to exact

Gauss–Newton given the solution accuracy is high enough. One can prove the con-
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vergence properties for inexact Gauss–Newton by viewing the inexact Gauss–Newton

step as a perturbation of the exact Gauss–Newton step and bounding the distance

between the inexact and exact Gauss-Newton steps with respect to the solution accu-

racy of the Gauss–Newton step problem. After bounding the distance from the exact

solution, the proof for convergence follows the same pattern as the proof for exact

Gauss–Newton to guarantee the convergence of inexact Gauss–Newton to a minimizer

[43].

2.3 Projected Gauss–Newton

Adding constraints to (2.2) is one way to incorporate prior knowledge of a desired

solution. Incorporating such information is particularly useful for our problems of

interest where ill-posedness is an issue. In this section, we present the projected

Gauss–Newton method as a straightforward way to impose element-wise box con-

straints on the solution following the descriptions in [27, 38, 63]. The method com-

bines the full Gauss–Newton method, which converges quickly to a solution given an

appropriate initial guess, and the projected gradient descent method for which it is

easy to implement bound constraints.

To introduce the method, we begin by reformulating (2.2) as the constrained

optimization problem

min
x∈Cx

{
Φ(x) =

1

2
‖r(x)‖2

}
, (2.10)

where Cx is a closed, convex rectangular set imposing element-wise bound constraints

on the entries of the solution x. That is,

x ∈ Cx = {x ∈ Rn | lj ≤ [x]j ≤ uj for j = 1,. . . ,n},

where lj and uj are lower and upper bounds on the jth entry of solution vector
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x, respectively. Note that the above notation suffices only for real-valued solution

vectors. If the solution vector x is complex-valued, bounds should be implemented

bounding both the real and imaginary parts of [x]j. This is possible, but we do not

include bounds on complex-valued solution vectors in this work.

To implement the projected Gauss–Newton method for (2.10), we begin by split-

ting the solution at each iterate x(k) into two sets: an active set A(k) comprised of

entries for which the bound constraints are active and an inactive set I(k) for entries

for which the bound constraints are inactive. We denote these two sets by

A(k) = {[x(k)]j | ([x]j = lj ‖ [x(k)]j = uj)}

I(k) = {[x(k)]j | lj < [x(k)]j < uj)}.
(2.11)

Note this division into sets requires that the initial guess for the solution lie in the

constraint set, x(0) ∈ Cx. The method then forces all further iterates to remain

within these bounds. At each iterate x(k), we separate the iterate into an active

subset, x
(k)
A ⊂ x(k), and an inactive subset, x

(k)
I ⊂ xk.

On the inactive set, we take the standard Gauss–Newton step. Letting I
(k)
I be the

identity matrix with diagonal entries corresponding to active set indices equal to 0,

the step on the inactive set is given by solving

(
I

(k)
I J

(k)>J (k)I
(k)
I

)
p

(k)
I = −I(k)

I J
(k)>r(k). (2.12)

This system can also be written as

p
(k)
I = argmin

p
‖J (k)I

(k)
I p+ r(k)‖2, (2.13)

where the equivalence can be seen by looking at the first-order optimality condition

of the least-squares formulation. The first of these expressions is not full rank if
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the active set is non-trivial. However, it can be solved iteratively using a slightly

modified preconditioned conjugate gradient (PCG) method or directly by truncating

the projected matrices and vectors to exclude rows and columns with all zero entries,

yielding a reduced, full rank problem. The least-squares problem in (2.13) is also

solvable iteratively or directly. For our problems, we typically solve iteratively to

a low tolerance as in standard Gauss–Newton. Also, note that for the special case

where uj = −lj = ∞ for all j, the active set is empty, I
(k)
I is the identity, and the

problems above revert to their formulations in standard Gauss–Newton.

On the active set, we then perform a gradient descent step given by

p
(k)
A = −I(k)

A (J (k)>r(k)), (2.14)

where I
(k)
A = I − I(k)

I is the identity matrix with 0’s for diagonal entries with indices

in the inactive set. We then combine this step for with the step on the inactive set,

p(k) = p
(k)
I + µp

(k)
A . (2.15)

Here, the parameter µ > 0 is included to reconcile the difference in scale between the

Gauss–Newton and projected gradient descent steps. We follow the recommendation

in [27] and use

µ =
‖p(k)
I ‖∞

‖p(k)
A ‖∞

. (2.16)

This ensures that step entries on the inactive set are no larger in magnitude than the

step entries on the active step. Without this scaling, the method is likely to lose some

of its positive, Gauss–Newton-like convergence properties. In the worst case scenario,

it reverts to the convergence properties of projected gradient descent.

The next projected Gauss–Newton iterate is then

x(k+1) = Q(x(k) + γ(k)p(k)),
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where Q is a projection used to ensure that the updated iterate obeys the bound

constraints, and γ(k) is a line search parameter. Under this projection Q, variables

that would leave the constrained region in the next iterate are projected onto the

boundary and join the active set for the next iteration, while other entries update

without projection. This projection can be written element-wise as

Q([x]j) =


[x]j if lj ≤ [x]j ≤ uj

[x]j = lj if [x]j < lj

[x]j = uj if uj < [x]j

.

The line search parameter γ(k) for projected Gauss–Newton is selected using a pro-

jected Armijo line search. This follows an identical backtracking approach to the

standard Armijo line search when selecting a line search parameter γ(k), but it intro-

duces a projection into the Armijo condition in (2.8) to ensure the projected update

provides a sufficient decrease in the objective function. This modified Armijo condi-

tion is given by

Φ(Q(x(k) + γ(k)p(k))) ≤ Φ(x(k)) + c1γ
(k)P (∇Φ(x(k)))>p(k).

Here, the constant c1 ∈ (0, 1), and P (∇Φ(x(k))) is the projected gradient where the

projection P is given element-wise as

P ([∇Φ(x(k))]j) =


[∇Φ(x(k))]j if lj ≤ [x]j ≤ uj

min{[∇Φ(x(k))]j, 0} if [x]j < lj

max{[∇Φ(x(k))]j, 0} if uj < [x]j.

We note that for the special case where the active set is empty for the updated

iterate, the projections P and Q are equal to the identity, and we revert to the

standard Armijo condition and line search.
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We end by noting some other necessary considerations for the successful imple-

mentation of the method. First, both the inactive set and active sets are expected

to change during the projected step update; thus it is necessary to update these sets

at every iteration. The projection also affects the stopping criteria for the method.

Specifically, the first-order optimality condition of the constrained problem is the pro-

jected gradient [2]. The projected gradient sets to zero gradient entries corresponding

to entries of the solution vector in the active set that have minima lying outside the

feasible region. We cannot expect these entries of the gradient to converge to zero.

Instead, these entries in the gradient should be projected to zero when monitoring

the the convergence of the projected Gauss–Newton method.

As with standard Gauss–Newton, we end our discussion of projected Gauss–

Newton by summarizing the material above into Alg. 3, found below.

Algorithm 3 Projected Gauss–Newton Method

1: Given a feasible x(0)

2: for k = 0, 1, 2, . . . do

3: Compute Φ(x(k)), J (k), and r(k)

4: Update active set A(k) and inactive set I(k)

5: Solve for Gauss–Newton step on inactive set p
(k)
I using Eq. 2.12 or Eq. 2.13

6: Compute step on active set p
(k)
A using Eq. 2.14

7: Combine steps p(k) = p
(k)
I + µp

(k)
A with Eq. 2.15 and Eq. 2.16

8: Determine step length γ(k) using the projected Armijo Line Search

9: Update x(k+1) = Q(x(k) + γ(k)p(k))

10: if Stopping Criteria then

11: return x(k+1)

12: end if

13: end for
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2.4 Regularization

We now give an overview of regularization for nonlinear problems. As mentioned

previously, the inverse problems corresponding to the nonlinear forward model (2.1)

are frequently ill-posed, and their solutions are unstable for noise-affected data. In

such cases, regularization is often introduced to the optimization problem (2.2) as a

remedy to the various issues arising from ill-posedness and noisy data. The goal of

regularization is to modify or change the optimization problem in such a way that

a unique solution exists, and if possible, the problem is more stable. This is often

done by incorporating prior knowledge or characteristics of a desired solution such

as regularity, smoothness, or minimization of some norm by the solution. We also

need to consider regularization for the Gauss–Newton step problem (2.5) or (2.7) as

the Jacobian J(x) may be ill-conditioned or not guarantee a unique solution at each

iteration.

For the Gauss–Newton method above, we can split our discussion of regularization

into two parts, the first on regularization for general nonlinear optimization problems

and the second on the options for regularizing the linear problems associated with

the Gauss–Newton step. There is significant overlap between the two sections as

choices for regularizing the nonlinear optimization problem affect the step update

problem and can double as regularization there. Lastly, we note that this discussion

of regularization is a brief overview aimed to emphasize its necessity. Regularization

is an active field of research, and it is impossible to cover the broad scope of options

available here. Specific choices for regularizers are problem dependent, so we leave

these until the presentation of the individual problems in Ch. 4–6.
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2.4.1 Regularization for Nonlinear Problems

The theory for analyzing regularization methods for nonlinear inverse problems is

more difficult than for linear or separable nonlinear problems [8, 15, 16, 48]. Concepts

like the singular value decomposition (SVD) that are used to analyze the ill-posedness

of linear problems do not always extend to their nonlinear counterparts [12]. One

work-around for this issue is to analyze the singular values for a linearization of the

nonlinear problem, but it has been shown that an ill-posed nonlinear problem may

have a well-posed linearization [16]. Furthermore, analysis for the optimization of

nonlinear inverse problems such as (2.2) often requires strict assumptions about the

problem that are unrealistic in practice [15, 16]. However, due to the prevalence of

nonlinear inverse problems in many applications, much work has been invested into

developing effective regularization techniques and theory for nonlinear problems.

One of the most common techniques for regularizing nonlinear optimization prob-

lems is iterative regularization. Iterative regularization is based on the early termi-

nation of iterative methods when solving ill-posed or noise-affected problems. This

is based on the expectation that the early iterates of an iterative method tend to

reconstruct low frequency portions of the solution. These iterates are typically less

affected by noise in the data, meaning the step updates at those iterates contain more

information about the true solution. As iterations continue, noise becomes amplified

and is more prevalent in the reconstructed solution. Over a sequence of iterates, this

results in the phenomenon of semi-convergence, where the early iterations of a method

reduce the relative error between the reconstructed solution x(k) and the true solution

xtrue until some optimal iterate, after which the relative error begins to increase for

further iterates as noise corrupts the computed solution. The analysis of this behavior

for linear optimization problems is based on the singular values and singular vectors

of the linear operator for the problem.

In our case, iterative regularization means terminating the projected Gauss–
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Newton iteration at an appropriate early iteration before reaching the exact mini-

mizer to the nosie-affected problem, x∗. Iterative regularization is also popular for

other nonlinear optimization techniques including the Landweber iteration, nonlinear

conjugate gradient method, and quasi-Newton methods [8]. The primary difficulty

in iterative regularization is the selection of a suitable stopping iteration. Stop too

soon and the method does not reach the best solution possible; stop too late and

noise begins to corrupt the recovered solution. Thus to use iterative regularization

effectively, one must also find a dependable stopping criteria such as the discrepancy

principle [63].

Another regularization strategy is direct regularization, which introduces applica-

tion specific regularizers to the problem to incorporate prior knowledge of a desired

solution. For many applications, properties of the solution are known, for example

non-negativity, minimal energy, smoothness, or invertibility. Enforcing such charac-

teristics in the solution treats the ill-posedness of a problem by reducing the space of

possible solutions. It can also help alleviate ill-conditioning in the discrete problem.

To incorporate these desired properties into a solution, we reformulate (2.10) with a

direct regularizer as

min
x∈Cx

{
Φ(x) =

1

2
‖r(x)‖2 + αS(x)

}
, (2.17)

where S(x) is a regularizer weighted by a regularization parameter α > 0. The in-

troduction of a regularizer to the optimization problem forces the solution to balance

between fitting the data and exhibiting desirable characteristics. That is, the intro-

duction of the regularizer changes the problem, i.e., the exact minimizer x∗ changes.

The regularization parameter α controls this balance between fitting the data in the

residual term and having a highly regularized solution.
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One common class of regularizers are quadratic regularizers

S(x) = ‖Lx‖2. (2.18)

Two examples of this are L = I, the identity matrix for Tikhonov regularization,

and L = ∇h, a discretized gradient operator using forward differences. Common

non-quadratic regularizers include options such as total variation and p-norm reg-

ularizers [15, 48, 63]. These two classes are not unconnected, and non-quadratic

regularizers can be addressed by solving a sequence of least-squares problems that

include weighted quadratic regularizers [53, 54, 66]. Solving optimization problems

with quadratic regularizers is also an essential part of splitting-based methods such as

the Split Bregman method for `1 regularized problems [23]. In this work, we see var-

ious choices for S(x) in later chapters including a nonlinear, hyperelastic regularizer

presented in Ch. 5 and a penalty term regularizer in Ch. 6.

Optimal selection of the regularization parameter α is its own challenging problem.

Common methods include unbiased predictive risk estimator method (UPRE), gen-

eralized cross validation (GCV), the discrepancy principle, and the L-Curve [33, 63].

These methods have limitations: the discrepancy principle requires prior knowledge

about the noise level, while the L-curve and GCV methods often require a singular

value decomposition (SVD) of the forward operator, which is not available for many

nonlinear problems.

Lastly, we make note of statistical methods for nonlinear regularization. These

methods maximize an expected likelihood function for the problem after making some

underlying assumptions about the statistical distribution of the problem [8]. We do

not explore these statistics-based regularization techniques in this dissertation. For

further reading on nonlinear regularization, we refer the reader to [15, 16, 33, 63].
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2.4.2 Regularization for the Gauss–Newton Step

As mentioned above, regularization is also often needed for the linear problems (2.5)

and (2.7) for computing the Gauss–Newton step direction as the Jacobian J(x) may

not guarantee a unique solution to the step problem and may be ill-conditioned.

Many of the ideas presented in the previous section extend to regularizing the Gauss–

Newton step problem, and direct regularizers introduced to the nonlinear optimization

problem affect the Gauss–Newton step problem by changing the derivatives.

The idea of iterative regularization for the linear problems follows the same princi-

ple as for nonlinear problems, which we introduced in the previous section. For linear

problems, the theory motivating this type of regularization is more clear and follows

from the SVD of the Jacobian J(x) at each iteration [15, 33, 63]. The early iterations

of iterative methods (Landweber, Krylov subspace methods, etc.) can be shown to

reconstruct portions of the solution corresponding to large singular values and low-

frequency singular vectors of the Jacobian while later iterations correspond to smaller

singular values and higher-frequency singular vectors. Again, the goal is to stop an

iterative method at the optimal iteration where the computed solution most closely

matches the true solution rather than the exact minimizer of the noise-affected step

equation. In Sect. 2.2.1, we motivated inexact Gauss–Newton as a way to lower the

cost associated with computing the Gauss–Newton step, but it also serves as iterative

regularization in the case when the step problem is ill-posed.

Direct regularization for the Gauss–Newton step can be inherited through the

derivatives of a direct regularization operator for the nonlinear problem as in (2.17)

or introduced separately for the Gauss–Newton step problem if the nonlinear problem

has no direct regularization term. We discuss the former case, for which the updated

Gauss–Newton step problem becomes

(
J (k)>J (k) + α∇2S(x)

)
p = −

(
J (k)>r(k) +∇S(x)

)
, (2.19)
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where ∇S(x) and ∇2S(x) are the gradient and (approximate) Hessian of the regular-

ization term, respectively. For quadratic regularizers of the form (2.18), this system

is symmetric positive definite if L is full rank, thus ensuring that the exact solution

p(k) is a descent direction. This is helpful when J (k) is rank deficient and a descent

direction for the un-regularized problem is not guaranteed. For quadratic regularizers,

we also see that (2.19) is equivalent to the least-squares problem

min
p

∥∥∥∥∥∥∥
 J (k)

√
αL

p+

 r(k)

√
αLx(k)


∥∥∥∥∥∥∥

2

. (2.20)

For the case when S(x) is nonlinear, we typically use a linear, symmetric positive

definite approximation of∇2S(x) as we did for the Gauss–Newton objective function.

The problems in (2.19) and (2.20) can then be solved using direct or iterative methods.

For the problems in this dissertation, we typically solve directly regularized problems

for the Gauss–Newton step using iterative methods to a low accuracy, thus adding

additional iterative regularization to the problem.

We note again that the problems in (2.19) and (2.20) require a choice for the

regularization parameter α, which is a separate, challenging problem. For the LAP

method and the numerical experiments in Ch. 4, we explore the use of hybrid regu-

larization methods as an option, which seeks to combine the advantages of iterative

and direct regularization while automatically selecting a regularization parameter

[9, 20, 19, 21].

2.5 Imaging

The nonlinear problems of interest in this work come from applications in imaging. As

such, it is necessary to discuss the mathematical framework for imaging that we use

to relate continuous reality to the discretized problems of interest. This framework
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is used for the presentation of specific problems in Ch. 4–6.

Our notation follows the framework presented by [47]. We consider images as

continuously differentiable and compactly supported functions from some domain of

interest Ω ∈ Rd where d is the dimension (for our applications, d = 2 or 3) to a field F

where the image attains its values or intensities. For our problems, we consider both

real-valued images, F = R, and complex-valued images, F = C. Using this setup,

we then obtain a discrete image x ∈ Fn by evaluating the continuous image at the

cell-centers of a rectangular grid with n cells in Rd.

For the problems in Ch. 4 and 5, we must also consider transformations of images.

We define a discrete transformation y ∈ Rd·n by evaluating a continuous function

y : Ω→ Rd at each of the cell-centers of the rectangular grid defined above. Visually,

this maps the original, rectangular grid to a new, transformed grid. An illustra-

tion of this can be seen in Fig. 2.1. Many types of transformations are possible

within this framework, and in general the number of parameters defining a trans-

formation can be large. Common examples include rigid, affine, and spline based

transformations. More complicated parametric transformations and nonparametric

transformations are also possible [47, 13]. The problems in Ch. 4 are restricted to

rigid, affine transformations consisting of shifts and rotations. Transformations of

this kind can be parameterized by small set of variables, which we denote by vectors

w ∈ R3 for 2D or R6 for 3D. In Ch. 5, we consider more involved transformations

that are nonparametric on some portions of the image domain and rigid on others.

Note that in general, the cell-centers of a grid under a given transformation y do

not align to the cell-centers of the original grid, i.e., the known locations of the known

image intensities. Consequently to evaluate an image under a transformation y, we

must interpolate from the previously known image intensities. An illustration of this

is in Fig. 2.1. For this dissertation, we use bilinear or trilinear interpolation depend-

ing on the problem dimension. We represent this interpolation by a sparse matrix
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Figure 2.1: An untransformed discrete image is given by evaluating a continuous
image at the cell-centers of a rectangular grid (black). Under a rigid transformation,
the cell-centers of the transformed image (red) do not align with previously known
image values, necessitating interpolation.

T (y(w)) ∈ Rn×n dependent on the transformation parameters. The transformed im-

age is then given by a matrix-vector product, x̂ = T (y(w))x. We provide details on

constructing the interpolation matrix T (y), its derivative, and matrix-free implemen-

tations in Appendix A.1. For information on linear and other types of interpolation,

we refer the reader to [6, 45, 47, 40, 60, 64].
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Chapter 3

Linearize and Project Method for

Coupled Problems

In this chapter, we introduce the Linearize and Project Method (LAP) for solving the

Gauss–Newton step in Ch. 2 for a specific class of nonlinear optimization problems.

The problems of interest are characterized by having two sets (or more) of nontrivially

coupled variables representing different quantities, for example, different physics. We

consider problems that are nonlinear in at least one of these sets, although the method

presented is applicable in general to linear problems. Problems of this type arise in

numerous applications, and in subsequent chapters we test LAP on several problems

of this description arising in imaging. LAP is best suited to problems where the

subproblem arising from one of the blocks of variables is well-conditioned and easy

to solve. Another strength of the method is its flexibility; LAP allows for various

types of regularization and the imposition of bound constraints for enforcing desirable

properties in a resulting problem. These options offer multiple ways to deal with the

ill-posedness of our problems of interest and introduce prior knowledge of a desired

solution.

The chapter is organized in the following way. We begin by reformulating the
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forward model of the nonlinear problem from Ch. 2 for problems with two, coupled

sets of variables and present the optimization problem for solving the associated

inverse problem. We then present the LAP method for solving the Gauss–Newton

step. We make note of considerations necessary to regularize and also to use projected

Gauss–Newton for problems with coupled sets of variables. Lastly, we discuss two

other commonly used methods for problems with coupled variables, block coordinate

descent and variable projection, that we use in our numerical experiments in future

chapters. Block coordinate descent is the more general of the two approaches and is

applicable to general coupled problems. In contrast, variable projection is applicable

to a more limited class of separable least-squares problems that are linear in one block

of variables and nonlinear in the other.

3.1 Coupled Nonlinear Inverse Problems

We begin by reformulating the discrete forward problem (2.1) for coupled problems.

This model is given by

d = F (x,w) + η,

where d ∈ Fm is the observed data, F (·, ·) : Fn × Fp → Fm is a nonlinear forward

operator subject to two sets of variables x ∈ Fn andw ∈ Fp, and η ∈ Fm is identically

distributed Gaussian white noise. Again, F is a field, either R or C depending on the

problem. The only change from the univariate formulation, (2.1), is the dependence

on two sets of variables, x and w, as opposed to one.

The solution for the inverse problem of recovering x andw given a known operator

F (·, ·) and a set of observe data d can then be formulated as the solution of the

optimization problem

min
x∈Cx,w∈Cw

{
Φ(x,w) =

1

2
‖r(x,w)‖2 + αS(x,w)

}
. (3.1)
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Here, r = r(x,w) = F (x,w)−d is the data residual subject to both sets of variables.

Cx and Cw are closed, convex sets for imposing element-wise bound constrains on the

resulting solutions for x and w, respectively. Lastly, we introduce a regularizer S(·, ·)

weighted by a regularization parameter α > 0 that balances the data misfit and

regularity of the solution. This is analogous to (2.17) for the univariate case.

We approach the coupled problem using the same projected Gauss–Newton frame-

work from Ch. 2 with special attention paid to the introduction of LAP for determin-

ing the Gauss–Newton step. As in the previous chapter, we organize our presentation

of the method by introducing LAP for the unconstrained problem with no regular-

ization term using standard Gauss–Newton optimization. After this, we extend it

to include the regularization term and the bound constraints within the projected

Gauss–Newton framework from Sect. 2.3.

3.2 LAP Method

The LAP method is a tailored solver for the step in (2.5) and (2.7) at each iteration

of Gauss–Newton optimization for coupled problems of the form (3.1). LAP is mo-

tivated by problems where the subproblem arising from one of the sets of variables

is comparatively well-posed and easy to solve. Without loss of generality, we will

assume this preferable subset of variables to be w. Additionally, we assume that the

number of variables in w is considerably less than in x, i.e., p� n.

To derive the LAP method, we begin by considering (3.1) without constraints and

without the regularization term. This simplified problem is

min
x,w

{
Φ(x,w) =

1

2
‖r(x,w)‖2

}
. (3.2)

To set up the Gauss–Newton step for this problem, we first calculate the necessary

derivatives. As before, calculating these derivatives requires the Jacobian matrix of
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the coupled data residual at each iteration k. For the coupled problem, the Jacobian

has a block matrix form with blocks corresponding to the two sets of variables,

J(x(k),w(k)) =

[
J

(k)
x J

(k)
w

]
, (3.3)

where the blocks are defined as

J (k)
x = Jx(x

(k),w(k)) =

[
∂r

(k)
i

∂x
(k)
j

]
ij

for i = 1, 2, · · · ,m and j = 1, 2, · · · , n,

and

J (k)
w = Jw(x(k),w(k)) =

[
∂r

(k)
i

∂w
(k)
j

]
ij

for i = 1, 2, · · · ,m and j = 1, 2, · · · , p.

Using this block formulation for the Jacobian of the coupled problem, we get a cor-

responding block structure for the derivatives of the coupled optimization function.

These are given by

∇Φ(x(k),w(k)) =

J (k)>
x r(k)

J
(k)>
w r(k)


H(k) =

J (k)>
x J

(k)
x J

(k)>
x J

(k)
w

J
(k)>
w J

(k)
x J

(k)>
w J

(k)
w

 ≈ ∇2Φ(x(k),w(k)).

(3.4)

Again, we approximate the Hessian for Gauss–Newton using only the Jacobian term

and omitting the second, summation term from the full Newton iteration. This is

equivalent to a linear approximation of the residual term r(x,w), and corresponds

to the ‘L’ for linearization in the LAP acronym. The Gauss–Newton step (2.4), at
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each iteration is the solution to the block normal equations,

H(k)

p(k)
x

p
(k)
w

 = −

J (k)>
x r(k)

J
(k)>
w r(k)

 . (3.5)

If the Jacobian is full rank or the problems are solved iteratively over the same

subspace, this is equivalent to the least-squares problem,

min
x,w

1

2

∥∥∥∥∥∥∥
[
J

(k)
x J

(k)
w

]p(k)
x

p
(k)
w

+ r(k)

∥∥∥∥∥∥∥
2

. (3.6)

To solve the block systems above, LAP projects the coupled problem onto a single

block of variables. For our examples, we assume the projection is onto the x block of

variables, without loss of generality. This corresponds to the ‘P’ in the LAP acronym.

To do the projection, we note that the block system in (3.5) can be written as two,

coupled linear systems,

J (k)>
x J (k)

x p(k)
x + J (k)>

x J (k)
w p(k)

w = −J (k)>
x r(k)

J (k)>
w J (k)

x p(k)
x + J (k)>

w J (k)
w p(k)

w = −J (k)>
w r(k).

The second equation can be solved for p
(k)
w to obtain

p(k)
w = −(J (k)>

w J (k)
w )−1(J (k)>

w J (k)
x p(k)

x + J (k)>
w r(k)). (3.7)

Substituting this expression in for p
(k)
w in the first equation and gathering like terms,

we then get the projected problem in p
(k)
x ,

J (k)>
x P⊥JwJ

(k)
x p(k)

x = J (k)>
x P⊥Jwr

(k), (3.8)

where P⊥Jw = I − J (k)
w (J

(k)>
w J

(k)
w )−1J

(k)>
w is a projector onto the orthogonal comple-
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ment of the column space of J
(k)
w . This is equivalent to the Schur complement system

associated with the J
(k)>
x J

(k)
x block of the approximate Hessian [24, 57]. For large

problems, we solve the projected problem for p
(k)
x using an iterative method with an

appropriate preconditioner. Since the problem (3.8) is based on a quadratic approx-

imation of the objective function, we solve it only to a low accuracy following the

strategy of inexact Newton methods [50].

We add a few remarks regarding solving (3.8) iteratively. Note that the projection

has low rank because rank(P⊥Jw) ≤ p � n. It follows that a good preconditioner for

the J
(k)>
x J

(k)
x block will also suffice for the projected system. The choice of precondi-

tioner is an important consideration [3, 37, 57]. Matrix-vector multiplications by J
(k)
x

(and its transpose) dominate the cost of the iterative solver and also the LAP method.

It follows that minimizing the number of iterations (and therefore matrix-vector mul-

tiplications) by choosing a suitable preconditioner can improve the efficiency of the

method. Also, we will see in Ch. 5 that the choice of preconditioner can significantly

impact the numerical performance of the method for some problems.

Also note that if p � n is reasonably sized and J
(k)
w is full rank, it is possi-

ble to compute the (J
(k)>
w J

(k)
w )−1 term in the projection using its Cholesky factors.

These factors can be computed once per Gauss–Newton iteration and used repeatedly.

Furthermore, the Cholesky factors of J
(k)>
w J

(k)
w can be computed using a thin QR fac-

torization of the matrix J
(k)
w rather than explicitly forming and factoring J

(k)>
w J

(k)
w .

This strategy is particularly attractive for matrix-free implementations of LAP and

improves the efficiency of the method significantly. Lastly, we note that for our nu-

merical experiments in Ch. 4 and Ch. 5, we have not observed rank deficiency in

J
(k)
w .

A similar derivation produces a corresponding least-squares formulation for LAP

coming from the coupled Gauss–Newton step given in (3.6). To see this, we look at
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the first order optimality condition of (3.6) with respect to pw,

0 = ∇
p
(k)
w

(
1

2

(
J (k)
x p(k)

x + J (k)
w p(k)

w + r(k)
)> (

J (k)
x p(k)

x + J (k)
w p(k)

w + r(k)
))

,

which equals

0 =
(
J (k)>
w J (k)

w p(k)
w + J (k)>

w J (k)
x p(k)

x + J (k)>
w r(k)

)
.

Solving this expression for p
(k)
w , we get exactly the expression in (3.7). Substituting

this expression into (3.6) gives the projected least-squares problem,

p(k)
x = argmin

p
‖P⊥Jw(J (k)

x p+ r(k))‖2, (3.9)

where P⊥Jw is defined as above. Again, this least-squares problem can be solved it-

eratively using an appropriate preconditioner. All previous considerations regarding

preconditioning and cost of the method still hold, as does the strategy for comput-

ing the projection. However, this least-squares problem is better conditioned than

the normal equations, which may result in preferable numerical performance for ill-

conditioned J
(k)
x .

Finally, whether one uses the normal equations or least-squares formulation of

LAP to solve for p
(k)
x , we calculate p

(k)
w by plugging p

(k)
x into (3.7) and evaluating.

Again, if the Cholesky factors for (J
(k)>
w J

(k)
w )−1 are computed and stored, this calcu-

lation is comparatively very cheap.

3.2.1 LAP with Projected Gauss–Newton

Using the projected Gauss–Newton method framework from Sect. 2.3, we can extend

LAP to impose element-wise bound constraints on the solution. While the concept

follows directly, we present the extension here in full notation for clarity. To do this,

we begin by reformulating problem (3.2) with bounds on the solution, x and w, given
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by

min
x∈Cx,w∈Cw

{
Φ(x,w) =

1

2
‖r(x,w)‖2

}
. (3.10)

where Cx and Cw are defined as in Sect. 3.1. To extend LAP to projected Gauss–

Newton, we begin by partitioning the x and w blocks of variables into active and

inactive sets as defined in (2.11). We denote by x
(k)
A and w

(k)
A the sets where the

bound constraints are active and by x
(k)
I and w

(k)
I the sets where the constraints are

inactive.

For the inactive elements of x, we take the standard Gauss–Newton step solved

using LAP. To do this, we first restrict the LAP projection step to the inactive set.

Again, this can be done using a normal equations or least-squares approach. The

projected problems for p
(k)
x,I using each approach are

Ĵ (k)>
w P̂⊥Jw Ĵ

(k)
x p

(k)
x,I = Ĵ (k)>

x P̂⊥Jwr
(k) (3.11)

and

p
(k)
x,I = argmin

p

1

2
‖P̂⊥

Ĵw
(Ĵ (k)

x p+ r(k))‖2. (3.12)

Here, Ĵ
(k)
x , Ĵ

(k)
w , and P̂⊥Jw are J

(k)
x , J

(k)
w , and P⊥Jw restricted to the inactive set via

projection as described in Sect. 2.3. Either of these projected equations can then

be solved iteratively using an appropriate choice of preconditioner, noting that the

preconditioner will likely also need to be projected to restrict it to the inactive set.

The step p
(k)
w,I on the inactive set is recovered using the expression

p
(k)
w,I = −(Ĵ (k)>

w Ĵkw)−1(Ĵ (k)>
w Ĵ (k)

x p
(k)
x,I + Ĵ (k)>

w r(k)). (3.13)

The derivation for the equations is identical to the unrestricted case. Also note that

for the case when the upper and lower bounds are∞ and −∞, i.e., an unconstrained

problem, the problem reverts to the LAP framework in Sect. 3.2.
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For the elements in the active set, we take the scaled, projected gradient descent

step. This projected gradient step is given by

p(k)
x,A

p
(k)
w,A

 = −

J̃ (k)>
x r(k)

J̃
(k)>
w r(k)

 , (3.14)

where J̃
(k)
x and J̃

(k)
w are J

(k)
x and J

(k)
w restricted to the active set by projection. We

scale this step by a factor µ > 0. Following the suggestion in [27], we set

µ =
max(‖p(k)

x,I‖∞, ‖p
(k)
w,I‖∞)

max(‖p(k)
x,A‖∞, ‖p

(k)
w,A‖∞)

. (3.15)

This scales the largest entry in the step on the active set so that it is no larger in

magnitude than the largest entry on the inactive step with the goal of preserving the

convergence properties of the Gauss–Newton method.

We combine the steps on the inactive and active step by

p(k)
x

p
(k)
w

 =

p(k)
x,I

p
(k)
w,I

+ µ

p(k)
x,A

p
(k)
w,A

 . (3.16)

Lastly, we choose a step length for the combined step using the projected Armijo

line search described in Sect. 2.3 to ensure that the new iterates, x and w, lie within

the feasible region. We note again that variables may enter or leave the active and

inactive sets, which necessitates updating A(k) and I(k) at each iteration.

As with the standard Gauss–Newton approach, most of the computational cost for

projected Gauss–Newton is incurred in matrix-vector products by the Jacobian J
(k)
x

and its projections onto the active and inactive sets. Barring extreme cases where

the number of active boundary variables is of the same order as the total number of

variables for the problem, most of the cost for projected Gauss–Newton using LAP

is incurred when solving the normal equations or the least-squares problem for the
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Gauss–Newton step on the inactive set. Here again, the cost of the iterative solver

is dominated by calls to the projected Jacobian, Ĵ
(k)
x , although the projection onto

the inactive set is cheap. As before, we solve the step problem iteratively to a low

tolerance using an appropriate preconditioner.

3.3 Alternatives Methods for Coupled Problems

To conclude this chapter, this section presents two methods that are used in subse-

quent chapters as alternatives to LAP for solving problems of the form (3.1), block

coordinate descent [50] and variable projection [25]. Both methods are well studied

in the literature (see citations below.) Block coordinate descent is an alternating

optimization scheme applicable to the general class of coupled problems, whereas

variable projection is motivated by the separable least-squares problems in Ch. 4

that are linear in one block of variables and nonlinear in the other.

3.3.1 Block Coordinate Descent for Coupled Problems

Block Coordinate Descent (BCD) represents an uncoupled approach to solving (3.1);

see [7, 34, 50]. For the method, the variables are separated into a number of blocks.

The method then optimizes over one block while holding the others fixed. This is

done sequentially over all the blocks. One iteration is completed after a full cycle of

optimizing over every block of variables. The method then iterates until convergence

or some other stopping criteria is satisfied.

For our coupled problems, we partition the variables for BCD into the two sets

suggested by the problem, x and w. The kth iteration then requires solving the

following problems. First fixing w(k), we optimize for x(k+1) by solving

x(k+1) = argmin
x∈Cx

Φ(x,w(k)). (3.17)
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Then, fixing x(k+1) we optimize for w(k+1) by solving

w(k+1) = argmin
w∈Cw

Φ(x(k+1),w). (3.18)

Solving these two problems completes a single iteration of the method. Note that

BCD is decoupled in that while optimizing over one set of variables, it neglects opti-

mization over the other. For problems with tightly coupled variables, this may result

in slow convergence [7, 50]. However, the method offers a number of advantages. It is

applicable to a wide class of problems, is straightforward to implement, and extends

easily to allow for bound constraints and various types of regularization on either

block of variables.

For our implementation, we solve (3.17) using a single iteration of projected

Gauss–Newton using an iterative solver to compute the search direction to low ac-

curacy. We solve (3.18) using a single iteration of projected Gauss–Newton with a

direct solver on the normal equations to compute the inactive step since p � n is

moderately sized, although an iterative solver may be used. The total cost of a single

BCD iteration is then on the same order of magnitude as a single iteration of LAP.

The single projected Gauss–Newton iteration for x(k+1) requires solving a normal

equations or least-squares system corresponding to the matrix J
(k)
x , while a direct

solver for updating w(k+1) requires solving a problem corresponding to J
(k)
w .

3.3.2 Variable Projection for Separable Least-squares

Variable projection (VarPro) is a popular method for separable least-squares prob-

lems, a specific class of coupled nonlinear problems; see [26, 25, 51]. We present

numerical results for two problems of this class in Ch. 4. The forward operator for

separable least-squares problems is nonlinear in one set of variables and linear in the

other. For our problems, we assume the problem to be nonlinear in block w and
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linear in block x, giving the residual in (3.1) the form

r̂(x,w) = F (w)x− d,

where F (w) is an operator dependent onw. The corresponding optimization problem

without regularizer is then

min
x∈Cx,w∈Cw

{
Φ̂(x,w) =

1

2
‖r̂(x,w)‖2

}
. (3.19)

Within a Gauss–Newton framework, VarPro solves a reduced problem for the

step by eliminating the linear set of variables via projection. The resulting reduced

problem is a nonlinear optimization problem in w, which can be solved using an opti-

mization scheme of choice. We use Gauss–Newton for the reduced nonlinear problem.

We note that VarPro’s strategy of solving a reduced problem after eliminating a block

of variables through projection is similar to the LAP method presented in Sect. 3.2.

The key difference is that LAP linearizes the problem before projection while VarPro

does not. This necessitates linearity in the x block of variables for VarPro and com-

plicates applying constraints to the linear block of variables.

Projecting the problem onto a reduced subspace in VarPro requires solving a linear

least-squares problem in x using the operator F (w(k)) that depends on the current

w(k) parameters. VarPro is particularly effective for problems when this projection

can be done efficiently and accurately. We define the projection by

x(k)(w) = argmin
x∈Cx

Φ̂(x,w(k)). (3.20)

For our case where n is large, this can be solved using an iterative method [30]. Sub-

stituting the projection into Eq. 3.1 for x, we get the resulting nonlinear optimization
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problem in w at each iterate,

w(k) = argmin
w∈Cw

Φ̂(x(k)(w),w). (3.21)

We then solve this reduced nonlinear optimization problem to update w with a single

Gauss–Newton step, noting that the solution (3.20) also provides an updated guess

for x(k) = x(k)(w) at each Gauss–Newton iteration.

Imposing constraints on the set of linear variables using VarPro poses an issue.

To see this, we note that when w is unconstrained, i.e., Cw = Rp, the first order

optimality condition for the reduced problem, (3.21), is given by the product rule

0 = ∇wΦ̂(x(w),w) +∇wx(w)∇xΦ̂(x(w),w). (3.22)

If x is unconstrained (i.e. Cx = Fn), the second term in this expression vanishes

because ∇xΦ̂(x(w),w) = 0 due to the first order optimality condition in (3.20).

However, if there are active constraints on the linear variables, this second term may

not vanish because ∇xΦ̂ 6= 0. This issue also arises if the linear problem (3.20) is

solved inaccurately and thus does not fulfill the first order optimality condition. In

these cases, neglecting this second term may degrade the performance of VarPro.

When Cx = Rn, the second term in (3.22) can be driven to 0 by solving (3.20) to

a higher accuracy. This differs from the inexact Newton approaches used in LAP and

BCD, where we solve the subproblem associated with the linear block of variables to

low accuracy. Solving (3.20) to high accuracy may or may not be possible depending

on the conditioning of the problem and the amount of noise in the data. Even if

possible, this strategy costs significantly more than the low accuracy solves in LAP

and BCD in terms of inner iterations and function calls by the operator F (w). This

consideration is important noting that the operator associated with this system is of

the same size as the Jacobian, Jx, which dominates the cost of the other two methods,
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and means that in practice VarPro iterations will be more expensive than the other

methods.

If (3.20) has nontrivial constraints, is it necessary to calculate ∇wx(w) for the

second term of (3.22) and solve the constrained projection problem to a high accuracy.

Computing this gradient term can be as difficult as solving the initial problem (3.19),

and the cost for a more accurate solution remains. As such, implementing efficient

constraints on the linear variables in VarPro proves challenging. Some progress has

been made on the implementation of box constraints for the method using a pseudo-

derivative approach to compute approximate gradients for the nonlinear problem [59].

For our numerical experiments in Ch. 4, we omit constraints on the linear block of

variables for VarPro. This impacts its performance compared to LAP and BCD for

which we use element-wise bounds for some problems.
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Chapter 4

Motion Correction Problems

This chapter shows numerical results using LAP for two motion correction problems in

super-resolution and magnetic resonance imaging (MRI). Both problems are examples

of separable least-squares problems, a specific class of coupled problems that are

linear in one set of variables and nonlinear in the other. Problems of this type

have received much attention in the research community [26, 25, 51]. For motion

correction problems, the goal is to simultaneously recover high-resolution images and

motion parameters from noisy, motion-affected data. We show the utility of LAP

for solving problems of this class. This includes showing that the convergence rate,

cost per iteration, and resulting solutions are preferable to block coordinate descent

(BCD) and variable projection (VarPro), two commonly used methods for this class

of problems. The chapter begins by presenting a framework for coupled problems

in image reconstruction from motion-affected measurements. This framework fits

within the more general framework for coupled nonlinear problems presented in Ch. 3.

Afterward, we introduce the specific formulation of the super-resolution and MRI

motion correction problems in detail and present the results of numerical experiments

for LAP, BCD, and VarPro for solving each.

The work in this chapter was organized into a paper by the author, L. Ruthotto,
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and J. Nagy and is in revision for publishing. The results and content of this chapter

borrow heavily from this paper [36].

4.1 Motion Correction Imaging Problem

From Ch. 2, we recall the definition of images as continuously differentiable and

compactly supported functions from some domain of interest Ω ∈ Rd (typically, d = 2

or 3) to a field F where the image attains its values or intensities. The problems in

this chapter contain real-valued images, F = R, and complex-valued images, F = C.

Using this setup, we then obtain a discrete image x ∈ Fn by evaluating the continuous

image at the cell-centers of a rectangular grid with n cells in Rd.

We recall the definitions for discrete transformations presented in Sect. 2.5. The

discrete transformation y ∈ Rn·d is obtained by evaluating a continuous function

y : Ω→ Rd at the cell-centers of the rectangular grid. For the problems in this chap-

ter, we restrict ourselves to the class of rigid transformations consisting of shifts and

rotations parameterized by a small set of variables, which we denote by w ∈ R(3,6)

for 2D and 3D, respectively. Lastly, recall that the cell-centers of a grid under the

transformation y(w) do not align to the cell-centers of the untransformed grid. To

evaluate an image x̂ under the transformation y(w), we linearly interpolate from

the previously known image coefficients x, although other options are possible, e.g.,

nearest neighbor or spline interpolation [6, 45, 47, 40, 60, 64]. This interpolation is

represented as a sparse matrix T (y(w)) ∈ Rn×n determined by the transformation.

The transformed image is then given by a matrix-vector product, x̂ = T (y(w))x. In

practice, this interpolation can be implemented in a matrix-free framework and the

interpolated image retrieved via a function call, however, the matrix-vector formula-

tion is conceptually useful. Details on linear interpolation and rigid transformation

can be found in Appendices A.1 and A.2.
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Using these definitions for discrete images and transformations defined in Ch. 2

and above, we express the forward model for the motion correction imaging problem

with N data observations as

dj = KjT (y(wj))x+ ηj for j = 1, 2, . . . , N, (4.1)

where dj ∈ Fmj is the jth data observation of the true image x subject to the rigid

transformation parameterized by wj, T (y(wj)) is an interpolation as defined above,

Kj ∈ Fmj×n is a problem-specific imaging operator, and ηj is image noise. We assume

the noise to be independent and identically distributed Gaussian noise. To simplify

notation for the problem, we typically concatenate the data measurements over all

observations into a single column vector d ∈ Fm where m = mj · N . The same is

done for the motion parameters, giving w ∈ Rp where p = 3N or 6N for 2D and 3D

problems, respectively. Here, we have p � n as assumed in Ch. 3. This observation

informs several of our choices during optimization.

Using the model in (4.1), the motion correction imaging problem aims to recover

both the unknown image coefficients x and motion parameters w given a set of data

observations {d1,d2, . . . ,dN}. We formulate this as the optimization problem

min
x∈Cx,w∈Cw

{
Φ(x,w) =

1

2
‖KT (w)x− d‖2 +

α

2
‖Lx‖2

2

}
. (4.2)

Here, the matrices K and T (w) aggregate the observations from the forward model

and have the following block structure

K =



K1

K2

. . .

KN


and T (w) =



T (y(w1))

T (y(w2))

...

T (y(wN))


.
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Cx ⊂ Fn and Cw ⊂ Rp are rectangular sets used to imposed bound constraints on x

and w, respectively. Lastly, we introduce a regularization term to balance the misfit

of the data and the regularity of the reconstructed image as discussed in Sec. 2.4. This

term is subject to the regularization operator, L, and the regularization parameter

α > 0. The choice of L is problem specific, and common choices include the discrete

gradient operator or the identity. We discuss choices of L and α for the super-

resolution and MRI motion correction problem in the respective sections. One positive

aspect of the LAP solver is, for L = I, the method allows for hybrid methods that

automatically select a new, appropriate regularization parameter α at every Gauss–

Newton iterate [9, 19, 20, 21]. In our numerical experiments, we investigate one such

hybrid method for automatic regularization parameter selection [9] as well as direct

regularization using a fixed α value.

Solving the optimization problem in (4.2) requires the Jacobian of the residual at

a given iterate, r(x,w) = KT (w)x− d, with respect to both blocks of variables to

calculate the gradient and approximate Hessian. These are given by

Jx = KT (w)

Jw = Kdiag(∇w1 (T (y(w1))x) , . . . ,∇wN
(T (y(wN))x)),

where each term ∇wj
(T (y(wj))x) for j = 1, . . . , N is the gradient of the transformed

image at the transformation y(wj). This can be computed using the chain rule as

∇wj
(T (y(wj))x) = ∇y(wj)T (y(wj))x∇wj

y(wj).

The first of these terms is the derivative of the interpolation with respect to the trans-

formed rectangular grid, and the second term is the derivative of the transformation

with respect to the rigid transformation parameters. Details for calculating the two

terms in this expression can be found in Appendices A.1 and A.2, respectively. The
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derivation for the 2D case can also be found in [7]. Both Jacobians, Jx ∈ Fm×n and

Jw ∈ Rm×p, are sparse.

Next, we look at numerical experiments for two specific examples of motion cor-

rection problems: super-resolution and motion correction for magnetic resonance

imaging (MRI). For super-resolution, we show results for both 2D and 3D exam-

ples. The super-resolution problems both deal with real-valued images and show

LAP’s flexibility with respect to regularization and element-wise bound constraints.

Motion correction for MRI gives an example of problem (4.2) where the resulting im-

age is complex-valued. Both motion correction problems are separable least-squares

problems of the form (3.1), and the variables are partitioned into two blocks: one

corresponding to the linear image variables, x, and the other the nonlinear motion

parameters, w. As introduced in Sect. 3.3.2 and 3.3.1, VarPro and BCD are two

popular methods for solving problems of this form. For our numerical experiments,

we compare the results with LAP for solving the super-resolution and MRI motion

correction problems with those of VarPro and BCD. Specifically, we look at LAP’s

solution quality, convergence, and computational cost when compared to its competi-

tors.

4.2 Super-Resolution

For super-resolution, we present examples in both two and three dimensions. For the

2D problem, the block of image variables, x, has dimension n = 16, 384, and the block

of motion variables, w, has size p = 96. For the 3D problem, those dimensions are

n = 2, 211, 840 and p = 768. We separate the section into two parts corresponding to

the two problems.
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4.2.1 Two Dimensional Super-Resolution

To construct a 2D super-resolution problem with a known ground truth image and mo-

tion parameters, we use the real-valued, 2D brain MRI dataset provided in FAIR [47]

(original resolution 128×128) to generate 32 frames of low-resolution test data (reso-

lution 32×32) after applying 2D rigid body transformations with randomly chosen pa-

rameters and adding varying amounts of Gaussian white noise (see below for details).

The resulting total number of parameters in the optimization is 16, 528 corresponding

to x ∈ R16,384 = R128×128 for the image and w ∈ R96 for the motion. In the coupled

least-squares framework from (4.2), the imaging operator K is then a block diagonal

matrix composed of 32 identical down-sampling matrices K = Kj ∈ R1024×16384 for

j = 1, . . . , 32 along the diagonal, which relate the high-resolution image to the lower

resolution data via block averaging. The block-averaging matrix K is sparse and

can be expressed as a product of Kronecker product matrices. Other downsampling

options are also feasible within this framework.

As mentioned in [7], the choice of initial guess is crucial in super-resolution prob-

lems, so we perform rigid registration of the low-resolution data onto the first data

frame (resulting in 31 separate rigid registration problems) to obtain a starting guess

for the motion parameters. The resulting relative error of the parameters is around

2%. Using these parameters, we solve the linear image reconstruction problem to

obtain a starting guess for the image with relative error of about 5%.

We then solve the problem using LAP, VarPro, and BCD for noise levels of 1%,

2%, and 3%. For all three approaches, we compare two regularization strategies.

All three methods are run using the discretized gradient operator, L = ∇h with a

fixed regularization parameter α = 0.01. LAP and BCD are run with the Golub–

Kahan hybrid regularization approach mentioned in Sect. 2.4 (denoted as HyBR in

tables and figures). The hybrid regularization for HyBR cannot be applied directly

to the VarPro optimization problem (3.20), so instead we use a fixed α = 0.01 and
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the identity as our second regularizer when using this method, L = I. The regu-

larization methods chosen for this problem may not be optimal but were chosen to

highlight the generality and flexibility of regularization options allowed within the

LAP framework. As mentioned in Sect. 2.4, quadratic regularizers are common and

also play an important role in solving problems with other, non-quadratic regularizers

[23, 53, 54, 66]. We include HyBR to highlight how hybrid regularizers work within the

LAP framework [9, 20, 19, 21]. To allow for comparison between methods and previ-

ous super-resolution work, we chose to use the same regularization parameter as in [7].

For more rigorous selection criteria, we refer the reader to the methods mentioned in

Sect. 2.4. For LAP and BCD, we add bound constraints on the image space of [0, 1]

for both choices of regularizer, with both bounds active in practice. The number of

active bounds varies for different noise levels and realizations of the problem, but can

include as many as 30 – 35% of the image variables for both LAP and BCD. VarPro

is run without bound constraints. Neither constraints nor regularization are imposed

on the motion parameters for the three methods.

To compare the results for the three methods, we compare the rate of convergence,

quality of the recovered solutions, and the computational cost. For the convergence

rate and resulting solutions, we monitor the relative errors of the resultant image and

motion parameters. We separate relative errors for the image and motion for plotting,

and convergence behavior for these errors against iteration can be seen in Fig. 4.2 for

the problem with 2% added noise. The corresponding resulting images for the 2%

error case can be seen in Fig. 4.1.

The primary computational cost of the optimization for LAP, VarPro, and BCD

comes from solving two different types of linear systems at each outer optimiza-

tion iteration, one associated with the image variables and another with the motion

variables. LAP solves these systems to determine the Gauss–Newton step. We use

LSQR [52] with a stopping tolerance of 10−2 to solve (3.9) for both regularization
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approaches. The motion step (3.7) is computed using the Cholesky factors of J>wJw

to invert this matrix. VarPro requires solving the linear system (3.20) in the image

parameters for each evaluation of the reduced objective function (3.21). For both

choices of regularization, we solved this system by running LSQR for a fixed num-

ber of 20 iterations. This provided a sufficiently accurate gradient to perform the

Gauss–Newton optimization using the reduced objective function, see Sect. 3.3.2, but

required more LSQR iterates than the similarly sized systems in LAP and BCD that

were solved to low accuracy. Gauss–Newton on the reduced dimensional VarPro func-

tion (3.21) requires solving the reduced linear system in the motion parameters, which

we solve using Cholesky factorization on the normal equations. For BCD, coordinate

descent requires alternating solutions for the linear system in the image, (3.17), and

a nonlinear system in the motion parameters, (3.18). For both of these, we take a

single projected Gauss–Newton step. For the image, this is solved using LSQR with a

stopping tolerance of 10−2 using MATLAB’s lsqr function for direct regularization and

HyBR’s LSQR for hybrid regularization. For the motion, we use Cholesky factorization

on the normal equations.

To compare computational costs during the optimization, we track the number

of matrix-vector multiplications by the Jacobian operator associated with the image,

Jx, which has dimension 32, 768 × 16, 384. Matrix-vector multiplications with this

operator dominate the optimization cost compared to multiplications by Jw, which

has size 32, 768× 96. Multiplications with Jx and its transpose are required for LAP

and BCD when solving the system for the Gauss–Newton step for the image step,

while for VarPro, they are necessary for the least-squares solve within the reduced

objective function. For all three methods, these multiplications are also required in

the Armijo line search. As such, the number of these multiplications provides a fair

metric for comparing the computational cost of all three methods for the optimization.

Table 4.1 includes relevant values to compare the convergence, solution quality



55

Data Images xinitial |xinitial − xtrue| xLAP |xLAP − xtrue|

Figure 4.1: The images from left to right show a montage of data frames, the initial
guess xinitial, the absolute value of the error of the initial guess, the reconstructed
image xLAP for LAP + ∇h, and the absolute value of its error for the 2D super-
resolution problem with 2% noise.
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Figure 4.2: These plots show the relative errors for both the reconstructed image and
the motion parameters for the 2D super-resolution problem with 2% added noise.
We note that methods using the discrete gradient regularizer reach lower minima for
the image in this problem, and LAP with the gradient regularizer outperforms both
VarPro and BCD in recovering the motion parameters in the early iterations of the
method for all noise levels tested.

for both image and motion parameters, and computational cost for all three methods

for both regularizers. Values include the average number of optimization iterations,

minimum relative errors for image and motion, number of matrix-vector multiplica-

tions by Jx, and CPU timings for the methods taken over 10 different realizations of

the problem for all three noise levels is in Table 4.1.

The results show that for direct regularization using the discrete gradient operator,

the solutions for all three methods are comparable in terms of the relative error

for the motion, with LAP and BCD slightly outperforming VarPro for the relative
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1
%

N
o
is
e

Iter. Rel. Err. x Rel. Err. w MatVecs. Time(s)
LAP + HyBR 11.1 5.34e-2 1.82e-2 93.4 14.3
LAP + ∇h 13.1 3.76e-2 1.78e-2 62.2 15.4
VarPro + I 25.7 8.60e-2 1.84-2 554.0 60.1
VarPro + ∇h 21.1 4.12e-2 1.81e-2 462.0 56.0
BCD + HyBR 12.0 5.93e-2 2.03e-2 68.1 22.9
BCD + ∇h 29.7 3.95e-2 1.79e-2 89.6 55.4

2
%

N
o
is
e

Iter. Rel. Err. x Rel. Err. w MatVecs. Time(s)
LAP + HyBR 12.0 6.38e-2 1.86e-2 77.0 12.5
LAP + ∇h 15.9 4.38e-2 1.81e-2 66.4 15.9
VarPro + I 29.6 1.03e-1 1.86e-2 632.0 64.7
VarPro + ∇h 21.4 5.05e-2 1.85e-2 468.0 54.9
BCD + HyBR 13.4 7.10e-2 2.15e-2 53.1 25.0
BCD + ∇h 29.9 4.55e-2 1.82e-2 91.7 57.0

3
%

N
o
is
e

Iter. Rel. Err. x Rel. Err. w MatVecs. Time(s)
LAP + HyBR 12.3 7.54e-2 2.28e-2 68.6 16.3
LAP + ∇h 18.5 5.34e-2 2.22e-2 74.2 22.0
VarPro + I 34.4 1.27e-1 2.32e-2 728.0 86.7
VarPro + ∇h 23.9 6.17e-2 2.13e-2 518.0 72.5
BCD + HyBR 15.0 7.86e-2 2.32e-2 52.9 31.9
BCD + ∇h 29.7 5.42e-2 2.24e-2 83.2 63.9

Table 4.1: This table shows data for the optimization of the 2D super-resolution
problem for multiple values of added Gaussian noise. The columns from left to right
give the stopping iteration, relative error of the solution image, relative error of the
solution motion, number of matrix-vector multiplications during optimization, and
time in seconds using tic and toc in MATLAB. All values are averages taken from
10 instances with different motion parameters, initial guesses, and noise realizations.
The best results for each column is bold-faced.

error of the recovered images. This is likely due to the bound constraints on the

image implemented for those two methods. Furthermore, these solutions are superior

to those for all three methods using hybrid regularization or the identity operator,

suggesting that this is a more appropriate regularizer for this problem. LAP with

the discrete gradient operator recovers the most accurate reconstructed image of the

three methods and achieves better or comparable recovery of the motion parameters.

This is observable in the relative error plots for the 2% added noise case in Fig. 4.2,

and for the problem over all three noise levels in Table 4.1. We can also see from

the relative error plots that LAP tends to recover the correct motion parameters

earlier in the Gauss–Newton iterations than either BCD or VarPro. In terms of cost,

both the LAP and BCD iterations cost significantly less in terms of time and matrix-

vector multiplications than those of VarPro, resulting in faster CPU times and fewer

matrix-vector multiplications for the entire optimization. However while BCD is also
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relatively cheap in terms of matrix-vector multiplies and CPU time, LAP outperforms

it in terms of solution quality. Overall, the LAP approach compares favorably to

VarPro and BCD for this example in terms of both the resulting solutions and cost,

outperforming both methods.

4.2.2 Three Dimensional Super-Resolution

Next, we compared LAP, BCD, and VarPro on a larger three dimensional super-

resolution problem. Again, we use a real-valued, 3D brain MRI dataset provided in

FAIR [47] to construct a super-resolution problem with a known ground truth image

and motion parameters. The ground truth image (resolution 160× 96× 144) is used

to generate 128 frames of low-resolution test data (resolution 40 × 24 × 32). Each

frame of data is shifted and rotated by a random 3D rigid body transformation,

after which it is downsampled using block averaging. Lastly, Gaussian white noise is

added. Again, we run the problem for 1%, 2%, and 3% added noise per data frame.

The resulting optimization problem has 2, 212, 608 unknowns, x ∈ R2,211,840 for the

image and w ∈ R768 for the motion parameters. The data has dimension 5, 898, 240.

The formulation of the problem is identical to that of the two dimensional super-

resolution problem with appropriate corrections for the change in dimension. The

imaging operator K for the 3D example is block diagonal with 128 identical down-

sampling matrices Kj ∈ R12,720×2,211,840 that relate the high-resolution image to the

low-resolution data by block averaging.

The initial guess for the three dimensional problem is generated using the same

strategy as in the two dimensional case: we register all frames onto the first frame

(thus solving 127 rigid registration problems.) This gives an initial guess for the

motion with approximately 3% relative error. Using this initial guess, we then solve

a linear least-squares problem to obtain an initial guess for the image with a relative

error around 13%. We note that this is a poorer initial guess, when compared to
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xinitial |xinitial − xtrue| xLAP |xLAP − xtrue|

Figure 4.3: This figure shows two dimensional cross-sections of the reconstructed
images and image errors for the 3D super-resolution problem with 2% noise. From
left to right, the blocks show the initial guess xinitial, the absolute value of the error
for the initial guess, the solution xLAP for LAP + ∇h, and its absolute error. Each
cross section was taken by fixing one dimension along its midpoint of the domain with
the dotted red lines indicating the cross-sections’ relations to the others.

the true solution, than the one obtained for the 2D super-resolution example. This

may impact the quality of the solution obtainable for examples with large amounts

of noise.

For this example, we test LAP, VarPro, and BCD using only the discrete gradient

regularizer due to its better performance in the 2D example. Again, we fix α = 0.01

for comparison, noting that this may not be ideal for all three methods. For LAP and

BCD, we implement bound constraints on the image variables restricting the solution

element-wise to the range [0, 1]. These constraints are not applied to VarPro. Also

identical to the two dimensional case, all three methods require solving two linear

systems, one larger corresponding to the dimension of the image and one smaller in

the dimension of the motion. For LAP and BCD, the larger system is solved using

LSQR with a tolerance of 10−2 while for VarPro we run LSQR for a fixed number

of 50 iterations in order to achieve the required accuracy. For all three methods, the

reduced system in the motion is solved using Cholesky factorization on the normal

equations. As in the 2D case, we use matrix-vector products by Jx as a metric to

compare the computational cost of the three methods.

The resulting images and relative error plots for the images and motion param-



59

Image Motion

0 5 10 15 20

10−1.5

10−1

10−0.5

Iteration

R
el
a
ti
v
e
E
rr
o
r

0 5 10 15 20
10−4

10−3

10−2

10−1

Iteration

R
el
a
ti
v
e
E
rr
o
r

LAP + ∇h

VarPro + ∇h

BCD + ∇h

Figure 4.4: This figure plots the relative errors for both the reconstructed image and
the motion parameters for the 3D super-resolution problem for 2% added noise. LAP
succeeds in capturing the correct motion parameters in fewer iterations than VarPro
and BCD and in recovering images of comparable quality.

eters for the problem with 2% noise can be found in Figs. 4.3 and 4.4, respectively.

Like the 2D super-resolution example, LAP converges faster to the motion parameters

during the early iterations of the optimization than BCD and VarPro and succeeds

in reaching lower relative errors for both the recovered image and motion parameters.

Again, VarPro’s iterations are far more expensive in terms of matrix-vector multipli-

cations and CPU time as seen in Table 4.2, and the lack of bound constraints results

in poorer solution images than LAP and BCD in terms of the relative error. BCD

performs similarly with LAP in terms of the the reconstructed image, but it does less

well at recovering the motion parameters and is slightly more expensive in terms of

CPU time due to a higher number of function calls.

4.3 Motion Correction for Magnetic Resonance

Imaging (MRI)

The last separable least-squares problem we look at to compare the methods is a

two-dimensional MRI motion correction problem. The goal in this MRI application

is to reconstruct a complex-valued MRI image from its Fourier coefficients that are
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1
%

N
o
is
e Iter. Rel. Err. x Rel. Err. w MatVecs. Time(s)

LAP + ∇h 14.1 6.23e-2 8.65e-4 22.1 2.30e3
VarPro + ∇h 16.4 7.21e-2 9.55e-4 1.79e3 1.23e4
BCD + ∇h 11.3 6.25e-2 1.40e-3 25.7 4.26e3

2
%

N
o
is
e Iter. Rel. Err. x Rel. Err. w MatVecs. Time(s)

LAP + ∇h 15.3 6.35e-2 9.27e-4 21.0 2.15e3
VarPro + ∇h 18.0 7.57e-2 1.00e-3 1.95e3 1.22e4
BCD + ∇h 12.2 6.37e-2 1.59e-3 26.2 3.75e3

3
%

N
o
is
e Iter. Rel. Err. x Rel. Err. w MatVecs. Time(s)

LAP + ∇h 16.2 6.48e-2 8.97e-4 20.3 2.94e3
VarPro + ∇h 17.2 8.08e-2 9.52e-4 1.88e3 1.07e4
BCD + ∇h 11.7 6.50e-2 1.53e-3 25.2 4.21e3

Table 4.2: This table presents data for the solution of the 3D super-resolution for
multiple values of added Gaussian noise. The columns from left to right give the
stopping iteration, relative error of the solution image, relative error of the solution
motion, number of matrix-vector multiplies during optimization, and time in seconds
using tic and toc in MATLAB. All values are averages taken from 10 separate problems
with different motion parameters, initial guesses, and noise realizations. The best
value for each column is bold-faced.

acquired block-wise in a sequence of measurements. Since the measurement process

typically requires several seconds or minutes, the object being imaged often moves

substantially. Motion renders the Fourier samples inconsistent and — without correc-

tion — results in artifacts and blurring in the reconstructed MRI image. To correct

for this, one can instead view the collected MRI data as a set of distinct, complex-

valued Fourier samplings, each measuring some portion of the Fourier domain and

subject to some unknown motion parameters. The problem of recovering the un-

known motion parameters for each Fourier sampling and combining them to obtain a

single motion-corrected MRI image fits into the coupled imaging framework presented

in this chapter.

The forward model for this problem was presented by Batchelor et al. [1]. In their

formulation, the imaging operator K in (4.2) is again block diagonal with diagonal

blocks Kj for j = 1, 2, . . . , N given by

Kj = AjFC.
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Here, C is a complex-valued block rectangular matrix with diagonal blocks containing

the given coil sensitivities of the MRI machine, F is a complex-valued block diagonal

matrix where each block is a two-dimensional Fourier transform (2D FFT), and Ak is

a real-valued block diagonal matrix with rectangular blocks containing selected rows

of the identity corresponding to the Fourier sampling pattern (encoding scheme) for

the kth data observation. We note here that the choice of sampling pattern and num-

ber of samplings N impacts the resulting problem significantly [11]. For 2D problems,

common sampling patterns are Cartesian sequential, radial sequential Cartesian par-

allel 1D, Cartesian parallel 2D, and random. Image representations of these sampling

patterns for a problem with four samples can be seen in Fig. 4.5. Cordero et al. noted

that parallel samplings performed better than sequential samplings, with Cartesian

parallel 2D outperforming both Cartesian parallel 1D and random samplings for very

motion-affected data [11].

The superior performance of the parallel and random sampling patterns is likely

due the fact that the Cartesian parallel 2D encoding scheme ensures that every sample

has both high and low-frequency Fourier data, whereas the sequential samplings do

not. We illustrate this with a small example where we plot the objective functions

for a single sampling Aj over a grid for a reduced size motion correction problem of

the form (4.2) using a single Fourier sample. First, we fix the number of samples,

N = 16, and compute a single sampling for each of the sampling strategies listed

above. These samples correspond to 1/16 of Fourier space, and we can choose j =

1, . . . , 16 corresponding to any of the samples. We use the chosen sampling to create

some ground truth data from a known image with no motion, i.e., w = 0 using the

forward operator dj = AjFCT (0)x + η where Aj corresponds to our sampling of

choice. We add 1% noise. We then test the effect of motion for a given sampling by

evaluating the objective function
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Cartesian sequential Radial sequential Cartesian parallel 1D Cartesian parallel 2D Random

Figure 4.5: This figure illustrates five common sampling patterns for the MRI motion
correction problem: Cartesian sequential, radial sequential, Cartesian parallel 1D,
Cartesian parallel 2D, and random. The pictures are constructed for a 16×16 Fourier
domain with 4 samplings illustrated by the 4 different color shades.

Φ(x,w) =
1

2
‖AjFCT (wvar)x− dj‖2

2

on a grid where the motionwvar is incrementally subjected to a rotation θ ∈ [−π/4, π/4]

and shift along the line b1 = −b2 where b1 ∈ [−1/4, 1/4]. By plotting the surface of

the objective function on a grid corresponding to these motion parameters for each

sampling strategy for different samplings Aj, we can observe how the sampling strat-

egy impacts the difficulty of the optimization. Fig. 4.6 shows the surface plots of

the objective function for all four sampling strategies for j = 1 and 5. For j = 1,

all sampling strategies produce relatively smooth objective functions. This is due to

the fact that this sampling contains large amounts of low-frequency Fourier data for

all four strategies. However for j = 5, the samplings for Cartesian sequential, radial

sequential, and Cartesian 1D parallel contain less low-frequency information, and the

resulting objective functions are highly oscillatory. This increases the difficulty of the

optimization. In contrast, the objective functions for the Cartesian 2D parallel and

random samplings are relatively smooth for all samplings j = 1, . . . , N , making opti-

mization comparatively easier. This makes these methods preferable in the presence

of large amounts of motion in the data samplings, and corroborates the results of

Cordero et al. Following this, we use a Cartesian parallel 2D sampling strategy for

the numerical results in this dissertation.
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Figure 4.6: This figure shows how the choice of sampling pattern can affect the shape
of the objective function. The top two rows (red) plot the objective function of
sample A1 for all five sampling strategies under rotations θ ∈ [−π/4, π/4] and shifts
along the line b1 = −b2 where b1 ∈ [−1/4, 1/4]. The bottom two rows (blue) plot
the objective function for sample A5 for the same motion parameters. Notice how
the lack of low frequency information for some sampling strategies leads to highly
oscillatory behavior for the A5 objective function.
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As with the other examples, the imaging operator K is multiplied on the right by

the block rectangular matrix T with T (y(wk)) blocks modeling the motion parame-

ters of each Fourier sampling. We note that the cost of matrix-vector multiplications

by this imaging operator is dominated by the 2D FFTs in block F . For our problem,

we use 32 receiver coils per sampling, so the resulting cost of a single matrix-vector

multiplication will require 32N 2D FFTs of size 128× 128 where N is the number of

Fourier samplings in the data set. Additionally, we note that the presence of these

FFT matrices prevents us from explicitly storing the matrix and necessitates passing

it as a function call for all of the methods. This also applies to the Jacobian with

respect to the image, Jx. However, because it is relatively small in size, Jw can still

be computed and stored explicitly.

We use the data set provided in the alignedSENSE package [11] to set up an MRI

motion correction with a known true image and known motion parameters. This data

set includes a ground truth complex-valued MRI image and the coil sensitivities for

32 coils. To this end, we generate noisy data by using the forward problem (4.1). The

ground truth image with resolution 128× 128 is rotated and shifted by a random 2D

rigid body transformation. The motion affected image is then observed on 32 sensors

with known coil sensitivities. Each of these 32 observations is then sampled in Fourier

space. For our problem, each sampling corresponds to 1/16 of the Fourier domain,

meaning that N = 16 samplings (each with unknown motion parameters) are needed

to have a full sampling of the whole space. To sample, we use the Cartesian parallel

2D sampling pattern shown above. The resulting data has dimension 128×128×32
16

×16 =

524, 288, and the resulting optimization problem has 16, 432 unknowns corresponding

to x ∈ C16,384 parameters for the image and w ∈ R48 for the motion. Gaussian noise

is then added to each data sampling. We run the problem for 5%, 10%, and 15%

added noise.

As with the super-resolution problem, we compare LAP with VarPro and BCD.
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The MRI motion correction problem differs from the super-resolution examples in that

the image data and resulting image are complex-valued while the motion parameters

are real-valued. This requires consideration during the optimization when taking

gradients or projecting between the space of the real and complex-valued variables.

For regularization, we test all three methods using the discrete gradient regularizer

for a fixed α = 0.01. For LAP and BCD, we test using hybrid regularization with

HyBR, and we run VarPro with the identity for a regularizer and α = 0.01. As with the

super-resolution problems, the least-squares problem in LAP and the least-squares

problem for the imaging step for BCD are solved using LSQR with a tolerance of

10−2 for all choices of regularization. For VarPro, we use LSQR with a tolerance

of 10−8 or a maximum of 100 iterations to maintain accuracy in the gradient. As

with previous examples, Cholesky factorization on the normal equations is used for

the lower-dimensional solves with Jw. No bound constraints were applied to any of

the methods for this example because element-wise bound constraints on the real

or imaginary parts of the complex-valued image variables will impact the angle, i.e.

phase, of the complex-valued solution, which is undesirable.

For an initial guess for the motion parameters, we start with the zero vector,w = 0

(corresponding to a relative error of 100% for the motion). Using this initialization,

we solve a linear least-squares problem to get an initial guess for the image. For 10%

added Gaussian noise in the data, the initial guess for the image has a relative error

of around 35%. This is significantly higher than for the super-resolution examples

and has an impact on the convergence of the Gauss–Newton optimization. We show

the initial guess in Fig. 4.7.

LAP, VarPro, and BCD all manage to recover fairly accurate reconstructions of

both the image and motion parameters for quite large values of noise using either HyBR

or the identity as a regularizer; see Figs. 4.7 and 4.8. This is likely due to the fact that

the problem is not severely ill-posed and is highly over determined (32 sensor readings
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xinitial |xinitial − xtrue| xLAP |xLAP − xtrue|

Figure 4.7: From left to right, the images are the initial guess, the modulus of the
error of the initial guess, the reconstructed image using LAP + HyBR, and image errors
for the reconstructed image. All results are for the MRI motion correction problem
with 10% noise. Note that the MRI images and difference images are the modulus of
the complex-valued images recovered.

for each point in Fourier space.) For this example, the hybrid regularization approach

for LAP and BCD produces the best results, with LAP requiring considerably fewer

iterations. We remark that the best regularization for this problem differs from the

super-resolution problems, and shows the importance of the flexibility that LAP offers

for regularizing the resulting image. The comparative speed of LAP is observable for

the relative error plots for the problem with 10% noise and further evidenced in

Table 4.3 for all noise levels over 10 separate realizations of the problem. For the

gradient based regularizer, all three methods do not recover the motion parameters

accurately. We also note that the number of iterations and their cost is an important

consideration for this problem. Because of the distance of the initial guess from the

solution, this problem requires more iterations to converge than the super-resolution

examples. This follows from the local quadratic convergence properties of Gauss–

Newton for LAP. This is also seen with BCD, which uses Gauss–Newton for the

block optimization on both sets of variables, and VarPro, which uses Gauss–Newton

on the reduced nonlinear problem in w. Within each iteration, the high number of

2D FFTs required for a single matrix-vector multiplication makes multiplications by

the Jacobian Jx expensive. Table 4.3 shows that LAP outperforms VarPro and BCD
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Figure 4.8: This figure shows the relative errors for both the reconstructed image
and the motion parameters for the MRI motion correction problem for three levels of
noise. LAP with hybrid regularization achieves better reconstructions of the image
and motion parameters for fewer iterations than either VarPro and BCD.

for both choices of regularizer by requiring fewer, cheaper iterations in terms of both

time and matrix-vector multiplications. The difference in cost is most dramatic when

compared with VarPro again due to the large number of FFTs required for a single

matrix-vector multiplication and the large number of such multiplications required

within each VarPro function call to solve the linear problem associated with the image.

For BCD and LAP, the number of matrix-vector multiplications is similar, but BCD

requires more iterations for convergence. Overall, we see that LAP outperforms BCD

and VarPro for this problem, and that it provides better reconstructions of both the

image and motion in fewer, cheaper iterations.

4.4 Discussion

We end the chapter with a brief discussion summarizing the results for both the

super-resolution and MRI motion correction examples. For all three examples tested,

LAP outperforms BCD and VarPro in terms of solution quality, computational cost,

and time to solution. This suggests the method’s utility for separable least-squares

problems, especially ones where the subproblem associated with the linear parameters
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5
%

N
o
is
e

Iter. Rel. Err. x Rel. Err. w MatVecs. Time(s)
LAP + HyBR 76.6 3.55e-3 1.59e-4 3.18e2 5.86e2
LAP + ∇h 76.2 3.74e-3 1.67e-4 3.62e2 4.32e2
VarPro + I 116.0 7.93e-2 4.32e-2 2.19e4 1.20e4
VarPro + ∇h 115.9 7.92e-2 4.33e-2 2.19e4 1.52e4
BCD + HyBR 128.6 4.35e-2 2.27e-2 4.03e2 1.01e3
BCD + ∇h 116.6 7.83e-2 4.20e-2 4.27e2 8.59e2

1
0
%

N
o
is
e

Iter. Rel. Err. x Rel. Err. w MatVecs. Time(s)
LAP + HyBR 76.8 6.56e-3 3.25e-4 3.11e2 6.52e2
LAP + ∇h 76.1 6.88e-3 4.15e-4 3.55e2 5.19e2
VarPro + I 116.0 8.08e-2 4.33e-2 2.19e4 1.12e4
VarPro + ∇h 116.0 8.08e-2 4.32e-2 2.19e4 1.27e4
BCD + HyBR 128.2 4.53e-2 2.21e-2 3.89e2 1.24e3
BCD + ∇h 116.0 8.02e-2 4.21e-2 4.12e2 1.05e3

1
5
%

N
o
is
e

Iter. Rel. Err. x Rel. Err. w MatVecs. Time(s)
LAP + HyBR 77.3 9.49e-3 4.69e-2 3.07e2 5.02e2
LAP + ∇h 75.0 1.61e-2 2.92e-2 3.40e2 3.61e2
VarPro + I 115.8 8.29e-2 4.36e-2 2.18e4 9.98e3
VarPro + ∇h 115.7 8.28e-2 4.35e-2 2.18e4 1.27e4
BCD + HyBR 127.0 4.80e-2 2.21e-2 3.47e2 1.06e3
BCD + ∇h 129.0 8.20e-2 4.17e-2 3.99e2 8.17e2

Table 4.3: This table shows the results of LAP, VarPro, and BCD for solving the MRI
motion correction example for multiple regularizers and varying levels of added noise.
Averaged over 10 realizations of the problem, the columns are stopping iteration,
relative error of the solution image, relative error of the solution motion, number
of matrix-vector multiplies during optimization, and time in seconds using tic and
toc in MATLAB. LAP outperforms the other methods in terms of solution quality,
computational cost, and CPU time. The best value for each column is bold-faced.

is ill-posed, requires regularization, or benefits from the implementation of bound

constraints. The examples in this chapter showed this for both real and complex-

valued imaging problems.

One point of interest is that the flexibility in terms of regularization and imple-

menting bound constraints is made possible by LAP’s strategy of linearizing before

projecting the problem. In general, the positives of this flexibility may be diminished

if the linearization is a poor approximation of the nonlinear objective function. We

do not see this for the motion correction problems in this chapter, possibly because

separable least-squares problems are linear in the block of x variables. Thus, the

linearization step of LAP loses less information in the linearization step than if the

problem was nonlinear in both sets of variables. This likely increases the performance

of the method for this class of problem. We compare this with the results in Ch. 5,

where the x block of variables is nonlinear for the problem in question.
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Chapter 5

Locally Rigid Image Registration

This chapter explores the utility of LAP for image registration subject to rigidity con-

straints on some portion of image domain, i.e., locally rigid registration. The locally

rigid registration problem is nonlinear in two blocks of variables with the first, larger

block corresponding to a nonlinear transformation of the image on the unconstrained

portions of the image domain and the second, smaller block corresponding to a rigid

transformation on the constrained regions of the domain. This problem fits within

the LAP framework presented in Ch. 3. We show the utility and limitations of LAP

for this highly nonlinear problem compared to a fully coupled approach by comparing

the convergence of the two approaches.

The chapter is organized as follows. We begin by posing the locally rigid regis-

tration problem. In the continuous setting, we introduce the Lagrangian framework

as a means for tracking the rigidly constrained regions of the image domain and a

hyperelastic regularizer that ensures the smoothness and invertibility of the registra-

tion map while allowing highly nonlinear deformations. This is followed by a section

detailing the numerical implementation for the discretized problem. Finally, we run

numerical experiments to examine the utility of LAP as a solver for the resulting

coupled problem that is nonlinear in both the block of variables corresponding to the
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rigidly constrained regions and also the block of unconstrained, non-parametric vari-

ables. We show results for locally rigid registration on a 2D MRI image of a knee and

a 3D example using blocks, and discuss potential and limitations of LAP for highly

nonlinear problems of this form.

5.1 Locally Rigid Registration Problem

This section formulates the locally rigid registration problem. We introduce the prob-

lem in the continuous setting, following the framework given by [28]. The problem in

d-dimensions (for our purposes d = 2 or 3) can be stated as follows: given a template

image T : Rd → R and a reference image R : Rd → R that are continuously differen-

tiable and compactly supported on some reference domain Ω ∈ Rd, the registration

problem aims to find a transformation y in the space of transformations V such that

transformed template image T (y) is close or similar to the reference image on the

domain Ω. As is common in image registration, we limit ourselves to maps y that are

diffeomorphic, i.e., smooth and invertible, to prevent folding or cracks in the deformed

template image [18]. For our problem, we also impose that the map y is subject to

constraints on some subset of the domain, Σ ⊂ Ω. For general constraints, this can

be written as

C(y)(x) = 0 for all x ∈ Σ, (5.1)

where the constraint on y is active whenever we transform any point x ∈ Σ within

the constrained region. For this chapter, we consider the specific case of constraints

imposing rigid transformations on y in the region Σ. Extending the notation, rigid

constraints for N distinct regions can be written as

∃ θk, bk such that C(y)(x) = y(x)− (Q(θk)x+ bk) = 0

for all x ∈ Σk and k = 1, . . . , N,
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or equivalently,

y(x) = Q(θk)x+ bk for all x ∈ Σk and k = 1, . . . , N.

Here, Q(θk) is a rotation matrix subject to angle(s) θk and bk is the shift for the kth

constrained region. For the two dimensional case, θk ∈ R is scalar and bk ∈ R2 for a

total of three parameters per region, whereas for three dimensions, we have θk ∈ R3

and bk ∈ R3 for six parameters per region. In the optimization and to maintain

consistency with Ch. 4, we concatenate the parameters associated with a given rigid

transformation in the vector

wk =

θk
bk

 ∈ R(3,6)

for the kth constrained region. We use w to refer to the concatenation of all wk into

a single vector containing the rigid motion parameters for all constrained regions.

While introducing the problem, it helps to have condensed notation for the rigidity

constraints, so letting c(wk, x) = Q(θk)x + bk, we condense the notation for local

rigidity constraints to the following expression,

y(x) = c(wk, x) for all x ∈ Σk and k = 1, . . . , N. (5.2)

We use this notation for the duration of the introduction for the problem. For more

information on the rigid transformations, we refer the reader to appendix A.2 or [47].

Rigid constraints are useful when modeling the motion of regions in the template

image that are known to not change shape. One example of this is bones in medical

images, which we present in the numerical experiments for this chapter. Typically,

such constrained regions are identified prior to registration and can be obtained by

segmenting the template image into a number of rigid and non-rigid regions.
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To solve the constrained registration problem, we pose it as an optimization prob-

lem where the goal is to find the transformation y that minimizes a functional com-

prised of two terms. The first term is a distance functional D(y;T,R) that measures

the similarity of the transformed template image to the reference image. The sec-

ond term is regularizer S(y) weighted by a regularization parameter α > 0 that

forces the solution y to be reasonable, i.e., smooth and invertible. This is necessary

as image registration problems are known to be ill-posed [31, 14, 18, 29]. For this

work, we consider the sum of squared distances (SSD) for our distance measure and

consider a hyperelastic regularizer introduced by [5]. To further introduce both, we

now split the conversation into two sections. The first section provides an overview

of the Eulerian and Lagrangian way to model transformations. We introduce and

compare the frameworks, motivating our choice of the Lagrangian model for the con-

strained image registration problem. We then introduce a hyperelastic regularizer on

the transformation y that allows for modeling highly nonlinear deformations while

enforcing smoothness and invertitibility.

5.1.1 Eulerian and Lagrangian Frameworks

In this section, we review the Eulerian and Lagrangian transformation models as two

options for posing the optimization problem for locally rigid registration problem. We

begin by describing the difference between the two approaches for a single point x ∈ Ω

with emphasis on the way each framework handles constraints on the subdomain Σ ∈

Ω. We then detail the effects of each approach on the SSD measure and constraints

for the optimization problem described above. We use this as motivation for using

the Lagrangian framework for our problems.

The Eulerian and Lagrangian models represent two ways of describing the same

transformation. The difference between the two approaches is the difference between

looking backward and looking forward. Consider a transformation y that maps a
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Σ x
y(x)

y

Lagrangian

Σ y−1(x′)
x′

y−1

Eulerian

Figure 5.1: The Lagrangian approach (left) maps a point x ∈ Σ to a point x′ = y(x)
outside the constrained region. In the Eulerian approach (right), a point x′ is mapped
from a point in the constrained region y−1(x′) = x.

point x ∈ Ω to the point x′ = y(x), and let us pair that point with a function value

(image intensity) T (x). The Lagrangian framework starts at this point (x, T (x)) in the

original image and pushes forward to the transformed pair (x′, T (x)) = (y(x), T (x))

in the transformed image. This corresponds to transporting the fixed image intensity

T (x) forward to a new location x′ ∈ Ω. In contrast, the Eulerian framework considers

the endpoint (x′, T (x′)) for x′ ∈ Ω and looks at the pair (x′, T (x)) = (x′, T (y−1(x′)))

from which it was mapped. This is equivalent to fixing the point x′ ∈ Ω in the

transformed image and looking backwards to find the image intensity at the point

from which x′ arrived, i.e., the image intensity T (y−1(x′)) arriving from the point

x = y−1(x′). An illustration of the two approaches can be seen in Fig. 5.1.

The choice of the Eulerian or Lagrangian transformation model impacts the for-

mulation of both the distance measure and the constraints for the locally rigid reg-

istration. Typically, constraints are introduced in the Lagrangian framework in the

context of the forward transformation y, and this is the case in (5.1) and (5.2). How-

ever, in the Eulerian framework, the general constraint in (5.1) must be reformulated

in terms of the inverse transformation, y−1, as

CE(y−1)(x′) = 0 for all y−1(x′) ∈ Σ. (5.3)

A significant issue with this formulation is that the constraints in the Eulerian frame-
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work are dependent on the constrained region and the inverse transformation, Σ(y−1).

This poses several problems and is difficult compared to the Lagrangian approach

where the constraints rely solely on the constrained region Σ. One strategy to over-

come the problems posed by constraints in the Eulerian framework is tracing the

indicator function [46]. However, this results in non-differentiable constraints. Intu-

itively, one can see this by considering two points x′ and x′+ ε such that y−1(x′) ∈ Σ

and y−1(x′ + ε) /∈ Σ for an arbitrarily small perturbation ε. This implies that the

constraint is non-differentiable and makes the Eulerian approach less attractive when

dealing with constrained registration problems. A more formal explanation is pro-

vided by rewriting the constraint in (5.3) as

χy−1(Σ)(x
′)C(y−1)(x′) = 0 for all x′ ∈ Ω,

where χy−1(Σ)(x
′) is the characteristic function of the constrained region Σ under the

map y−1. Here the non-differentiability of the constraint follows directly from the

non-differentiability of the characteristic function.

The Eulerian framework is commonly preferred for unconstrained problems, see

Ch. 4 and [47]. One reason for this is a straightforward SSD measure. In the Eu-

lerian framework, we compare the similarity of the registered images by comparing

a fixed point in the reference image (x′, R(x′)) to a point in the template image

(x′, T (y−1(x′))) for all x′ ∈ Ω. Thus, the SSD measure is given by

DE(y−1;T,R) =
1

2

∫
Ω

(
T (y−1(x′))−R(x′)

)2
dx′,

where the measure depends only on the fixed domain Ω and the map y−1. Combining

the SSD measure with the reformulation of the constraints, the constrained image
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registration problem in the Eulerian framework is

min
y−1

{
DE(y−1;T,R) + αS(y−1)

}
subject to CE(y−1)(x′) = 0 for all y−1(x′) ∈ Σ,

where we solve the minimization problem for the inverse transform y−1. This approach

has the positive of a simple distance measure offset by the difficulty in tracking the

constraints.

In contrast, constraints in the Lagrangian framework are differentiable and depend

solely on the constrained region as seen in (5.1). The tradeoff is that the Lagrangian

approach results in a more involved SSD measure. The Lagrangian approach considers

the forward transform y. Thus, the point (x, T (x)) in the template image is mapped

to (x′, T (x)) = (x′, T (y−1(x′)). The SSD must then compare this mapped point

(x′, T (y−1(x′)) in the template image to the fixed point (x′, R(x′)) in the reference

image for every x′ ∈ y(Ω). The resulting Lagrangian SSD measure is

1

2

∫
y(Ω)

(
T (y−1(x′))−R(x′)

)2
dx′.

This presents two issues. First, the domain of integration y(Ω) for this measure is

subject to changes in the map, meaning that the distance measure reduces or increases

if the domain shrinks or expands. This is undesirable but can be fixed by introducing

an averaged distance given by

1

2

1

|y(Ω)|

∫
y(Ω)

(
T (y−1(x′))−R(x′)

)2
dx′,

where the area or volume of the domain of integration is given by

|y(Ω)| =
∫
y(Ω)

dx′.
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The second problem is that this distance measure requires knowledge of both y and

its inverse. To avoid this, we make a change of variables by x = y−1(x′), which by

the transformation rule gives

∫
y(Ω)

(
T (y−1(x′))−R(x′)

)2
dx′ =

∫
Ω

(T (x)−R(y(x)))2 | det∇y(x)|dx

and

|y(Ω)| =
∫

Ω

| det∇y(x)|dx.

Combining these two equations, we get a Lagrangian distance dependent only on the

forward transform y given by

DL(y;T,R) =
1

2

(∫
Ω

| det∇y(x)|dx
)−1 ∫

Ω

(T (x)−R(y(x)))2 | det∇y(x)|dx. (5.4)

This distance measure is less simple than the Eulerian SSD due to the presence

of additional terms depending on | det∇y(x)|. This accounts for its lack of popu-

larity for unconstrained regularization problems. In particular, the absolute value

in | det∇y(x)| makes (5.4) non-differentiable when det∇y(x) = 0. We avoid this

through the introduction of appropriate regularization in the next section. For con-

strained problems however, dealing with this more complicated distance measure is

rewarded with the easier, Lagrangian constraints and a smooth optimization problem.

We opt for this framework in our work. The resulting registration problem with local

rigidity constraints in the Lagrangian framework is given by

min
y
{DL(y;T,R) + αS(y)}

subject to C(y)(x) = 0 for all x ∈ Σ.

(5.5)

Here, it is unnecessary to track the transform of the constrained region as in the

Eulerian case, and furthermore the constraints are differentiable provided the map y
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is differentiable.

5.1.2 Hyperelastic Regularizer

Next, we focus on the regularizer term S(y). Image registration problems, including

the locally rigid registration problem introduced in the previous section, are known to

be ill-posed [31, 14, 18, 29]. As such, it is necessary to introduce a regularizer to ensure

the solution map y is reasonable by some definition. Typically, these regularizers are

based on the gradient of the transformation, ∇y, and a strain tensor based on the

displacement, u, where y(x) = x + u(x) [10]. Well known nonlinear regularizers

of this form include elastic regularization [4, 10], curvature regularization [17], and

hyperelastic regularization [67]. A major limitation of all these methods is that they

result in finite regularization energies for det∇y = 0, i.e., they do not prevent the

solution map y from becoming nondiffeomorphic. Additionally, we recall that the

Lagrangian SSD from the previous section is non-differentiable for det∇y = 0. Thus,

these regularizers are poorly suited to our problem.

We want a regularizer that limits our solution space to diffeomorphic (smooth and

one-to-one) transformations, thus ensuring the differentiability of the Langrangian

distance function. We also want to allow for transformations that can model large

nonlinear deformations. We opt for a hyperelastic regularizer satisfying both these

criteria [5, 14]. This hyperelastic regularizer satisfies

S(y) →∞ for det∇y → 0

S(y) ≥ c1{‖∇y‖p + ‖ cof∇y‖q + (det∇y)r}+ c2

for constants c1 > 0, c2 ∈ R, and p, q, r > 1. These criteria penalize expansion and

shrinkage, respectively, and ensure that the regularizer energy tends to infinity for

nondiffeomorphic transformations [10]. Moreover, the regularizer explicitly monitors

the value of det∇y to ensure the feasibility of a solution transformation, unlike [67].
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One important side effect of the lower bound on the regularization energy is that

det∇y is bounded below away from 0. This guarantees that the | det∇y| term in the

Lagrangian SSD remains differentiable in the space of permissible transformations.

The hyperelastic regularizer on the transformation y is defined for d = 3 as the

sum of three terms:

S(y) = α1Slen(y) + α2Sarea(y) + α3Svol(y), (5.6)

where α1, α2, and α3 > 0 are regularization parameters and Slen(y), Sarea(y), and

Svol(y) control changes the length, surface area, and volume of the solution transfor-

mation. The three terms are defined by

Slen(y) =

∫
Ω

φl(∇y)dx with φl(X) = ‖X − Id‖2
F

Sarea(y) =

∫
Ω

φa(cof∇y)dx with φa(X) = (‖X‖2
F − 3)2

Svol(y) =

∫
Ω

φv(det∇y)dx with φv(x) = ((x− 1)2/x)2,

where the cofactor and determinant are given by

cof∇y =


∂2y2∂3y3 − ∂3y2∂2y3 ∂3y2∂1y3 − ∂1y2∂3y3 ∂1y2∂2y3 − ∂2y2∂1y3

∂3y1∂2y3 − ∂2y1∂3y3 ∂1y1∂3y3 − ∂3y1∂1y3 ∂2y1∂1y3 − ∂1y1∂2y3

∂2y1∂3y2 − ∂3y1∂2y2 ∂3y1∂1y2 − ∂1y1∂3y2 ∂1y1∂2y2 − ∂2y1∂1y2


det∇y = ∂1y1∂2y2∂3y3 + ∂2y1∂3y2∂1y3 + ∂3y1∂1y2∂2y3

− ∂1y3∂2y2∂3y1 − ∂2y3∂3y2∂1y1 − ∂3y3∂1y2∂2y1.

(5.7)

The length term penalizes changes in the length and angle of the transformation

via a quadratic penalty for departure from the identity. The area term is based on

the interpretation of the columns of the cofactor matrix as normal vectors to the

transformed surfaces. The length of these normal vectors corresponds to the area of
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the transformed surface, and the area term of the regularizer penalizes changes for

lengths different to 1. Lastly, the volume term governs changes in the volume by

penalizing changes in the determinant.

A solution transformation y ∈ V exists for the hyperelastic regularizer used on

unconstrained registration problems with most practical distance measures where

V = {y ∈ W 1,2(Ω,R3) : cof∇y ∈ L4(Ω,R3×3), det∇y ∈ L2(Ω,R),

det∇y > 0a.e., |
∫
y(x)dx| < CΩ}.

(5.8)

Proofs for this result can be found in [5] but are not the main focus of this work, so we

omit further details here. Instead, we turn our attention to the details necessary for

the stable numerical implementation of the locally rigid registration problem using the

Lagrangian distance measure and hyperelastic regularizer presented in this section.

5.1.3 Numerical Implementation

For implementation, we follow a discretize then optimize approach with a multilevel

optimization strategy as in [47]. This approach starts by discretizing and solving

the problem on a coarse level. Once a numerical minimizer is found, this solution

is prolongated and used as a starting guess for the problem at a finer discretization.

This is done over subsequent levels until a solution at the finest discretization level

is reached. The optimization at coarser levels followed by refining helps to avoid

local minima during optimization and is cheaper than fine level optimization for the

nonparametric portion of the domain. For the optimization at each level, we use

Gauss–Newton optimization using LAP for the step solve and a backtracking Armijo

line search as described in Ch. 2 and 3. To enact this optimization approach, we now

detail our discretization of the continuous problem, and how it fits within the LAP

framework.

We begin by restating the Lagrangian formulation of the image registration prob-
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lem subject to local rigidity constraints,

min
y
{DL(y;T,R) + αS(y)}

subject to y(x) = c(wk, x) for all x ∈ Σk and k = 1, . . . , N.

(5.9)

We note that the constraints can be eliminated by rewriting the problem as

min
x,w1,...,wN

{Φ(y) = DL(y(x,w1, . . . ,wN);T,R) + αS(y(x,w1, . . . ,wN))} , (5.10)

where the new transformation y(x,w1, . . . ,wN) combines the nonlinear transforma-

tions and rigid transformations. We define this new transformation by

y(x,w1, . . . ,wN) =


x(u) if u /∈ Σk,∀k = 1, . . . , N

c(wk, u) if u ∈ Σk.

In practice, the transformation y is obtained by patching together the rigid trans-

formations on the constrained regions and a nonparametric transformation on the

remainder of the domain. We then optimize by minimizing the problem (5.10) for x

and w1, . . . ,wN . Note that the discretization of the nonparametric transformation x

varies in size at each level of the optimization, while the rigid transformation has the

same number of parameters at every iteration. Here, we also see the origin of the two

distinct sets of variables, x corresponding to the nonparametric transformation and

w = {w1, . . . ,wN} for the rigid transformation, that make this a coupled problem

suitable for LAP.

Having reformulated the problem, we now discuss discretization of the Lagrangian

SSD, the hyperelastic regularizer, and their derivatives for an arbitrary transfor-

mation y(x,w1, . . . ,wN). To do this, we begin by noting that the parameterized

transformation y(x,w1, . . . ,wN) is a specific instance of a general nonlinear trans-
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formation y. Thus, we begin by presenting the discretization and derivatives for a

general y and then extend that discretization to encompass the specific transformation

y(x,w1, . . . ,wN) that parameterizes both the constrained and unconstrained regions

appropriately. To simplify notation, we present the framework for the three dimen-

sional case, with some notes on differences for the simpler, two dimensional case. We

rely heavily on the work and notation from [56].

Discretization for an unconstrained transformation

To discretize the problem for a general, unconstrained y, we begin as in Ch. 4 by

discretizing the continuous images on a regular, cell-centered grid with n cells on the

domain Ω. Note that for the multilevel optimization approach we use for this problem,

the number of cells in the regular grid is determined by the level of the optimization

with coarser discretizations resulting in fewer cells and finer discretizations resulting

in more. We assume the discrete reference and template images, T ,R, for the problem

are obtained by evaluating the continuous image functions T and R at the cell-centers

of that grid for a given level of the optimization.

To model the nonlinear transformation y, we use piecewise linear, globally contin-

uous finite elements on a tetrahedral mesh built on this discretized grid. To build the

mesh for the three dimensional case, each rectangular solid cell is partitioned into 24

tetrahedra at the lowest level of the optimization. For the two dimensional case, this

simplifies to each rectangular cell being separated into 4 triangles. This partitioning

strategy is chosen over alternatives with 5, 6 tetrahedra or 2 triangles because it is

symmetric and avoids directional bias that may affect the quality of the solution [55].

The penalty we pay is increased cost compared to the alternatives. This is partic-

ularly acute at fine discretization levels for three dimensional problems. For further

details on mesh generation, we refer the reader to Burger et al. for details [5]. Note

that this generation of the mesh on a regular grid only occurs at the lowest (coarsest)
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level of the multilevel optimization. For higher levels, the mesh at the last iteration

of the previous level is prolongated to create a finer mesh.

For the generated mesh on the regular cell grid, let {v1, v2, . . . , vnv} ∈ Rd denote

the set of vertices and {t1, t2, . . . , tnt} the set of tetrahedra, and assume the volume

of all triangles/tetrahedra is positive. For the discrete optimization problem, we then

search for a solution transformation y in the space

Vh =

{
y ∈ C(Ω,Rd) : y

∣∣
ti
∈ Π1(ti,Rd) for i = 1, . . . , nt

}
,

where Π1 is the space of first-order, vector-valued polynomials. We note that this

space is a subset of the space for which a minimizer is proven to exist for the contin-

uous problem, i.e., Vh ⊂ V as defined in (5.8). Using standard nodal Lagrange hat

functions, we construct a basis for Vh given by b1, b2, . . . , bnv : Ω → R. This allows

us to define a discrete transformation yh ∈ Vh on this mesh by the coefficients with

respect to that basis, which we store in the vector y ∈ R3nv . That is,

yh(x) =
nv∑
j=1


y1
j

y2
j

y3
j

 bj(x),

where the vector entry yij = yih(vj) corresponds to the ith dimensional coordinate of

vertex j. We also define the coefficients to an untransformed reference transformation

yref in a similar manner. We use this reference transformation in the implementation

of the regularizer.

Given the above expression for a discrete transformation y on a mesh, we now

develop the notation necessary to evaluate the Lagrangian SSD measure, (5.4), and

hyperelastic regularizer, (5.6). To help with this, we define the following: Ik is the

k×k identity matrix; 1k is the length k vector of all ones; ⊗ is the Kronecker product;
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and � is the Hadamard product.

We denote the discrete vector gradient operator by

B = I3 ⊗∇h, ∇h =


∂h1

∂h2

∂h3

 , ∂hk ∈ Rnt×nv , and [∂hk ]i,j = ∂kbi(Vj).

Given this definition, we store the entries of Jacobian matrix ∇yh in the column

vector

By =



∂h1y
1

∂h2y
1

∂h3y
1

∂h1y
2

∂h2y
2

∂h3y
2

∂h1y
3

∂h2y
3

∂h3y
3



∈ R9nt .

Interpolation from the vertices to the barycenters of the tetrahedra is done using an

averaging matrix

A = I3 ⊗ Â ∈ R3nt×3nv with [Â]i,j =


1/4 if vj is a node of ti

0 otherwise

.

The volumes of the tetrahedra in the mesh are referred to by the following vector and

matrix:

v ∈ Rnt with vi = vol(ti) and V = diag(v).

Lastly, we define the discretized determinant and cofactor, detBy ∈ Rnt and
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cofBy ∈ R9nT , as the entry-wise evaluation of the formulas (5.7) using the appropri-

ate entries of By. The derivatives of the determinant and cofactors are also needed

during optimization. Letting Dj
i = diag(∂iy

j) ∈ Rnt×nt , the derivative of cofBy is

d cofBy =



0 0 0 0 D3
3 −D3

2 0 −D2
3 D2

2

0 0 0 −D3
3 0 D3

1 D2
3 0 −D2

1

0 0 0 D3
2 −D3

1 0 −D2
2 D2

1 0

0 −D3
3 D3

2 0 0 0 0 D1
3 −D1

2

D3
3 0 −D3

1 0 0 0 −D1
3 0 D1

1

−D3
2 D3

1 0 0 0 0 D1
2 −D1

1 0

0 D2
3 −D2

2 0 −D1
3 D1

2 0 0 0

−D2
3 0 D2

1 D1
3 0 −D1

1 0 0 0

D2
2 −D2

1 0 −D1
2 D1

1 0 0 0 0



B

with d cofBy ∈ R9nt×3nv . This expression for the derivative is quite involved and

dominates the cost of optimization with the regularizer term for three dimensional

problems for both matrix-based and matrix-free implemenations. For 2D problems,

the cofactor term in the regularizer is not needed, which significantly lowers the cost.

We can denote the derivative of detBy ∈ Rnt by

d detBy =

[
C1

1 C2
1 C3

1 C1
2 C2

2 C3
2 C1

3 C2
3 C3

3

]
B ∈ Rnt×3nv ,

where Cj
i = diag ([cofBy]i,j) ∈ Rnt×nt .

Using these pieces, we can evaluate the discretized objective function Φ(y) and

its derivatives for a general, unconstrained transformation. Discretizing both the

Lagrangian SSD measure (5.4) and the hyperelastic regularizer (5.6) using a midpoint
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quadrature rule for the numerical integration, we obtain

Φ(y) = DL(y) + S(y),

where the distance is given by

DL(y) = 1
2
r(y)>V diag (detBy) r(y) for r(y) = Tb −R(Ay).

Here, the discrete template image Tb ∈ Rnt is evaluated at the barycenters of an

undeformed, reference mesh using linear interpolation. Note that this expression

looks like the two norm in (2.2), although the dependence of the determinant term

on y changes the problem slightly. The evaluation of the regularizer is given by

S(y) = α1Slen(y) + α2Sarea(y) + α3Svol(y)

=
α1

2
(y − yref )>B>(I9 ⊗ V )B(y − yref ) + α2v

>φw(cofBy) + α3v
>φv(detBy).

Next, we evaluate the gradient as the sum of the gradients of the SSD and regularizer

terms,

∇Φ(y) = ∇DL(y) +∇S(y).

Using the product rule, the gradient for the SSD term is given by

∇DL(y) = −r(y)>V diag (detBy)∇R(Ay)A+
1

2
(r(y)� V r(y))> d detBy,

(5.11)

and the gradient for the regularizer is given by

∇S(y) = α1∇Slen(y) + α2∇Sarea(y) + α3∇Svol(y),
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where

∇Slen(y) = (y − yref )>B>(I9 ⊗ V )B

∇Sarea(y) = ((1⊗ v)� φ′w(cofBy))
>
d cofBy

∇Svol(z) = v>φ′v(detBy)d detBy.

Lastly, we compute an approximation of the Hessian for the objective function as

H(y) = ∇2DL(y) +∇2S(y),

where the first term is

∇2DL(y) ≈ A> (∇R(Ay))> V diag (detBy)∇R(Ay)A,

and the second term is

∇2S(y) = α1∇2Slen + α2∇2Sarea(y) + α3∇2Svol(y),

with

∇2Slen = B>(I9 ⊗ V )B

∇2Sarea(y) = (d cofBy)>(I9 ⊗ V )φ′′w(cofBy))d cofBy

∇2Svol(y) = (d detBy)> diag(v � φ′′v(detBy))d detBy.

Here we reiterate an important observation that the Hessians for the area and vol-

ume terms of the regularizer are expected to be ill-conditioned when there are large

volume changes in the transformation [56]. This is because φ′′v(detBy) → ∞ as

detBy → 0+ or detBy →∞. This requires consideration during the step solve for

the Gauss–Newton optimization. We also note that the formulas above are for the
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three dimensional case. For 2D problems, the area term of the regularizer is dropped,

reducing the complexity and cost of evaluating the regularizer.

Discretization for a constrained transformation

The previous section details the discretization for a general, unconstrained transfor-

mation, y, parameterized by the vector y. We now extend the discretization above

to the constrained transformation y(x,w1, . . . wN) for the locally rigid registration

problem. To discretize the constrained transformation by y(x,w), we begin as for

the general case and initialize the problem with a discretized finite element transfor-

mation y ∈ R3nv on the regular cell grid associated with the images at the lowest

optimization level. Using the masks determining the constrained regions Σk for all k

at the lowest discretization level, we then partition y into sets corresponding to the

unconstrained vertices of the mesh and the constrained vertices denoted by yx and

ywk
for all k, respectively. We set x = yx ∈ Rn to be the column vector containing

the coefficients of the unrestricted transformation on the unconstrained region with

n < 3nv and n divisible by 3. For ywk
on each constrained region, we restrict the

finite element vertices of the mesh in the region Σk to the rigid transformation de-

fined by the parameters wk. The transformation and its derivatives on these regions

of the domain can be expressed in terms of matrix-vector products, see App. A.2.

This reduces the number of parameters for each set of nodes ywk
to the dimension of

wk. In practice as in previous chapters, we refer to the concatenation of all the wk

vectors by w ∈ Rp. The constrained transformation y(x,w) is completely param-

eterized by the blocks of variables x and w. For higher levels of the optimization,

we again prolongate the mesh y(x,w), and the new mesh is partitioned at each level

into constrained and unconstrained regions using the masks for Σk at that level. For

the constrained regions, the w parameters for the final iterate of the optimization on

the previous level are carried over.
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As in the motion correction problems of the previous chapter, the number of

parameters in the x block of variables is considerably larger than in the w block.

However, for the multilevel optimization strategy in this chapter, the size of the x

block increases at each higher levels of the optimization as the mesh is made more

fine, while the size of w remains fixed at every level.

Using the discretized constrained transformation above, we extend the gradients

and Hessians for the SSD and regularizer. These expressions now include an extra step

of the chain rule in their differentiation. For example, the gradient of the Lagrangian

SSD for y(x,w) becomes

∇D(y(x,w)) = ∇x,wy(x,w)∇yD(y(x,w)),

where the second term of that expression, ∇yD(y(x)), is given in (5.11). Similar

expressions follow for the Hessian of the SSD measure and the gradient and Hessian

of the regularizer. The remaining term, ∇x,wy(x,w) can be partitioned into two

blocks corresponding to the unconstrained and constrained regions by

∇x,wy(x,w) =

∇xy(x,w)

∇wy(x,w)

 .
The first of these blocks, ∇xy(x,w), corresponds to an identity matrix as x is sim-

ply a subset of the entries of y corresponding to the unconstrained portion of the

domain. The second requires differentiation of the coefficients of the transformation

y on the constrained vertices with respect to rigid motion parameters. Details on dif-

ferentiation with respect to rigid motion parameters can be in App. A.2. The block

structure in the gradient of the constrained transformation affects the derivatives for

the constrained problem, resulting in a block system for the Gauss–Newton step at
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each iteration, Hxx Hxw

Hwx Hww


px
pw

 = −

∇xΦ(y)

∇wΦ(y)

 ,
where the block matrices are defined as Hxx = ∇xy>H(y)∇xy and so on. This

system has the same block structure as the normal equations framework for LAP in

(3.5). We do not write the system in terms of Jacobian matrices because neither the

hyperelastic regularizer nor the gradient are expressible in those terms. Here, the

block Hessian H is symmetric positive definite if the diagonal blocks are full rank,

and the off diagonal blocks have the relation Hxw = H>wx. We apply LAP to the

system and project out the small block associated with the rigid motion parameters

and obtain a reduced problem,

(
Hxx −HxwH

−1
wwHwx

)
px = −∇xΦ(y) +HxwH

−1
ww∇wΦ(y),

with

pw = −H−1
ww(∇wΦ(y) +Hwypx).

The first of these we solve iteratively for px using PCG method, and the second yields

pw directly by substitution. The first system is solved to a low tolerance 10−1 or 10−2

at each Gauss–Newton iteration. Preconditioning is an important consideration for

this problem, and we demonstrate this in the numerical results section below where we

consider a number of preconditioning options. For the substitution, we can compute

and store the Cholesky factors of Hww once per Gauss–Newton iteration and use

them repeatedly to reduce the computational cost since the dimension of w is small.
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5.2 Numerical Results

In this section, we present the results for two locally rigid registration problems. The

first is a two dimensional example registering a real-valued MRI of a human knee.

The second is a three dimensional example registering two blocks. For both problems,

we explore using LAP for the coupled Gauss–Newton step solve. We compare its

performance with solving the fully coupled system (‘Full’ in tables and figures). In

particularly, we are interested the potential benefits of LAP when the Gauss–Newton

step problem is ill-posed and more difficult to solve, i.e., for transformations when

detBy is very small for some elements. To analyze this, we plot the iteration behavior

of preconditioned conjugate gradient (PCG) on the fully coupled system and the

projected LAP system for various preconditioners for the iteration with the smallest

minimum value for detBy at each level of the multilevel registration. Using a matrix-

based framework for both problems, we compare diagonal, and symmetric Gauss-

Seidel (SGS) preconditioning for both the fully coupled and LAP solve. We also

compare the 2-norm of the difference between the registered images to compare any

differences in the resulting registrations for the two methods, and we look at the time

to solution as a cost-comparison metric.

5.2.1 2D Knee Registration

To set up a 2D registration problem using a knee MRI, we extract 128 × 128 slices

from the template and reference data provided in the 3D knee MRI dataset from

FAIR [47]. The same slice is taken from both the template and reference images

and can be seen in Fig. 5.2. The two large bones above and below the knee joint

are set as the two constrained regions, Σ1 and Σ2, in the template image. Binary

masks of dimension 128× 128 for these constrained regions are created using manual

segmentation using Matlab’s imageSegmenter GUI. We set the image domain to
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Ω = [0, 128] × [0, 128]. This high-level data is then down-sampled to create multi-

level data using the getMultilevel function in the FAIR toolbox. We use 7 as the

highest level of registration and 4 as the lowest for this dataset, where 7 indicates

the exponent of the square image dimension with respect to base 2, i.e., level 7

signifies 128× 128 data as 27 = 128. One issue is that the downsampling uses block

average downsampling, making the lower-level masks of the constrained regions non-

binary. To fix this, we use a truncation tolerance of 0.25 to set pixels in the mask

with intensity less than or equal to the tolerance equal to 0 and round pixel values

greater than the tolerance to 1. Note that this strategy of block averaging followed

by truncation for the masks may lead to overlapping constraint regions, particularly

if the images and masks are downsampled to a low level. This is infeasible, and in

practice means that locally rigid registration problems should not downsample over

too many levels, particularly if the constrained regions are close to one another as

is the case for this problem. In general for other problems, the segmented masks,

downsampling strategy, and lowest level for registration should be adapted to ensure

that the constrained regions are disjoint.

The downsampled images and masks are created on a regular rectangular grid. We

then introduce a discretized transformation y(x,w) using the finite element strategy

detailed in the previous section and introduced by [5]. For levels 4 through 7, this

results in optimization problems of sizes 938, 3, 734, 14, 980, and 60, 196. At each

level, w ∈ R6 gives the rigid motion parameters for the two constrained regions, and

the remaining parameters constitute x, the parameterization of transformation for

the nonparametric registration on the unconstrained regions of the Ω.

We use an initial guess ofw = 0 for the motion parameters of the rigid registration

on the constrained region Σ1 and Σ2. This number of parameters is constant over

all levels of the optimization. At the lowest level, the zero initial guess necessitates

some overlap of the constrained regions in the template image and reference image
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2D Knee
Method Precond. ‖T −R(y)‖ PCG Iters.

Time(s)
Level 4 Level 5 Level 6 Level 7

LAP
SGS 5.25 57 87 92 77 18.3

Diagonal 5.27 115 201 155 252 16.5
None 5.26 188 303 341 651 18.4

Full
SGS 5.24 74 101 90 167 22.1

Diagonal 5.27 149 178 197 210 16.7
None 7.87 104 210 119 127 15.6

3D Blocks
Method Precond. ‖T −R(y)‖ PCG Iters.

Time(s)
Level 5 Level 6

LAP
SGS 5.91 2000 1344 14331

Diagonal 6.35 2000 1453 2786
None 6.32 2000 1875 3045

Full
SGS 5.91 2000 1101 11278

Diagonal 14.07 1038 N/A 488
None 37.66 1473 1505 2857

Table 5.1: This table shows various statistics comparing LAP versus solving the fully
coupled system (Full) for registration for registering 2D knee images and 3D blocks
images. For both problems, LAP and Full were used for various preconditioners
(displayed row-wise). From left to right, the columns show the 2-norm difference of
the transformed reference image to the template image, the total number of PCG
iterations for the Gauss–Newton step systems at each level of the optimization, and
the CPU times for various methods. The lowest value for each column is bold faced
for emphasis.

to avoid becoming stuck in local minima. For the unconstrained regions, the initial

guess for x at the lowest level is given by a regular triangular mesh constructed on

the rectangular grid of the untransformed template image at that level. For higher

levels, the transformation on the unconstrained region from the final iterate of the

next lowest level is prolongated to become the initial guess at the new level [5]. The

parameters for the rigid transformation on the constrained portions of the domain

are passed along as the initial guess at the next level with no prolongation needed.

The prolongation on the nonparametric region of the domain results in increasingly

expensive optimization problems at each level.

We run the problem using the LAP method and the fully coupled approach with

no preconditioner, diagonal preconditioning, and symmetric Gauss-Seidel (SGS) pre-

conditioning with 10 iterations of Gauss–Newton at each optimization level. When

solving for the Gauss–Newton step for both strategies, we use PCG with a tolerance
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Template T Reference R

T (y(x,w)) R(y(x,w)) |T −R(y(x,w))|

Figure 5.2: Results for locally rigid registration for a 2D knee MRI. The first row
shows the original template and reference images for the problem with the constrained
regions Σ1 and Σ2 outlined in blue and red on the template image. The second row
shows the results of the registration. To the left, we see the transformed template
image, T (y(x,w)) with the solution transform overlaid in a blue grid. The middle
image shows the transformed reference image used for the Lagrangian distance mea-
sure, and the image on the right shows the absolute value of the error between the
template image and the transformed reference image.

of 10−1 and a maximum of 100 iterations. For both methods, we use α1 = α2 = α3 =

0.01 as the regularization parameter, noting that this may not be optimal. For this

small problem, we form the Hessian matrices explicitly

We run each strategy with no preconditioning, diagonal preconditioning, and sym-

metric Gauss-Seidel preconditioning. To assess the quality of the registration, we

monitor the norm of the difference between the template image and the transformed

reference image, ‖T−R(y)‖2, which is the quantity minimized by the distance term of

the optimization. Before the registration, the norm between the two images is 15.24.

To quantify cost, we track the total optimization time for the methods over 5 sepa-
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rate runs of the problem. We also track the total number of PCG iterations at each

level of the optimization. This gives an indication of how the solution strategy affects

the solver for the Gauss–Newton step. These values can be found in Table 5.1. We

also monitor the impact of the solver at each Gauss–Newton iterate by looking at the

relative error for PCG solving for the Gauss–Newton step for both strategies. Fig. 5.4

shows plots of the relative error at every level of the optimization for the iterate with

the smallest value for min(detBy), which constitutes the most ill-conditioned step

solve at each optimization level. Lastly, we display the registered solution images and

solution transformation in Fig. 5.2.

The results of the tests in Table 5.1 show several points of interest. Firstly, the

solutions for both the LAP and fully coupled strategies depend heavily on the precon-

ditioner used. This is particularly noticeable in the poor quality of the registration

for the fully coupled approach when no preconditioner is used. This results in a poor

registration. For the other preconditioners, the solutions are similar in terms of the

2-norm, and the difference between the strategies is in terms of cost and time to so-

lution. Symmetric Gauss-Seidel preconditioning requires the fewest PCG iterations

but is slower than diagonal preconditioning due to the cost of applying the precondi-

tioner. Comparing the two strategies for a fixed preconditioners, LAP requires fewer

PCG iterations and takes less time than the fully coupled approach for both SGS and

diagonal preconditioning for this problem. This trend does not hold without precon-

ditioning, but we disregard this as LAP results in a substantially better registration

of the template image. Overall, the reduction in PCG iterations and time to solution

for LAP suggests that the numerics are better for the projected system solved in the

LAP strategy. For this small 2D example, this results in preferable cost and time to

solution.

Interestingly, the superior performance of LAP for the PCG systems is not easily

observable in Fig. 5.4 where we plot the relative error of the PCG iterations for the
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iteration with the smallest value of detBy for each level of the optimization. The

convergence for LAP is not significantly faster or slower than for the fully coupled

approach in terms of the relative error. This holds across optimization levels and for

all tested preconditioners. This behavior is also observable for other iterations of the

optimization for which the relative error plots are not shown. However, note that

the relative error plots for LAP versus the fully coupled approach are for two differ-

ent numerical systems, meaning that a direct comparison between the convergence

rates of the two may not be especially meaningful. One useful observation from the

PCG plots is that the relative error behavior using LAP is less oscillatory than when

solving the fully coupled system, particularly when no preconditioner is used. From

Table 5.1, the fully coupled system with no preconditioner results in a poor registra-

tion solution, suggesting that the oscillations indicate poor numerical behavior of the

unpreconditioned, fully coupled system. We see further evidence of this for the larger

3D problem in the next section.

Overall, the results for this small two dimensional problem suggest that LAP per-

forms slightly better than the fully coupled approach, especially if no preconditioner

is used. This is expected for coupled problems. With appropriate preconditioning,

the methods both result in good registrations, but LAP is less costly in terms of

PCG iterations and reaches a solution more quickly. However, the difference between

the methods is not drastic for this small problem. To further explore the differences

between the two approaches, we test the two methods in the next section on a larger,

more difficult 3D problem.

5.2.2 3D Block Registration

Next, we set up a small 3D registration problem with local rigidity constraints. To

do this, we create template and reference images of dimension 64 × 64 × 64. The

reference image has two vertically aligned blocks, while the template image subjects
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those blocks to two, separate rigid transformations. The two images can be seen in

Fig. 5.3. The two blocks are used as the rigidly constrained regions Σ1 and Σ2, and

masks at the finest discretization are created using truncation. We set the image

domain arbitrarily as Ω = [−32, 32] × [−32, 32] × [−32, 32]. Multilevel data for the

optimization is again created using FAIR’s getMultiLevel function. Again, we use a

truncation strategy with a tolerance 0.25 to obtain binary masks from the interpolated

masks provided by getMultiLevel. To ensure that the rigid regions and masks

are disjoint, we choose a coarsest registration level of 5, i.e., images of dimension

32× 32× 32 where 25 = 32. The highest level of registration is then 6 for the original

images.

The discretized transformation y(x,w) results in optimization problems of di-

mension 500, 394 and 3, 947, 997 for levels 5 and 6, respectively. At each level, 12

parameters in w correspond to the rigid motion on the two constrained regions, while

the remainder of the variables in x are from the nonparametric registration on the

unconstrained region. Note that the finite element discretization for the 3D case di-

vides each rectangular cell from the original image into 24 tetrahedra. This makes

the size of the x block of variables for the nonparametric registration very large for

3D problems.

At the lowest level of the multilevel optimization, we use a zero initial guess,

w = 0, for both of the constrained regions. For the unconstrained region, we use

a regular tetrahedral mesh on the untransformed template image. When moving

to a finer discretization, the rigid motion parameters at the last iterate of the coarse

discretization are passed on, and the mesh on the unconstrained region is prolongated

to become the initial guess at the finer level [5]. We reiterate that this prolongation

results in increasingly expensive problems at finer discretizations.

As in the 2D example, we solve the problem using both LAP and the fully coupled

approach, and for each approach solve with no preconditioning, diagonal precondi-
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tioning, and symmetric Gauss-Seidel preconditioning. We initially used a tolerance

of 10−1 and a maximum of 100 iterations for PCG in the Gauss–Newton step solve

for both methods, but this gave poor results. This was due to the ill-posedness of

the problem, so we changed the tolerance to 10−2 with a maximum of 200 iterations

and achieved better results for both approaches. While this problem is significantly

larger than the 2D knee example, we still form the Hessian matrices explicitly. The

regularization parameters are set to α1 = α2 = α3 = 0.01 by trial and error. When αj

are chosen too small, insufficient regularization is included, resulting in nondiffeomor-

phic solution transformations and a failure of the optimization. When αj are chosen

too large, big nonlinear deformations are heavily penalized during the optimization

resulting in poor registration results. The α values above were chosen because they

result in meaningful registration results and diffeomorphic solution transformations,

but they may not be optimal.

The three dimensional problem is more difficult than the two dimensional one, and

this results in some stratification between LAP and the fully coupled approach. We

also see variation across the regularization approaches. Once again, we look at the

2-norm of the difference between the transformed reference image and the template

image as a measure of the quality of the registration. The norm of the difference

between the two images before registration is 53.12. We track the total number of

PCG iterations for each approach at every optimization level, and we measure the

total time used for the registration using Matlab’s tic and toc functions. These

results are shown in Table 5.1, and the resulting transformed reference image can be

seen in Fig. 5.3.

For this problem, LAP does slightly better in the optimization than the fully

coupled approach, particularly when no preconditioner or a diagonal preconditioner

is used. With no preconditioning, LAP finds a solution transformation that results

in better registration in terms of ‖T −R(y)‖. The solution for LAP with diagonal
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Template T Reference R

R(y(x,w)) |T −R(y(x,w))|

Figure 5.3: Results for locally rigid registration for 3D Blocks using LAP with a
symmetric Gauss-Seidel preconditioner. The first row shows the given template image
T (left) and reference image R (right). The bottom row shows the transformed
reference image R(y(x,w)) (left) and the absolute value of the error (right).The
SSD measure for the registration problem measures the distance of the template
image and the transformed reference image.

preconditioning is similarly better. Here, the fully coupled approach stalled after fail-

ing to find an update resulting in a diffeomorphic transformation during the highest

level of the optimization. Note that this is not due to the value of the regularization

parameters as the optimization problem is identical for LAP and the fully coupled

approach regardless of the preconditioning. When a symmetric Gauss-Seidel precon-

ditioner is used, LAP and the fully coupled approach find solution transformations

with similar registration results in terms of ‖T −R(y)‖. However, we note that for
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larger problems where a matrix-free implementation is required, a direct precondi-

tioner like symmetric Gauss-Seidel may be unavailable. Symmetric Gauss-Seidel is

also costly, as we see from the timings using it for both LAP and the fully coupled

approach. Contrast this with diagonal preconditioning, which is cheaper to apply

and can be implemented in a matrix-free implementation. Across all preconditioners,

LAP is slightly more expensive than the fully coupled approach in terms of time and

PCG iterations. This is different than the results for the 2D example where LAP was

faster and cheaper. Overall, the results show that the optimization behaves better

using LAP, but that there may be some increased cost associated with the method.

The difference is particularly noticeable when no preconditioning or diagonal precon-

ditioning is used when solving the linear system for the Gauss–Newton step.

We also look at the convergence behavior of PCG when solving for the Gauss–

Newton step. Plots of this are in Fig. 5.5 where we plot the relative error of the PCG

iterates at each optimization level for the Gauss–Newton system with the smallest

value for detBy. There is some difference in the order of convergence, with the fully

coupled approach converging more quickly at the lowest level optimization and LAP

converging more quickly at the highest level. However, this behavior is not necessarily

indicative of the quality of the resulting registration. More importantly, we again see

that the convergence plots for LAP are less oscillatory than those for the fully coupled

approach. LAP without a preconditioner does oscillate, but these oscillations are

dampened compared to the fully coupled approach. This suggests better numerical

behavior for LAP compared to the fully coupled approach but reinforces the need for

good preconditioning.

5.2.3 Discussion

We end the section with a brief discussion summarizing the results of the numerical

tests for the locally rigid registration problem. First, the chapter and numerical tests
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show the applicability of LAP to coupled problems that are nonlinear in both sets

of variables. This extends on the work from Ch. 4 where we tested the method on

separable least-squares problems that were linear in the larger, x block of variables.

We also showed another example of LAP’s flexibility for regularization using the

nonlinear, hyperelastic regularizer.

The two examples compared LAP to the fully coupled approach for the multilevel

optimization problem of image registration subject to local rigidity constraints. We

tested both methods with three different preconditioning options. LAP resulted in

similar or better registration results in terms of the 2-norm distance between the

reference and transformed template image. This was especially evident when no pre-

conditioner was used in the 3D example. However, there was no significant difference

in the registration results between LAP and the fully coupled approach using sym-

metric Gauss-Seidel preconditioning. Additionally, LAP had the drawback of being

slower and taking more iterations for the larger, 3D example. Overall, the results

suggest that LAP is somewhat preferable to the fully coupled approach, especially if

a suitable preconditioner is unavailable. It is not significantly more or less expensive

than than the fully coupled approach, but it results in better optimization results for

the problem for our examples.
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PCG convergence plots for 2D knee
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Figure 5.4: These plots compare the PCG convergence for the Gauss–Newton step
problem for LAP (blue) versus solving the full coupled system (orange) for the regis-
tration of a 2D knee MRI. Each row corresponds to a different level of the optimiza-
tion. At each level, we choose the Gauss–Newton iterate with the smallest value for
min(det(∇y)), i.e., the most ill-conditioned system at that level. The columns show
PCG convergence behavior for LAP and the fully coupled system for no precondi-
tioning, diagonal preconditioning, and symmetric Gauss-Seidel symmetric precondi-
tioning.
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PCG convergence plots for 3D blocks
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Figure 5.5: These plots compare the PCG convergence for the Gauss–Newton step
problem for LAP (blue) versus solving the full coupled system (orange) for the 3D
registration of two blocks. Each row corresponds to a different level of the optimiza-
tion. At each level, we choose the Gauss–Newton iterate with the smallest value for
min(det(∇y)), i.e., the most ill-conditioned system at that level. The columns show
PCG convergence behavior for LAP and the fully coupled system for no precondi-
tioning, diagonal preconditioning, and symmetric Gauss-Seidel symmetric precondi-
tioning.
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Chapter 6

Phase Recovery from the

Bispectrum

This chapter presents work on phase recovery in bispectral imaging, a univariate,

nonlinear optimization problem in astronomical imaging. This problem fits within

nonlinear optimization framework of Ch. 2. In this chapter, we extend previous

work by applying Gauss–Newton optimization to the univariate nonlinear problem of

phase recovery, whereas previous work focused primarily on gradient-based methods.

In particular, we show that by using both direct and iterative methods for appro-

priate sparse Hessians, Gauss–Newton optimization offers faster convergence, better

solutions, and lower cost than both gradient descent and the nonlinear conjugate

gradient method for this problem.

The results of our work on this topic were prepared and presented for the 2015

AMOS conference by the author and J. Nagy, and this chapter’s material and results

borrow heavily from the technical report published for the conference [35].
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6.1 Bispectral Imaging Problem

Astronomers have developed a number of techniques to solve the problem of obtaining

high-resolution astronomical images in the visual spectrum from ground-based tele-

scopes. Due to the faintness of many such astronomical objects, particular interest is

paid to techniques that can produce high-resolution images from photon-limited data.

One common method for obtaining high-resolution images under such circumstances

is speckle interferometry, which was initiated by Labeyrie’s observation in 1970 that

high spatial frequency information could be recovered from low-light, short-exposure

images [41]. His method uses two sets of short-exposure image frames, one set of

the desired object and the other of a reference star, to obtain a single, composite

reconstruction of an object’s energy spectrum, i.e., Fourier modulus. However, while

the object’s recovered energy spectrum contains sufficient information about the ob-

ject to produce images for many simple astronomical objects, it proves insufficient

for obtaining high-resolution images for more complicated objects. In the case of

a more complicated object, obtaining a high-resolution image also necessitates the

reconstruction of the object’s Fourier phase. Several methods have been proposed for

this phase reconstruction, most utilizing an object’s triple correlation, its bispectrum,

or some subset of these high-order statistical correlation measures that are obtainable

from the data [39, 65].

The goal of this chapter is to review and expand on several of the algorithms pre-

sented in the literature for phase recovery using an object’s bispectrum. In particular,

we focus on the mathematical formulations of these phase retrieval algorithms as non-

linear least-squares problems and solve them using the Gauss–Newton optimization

framework detailed in Ch. 2. Areas of interest include efficient implementation of

Gauss–Newton optimization and appropriate regularization to improve the quality of

the resulting images.

The chapter is organized into the following sections. Sections 6.1.1 and 6.1.2
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provide a brief description of the speckle interferometry problem and the efficient

collection of the object’s bispectrum. Note that this chapter only aims to cover this

setup in sufficient depth to present the subsequent bispectrum recovery problem in a

cogent manner. For a more extensive discussion of the speckle interferometry prob-

lem, we recommend the articles listed in the bibliography, particularly the paper

of Negrete-Regagnon [49]. Section 6.1.3 introduces the problem of phase recovery

from an object’s bispectrum including the objective functions, gradients, and (ap-

proximate) Hessians used for the optimization. Section 6.2 provides some numerical

results for the optimization, and the final section offers some concluding remarks

about the results.

6.1.1 Calculating the Object Power Spectrum

Before one can consider Fourier phase recovery using bispectral methods, one must

approach the primary problem of speckle interferometry: recovery of the object’s

Fourier modulus or power spectrum. To do this, we start from the continuous model

for describing the blurring of an object o(x, y) by an atmosphere-telescope system

resulting in an observed image i(x, y). For a single short-exposure observation, this

blurring is expressed in terms of the convolution operator,

i(x, y) =

∫∫ ∞
−∞

o(x′, y′)o(x− x′, y − y′)dx′dy′, (6.1)

where the convolution kernel h(x, y) is the point spread function (PSF) that models

the blurring of a given point of the object as a function of the atmosphere-telescope

system. In Fourier space, the convolution property of the Fourier transform allows

the equation above to be expressed by

I(u, v) = O(u, v)H(u, v), (6.2)
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where the multiplication is taken component-wise in frequency space. Here, I(u, v),

O(u, v), and H(u, v) denote the two dimensional Fourier transforms of their lower-

case counterparts in (6.1). We refer to H(u, v) as the optical transfer function (OTF),

which can be expressed as a product of fixed aberrations due to telescope optics and

random aberrations due to atmospheric turbulence. A more complete discussion

of the properties and accurate simulation of H(u, v) can be found in the paper by

Negrete-Regagnon and the references therein [49].

The equations above describe a single instance of the blurring of an object, result-

ing in a single short-exposure image frame. In practice when dealing with photon-

limited imaging, multiple frames are needed to provide sufficient data to recreate a

single, high-resolution composite image. Following this idea, if we assume a set of N

short-exposure images and denote the Fourier transform of the kth image by Ik(x, y),

then taking an ensemble average we get

〈Ik(u, v)〉 = O(u, v)〈Hk(u, v)〉,

where Hk(u, v) is the OTF associated with the kth observed image. Here, we define

the ensemble average as

〈Ik(u, v)〉 =
1

N

N∑
k=1

Ik(u, v)

for N realizations of (6.2). This approach is equivalent to producing the Fourier spec-

trum of a single long-exposure image, but has the drawback of suppressing desirable

high-frequency information due to the “averaging out” effect of the ensemble-average

operation. In order to avoid this drawback, Labeyrie proposed taking the ensemble

average of the modulus squared of the Fourier transform of the data [41],

〈|Ik(u, v)|2〉 = |O(u, v)|2〈|Hk(u, v)|2〉. (6.3)
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Here, the modulus squared operation produces strictly non-negative values for the

ensemble average, which allows for the retention of high-frequency information about

the Fourier spectrum of the object. It follows that simple component-wise operations

provide an expression for the recovery of the Fourier modulus of the object,

|O(u, v)| =
[ 〈|Ik(u, v)|2〉
〈|Hk(u, v)|2〉+ ε

] 1
2

, (6.4)

where the ε in the denominator is a small parameter added to prevent division by

zero. The modulus squared OTF, |Hk(u, v)|2, is commonly called the modular transfer

function (MTF) and in practice is unknown. Instead, it is replaced by the ensemble

average of the Fourier modulus squared of an appropriate reference star, the second

set of short-exposure image data collected for speckle interferometry. If we denote

the kth frame of this star data by sk(x, y) and its Fourier transform by Sk(u, v), we

have

〈|Sk(u, v)|2〉 ≈ 〈|Hk(u, v)|2〉.

This substitution works because the reference star acts as a point source, and the

data should be collected concurrently with the object data in order to ensure the

same astronomical seeing conditions [49]. Effecting this substitution in (6.4), we can

calculate the object’s Fourier modulus, also known as its power spectrum, by

|O(u, v)| =
[ 〈|Ik(u, v)|2〉
〈|Sk(u, v)|2〉+ ε

] 1
2

.

The above expression can be calculated in the discrete setting using element-wise

operations on the collected data and must be multiplied by an appropriate mask to

prevent the computed power spectrum from being overwhelmed by noise in the data.

Details for this can be found in Sect. 7 of Negrete-Regagnon [49].

The above provides a short summary of both the impetus and the means to
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calculate an object’s power spectrum. A few other remarks are worth noting. First,

an object’s power spectrum provides the most significant information relevant to

accurate image recovery using speckle interferometry. It is the primary problem in

the sense that without an accurate recovery of the object’s power spectrum, recovering

its Fourier phase does not allow for recovery of a high-quality resultant image. The

ability to recover the object’s power spectrum accurately is dependent on the data

signal-to-noise ratio (SNR) that in turn depends on atmospheric conditions, light

levels of the data (or photo-events per data frame), and optics setup among other

things. For a more complete discussion of these factors, we again recommend Negrete-

Regagnon and its references [49].

6.1.2 Accumulating the Object Bispectrum

Having outlined a method for obtaining an object’s power spectrum using speckle

interferometry, we now turn to the problem recovering the object’s Fourier phase.

Most techniques for this focus on the use of correlation techniques, with much of the

literature focusing on the use of the object’s triple correlation and its Fourier trans-

form, the bispectrum [39, 65]. An object’s triple correlation measures the correlation

of the object against two independently shifted copies of itself in the spatial domain.

In two dimensions, this is expressed by

oTC(x1, y1, x2, y2) =

∫∫ ∞
−∞

o∗(x, y)o(x+ x1, y + y1)o(x+ x2, y + y2)dxdy.
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Taking a Fourier transform of the equation, we get the object’s bispectrum

O(3)(u1, v1, u2, v2) = O(u1, v1)O(u2, v2)O∗(u1 + u2, v1 + v2)

= |O(3)(u1, v1, u2, v2)| exp(iβ(u1, v1, u2, v2)),

(6.5)

where the element-wise relationship comes from an analogous property to the convo-

lution property for the Fourier transform. Noting that we already have a method for

obtaining the object’s Fourier modulus from the previous section, we shift our focus

to the exponential term of the bispectrum and its angle, which we call the phase,

β(u1, v1, u2, v2).

First, we establish the relationship between the phase of the bispectrum and the

object’s phase that we want to recover, φ. It has been shown that similarly to (6.3),

we can relate the collected ensemble bispectrum of the data to the bispectrum of the

object by

〈I(3)
k (u1, v1, u2, v2)〉 = O(3)(u1, v1, u2, v2)〈H(3)

k (u1, v1, u2, v2)〉.

Furthermore, analysis by Lohmann et al. showed that the bispectral transfer function,

〈H(3)
k (u1, v1, u2, v2)〉 has an expected real value, meaning that its phase is effectively

zero [42]. This then gives a direct relationship between the phase of the data’s bis-

pectrum, β, and the phase of the object that is to be recovered

β(u1, v1, u2, v2) = φ(u1, v1) + φ(u2, v2)− φ(u1 + u2, v1 + v2)

β(u,v) = φ(u) + φ(v)− φ(u+ v),

(6.6)

where the second expression is identical to the first but substitutes in the vector

notation for the Fourier coordinates, u = (u1, v1) and v = (u2, v2). We will use
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this convention for the remainder of the chapter to simplify indexing. This equation

provides a direct relation between the elements of the phase of the data bispectrum

and the phase of the object, and it serves as the starting point for all of the phase

recovery algorithms in Sect. 6.1.3.

In order to use (6.6) to recover the object phase, one must first be able to efficiently

accumulate the phase of the collected ensemble bispectrum of the data, β(u,v) for a

large number of points u,v in the Fourier domain. To do this, we again look at the

exponential term in (6.5). Denoting by ψ the phase of a single data frame Ik(u, v),

the exponential part of the equation can be written as

exp(iβ(u,v)) = exp(iψ(u)) exp(iψ(v)) exp(−iψ(u+ v)).

Taken over the set of N data frames, the phase of the bispectrum then becomes

β(u,v) = angle

(
N∑
k=1

exp(iψk(u)) exp(iψk(v)) exp(−iψk(u+ v))

)
.

From this, one can see that efficiently computing the object’s bispectrum becomes

a question of identifying all the (u,v,u + v) triplets necessary to evaluate and sum

the right hand side across for each data frame (the triplets remain constant across all

frames.) The most efficient method of doing this is by means of an indexing structure

that saves the indices of these triplets and vectorizes computation of the bispectrum

accumulation. Additional efficiency can be attained by exploiting the symmetries in

the phase of real images in Fourier space. A description of the logic behind such an

indexing structure can be found in work by Tyler and Schulze [61].

We note that even with the efficiency afforded by vectorization and symmetry

when using an indexing structure, the number of bispectrum elements becomes infea-

sible if u and v span over the whole image when collecting the triplets. In practice,

we restrict u and u+v within a larger radius called the Fourier radius. Typically, the
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Fourier radius is between 1
4

and 1
2

of the pixels in the domain, for example, between

32 and 64 pixels for an image of size 128 × 128. We restrict v to a smaller, second

radius between 3 and 5 pixels. Fortunately, this choice is not just a computational

compromise, but is driven by considerations inherent to the problem. Both radii are

sensitive to astronomical seeing conditions and telescope optics and should be chosen

with care [61]. A good choice has the effect not only of ensuring the collected bis-

pectrum has a good signal-to-noise ratio but also has the practical benefit of making

the number of bispectrum elements computationally feasible for the phase recovery

problem.

6.1.3 Phase Recovery Problem

Objective Functions

Once the data bispectrum has been collected, we are prepared to approach the prob-

lem of recovering the object’s phase. All the methods for the phase recovery are

based on the relationship provided in (6.6). Considering this relationship across all

bispectrum phase elements, we can reformulate the expression in matrix-vector form,

β = Aφ.

Here, the data vector β is an m× 1 vector of all the accumulated bispectral elements

corresponding to m distinct (u,v,u+v) triplets, φ is the unknown n×1 dimensional

unknown object phase at the cell-centers of the object’s Fourier transform, and A is

an m × n sparse matrix (m � n) with three non-zeros entries per row, two 1’s and

one −1 corresponding the sign of the phase elements in (6.6).

From this expression, fitting the phase to the data is formulated as an overdeter-

mined nonlinear least-squares problem. The nonlinearity arises due to the fact that

the bispectrum is collected modulo-2π (or wrapped). One idea then is to unwrap the
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phase to obtain a linear least-squares problem, as proposed by Marron et al. [44]. We

focus on the alternative option of solving the nonlinear least-squares problem with

the collected, wrapped bispectrum. Multiple minimization schemes for solving the

nonlinear problem have been proposed, and we build on these. The first scheme we

look at was proposed by Haniff [32], given by

min
φ

{
E1(φ) =

1

2
‖W 1

2 mod2π(β −Aφ)‖2
2

}
,

where W
1
2 = diag(

√
w1, . . . ,

√
wm) is a diagonal matrix containing weights corre-

sponding to the signal-to-noise ratio of the jth collected bispectrum phase element

[49]. We compute the gradient and approximate Hessian for this objective function

by

∇φE1 = −A>W (mod2π(β −Aφ))

∇2
φE1 = A>WA,

(6.7)

where W = W
1
2W

1
2 . Here, the presence of the modulo-2π operation introduces a

number of considerations for the problem. First, the modulo causes a loss of convexity

as there are periodic local minima for each phase element every 2π. This makes

optimization methods more likely to be caught in one of these local minima and more

sensitive to an educated starting guess. Furthermore, E1(φ) is non-differentiable at

the many periodic jump-continuities where the modulo-2π misfit wraps from 0 to 2π.

In the derivatives above, we have simply ignored the modulus during differentiation,

an idea that is used in the literature and has proven to be effective in our work.

However, we should remain aware of it during the optimization.

To avoid the issue of non-differentiability, Haniff’s paper also proposes an alter-

native non-linear least-squares scheme that minimizes over the misfit in the object’s
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phasor [32]. Here, a phasor is defined as the normalized complex exponential of a

phase element, i.e., the phase φ corresponds to the phasor exp(iφ) = cos(φ)+ i sin(φ).

The misfit function for this scheme is given by

min
φ

{
E2(φ) =

1

2

(
‖W 1

2

(
cos(β)− cos(Aφ)

)
‖2

2 +
1

2
‖W 1

2

(
sin(β)− sin(Aφ)

)
‖2

2

)}
,

where W
1
2 is defined as above. Differentiating with respect to the phase, we derive

expressions for the gradient and approximate Hessian,

∇φE2 = A>W
(

cos(β)� sin(Aφ)− sin(β)� cos(Aφ)
)

∇2
φE2 = A>WDA.

(6.8)

Here, � denotes the Hadamard product or component-wise multiplication of vectors

andD is a diagonal matrix defined byD = diag(cos(β)�cos(Aφ)+sin(β)�sin(Aφ)).

This formulation is still non-convex with periodic local minima every 2π, but it is dif-

ferentiable everywhere. The addition of D creates additional computational consid-

erations, namely the approximate Hessian associated with E1(φ) is constant, whereas

the Hessian for E2(φ), the Hessian must be updated at every iteration of the opti-

mization because of the D matrix.

In both formulations of the phase-matching problem above, the gradients and

Hessians are calculated by differentiating with respect to the phase, φ. However,

the final goal of the optimization is to combine the matched phase with the object’s

calculated power spectrum to obtain the best quality image possible from the data.

Thus, it would be useful if the least-squares optimization for matching the phase took

into account the resulting image. To this end, Glindemann and Dainty proposed a

different approach to Haniff’s first objective function, E1(φ). Rather than differ-
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entiating with respect to the phase, they proposed considering the phase retrieval

as a function of the resultant image, E1(o) [22]. To do this one must also differ-

entiate with respect to the resultant image. The resultant image can be expressed

as o = F−1 (|O(u, v)| � exp[iφ]) where F−1 is an inverse 2D Fourier transform and

|O(u, v)| is the object’s calculated Fourier modulus. Differentiating with respect to

the resultant image can be done as an extension to (6.7) using the chain rule to dif-

ferentiate the phase with respect to the image. The gradient and Hessian resulting

from this approach are, respectively,

∇oE1 = −∂φ
∗

∂o
A>W [mod2π(β −Aφ)]

∇2
oE1 =

∂φ∗

∂o
A>WA

∂φ

∂o
.

(6.9)

Here, the gradient is nearly the same as (6.7) with the exception of the additional ∂φ
∂o

operator. To derive an expression for this operator and its adjoint, we first note that

the object’s phase φ can be expressed as a function of the current image o by

φ = arctan

(
Im(Fo)

Re(Fo)

)
.

From this, it is then possible to calculate the adjoint gradient operator ∂φ∗

∂o
via a

combination of the chain rule and the quotient rule, as done in the appendix of

Glindemann and Dainty [22]. The adjoint operator in the generic direction z is then

given by

∂φ∗

∂o
(z) =

Re(Fo)� Im(Fz)− Im(Fo)� Re(Fz)

|Fo|2

=
Im
(
Fz �Fo

)
Fo�Fo

= Im

(Fz
Fo

)
.

(6.10)
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Here, the Hadamard product, the division, and the squared operation are all taken

component-wise, while F again denotes a two dimensional Fourier transform. Some

other considerations are important in computation. In order to avoid division by

zero, the gradient at indices where the denominator is equal to zero should be set

to zero. Also, the Fourier transforms need to be scaled properly according to the

implementation used.

When computing the approximate Hessian for the Newton-based optimization, it

is also necessary to compute the forward operator of (6.10) in the direction z. This

is most easily done and verified by an adjoint test, and is expressed as

∂φ

∂o
(z) = Im

(
F
[

Re(Fo)� z
|Fo|2

])
− Re

(
F
[

Im(Fo)� z
|Fo|2

])
= Im

(
F
[
z �Fo
Fo�Fo

])
= Im

(
F
[ z
Fo
])
.

Here again, division, squared operations, and Hadamard products are component-

wise operations; indices corresponding to division by zero should be set to zero; and

Fourier transforms should be scaled appropriately.

Having derived ∂φ
∂o

and its adjoint, we can efficiently evaluate the gradient and

Hessian for E1 with respect to the resulting image in (6.9). This framework can also

be applied to differentiate Haniff’s second objective function, E2, using Glindemann’s

idea. To our knowledge, this formulation for the minimization has not been explored

in the literature and represents a new extension on the ideas above. The gradient
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and Hessian of E2(o) with respect to the resultant image are given by

∇oE2 =
∂φ∗

∂o
A>W [cos(β)� sin(Aφ)− sin(β)� cos(Aφ)]

∇2
oE2 =

∂φ∗

∂o
A>WDA

∂φ

∂o
.

(6.11)

Differentiating both objective functions with respect to the resultant image has a

number of possible advantages. First, we remarked above on the non-convexity of

both least-squares formulations and the presence of many local minima. Differentiat-

ing with respect the resultant image has the potential to drive convergence to different

minima, potentially resulting in improved image quality. Furthermore, differentiating

with respect to the image rather than the phase presents the prospect for regular-

ization with respect to the resultant image. This would allow for the enforcement of

certain desirable image traits like non-negativity. With this in mind, we look at a

potential regularizer.

Regularization

We look at a regularization scheme proposed by Glindemann and Dainty for enforcing

non-negativity [22]. This regularization is used with E1(o) and E2(o) when differen-

tiated with respect to the resultant image. The regularization introduces a penalty

term to discourage negative intensity values in the resultant image and is written as

E+(o) =
α

2

∑
γ

|o(γ)|2,

where γ is the set of indices corresponding to negative image values at the current

iteration. The weighting parameter α should be chosen to drive the solution to

positive values while still allowing the optimization to effectively match the object’s

phase to the data bispectrum. Some discussion for the selection of the regularization
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parameter will be included in Sect. 6.2. Next, we must differentiate the regularizer;

the element-wise first and second derivative are given by

∂E+

∂oj
=


αoj if j ∈ γ

0 else

∂2E+

∂o2
j

=


α if j ∈ γ

0 else

.

These can then be put into vector and sparse, diagonal matrix form for the gradient

and Hessian, respectively. Summing them with the gradient and Hessian from (6.9)

and (6.11) then follows.

6.2 Numerical Results

To test and compare the objective functions introduced in the previous section, we

first simulate the necessary sets of speckle interferometry data [58, 62]. We generate

50 frames of short-exposure data for both the object and the reference star with

Fried parameter D/r0 = 30, using different seeds for the random number generator

to ensure independence of the randomness of the two data sets. Each star and data

frame has dimension 256×256. The object data is scaled to include 3e6 photo-events

per frame and zero-mean Gaussian noise with standard deviation σrn = 5 is added.

The star data is scaled to 5000 photo-events per frame.

From this data, we collect the object’s power spectrum and phase of the data

bispectrum. The phase of the data bispectrum is collected using a Fourier radius of

256
4

= 64 and a second radius of 5. This results in collected bispectrum of length

m = 496, 466. The unknown phase has dimension n = 2562, but we only edit entries
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within the Fourier radius leading to ñ = 12, 852 variables. Before testing the various

optimization schemes, we note once again that the objective functions E1(φ), E2(φ),

E1(o), and E2(o) all have frequent local minima. As a consequence, the minimization

of both objective functions is highly dependent on a good initial guess for the phase.

To generate this guess, we use the recursive phase recovery scheme proposed by

Tyler [61].

Using the initial phase collected via the recursive algorithm, we solve the phase

recovery problem for each objective functions proposed in the previous section using

gradient descent, nonlinear conjugate gradient (NCLG), and Gauss–Newton. Gradi-

ent descent is included as a first-order benchmark while NLCG has been preferred

in previous implementations due to reluctance to implement the large linear sys-

tem solves using the Hessian that are necessary for Newton-based optimization [49].

Newton-based methods pose the challenge of solving a linear system with the Hessian

when choosing a descent direction, but offer the promise of improved convergence.

Thus, we consider whether the Hessian solve can be made efficient enough to offset

the additional cost associated with the method.

Several choices are made for methods parameters. For all three optimization

methods, we use a backtracking Armijo line search with a maximum step length of

1 for the step length parameter. We note that this does not necessarily satisfy the

strong Wolfe conditions necessary for a descent direction in NLCG, but in practice it

proves sufficient. The results for each minimization scheme on each of our objective

functions can be seen in Fig. 6.1. For stopping criteria, we use the relative change in

the objective function per iteration and a tolerance of 10−5. That is, if the objective

value fails to decrease more than the set tolerance at each iteration, the method was

stopped.

From Fig. 6.1, we see that the methods perform as expected in terms of conver-

gence: NLCG outperforms gradient descent and Gauss–Newton is superior to both
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Figure 6.1: The subplots show the convergence of the proposed optimization strate-
gies for matching the object phase φ to the phase of the data bispectrum for 50 frames
and D/r0 = 30 with stopping tolerance tol = 10−5. Subplots (1, 1) and (1, 2) show,
respectively, the results for the objective functions E1(φ) and E2(φ) optimized with
respect to the phase, while subplots (2, 1) and (2, 2) show the results for E1(o) and
E2(o) when differentiated with respect to the resultant image. When differentiating
with respect to the phase, the Gauss–Newton converges faster and to lower minima
than the gradient based methods. Differentiating with respect to the image, simi-
lar minima are reached but Gauss–Newton meets the convergence criteria in fewer
iterations.
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in terms of convergence per iteration. These results are more pronounced for E1(φ)

and E2(φ) than for E1(o) and E2(o), but the trend holds. However, the results from

the figure do not give an indication of the total cost of the iterations in terms of time

and computation. If the cost of the Hessian solve in each Gauss–Newton iteration is

too costly, the improvement in convergence per iteration may be offset by the expense

of each iteration itself. Thus, we must address the cost of the Hessian solve for each

objective function before making any comment on the preferability of one method to

another.

Handling the Hessian Solve and per Iteration Cost

To approach the Hessian solve for each iteration of Gauss–Newton using E1(φ) and

E2(φ), we first note that the Hessian for E1(φ) in (6.7) is independent of φ, making

it constant for all iterations of the optimization. As such, factorization for a direct,

sparse solver is an option because any factorization can be computed once and stored

for all iterations of the method. We also recall that due to the windowing for signal-

to-noise ratio considerations and the symmetries of real images in Fourier space, the

number of phase elements to be recovered for a given image is significantly less than

the number of pixels in the image, i.e., ñ � n. This means that the m × n Hessian

is highly rank deficient, with many zero columns. Lastly, we note for E1(φ), the

Hessian is symmetric positive semi-definite because W has positive entries. Here,

the semi-definiteness is a direct result of the rank deficiency.

Bearing these characteristics in mind, we implement the following approach for

the Hessian of E1(φ). First, we compute and store a symmetric approximate mini-

mum degree permutation to shift the non-zero rows and columns of the Hessian to

the upper left-hand corner of the matrix. Next, we extract the resultant sub-matrix

corresponding to the non-zero part of the Hessian. This sub-matrix has dimension

ñ × ñ and is much smaller than the full Hessian. It is also symmetric positive def-
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Full Permuted Truncated Factorization

dim: 65536× 65536 dim: 65536× 65536 dim: 7062× 7062 dim: 7062× 7062
nnz: 1555450 nnz: 1555450 nnz: 1555450 nnz: 781256

Figure 6.2: This shows the non-zero values for the Hessian A>WA and its treatment
for the objective functions associated with the Hessians in (6.7) & (6.8) using Matlab’s
spy command. The Fourier radius for the bispectrum recovery is 64 and the second
radius 5 for a 256× 256 image. These radii and symmetry limit the number of phase
values to be recovered, making the matrix highly singular and sparse. The full Hessian
is in the first subplot. A symmetric minimum degree permutation shifts the non-zeros
toward the upper left of the matrix in subplot two. In the third subplot, we extract
the non-singular sub-matrix in the upper left corner, extracting a truncated Hessian.
Finally, we compute an incomplete Cholesky factorization of this truncated Hessian
in subplot four, which preserves the sparsity pattern and limits fill in.

inite. As such, we can compute the Cholesky factorization or incomplete Cholesky

factorization of the sub-matrix once and store the factors for all subsequent itera-

tions of the method. This reduces the cost or solving the linear system to compute

the Gauss–Newton step at each iteration from a potentially O(ñ3) operation to a

permutation followed by two smaller O(ñ2) triangular systems, while the O(ñ3) fac-

torization is only done once. Additionally, it ensures that the non-zero components of

the direction in the optimization correspond to the phases of elements in the Fourier

plane that we wish to recover. In practice, we can save further by using an incom-

plete Cholesky factorization because it minimizes fill in and maintains the sparsity

pattern. This speeds up solving the triangular system while delivering similar results

in the optimization. Fig. 6.2 shows the transition for the permutation, truncation,

and factorization of the Hessian matrix using MATLAB’s spy function.

For the Hessian of E2(φ), the strategy used for the Hessian of E1(φ) presents a

problem: the diagonal matrix D in the Hessian in (6.8) is dependent on φ. Also,
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D may contain non-positive entries causing the extracted permuted matrix to lose

both positive definiteness and positive semi-definiteness, thus preventing the use of

a Cholesky factorization. To avoid these complications, we omit the matrix D in

practice, making the Hessian for E2(φ) equal to that of E1(φ). This then allows

us to follow the strategy used above. In practice, this strategy delivers comparable

convergence in the optimization while avoiding updates to the factorization and loss

of positive definiteness in the permuted sub-matrix (see Fig. 6.1).

The Hessian solves for objective functions E1(o) and E2(o) are more complicated

due to the ∂φ
∂o

operator and its adjoint. These operators are dependent on the resultant

image o and must be updated at each iteration. Additionally, the Fourier transforms

present in these operators cause a loss of sparsity, meaning that the Hessians for

both E1(o) and E2(o) are full matrices of dimension n× n. This makes factorization

and direct solvers infeasible. However, the sparse matrix A>WA can be computed

once offline, and multiplication by ∂φ
∂o

and its adjoint done efficiently with FFTs.

Using this strategy, one can compute matrix-vector products efficiently using these

Hessians, so we use MATLAB’s pcg solver with a low tolerance of 10−1 to determine

the search direction for the Gauss–Newton step when optimizing E1(o) and E2(o).

For E2(o) as for E2(φ), we omit D to ensure that the Hessian operator is symmetric

positive definite, making it identical to E1(o). This strategy again allows for offline

computation of A>WA. This provides computational savings, and the convergence

of the method does not suffer significantly.

In Table 6.1, we compare of the average number of function calls in the line search

and the average CPU time per iteration for gradient descent, NLCG, and Gauss–

Newton for each of the objective functions. For E1(φ) and E2(φ), the Gauss–Newton

scheme results in a significant speed up of the method. It converges in fewer iterations,

and each iteration is faster than either gradient descent or NLCG. This is not expected

for a second-order optimization schemed but is achieved due to a reduced number of
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Grad. Descent NLCG Gauss-Newton

E1(φ)
LS/Iter. 14.4 14.5 1.0
Sec./Iter. 0.94 0.97 0.33

E2(φ)
LS/Iter. 14.4 14.5 1.0
Sec./Iter. 1.52 1.63 0.27

E1(o)
LS/Iter. 16.4 15.8 1.7
Sec./Iter. 1.28 1.21 1.19

E2(o)
LS/Iter. 15.9 16.1 1.1
Sec./Iter. 1.98 1.96 0.84

Table 6.1: This table shows the average number of function calls in the line search
per iteration and the average CPU time per iteration for gradient descent, nonlinear
conjugate gradient, and Gauss–Newton optimization for each of the four objective
functions: E1(φ), E2(φ), E1(o), and E2(o).

function calls in the line search and the efficiency of the Hessian solve due to the

strategy outlined above. Some improvement in the comparison for the gradient based

methods may be possible using an adaptable maximum step length for the Armijo

line search, but the improved convergence rate for the Gauss–Newton method and its

scaled step length make it an attractive choice. For E1(o) and E2(o), the trends are

lessened but remain. The Gauss–Newton method converges in fewer iterations and

displays the same advantages in the line search. It reaches similar minima in terms of

the relative objective function, although Fig. 6.3 suggests this the relative objective

function is not always the best metric for the quality of the resulting image. Omitting

D and computing A>WA offline for both objective functions significantly reduces

the cost of matrix-vector multiplications using the Hessian, and the reduced number

of line search iterations. This makes Gauss–Newton iterations cheaper than gradient

descent or NLCG iterations. These results could possibly be improved further by

introducing a suitable preconditioner to the conjugate gradient method for calculating

the Gauss–Newton step. This represents future work.
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Choosing a Regularization Parameter

Another important decision affecting the performance of E1(o) and E2(o) is the

selection of a regularization parameter α for enforcing non-negativity when using

E+(o). This is complicated by the nonlinearity of the objective functions, which

limits the applicability of many standard techniques for regularization parameter

selection.

For our tests on this problem, we found using the average mean-squared error to

be an effective method of parameter selection. If oα is the regularized solution for

a given α parameter, we chose the α that minimized the two norm between the oα

and the true solution otrue. This was tested across a range of α and several different

true images to test that the regularization parameter was a realistic choice. We found

α = 100 to be an effective parameter for all three methods when using 3e6 photo-

events per object data frame and 5000 photo-events per star data frame. Note that

in general, α is sensitive to the number of photo-events in the object and star data

and should be determined accordingly.

Using the average mean-squared error, we can ensure that the regularization pa-

rameter selected is affecting our solution and enforcing non-negativity. While using

the true solution to select the regularization parameter is not a realistic expectation

for real world data, it does verify that the regularization approach is effective. Find-

ing a method of parameter selection that is independent of knowledge of the true

solution represents future work.

Resultant Images

The final goal of the phase recovery is to combine it with the computed object power

spectrum to obtain a good resultant image. Below, we display the resultant images

from E1(φ), E2(φ), E1(o), and E2(o). For the first two objective functions, the

phase is combined with the power spectrum after the iterative methods, where as for
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E1(o) and E2(o), the power spectrum is included in the initial guess and the resultant

images come directly from the iterative method. The resultant images for 50 data

frames and D/r0 = 30 can be seen in Fig. 6.3.

From the figure, we can see various results of the image recovery. Combining the

power spectrum with the initial guess for the phase makes the object identifiable to the

eye. The optimization results for the phase offer varying improvement to the details

of the object including sharpening some details and edges. For example, observe the

round knob on the satellite’s body and details on the panelling from image to image.

The regularization for E1(o) and E2(o) helps reduce the ringing around the object,

likely due to the introduction of the regularizer. Note that the regularization scheme

pushes the negative image values upward toward zeros, but does not impose strict

non-negativity. Picking a regularization parameter that balances non-negativity and

image quality yields the best results. Larger values for α tended to sacrifice resultant

image quality for the sake of forcing background values to be non-negative. Something

to this effect can be seen in the image results for NLCG on E1(o) and E2(o) where

over-regularization compromises image quality. This happens even though the relative

error of the objective function is comparable to the other two methods, suggesting

this is not always the best metric for evaluating images. Overall, the results for the

three methods show that the gains in optimization using Gauss–Newton optimization

also result in comparable or better images than the gradient based methods for phase

recovery.

We conclude this chapter with some final remarks on the utility of the methods im-

plemented. The image quality obtained from the gradient-based methods and Gauss–

Newton were mostly comparable. The main utility of the Newton-based optimization

lies in the improved convergence offered by incorporating the Hessian into the op-

timization. For all four objective functions, the Hessian offers a speed up in terms

of iterations to convergence and also cost per iteration when coded efficiently. This
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Figure 6.3: This figure shows the necessity of recovering the object’s phase from
the bispectrum. The first row shows the true solution, average data frame, and
initial guess using the phase recovered recursive algorithm. The bottom grid of pic-
tures shows the resultant images for the phases recovered during optimization. From
left to right, the columns show the results for E1(φ), E2(φ), E1(o), and E2(o) with
the different optimization schemes along the rows. Note that the regularization for
E1(o) and E2(o) does not enforce complete non-negativity, but by penalizing some
non-negativity succeeds in sharpening some of the details of the satellite image and
reducing the presence ringing artifacts. This represents a successful compromise in
the regularization parameter selection.
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makes it an attractive option, especially when a good solution is wanted quickly. An

efficient implementation may make bispectral imaging a useful method for obtaining

an initial guess for more expensive methods such as multi-frame blind deconvolution

if not a stand alone method. Further improvements using E1(o) and E2(o) may be

possible by introducing an appropriate preconditioner into the Gauss–Newton step

solve.

Overall, the work demonstrates the utility of Gauss–Newton for the nonlinear opti-

mization problem of phase recovery in bispectral imaging. In particular, our appoach

yields speedups in the optimization while not sacrificing image quality compared to

gradient-based methods.
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Chapter 7

Conclusions and Future Work

Our work focuses on Gauss–Newton optimization for nonlinear inverse problems aris-

ing in imaging. Our contributions are concentrated in two main categories. The first

is the LAP method for nonlinear inverse problems with coupled sets of variables Ch. 3-

5. The second is tailored Gauss–Newton step solvers for the nonlinear, non-convex

problem of phase recovery in bispectral imaging in Ch. 6.

LAP exists within a Gauss–Newton optimization framework and optimizes non-

linear problems by linearizing and projecting the problems onto a reduced subspace

associated with one of the coupled blocks of variables. LAP is best suited to problems

where the subproblem associated with one block of variables is comparatively well-

posed. The method also provides a flexible framework for regularization and allows

for the imposition of element-wise bound constraints on the solution for all blocks of

variables using projected Gauss–Newton. We show this through numerous numerical

experiments in Ch. 4 and 5.

We first demonstrate that LAP is applicable to the class of separable least-squares

problems that are linear in one block of variables and nonlinear in the other in Ch. 4.

Specifically, we show that it outperforms block coordinate descent (BCD) and variable

projection (VarPro) for 2D and 3D coupled nonlinear problems in super-resolution
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and MRI motion correction. LAP produces better quality optimization results at a

lower computational and time cost than either BCD or VarPro for these problems.

The experiments for these problems also show LAP’s flexibility for regularization

using direct, iterative, and hybrid regularization approaches. Lastly, the element-wise

bound constraints on the linear image variables for the 2D and 3D super-resolution

problems show the benefit of the method compared to VarPro, which does not allow

for straightforward constraints on the linear block of variables.

We also test LAP on the fully nonlinear problem of image registration subject to

local rigidity constraints. We show this for two and three dimensional examples in

Ch. 5. The results show the applicability of LAP for problems that are nonlinear in

both blocks of variables. Numerical results for the 2D and 3D registration problems

compare LAP with a fully coupled solver for the Gauss–Newton step. While the

methods have similar cost, the results show that LAP offers some improvement in

the numerical behavior of the optimization. This is particularly evident for the more

difficult, 3D problem when no preconditioning is used. Also, these results further

demonstrate the regularization flexibility using LAP through the use of a nonlinear,

hyperelastic regularizer for this problem.

Future work for LAP should explore the method’s utility in other applications.

LAP is generally applicable to all linear and nonlinear coupled problems, and it sup-

ports various regularization strategies and element-wise bound constraints during the

Gauss–Newton optimization. These characteristics make it an attractive option for

coupled problems in imaging and in other applications. We are interested in explor-

ing its strengths and weaknesses for specific types of problems. Problems of interest

may include blind deconvolution and deep learning. Another way to explore LAP’s

broader applicability is in depth analysis of the method’s convergence properties for

certain classes of problems. It would be useful to analyze how nonlinearity in the

objective function impacts LAP’s performance and to develop some criteria for when
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LAP is preferable to alternative approaches for coupled problems.

Phase recovery in bispectral imaging results in a univariate, nonlinear optimiza-

tion problem. We look at four proposed objective functions from the literature for

solving this problem. We develop tailored Gauss–Newton step solvers using approx-

imations to the Hessians, matrix reorderings, and incomplete factorizations. These

strategies make second-order optimization schemes efficient. As a result, our tailored

solvers are faster in terms of cost per iteration and time to solution than the first-

order optimization schemes common in the literature due to clever exploitation of the

problem’s structure. In the future, it would be interesting to extend our work to the

projected Gauss–Newton framework. This would allow us to enforce non-negativity

in the solution image, which is currently enforced via a penalty regularizer. This

would then allow us to explore with other types of regularization on the recovered

phase or image.

Overall, our work shows the importance of tailored approaches to Gauss–Newton

optimization for a selection of nonlinear inverse problems in imaging. LAP provides

a flexible framework for the Gauss–Newton optimization of coupled inverse problems.

We show this for 2D and 3D examples in super-resolution, MRI motion correction, and

constrained image registration. We also develop an efficient Gauss–Newton approach

to the nonlinear non-convex problem of phase recovery in bispectral imaging. Both

these problems build on and contribute to research for current problems. The work

also paves the way for future work. In particular, LAP looks to be applicable to a

broad class of coupled problems and should be studied in greater depth in the future.
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Appendices

A.1 Linear Interpolation in Higher Dimensions

Piecewise linear interpolation in higher dimensions is used in all the coupled imaging

problems in Ch. 4 and 5. In these problems, we want to evaluate a continuous

image under transformation. In a discrete setting, this requires us to evaluate the

function values (intensities) of the image at transformed coordinates that do not

lie directly over the coordinates of known function values (intensities) of a given

discrete image. We do this via linear interpolation. It is important to compute the

interpolation and its derivatives efficiently as it must be done at every evaluation of the

objective function and its derivatives within the optimization. This section outlines

the procedure for implementing piecewise linear interpolation and its derivatives in

2 and 3 dimensions using either a matrix-free or sparse matrix implementation. For

notation, we use a matrix-oriented axis for figures illustrating the interpolation so that

the x-coordinate is vertical from top to bottom and the y-coordinate is horizontal from

left to right.

A.1.1 Bilinear Interpolation

We begin by describing piecewise linear interpolation in 2 dimensions, also known as

bilinear interpolation, at a single point. We begin with a set of 4 known function

values f00, f10, f01, and f11 evaluated on a rectangular grid where fij = f(xi, yj) to
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simplify notation. The goal of bilinear interpolation is create an interpolating function

f̂(x, y) ≈ f(x, y) with which we can evaluate at any point (x, y) ∈ [x0, x1] × [y0, y1].

We create such a function using two consecutive one dimensional linear interpolations.

First, we fix y0 and y1 and interpolate along the x-dimension using linear Lagrange

polynomials,

f̂(x, y0) =

(
x1 − x
x1 − x0

)
f00 +

(
x− x0

x1 − x0

)
f10

f̂(x, y1) =

(
x1 − x
x1 − x0

)
f01 +

(
x− x0

x1 − x0

)
f11.

(1)

Next, we interpolate these resulting functions over the y-direction to get

f̂(x, y) =

(
y1 − y
y1 − y0

)
f̂(x, y0) +

(
y − y0

y1 − y0

)
f̂(x, y1)

=

(
y1 − y
y1 − y0

)(
x1 − x
x1 − x0

)
f00 +

(
y1 − y
y1 − y0

)(
x− x0

x1 − x0

)
f10 + . . .

. . .

(
y − y0

y1 − y0

)(
x1 − x
x1 − x0

)
f01 +

(
y − y0

y1 − y0

)(
x− x0

x1 − x0

)
f11.

(2)

Rewriting ∆x =
x− x0

x1 − x0

and ∆y =
y − y0

y1 − y0

and noting that 0 ≤ ∆x,∆y ≤ 1, we can

express the interpolating function f̂ as a function of the displacements ∆x and ∆y

by

f̂(∆x,∆y) = (1−∆x)(1−∆y)f00 +∆x(1−∆y)f10 +(1−∆x)∆yf01 +∆x∆yf11. (3)

This formulation is equivalent to (2). From this formulation, we can see that the

function value f̂(x, y) is simply a sum of the known function values weighted by the

distance of (x, y) from each of those points. Note that for the case when (x, y) is



133

equal to the coordinates of a known function value, f̂(x, y) = f(x, y) interpolates the

known, prescribed value. Also, the order of the linear interpolations does not matter

for the derivation of the formulas above; one could interpolate in the y direction

followed by the x. For a visual representation of bilinear interpolation, we refer the

reader to the first subplot in Fig. A.1.1.

Along with the interpolated function value f̂(x, y), we often require its directional

derivatives with respect to ∆x and ∆y. These derivatives are essential for calculating

the Jacobians in Ch. 4 and 5. Differentiating (3), the directional derivatives are

f̂∆x(∆x,∆y) = (1−∆y)(f10 − f00) + ∆y(f11 − f01)

f̂∆y(∆x,∆y) = (1−∆x)(f01 − f00) + ∆x(f11 − f10).

(4)

A.1.2 Trilinear Interpolation

Using the formulas for bilinear interpolation and its derivatives from the previous sec-

tion, it is straightforward to extend to the case of 3D linear interpolation by a further

linear interpolation along the z-direction. This is known as trilinear interpolation.

For a set of eight reference points fijk, the formula for trilinear interpolation is

f̂(∆x,∆y,∆z) = (1−∆x)(1−∆y)(1−∆z)f000 + ∆x(1−∆y)(1−∆z)f100+

. . . (1−∆x)∆y(1−∆z)f010 + ∆x∆y(1−∆z)f110+

. . . (1−∆x)(1−∆y)∆zf001 + (1−∆x)∆y∆zf011+

. . .∆x(1−∆y)∆zf101 + ∆x∆y∆zf111.

(5)

The weights ∆x, ∆y, and ∆z are defined as in the 2D case with 0 ≤ ∆x,∆y,∆z ≤ 1.
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Figure A.1.1: Illustrations for bilinear (left) and trilinear (right) interpolation. The
points fij and fijk are the known function values while f̂(x, y) andf̂(x, y, z) are the
values to be determined by interpolation in each case. The dashed red lines show
the distance of the points to be interpolated from the known function values that
correspond to the weights.

Similarly, we also can compute the partial derivatives,

f̂∆x(∆x,∆y,∆z) = (1−∆y)(1−∆z)(f100 − f000) + ∆y(1−∆z)(f110 − f010)+

. . . (1−∆y)∆z(f011 − f001) + ∆y∆z(f111 − f011)

f̂∆y(∆x,∆y,∆z) = (1−∆x)(1−∆z)(f010 − f000) + ∆x(1−∆z)(f110 − f100)+

. . . (1−∆x)∆z(f011 − f001) + ∆x∆z(f111 − f101)

f̂∆z(∆x,∆y,∆z) = (1−∆x)(1−∆y)(f001 − f000) + ∆x(1−∆y)(f101 − f)100)+

. . . (1−∆x)∆y(f011 − f010) + ∆x∆y(f111 − f110).

(6)

For a visual representation of trilinear interpolation, we refer the reader to the second

subplot of Fig. A.1.1. We also remark that while higher order linear interpolations

are beyond the scope of this work, we can continue this pattern of linear interpolation

along subsequent dimensions to develop n-dimensional linear interpolation formulas.
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A.1.3 Bilinear and Trilinear Interpolation for Multiple Points

The sections above derive linear interpolation formulas for a single point. In practice

however, interpolation is needed for a large number of points simultaneously. For

example, the coupled imaging problems in Ch. 4 and 5 use the pixel intensities of

a reference image as the known data values and require computing a transformed

image by interpolating those values at a transformed grid of points. This can be

expensive if the dimensions of the data are large and requires additional computa-

tional considerations. In this section, we discuss efficient linear interpolation for both

matrix-based and matrix-free approaches. We restrict ourselves to the case where the

known function values lie on a regular grid. This is the case when interpolating from

a reference image, where we consider each given function value to be the intensity

of the image evaluated at the cell-center of a pixel. For notation, we change from

(x, y, z) coordinates to (x1, . . . , xd) to present a general framework for interpolation

in d-dimensions.

For our description, we rely heavily on the notation and ideas from FAIR [47]. Let

f(x) : Ω ⊂ Rd → R be a continuous, compactly supported reference image mapping

a coordinate vector x = (x1, . . . , xd) ∈ Rd to an image intensity f(x) ∈ R. Typically,

d = 2 or 3, but here we present a general notation for n dimensions. We assume Ω to

be rectangular and store it in the vector ω = [ω1 . . . ω2d] where the kth dimension of Ω

is the interval ω2k−ω2k−1 for k = 1, . . . , d. Next, we divide the domain Ω into a regular

grid of cells with dimensions m = [m1 . . .md] where the width of each cell in the kth

dimension is given by h = [h1 . . . hd] with hk = (ω2k−ω2k−1)/mk for k = 1, . . . , d. We

assume that the intensity value of the reference image is known at the cell-centers of

the cells in this grid. The coordinates of the cell-centers in the kth dimension can be

calculated as ξk ∈ Rmk where ξk(j) = ω2k−1 + (jk − 0.5)hk for j = 1, . . . ,mk. The

coordinates of a any cell-center are then given by (ξ1(j1), . . . , ξd(jd)) for some indices

(j1, . . . , jd), and the known intensity value of the reference image at this cell-center is



136

Ω

x1

x20 2 4 6 8 10
0

2

4

6

8

h2

h1

m2

m1

Figure A.1.2: An illustration of a 2D cell-centered grid. The solid lines indicate the
compactly supported image domain, Ω = [0, 8] × [0, 10]. The dashed lines indicate
the borders of the cells with m1 = 4 and m2 = 5 and cell widths of h1 = h2 = 2. The
dots indicate the cell-centers where values of the image f(x1, x2) are known. The goal
of bilinear interpolation is to evaluate the image value for any other point x ∈ Ω.

stored as element f(j1, . . . , jd) in the discrete image f ∈ Rm1×...×md . A visualization

of a regular, cell-centered grid in two dimensions can be found in Fig. A.1.2.

It follows that to interpolate f(x) for a generic point x ∈ Ω, we must be able

to efficiently identify the (j1, . . . , jd) indices that identify its neighboring cell-centers

and the known discrete image intensities f at those points. We must also evaluate

the distance of x from these cell-centers to determine the weights in the interpolating

formula. To this, we introduce following map,

x→ x′ by x′i = (xi − ω2i)/hi + 0.5 for i = 1, . . . , d. (7)

This maps the cell-center (ξ1(j1), . . . , ξd(jd)) to the integer coordinates (j1, . . . , jd),

which are the indices referencing the corresponding known function value at the point,

f(j1, . . . , jd). For a general point x ∈ Ω, the mapped point x′ can be separated into

integer and remainder parts,

x′ = p+ r where p = bx′c and r = x′ − p. (8)
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Here, bx′c is the component-wise floor function. The integer vectors p and p + 1

uniquely identify the indices of the neighboring cell-centers of x′ and, importantly,

the indices of the known reference image intensities in the array f . The remainder

vectors r and 1− r provide the interpolation weights, i.e. the distance from x to the

cell-centers with known image intensities. Thus, the information in p and r provide

the information necessary to evaluate the formulas in (3) or (5) and their derivatives.

Note that if p identifies neighboring cell-centers corresponding to cells outside the

domain Ω, these points should be ignored or assumed to be zero for interpolation.

This is because we assume the reference image to be compactly supported on Ω, i.e.,

zero boundary conditions. For other applications, additional consideration is required

to handle periodic, reflexive, or other appropriate boundary conditions.

The procedure above can be vectorized to determine the indices and weights nec-

essary to interpolate the function f(x, y) (and its derivatives) simultaneously at a

large number of points. To introduce this, let x =

[
x1 x2 x3

]
∈ Rn×d where the

kth column is the vector coordinates in the kth dimension of the n points, and row

j is the jth point for interpolation, ([x]1j , [x]2j , [x]3j). We then apply the map in (7)

row-wise to determine p and r for all interpolation points. These values can then be

used to evaluate the interpolated image f̂ at the n points described by x.

For some applications, it is useful to express linear interpolation as a sparse matrix-

vector product, f̂ = T (x)f where x ∈ Rn×d as above. Here f ∈ Rm is a vectorized

version of the array f ∈ Rm1×...×md with m = prod(m1, · · ·md). The matrix T (x) ∈

Rn×m is sparse with the jth row having a maximum of four non-zero entries containing

weights in the column indices corresponding to the function values of f corresponding

to the neighboring cell-centers of the point xj. The information to construct this

matrix is completely contained in the vectors p and r defined above. The matrix-

vector product T (x)f gives f̂ , the image intensities evaluated via the interpolation

at the n points in x.
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Evaluating the derivatives of the matrix vector expression for interpolation T (x)f

results in a 1 × d block-diagonal matrix where the diagonal of the kth block for

k = 1, . . . , d is the directional derivative with respect to the kth dimension. That is,

∇xT (x)f =

[
diag(∇x1T (x)f) . . . diag(∇xdT (x)f)

]
,

where ∇xkT (x)f ∈ Rn is the evaluation of the formula (4) or (6) for the points x

along the kth dimension. As with the interpolation above, these diagonals can be

computed efficiently using the map in (7) along with p and r.

A.2 Rigid Transformations

In this section, we discuss rigid transformations of points in two and three dimensions.

Specifically, we explain how to evaluate points under rotations and shifts parameter-

ized by w and how to differentiate the resulting points with respect to those motion

parameters. These operations are necessary to evaluate the objective functions and

Jacobians used for the optimization in Ch. 4 and 5. Much of the notation and mate-

rial in this appendix is taken from FAIR, and we refer the reader there for a more in

depth discussion of the concepts described here [47].

We use the following notation. Let

y =


y1

...

yd

 ∈ Rd·n

be a set of n points in d-dimensions where yk is the vector of coordinates in the

kth dimension. For the applications in this dissertation, d = 2 or 3, so we limit the

discussion to these dimensions. The goal is then to evaluate the new coordinates

y(w), which are the points in y under the rigid transformation parameterized by the



139

vector w. In practice, we want to do this for a large number of points simultaneously

as is necessary to transform points in a regular grid in Ch. 4 or the vertices of a

tetrahedral mesh in Ch. 5. We separate the discussion into transformations in two

and three dimensions.

A.2.1 Rigid Transformations in 2D

For two dimensions, a rigid transformation can be parameterized by three parameters,

w =

[
θ b1 b2

]>
∈ R3,

where θ is a rotation and b1 and b2 are shifts in the 1st and 2nd dimensions, respec-

tively. For a single point (y1, y2) under transformation w, we can express the map

from (y1, y2)→ (y1(w), y2(w)) by

y1(w)

y2(w)

 =

cos θ − sin θ

sin θ cos θ


y1

y2

+

b1

b2

 .
However, this formula does not extend easily to matrix-vector form to evaluate the

transformation of many points simultaneously. For the general array of n points in

the vector y ∈ R2n, this can be done more efficiently as

y(w) =

y1(w)

y2(w)

 =

y1 y2 e

y1 y2 e





cos θ

− sin θ

b1

sin θ

cos θ

b2


, (9)

where e is the vector of ones of length n and y(w) is the array of points under the

transformation w. Taking the derivative of y(w) with respect to w is also straight-
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forward using this formulation and is given by the matrix product,

∇wy(w) = QP , (10)

where we define the matrix Q as

Q =

y1 y2 e

y1 y2 e

 ∈ R2n×6

and P as

P = ∇w



cos θ

− sin θ

b1

sin θ

cos θ

b2


=



− sin θ 0 0

− cos θ 0 0

0 1 0

cos θ 0 0

− sin θ 0 0

0 0 1


∈ R6×3.

The formula in (9) provides an efficient, matrix-based framework for evaluating

the transformation of an arbitrary number of points under a 2D rigid transforma-

tion, while (10) provides the derivative of the transformed points with respect to the

transformation parameters.

A.2.2 Rigid Transformations in 3D

Rigid transformations in three dimensions are similar to those in two, but slightly

more involved. The transformations are described by 6 parameters,

w =

[
θ1 θ2 θ3 b1 b2 b3

]>
∈ R6,

where θk and bk are a rotation around the k-dimensional axis and a shift in the
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kth dimension, respectively. The transformation of a single point (y1, y2, y3) to

(y1(w), y2(w), y3(w)) is then given by


y1(w)

y2(w)

y3(w)

 = R3R2R1


y1

y2

y3

+


b1

b2

b3

 .
Here, the matrices R1, R2, and R3 are 3× 3 rotation matrices around the respective

axes defined as

R1 =


1 0 0

0 cos θ1 − sin θ1

0 sin θ1 cos θ1

 R2 =


cos θ2 0 − sin θ2

0 1 0

sin θ2 0 cos θ2

 R3 =


cos θ3 − sin θ3 0

sin θ3 cos θ3 0

0 0 1

 .

As with two dimensions, we then reformulate the transformation above to make it

more efficient for evaluation at n points in the array y ∈ R3n. We can write a similar

formulation to (9) with the matrix-vector product,

y(w) = Qp, (11)

where the matrix Q is given by

Q = I3 ⊗
[
y1 y2 y3 e

]
∈ R3n×12.

Here, ⊗ denotes a Kronecker product, and e is the vector of ones of length n. The

entries of the vector p are given by the matrix product R3R2R1 and the shifts b1, b2,

and b3. The vector is given by
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p =



cos θ2 cos θ3

− sin θ1 sin θ2 cos θ3 − cos θ2 sin θ3

− cos θ1 sin θ2 cos θ3 − sin θ1 sin θ3

b1

cos θ2 sin θ3

− sin θ1 sin θ2 sin θ3 + cos θ1 cos θ3

− cos θ1 sin θ2 sin θ3 − sin θ1 cos θ3

b2

sin θ2

sin θ1 cos θ2

cos θ1 cos θ2

b3



∈ R12.

As with the 2D case, the derivative of the (11) with respect to the transformation w

is then given by the matrix product

∇wy(w) = QP , (12)

where Q is defined as above and P ∈ R12×6 is defined column-wise as

P = ∇wp =

[
dp
dθ1

dp
dθ2

dp
dθ3

dp
db1

dp
db2

dp
db3

]
.

The formulas above follow the same logic for their computation as in the two dimen-

sional case, although they are slightly more involved. Equations (11) and (12) provide

an efficient, matrix-based framework for calculating points under 3D transformations

and their derivatives with respect to the transformation parameters.



143

Bibliography

[1] P. Batchelor, D. Atkinson, P. Irarrazaval, D. Hill, J. Hajnal, and D. Larkman.

Matrix Description of General Motion Correction Applied to Multishot Images.

Magnetic resonance in medicine, 54(5):1273–1280, 2005.

[2] A. Beck. Introduction to Nonlinear Optimization: Theory, Algorithms, and Ap-

plications with MATLAB. SIAM, Philadelphia, PA, 2014.
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