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Abstract

Methods for Improving Doubly Robust Estimators of Treatment Effects for Observational
Studies and Randomized Trials

By Lindsey M. Schader

Estimating the causal effect of an intervention helps clinicians and policymakers determine
whether the benefits of an intervention outweigh its costs. The field of causal inference
has developed assumptions under which causal effects are identifiable from the observed
data distribution. This dissertation centers around three different issues encountered when
estimating treatment effects with machine learning-based causal inference methods.

In the first section, we develop a doubly robust targeted minimum loss-based estima-
tor for the average treatment effect on the treated (ATT) when outcome data is missing
at random. When nuisance regressions converge slower than the standard parametric rate,
standard estimators of the ATT require that all nuisance regressions involved in estimation
are consistently estimated to arrive at theoretically valid statistical inference. If this re-
quirement does not hold, poor confidence interval coverage and inflated type 1 error may
result. Our proposed estimator weakens these assumptions, requiring only one set of nuisance
regressions to be correctly specified to arrive at theoretically valid statistical inference.

The second section is motivated by the Prepared, Protected, and empowered study, a
randomized clinical trial designed to assess the efficacy of a social networking gamification
application at increasing pre-exposure prophylaxis use among young men who have sex with
men and young transgender women who have sex with men. Due to the COVID-19 pandemic,
there was a high amount of missingness in the primary outcome for this study, which may
decrease power for the analysis. We develop a novel estimator for the average treatment
effect (ATE) in this setting that incorporates post-baseline auxiliary covariates to attempt
to recover power to detect treatment effects.

In the third section, we explore the robustness of statistical results to random seed when
the ATE is estimated with common doubly-robust estimators combined with flexible ma-
chine learning regression techniques. Such techniques often include random steps, such as
sample splitting for cross-validation. We demonstrate that these random steps may lead
to conflicting inferential results given the same dataset and statistical analysis plan. We
propose two potential solutions for stabilizing both point estimates and inferential results in
this setting and demonstrate their effectiveness through a simulation study.
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Chapter 1

Introduction

Answering causal questions is at the center of public health and medical research. Exam-

ples of causal questions include: does early imaging for back pain lead to better back pain

outcomes among older-adults who utilize it in practice? Is a technological gamification ap-

plication effective at increasing pre-exposure prophylaxis (PrEP) uptake, among youth who

are at risk of acquiring HIV? Is bedaquiline or delamanid more effective at fighting off multi-

drug resistant tuberculosis? These questions are fundamentally difficult to answer because

for each individual, we only observe their outcome under the treatment or intervention that

they received in practice.

While we may never be able to answer causal questions at an individual level, the field of

causal inference has developed assumptions under which we can identify the average causal

effects of interventions as a function of the observed data distribution [27, 49] and estimate

these effects with statistical tools. Estimating causal effects involves estimating key compo-

nents of the distribution of the observed data, which we will refer to as nuisance quantities.

Often parametric regression techniques are used to estimate these quantities. However, if

the parametric regression model is misspecified, the resultant causal effect estimate may be

biased for the true effect and misleading scientific conclusions may result [20]. This motivates

the use of flexible regression techniques that impose less stringent restrictions on the regres-



2

sion model [76, 81, 56]. However, utilizing flexible regression techniques, including those

based on machine learning algorithms, can lead to challenges is performing valid statistical

inference. Nevertheless, certain paradigms for estimation have emerged that facilitate such

a goal. One such approach are so-called doubly-robust estimators of causal effects. The large

sample distribution of these estimators can generally be characterized under certain statisti-

cal regularity conditions even when flexible regression techniques are utilized [28, 76]. These

approaches therefore allow us to construct confidence intervals with approximate coverage

and conduct hypothesis tests with approximate type I error control in finite samples.

In this dissertation, we address some key issues that arise when attempting to answer

causal questions using real-world data and doubly-robust estimators combined with flexible

regression techniques. In the second chapter, we provide a solution to the poor inferential

performance of doubly-robust estimators for the average treatment effect on the treated

(ATT) when there is partial model misspecification, e.g., some key nuisance regressions do not

converge to their true values as the sample size approaches infinity. We derive an estimator

for the ATT with outcome data that are missing at random that is asymptotically normal

assuming correct specification for a subset of the nuisance regressions. We demonstrate the

advantage of our proposed estimator over standard doubly-robust estimators for the ATT

in a simulation study and apply the proposed estimator to the Back Pain Outcomes using

Longitudinal Data (BOLD) registry [30] to determine whether early imaging for back pain

is beneficial for older adults who receive early imaging in practice.

In the third chapter, we develop a doubly-robust estimator for the average treatment

effect (ATE) when there is a large amount of missing data in the primary outcome under

study. We address the loss in power that may arise by incorporating an auxiliary covariate

into the estimation process. This auxiliary covariate is used to predict missing outcome values

using a flexible regression technique. Through a simulation study we demonstrate that our

proposed estimator can lead to improved power when the auxiliary covariate is strongly

predictive of the outcome. We apply the proposed method to the Prepared, Protected, and
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emPowered (P3) study [36] to determine whether a gamification application is effective at

increasing PrEP adherence among youth who are at risk of acquiring HIV.

In the fourth chapter, we illustrate that the random steps involved in some flexible

regression methods can have a large impact on analytical results, potentially altering scientific

conclusions depending on the random seed that was chosen for an analysis. We provide two

solutions for stabilizing doubly-robust ATE point estimates and their associated standard

error estimates to the choice of initial random seed. We demonstrate the efficacy of the

proposed approaches through an extensive simulation study and implement the proposed

solution with a data analysis comparing the effectiveness of bedaquiline versus delamanid

drug regimens [33] for treating multi-drug resistant tuberculosis.

Each section of this dissertation is written as a stand-alone paper, so each section may

be read alone or with the dissertation in full.
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Chapter 2

Nonparametric Doubly Robust Inference

for Average Treatment Effect on the

Treated with Missing Outcomes

2.1 Introduction

Researchers are often interested in whether or not a treatment or intervention is beneficial

for those who naturally elect to receive the treatment or participate in the intervention.

These effects are often quantified via the so-called average treatment effect among the treated

(ATT). The ATT may be particularly relevant to fields such as medicine and public policy,

where clinicians and policy makers may not have the ability to unilaterally make treatment

or intervention decisions.

As an example, we may ask whether and to what extent older adults with back pain

who receive an imaging procedure benefit from that procedure in terms of future back pain

outcomes. This was the research question posed by Jarvik and colleagues who studied

whether x-ray or advanced imaging within 6 weeks of a clinical index visit for back pain led

to improved one-year outcomes for older adults [31]. Researchers recruited individuals 65
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years of age or older seeking care from a primary care provider for a new episode of back

pain from 2011 to 2013. The resulting registry, the Back pain Outcomes using Longitudinal

Data (BOLD) registry, had participants from three large healthcare centers, with

having both electronic health records and self-reported pain and quality of life data [31, 30].

This data set is typical of many modern observational studies, from which we may hope

to learn about the effectiveness of a particular treatment or therapy. These data sources

motivate us to consider approaches for estimating the ATT using observational data.

Techniques for estimating the ATT in observational data include matching (either on

propensity scores or covariates), inverse probability of treatment weighting (IPTW), G-

computation, Augmented IPTW (AIPTW), and targeted maximum likelihood estimation

(TMLE)[2; 46; 66; 76; 79]. These methods typically require estimation of certain regression

quantities, or nuisance regressions, including the conditional mean of the outcome or the

“outcome regression" (OR), and/or the conditional probability of treatment or the “propen-

sity score" (PS). The large sample behavior of the estimators of the ATT will depend heavily

on whether and at what rate the nuisance regression estimators converge to their true values.

Many methods for estimating the ATT depend on only one nuisance regression. These

methods include IPTW, which uses the PS, and G-computation which uses the OR. For

these methods, if (i) a low-dimensional regression model for the nuisance is posited and (ii)

nuisance regressions are estimated with an M-estimation method (e.g., maximum likelihood

estimation), then the resulting estimates of the ATT can generally expected to have stan-

dard large sample behavior, including an approximate normal sampling distribution [11].

Asymptotic normality is desirable because it provides a reasonable basis for asymptotically

justified inference, including construction of confidence intervals and hypothesis tests.

Other methods for estimating the ATT utilize multiple nuisance regressions, such as the

augmented inverse probability of treatment weighting (AIPTW) estimator [59, 63] or TMLE

[76]. These estimators require estimates of both the OR and the PS and enjoy a doubly-

robust (DR) property, which establishes that the estimator of the ATT is consistent for the
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true ATT if either of these two regressions is consistently estimated. DR estimators are often

preferred because they are seen as increasing robustness to the possibility of OR/PS model

misspecification [68, 64, 60].

When both the OR and PS regressions are assumed to belong to a finite-dimensional

parametric model and estimated with M-estimation methods, doubly-robust estimators of

the ATT are generally also asymptotically normal if at least one of the nuisance regres-

sions is correctly specified [5, 11]. We refer to this limiting behavior of the estimator as

doubly-robust asymptotic normality. This property again is appealing in that it provides

a theoretical basis for doubly-robust confidence intervals and hypothesis tests. Moreover,

such intervals and tests are readily available using standard nonparametric bootstrap-based

approaches. However, assuming that both the OR and PS belong to pre-specified parametric

models may introduce the risk of misspecification of both the OR and PS models. The re-

sulting estimator, although generally expected to be asymptotically normal, will be biased,

ultimately leading to incorrect confidence interval coverage and hypothesis testing [20, 32].

Model misspecification is a serious concern in observational studies, where these quantities

may involve complex and/or poorly understood etiologic processes.

Recently, there has been increasing interest in assuming more flexible regression mod-

els to minimize the chances of model misspecification and using flexible and data-adaptive

approaches for estimation of the OR and PS [10]. Such approaches may yield regression esti-

mates that converge to their true counterparts at a rate slower than the usual n1/2 parametric

rate. Nevertheless, if both regressions achieve sufficiently fast (but still sub-parametric) rates,

then DR estimators are asymptotically normal, again providing a basis for statistical infer-

ence. In these cases, the nonparametric bootstrap may no longer be valid [17]; nevertheless,

closed-form standard error estimates are available that can be used to construct confidence

intervals and conduct hypothesis tests. Unfortunately, if only one nuisance regression con-

verges and that nuisance regression converges at a sub-parametric rate, DR estimators may

not enjoy doubly-robust asymptotic normality. In these cases, the bias of the DR estimators
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may converge to zero at a slower rate than that of the influence-curve based standard error

estimator, leading to coverage probability of confidence intervals diminishing to zero and the

type 1 error rate of hypothesis tests inflating to 1 [5].

Laan [35] and Benkeser et al. [5] proposed estimators of the average treatment effect

(ATE) that attain doubly-robust asymptotic normality under regularity conditions using a

modified version of the TMLE for the ATE. We call these method doubly-robust TMLE

(DRTMLE), where the doubly-robust property applies to both consistency and asymptotic

normality. These methods have also been extended to the setting of estimating parameters

of semiparametric regression models using cross-fitting, with the specific example of partially

linear additive models [19]. While these previous works illustrate that DRTMLEs can be

derived for several different parameters, there is no general approach available for attaining

doubly-robust asymptotic normality – the specific details of the procedure are non-trivial

and must be derived separately for each parameter and each model. The present work is

motivated by the BOLD data set, where we are interested in deriving a DRTMLE procedure

for the ATT in a nonparametric model when outcome data are subject to missingness at

random (MAR). We demonstrate that such a DRTMLE can be produced and enjoys the

expected benefits over standard doubly-robust estimators in the presence of inconsistent

nuisance quantity estimation.

2.2 Background

2.2.1 Notation and Estimand

We consider an observed unit O = (W,A,∆Y , Yobs) ∼ P0 consisting ofW , a set of pre-selected

confounders chosen to satisfy certain conditional randomization assumptions, detailed below,

A, the treatment or intervention of interest, Yobs the possibly unobserved outcome of interest,

and ∆Y an indicator variable indicating whether we observe the outcome. If ∆Y = 1, then

Yobs = Y , the true outcome, and Yobs is missing otherwise. P0 is the true underlying data



8

distribution which we assume belongs to a nonparametric model, M, that has no restrictions

except for certain positivity assumptions on the conditional probability of treatment and the

conditional probability for observing the outcome. We use the term “treatment" throughout

the paper when referring to A, but the method generalizes to any well-defined intervention

of interest. For purposes of illustration we describe A = 1, 0 as treatment and control,

respectively. Without loss of generality, we assume Y ∈ [0, 1]. If Y is a bounded continuous

variable, it can always be re-scaled to the unit interval and so this assumption does not

compromise the generality of our procedure [23]. We assume we observe n independent

copies of O sampled from P0. We denote by Pn, the empirical distribution of O1, . . . , On and

use Pf to denote
∫
f(o)dP (o).

Let Y (a) denote the counterfactual outcome under treatment a and E0 denote an expec-

tation taken over the true distribution of the counterfactual data unit (Y (1), Y (0), A). The

ATT is defined as E0[Y (1)− Y (0) | A = 1] and quantifies the average difference in counter-

factual outcomes if everyone in the naturally treated population received treatment, versus

if they did not receive treatment. The ATT is identifiable based on the observed data under

the following assumptions: (i) conditional randomization, Y (0) ⊥ A | W ; (ii) consistency,

Y = Y (1)A + (1 − A)Y (0), (iii) MAR of the outcome, ∆Y ⊥ Y | A,W , (iv) positivity for

treatment, P0(P0(A = 0 | W ) > 0 | A = 1) = 1, and (v) positivity for observing the outcome,

for a ∈ {0, 1}, P0(P0(∆Y = 1 | A = a,W ) > 0 | A = 1) = 1.

To introduce the identification formula for the ATT, we require additional notation for

several key nuisance regressions. We define these regressions pointwise using lower case

letters to denote a possible value of a random variable. We define g0,A(w) = P0(A = 1 |

W = w) to be the conditional probability, or propensity, for treatment, ḡ0,A = P0(A = 1) to

be the marginal probability of treatment, g0,∆Y
(a, w) = P0(∆Y = 1 | A = a,W = w) to be

the conditional probability, or propensity, for observing the outcome, Q̄0(a, w) = EP0 [Yobs |

A = a,W = w,∆Y = 1] to be the conditional mean outcome, or the outcome regression,

and Q0,W (w) = P0(W ≤ w) to be the cumulative distribution function (CDF) for W . We
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define the collection of these nuisance quantities, η0 = {g0,A, Q̄0, ḡ0,A, Q0,W , g0,∆Y
}. We note

that there is some redundancy in this notation since ḡ0,A =
∫
g0,A(w)dQ0,W (w); however,

the redundant notation will be useful for the purposes of describing our estimators in later

sections. Note that our model for P0 implies a model H for η0. At times, we will write

η = (gA, Q̄, ḡ, QW , g∆Y
) ∈ H, omitting the zero subscript, to denote values of the nuisance

quantities under an arbitrary distribution P in our model for P0. The identifying functional

Ψ : H → (−1, 1) for the ATT can be written for a given η ∈ H as

Ψ(η) =

∫
gA(w)

ḡA

(
Q̄(1, w)− Q̄(0, w)

)
dQW (w) . (2.1)

Under the assumptions above E0[Y (1)− Y (0) | A = 1] = Ψ(η0).

2.2.2 Plug-In Estimator

We use the subscript n to denote estimates of nuisance regressions based on O1, . . . , On. For

example, gn,A, gn,∆Y
, and Q̄n denote estimates of g0,A, g0,∆Y

, and Q̄0, respectively. We assume

that these regression are estimated flexibly such that each estimated regression converges to

its limit with respect to an appropriate norm (see Appendix A.1) at a rate slower than n−1/2.

Throughout, we assume that Q0,W and ḡ0,A are estimated using the empirical cumulative

distribution function and sample proportion, respectively, and denote the resulting estimates

as Qn,W and ḡn,A. Let the collection of nuisance quantity estimates be denoted by ηn: ηn =

{gn,A, Q̄n, ḡn,A, Qn,W , gn,∆Y
}. We additionally introduce the subscript ℓ to denote the limits

of estimated nuisance quantities as n approaches infinity: ηℓ = {gℓ,A, Q̄ℓ, ḡ0,A, Q0,W , gℓ,∆Y
},

noting that consistency of ḡn,A and Qn,W are implied by the weak law of large numbers and

the Gilvenko-Cantelli Theorem, respectively. On the other hand, we use the ℓ-subscript to

allow the possibility that our regression-based estimates converge to a limit different than

the true value implied by η0.

To estimate Ψ(η0) we can replace the relevant portions of the true data distribution with
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their estimated components to produce a plug-in estimator

Ψ(ηn) =

∫
gn,A(w)

ḡn,A

{
Q̄n(1, w)− Q̄n(0, w)

}
dQn,W (w)

=
1

n

n∑
i=1

gn,A(Wi)

ḡn,A

{
Q̄n(1,Wi)− Q̄n(0,Wi)

}
,

where the second equality follows from using the empirical CDF to estimate Q0,W . The

asymptotic behavior of the plug-in estimator can be studied using a linear expansion [5, 28]

that can be used to argue that (see Appendix A.2)

Ψ(ηn)−Ψ(η0) = Pn{D∗(ηℓ)− P0D
∗(ηℓ)} − PnD

∗(ηn) +R(η0, ηn) + op(n
−1/2) , (2.2)

where D∗(η) is a gradient of Ψ at η ∈ H. The gradient evaluated at a typical data unit Oi

can be expressed as

D∗(η)(Oi) =
Ai∆Y i

ḡAg∆Y
(1,Wi)

{Yi − Q̄(1,Wi)}

− (1− Ai)∆Y igA(Wi)

ḡAg∆Y
(0,Wi){1− gA(Wi)}

{Yi − Q̄(0,Wi)}

+
Ai

ḡA

{
Q̄(1,Wi)− Q̄(0,Wi)−Ψ(η)

}
.

The so-called remainder term R(η0, ηn) plays a critical role in our developments. It can be

expressed as

R(η0, ηn) =

∫ [g0,A(w){g0,∆Y
(1, w)− gn,∆Y

(1, w)}
ḡn,Agn∆Y

(1, w)

{
Q̄0(1, w)− Q̄n(1, w)

}
− gn,A(w)(1− g0,A(w)){g0,∆Y (0, w)− gn,∆Y

(0, w)}
ḡn,Agn∆Y (0, w)(1− gn,A(w))

×
{
Q̄0(0, w)− Q̄n(0, w)

}
+

{g0,A(w)− gn,A(w)}
ḡn,A(1− gn,A(w))

{Q̄0(0, w)− Q̄n(0, w)}
]
dQ0,W (w) .

(2.3)

Recall that an estimator, θn, is an asymptotically linear estimator of the estimand θ0 if



11

θn − θ0 = Pnϕ + op(n
−1/2), where P0ϕ = 0 and P0ϕ

2 < ∞, for some function ϕ of the

observed data unit. Asymptotic linearity is a desirable property as the Weak Law of Large

Numbers and the Central Limit Theorem respectively imply that θn is consistent for θ0 and

n1/2θn is asymptotically normal. Further study of equation 2.2 can be used to reveal whether

and under what conditions Ψ(ηn) is asymptotically linear.

The first term, Pn{D∗(ηℓ)− P0D
∗(ηℓ)} is the sample mean of a function of the observed

data and nuisance quantities with mean zero and finite variance. If we can argue that the

remaining terms of the expansion are op(n−1/2) then the plug-in estimator will be asymptot-

ically linear by definition. We will refer to the remaining terms in equation 2.2, PnD
∗(ηn)

and R(η0, ηn), as the root-n bias term and the remainder term, respectively.

Remainder Term

The remainder term, can often be bounded by products of errors in estimation of the nuisance

quantities. As an example assume: (i) the estimated propensity to not be treated is bounded

below by some δ > 0 and (ii) gn,A converges to g0,A at a rate of at least n−q (as defined

in Appendix A.1), and (iii) Q̄n converges to Q̄0 at a rate of at least n−k. Under these

assumptions, we can bound R(ηn, η0) using the Cauchy-Scwharz inequality. For example,

consider the absolute value of the last term in R(ηn, η0):

∣∣∣ ∫ {g0,A(w)− gn,A(w)}
ḡn,A(1− gn,A(w))

{Q̄0(0, w)− Q̄n(0, w)}dQ0,W (w)
∣∣∣

≤ 1

ḡn,Aδ

∣∣∣ ∫ {g0,A(w)− gn,A(w)}{Q̄0(0, w)− Q̄n(0, w)}dQ0,W (w)
∣∣∣

≤ 1

ḡn,Aδ

[ ∫
{g0,A(w)− gn,A(w)}2dQ0,W (w)

]1/2
×

[ ∫
{Q̄0(0, w)− Q̄n(0, w)}2dQ0,W (w)

]1/2
=

1

ḡn,Aδ
op(n

−(q+k)) .
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If q+k ≥ 1/2, then we can conclude this term is op(n−1/2). Similar techniques can be applied

to the additional terms in the remainder and we can conclude that if all of the estimated

regressions converge to their respective true values at sufficiently fast rates, then we can

expect R(ηn, η0) = op(n
−1/2). They key to the asymptotic negligibility of the remainder

term is that all nuisance regressions are converging to their true respective targets. Thus,

the second-order nature of the remainder implies that, even if the regression estimates are

converging at a sub-parametric rate, we still expect the remainder term to converge at a

parametric rate. However, if at least one nuisance regression fails to converge to its true

value, R(ηn, η0) is no longer second-order as one of the two differences will no longer be

converging to zero. Consequently, the remainder will no longer be asymptotically negligible.

As we will see, this can result in poor coverage of naively constructed confidence intervals in

the presence of inconsistent nuisance regression estimates. Nevertheless, for the remainder

of this section, we will assume that all nuisance regressions are consistently estimated at

appropriate rates and therefore that R(ηn, η0) = op(n
−1/2). In Section 2.3, we turn to an

in-depth study of the remainder term under inconsistent nuisance parameter estimation and

propose a solution to this issue.

Root-n Bias Term

Returning to equation 2.2, the root-n bias term, PnD
∗(ηn), may have poor statistical be-

havior when flexible regressions are used to estimate η0 [28]. Accordingly, many estimation

frameworks are designed specifically to ensure the negligibility of this term. For example,

the one-step estimator adds the root-n bias term to the plug-in estimator to yield estimator

Ψ(ηn) + PnD
∗(ηn). Assuming negligibility of the remainder term, equation 2.2 implies that

the one-step estimator is asymptotically linear. Alternatively, targeted minimum loss esti-

mation (TMLE) provides a template for constructing nuisance quantity estimates ηn such

that PnD
∗(ηn) = op(n

−1/2), so that the large-sample behavior of the plug-in estimator based

on ηn is not impacted in first-order by the root-n bias term. We provide an algorithm for a
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TMLE of the ATT in the next section. Again, assuming negligibility of the remainder term,

equation 2.2 implies that the TMLE estimator is asymptotically linear.

2.2.3 Standard TMLE Estimator for the ATT

Let the superscript 0 denote initial nuisance quantity estimates. The TMLE procedure

begins with initial nuisance quantity estimates, η0n, and updates these estimates to arrive

at new estimates, η∗n, that satisfy the desired equation PnD
∗(η∗n) = op(n

−1/2). The TMLE

procedure is as follows:

1. Let k = 0 and ηkn = {gkn,A, Q̄k
n, ḡn,A, Qn,W , gn,∆Y

}

2. Update gkn,A(w)

(a) Define Hk
1 (η

k
n)(w) =

Q̄k
n(1,w)−Q̄k

n(0,w)−Ψ(ηkn)
ḡn,A

(b) Fit a logistic regression with outcome A regressed on an offset logit{gkn,A(W )}

and covariate Hk
1 (η

k
n)(W ) without an intercept. Let ϵn,1 denote the maximum

likelihood estimator (MLE) of the coefficient for Hk
1 (η

k
n)(W ).

(c) Define gk+1
n,A (w) = expit{logitgkn,A(w) + ϵn,1H

k
1 (η

k
n)(w)} and let

ηk
′

n = {gk+1
n,A , Q̄

k
n, ḡn,A, Qn,W , gn,∆Y

}

(d) Note that as a result of this procedure Pn[D1(η
k′
n )] = op(n

−1/2), where D1(η)(O) =

A−gA(W )
ḡA

(Q̄(1,W )− Q̄(0,W )−Ψ(η)).

3. Update Q̄k
n(a, w)

(a) Let Hk
2 (η

k′
n )(a, w) =

(2a−1)gk+1
n,A (w)

ḡn,A{agk+1
n,A (w)+(1−a)(1−gk+1

n,A (w))}
.

(b) Fit a weighted logistic regression with weights equal to ∆Y /gn,∆Y
(A,W ) of out-

come Y regressed on an offset term logit{Q̄k
n(A,W )} and covariate Hk

2 (η
k′
n )(A,W )

without an intercept. Let ϵn,2 denote the MLE of the coefficient forHk
2 (η

k′
n )(A,W ).
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(c) Let Q̄k+1
n (a, w) = expit{logitQ̄k

n(a, w) + ϵn,2H
k
2 (η

k′
n )(a, w)} and set

ηk+1
n = {gk+1

n,A , Q̄
k+1
n , ḡn,A, Qn,W , gn,∆Y

}.

(d) Note that as a result of this procedure Pn[D2(η
k+1
n )] = op(n

−1/2) whereD2(η)(O) =

gA(W )A∆Y

ḡAg∆Y
(1,W )gA(W )

(Y − Q̄(1,W ))− gA(W )(1−A)∆Y

ḡAg∆Y
(0,W )(1−gA(W ))

(Y − Q̄(0,W )).

4. Let k = k + 1, and repeat steps (2) and (3) iteratively until some convergence criteria

is met such that Pn[D
∗(ηkn)] = Pn[D1(η

k
n) +D2(η

k
n) +

gkn,A(W )

ḡn,A
(Q̄k

n(1,W ) − Q̄k
n(0,W ) −

Ψ(ηkn))] = op(n
−1/2). We generally expect the term

Pn[
gkn,A(W )

ḡn,A
(Q̄k

n(1,W ) − Q̄k
n(0,W ) − Ψ(ηkn))] to be op(n−1/2). This holds under the as-

sumption that [1 − Pn[gkn,A(W )]

ḡn,A
] = op(n

−1/2). One way to guarantee this assumption is

to add an intercept term to the parametric submodel in step (2) of the algorithm (see

Appendix A.3).

5. Denote the final estimates of g0,A and Q̄0 as g∗n,A and Q̄∗
n and let

η∗n = {g∗n,A, Q̄∗
n, ḡn,A, Qn,W , gn,∆Y

}.

6. Define the TMLE estimate of the ATT as Ψ(η∗n).

For alternative formulations of the TMLE for the ATT, see Appendix A.3. In the above

procedure, we produced a TMLE that approximately solved a single key equation. However,

TMLE can be used as a general tool to update nuisance regressions such that they approxi-

mately satisfy multiple user-specified equations. In the next section, we propose extending

the above TMLE to satisfy certain additional equations such that the estimator’s asymptotic

behavior is improved in settings where nuisance regressions are inconsistently estimated.
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2.3 Proposed Doubly Robust Estimator for Average Treat-

ment Effect Among the Treated

2.3.1 Remainder Term Under Regression Misspecification

We now return to the study of the remainder (equation 2.3) under the assumption that only

one set of nuisance regressions is correctly specified. For example, assume (i) the propensity

to not be treated is bounded away from zero e.g P0(gn,A(W ) < 1 − δ) = 1 for some δ > 0

and (ii) gn,A converges to g0,A at a rate of n−q, 1/4 < q < 1/2 (as defined in Appendix A.1),

but Q̄n converges to Q̄ℓ such that
∫
{Q̄0(0, w)− Q̄ℓ(0, w)}2dQ0,W (w) =M > 0. That is, the

outcome regression is inconsistently estimated. Again, studying the last term of R(ηn, η0):

∣∣∣ ∫ {g0,A(w)− gn,A(w)}
ḡn,A(1− gn,A(w))

{Q̄0(0, w)− Q̄n(0, w)}dQ0,W (w)
∣∣∣

≤ 1

ḡn,Aδ

∣∣∣ ∫ {g0,A(w)− gn,A(w)}{Q̄0(0, w)− Q̄ℓ(0, w)

+ Q̄ℓ(0, w)− Q̄n(0, w)}dQ0,W (w)
∣∣∣

≤ 1

ḡn,Aδ

∣∣∣ ∫ [
{g0,A(w)− gn,A(w)}{Q̄0(0, w)− Q̄ℓ(0, w)}

+ {g0,A(w)− gn,A(w)}{Q̄ℓ(0, w)− Q̄n(0, w)}
]
dQ0,W (w)

∣∣∣
≤ 1

ḡn,Aδ

{[∫
{g0,A(w)− gn,A(w)}2dQ0,W (w)

]1/2
M1/2

+
[ ∫

{g0,A(w)− gn,A(w)}2dQ0,W (w)
]1/2

[ ∫
{Q̄ℓ(ℓ, w)− Q̄n(0, w)}2dQ0,W (w)

]1/2}
=

1

ḡn,Aδ
{op(n−q)M1/2 + op(n

−q)op(n
−k)} .

(2.4)

From this argument, it is clear that under inconsistent estimation of Q̄0, R(ηn, η0) is

no longer negligible and is expected to contribute to the first-order behavior of the plug-in

estimator. The implication is that standard approaches to constructing Wald confidence

intervals and conducting Wald hypothesis tests will be inaccurate, leading to poor coverage
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and type 1 error control. Our proposed DRTMLE estimator allows us to appropriately

account for this remainder term, under incorrect specification of either the OR or PSs, and

recover an asymptotic distribution that appropriately accounts for inconsistent estimation

of the nuisance regression.

2.3.2 General Strategy

The general approach to deriving the DRTMLE estimator is to represent R(ηn, η0) as:

R(ηn, η0) = Pn{ϕ̃(ηℓ, γ0)− P0ϕ̃(ηℓ, γ0)}+ Pnϕ̃(ηn, γn) + op(n
−1/2) (2.5)

where ϕ̃ is a function of the observed data, indexed by the limit of the original nuisance quan-

tities ηℓ and a set of additional nuisance quantities γ0. The additional nuisance quantities

are carefully derived such that they represent low-dimensional (e.g., univariate or bivari-

ate) regression quantities that can be consistently estimated at fast rates, irrespecitve of

whether the original OR or PSs are consistently estimated. Once we obtain the represen-

tation (2.5), we use TMLE to ensure that the nuisance estimates ηn and γn are such that

both PnD
∗(ηn) = op(n

−1/2) and Pnϕ̃(ηn, γn) = op(n
−1/2). In this way, we ensure that the

first-order contribution of R(ηn, η0) to estimation of Ψ(η0) is characterized by ϕ̃. That is, we

can re-write equation 2.2 as

Ψ(ηn)−Ψ(η0) = Pn{D∗(ηℓ)− ϕ̃(ηℓ, γ0)− P0[D
∗(ηℓ)− ϕ̃(ηℓ, γ0)]}+ op(n

−1/2) , (2.6)

clearly illustrating that the resulting TMLE is asymptotically linear with influence function

given by D∗(ηℓ)− ϕ̃(ηℓ, γ0)− P0[D
∗(ηℓ)− ϕ̃(ηℓ, γ0)].

Laan [35] illustrated a strategy for deriving the desired representation of the remainder

term (2.5) by treating the analysis of the remainder term as an analysis of a plug-in estimator

of a functional parameter. The form of this parameter depends on which of the nuisance

regression(s) is consistently estimated. However, to illustrate the general approach used,
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consider a scenario where either Q̄ℓ = Q̄0 or gℓ = g0, where g0 = (g0,A, g0,∆Y
). That is, we

are in a situation where we have consistently estimated either the OR or PSs, but we do

not know which. Let c0 ∈ {g0, Q̄0} denote the nuisance regression(s) that are consistently

estimated and let cn ∈ {gn, Q̄n} denote an estimate thereof, with gn = (gn,A, gn,∆Y
). We use

c, omitting the subscript, to generically refer to the nuisance regressions that are consistently

estimated. Similarly, let m0 ∈ {g0, Q̄0} denote the true value of the misspecified nuisance

regression(s).

The goal is to first represent the remainder as

R(ηn, η0) = Φc(ηn, ηℓ,m0)(cn)− Φc(ηn, ηℓ,m0)(c0) + op(n
−1/2) , (2.7)

where Φc(ηn, ηℓ,m0) is a parameter that is indexed by ηn, ηℓ, and m0. Given this represen-

tation, we could attempt to use a TMLE approach that would ensure cn ∈ ηn is such that

Φc(ηn, ηℓ,m0)(cn) is an asymptotically linear estimator of Φc(ηn, ηℓ,m0)(c0). If we are able to

do so, then in light of (2.2) and (2.7) the TMLE Ψ(ηn) would be asymptotically linear with

influence function equal to D∗(ηℓ)−P0D
∗(ηℓ) plus the influence function of Φc(ηn, ηℓ,m0)(cn).

This influence function would then provide a means of deriving confidence intervals and hy-

pothesis tests. However, note that the parameter Φc(ηn, ηℓ,m0) is indexed by m0, which

represents the nuisance regression that has been misspecified in this scenario. Thus, deriv-

ing a TMLE of Φc(ηn, ηℓ,m0)(c0) would seemingly require consistent estimation of m0, which

is apparently not feasible in this scenario.

Instead, our approach is to replace Φc(ηn, ηℓ,m0) by an approximating functional pa-

rameter that is more feasible to estimate consistently. In contrast to Φc(ηn, ηℓ,m0), this

approximating parameter is no longer indexed by the misspecified nuisance regression(s) m0,

but is instead indexed by additional nuisance regressions, say γn, that can be consistently

estimated even when we have inconsistently estimated m0. Let Φ̃c(ηn, γn) denote the new
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parameter. Under appropriate assumptions,

R(ηn, η0) = Φc(ηn, ηℓ,m0)(cn)− Φc(ηn, ηℓ,m0)(c0) + op(n
−1/2)

= Φ̃c(ηn, γn)(cn)− Φ̃c(ηn, γn)(c0) + op(n
−1/2)

= Pn{ϕc(ηn, γn)(c0)− P0ϕ
c(ηn, γn)(c0)} − Pnϕ

c(ηn, γn)(cn) + op(n
−1/2)

= Pn{ϕc(ηℓ, γ0)(c0)− P0(ϕ
c(ηℓ, γ0)(c0))} − Pnϕ

c(ηn, γn)(cn) + op(n
−1/2) ,

(2.8)

where ϕc(ηn, γn) represents the gradient of Φ̃c(ηn, γn) in our model.

After performing this derivation separately under the assumption that (i) gℓ = g0 and

(ii) Q̄ℓ = Q̄0 we obtain:

R(ηn, η0) = I(gℓ = g0){Pn{ϕg(ηℓ, γ0)(g0)− P0ϕ
g(ηℓ, γ0)(g0)}

+ Pnϕ
g(ηn, γn)(gn) + op(n

−1/2)}

+ I(Q̄ℓ = Q̄0){Pn{ϕQ̄(ηℓ, γ0)(Q̄0)− P0ϕ
Q̄(ηℓ, γ0)(Q̄0)}

+ Pnϕ
Q̄(ηn, γn)(Q̄n) + op(n

−1/2)}

= Pn{ϕ̃(ηℓ, γ0)− P0ϕ̃(ηℓ, γ0)}+ Pnϕ̃(ηn, γn) + op(n
−1/2)

(2.9)

where ϕ̃(η, γ) = I(gℓ = g0)ϕ
g(η, γ)(g) + I(Q̄ℓ = Q̄0)ϕ

Q̄(η, γ)(Q̄). If TMLE is used to ensure

that (ηn, γn) are such that Pnϕ̃(ηn, γn) = op(n
−1/2), then the first-order behavior of the

remainder term will be completely characterized by a sample mean, Pn{ϕ̃(ηℓ, γ0)(gℓ, Q̄ℓ) −

P0ϕ̃(ηℓ, γ0)(gℓ, Q̄ℓ)}. Unfortunately, we cannot directly apply Pn to ϕ̃(ηn, γn), as the indicator

functions involved in the definition of ϕ̃ imply that we would need prior knowledge of which

nuisance regression(s) are correctly specified. Nevertheless, we can construct a TMLE that

ensures Pnϕ
g(ηn, γn) = op(n

−1/2) and Pnϕ
Q̄(ηn, γn) = op(n

−1/2), which in turn implies that

Pnϕ̃(ηn, γn) = op(n
−1/2). Moreover, it can be shown that ϕg(ηℓ, γ0)(gℓ) = 0 when Q̄ℓ = Q̄0

and that ϕQ̄(ηℓ, γ0)(Q̄ℓ) = 0 when gℓ = g0. It follows that the influence function for the

remainder term is given by ϕg(ηℓ, γ0)(gℓ)+ϕ
Q̄(ηℓ, γ0)(Q̄ℓ)−P0{ϕg(ηℓ, γ0)(gℓ)+ϕ

Q̄(ηℓ, γ0)(Q̄ℓ)}.
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Importantly, we do not need to know which nuisance is correctly specified to accurately

approximate the first-order behavior of the remainder term.

2.3.3 Example analysis of a single component of the remainder un-

der a single pattern of misspecification

We illustrate the steps in equation 2.8 for the last term in R(ηn, η0) when gℓ = g0. Similar

arguments can be applied to this term under the condition that Q̄ℓ = Q̄0, as well as to

the remaining terms in R(ηn, η0) (Appendix A.4). However, these derivations are quite

involved. Thus, the goal of the present section is to provide some concrete insight into the

derivations in light of the discussion above. In what follows, we treat nuisance regressions

in expectations as fixed functions for the duration of this section, e.g. EP0 [f(W )gn,A(W )]

should be interpreted as
∫
f(w)gn,A(w)dQ0,W (w) for a given, fixed function gn,A. Let

R3(ηn, η0) = EP0

[
{g0,A(W )− gn,A(W )}
ḡn,A(1− gn,A(W ))

{Q̄0(0,W )− Q̄n(0,W )}
]
,

and assume that gℓ = g0.

Defining Φg(ηn, ηℓ, Q̄0). Define Φg(ηn, ηℓ, Q̄0)(g) = EP0 [
(Q̄0(0,W )−Q̄n(0,W ))
ḡn,A(1−gn,A(W ))

g(W )] and note that

R3(ηn, η0) = Φg(ηn, ηℓ, Q̄0)(g0,A)− Φg(ηn, ηℓ, Q̄0)(gn,A).

Defining Φ̃g(ηn, γn). We can also show that:

R3(ηn, η0) = Φg(ηn, ηℓ, Q̄0)(g0,A)− Φg(ηn, ηℓ, Q̄0)(gn,A)

= EP0 [
(Q̄0(0,W )− Q̄n(0,W ))

ḡn,A(1− gn,A(W ))
(g0,A(W )− gn,A(W ))]

= EP0

[(Q̄0(0,W )− Q̄ℓ(0,W ))

ḡn,A(1− g0,A(W ))

(
g0,A(W )− gn,A(W )

)]
+ op(n

−1/2)

= EP0

[ I(A = 0)∆Y (Y − Q̄ℓ(0,W ))

ḡn,A(1− g0,A(W ))2g0,∆Y
(0,W )

(
g0,A(W )− gn,A(W )

)]
+ op(n

−1/2)

= EP0

[Q̄0,r3(g0,A, gn,A, g0,∆Y
)(W )

ḡn,A(1− g0,A(W ))

(
g0,A(W )− gn,A(0,W )

)]
+ op(n

−1/2) ,
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where Q̄0,r3(g1, g2, g3)(w) = EP0 [(Y −Q̄ℓ(0,W )) | g1(W ) = g1(w), g2(W ) = g2(w), g3(0,W ) =

g3(0, w),∆Y = 1, A = 0]. The last equality follows from taking an inner expectation con-

ditional on (g0,A(W ), gn,A(W ), g0,∆Y
(0,W ), A, and ∆Y ). The key to these steps is that we

have replaces Q̄0 (the inconsistently estimated nuisance regression) by Q̄0,r3, which is a low-

dimensional regression that can be consistently estimated under mild conditions by regressing

the residual Y − Q̄ℓ(0,W ) on the estimated propensities gn,A(W ) and gn,∆Y
(0,W ) in obser-

vations with ∆Y = 1 and A = 0. Let Q̄n,r3(gn,A, gn,∆Y
) denote such an estimate and define

the approximating parameter Φ̃g(ηn, ηℓ, γn)(g) =
∫ Q̄n,r3(gn,A,gn,∆Y

)(w)

ḡn,A(1−gn,A(w))
g(w)dQ0,W (w). Assum-

ing gn,A and Q̄n,r3 are estimated at sufficiently fast rates, we have that Φg(ηn, ηℓ, Q̄0)(g0,A)−

Φg(ηn, ηℓ, Q̄0)(gn,A) = Φ̃g(ηn, ηℓ, γn)(g0,A)− Φ̃g(ηn, ηℓ, γn)(gn,A) + oP (n
−1/2).

Defining ϕg(ηn, γn). The gradient of Φ̃g(ηn, γn) at a propensity score g∗ in our model is

ϕg
3(ηn, γn)(g

∗)(A,W ) = −Q̄n,r3(gn,A, gn,∆Y
)(W )

ḡn,A(1− gn,A(W ))
(A− g∗(W )) .

It follows that under inconsistent estimation of the outcome regression,

R3(ηn, η0) = Φ̃g(ηn, γn)(g0,A)− Φ̃g(ηn, γn)(gn,A) + oP (n
−1/2)

= Pn{ϕg
3(ηn, γn)(g0)− P0ϕ

g
3(ηn, γn)(g0)} − Pnϕ

g
3(ηn, γn)(gn) + oP (n

−1/2)

= Pn{ϕg
3(ηℓ, γ0)(g0)− P0ϕ

g
3(ηℓ, γ0)(g0)} − Pnϕ

g
3(ηn, γn)(gn) + oP (n

−1/2) .

Finally, we note that when Q̄ℓ = Q̄0 it is straightforward to show that for any propensity

scores, gA, g∆Y
, we have that Q̄0,r3(gA, g∆Y

)(w) = 0 for all w.
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2.3.4 Results of full analysis of the remainder term under general

misspecification

We now present the results of a comprehensive analysis of R(ηn, η0) upon which we base our

proposed estimator. We start by defining γ, the set of additional nuisance regressions that

are needed to define appropriate appoximating parameters to characterize the remainder

behavior under misspecification. These regressions are defined as follows:

Q̄0,r1(gℓ,∆Y
)(W ) = EP0 [(Y − Q̄ℓ(1,W )) | gℓ,∆Y

(1,W ), A = 1,∆Y = 1]

Q̄0,r2(gℓ,∆Y
)(W ) = EP0

[
(Y − Q̄ℓ(0,W ))

gn,A(W )

1− gn,A(W )
| gℓ,∆Y

(0,W ), A = 0,∆Y = 1

]
Q̄0,r3(gℓ,∆Y

, gℓ,A)(W ) = EP0 [(Y − Q̄ℓ(0,W )) | gℓ,∆Y
(0,W ), gℓ,A(W ), A = 0,∆Y = 1]

g0,r1(Q̄ℓ)(W ) = EP0 [A∆Y | Qℓ(1,W )]

g0,r2(Q̄ℓ)(W ) = EP0 [I(A = 0)∆Y | Qℓ(0,W )]

h0,r1(Q̄ℓ)(W ) = EP0

[ A

ḡn,A

(∆Y − gℓ,∆Y
(1,W ))

gℓ,∆Y
(1,W ))

| Qℓ(1,W )
]

h0,r2(Q̄ℓ)(W ) = EP0

[ I(A = 0)gn,A(W )

ḡn,A(1− gn,A(W ))

(∆Y − gℓ,∆Y
(0,W ))

gℓ,∆Y
(0,W )

| Qℓ(0,W )
]

h0,r3(Q̄ℓ)(W ) = EP0

[ (gℓ,A(W )− A)

ḡn,A(1− gℓ,A(W ))
| Qℓ(0,W )

]

As with the description of Q̄0,r3 above, each of these quantities can be estimated by cre-

ating a “pseudo-outcome” and regressing this on a low-dimensional set of variables. For

example, g0,r1(Q̄ℓ) can be estimating by regressing the outcome A∆Y on the single co-

variate Q̄n(1,W ); h0,r1(Q̄ℓ) can be estimated by constructing the pseudo-outcome A(∆Y −

gn,∆Y
(1,W )/{ḡn,Agn,∆Y

(1,W )} on the single covariate Q̄n(1,W ). Note that each of these

regressions is of dimension at most two, so that they are likely to be estimable at relatively

fast rates. Moreover, each quantity is expressed as only depending on ηℓ the limits of the

outcome regression and propensity scores, implying that these low-dimensional regressions

can be consistently estimated irrespective of the pattern of inconsistent estimation of compo-
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nents of η0. For estimates of these nuisance regressions we will replace the 0 in the subscript

with n, e.g. Q̄n,r1 is an estimate of Q̄0,r1.

Given these definitions, we use γ ∈ Γ denote arbitrary values of the additional nuisance

regressions belonging to Γ, the model space for these regressions implied by M. We used γ0

to denote the true values of the additional nuisance regressions. We can now define the gra-

dients ϕg(η, γ), and ϕQ̄(η, γ) of the approximating parameters that ultimately characterize

the influence function of our proposed estimator. We index these gradients by both η and a

particular (set of) nuisance regression(s) g∗ and/or Q̄∗. In spite of its apparent redundancy,

this additional indexing is unfortunately required in order to distinguish between the com-

ponents of η that index our approximating parameters and the point in our at which we are

evaluating the gradient for the approximating parameter. We define

ϕg(η, γ)(g∗)(O) = −AQ̄r1(g∆Y
)(W )

g∆Y
(1,W )ḡA

(∆Y − g∗∆Y
(1,W ))

+
(1− A)Q̄r2(g∆Y

)(W )

g∆Y
(0,W )ḡA

(∆Y − g∗∆Y
(0,W ))

− Q̄r3(gA, g∆Y
)(W )

((1− gA(W ))ḡA
(A− g∗A(W ))

ϕQ̄(η, γ)(Q̄∗)(O) = −A∆Y hr1(Q̄)(W )

gr1(Q̄)(W )
(Y − Q̄∗(1,W ))

+
(1− A)∆Y hr2(Q̄)(W )

gr2(Q̄)(W )
(Y − Q̄∗(0,W ))

+
(1− A)∆Y hr3(Q̄)(W )

gr2(Q̄)(W )
(Y − Q̄∗(0,W ))

In Section 2.3.5 we propose a procedure for generating estimates ηn and γn such that

Pnϕ
g(ηn, γn)(gn) = op(n

−1/2) and Pnϕ
Q̄(ηn, γn)(Q̄n) = op(n

−1/2). In light of (2.2) and (2.7), a

plug-in estimator Ψ(ηn) would enjoy the desired properties of a DRTMLE estimator. Before

presenting the propose algorithm for generating the requisite nuisance estimates, we first

state this result as a formal theorem.



23

2.3.5 Asymptotic properties of DRTMLE

We have the following theorem to characterize the behavior of a DRTMLE in the present

problem.

Theorem 1. Suppose that either gℓ = g0 or Q̄ℓ = Q̄0, or both gℓ = g0 and Q̄ℓ = Q̄0. Further,

suppose that we have nuisance regression estimators ηn, γn such that PnD
∗(ηn) = op(n

−1/2),

Pnϕ
g(ηn, γn)(gn) = op(n

−1/2) and Pnϕ
Q̄(ηn, γn)(Q̄n) = op(n

−1/2), and that the additional

regularity conditions listed in Appendix A.5 are satisfied. Then Ψ(ηn) is an asymptotically

linear estimator of Ψ(η0), with influence curve {D̃(ηℓ, γℓ) − P0D̃(ηℓ, γℓ)}, where D̃(η, γ) =

D∗(η) + ϕg(η, γ)(g) + ϕQ̄(η, γ)(Q̄).

If the conditions of Theorem 1 hold for Ψ(ηn), then the following properties immediately

follow:

(i) doubly robust consistency: Ψ(ηn) is consistent for Ψ(η0) if either gℓ = g0 or Q̄ℓ = Q̄0,

or both gℓ = g0 and Q̄ℓ = Q̄0;

(ii) doubly robust asymptotic normality: n1/2Ψ(ηn) converges in distribution to a normally

distributed random variable with distribution centered on the true value Ψ(η0) and

variance characterized by EP0

[
{D̃(ηℓ, γℓ)(O)− P0D̃(ηℓ, γℓ)}2

]
;

(iii) doubly robust standard error estimates: a consistent estimator for the asymptotic

variance of n1/2Ψ(ηn) is σ̂2
n = 1

n

∑n
i=1

{
D̃(ηn, γn)(Oi)− PnD̃(ηn, γn)

}2

.

(iv) both gℓ = g0 and Q̄ℓ = Q̄0, then the proposed DRTMLE will be nonparametric efficient

as D̃(η0, γℓ) = D∗(η0) for any γℓ.

Confidence intervals can be constructed, Ψ(ηn)± z1−α/2σ̂n, with approximately (1−α)%

coverage in large samples and we can conduct two-sided hypothesis tests, | Ψ(ηn)−µ
σ̂n

|> z1−α/2,

with an asymptotic type I error rate of no more than α under the null hypothesis of Ψ(η0) = µ.
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Proposed DRTMLE Algorithm

The key condition of Theorem 1 is that PnD
∗(ηn) = op(n

−1/2), Pnϕ
g(ηn, γn)(gn) = op(n

−1/2)

and Pnϕ
Q̄(ηn, γn)(Q̄n) = op(n

−1/2). To ensure this condition, we propose the following TMLE

procedure:

1. Generate initial estimates of nuisance regressions and denote these estimates with the

superscript 0: Q̄0
n, g0n,A, g0n,∆Y

. Let η0n = {Q̄0
n, g

0
n,A, g

0
n,∆Y

, ḡn,A, Qn,W}.

2. Estimate each component of γ0 = {Q̄0,rj(gℓ), g0,rj(Q̄ℓ), h0,rj(Q̄ℓ) : j = 1, 2, 3} and

denote the estimates by γn = {Q̄n,rj, gn,rj, hn,rj : j = 1, 2, 3}. For example, to estimate

Q̄0,r1(gℓ) regress Y − Q̄0
n(1,W ) on g0n,∆Y

(1,W ) among observations where A = 1 and

∆Y = 1. The regression estimate obtained will be denoted by Q̄n,r1. For simplicity of

notation, we will write Q̄n,r1 as a function of W only.

3. Update nuisance regressions:

a. Update g0n,∆Y
(1, w)

i. Let H1(η
0
n, γn)(w) =

Q̄n,r1(w)

g0n,∆Y
(1,w)ḡn,A

ii. Fit a weighted logistic regression with weights equal to I(A = 1) and with

outcome ∆Y regressed on an offset term logitg0n,∆Y
(1,W ) and covariate

H1(η
0
n, γn)(W ) without an intercept. Let ϵn,1 denote the MLE of the coeffi-

cient for H1(η
0
n, γn)(W ).

iii. Let gun,∆Y
(1, w) = expit{logitg0n,∆Y

(1, w) + ϵn,1H1(η
0
n, γn)(w)}.

b. Update g0n,∆Y
(0, w)

i. Let H2(η
0
n, γn)(w) =

Q̄n,r2(w)

g0n,∆Y
(0,w)ḡn,A

ii. Fit a weighted logistic regression with weights equal to I(A = 0) and with

outcome ∆Y regressed on an offset term logitg0n,∆Y
(0,W ) and covariate

H2(η
0
n, γn)(W ) without an intercept. Let ϵn,2 denote the MLE of the coeffi-

cient for H2(η
0
n, γn)(W ).
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iii. Let gun,∆Y
(0, w) = expit{logitg0n,∆Y

(0, w) + ϵn,2H2(η
0
n, γn)(w)}.

c. Update g0n,A(w)

i. Let H3(η
0
n, γn)(w) =

−Q̄n,r3(w)

(1−g0n,A(w))ḡn,A

ii. Fit a logistic regression with outcome A regressed on an offset term

logitg0n,A(W ) and covariate H3(η
0
n, γn)(W ) without an intercept. Let ϵn,3 de-

note the MLE of the coefficient for H3(η
0
n, γn)(W ).

iii. Let gintn,A(w) = expit{logitg0n,A(w) + ϵn,3H3(η
0
n, γn)(w)}.

d. Update gintn,A(w)

i. LetH4(η
int
n )(w) = Q̄0

n(1,w)−Q̄0
n(0,w)−Ψ(ηint

n )
ḡn,A

, where ηintn = {Q̄0
n, g

int
n,A, g

u
n,∆Y

, ḡn,A,Qn,W}

ii. Fit a logistic regression with outcome A regressed on an offset term

logitgintn,A(W ) and covariate H4(η
int
n )(W ) without an intercept. Let ϵn,4 denote

the MLE of the coefficient for Hn,4(η
int
n )(W ).

iii. Let gun,A(w) = expit{logitgintn,A(w) + ϵn,4H4(η
int
n )(w)}.

e. Update Q̄0
n(1, w)

i. Let H5(γn)(w) =
hn,r1(w)

gn,r1(w)
.

ii. Fit a weighted logistic regression with weights equal to I(A = 1)∆Y and

with outcome Y regressed on an offset term logitQ̄0
n(1,W ) and covariate

H5(γn)(W ) without an intercept. Let ϵn,5 denote the MLE of the coefficient

for H5(γn)(W ).

iii. Let Q̄u′
n (1, w) = expit{logitQ̄0

n(1, w) + ϵn,5H5(γn)(w)}.

f. Update Q̄0
n(0, w)

i. Let H6(γn)(w) =
hn,r2(w)

gn,r2(w)

ii. Fit a weighted logistic regression with weights equal to I(A = 0)∆Y and

with outcome Y regressed on an offset term logitQ̄0
n(0,W ) and covariate

H6(γn)(W ) without an intercept. Let ϵn,6 denote the MLE of the coefficient

for H6(γn)(W ).
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iii. Let Q̄int
n (0, w) = expit{logitQ̄0

n(0, w) + ϵn,6H6(γn)(w)}.

g. Update Q̄int
n (0, w)

i. Let H7(γn)(w) =
hn,r3,(w)

gn,r2(w)

ii. Fit a weighted logistic regression with weights equal to I(A = 0)∆Y and

with outcome Y regressed on an offset term logitQ̄int
n (0,W ) and covariate

H7(γn)(W ) without an intercept. Let ϵn,7 denote the MLE of the coefficient

for H7(γn)(W ).

iii. Let Q̄u′
n (0, w) = expit{logitQ̄int

n (0, w) + ϵn,7H7(γn)(w)}.

h. Update Q̄u′
n (a, w)

i. Let H8(η
int2
n )(a, w) =

(2a−1)gun,A(w)

ḡn,A(agun,A(w)+(1−a)(1−gun,A(w)))
where ηint2n = {Q̄u′

n , g
u
n,A,

gun,∆Y
, ḡn,A, Qn,w}

ii. Fit a logistic regression with weights equal to ∆Y /g
u
n,∆Y

(A,W ) and with out-

come Y regressed on an offset term logitQ̄u′
n (A,W ) and covariate

H8(η
int2
n )(A,W ) without an intercept. Let ϵn,8 denote the MLE of the coeffi-

cient for H8(η
int2
n )(A,W ).

iii. Let Q̄u
n(a, w) = expit{logitQ̄u

n(a, w) + ϵn,8H8(η
int2
n )(a, w)}.

4. Let η† = {Q̄u
n, g

u
n,A, g

u
n,∆Y

, ḡn,A, Qn,w} and γ†n = γn.

5. Define the DRTMLE estimator for the ATT as Ψ(η†n).

We suggest that the above algorithm should in general be sufficient to satisfy the conditions

of Theorem 1 and this is the approach used in the simulation and data analysis below.

However, one could also consider iteratively applying steps 2 and 3 of the algorithm until a

more stringent convergence criteria of root-n bias terms is satisfied.
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2.4 Simulation

We conducted a simulation study to demonstrate the statistical properties of our estimator

as compared to the TMLE and one-step estimators for the ATT [28, 45].

2.4.1 Data-generating mechanism and set-up

The data generating mechansim (DGM) included two covariates, W1 and W2, a binary

treatment indicator A, a binary outcome Y , and a binary indicator for measuring the outcome

∆Y . The true nuisance regression were defined as follows: g0,A(w1, w2) = 0.2+(w1+0.1)2(w1−

1.9)2/2 + w1w2/10, Q̄0(a, w) = (−1)a((w1 + 0.1)2(w1 − 1.9)2)/2 + 0.2 + 0.6a − 0.1w2, and

g0,∆Y
(a, w) = 1 − expit(−a + w1w2 − 2). Additional details regarding the DGM are in

Appednix A.6. From this DGM we generated 3000 datasets for each sample size, n =

1500, 3000, 4500, 6000.

2.4.2 Analysis

For each simulated data set, we generated initial estimates of key nuisance regressions, g0,A,

g0,∆Y
, and Q̄0, under three different scenarios:

1. Estimate g0,A, g0,∆Y
with highly adaptive lasso (HAL) [7] and estimate Q̄0 with a main

terms logistic regression. In this scenario the regression models for g0,A and g0,∆Y

are consistently estimated at a rate faster than n−1/4, but slower than n1/2, while the

estimate for Q̄0 is inconsistent.

2. Estimate Q̄0 with HAL and g0,A and g0,∆Y
with main terms logistic regressions. In

this scenario the regression model for Q̄0 is consistently estimated, while the regression

models for g0,A and g0,∆Y
are inconsistent.

3. Estimate both Q̄0, g0,A, and g0,∆Y
with HAL. In this scenario all regression models are

consistently estimated.
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To estimate ḡA we used the sample mean of I(A = 1) and to estimate Qn,W we used the

empirical cumulative distribution function of W .

Using the initial estimates of these nuisance quantities, under each scenario, we gener-

ated a DRTMLE, TMLE, and One-Step estimate of the ATT. The TMLE estimator, Ψ(η∗n),

was constructed using a single iteration of the procedure outlined in Section 2.2.3. The

One-Step estimator was calculated as Ψ(η0n) + PnD
∗(η0n). For DRTMLE, we used the pro-

cedure outlined in Section 2.3.5 with Ψalt(η
†
n) used as the final estimator (Appendix A.3).

The additional nuisance regressions, γ, needed for the proposed DRTMLE estimator were

estimated with the SuperLearner package in R [56, 53]. Super learning is an ensemble-based

machine learning algorithm that combines a set of candidate learners into a single learner,

that generally performs as well as or better than any single candidate learner [55, 56]. We

used 10-fold cross-validation and the following candidate algorithms in the super learner:

SL.glm, SL.mean, SL.glm.interaction [71], and SL.earth [44]. We also considered alternative

TMLE and DRTMLE estimators with intercept terms included in all parametric submod-

els for gn,A. For all estimators, we used influence curve based standard error estimation to

construct Wald 95% confidence intervals (Appendix A.6).

2.4.3 Simulation Hypotheses

From this setup we hypothesized:

1. DRTMLE would out-perform both TMLE and One-step, in terms of statistical infer-

ence (i.e. bias and confidence interval coverage) in scenarios 1 and 2, where one set

of nuisance parameters was inconsistently estimated and the consistently estimated

nuisance regression was estimated at a sub-parametric rate.

2. DRTMLE would perform similarly to both TMLE and One-step in scenario 3 where

all nuisance regression models were consistently estimated (Scenario 3) .

To evaluate these hypotheses we calculated the bias and confidence interval (CI) coverage
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for each estimator. We also calculated Monte Carlo (MC) variance and mean squared error

(MSE) to understand the performance of the estimator.

2.4.4 Simulation Results

For Scenario 1, where only the PS is correctly specified, DRTMLE outperforms both One

Step and TMLE in terms of bias and CI coverage as hypothesized (Figure 2.1, left column).

MC variance tends to be slightly higher for DRTMLE than the other methods in this scenario

indicating that slightly more variability results from the additional updates to the nuisance

regressions (Table 2.1). The increase in MC variance is small and accompanied with a

reduction in bias, leading to a similar MSE for all of the estimators. Overall, the cost

of increased variance of DRTMLE is offset by both a reduction in bias and improved CI

coverage.

The results of scenario 2, where only the OR is correctly specified, demonstrate more

dramatic differences between the methods (Figure 2.1, center column). DRTMLE outper-

forms both One-step and TMLE in terms of bias and CI coverage, supporting hypothesis

1. Improvements in CI coverage ranged from 4.83 to 25 percentage points. We see similar

MC variance across the methods and tend to see lower MSE for DRTMLE compared to the

other methods (Table 2.2).

Lastly, we see similar results across the methods for scenario 3 as hypothesized. There

were negligible differences in terms of CI coverage and slight improvements in absolute bias

and root-n bias with DRTMLE (Figure 2.1, Table 2.3).

The performance of TMLE and DRTMLE estimators where an intercept term was in-

cluded in the parametric submodels for gn,A was similar to TMLE and DRTMLE estimators

without intercepts in parametric submodels (Appendix A.3)
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Figure 2.1: Bias and CI coverage for the different estimators across nuisance regression
modeling scenarios. For the left-hand column only the propensity score (PS) was correctly
specified, for the second column only the outcomes regression (OR) was correctly specified,
and for the last column both models were correctly specified. The black solid lines represent
the goal values of 0 and 0.95 for bias and CI coverage, respectively.
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Table 2.1: Simulation results for Scenario 1, when only the propensity score is specified
correctly

Sample Size Method Bias CI Coverage MC Var MSE

1,500 One Step 0.0149 0.9147 0.0010 0.0012
TMLE 0.0094 0.9247 0.0010 0.0011

DRTMLE −0.0040 0.9577 0.0011 0.0011
3,000 One Step 0.0104 0.9113 0.0005 0.0006

TMLE 0.0064 0.9217 0.0005 0.0006
DRTMLE -0.0030 0.9547 0.0006 0.0006

4,500 One Step 0.0088 0.9147 0.0003 0.0004
TMLE 0.0054 0.9263 0.0003 0.0004

DRTMLE -0.0022 0.9573 0.0004 0.0004
6,000 One Step 0.0077 0.9037 0.0003 0.0003

TMLE 0.0047 0.9190 0.0003 0.0003
DRTMLE −0.0017 0.9543 0.0003 0.0003

Table 2.2: Simulation results for Scenario 2, when only the outcome regression is specified
correctly

Sample Size Method Bias CI Coverage MC Var MSE

1,500 One Step 0.0403 0.6717 0.0011 0.0027
TMLE 0.0181 0.8690 0.0012 0.0015

DRTMLE −0.0013 0.9483 0.0012 0.0012
3,000 One Step 0.0289 0.6687 0.0005 0.0014

TMLE 0.0123 0.8837 0.0006 0.0007
DRTMLE -0.0023 0.9517 0.0006 0.0006

4, 500 One Step 0.0227 0.6933 0.0004 0.0009
TMLE 0.0092 0.8960 0.0004 0.0004

DRTMLE -0.0018 0.9570 0.0004 0.0004
6,000 One Step 0.0190 0.7017 0.0003 0.0006

TMLE 0.0073 0.9000 0.0003 0.0003
DRTMLE −0.0014 0.9547 0.0003 0.0003
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Table 2.3: Simulation results for Scenario 3, when both regressions are specified correctly

Sample Size Method Bias CI Coverage MC Var MSE

1,500 One Step 0.0060 0.9213 0.0010 0.0011
TMLE 0.0021 0.9283 0.0011 0.0011

DRTMLE −0.0018 0.9520 0.0011 0.0011
3,000 One Step 0.0027 0.9260 0.0005 0.0005

TMLE 0.0012 0.9300 0.0005 0.0005
DRTMLE −0.0011 0.9500 0.0005 0.0005

4,500 One Step 0.0018 0.9360 0.0003 0.0004
TMLE 0.0011 0.9393 0.0003 0.0003

DRTMLE −0.0005 0.9530 0.0004 0.0004
6,000 One Step 0.0014 0.9320 0.0003 0.0003

TMLE 0.0010 0.9350 0.0003 0.0003
DRTMLE −0.0002 0.9493 0.0003 0.0003

2.5 Real Data Analysis

2.5.1 Data and Methods

We applied DRTMLE to estimate whether or not early imaging for back pain is beneficial in

terms of improving back pain outcomes for older adults. We obtained data from the BOLD

dataset [31]. Early imaging was defined as imaging received within 6 weeks of an index visit

for back pain. The primary outcome of interest was back pain related disability 1 year after

the index visit, measured via the Roland Morris Disability Questionnaire (RMDQ) score.

The RMDQ score ranges from 0 to 24 with lower scores indicating fewer pain-related physical

limitations. Early imaging was split into advanced imaging (magnetic resonance imaging

or computed tomography scan) and x-ray, and each intervention was analyzed separately

compared to control (no imaging).

In order to estimate the ATT of each mode of imaging on one year back pain outcomes,

we used the same estimators employed in the simulation study, namely One-Step, TMLE,

and our proposed DRTMLE estimator. We estimated both the PSs and the OR with Super

Learning and 10-fold cross-validation. We provided a diverse set of candidate learners for
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estimating the OR and PSs including generalized linear models, random forest, multivariate

adaptive regression splines, and gradient boosted trees (see Appendix A.7 for full details).

The regression models included baseline covariates that were identified by collaborators as

potentially related to both the propensity for treatment and the outcome or to both the

propensity for loss to follow-up and the outcome. To visualize results we plotted ATT point

estimates and 95% Wald CIs.

2.5.2 Results

Of the participants included in the analysis, underwent advanced early imag-

ing, underwent early x-ray, and had no early imaging (control).

Approximately of participants were missing the outcome of interest at one year.

The DRTMLE results were found to vary substantially by random seed, so we stabilized

results for all estimators by running the analysis over 10 random seeds and averaging both

point estimates and variance estimates. The resulting averaged point estimates for each

method and the corresponding 95% confidence intervals are displayed in Figure 2.2.
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Figure 2.2: Point estimates and 95% confidence intervals from real data analysis, estimating
the ATT of early imaging on one year back pain. All three ATT point estimates and variance
estimates were averaged over 10 random seeds.

2.6 Discussion

DRTMLE is designed to improve statistical inference in scenarios where nuisance regressions

are estimated with flexible approaches and it is possible that, in spite of the flexible estima-

tion approach, some nuisance regressions may be inconsistently estimated. In this setting,

common doubly-robust estimators for the ATT, such as TMLE and One-step (or AIPTW)

lack standard asymptotic behavior and inference including confidence intervals and hypothe-

sis tests may suffer as a result. In this work, we developed a DRTMLE estimator for the ATT

when the outcome is MAR. Our simulation study demonstrates the improved performance

of our DRTMLE estimator over TMLE and One-Step estimators for the ATT, in the form of

decreased bias and more accurate confidence interval coverage, in scenarios where only one

set of nuisance regressions is correctly specified with a flexible approach. In the case where

both the PS and OR were correctly specified, our proposed DRTMLE estimator performed
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similarly to TMLE and One-step estimators in our simulation study.

We demonstrated a real-world application of our method with a re-analysis of the BOLD

dataset.

we averaged results over 10 random seeds. Any

estimation method that uses random processes such as cross-validation or other forms of

sample splitting may exhibit variability across random seeds. DRTMLE is especially suscep-

tible to this variability, as compared to TMLE or One-Step, because it includes additional

machine learning steps. In practice we encourage analysts to run the analysis over mul-

tiple random seeds and to average the results to minimize this source of variability (see

Dissertation Chapter 4).

Our proposed approach relies on asymptotic arguments to approximate the large-sample

distribution and conduct accurate inference. It follows that DRTMLE is only appropriate in

large samples. Another limitation of our method is that we assume sufficiently fast rates of

convergence on nuisance regressions to their limits and certain Donsker conditions to be met.

To weaken these assumptions extensions of the method to higher order influence functions

which allow slower convergence of nuisance regressions could be explored [18] as well as

cross-fitting based procedures to obviate the need for Donsker criteria [15, 84].
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Chapter 3

Incorporating Auxiliary Covariates into

Estimation of the Average Treatment

Effect with Targeted Maximum

Likelihood Estimation

3.1 Introduction

The COVID-19 pandemic caused large-scale interruptions in the conduct of both observa-

tional studies and clinical trials, leading to myriad issues in the analysis and interpretation of

data generated from trials that were conducted during this time [43]. As many regions spent

extended periods of time in lock-downs, ongoing studies suffered from protocol changes,

missed follow-up visits, and/or poor adherence to study protocol. For example, the Pre-

pared, Protected, and EmPowered (P3) trial, was conducted from May 2019 to September

2021 across nine different study sites in the United States. The P3 trial sought to quantify

the efficacy of a Social Networking Gamification Application in terms of improving adherence

to Pre-Exposure Prophylaxis (PrEP) among young men who have sex with men (YMSM)
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and young transgender women who have sex with men (YTWSM). The study’s primary

outcome was PrEP adherence as measured through dry blood spots (DBS) and the primary

statistical objective was to estimate the average treatment effect (ATE) of the gamification

application on PrEP adherence as compared to the control condition [36]. Due to the pan-

demic, there was a relatively high proportion of missing data for the primary outcome. Thus,

the originally planned statistical analysis may suffer from reduced precision in quantifying

the intervention’s effects and diminished power to detect an effective intervention. These un-

expected changes in the trial led to a need to re-evaluate the planned statistical analysis to

determine whether and to what extent alternative statistical analyses may be able to recover

some amount of precision and power to mitigate the impact of the unexpected missingness

in the trial. Toward this end, we developed a statistical method that allowed us to leverage

self-reported PrEP usage, a measure which was collected through surveys throughout the

study. Such surveys were completed by a larger fraction of participants than the DBS-based

primary outcome measures, potentially affording the opportunity to leverage these data to

increase the precision of the estimate of the treatment effect.

Missing outcome data is a common statistical issue encountered in both observational

studies and clinical trials due to loss to follow-up or deviation from trial protocol. As such,

statistical methods for handling missing outcome data have been developed under different

assumptions about the mechanism(s) leading to the missing data [29, 48]. These assumptions

are commonly referred to as missing completely at random (MCAR), missing at random

(MAR), and missing not at random (MNAR) [37].

When data are MCAR, the missingness mechanisms are independent of measured vari-

ables. This scenario is the simplest to handle analytically, with a complete case analysis

providing unbiased inference; however, the plausibility of the assumption is often dubious.

We often expect measured variables to be related to missingness, which can bias the results

of complete case analyses. Thus, alternative assumptions such as MAR and MNAR, where

the missingness mechanism is assumed to depend on study variables, may be more plausible
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in practice. For MAR problems the missingness mechanisms are assumed to be independent

of the missing data given available information, while for MNAR problems the missingness

mechanism depends on the missing data even after controlling for available information [48].

MNAR is the least restrictive assumption in terms of the mechanisms leading to missing

data, but is also the most difficult to handle analytically because the parameter of interest

is not always identified from the distribution of available data, requiring strong modeling as-

sumptions to generate estimates [48, 9]. MAR problems are more straightforward to address

analytically, because the conditional distribution of the missing variables is identifiable given

the available data. For this reason, data are often analyzed under the MAR assumption,

though in practice, it is difficult to falsify or confirm this assumption. For the P3 trial, we

assume that the DBS outcome is MAR, given baseline covariates such as intervention arm,

study site, age, race/ethnicity, and baseline PrEP use.

The discussion above highlights that statistical analyses involving missing data often

require adjustment for certain key covariates that are needed to satisfy the MAR assump-

tion. Adjusting for covariates can also afford benefits in terms of improving the precision

of estimators [8, 74, 62]. It is well-documented that including prognostic baseline variables

increases precision of treatment effect estimators and is recommended by the United States

Food and Drug Administration and the European Medicines Agency [1, 21]. We hypothe-

size, that in the presence of missing outcome data, the inclusion of post-baseline covariates

that are prognostic for the outcome will also be beneficial in terms of increasing precision,

a known phenomenon for imputation-based estimators [82]. We refer to these post-baseline

covariates as auxiliary variables.

Because auxiliary variables may also be affected by treatment a deliberate approach

must be adopted to appropriately adjust for these factors in analyses. Inappropriate adjust-

ment has the potential to bias treatment effect estimates [67]. Methods that appropriately

adjust for post-baseline covariates in treatment effect estimation include imputation-based

approaches for handling missing data [73], longitudinal G-computation [58], inverse proba-
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bility weighting methods (IPW) [76], and doubly-robust methods for estimating treatment

effects including longitudinal targeted maximum likelihood estimation (L-TMLE) [76] and

longitudinal augmented IPTW (L-AIPTW) [3]. However, these methods may suffer several

important shortcomings including that they often (i) assume a monotone missingness pattern

and/or (ii) lack robustness, in the sense that the validity of the estimators and associated

inference is heavily reliant on correct specification of a regression model.

A monotone missingness pattern holds if there exists an ordering of variables such that

missingness in one variable for a data unit implies missingness in all future variables for that

datum. However, in many applications data are not monotonically missing. For example, in

the P3 study, some participants who submitted a blood sample had not responded to previous

survey questions on PrEP adherence, leading to a non-monotone missing data pattern. As

far as robustness shortcomings of existing estimators, increasing the robustness of statistical

results to model misspecification is desirable, especially in missing data problems where there

is little to no control over missingness mechanisms.

In MAR data problems there are two key regression types commonly used in the estima-

tion of treatment effects: propensity scores, namely the probability that a variable is observed

given covariates and the probability of treatment given covariates and outcome regressions,

namely the expectation of the outcome (or a predicted outcome) given observed covariates

among the sub-population where the outcome is observed (or the prediction is available).

Propensity scores are needed for weighting-based approaches for estimating treatment effects

(e.g., L-IPTW) and outcome regressions are needed for imputation-based or g-computation

approaches for estimating treatment effects. Doubly-robust methods employ both propensity

scores and outcome regressions, but are robust in the sense that not all of the regressions

involved in estimation need to be correctly specified, to arrive at a consistent estimator for

the parameter of interest.

Doubly-robust estimators for non-monotone missing data problems are available via an

estimating equation-based approach [70]. However, these estimators must be derived specif-
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ically for each parameter of interest, a process which requires advanced semiparametric sta-

tistical machinery [73]. Furthermore, estimating equation-based estimators have potential

limitations, such as not respecting the bounds of the parameter space, not being avail-

able for all parameters of interest, and potentially having multiple solutions or no solutions

[72, 78]. In this paper, we propose an alternative doubly-robust estimation framework for

non-monotone missing data using targeted minimum loss-based estimator (TMLE). Our es-

timator can be combined with flexible approaches for estimating both propensity scores and

the outcome regressions and still arrive at valid statistical inference under assumptions. In

this paper we (i) present the necessary background information for understanding ATE esti-

mation with a MAR outcome variable and auxiliary data, (ii) present our proposed TMLE,

(iii) demonstrate that this estimator can lead to an increase in precision and power in certain

scenarios with a simulation study and (iv) apply this method to the P3 trial.

3.2 Background

3.2.1 Notation, Model, and Definition of Average Treatment Effect

Let A denote the treatment or exposure of interest, W important confounders to control for

in analyses, YT the outcome of interest and ST post-baseline auxiliary variable(s) that are

predictive of YT . ∆S is used as an indicator for whether ST is measured (∆S = 1 when ST is

measured, 0 otherwise) and, similarly, ∆Y will be an indicator for whether YT is measured.

Let Y indicate the observed outcome: Y = YT when ∆Y = 1 and is missing otherwise.

Similarly, S = ST when ∆S = 1 and is missing otherwise.

We assume that data were generated from a process encoded in the direct-acyclic graph

(DAG) in Figure 3.1, where C and U represent unobserved variables. For example, in the

P3 study C may indicate the actual, unobserved amount of PrEP usage during follow-up, Y

indicates the observed DBS measure of PrEP use, S indicates observed survey responses, A

indicates the intervention received, and W indicates baseline covariates. The DAG in Figure
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Figure 3.1: Assumed directed acyclic graph.

3.1 encodes certain independence assumptions (Table 3.1) which are key to the derivations

in the remainder of this paper. It is of note that our discussions and the proposed method

in this paper will be valid for data generated from alternative DAGs as long as the indepen-

dence assumptions in Table 3.1 hold and additional assumptions needed for identifiability

are satisfied.

Conditional Independence Assumptions
Y a
T ⊥⊥ A | W YT ⊥⊥ ∆Y | A,W

YT ⊥⊥ ∆S | A,W YT ⊥⊥ ∆Y | A,W, ST ,∆S = 1
S ⊥⊥ ∆Y | A,W,∆S = 1

Table 3.1: Important conditional independence criteria implied by DAG in Figure 3.1

Let O = (W,A,∆Y , Y,∆S, S) denote the observed data. We assume that our sample con-

sists of n independent and identically distributed observations O1, ...., On from a distribution

P0 belonging to the statistical model M, where M is only restricted by the conditional in-

dependence assumptions listed in Table 3.1 and identifiability assumptions described in the

next section.

Let superscripts denote counterfactual outcomes; for example, Y a
T denotes the counter-



42

factual outcome under treatment a ∈ {0, 1}. Our causal parameter of interest is the ATE

defined as E0[Y
1
T − Y 0

T ] where E0 denotes an expectation taken over the true joint distribu-

tion of the counterfactual outcomes (Y 1
T , Y

0
T ). Given an arbitrary treatment of interest a, let

ψ0,a = E0[Y
a
T ]. Then E0[Y

1
T − Y 0

T ] = ψ0,1 − ψ0,0. Throughout the text we will be using the

convention that for a given probability distribution P ∈ M, EP [g(O)] = Pg =
∫
g(o)dP (o),

and Pn will be used to denote the empirical distribution, EPn [g(O)] = Png =
1
n

∑n
i=1 g(Oi).

3.2.2 Estimating the ATE

There are multiple functionals of the observed data distribution P0 that can be shown, under

assumptions, to be equivalent to ψ0,a.

Without Auxiliary Data

Under assumptions, including the “classic” causal assumptions of consistency, conditional

randomization, and positivity of treatment assignment [27], as well as the the MAR assump-

tion ∆Y ⊥⊥ YT | A = a,W and positivity of outcome missingness mechanism P0(P0(∆Y =

1 | A,W ) > 0) = 1, we may write ψ0,a as a function of a vector of nuisance parameters of

the observed data distribution. Let Q̄0,c(a, w) = EP0 [Y | A = a,∆Y = 1,W = w] denote

the true outcome regression among the sub-population where the outcome is observed, and

Q0,W (w) = P0(W ≤ w) denote the cumulative distribution function of W implied by P0.

Let η10 = {Q̄0,c, Q0,W} denote the collection of the these nuisance parameters and note that

a model H for η10 is implied by our model for P0.

Under the above assumptions we have that ψ0,a = Ψ1,a(η
1
0), where

Ψ1,a(η
1
0) =

∫
Q̄0,c(a, w)dQ0,W (w) . (3.1)

We use the subscript c on the outcome regression to denote that this is the outcome regres-

sion used for this “classic” identification result, which does not depend on the distribution of

auxiliary variable(s), S. It is straightforward to propose efficient estimators of this param-
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eter and we present one such estimator based on TMLE in Appendix B.1. However, such

estimators suffer from the important limitation that they ignore the auxiliary covariates

and therefore the precision with which we can estimate such parameters may be limited in

settings with considerable amounts of missing data.

With Auxiliary Data and Monotone Missingness Pattern

When the missing data pattern between the auxiliary covariate and the outcome is monotone,

i.e. ∆S = 0 implies ∆Y = 0, then improvements can be made by considering an alternative

identifying functional, the longitudinal g-formula [58]. By the law of total expectation and

the assumptions in Table 3.1 hold, then we can show that Ψ1,a(η
1
0) = Ψ2,a(η

2
0) where:

Ψ2,a(η
2
0) =

∫
Q̄0,L(a, w)dQ0,w (3.2)

where Q̄0,L(a, w) = EP0 [Q̄0,I(A, S,W ) | A = a,W = w,∆S = 1], Q̄0,I(a, s, w) = EP0 [Y |

∆Y = 1,∆S = 1, A = a,W = w, S = s] and η20 = {Q̄0,L, Q̄0,I , Q0,w}. We use the subscript I

to denote the imputation outcome regression. The predictions from the imputation regression

are regressed on A and W for all observations where S is measured in the “Longitudinal”

outcome regression indicated by subscript L. This identifying functional is common in

longitudinal analyses where S is a confounder and also an intermediate variable between A

and Y , but it can also be extended to our context where S is not a confounder. Longitudinal

TMLE or Longitudinal AIPTW may be used to estimate Ψ2,a(η
2
0) [77, 3]. A drawback of

these methods is that they do not use all of the available outcome data when the missingness

pattern is non-monotone. For example, in longitudinal TMLE the only step that involves the

outcome variable is the estimation of Q̄0,I . This regression is estimated using all observations

where ∆Y = 1 and ∆S = 1, but does not utilize observations where ∆Y = 1 and ∆S = 0.

This results in a loss of available information when estimating the ATE.

With Auxiliary Covariate and Non-Monotone Missingness Pattern

Sun and Tchetgen [70] proposed a class of inverse probability of treatment weighting and
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AIPTW estimators for MAR problems with non-monotone missing data patterns. A draw-

back of the inverse probability of weighting approach for non-monotone missing data prob-

lems is that they tend to be inefficient and can lack stability if large amounts of missing

data are present. The augmented inverse probability weighting estimator seeks to remedy

these issues by incorporating data from both partial and complete cases. In our notation,

the AIPTW estimator of Sun and Tchetgen [70] can be written as the solution in ψa to the

following equation:

n∑
i=1

[
I(∆Y,i = 1,∆S,i = 1)

P̂n(∆Y = 1,∆S = 1 | Ai,Wi)
U(Oi; ηn, ψa) + h(∆S,i,∆Y,i, Ai,Wi, Si, Yi)

]
= 0 (3.3)

where U(O; η, ψa) belongs the class of unbiased estimating equations for ψ0,a when all vari-

ables are fully observed and given the set of nuisance quantities, η. P̂n(∆Y = 1,∆S = 1 | A =

a,W = w) is an estimate of P0(∆Y = 1,∆S = 1 | A = a,W = w) and h(∆S,∆Y , A,W, S, Y )

belongs to the the tangent space Λ, spanned by scores for the missingness mechanisms [70].

In many data problems h(∆S,∆Y , A,W, S, Y ) is approximated because it can be difficult to

derive and a closed-form solution does not always exist [70, 73].

We propose a new identifying functional and an accompanying plug-in estimator based

on TMLE that has ties to the proposed AIPTW estimator of Sun and Tchetgen [70]. Fur-

thermore, the implementation procedure for our proposed TMLE resembles intuitive, single-

imputation approaches, but the additional uncertainty from imputation is appropriately

incorporated into estimation of the asymptotic distribution of the estimator and the result-

ing estimator has the added benefit over imputation of being doubly-robust with respect to

consistency.

3.3 Proposed Estimator

In this section we: (i) introduce the proposed identifying functional and the causal assump-

tions under which this functional equals ψ0,a, (ii) define the TMLE for this functional and
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provide detailed implementation steps, and (iii) present some theoretical properties for the

proposed TMLE.

3.3.1 Identifying Functional

Under the assumptions in Tables 3.1 and 3.2, ψ0,a = Ψp,a(η
p
0), where

Ψp,a(η
p
0) =

∫ {
δQ̄0,L(a, w) + (1− δ)Q̄0,c(a, w)

}
dQ0,W,∆∗(w, δ), (3.4)

and we define ∆∗ = I(∆Y = 0,∆S = 1), Q0,W,∆∗(w, δ) = P (W ≤ w,∆∗ = δ), and ηp0 =

{Q̄0,L, Q̄0,I , Q̄0,c, Q0,W,∆∗}. See Appendix B.2 for proof.

Consistency and Positivity
YT = A(Y 1

T ) + (1− A)(Y 0
T )

P0(P0(A = a | W ) > 0) = 1
P0(P0(∆Y = 1 | A = a,W ) > 0 | ∆∗ = 0) = 1
P0(P0(∆S = 1 | A = a,W ) > 0 | ∆∗ = 1) = 1
P0(∆Y = 1 | A = a,W = w, S = s,∆S = 1) > 0, ∀w, s s.t.
P0(S = s | W = w,A = a,∆S = 1) > 0 and P0(W = w | ∆∗ = 1) > 0

Table 3.2: Additional causal assumptions needed for identification result (in addition to a
subset of the independence assumptions listed in Table 3.1).

The assumptions in Tables 3.1 and 3.2 include positivity assumptions, consistency, and

conditional independence assumptions. Although the majority of these assumptions cannot

be verified with the observed data, the independence assumption S ⊥⊥ ∆Y | A,W,∆S = 1

is verifiable using the observed data and there are tools for detecting positivity violations

[51]. This verifiable independence assumption is not used to prove identification but it

is assumed to hold for the derivation of our proposed TMLE procedure. The positivity

conditions assumed for this problem involve conditional probabilities for A = a, ∆Y = 1,

and ∆S = 1 and ensure that the outcome regressions involved in the identification formula

have sufficient support to be estimated from the observed data distribution. For the P3 trail,

since intervention is randomized, the positivity condition involving a positive probability of
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treatment (or intervention) a is automatically satisfied. We do not have reason to believe

that certain intervention/covariate patterns lead to a zero probability of turning in a DBS

sample or a zero probability to responding to the survey. Similarly, we do not believe that

certain intervention/covariate/survey patterns would lead to zero probability of turning in

a DBS sample. As such, we expect the positivity assumptions to be satisfied in the P3 trial.

Consistency will hold when the treatment is well-defined and the counter-factual outcome

for each participant is independent of the treatment assignment of other participants [80].

Subject-matter expertise may be used to determine the plausibility of the remaining

assumptions, especially the remaining conditional independence assumptions.The first con-

ditional independence assumption, Y a
T ⊥⊥ A | W assumes that treatment assignment is

independent of counter-factual outcomes, within covariate strata defined by unique values

of W . This is automatically satisfied in the P3 trial because intervention assignment was

randomized, but it is an important assumption needed to draw inference from studies where

treatment is not randomized.

The remaining conditional independence assumptions are assumptions regarding the

missing data mechanisms. First, we assume that YT is MAR, e.g. YT ⊥⊥ ∆Y | A,W .

This assumption implies that within baseline covariate strata, whether or not YT is mea-

sured does not depend on the value of YT itself. This is an important assumption because it

allows us to estimate EP0 [YT | A,W ] using only observations with ∆Y = 1. In the P3 trial,

if it is reasonable to assume that missing the DBS sample is independent of PrEP adherence

given baseline covariates then this assumption will hold.

We also assume that YT is still independent of ∆Y when auxiliary variables are added

to the conditioning set, YT ⊥⊥ ∆Y | A,W, ST ,∆S = 1. This allows us to estimate EP0 [YT |

A,W, ST ,∆S = 1] using observations where ∆Y = 1 and ∆S = 1. This assumption implies

that within a strata defined by baseline covariates and the auxiliary covariate, the distribution

of Y does not depend on ∆Y . For P3, this assumption implies that among participants with

the same baseline covariates and survey responses the distribution of PrEP adherence is



47

independent of whether or not individuals turned in the DBS sample. This assumption

would likely be violated if participants who did not turn in their DBS samples tended to

inflate their self-reported PrEP use.

Lastly, we assumed that missingness in the auxiliary covariate is independent of YT

given baseline covariates, e.g. YT ⊥⊥ ∆S | A,W . This assumption was necessary to use

the imputation regression in the identification result (Appendix B.2). This last assumption

implies that whether the auxiliary variable is present is independent of the true outcome

of interest given baseline covariates. In P3 this assumption is reasonable if factors related

to whether participants responded to the computer-based survey are independent of PrEP

adherence conditioning on baseline covariates.

These assumptions may be too strong to justify in some real data analysis applications.

We hypothesize that in the P3 study survey and DBS samples were primarily missing due

to individual-level or social barriers (e.g. time limitations, finger prick anxiety, COVID-19

shutdowns) that are independent of PrEP adherence after conditioning on baseline covariates

which included age, race/ethnicity, study site, baseline PrEP use, and intervention group.

We also assume that any error in self-reported PrEP use was independent of whether or not

participants turned in their DBS sample. It could be the case that participants who are not

taking their PrEP medication are more likely to not turn in DBS samples and to inflate their

self-reported PrEP use, regardless of baseline covariates. In this case, the above assumptions

would be violated which may lead to a biased estimate of the ATE.

3.3.2 Proposed Targeted Maximum Likelihood Estimator

Influence Function

To build a TMLE for Ψp,a(η
p
0) we start by deriving an influence function of the parameter in

our assumed model. To derive such an influence function, we computed the influence function

of the nonparametric maximum likelihood estimator, which is the efficient influence function

in a nonparametric model. We simplified the form of the efficient influence function using
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the assumption that ∆Y ⊥⊥ S | A,W,∆S = 1. Since our model assumes the independence

assumptions (Table 3.1), this influence function may not be the efficient influence function

in our semiparametric model. Nevertheless, this influence function can still be used to derive

a TMLE. The influence function is

D∗
a(η)(O) =(Y − Q̄c(A,W ))

I(∆Y = 1, A = a)

P (∆Y = 1, A = a | W )
(1− P (∆Y = 0,∆S = 1 | W ))

+ (Y − Q̄I(A, S,W ))
I(∆S = 1,∆Y = 1, A = a)

P (∆S = 1,∆Y = 1, A = a | W )

× P (∆Y = 0,∆S = 1 | W )

+ (Q̄I(A, S,W )− Q̄L(A,W ))
I(∆S = 1, A = a)

P (∆S = 1, A = a | W )

× P (∆Y = 0,∆S = 1 | W )

+ Q̄c(A,W )(1−∆∗) + Q̄L(a,W )∆∗ −Ψp,a(η
p)

(3.5)

The influence function contains a number of nuisance quantities, η, compatible with P ∈ M.

η is defined by the original nuisance quantities in the identification result, ηp, and three

propensity scores. Let the propensity for treatment 1 be gA(w) = P (A = 1 | W = w), the

propensity for observing the outcome be g∆Y
(a, w) = P (∆Y = 1 | A = a,W = w), and

the propensity for observing the auxiliary covariate be g∆S
(a, w, δy) = P (∆S = 1 | A =

a,W = w,∆Y = δy). We denote the true values of these nuisance quantities and conditional

probabilities with the subscript 0 and estimates with the subscript n, (e.g. gn,A). With

these propensity scores we may define the following conditional probabilities which appear

in D∗
a(η):

General Strategy

We design a TMLE procedure for estimating Q̄0,c, Q̄0,I , and Q̄0,L which approximately

solves PnD
∗
a(ηn) = 0. This is accomplished by (i) defining parametric submodels through
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each outcome regression and (ii) defining a corresponding loss function L(Q̄), such that the

derivative of the loss function for each parametric submodel corresponds to a particular

component of PnD
∗
a(ηn) [76]. Updating each outcome regression using its corresponding

parametric submodel, leads to a value of ηn such that PnD
∗
a(ηn) ≈ 0.

For example, let D̃a(η) be the component of the influence function corresponding to line 2

of equation (3.5): D̃a(η)(O) = (Y −Q̄I(A, S,W )) I(∆S=1,∆Y =1,A=a)
P (∆S=1,∆Y =1,A=a|W )

P (∆Y = 0,∆S = 1 | W ).

Assume Y ∈ [0, 1]. Without loss of generality, we can scale continuous Y to be within [0, 1].

Let Q̄0
n,I denote the original estimate of the “imputation” regression. We (i) define the

parametric submodel for the imputation regression:

Q̄0
n,I(ϵ0,1,a)(a, s, w) = expit{logit(Q̄0

n,I(a, s, w)) + ϵ0,1,aH1,a(w)} (3.6)

whereH1,a(w) =
P̂n(∆Y =0,∆S=1|W=w)

P̂n(∆Y =1,∆S=1,A=a|W=w)
. Note that Q̄0

n,I(0)(a, s, w) = Q̄0
n,I(a, s, w) indicating

that the submodel is “through” the original estimate of the outcome regression. We (ii) define

the loss function as a weighted log-likelihood loss function:

L
(
Q̄
)
(O) = −I(A = a,∆S = 1,∆Y = 1)log{Q̄(A, S,W )Y (1− Q̄(A, S,W ))1−Y } (3.7)

It can be shown that d
dϵ
L(Q̄0

n,I(ϵ))|ϵ=0 = −D̃a(η
0
n). Let ϵn,1,a = arg minϵPnL(Q

0
n,I(ϵ)).

Calculating ϵn,1,a equates to fitting a weighted logistic regression with weights equal to

I(A = a,∆S = 1,∆Y = 1) with Y regressed on an offset term, logit(Q̄0
n,I(A, S,W )) and

H1,a(W ).

Define the updated estimate of the imputation regression as Q̄1
n,I = Q̄0

n,I(ϵn,1,a). Let

η1n = {gn,A, gn,∆Y
, Q̄1

n,I , Q̄n,L, Q̄n,c, Qn,w,δ}. It follows from this process that PnD̃a(η
1
n)(O) = 0.

Without loss of generality, we can also update original estimates for Q̄0,L and Q̄0,c to solve

additional components of PnD
∗
a(ηn). We provide detailed implementation steps in the next

section for updating each outcome regression. Let η∗n denote nuisance quantities with the

updated outcome regressions: η∗n = {gn,A, gn,∆Y
, Q̄1

n,I , Q̄
1
n,L, Q̄

1
n,c, Qn,w,δ}. It follows from the
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proposed procedure that PnD
∗(η∗n) = op(n

−1/2) and the final TMLE for Ψp,a(η0) is given by

Ψp,a(η
∗
n).

Implementation Steps

The following steps may be used to implement the TMLE estimation procedure for the

functional in equation 3.4:

1. Estimate g0,∆S
, g0,∆Y

, and g0,A with parametric regression or machine learning tech-

niques.

2. With the PS estimates, calculate estimates of P0(∆Y = 1, A = a | W ), P0(∆Y =

1,∆S = 1, A = a | W ), P0(∆S = 1, A = a | W ), and P0(∆Y = 0,∆S = 1 | W ) using

equation set (??). Denote estimates of these quantities with the notation P̂n

3. Estimate Q̄0,I by regressing Y on A,W, and S among observations where ∆S = 1

and ∆Y = 1, using parametric regression or machine learning. Denote the estimate

obtained as Q̄0
n,I

4. Update Q̄0
n,I(a

′, s, w) for each a′ ∈ {0, 1} :

(a) Let H1,a′(w) =
P̂n(∆Y =0,∆S=1|W=w)

P̂n(∆Y =1,∆S=1,A=a′|W=w)

(b) Fit a weighted logistic regression with weights equal to I(∆S = 1,∆Y = 1, A = a′)

and the outcome Y regressed on offset term logit(Q̄0
n,I(A, S,W )) and covariate

H1,a′(W ), without an intercept. Let ϵn,1,a′ be the maximum likelihood estimator

(MLE) of the coefficient for H1,a′(W ).

(c) Let Q̄1
n,I(a

′, s, w) = expit{logit(Q̄0
n,I(a

′, s, w)) + ϵn,1,a′H1,a′(w)}

5. Estimate Q̄0,c and Q̄0,L jointly:

(a) Define Ỹ as Q̄1
n,I(A, S,W ) when ∆Y = 0 and ∆S = 1 and otherwise let Ỹ = Y
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(b) Regress Ỹ on A, W, and ∆∗ among all individuals with ∆S = 1 and/or ∆Y = 1

using parametric regression or machine learning, denote the estimate by Q̄0
n,M .

(c) Let Q̄0
n,L(a, w) = Q̄0

n,M(a, w, 1) and Q̄0
n,s(a, w) = Q̄0

n,M(a, w, 0).

6. Update Q̄0
n,L(a

′, w) for each a′ ∈ {0, 1}

(a) Let H2,a′(w) =
P̂n(∆Y =0,∆S=1|W=w)

P̂n(∆S=1,A=a′|W=w)

(b) Fit a weighted logistic regression with weights equal to I(∆S = 1, A = a′) and with

outcome Q̄1
n,I(A, S,W ) regressed on offset term logit(Q̄0

n,L(A,W )) and covariate

H2,a′(W ), without an intercept term. Let ϵn,2,a′ be the MLE of the coefficient for

H2,a′(W ).

(c) Let Q̄1
n,L(a

′, w) = expit{logit(Q̄0
n,L(a

′, w)) + ϵn,2,a′H2,a′(w)}

7. Update Q̄0
n,c(a

′, w) for each a′ ∈ {0, 1}

(a) Let H3,a′(w) =
(1−P̂n(∆Y =0,∆S=1|W=w))

P̂n(∆Y =1,A=a′|W=w)

(b) Fit a weighted logistic regression with weights equal to I(∆Y = 1, A = a′) and

outcome Ỹ regressed on offset term logit(Q̄0
n,c(A,W )) and covariate H3,a′(W ),

without an intercept term. Let ϵn,3,a′ be the MLE of the coefficient for H3,a′(W ).

(c) Let Q̄1
n,c(a

′, w) = expit{logit(Q̄0
n,c(a

′, w)) + ϵn,3,a′H3,a′(w)}

8. Let Q̄∗
n,M(a, w, δ∗) = δ∗Q̄1

n,L(a, w) + (1− δ∗)Q̄1
n,c(a, w)

9. Let Ψp,a′(ηn) =
1
n

∑n
i=1 Q̄

∗
n,M(a′,Wi,∆

∗
i )

10. Estimate the standard error of Ψp,a′(ηn) with σ̂n where σ̂2
n = 1

n2

∑n
i=1{D∗

a(ηn) −

PnD
∗
a(ηn)}2

Step 5(a) of this procedure represents the “imputation” step where missing outcomes are pre-

dicted using the available data on baseline covariates and S. The ATE comparing two treat-

ments of interest, {0, 1} can be calculated using Ψp,1(ηn) − Ψp,0(ηn) with appropriate stan-
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dard errors, σ̂n,ATE, obtained via the delta method e.g. σ̂2
n,ATE = 1

n2

∑n
i=1{(D∗

a=1(ηn)(Oi)−

D∗
a=0(ηn)(Oi))− Pn(D

∗
a=1(ηn)−D∗

a=0(ηn))}2

3.3.3 Theoretical Results for the Proposed TMLE

The proposed TMLE is doubly robust and asymptotically normal under some assumptions.

Let ||f || = [
∫
f(o)2dP0(o)]

1/2 and Q̄0,n,L = EP0 [Q̄n,I(A, S,W ) | A = a,W,∆S = 1].

Theorem 2. Double-Robust Consistency Let ηn be the nuisance quantities obtained from

the proposed TMLE procedure. Assume that gn,A, gn,∆Y
, and gn,∆S

are bounded away from

zero and (Pn − P0)[D
∗
a(ηn)−D∗

a(ηl)] = op(1). Also, assume that either (1) or (2) below are

true:

1. Propensity scores are correctly specified: ||gn,A−g0,A|| = op(1), ||gn,∆Y
−g0,∆Y

|| = op(1),

and ||gn,∆S
− g0,∆S

|| = op(1)

2. Outcome Regressions are correctly specified: ||Q̄n,c − Q̄0,c|| = op(1), ||Q̄n,I − Q̄0,I || =

op(1), and ||Q̄n,L − Q̄0,n,L|| = op(1)

then it follows that Ψp,a(ηn) is consistent for Ψp,a(η0).

Theorem 3. Asymptotic Normality. Let ηn be the nuisance quantities obtained from the

proposed TMLE procedure. Assume that gn,A, gn,∆Y
, and gn,∆S

are bounded away from

zero and (Pn − P0)[D
∗
a(ηn) −D∗

a(η0)] = op(n
−1/2). Also assume that (i) all outcome regres-

sions converge to their true values: ||Q̄n,c − Q̄0,c|| = op(n
−q1), ||Q̄n,L − Q̄0,n,L|| = op(n

−q2),

and ||Q̄n,I − Q̄0,I || = op(n
−q3) and (ii) all propensity scores converge to their true values:

||gn,A − g0,A ||= op(n
−k1), ||gn,∆Y

− g0,∆Y
||= op(n

−k2), ||gn,∆S
− g0,∆S

||= op(n
−k3). Let

q = min(q1, q2, q3) and k = min(k1, k2, k3). If k + q ≥ 1/2 then the estimator is asymp-

totically linear and asymptotically normal, and a consistent estimator for the asymptotic

standard error of Ψp,a(ηn) is provided by σ̂n, where σ̂2
n = 1

n2

∑n
i=1[D

∗
a(ηn)− PnD

∗
a(ηn)]

2.
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The proofs for these theorems are outlined in Appendix B.4.2. Note that when the

propensity scores and outcome regressions are estimated with parametric regression ap-

proaches such as M-estimation, the estimator will be asymptotically normal under regularity

conditions [11] and convergence assumptions on either the outcome regressions or the propen-

sity scores, but not necessarily both. We call this doubly robust statistical inference. In this

setting, when only one regression type is correctly specified with a parametric regression, the

influence-curve based variance estimator presented in Theorem 3 is no longer appropriate.

Instead, we recommend bootstrapping for estimating variance when parametric regression

approaches are used to estimate propensity scores and outcome regressions. Doubly robust

statistical inference is not theoretically guaranteed when flexible approaches are used to

estimate nuisance regressions [35, 5]. By Theorem 3, we can show that the estimator is

asymptotically normal when flexible approaches are used to estimate nuisance regressions,

provided convergence assumptions are met for all nuisance regressions.

3.4 Simulation Study

3.4.1 Methods

We generated 3000 datasets at sample sizes of 250, 500, 1000, and 1500, under three different

scenarios for the strength of correlation between the auxiliary covariate S and the outcome

variable Y . We will refer to each scenario by the strength of the correlation: “none” (no

correlation), “moderate,” and “strong.” The details of the data generating mechanism may

be found in Appendix B.5.

For each simulated dataset we implemented both a standard TMLE for the ATE that

did not incorporate auxiliary data into treatment effect estimation and our proposed TMLE

that incorporates auxiliary data. For both estimators the propensity scores and the outcome

regressions were estimated with super learning using 10-fold cross-validation. Super learning

is an ensemble-based machine learning algorithm that generally performs as well as the
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optimal candidate learner considered for the ensemble [56]. Generalized linear models and

multivariate adaptive regression splines were the candidate models included in the super

learner for both the ORs and PS. We hypothesized that the proposed TMLE will have

improved efficiency over the standard TMLE for the ATE as evidenced by a reduced standard

error, as well as smaller confidence intervals and greater power to detect the treatment effect.

3.4.2 Results

Our proposed TMLE and standard TMLE performed similarly in terms of bias and 95%

confidence interval coverage across data generating scenarios (Figure 3.2). Any differences

in bias between our proposed estimator and standard TMLE was on a scale of 0.001 or less

and any differences in confidence interval coverage was less than 0.01 (Table 3.3). When the

auxiliary covariate is strongly correlated with the outcome of interest we do see improved

performance of our estimator in terms of an increase in power ranging from an increase of

3.5 to 6.9 percentage points compared to standard TMLE (Figure 3.2). When the auxiliary

covariate is moderately correlated with the outcome we see improvements in power between 1

and 2.3 percentage points. Monte Carlo variance is low for all scenarios, but we do see slight

improvements in Monte Carlo variance from incorporating strongly or moderately correlated

auxiliary information. When the auxiliary covariate is not correlated with the outcome of

interest, our estimator leads to a decrease in power and an increase in Monte Carlo variance

compared to standard TMLE (Table 3.3).

3.5 Real Data Analysis

3.5.1 Methods

We used our method to complete the primary analysis of the P3 trial. This analysis compared

the efficacy of three interventions at improving PrEP adherence and persistence: the social

networking gamification application (P3), the social networking gamification application plus
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Figure 3.2: Simulation results from the Standard TMLE and the Proposed TMLE at different
levels of correlation between the auxiliary covariates and the outcome of interest.

counseling (P3+), and standard of care (SOC). PrEP adherence was defined as a protective

level of PrEP use at 3-months and PrEP persistence was defined as a protective level of PrEP

use at 6-months. There were two different measures available to assess whether a participant

was taking a protective level of PrEP: (i) tenofovir-diphosphate (TFV-DP) levels in the blood

consistent with > 4 pills per week and (ii) emtricitabine-triphosphate (FTC-TP) levels in the

blood consistent with > 4 pills per week. In addition to these laboratory measures of PrEP

adherence and persistence, participants also took a follow-up survey at both 3-months and

6-months. On this survey participants reported their PrEP use in the last 7 days and the

percent of time that they took their PrEP as prescribed in the last month. These variables
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Correlation n Bias MC Variance CI Coverage Power
Standard TMLE for ATE

250 0.0032 0.0062 0.917 0.279
500 -0.0003 0.0029 0.933 0.457

1000 -0.0009 0.0015 0.935 0.731NA

1500 -0.0003 0.0010 0.937 0.890
Proposed TMLE for ATE

250 0.0032 0.0065 0.910 0.265
500 -0.0005 0.0030 0.933 0.429

1000 -0.0010 0.0016 0.935 0.700None

1500 -0.0001 0.0010 0.941 0.873
250 0.0020 0.0056 0.914 0.289
500 -0.0005 0.0026 0.933 0.478

1000 -0.0010 0.0014 0.934 0.754Moderate

1500 -0.0002 0.0009 0.936 0.907
250 0.0020 0.0051 0.919 0.314
500 -0.0006 0.0024 0.934 0.521

1000 -0.0008 0.0012 0.934 0.800Strong

1500 -0.0001 0.0008 0.942 0.929

Table 3.3: Simulation results for both the standard TMLE for the ATE and for the proposed
TMLE for the ATE with different levels of correlation between the auxiliary covariates and
the outcome of interest.
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are expected to be strongly correlated with the primary outcomes of interest. It is also

expected that some participants will be missing the survey but not the laboratory outcome

measurement and vice versa.

We estimated expected PrEP adherence and persistence under each intervention as mea-

sured by FTC-TP and TFV-DP using our proposed TMLE. The auxiliary covariates included

in the analysis were weekly and monthly self-reported PrEP use corresponding to the time of

the outcome measurement, 3-months or 6-months. Baseline variables identified by the study

team as potentially related to participant loss to follow-up and the outcomes of interest were:

intervention, age, race/ethnicity, study site, and whether or not the participant was on PrEP

at baseline. These baseline covariates were controlled for in analyses, along with the baseline

measurement corresponding to the outcome measure of interest (i.e. FTC-TP or TFV-DP

measured at baseline). For estimating relevant propensity scores and outcome regressions

we used super learning with 10-fold cross-validation [56, 54]. Generalized linear models [71],

multivariate adaptive regression splines [44], highly adaptive lasso [25], step-wise generalized

linear models, and elastic net [22] were included as candidate learners in the super learning

algorithm.

We estimated the ATE comparing the two intervention groups P3/P3+ to SOC at 3-

months and 6-months with respect to both TFV-DP and FTC-TP. In order to generate an

estimate for the expected outcome under P3 and P3+ combined (P3/P3+), we averaged

the estimates for the expected outcome under P3 and P3+. For all point estimates we

constructed 95% Wald confidence intervals using influence curve-based standard error esti-

mators. For each ATE estimate we conducted a Wald Hypothesis test of the null hypothesis

that the ATE is zero.

As a sensitivity analysis we also estimated the ATEs using the standard TMLE estimator

that does not incorporate the survey data. If the assumptions used to derive both the

standard TMLE estimator and the proposed TMLE hold, then we expect the estimators to

lead to similar point estimates. See Appendix B.6 for additional details regarding the real
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data analysis.

3.5.2 Results

The dataset consisted of 246 YMSM and YTWSM, 83 in the SOC arm, 82 in the P3 arm, and

81 in the P3+ arm. Table 3.4 displays the amount of missing data for both primary outcomes

and the survey data at 3 and 6-months. At each follow-up time point, approximately 37% of

participants are missing the primary outcome measures. The data follows a nearly monotone

pattern with most participants missing the outcome if they are missing the survey, but there

are 8 participants missing only survey data at 3-months and 3 participants missing only

survey data at 6-months (Table 3.4). For each combination of observed covariate strata

relevant predicted propensities for ∆Y = 1 and ∆S = 1 were bounded from below by 0.34

and an exploratory analysis of the verifiable independence assumption, generally supported

the assumption (see Appendix B.6).

At 3-months, we estimate that a larger proportion of patients are adherent to PrEP

under the P3 and P3+ interventions compared to the SOC intervention in terms of both

TFV-DP and FTC-TP measures (Figure 3.3). P3+ led to the highest estimated proportion

of adherence with an expected 70% (95% CI: 58-81) of participants adherent under the P3+

intervention as measured by FTC-TP. At 6-months the relationship between the intervention

arms and PrEP persistence is less clear. The point estimates are generally similar and a clear

pattern of increasing PrEP use with an increasing level of intervention is not present (Figure

3.3).

From our ATE estimates comparing P3/P3+ to SOC we estimate an increase in propor-

tion adherent under P3/P3+ at 3-months of 0.12 (95% -0.03, 0.26) in terms of FTC-TP and

0.13 (95% CI 0.00, 0.27) in terms of TFV-DP. At 6-months the estimated effect of P3/P3+ is

negligible and contradictory with an estimated increase of 0.07 (95% CI: -0.07, 0.22) accord-

ing to FTC-TP and an estimated decrease of 0.05 (95% -0.09, 0.19) according to TFV-DP.

Overall, the evidence suggests that P3 and P3+ are effective at increasing adherence to PrEP
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but the effect of the intervention does not appear to be sustained throughout the duration of

follow-up. The sensitivity analysis led to very similar point estimates as the primary analysis

(Figure 3.4), strengthening our confidence in these results.

Both Only Outcome Only Survey Both
Outcome Missing Missing Missing Measured
FTC-TP at 3 months 28 (11.4%) 63 (25.6%) 8 (3.3%) 147 (59.8%)
FTC-TP at 6 months 34 (13.8%) 58 (23.6%) 5 (2.0%) 149 (60.6%)
TFV-DP at 3 months 28 (11.4%) 65 (26.4%) 8 (3.3%) 145 (58.9%)
TFV-DP at 6 months 36 (14.6%) 50 (20.3%) 3 (1.2%) 157 (63.8%)

Table 3.4: Missingness in primary outcomes and auxiliary survey covariates at 3 and 6
months.

Figure 3.3: Bar plots of estimated proportion adherent and persistent, under each inter-
vention arm, according to a) FTC-TP and b) TFV-DP levels with 95% confidence interval
bands.

3.6 Discussion

In this work we developed a TMLE for the ATE when outcome data are MAR that can

improve the precision of the standard TMLE for the ATE by incorporating an auxiliary
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Figure 3.4: Sensitivity analysis comparing the proposed TMLE results (survey incorporated)
to standard TMLE results (no survey). Results displayed include the average treatment effect
(ATE) point estimates and 95% confidence intervals, at each time point comparing P3/P3+
to SOC according to a) FTC-TP and b) TFV-DP levels.

covariate that is predictive of the outcome of interest. Our estimator does not assume a

monotone missing data pattern and is doubly-robust in terms of consistency. Our simulation

study demonstrates that the proposed estimator can lead to improvements in efficiency and

power as compared to a standard TMLE for the ATE that does not incorporate auxiliary

covariates, and the degree of improvement depends on the predictive power of the auxiliary

covariate. To illustrate the method, we applied our proposed estimator to a real data analysis

assessing the efficacy of a social networking gamification application in terms of improving

patient adherence and persistence to PrEP among youth who are at risk of acquiring HIV.

Our proposed estimator can be viewed as a single imputation procedure. Imputation

is an intuitive approach to handling missing data that is popular in practice. The main

drawback of single imputation procedures is that accompanying variance estimators are

anti-conservative. Multiple imputation addresses this concern by iterating the imputation

procedure and using Rubin’s rules to accurately quantify variance [48]. A drawback of
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multiple imputation approaches is that typically, parametric regressions are used for the

imputation which may lead to bias if the regression is mis-specified [65]. More recently,

machine-learning based imputation approaches have been suggested in the literature [13] and

some with doubly-robust properties [39]. More generally, multiple imputation is not robust

to model misspecification. Our proposed estimator is similar to an imputation approach but

offers the added benefit of accurate variance estimation in large samples (Theorem 3) and

of improved robustness to some regression model misspecification (Theorem 2).

It is notable that we made some strong assumptions about missingness mechanisms when

deriving our proposed estimator for the ATE. As recommended by Little et al. [38] sensi-

tivity analyses may be used to assess the robustness of analytical results to the missingness

assumptions that were made. Since the MAR assumption is unverifiable from the observed

data, it is recommended in the literature that sensitivity analyses involve re-running the anal-

yses over a set of MNAR models to assess the robustness of the results to violations of the

MAR assumption. Pattern mixture approaches and selection model approaches have been

suggested for this purpose and involve specifying a semi-parametric or parametric regression

for the outcome regression or propensity for observing the outcome, that assume MNAR

and are indexed by a sensitivity parameter [48]. Alternatively, Luedtke et al. [40] suggest

a method for constructing 95% confidence intervals around point estimates that accounts

not only for sampling variability in point estimates but also for causal bias, or the difference

between the causal and statistical parameter of interest. Their method does not require

pre-specified semi-parametric models, but instead requires specifying a condition indexed

by a low-dimensional parameter e.g. a bound on the difference between the true outcome

regression when ∆Y = 1 and when ∆Y = 0. This method fits well within the current TMLE

estimation framework and could be extended to this application in future research.

There are many potential use cases for the proposed method. Not only is the method

appropriate for clinical trials where it is reasonable for the missing data assumptions to hold,

as illustrated in our real data analysis, but it also may be used to estimate the ATE with
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observational data. For example, this method could be used to combine a primary dataset

that contains treatment, baseline covariates and the outcome of interest, with a supplemen-

tary dataset that contains the auxiliary covariate for some of the patients in the study. A

future extension of the method could incorporate external data composed of observations

with both the auxiliary covariate, baseline covariates, and the outcome to help strengthen

estimation of the imputation regression.

A limitation of this approach is that it may not be the most efficient semi-parametric

estimator of the ATE available within our assumed model [73]. As mentioned previously,

there has been some research around developing augmented inverse probability of treatment

weighting (AIPTW) estimators for non-monotone missing data problems. These estimators

solve or approximately solve the efficient influence function. To our knowledge the efficient

AIPTW estimator for the given scenario has not been derived. Additional research is needed

to derive a TMLE based on the efficient influence function to gain additional efficiency.

Other limitations to this approach are that the degree of improvements in power will

depend on the predictive power of the auxiliary covariate and a sufficient number of ob-

servations where both ∆Y = 1 and ∆S = 1 for estimating the imputation regression. It

may be difficult to know a-priori to analyzing the data whether the auxiliary covariate is

strongly predictive of the outcome and additional research is needed to develop procedures

for deciding between the proposed and standard TMLE for estimation of the ATE.

Nevertheless, in our simulation study we demonstrated that our estimator offers improve-

ments in efficiency to a standard TMLE for the ATE when strongly predictive auxiliary

covariates are available. We recommend its use in practice when the missingness pattern

between the auxiliary covariate and the outcome of interest is non-monotone and a strongly

predictive auxiliary covariate is available for the outcome of interest.
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Chapter 4

Don’t let your analysis go to seed: on

the impact of random seed on machine

learning-based causal inference

4.1 Introduction

As dataset size and complexity increase across scientific fields, so too does the importance of

methods such as machine learning that can handle complex and high-dimensional data. Of-

ten, researchers are interested in using these datasets to quantify causal effects of a treatment

or exposure on an outcome, and machine learning may be integrated to help answer these

questions. To estimate causal effects, machine learning may be combined with a doubly-

robust framework for estimation such as augmented inverse probability of treatment weight-

ing (AIPTW), targeted maximum likelihood estimation (TMLE), and cross-fit versions of

AIPTW and TMLE [78, 85, 15, 52].

An important aspect of many machine learning approaches is that their results may vary

based on the random seed that is set prior to fitting the model. This reliance on seed is

sometimes because the algorithm inherently includes a random process. For example, in the
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random forest algorithm, many trees are grown using covariates selected at random from

the full set of covariates. Other machine learning algorithms that include randomness in the

training process including stochastic gradient boosting and neural networks, among others

[41, 4, 24]. Even when randomness is not an inherent part of the model’s training process,

there is often still a need to “tune” models for improved performance. This tuning can

generally be optimized by cross-validation, a process which involves randomly partitioning

the data. Different random partitions could lead to the selection of different models, thereby

rendering inference again sensitive to the choice of random seed. Cross-validation is also

commonly used in conjunction with ensembling approaches such as super learner, [56] a

method commonly recommended for causal effect estimation [52, 64]. Furthermore, cross-

validation is fundamental to cross-fit versions of causal effect estimates. Thus, we may

conclude that many popular approaches to incorporating machine learning into causal effect

estimation may be vulnerable to an over-reliance of results on the random seed that is set

and that it may be possible to obtain meaningfully different scientific conclusions based on

which seed is selected.

Random seed dependence has been acknowledged within literatures pertaining to repro-

ducibility and machine learning. Previous works have noted that sharing data and code

(including initial random seed) is critical for reproducing statistical results from the same

data [4] and there has been a recent push in the machine learning literature for more thor-

ough reporting on variation in algorithm performance, including variation due to different

random seeds [26, 12]. There have also been recent efforts to stabilize the machine learning

methods themselves across random seeds [41].

Within the literature specific to estimation of causal effects using machine learning, the

study of random seed dependence has been mostly limited to specific application areas such

as variable selection and conditional average treatment effect estimation. Several solutions

have been proposed to account for variation in results due to random splitting of the data,

including aggregating results from multiple splits [15, 42, 16] and sensitivity analyses [47].
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Nevertheless, it is still common to report results from implementation with a single random

seed, and clear guidelines for stabilizing inference across multiple random seeds are not

available.

In this chapter, we consider two proposals for stabilizing doubly-robust estimates of aver-

age treatment effects (ATEs) introduced by Song and Benkeser, 2020 [69]. We demonstrate

that in small samples, inference based on doubly-robust, machine learning-based estimators

can be alarmingly dependent on the seed selected and describe two approaches for stabilizing

inference. We study the proposed techniques in an extensive simulation study to develop

guidelines for applied researchers. Finally, we apply the proposed methods to the analysis

of a real dataset.

4.2 Methods

4.2.1 Background

We consider the scenario where the investigator observes a sample of n observations, O1, ...,

On, assumed to be independent and identically distributed. Let Oi = (Ai,Wi, Yi), where

A denotes a binary treatment or intervention of interest, W denotes a vector of potential

confounders, and Y denotes a binary outcome of interest. The causal parameter of interest,

the ATE, is defined as E[Y (1)] − E[Y (0)] where Y (a) denotes the outcome that would be

observed under treatment or intervention a. The ATE can be interpreted as the expected

difference in the outcome of interest if everyone in the population received A = 1 versus if

everyone in the poulation received A = 0.

Under causal assumptions of consistency, positivity, and exchangeability, E[Y (a)] is iden-

tified as a parameter of the observed data distribution, ψ(a) = E[E[Y |A = a,W ]]. Conse-

quently, under those same assumptions, the ATE is identified as, ψ(1)−ψ(0) = E[E[Y |A =

1,W ] − E[Y |A = 0,W ]] [60]. We focus on estimating this identifying parameter using so-

called doubly-robust estimators, which are one of the most straight-forward and popular
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approaches for integrating machine learning into causal effect estimation.

Doubly-Robust Estimators of the ATE

We present results for three estimators, each requiring as an intermediate step the estimation

of at least two regressions: the propensity score (PS) and outcome regression (OR). The PS

describes the conditional probability of treatment A given covariates W . The OR describes

the conditional mean of the outcome Y given A and W . We use Q̄(a, w) to denote the OR

estimate of E[Y | A = a,W = w] and gn(a | w) to denote the PS estimate of P (A = a | W =

w). The OR and/or PS may be estimated via parametric regression models or regression-

based machine learning procedures. Given OR and PS estimates, the AIPTW estimate of

ψ(a) is [59, 61]

ψn,AIPTW (a) =
1

n

n∑
i=1

Q̄n(a,Wi) +
1

n

n∑
i=1

I(Ai = a)

gn(a | Wi)
(Yi − Q̄n(a,Wi)) (4.1)

For brevity, we focus the results of the main paper on this estimator. The supplemental

material includes results for two additional doubly-robust TMLE estimators [78, 5]. Of

primary interest in this work is the estimate of the ATE, ψn,AIPTW (1)−ψn,AIPTW (0). When

implementing double robust estimators of the ATE, influence curve-based standard error

estimation may be used for confidence intervals (CIs) and hypothesis tests. With a slight

abuse of notation, let D̃a(Oi) = Q̄n(a,Wi) +
I(Ai=a)
gn(Ai|Wi)

(Yi − Q̄n(a,Wi)) − ψn,AIPTW (a). The

estimate

σ̂2
n,AIPTW =

1

n2

n∑
i=1

{
D̃1(Oi)− D̃0(Oi)

}2

(4.2)

can be used to construct a 95% CIs for the ATE, (ψn,AIPTW (1)−ψn,AIPTW (0))±1.96σ̂n,AIPTW ,

as well as to test the null hypothesis of no treatment effect. Under regularity conditions,

the test statistic (ψn,AIPTW (1) − ψn,AIPTW (0))/σ̂n,AIPTW can be compared to appropriate



67

quantiles of a standard Normal distribution to determine p-values for hypothesis tests.

Cross-Fit Estimators of the ATE

One common technical assumption needed to derive the statistical properties of the AIPTW

and related doubly-robust estimators is a Donsker assumption that imposes constraints on

the complexity of estimators of the OR and PS. Some machine learning algorithms, e.g.,

the highly adaptive lasso,[7] satisfy this assumption by construction; however, for many

algorithms this assumption is difficult to scrutinize in practical applications and may be

expected to fail [34, 20]. This motivates the use of cross-fitting, an idea first proposed by

Hasminskii and Ibragimov (1979) [57]. Cross-fitting re-emerged in the causal effects literature

with the proposals of Cross-Validated TMLE [84] and Double/Debiased Machine Learning

[15], with these authors noting that cross-fitting removes the Donsker assumption and opens

the door to a broader class of machine learning approaches for causal effect estimation.

Cross-fitting involves splitting the dataset into V partitions of approximately equal size.

The OR and PS are estimated V times using data from all but one of the partitions. The

V − 1 partitions used to estimate the regressions are referred to as the training set, the left-

out partition as the validation set. We denote by Vi ∈ {1, 2, . . . , V } a variable indicating the

partition to which observation i belongs and denote by Q̄n,v and gn,v the OR and PS estimates

when the vth partition is left out of the training set. The cross-fit AIPTW (CAIPTW)

estimator of the ATE is

ψn,CAIPTW (a) =
1

n

n∑
i=1

{Q̄n,Vi
(a,Wi) +

I(Ai = a)

gn,Vi
(a | Wi)

(Yi − Q̄n,Vi
(a,Wi)} (4.3)

With an abuse of notation, D̃a,Vi
(Oi) = Q̄n,Vi

(a,Wi) +
I(Ai=a)

gn,Vi
(Ai|Wi)

(Yi − Q̄n,Vi
(a,Wi))−

ψn,CAIPTW (a). The variance of ψn,CAIPTW (1)− ψn,CAIPTW (0) may be estimated with
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σ̂2
n,CAIPTW =

1

n2

n∑
i=1

{
D̃1,Vi

(Oi)− D̃0,Vi
(Oi)

}2

(4.4)

4.2.2 Dependence of Doubly-Robust Estimators on Random Seed

When utilizing either AIPTW, TMLE or cross-fit versions thereof, the PS and OR estimators

play a critical role in all downstream inference pertaining to causal effects – they determine

not only the point estimate of the causal effect but also the CI and/or hypothesis test

statistics. Thus, the particular realization(s) of the estimated OR and PS may have a

significant impact on the interpretation of the results and subsequent scientific conclusions.

Researchers, funders, and policy makers may be uncomfortable with the fact that conclusions

could hinge on something as arbitrary as the random seed that was used in the analysis.

Thus, while machine learning and cross-fitting are often viewed as means of increasing the

rigor and robustness of an analysis, the practical impact may be just the opposite.

This phenomenon is laid bare in the following simulation of a setting with no treatment

effect (details in Supplement C.1). We simulated a dataset of 200 observations with a 4-

dimensional W , a binary A, and binary Y . Cross-fit AIPTW estimates and standard errors

were obtained under 1000 different initial random seeds using super learning to estimate both

the OR and the PS. For each seed we constructed a nominal 95% CI resulting in 1000 different

CIs for this single data set. The distribution of these CIs highlights the dramatic sensitivity

of inference to the choice of random seed (Figure 4.1). Because there is no treatment effect,

we should hope that CIs contain 0 and this was indeed the case for 85% of the intervals.

However, 14.9% of the intervals were uniformly greater than 0, and one CI was uniformly less

than 0. The implication is alarming. Given the same data and analysis plan, two researchers

could arrive at completely opposite scientific conclusions simply due to the choice of random

seed: one analyst would conclude that there is statistical evidence that the intervention is

harmful, the other that it is helpful.
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Figure 4.1: Confidence intervals for the ATE based on 1000 analyses of a single dataset
that differ only in the initial random seed. The true ATE is zero (dashed black line). Point
estimates are indicated by a black dot, and confidence intervals are colored according to
whether they contain the true ATE (red) or not (blue).

4.2.3 Proposed Solutions

To stabilize doubly-robust estimators in this context, we propose two ways of averaging

results over multiple initial random seeds [69]. A sketch of the justification for the approaches

is in Supplement C.2.

1. Averaging on Intermediate Regressions: average OR and PS estimates from nseed

repeated applications of the machine learning training process. Define Q̄n,k and gn,k

as the OR and PS estimates from machine learning algorithm trained after setting the

kth initial random seed. Define the OR and PS estimates to be used in AIPTW as

Q̄nseed
n =

1

nseed

nseed∑
k=1

Q̄n,k and gnseed
n,k =

1

nseed

nseed∑
k=1

gn,k (4.5)

respectively. Using these estimates, build an AIPTW estimate using equation 4.1.

The averaged OR and PS estimates can be plugged into equation 4.2 to estimate

the standard error of the AIPTW estimator. We denote the resulting point estimate
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ψ̃nseed
n,AIPTW (a).

2. Averaging on the Final Estimate: calculate the AIPTW estimate nseed times and

average:

ψ̄nseed
n,AIPTW (a) =

1

nseed

nseed∑
i=1

ψn,k,AIPTW (a) (4.6)

where ψn,k,AIPTW (a) is the AIPTW estimate of ψ(a) obtained after setting the kth

random seed. An estimate of the standard error of the associated ATE estimate is

σ̂2
n,AIPTW =

1

nseed

=

nseed∑
i=1

σ̂2
n,k,AIPTW (4.7)

where σ̂n,k,AIPTW is the estimate defined in equation 4.2 computed using OR and PS

estimates from the kth seed.

Proposed Solutions and Cross-Fitting

In the case of cross-fitting, our second proposal for averaging immediately applies and cor-

responds with the recommendations of Chernozhukov et al. (2018) [15]. However, solution

1 alone would not be sufficient to stabilize inference since it would not account for variabil-

ity due to the cross-fit sample splitting. Thus, the averaging procedure would need to be

repeated using multiple cross-fit splits. The resulting ATE estimates can be averaged over

to obtain a single, stabilized point estimate, as in our second proposal. However, studying

the stability of such estimators would be extremely computationally intensive and is not

included in this study.
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4.3 Simulation Study

4.3.1 Simulation Study Methods

We conducted a simulation study to evaluate the performance of the proposed solutions under

a variety of scenarios, defined by the features of the data generating mechanism (DGM) and

the statistical analysis plan (SAP) adopted by a hypothetical analyst. We generated 72

different scenarios in total, as described below.

Properties of the Simulated Data

We considered two DGMs, a low- and a high-dimensional DGM, and three sample sizes,

N = 100, 500, and 1000. For the low-dimensional DGM, we generated A and W using the

same DGM as in the above illustrative example, but we updated the DGM to include a

non-zero treatment effect. For i = 1, 2, . . . , N,

Wi1 ∼ Uniform(0, 2),

Wi2,Wi3,Wi4 ∼ Bernoulli(0.5),

Ai | Wi ∼ Bernoulli(g(1 | Wi)),

Yi | Ai,Wi ∼ Bernoulli(Q̄(Ai,Wi))

Where g(1 | Wi) = expit(Wi1 + Wi2Wi3 − 2Wi4), Q̄(Ai,Wi) = expit(Wi1 + Wi2Wi3 +

Wi4Ai − 3). Under this DGM, the ATE is 0.084. The low-dimensional DGM is the same

DGM studied by Song and Benkeser 2020 [69]. In additionl to the low-dimensional DGM

we also explored results from a high-dimensional DGM. For the high-dimensional DGM, we

generated 20 covariates, introduced dependence between covariates, and included variables

that are predictive of neither the treatment nor outcome (details in Supplement C.1).
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Properties of the Statistical Analysis Plan

We defined 12 baseline SAPs for estimation of the ATE based on all combinations of the

following: (i) AIPTW, TMLE, or doubly-robust TMLE (DRTMLE) estimation of the ATE

based on (ii) two-fold cross-fit or non-cross-fit versions of (iii) random forest or super learner

for estimation of OR/PS (see Supplement C.3 for details of TMLE and DRTMLE). All SAPs

included building a 95% CI for the ATE and a two-sided test of H0 : ψ(1)− ψ(0) = 0.

When super learning was used to estimate the OR/PS, stratified cross-validation was

used to construct an ensemble of logistic regression with interactions, random forest [83] and

multivariate adaptive regression splines [44]. The number of cross-validation folds was 10 or

the number of events, whichever was less. For the high-dimensional DGM case, LASSO [22]

was additionally included. When using random forest only to estimate the OR and PS, we

used the default hyperparameters in the SL.ranger function of the SuperLearner package [54].

Of note, the SL.ranger function does not use cross-validation to select any tuning parameters

and thus random seed dependence is driven by the feature bagging and bootstrap resampling

used by the algorithm.

For each baseline SAP, defined by the modeling choices described above, we implemented

additional SAPs that applied our proposed averaging solutions with nseed = 5, 10, 20, 40,

60, and 80.

Simulation Process

For each of the scenarios considered, we simulated 200 datasets and implemented our SAPs

150 times for each simulated dataset setting a different initial seed each time (Figure 4.2).

After the initial random seed was set, we estimated the OR/PS 80 times (or 80x2 = 160 times

for cross-fit estimators). Using these 80 (160) estimates of the OR and PS we implemented

our proposed strategies by averaging at the level of the intermediate regressions and/or at

the level of the (C)AIPTW estimates.

By repeatedly performing the analysis on each dataset, we can study whether and to
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what extent estimates and inference change based on the seed that is set under each SAP.

By using different values of nseed for our proposed strategies, we can also study whether and

how the choice of nseed impacts estimator performance and develop a recommended number

of seeds that consistently stabilizes inference.

Performance Measures

We used the following metrics to evaluate each estimators’ stability.

• Within-Dataset Variability of ATE Estimates : We produced a box-plot displaying the

distribution of the ATE estimates over the 150 initial seeds to visualize variability due

to random seed in point estimates of the ATE in each data set.

• Within-Dataset Variability of CI Width: We produced box-plots displaying the distri-

bution of upper and lower CI bounds (after centering each CI) over the 150 initial seeds

to visualize the variability of CI width in each data set. This metric specifically con-

siders CI width and does not account for the impact on variability in point estimates

and its impact on the values contained in the CI.

• Maximum Within-Dataset Relative Range of CI Bounds : To quantify how random seed

influences the values contained in a CI, we calculated the range for both the upper and

lower CI bounds over the 150 initial seeds and divided the larger range by the mean

CI width over the 150 initial seeds. This measure quantifies variability in CI limits

relative to the width of the overall interval. The motivation for scaling the range by

the mean CI width is that highly variable CI limits are more problematic in settings

where CIs are narrow.

• Unstable CIs : We counted the number of datasets with >10% relative range for ei-

ther the upper or lower CI bounds to measure the number of datasets experiencing

large shifts in CI bounds due to random seed. We also counted the number of non-

overlapping CIs across the 150 initial random seeds. This metric looks for the presence
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of perhaps the most dramatic impact of random seeds wherein two random seeds lead

to entirely incompatible inferences.

• Rejection Proportion: We computed the proportion of times over the 150 seeds that the

null hypothesis of no treatment effect was rejected. Hypothesis testing within a dataset

is considered stable when this measure is zero or one, indicating that all 150 analyses of

the dataset led to the same hypothesis testing conclusion. The worst outcome for this

measure is one wherein 50% of random seeds lead to a rejection of the null hypothesis

and 50% do not.

In addition to the above stability-related metrics, we also evaluated standard statistical per-

formance metrics for each estimator, including bias, variance, mean squared error, coverage

probability of 95% Wald CIs, and power to determine whether and to what extent the pro-

posed averaging strategies affect these performance metrics. These metrics were calculated

for each estimator using the results from a single analysis for each of the 200 datasets.

Analysis was carried out using R [71] v4.0.2 with packages drtmle [6] and SuperLearner [54].

4.4 Simulation Study Results

We present results from the low-dimensional DGM when super learning is used to estimate

the OR and PS. Complete results are available in Supplement C.3.

Within-Dataset Variability of ATE Estimates and CI Width

When no or minimal averaging over seed was performed, significant within-dataset variability

in both point estimates and CI width were observed in small sample sizes (Figures 4.3 and

4.4). As expected, this variability decreased with both n and nseed. Averaging over seeds was

particularly important for cross-fit estimators (Figures 4.3 and 4.4, panel B), where with no

averaging many datasets exhibited high within-dataset variability in both point estimates

and CI widths.
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Within-Dataset Relative Range of CI Bounds and non-overlapping CIs

The maximum relative range of CI bounds was considerable for all sample sizes when not

averaging over multiple seeds (Figures 4.5). As expected, averaging over seeds led to a

decrease in the maximum relative range of CI bounds and, generally, a decrease in the

number of datasets with unstable CIs (Figures 4.5 and 4.6). For cross-fit AIPTW in small

or medium sample sizes, all datasets had unstable CIs across the values of nseed that we used

(Figure 4.6). When nseed=1, 73 (36.5%) and 5 (2.5%) datasets had non-overlapping CIs in

the small and medium sample sizes with cross-fitting, but averaging over multiple seeds did

eliminate non-overlapping CIs (Table 4.1).

Rejection Proportion

Hypothesis testing instability was present in all scenarios where no averaging was performed

(Figure 4.7). As nseed increased the rejection proportions tended to cluster around zero

or one (Figure 4.7) and the number of datasets with unstable hypothesis test results also

decreased (Figure 4.8). For example, in the smallest sample size without cross-fitting, 47

(24%) datasets had unstable test results when nseed = 1. When nseed = 40, only 8 (4%)

datasets had unstable test results.

Statistical performance of averaged estimators

Generally, the estimators, CIs, and hypothesis tests that averaged over multiple seeds had

similar performance to those that did not. Averaging over multiple seeds altered performance

of the cross-fit AIPTW in the smallest sample size, with an observed decrease in bias and

standard deviation and increase in CI coverage (to the point of extremely conservative CI

coverage) with increasing values of nseed (Table 4.2). These trends for this estimator persisted

in larger sample sizes, though differences in performance were less dramatic.
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Additional Results

Additional simulation results are summarized in Supplement C.4. Across scenarios, the

proposed strategies improved stability.

4.5 Real Data Analysis

We applied our proposed strategy to a prospective observational study of 94 patients with

multidrug-resistant (MDR) tuberculosis (TB) in the country of Georgia to compare treat-

ment regimens including two recently approved drugs for treating MDR-TB, bedaquiline and

delamanid. The outcomes of the study were a binary end of treatment clinical treatment

outcome (treatment success vs. any other outcome) and binary six-month sputum culture

conversion (SCC)[33]. We estimated the ATE, controlling for 17 covariates in analyses.

We present results of the cross-fit AIPTW estimator (results from other estimators are in

Supplement C.5).

The ATE point estimates, 95% CIs, and p-values varied as the number of seeds aver-

aged over changed. For the final clinical outcome, the ATE point estimates appear to be

converging around 0.8 and the p-value to around 0.26 as the number of seeds averaged over

increases (Table 4.3). For the SCC outcome, similar ATE point estimates and CI bounds

were observed across the number of seeds, but when nseed = 1 the p-value was < 0.05, while

nseed ≥ 5 led to p-values > 0.05 (Table 4.3). Although the results of this analysis consistently

indicate that bedaquiline is associated with better outcomes than delamanid, these results

illustrate how the point estimate, level of uncertainty, and hypothesis testing conclusions

may change after implementing our proposed strategies at different values of nseed.
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4.6 Discussion

Our study illustrates that inference derived from doubly robust estimators of the ATE can

be heavily impacted by initial random seed, especially when the sample size is small and

when cross-fitting is used. The proposed averaging strategies led to improved robustness

of results to random seed. In practice, these strategies can allow researchers to realize the

flexibility offered by machine learning for estimating causal effects while mitigating concerns

pertaining to random seed dependence.

The number of seeds needed to sufficiently stabilize results in our simulation study

changed depending on the DGM and analysis scenario. We attempted to develop guidelines

for the number of seeds needed to stabilize inference by identifying the value of nseed that

led to < 5% of datasets with unstable results. When AIPTW estimators were implemented

without cross-fitting in small samples, CIs stabilized with 80 seeds and hypothesis testing

with 40 seeds. At sample sizes of 500, 20 seeds stabilized both CIs and tests; at sample size

1000, only 10 seeds were required. When cross-fitting was implemented, although averaging

over multiple seeds improved stability, we did not achieve the desired levels of stability in

most scenarios for either CIs or hypothesis testing results, indicating that nseed > 80 may

be needed. It is not clear the extent to which these results will generalize across DGMs,

particularly data sets with practical positivity violations [50]. We also expect that, in the

case of binary outcomes, sensitivity to random seed will be driven by the number of observed

events as opposed to sample size. Ideally, an adaptive approach would be developed so that

additional seeds are implemented only when necessary. This is an important practical area

for future research.

In small samples, averaging over more seeds sometimes led to inflated standard errors,

over-coverage of CIs, and decreased power of tests. We hypothesize that considering many

seeds increases the chance of one seed yielding extreme standard error estimates that inflate

the proposed variance estimate. This issue might be alleviated by considering alternative

strategies for combining estimates over multiple seeds. For example, Chernozhukov and
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colleagues suggest stabilizing estimates using the median [15]. Further technical research is

required to derive optimal approaches for stability.

Methods for estimating variance that incorporate both the variability due to sampling

data and the variability attributable to randomness in the training process have also been

suggested in the literature [15, 47]. We did not incorporate this variability in our standard

error estimates. Nevertheless, we tended to see conservative or nominal CI coverage for cross-

fit estimators, suggesting that accounting for additional variation may not be necessary in

these cases.

Our real data analysis demonstrated how random seed dependence may manifest in prac-

tice. Although point estimates of the ATE of Bedaquiline vs. Delamanid were reasonably

consistent, testing conclusions were still susceptible to variation due to random seed, high-

lighting the critical importance of averaging in regulatory settings where hypothesis testing

is critical for decision making.

4.7 Conclusion

As machine learning techniques continue to emerge and gain popularity, the property of

robustness to initial random seed should also become a focus in the research literature. Sta-

bility of estimators should be formally studied and reported transparently in methodological

research alongside standard statistical performance criteria. Our research indicates that for

ATE estimation using popular doubly-robust methods, 20 seeds can be expected to stabilize

inference across a number of domains, with more seeds required in the presence of cross-

fitting and in small samples. Additional evidence is needed to solidify this rule of thumb for

different causal estimands and estimators.
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Figure 4.3: Vertical boxplots of ATE point estimates from 150 analyses of each of the 200
datasets using AIPTW estimated (A) without cross-fitting and (B) with cross-fitting at
different values of nseed. Each box-plot represents point estimates from 150 analyses of a
single dataset, where analyses differed only in the initial random seed that was set. The
height of a box-plot visualizes the within-dataset variability of ATE point estimates due to
random seed. Results displayed are from the low-dimensional DGM when super learning
was used to estimate the OR and PS, and only results from nseed = 1, 10, and 80 are shown
for clarity. The 200 simulated datasets are ordered by the mean ATE estimate over the 150
analyses when only one seed was used in the analysis. The black dashed line indicates the
true ATE value.
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Figure 4.4: Vertical boxplots of centered confidence interval bounds from 150 analyses of
each of 200 datasets using AIPTW estimated (A) without cross-fitting and (B) with cross-
fitting at different values of nseed. Vertically stacked box-plots of the same color represent
estimates of centered confidence interval bounds (upper and lower) from 150 analyses of
a single dataset, where analyses differed only in the initial random seed that was set. The
height of the box-plots indicates the within-dataset variability of centered confidence interval
limits due to random seed. Results displayed are from the low-dimensional data generating
mechanism when super learning was used to estimate the OR and PS, and only results from
nseed = 1, 10, and 80 are shown for clarity. Datasets are ordered by the mean ATE estimate
when only one seed was used in the analysis.
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Figure 4.5: Jittered scatterplots of the maximum relative range of CI bounds calculated from
150 analyses of each of 200 datasets using AIPTW estimated (A) without cross-fitting and
(B) with cross-fitting at different values of nseed. The maximum range of CI bounds is the
range of lower CI bounds or the range of upper CI bounds, whichever is larger, from the 150
analyses of a given dataset. This range is divided by the average CI width from the analyses
to obtain the maximum relative range. A maximum relative range greater than 1 indicates
that two analyses of the same dataset yielded an upper or lower CI limit that differed by
more than the average width of the CIs across all 150 analyses. A maximum relative range
of 0 indicates that CIs across seeds were all identical. Generally, a low maximum relative
range of CI bounds is preferred, as it indicates a more consistent confidence intervals across
random seeds. Results displayed are from the low-dimensional data generating mechanism
when super learning was used to estimate the OR and PS.
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Figure 4.6: Line graphs displaying the relationship between nseed and the proportion of data
sets with unstable confidence intervals as indicated by having a maximum relative range
of CI bounds > 10% for (A) non cross-fit and (B) cross-fit AIPTW estimates, in the low-
dimensional data generating scenario when super learning was used to estimate the OR and
PS.
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Table 4.1: Summary of confidence interval discordance for all scenarios when augmented
inverse probability of treatment weighting (AIPTW) is used to estimate the ATE. nseed

refers to the number of random seeds averaged over for the averaging strategy.

Data
Generating
Scenario

OR/PS
Estimation

Cross-
Fitting

Averaging
Strategy

Sample Size Number of
Datasets

with
discordant
confidence

intervals at
nseed = 1

nseed that
achieved 0
discordant
confidence
intervals
for all
datasets

100 0 1
500 0 1AIPTW

1000 0 1
100 0 1
500 0 1

No

Regressions
1000 0 1
100 73 5
500 5 5

Super
Learning

Yes
1000 0 1
100 0 1
500 0 1

AIPTW

1000 0 1
100 0 1
500 0 1

No

Regressions
1000 0 1
100 17 5
500 1 5

Low-
dimensional

Random
Forest

Yes
1000 0 1
100 2 5
500 0 1

AIPTW

1000 0 1
100 2 5
500 0 1

No

Regressions
1000 0 1
100 4 5
500 0 1

Super
Learning

Yes
1000 0 1
100 0 1
500 0 1

AIPTW

1000 0 1
100 0 1
500 0 1

No

Regressions
1000 0 1
100 0 1
500 0 1

High-
dimensional

Random
Forest

Yes AIPTW
1000 0 1
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Figure 4.7: Jittered scatterplots of rejection proportion (p) for each of 200 data sets. The
rejection proportion is the fraction of the 150 analyses of a given dataset that rejected the
null hypothesis: p = 0 or p = 1 indicates respectively that none or all of the 150 initial seeds
led to rejection of the null hypothesis; 0< p <1 indicates that testing conclusions differ based
on random seeds, with some seeds leading to rejection of the null and others not rejecting
the null. Results shown for the AIPTW estimated (A) without cross-fitting and (B) with
cross-fitting at different values of nseed. Results displayed are from the low-dimensional data
generating mechanism when super learning was used to estimate the OR and PS.
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Figure 4.8: Line graphs displaying the relationship between nseed and the proportion of data
sets with unstable hypothesis testing results as indicated by a rejection proportion not equal
to zero or one for (A) non cross-fit and (B) cross-fit AIPTW estimates, in the low-dimensional
data generating scenario when super learning was used to estimate the OR and PS.
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Table 4.2: Augmented inverse probability of treatment weighting (AIPTW) estimator met-
rics for low-dimensional data generation scenario when super learning was used to estimate
the outcome regression and propensity score, with seed = 1, without and with cross-fitting.
The metrics displays are only for averaging at the level of final estimates. The metrics re-
ported are bias, Monte Carlo standard deviation (SD), mean square error (MSE), confidence
interval (CI) coverage, and power.

Without Cross-Fitting Cross-Fitting
Averaging Level Method Bias SD MSE Coverage Power Bias SD MSE Coverage Power
Sample Size = 100

1 0.005 0.082 0.007 0.85 0.375 0.051 0.351 0.126 0.965 0.085
5 Average on AIPTW 0.005 0.081 0.007 0.845 0.355 0.042 0.208 0.045 0.990 0.055
10 Average on AIPTW 0.005 0.081 0.007 0.85 0.36 0.032 0.178 0.033 0.995 0.030
20 Average on AIPTW 0.005 0.081 0.007 0.85 0.36 0.026 0.165 0.028 0.995 0.020
40 Average on AIPTW 0.005 0.081 0.007 0.85 0.355 0.029 0.158 0.026 1.000 0.020
60 Average on AIPTW 0.005 0.081 0.007 0.85 0.355 0.031 0.157 0.025 1.000 0.005
80 Average on AIPTW 0.005 0.081 0.007 0.85 0.355 0.030 0.156 0.025 1.000 0.000

Sample Size = 500
1 0.003 0.044 0.002 0.93 0.57 0.004 0.058 0.003 0.970 0.380
5 Average on AIPTW 0.003 0.044 0.002 0.93 0.59 0.003 0.054 0.003 0.985 0.330
10 Average on AIPTW 0.003 0.044 0.002 0.925 0.57 0.003 0.051 0.003 0.980 0.300
20 Average on AIPTW 0.003 0.044 0.002 0.925 0.57 0.003 0.050 0.003 0.980 0.305
40 Average on AIPTW 0.003 0.044 0.002 0.925 0.575 0.004 0.049 0.002 0.985 0.315
60 Average on AIPTW 0.003 0.044 0.002 0.925 0.575 0.004 0.049 0.002 0.980 0.310
80 Average on AIPTW 0.003 0.044 0.002 0.925 0.575 0.004 0.049 0.002 0.980 0.305

Sample Size = 1000
1 -0.001 0.032 0.001 0.9 0.765 -0.005 0.039 0.002 0.930 0.660
5 Average on AIPTW -0.001 0.032 0.001 0.9 0.76 -0.002 0.036 0.001 0.950 0.630
10 Average on AIPTW -0.001 0.032 0.001 0.9 0.765 -0.003 0.036 0.001 0.955 0.625
20 Average on AIPTW -0.001 0.032 0.001 0.9 0.77 -0.003 0.035 0.001 0.950 0.635
40 Average on AIPTW -0.001 0.032 0.001 0.9 0.765 -0.003 0.035 0.001 0.950 0.630
60 Average on AIPTW -0.001 0.032 0.001 0.9 0.77 -0.002 0.035 0.001 0.960 0.615
80 Average on AIPTW -0.001 0.032 0.001 0.9 0.77 -0.002 0.035 0.001 0.960 0.615
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Table 4.3: Cross-fit augmented inverse probability of treatment weighting (AIPTW) point
and interval estimation of average treatment effects comparing the effects of Bedaquiline
versus Delamanid regimens on two clinical outcomes in patients with multi-drug resistant
tuberculosis. The two outcomes studied were final clinical outcome and binary six-month
sputum culture conversion (SCC). Results are summarized over different averaging levels,
nseed. Results displayed are from averaging at the level of the final estimate.

nseed Treatment Effect 95% CI CI Width p-value
Final Clinical Outcome
1 0.43 -0.851 - 1.71 2.561 0.511
5 1.225 -0.362 - 2.813 3.175 0.13
10 1.002 -0.454 - 2.458 2.912 0.178
20 0.733 -0.735 - 2.201 2.935 0.328
40 0.87 -0.608 - 2.347 2.955 0.249
60 0.798 -0.695 - 2.292 2.986 0.295
80 0.839 -0.634 - 2.312 2.946 0.264
SCC
1 0.191 0.014 - 0.368 0.354 0.035
5 0.167 -0.033 - 0.368 0.402 0.102
10 0.168 -0.02 - 0.357 0.377 0.08
20 0.178 -0.011 - 0.367 0.378 0.066
40 0.184 -0.007 - 0.375 0.382 0.059
60 0.178 -0.044 - 0.401 0.446 0.117
80 0.179 -0.039 - 0.396 0.434 0.107
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Appendix A

Appendix for Chapter 2

A.1 On “Convergence", Rates, and “Sufficient" Rates

We can define convergence of a function-valued estimate fn to the function, f , in terms

of an L2(P0)-norm ||fn − f || =
[∫

(fn(w)− f(w))2dP0(W )
]1/2. We would say that fn is

L2(P0)-consistent for f if ||fn − f || = op(1).

Furthermore, if it is true that

[∫
(fn(w)− f(w))2dP0(w)

]1/2
= op(n

−k) ,

then we say that the rate (with respect to L2(P0)-norm) at which fn converges to f is n−k.

We use the term “sufficient rate” to indicate when nuisance regressions converge quickly

enough for certain terms to be op(n−1/2). See the main text (section 2.2.2), for an example of

how to prove that the last term of R(ηn, η0) is op(n−1/2) under “sufficient” rates of convergence

of certain nuisance regressions.

With respect to R(ηn, η0), there are three possible scenarios of interest regarding conver-

gence of the propensity scores and the outcome regression when flexible estimation techniques

are used:

1. All nuisance regressions converge to their true values: if n−p is the slowest rate of
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convergence for the PS regressions to g0 and n−q is the rate of convergence for the

outcome regression to Q̄0, then the rate of convergence of R(ηn, η0) is n−(p+q). When

p+ q ≥ 1/2, R(ηn, η0) = op(n
−1/2). In this case both TMLE and DRTMLE will arrive

at valid inference under mild assumptions. If p+ q < 1/2 then the assumptions needed

for valid inference for both TMLE and DRTMLE will fail to hold.

2. Only one regression type converges to its true value: TMLE will generally not provide

theoretically valid inference in this case. If we can also assume that the correctly spec-

ified regression converges at a rate ∈ (n−1/2, n−1/4] and that the incorrectly specified

regression converges at a rate ∈ (n−1/2, n−1/4], albeit to an incorrect function, then

our DRTMLE estimator will provide valid asymptotic inference under the additional

assumptions listed in Appendix A.5. If either regression type converges at slower rates

than those provided, DRTMLE will not provide theoretically valid inference.

3. Neither set of regressions converges to their true values. Then bias in the estimator

will result and neither TMLE nor DRTMLE will arrive at valid statistical inference.

The exact convergence rates of machine learning algorithms are influenced by the smooth-

ness of the underlying function and the dimension of covariates, and we generally do not

know the rates of convergence of many machine learning algorithms in practice. It has been

shown though that certain machine learning methods achieve at least n−1/4 rates under

smoothness assumptions on the underlying nuisance parameters [7, 20].
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A.2 Linear Expansion

The asymptotic behavior of plug-in estimators can be studied using a linear expansion [5, 28]:

Ψ(ηn)−Ψ(η0) = Pn{D∗(ηℓ)− P0D
∗(ηℓ)}

+ (Pn − P0){D∗(ηn)−D∗(ηℓ)} − PnD
∗(ηn)

+Rf (η0, ηn) ,

(A.1)

where D∗(η) is a gradient of Ψ at η ∈ H. The second term in equation (B.1), (Pn −

P0){D∗(ηn)−D∗(ηℓ)}, will be op(n−1/2) if P0[(D
∗(ηn)−D∗(ηℓ)

2] = op(1) and D∗(ηn) falls in

a P0-Donsker class with probability tending to 1. This assumption can generally be expected

to hold provided certain regularity conditions are met for the nuisance regressions in D∗(η)

[34, 75].

We can derive Rf for the ATT with outcome data MAR: Rf (η0, ηn) = R(η0, ηn) +

ḡn,A−ḡ0,A
ḡn,A

(Ψ(ηn) − Ψ(η0)), where R(η0, ηn) is defined in equation (2.3) of the main text. We

argue that ḡn,A−ḡ0,A
ḡn,A

(Ψ(ηn)− Ψ(η0)) = op(n
−1/2) in Appendix Section A.2.1, under some as-

sumptions. Assuming also that (Pn−P0){D∗(ηn)−D∗(ηℓ)} = op(n
−1/2) and ḡn,A−ḡ0,A

ḡn,A
(Ψ(ηn)−

Ψ(η0)) = op(n
−1/2), equation (B.1) can be re-written as Ψ(ηn) − Ψ(η0) = Pn{D∗(ηℓ) −

P0D
∗(ηℓ)}+−PnD

∗(ηn)+R(η0, ηn)+ op(n
−1/2), as given in the main text, in equation (2.2).

A.2.1 Negligibility of the Extra Term in the Remainder

In order to prove asymptotic linearity we need to account for the term:

ḡn,A − ḡ0,A
ḡn,A

(Ψ(ηn)−Ψ(η0)) (A.2)
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Returning to equation (B.1), we may argue that it can be expressed as:

Ψ(ηn)−Ψ(η0) =(Pn − P0)D
∗(ηℓ)− PnD

∗(ηn)

+ (Pn − P0){D∗(ηn)−D∗(ηℓ)}

+R(η0, ηn) +
ḡn,A − ḡ0,A

ḡn,A
(Ψ(ηn)−Ψ(η0))

(A.3)

It follows that:

(1− ḡn,A − ḡ0,A
ḡn,A

)(Ψ(ηn)−Ψ(η0)) =(Pn − P0)D
∗(ηℓ)− PnD

∗(ηn)

+ (Pn − P0){D∗(ηn)−D∗(ηℓ)}

+R(η0, ηn)

(A.4)

Under assumptions, n1/2(1− ḡn,A−ḡ0,A
ḡn,A

)(Ψ(ηn)−Ψ(η0)) is asymptotically normal and centered

at zero (e.g. for proposed DRTMLE under assumptions in Appendix A.5 this will hold). By

assumption 3b of Appendix A.5, (1− ḡn,A−ḡ0,A
ḡn,A

) converges in probability to 1. By Slutsky’s the-

orem it follows that n1/2(Ψ(ηn)−Ψ(η0)) is asymptotically normal with the same asymptotic

distribution as n1/2(1− ḡn,A−ḡ0,A
ḡn,A

)(Ψ(ηn)−Ψ(η0)). Finally, since (Ψ(ηn)−Ψ(η0)) = Op(n
−1/2)

and (
ḡn,A−ḡ0,A

ḡn,A
) = op(1), (

ḡn,A−ḡ0,A
ḡn,A

)(Ψ(ηn)−Ψ(η0)) = op(n
−1/2). Which allows us to conclude

that expression (A.2) is op(n−1/2) [11].
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A.3 On Compatibility of ḡn,A and Ψalt as an Alternative

Functional

The last term of PnD
∗(η∗n) is:

1

n

n∑
i=1

[
Ai

ḡn,A
(Q̄∗

n(1,Wi)− Q̄∗
n(0,Wi)−Ψ(η∗n))]

=
1

n

n∑
i=1

[
Ai − g∗n,A(Wi)

ḡn,A
(Q̄∗

n(1,Wi)− Q̄∗
n(0,Wi)−Ψ(η∗n))]

+
1

n

n∑
i=1

[
g∗n,A(Wi)

ḡn,A
(Q̄∗

n(1,Wi)− Q̄∗
n(0,Wi)−Ψ(η∗n))]

(A.5)

The second line above is a score equation for gn,A which is negligible after iteratively

updating gn,A with the TMLE (or DRTMLE) procedure outlined in the main text. The third

line in equation A.5 is zero or op(n−1/2) when ḡn,A = 1
n

∑
g∗n,A(Wi) or [1−Pn[g∗n,A]

ḡn,A
] = op(n

−1/2).

If our nuisance estimates for ḡ0,A, Q0,W , and g0,A are compatible, or correspond to a well-

defined distribution P ∈ M, we expect [1− Pn[g∗n,A]

ḡn,A
] = op(n

−1/2).

van der Laan and Rose argue that when PnD
∗(η∗n) = op(n

−1/2), an alternative functional

may also be used as an estimator for the ATT [76]:

Ψalt(η
∗
n) =

1

nA

n∑
i=1

Ai

(
Q̄∗

n(1,Wi)− Q̄∗
n(0,Wi)

)
(A.6)

This estimator is appropriate when we assume that equation A.5 is op(n−1/2), allowing us to

write:

1

n

n∑
i=1

[
Ai

ḡn,A
(Q̄∗

n(1,Wi)− Q̄∗
n(0,Wi)−Ψ(η∗n))] = op(n

−1/2)

1

n

n∑
i=1

[
Ai

ḡn,A
(Q̄∗

n(1,Wi)− Q̄∗
n(0,Wi)] = Ψ(η∗n) + op(n

−1/2)

Ψalt(η
∗
n) = Ψ(η∗n) + op(n

−1/2)

(A.7)
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The results in Theorem 1 also hold for Ψalt(η
†
n) in place of Ψ(η†n), assuming that equation

A.5 is op(n−1/2).

It is of note that using the sample proportion to estimate ḡ0,A may not lead to compatible

estimates in the sense that 1
n

∑
gn,A(Wi) ̸= ḡn,A and [1 − Pn[g∗n,A]

ḡn,A
] ̸= op(n

−1/2). When

ḡn,A ̸= 1
n

∑
g∗n,A(Wi) and [1− Pn[g∗n,A]

ḡn,A
] ̸= op(n

−1/2) equation A.5 may not be op(n−1/2) and (i)

may contribute root-n bias and (ii) may negate the validity of Ψalt as an alternative functional

for estimation. To address this issue, an intercept term can be added to the logistic regression

for gn,A within the TMLE and DRTMLE procedures. For example, in steps (3c) and (3d)

of the DRTMLE procedure presented in section 2.3.5 an intercept term can be included in

the logistic regression and the corresponding definition of gn,A(w). Including an intercept

ensures ḡn,A = 1
n

∑
g∗n,A(Wi) for TMLE and ḡn,A = 1

n

∑
g†n,A(Wi) for DRTMLE.

We ran an additional simulation where we included an intercept term in the logistic

regression for gn,A for both TMLE and DRTMLE. The results of this additional simulation

compared to the original simulation study are displayed in figure A.1. There are only minor

differences between the results when an intercept is included in the fluctuation model for gn,A

and there is not a clear pattern of one fluctuation model outperforming the other (intercept

versus no intercept) across scenarios.

A.4 Derivation of DRTMLE Estimator

We illustrate the derivations leading to the representation of R(ηn, η0) given in equation 2.9.

Let,
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Figure A.1: Comparison in estimates when different fluctuation models for gn,A are used.
We tested fluctuation models with and without an intercept term, represented by the dashed
and solid lines, respectively.
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R1(ηn, η0) =

∫ [g0,A(w){g0,∆Y
(1, w)− gn,∆Y

(1, w)}
ḡn,Agn∆Y

(1, w)

{
Q̄0(1, w)− Q̄n(1, w)

}
]dQ0,W (w) .

R2(ηn, η0) = −
∫ [gn,A(w)(1− g0,A(w)){g0,∆Y (0, w)− gn,∆Y

(0, w)}
ḡn,Agn∆Y (0, w)(1− gn,A(w)){

Q̄0(0, w)− Q̄n(0, w)
}
]dQ0,W (w)

R3(ηn, η0) =

∫ [{g0,A(w)− gn,A(w)}
ḡn,A(1− gn,A(w))

{Q̄0(0, w)− Q̄n(0, w)}
]
dQ0,W (w) .

Then R(ηn, η0) = R1(ηn, η0) +R2(ηn, η0) +R3(ηn, η0). Let

ϕg
1(η, γ)(g

∗) = −AQ̄r1(g∆Y
)(W )

g∆Y
(1,W )ḡA

(∆Y − g∗∆Y
(1,W ))

ϕg
2(η, γ)(g

∗) =
(1− A)Q̄r2(g∆Y

)(W )

g∆Y
(0,W )ḡA

(∆Y − g∗∆Y
(0,W ))

ϕg
3(η, γ)(g

∗) = −Q̄r3(gA, g∆Y
)(W )

((1− gA(W ))ḡA
(A− g∗A(W ))

ϕQ̄
1 (η, γ)(Q̄

∗) = −A∆Y hr1(Q̄)(W )

gr1(Q̄)(W )
(Y − Q̄∗(1,W ))

ϕQ̄
2 (η, γ)(Q̄

∗) =
(1− A)∆Y hr2(Q̄)(W )

gr2(Q̄)(W )
(Y − Q̄∗(0,W ))

ϕQ̄
3 (η, γ)(Q̄

∗) =
(1− A)∆Y hr3(Q̄)(W )

gr2(Q̄)(W )
(Y − Q̄∗(0,W ))

When gℓ = g0 we show in sections A.4.1 - A.4.3 that:
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R1(ηn, η0) = Pn{ϕg
1(ηℓ, γ0)(g0)− P0ϕ

g
1(ηℓ, γ0)(g0)} − Pnϕ

g
1(ηn, γn)(gn) +R1,n,g

R2(ηn, η0) = Pn{ϕg
2(ηℓ, γ0)(g0)− P0ϕ

g
2(ηℓ, γ0)(g0)} − Pnϕ

g
2(ηn, γn)(gn) +R2,n,g

R3(ηn, η0) = Pn{ϕg
3(ηℓ, γ0)(g0)− P0ϕ

g
3(ηℓ, γ0)(g0)} − Pnϕ

g
3(ηn, γn)(gn) +R3,n,g

When Q̄ℓ = Q̄0 we show in sections A.4.1 - A.4.3 that:

R1(ηn, η0) = Pn{ϕQ̄
1 (ηℓ, γ0)(Q̄0)− P0ϕ

Q̄
1 (ηℓ, γ0)(Q̄0)} − Pnϕ

Q̄
1 (ηn, γn)(Q̄n) +R1,n,Q

R2(ηn, η0) = Pn{ϕQ̄
2 (ηℓ, γ0)(Q̄0)− P0ϕ

Q̄
2 (ηℓ, γ0)(Q̄0)} − Pnϕ

Q̄
2 (ηn, γn)(Q̄n) +R2,n,Q

R3(ηn, η0) = Pn{ϕQ̄
3 (ηℓ, γ0)(Q̄0)− P0ϕ

Q̄
3 (ηℓ, γ0)(Q̄0)} − Pnϕ

Q̄
3 (ηn, γn)(Q̄n) +R3,n,Q

Note that ϕg(η, γ) = ϕg
1(η, γ) + ϕg

2(η, γ) + ϕg
3(η, γ) and ϕQ̄(η, γ) = ϕQ̄

1 (η, γ) + ϕQ̄
2 (η, γ) +

ϕQ̄
3 (η, γ). When gℓ = g0, under the assumptions listed in Appendix A.5, {R1,n,g, R2,n,g,

R3,n,g} are op(n
−1/2). When Q̄ℓ = Q̄0, under the assumptions listed in Appendix A.5,

{R1,n,Q, R2,n,Q, R3,n,Q} are op(n−1/2). Together these results imply equation 2.9.

A.4.1 Expansion for R1(ηn, η0)

We can show:

R1(ηn, η0) =EP0

[g0,A(W )

ḡn,A

(
gℓ,∆Y

(1,W )− g0,∆Y
(1,W )

)
gℓ,∆Y

(1,W )

(
Q̄n(1,W )− Q̄ℓ(1,W )

)
+
g0,A(W )

ḡn,A

(
gn,∆Y

(1,W )− gℓ,∆Y
(1,W )

)
gℓ,∆Y

(1,W )

(
Q̄ℓ(1,W )− Q̄0(1,W )

)]
+R1,n ,

(A.8)
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where

R1,n =− EP0

[g0,A(W )

ḡn,A
(Q̄n(1,W )− Q̄0(1,W ))

(gn,∆Y
(1,W )− g0,∆Y

(1,W ))(gn,∆Y
(1,W )− gℓ,∆Y

(1,W ))

(gn,∆Y
(1,W )gℓ,∆Y

(1,W ))

]
+ EP0

[g0,A(W )

ḡn,A
{(Q̄n(1,W )− Q̄ℓ(1,W ))(gn,∆Y

(1,W )− gℓ,∆Y
(1,W ))

gℓ,∆Y
(1,W )

+
(Q̄0(1,W )− Q̄ℓ(1,W ))(g0,∆Y

(1,W )− gℓ,∆Y
(1,W ))

gℓ,∆Y
(1,W )

}
]
.

Assume that gℓ = g0, then equation (A.8) is equal to:

EP0

[g0,A(W )

ḡn,A

(
g0,∆Y

(1,W )− gn,∆Y
(1,W )

)
g0,∆Y

(1,W )

(
Q̄0(1,W )− Q̄ℓ(1,W )

)]
+R1,n

= EP0

[A∆Y

ḡn,A

(
g0,∆Y

(1,W )− gn,∆Y
(1,W )

)
g0,∆Y

(1,W )2
(
Y − Q̄ℓ(1,W )

)]
+R1,n

= EP0

[ A

ḡn,A

(
g0,∆Y

(1,W )− gn,∆Y
(1,W )

)
g0,∆Y

(1,W )
Q̄0,r1(g0,∆Y

, gn,∆Y
)(W )

]
+R1,n

= (Pn − P0)ϕ
g
1(ηℓ, γ0)(gℓ)− Pnϕ

g
1(ηn, γn)(gn) +R1,n,g ,

where R1,n,g = R1,n +R1,n,g,1 and

R1,n,g,1 =EP0

[ A

ḡn,A

(Q̄0,r1(g0,∆Y
, gn,∆Y

)

g0,∆Y
(1,W )

− Q̄n,r1(gn,∆Y
)

gn,∆Y
(1,W )

)
(g0,∆Y

(1,W )− gn,∆Y
(1,W ))

]
+ (Pn − P0)[ϕ

g
1(ηn, γn)(gn)− ϕg

1(ηℓ, γ0)(gℓ)] .

Note that when Q̄ℓ = Q̄0 then (Pn − P0)[ϕ
g
1(η0, γ0)(gℓ)] = 0 because

P0(Q̄0,r1(g̃1, ..., g̃k)(W ) = 0) = 1 for any functions g̃1, ..., g̃k.

Assume that Q̄ℓ = Q̄0, then equation (A.8) is equal to:
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EP0

[g0,A(W )

ḡn,A

(
gℓ,∆Y

(1,W )− g0,∆Y
(1,W )

)
gℓ,∆Y

(1,W )

(
Q̄n(1,W )− Q̄0(1,W )

)]
+R1,n

= EP0

[ A

ḡn,A

(
gℓ,∆Y

(1,W )−∆Y

)
gℓ,∆Y

(1,W )

(
Q̄n(1,W )− Q̄0(1,W )

)]
+R1,n

= EP0

[ A∆Y

g0,r1(Q̄0, Q̄n)
(Q̄0(1,W )− Q̄n(1,W ))h0,r1(Q̄0, Q̄n)

]
+R1,n

= (Pn − P0)ϕ
Q̄
1 (ηℓ, γ0)(Q̄ℓ)− Pnϕ

Q̄
1 (ηn, γn)(Q̄n) +R1,n,Q ,

where R1,n,Q = R1,n +R1,n,Q,1 and

R1,n,Q,1 = EP0

[
A∆Y (Q̄0(1,W )− Q̄n(1,W ))

(h0,r1(Q̄0, Q̄n)

g0,r1(Q̄0, Q̄n)
− hn,r1(Q̄n)

gn,r1(Q̄n)

)]
+ (Pn − P0)[ϕ

Q̄
1 (ηn, γn)(Q̄n)− ϕQ̄

1 (ηℓ, γ0)(Q̄ℓ)] .

Note that when gℓ = g0 then (Pn − P0)ϕ
Q̄
1 (ηℓ, γ0)(Q̄ℓ) = 0 because

P0(h0,r1(Q̄) = 0) = 1 for any function Q̄.

A.4.2 Expansion for R2(ηn, η0)

We can show:

R2(ηn, η0) =− EP0

[gn,A(W )(1− g0,A(W ))

ḡn,A(1− gn,A(W ))

(
gℓ,∆Y

(W )− g0,∆Y
(W )

)
gℓ,∆Y

(W )

×
(
Q̄n(0,W )− Q̄ℓ(0,W )

)
+
gn,A(W )(1− g0,A(W ))

ḡn,A(1− gn,A(W ))

(
gn,∆Y

(W )− gℓ,∆Y
(W )

)
gℓ,∆Y

×
(
Q̄ℓ(0,W )− Q̄0(0,W )

)]
+R2,n ,

(A.9)
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where

Assume that gℓ = g0, then equation (A.9) is equal to:

− EP0

[gn,A(W )(1− g0,A(W ))

ḡn,A(1− gn,A(W ))

(
g0,∆Y

(0,W )− gn,∆Y
(0,W )

)
g0,∆Y

(0,W )

(
Q̄0(0,W )− Q̄ℓ(0,W )

)]
+R2,n

= −EP0

[gn,A(W )(1− A)∆Y

ḡn,A(1− gn,A(W ))

(
g0,∆Y

(0,W )− gn,∆Y
(0,W )

)
g0,∆Y

(0,W )2
(
Y − Q̄ℓ(0,W )

)]
+R2,n

= −EP0

[(1− A)

ḡn,A

(
g0,∆Y

(0,W )− gn,∆Y
(0,W )

)
g0,∆Y

(0,W )
Q̄0,r2(g0,∆Y

, gn,∆Y
)(W )

]
+R2,n

= (Pn − P0)ϕ
g
2(ηℓ, γ0)(gℓ)− Pnϕ

g
2(ηn, γn)(gn)+R2,n,g ,

where R2,n,g = R2,n +R2,n,g,1 and

R2,n,g,1 =− EP0

[(1− A)

ḡn,A

(Q̄0,r2(g0, gn)

g0,∆Y
(0,W )

− Q̄n,r2(gn)

gn,∆Y
(0,W )

)
(g0,∆Y

(1,W )− gn,∆Y
(0,W ))

]
+ (Pn − P0)[ϕ

g
2(ηn, γn)(gn)− ϕg

2(ηℓ, γ0)(gℓ)] .

Note that when Q̄ℓ = Q̄0 then (Pn − P0)[ϕ
g
2(ηℓ, γ0)(gℓ)] = 0 because

P0(Q̄0,r2(g̃1, ..., g̃k)(W ) = 0) = 1 for any functions g̃1, ..., g̃k.
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Assume that Q̄ℓ = Q̄0, then equation (A.9) is equal to:

−EP0

[gn,A(W )(1− g0,A(W ))

ḡn,A(1− gn,A(W ))

(
gℓ,∆Y

(0,W )− g0,∆Y
(0,W )

)
gℓ,∆Y

(0,W )

(
Q̄n(0,W )− Q̄0(0,W )

)]
+R2,n

= −EP0

[ gn,A(W )(1− A)

ḡn,A(1− gn,A(W ))

(
gℓ,∆Y

(0,W )−∆Y

)
gℓ,∆Y

(0,W )

(
Q̄n(0,W )− Q̄0(0,W )

)]
+R2,n

= −EP0

[ I(A = 0)∆Y

g0,r2(Q̄0, Q̄n)
(Q̄0(0,W )− Q̄n(0,W ))h0,r2(Q̄0, Q̄n)

]
+R2,n

= (Pn − P0)ϕ
Q
2 (ηℓ, γ0)(Q̄ℓ)− Pnϕ

Q̄
2 (ηn, γn)(Q̄n) +R2,n,Q ,

where R2,n,Q = R2,n +R2,n,Q,1 and

R2,n,Q,1 = −EP0

[
(1− A)∆Y (Q̄0(0,W )− Q̄n(0,W ))

(h0,r2(Q̄0, Q̄n)

g0,r2(Q̄0, Q̄n)
− hn,r2(Q̄n)

gn,r2(Q̄n)

)]
+ (Pn − P0)[ϕ

Q̄
2 (ηn, γn)(Q̄n)− ϕQ̄

2 (ηℓ, γ0)(Q̄ℓ)] .

Note that when gℓ = g0 then (Pn − P0)ϕ
Q̄
2 (ηℓ, γ0)(Q̄ℓ) = 0 because P0(h0,r2(Q̄) = 0) = 1 for

any function Q̄.

A.4.3 Expansion for R3(ηn, η0)

We can show:

R3(ηn, η0) = EP0

[(gℓ,A(W )− g0,A(W )
)

ḡn,A(1− gℓ,A(W ))

(
Q̄n(0,W )− Q̄ℓ(0,W )

)
+

(
gn,A(W )− gℓ,A(W )

)
ḡn,A(1− gℓ,A(W ))

(
Q̄ℓ(0,W )− Q̄0(0,W )

)]
+R3,n ,

(A.10)
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where

R3,n =− EP0

[(Q̄n(0,W )− Q̄0(0,W ))(gn,A(W )− g0,A(W ))(gℓ,A(W )− gn,A(W ))

ḡn,A(1− gn,A(W ))(1− gℓ,A(W ))

+
(Q̄n(0,W )− Q̄ℓ(0,W ))(gℓ,A(W )− gn,A(W ))

ḡn,A(1− gℓ,A(W ))

+
(Q̄0(0,W )− Q̄ℓ(0,W ))(gℓ,A(W )− g0,A(W ))

ḡn,A(1− gℓ,A(W ))

]
.

Assume g0 = gℓ, then equation (A.10) is equal to:

EP0

[(gn,A(W )− g0,A(W )
)

ḡn,A(1− g0,A(W ))

(
Q̄ℓ(0,W )− Q̄0(0,W )

)]
+R3,n

= EP0

[ I(A = 0)∆Y

(1− g0,A(W ))g0,∆Y
(0,W )

(
g0,A(W )− gn,A(W )

)
ḡn,A(1− g0,A(W ))

(
Y − Q̄ℓ(0,W )

)]
+R3,n

= EP0

[(g0,A(W )− gn,A(W )
)

ḡn,A(1− g0,A(W ))
Q̄0,r3(g0,A, gn,A, g0,∆Y

)(W )
]
+R3,n

= (Pn − P0)ϕ
g
3(ηℓ, γ0)(gℓ)− Pnϕ

g
3(ηn, γn)(gn) +R3,n,g ,

where R3,n,g = R3,n +R3,n,g,1 and

R3,n,g,1 = EP0 [
(Q̄0,r3(g0,A, gn,A, g0,∆Y

)(W )

ḡn,A(1− g0,A(W ))
− Q̄n,r3(gn,A, gn,∆Y

)(W )

ḡn,A(1− gn,A(W ))

)
× (g0,A(W )− gn,A(W ))]

+ (Pn − P0)[ϕ
g
3(ηn, γn)(gn)− ϕg

3(ηℓ, γ0)(gℓ)] .

Note that when Q̄ℓ = Q̄0 then (Pn − P0)[ϕ
g
3(ηℓ, γ0)(gℓ)] = 0 because

P0(Q̄0,r3(g̃1, ..., g̃k)(W ) = 0) = 1 for any functions g̃1, ..., g̃k.

Assume Q̄ℓ = Q̄0, then equation (A.10) is equal to:
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EP0

[(gℓ,A(W )− g0,A(W )
)

ḡn,A(1− gℓ,A(W ))

(
Q̄n(0,W )− Q̄0(0,W )

)]
+R3,n

=EP0

[ (
gℓ,A(W )− A

)
ḡn,A(1− gℓ,A(W ))

(
Q̄n(0,W )− Q̄0(0,W )

)]
+R3,n

=EP0

[
h0,r3(Q̄0, Q̄n)(W )

(
Q̄n(0,W )− Q̄0(0,W )

)]
+R3,n

=EP0

[ I(A = 0)∆Y

g0,r2(Q̄0, Q̄n)(W )
h0,r3(Q̄0, Q̄n)(W )

(
Q̄n(0,W )− Q̄0(0,W )

)]
+R3,n

=(Pn − P0)ϕ
Q
3 (ηℓ, γ0)(Q̄ℓ)− Pnϕ

Q̄
3 (ηn, γn)(Q̄n) +R3,n,Q ,

where R3,n,Q = R3,n +R3,n,Q,1 and

R3,n,Q,1 = −EP0

[
(1− A)∆Y (Q̄0(0,W )− Q̄n(0,W ))

(h0,r3(Q̄0, Q̄n)

g0,r2(Q̄0, Q̄n)
− hn,r3(Q̄n)

gn,r2(Q̄n)

)]
+ (Pn − P0)[ϕ

Q̄
3 (ηn, γn)(Q̄n)− ϕQ̄

3 (ηℓ, γ0)(Q̄ℓ)] .

Note that when gℓ = g0 then (Pn − P0)ϕ
Q̄
3 (ηℓ, γ0)(Q̄ℓ) = 0 because P0(h0,r3(Q̄) = 0) = 1 for

any function Q̄.

A.5 Assumptions of DRTMLE

The following assumptions are necessary to prove that R(ηn, η0) can be represented as ex-

pressed in equation (2.9) and for Theorem 1 to hold. We simplify notation here and use gn,

gℓ, and g0 to refer to a generic propensity score estimator, its limiting value, and its true value

respectively. The assumptions listed below must hold for both the propensity for treatment

and the propensity for missingness (under A = 1 and under A = 0). Similarly we will use Q̄n,

Q̄ℓ, and Q̄0 to refer to the corresponding outcome regression values. The following assump-

tions must hold for the outcome regression under treatment A=1 and A=0. We also use the

convention || f ||= (P0f
2)1/2. For the additional nuisance regressions we adopt new notation,

where we suppress the argument W and may provide two nuisance regression arguments in

place of one: both the truth denoted by subscript “0" and the estimated regression denoted
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by subscript “n." In these cases the conditional expectation conditions on both nuisance quan-

tities. For example, Q̄0,r1(gn,∆Y
, g0,∆Y

) = EP0 [(Y −Q̄ℓ(1,W )) | gn,∆Y
(1,W ), g0,∆Y

(1,W ), A =

1,∆Y = 1].

Assumptions to prove that R can be represented as expressed in Equation (2.9)

1. General Assumptions (always apply)

(a) gℓ = g0 or Q̄ = Q̄ℓ

(b) ḡn,A − ḡ0,A = op(1)

(c) both gn,A=1 and gn,∆Y =1 are bounded away from zero

(d) || Q̄n − Q̄ℓ |||| gn − gℓ ||= op(n
−1/2)

2. If gℓ = g0 then

(a) || gn − g0 ||2= op(n
−1/2)

(b) (Pn−P0){
A(∆Y −gn,∆Y

(1,W ))

ḡn,Agn,∆Y
(1,W )

Q̄n,r1(gn,∆Y
)−A(∆Y −g0,∆Y

(1,W ))

ḡ0,Ag0,∆Y
(1,W )

Q̄0,r1(g0,∆Y
)} = op(n

−1/2)

(c) P0{
A(g0,∆Y

(1,W )−gn,∆Y
(1,W ))

ḡn,A
(
Q̄0,r1(gn,∆Y

,g0,∆Y
)

gℓ,∆Y
(1,W )

− Q̄n,r1(gn,∆Y
)

gn,∆Y
(1,W )

)} = op(n
−1/2)

(d) (Pn − P0){
(1−A)(∆Y −gn,∆Y

(0,W ))

ḡn,Agn,∆Y
(0,W )

Q̄n,r2(gn,∆Y
)}

−(Pn − P0){
(1−A)(∆Y −g0,∆Y

(0,W ))

ḡ0,Ag0,∆Y
(0,W )

Q̄0,r2(g0,∆Y
)} = op(n

−1/2)

(e) P0{
(1−A)(g0,∆Y

(0,W )−gn,∆Y
(0,W ))

ḡn,A
(
Q̄0,r2(g0,∆Y

,gn,∆Y
)

gℓ,∆Y
(0,W )

− Q̄n,r2(gn,∆Y
)

gn,∆Y
(0,W )

)} = op(n
−1/2)

(f) (Pn−P0){ (A−gn,A)

ḡn,A(1−gn,A)
Q̄n,r3(gn,∆Y

, gn,A)− (A−g0,A)

ḡ0,A(1−g0,A)
Q̄0,r3(g0,∆Y

, g0,A)} = op(n
−1/2)

(g) P0{ (A−gn,A)

ḡn,A
(
Q̄0,r3(gn,∆Y

,gn,A,g0,∆Y
,g0,A)

(1−gℓ,A)
− Q̄n,r3(gn,∆Y

,gn,A)

(1−gn,A)
)} = op(n

−1/2)

(h) The assumptions listed in item (1) hold.

3. If Q̄ℓ = Q̄0 then

(a) (Pn − P0){A∆Y ((Y − Q̄0)
h0,r1(Q̄0)

g0,r1(Q̄0)
− (Y − Q̄n)

hn,r1(Q̄n)

gn,r1(Q̄n)
)} = op(n

−1/2)

(b) P0{A∆Y (Q̄0 − Q̄n)(
h0,r1(Q̄0,Q̄n)

g0,r1(Q̄0,Q̄n)
− hn,r1(Q̄n)

gn,r1(Q̄n)
)} = op(n

−1/2)
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(c) (Pn − P0){(1− A)∆Y ((Y − Q̄0)
h0,r2(Q̄0)

g0,r2(Q̄0)
− (Y − Q̄n)

hn,r2(Q̄n)

gn,r2(Q̄n)
)} = op(n

−1/2)

(d) P0{(1− A)∆Y (Q̄0 − Q̄n)(
h0,r2(Q̄n Q̄0)

g0,r2(Q̄n,Q̄0)
− hn,r2(Q̄n)

gn,r2(Q̄n)
)} = op(n

−1/2)

(e) (Pn − P0){(1− A)∆Y ((Y − Q̄0)
h0,r3(Q̄0)

g0,r3(Q̄0)
− (Y − Q̄n)

hn,r3(Q̄n)

gn,r3(Q̄n)
)} = op(n

−1/2)

(f) P0{(1− A)∆Y (Q̄0 − Q̄n)(
h0,r3(Q̄n,Q̄0)

g0,r3(Q̄n,Q̄0)
− hn,r3(Q̄n)

gn,r3(Q̄n)
)} = op(n

−1/2)

(g) The assumptions listed in item (1) hold.

Assumptions for Theorem 1

(I) Assumptions (1), (2), and (3) above

(II) PnD
∗(η∗n) = op(n

−1/2)

(III) If gℓ = g0 then Pnϕ
g(ηn, γn)(gn) = op(n

−1/2)

(IV) If Q̄ℓ = Q̄0 then Pnϕ
Q̄(ηn, γn)(Q̄n) = op(n

−1/2)

A.6 Simulation Study Details

A.6.1 Data Generating Mechanism

The following data generating mechanism (DGM) was used for the simulation study.

W1 ∼ truncnorm(a = 0, b = 2, µ = 1, σ = 0.5)

W2 ∼ Bernoulli(0.5)

A ∼ Bernoulli(gA(W ))

∆Y ∼ Bernoulli(g∆Y
(A,W ))

Yobs ∼ Bernoulli(Q̄(A,W ))
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where gA, g∆Y
and Q̄, are defined in the main text. Figures A.2 - A.4 illustrate the data

generating mechanism.

Figure A.2: Data generating mechanism for the probability of treatment as a function of
baseline covariates.

A.6.2 Variance Estimation

For TMLE, One-Step, and DRTMLE we used influence-curve based variance estimators. For

TMLE and One-Step we used the following estimators, respectively:

σ̂2
One−Step =

1

n(n− 1)

n∑
i=1

[D∗(η0n)(Oi)−
1

n

n∑
i=1

D∗(η0n)(Oi)]
2

σ̂2
TMLE =

1

n(n− 1)

n∑
i=1

[D∗(η∗n)(Oi)−
1

n

n∑
i=1

D∗(η∗n)(Oi)]
2

For DRTMLE the estimator of variance used was:

σ̂2
DRTMLE =

1

n(n− 1)

n∑
i=1

[D̃(η†n, γ
0
n, γ

0
n)(Oi)−

1

n

n∑
i=1

(D̃(η†n, γ
0
n, γ

0
n)(Oi))]

2

where D̃(η, γ) = D∗(η) + ϕg(η, γ)(g) + ϕQ̄(η, γ)(Q̄).
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Figure A.3: Data generating mechanism for the probability of observing the outcome as a
function of treatment and baseline covariates.

Figure A.4: Data generating mechanism for the probability that the outcome is one as a
function of treatment and baseline covariates.
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Table A.1: Learners used in the real data analysis. For xgboost, all possible combinations
of parameter values were considered as separate learners.
Model Learner Parameters
Propensity SL.ranger default
Score xgboost ntrees = (10,50)

depth = (1,2,3)
shrinkage = (0.001, 0.01, 0.1)

SL.glmnet α = (0, 0.5, 1)
SL.glm default
Stratified SL.glm default
SL.earth default

Outcome SL.ranger default
Regression xgboost ntrees = (10,50)

depth = (1,2,3)
shrinkage = (0.001, 0.01, 0.1)

SL.glmnet α = (0, 0.5, 1)
SL.glm default
glm family = Poisson
glm family = gamma
glm family = gaussian(link = ’log’)
Stratified glm default
SL.earth default

A.7 Real Data Analysis

The super learners used in the propensity score and outcome regression modeling for the

real data analysis are listed in the Table A.1. The variables controlled for in the models are

listed in Table A.2. For both TMLE and DRTMLE only one iterative update of nuisance

regressions was used. We estimated the additional nuisance regressions, γ, using the super

learner with 10-fold cross validation. The candidate algorithms for the additional nuisance

regressions matched the algorithms used in the simulation study, namely SL.glm, Sl.mean,

SL.glm.interaction, and SL.earth. The final functional used for DRTMLE was Ψalt as ex-

pressed in equation (3). For TMLE we used Ψ as defined in equation (1). The variance for

each ATT estimator was calculated using the estimators described in Appendix A.6, except

that the original estimates of the OR/PSs were used in the variance calculation as opposed

to the updated nuisance parameters.
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Table A.2: Baseline variables controlled for in the propensity for treatment, propensity for
observing the outcome, and the outcome regression.
Demographic Variables Medical Variables
Age Quan comorbidity score
Sex Total relative value units in year prior
Site Back pain duration
Race Pre-index image
Education Back and leg pain scores
Partner Pain expectations
Smoking Roland Morris Disability Questionnaire score

EQ-5D index
Patient Health Questionnaire-4 score
Diagnosis category
Consent day
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Appendix B

Appendix for Chapter 3

B.1 Standard TMLE for the ATE

We outline the standard TMLE for Ψ1,a(η
1
0), introduced in section 3.2.2.

1. Estimate g0,∆Y
, and g0,A with parametric regression or machine learning techniques,

denote the estimates obtained as gn,∆Y
, and gn,A, respectively.

2. Estimate Q̄0,c by regressing Y on A and, W , among observations where ∆Y = 1 using

parametric regression or machine learning. Denote the estimate obtained as Q̄0
n,c

3. Update Q̄0
n,c(a

′, w) for each a′ ∈ {0, 1} :

(a) Let Ha′(w) =
1

(a′gn,A(w)+(1−a′)(1−gn,A(w))gn,∆Y
(a′,w)

(b) Fit a weighted logistic regression with weights equal to I(∆Y = 1, A = a′) and

the outcome Y regressed on offset term logit(Q̄0
n,c(A,W )) and covariate Ha′(W ),

without an intercept term. Let ϵn,a′ be the maximum likelihood estimator (MLE)

of the coefficient for Ha′(W ).

(c) Let Q̄∗
n,c(a

′, w) = expit{logit(Q̄0
n,c(a

′, w)) + ϵn,a′Ha′(w)}

4. Let Ψ1,a′(η
1
n) =

1
n

∑n
i=1 Q̄

∗
n,c(a

′,Wi)
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5. Estimate the standard error of Ψ1,a′(η
1
n) with

√
σ̂2
n where σ̂2

n = 1
n2

∑n
i=1{D̃a′(η

1
n) −

PnD̃a′(η
1
n)}2 where D̃a′(η

1)(O) = I(A=a′)∆Y (Y−Q̄n,c(a′,w))

{a′gn,A(W )+(1−a′)(1−gn,A(W ))}gn,∆Y
(a′,W )

+Q̄n,c(a
′, w)−Ψ1,a′(η

1
n) and η1n = {Q̄∗

n,c, gn,A, gn,∆Y
, Q0,w}.

B.2 Identifiability Proof

E[Y a
T ] = E

[
E[YT | W,A = a]

]
= E

[
(∆∗ + 1−∆∗)E[YT | W,A = a]

]
= E

[
∆∗E[YT | W,A = a] + (1−∆∗)E[YT | W,A = a]

]
= E

[
∆∗E[YT | W,A = a,∆S = 1] + (1−∆∗)E[YT | W,A = a,∆Y = 1]

]
= E

[
∆∗E

[
E[YT | ST ,W,A = a,∆S = 1] | W,A = a,∆S = 1

]]
+

E
[
(1−∆∗)E[YT | W,A = a,∆Y = 1]

]
= E

[
∆∗E

[
E[YT | ST ,W,A = a,∆S = 1,∆Y = 1] | W,A = a,∆S = 1

]]
+

E
[
(1−∆∗)E[YT | W,A = a,∆Y = 1]

]
= E

[
∆∗E

[
E[Y | S,W,A = a,∆S = 1,∆Y = 1] | W,A = a,∆S = 1

]
+

(1−∆∗)E[Y | W,A = a,∆Y = 1]
]

where ∆∗ = I(∆Y = 0,∆S = 1). The first line of the identification results follows from the

conditional randomization assumption and consistency. The fourth line of the identification

result follows from YT ⊥⊥ ∆S | A,W and YT ⊥⊥ ∆Y | A,W . The sixth line of the identification

results from YT ⊥⊥ ∆Y | A,W, ST ,∆S = 1.

B.3 Estimation of Q̄M

In the proposed TMLE procedure, we propose estimating Q̄0,c and Q̄0,L jointly by regrssing

Ỹ on A, W , and ∆∗, among observations where ∆Y +∆S > 0. A valid loss function L(β,O)
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is one in which β0 = argminβEP0 [L(β,O)]. We propose the loss function LQ̄I
(O, Q̄) =

(Ỹ − Q̄)2 to be used in joint estimation of these regressions. To argue that this is a valid

procedure for estimating Q̄0,c and Q̄0,L, we show that Q̄0,M = argminQ̄EP0 [LQ̄I
(Q̄, O)],

where Q̄0,M(A,W,∆∗) = EP0 [Ỹ | A,W,∆∗,∆Y +∆S > 0] and Q̄0,M(A,W, 1) = Q̄0,L(A,W ),

Q̄0,M(A,W, 0) = Q̄0,c(A,W ).

minQ̄EP0 [(Ỹ − Q̄)2I(∆S +∆Y > 0)] =

minQ̄EP0 [(1−∆∗ +∆∗)(Ỹ − Q̄)2I(∆S +∆Y > 0)] =

minQ̄EP0 [(1−∆∗)(Y − Q̄)2I(∆S +∆Y > 0) + ∆∗(Q̄I − Q̄)2I(∆S +∆Y > 0)] =

minQ̄EP0 [(1−∆∗)(Y − Q̄0,c + Q̄0,c − Q̄)2I(∆S +∆Y > 0)

+ ∆∗(Q̄I − Q̄0,L + Q̄0,L − Q̄)I(∆S +∆Y > 0)] =

minQ̄EP0 [(1−∆∗)((Y − Q̄0,c)
2 + 2(Y − Q̄0,c)(Q̄0,c − Q̄) + (Q̄0,c − Q̄)2)

× I(∆S +∆Y > 0)

+ ∆∗((Q̄I − Q̄0,L)
2 + 2(Q̄I − Q̄0,L)(Q̄0,L − Q̄) + (Q̄0,L − Q̄)2)

× I(∆S +∆Y > 0)] =

minQ̄EP0 [I(∆S +∆Y > 0)EP0 [(1−∆∗)((Y − Q̄0,c)
2

+ 2(Y − Q̄0,c)(Q̄0,c − Q̄) + (Q̄0,c − Q̄)2)

+ ∆∗((Q̄I − Q̄0,L)
2 + 2(Q̄I − Q̄0,L)(Q̄0,L − Q̄)

+ (Q̄0,L − Q̄)2) | A,W,∆∗,∆S +∆Y > 0]] =

minQ̄EP0 [(1−∆∗)((Y − Q̄0,c)
2 + (Q̄0,c − Q̄)2)

+ ∆∗((Q̄I − Q̄0,L)
2 + (Q̄0,L − Q̄)2)I(∆S +∆Y > 0)]

The value of Q̄ that minimizes the above expectation is Q̄0,M . Q̄0,M(A,W, 1) = EP0 [Ỹ |

A,W,∆∗ = 1,∆Y + ∆S > 0] = EP0 [Q̄0,I(A,W, S) | A,W,∆∗ = 1,∆Y + ∆S > 0] =

EP0 [Q̄0,I(A,W, S) | A,W,∆S = 1,∆Y = 0] = Q̄0,L(A,W ), under our conditional inde-

pendence assumption that ∆Y ⊥⊥ S | A,W,∆S = 1. While, Q̄0,M(A,W, 0) = EP0 [Ỹ |
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A,W,∆∗ = 0,∆Y +∆S > 0] = EP0 [Y | A,W,∆∗ = 0,∆Y +∆S > 0] = EP0 [Y | A,W,∆Y =

1] = Q̄0,c(A,W ) because ∆∗ = 0 and ∆S +∆Y > 0 ⇐⇒ ∆Y = 1.

B.4 Theorem Proofs

The proofs for both double robust consistency and asympototically normality of the resulting

plug-in estimator rely on similar arguments. Using the Von Mises expansion we can write

the difference between the estimator and the true parameter of interest as [5]:

Ψp,a(ηn)−Ψp,a(η0) =− P0D
∗
a(ηn) +Ra(η0, ηn)

=Pn{D∗
a(ηℓ)− P0D

∗
a(ηℓ)}︸ ︷︷ ︸

Sample Mean

−PnD
∗
a(ηn)︸ ︷︷ ︸

Root-n Bias

+ (Pn − P0)[D
∗
a(ηn)−D∗

a(ηℓ)]︸ ︷︷ ︸
Empirical Process Term

+ Ra(η0, ηn)︸ ︷︷ ︸
Remainder Term

(B.1)

D∗
a is the influence curve defined in the main text and ηℓ denotes the limit of nuisance quantity

estimates, ηn. To define Ra(η0, ηn), we introduce additional subscripts to the notation for Q̄L

to be explicit. Let Q̄0,n,L = EP0 [Q̄n,I(a, S,W ) | A = a,W,∆S = 1] and Q̄n,L be the estimate

of this quantity. Then we can define the remainder term as follows:
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Ra(η0, ηn) =

EP0 [(Q̄n,c(a,W )− Q̄0,c(a,W ))

× (
1− P0(∆

∗ = 1 | W )

P0(∆Y = 1, A = a | W )
− 1− P̂n(∆

∗ = 1 | W )

P̂n(∆Y = 1, A = a | W )
)I(A = a)∆Y

+ (Q̄n,L(a,W )− Q̄0,n,L(a,W ))

× (
P0(∆

∗ = 1 | W )

P0(A = a,∆S = 1 | W )
− P̂n(∆

∗ = 1 | W )

P̂n(A = a,∆S = 1 | W )
)I(A = a)∆S

+ (Q̄n,I(a,W, S)− Q̄0,I(a,W, S))

× (
P0(∆

∗ = 1 | W )

P0(∆Y = 1,∆S = 1, A = a | W )
− P̂n(∆

∗ = 1 | W )

P̂n(∆Y = 1,∆S = 1, A = a | W )
)

×∆S∆Y I(A = a)]

B.4.1 Bounding the Remainder Term

We can bound the remainder term using Cauchy-Schwarz inequalities, and assuming that

all propensities are bounded away from zero. We demonstrate the approach with the second

line of the remainder term. Assume P0(P0(A = a,∆S = 1 | W ) > M) = 1 and P0(P̂n(A =

a,∆S = 1 | W ) > M) = 1 whereM > 0. Let ||fn(·)−f(·)|| = [
∫
(fn(w)−f(w))2dQ0,W (w)]1/2.

For simplicity of notation we will use additional subscripts for propensities to denote which

conditional probability we are specifically referring to with respect to the outcome variable.

For example, we let g0,A=0(w) = P0(A = 0 | W = w) and g0,A=1(w) = P0(A = 1 | W = w).

Then,
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|EP0 [(Q̄n,L(a,W )− Q̄0,n,L(a,W ))

× (
P0(∆

∗ = 1 | W )

P0(A = a,∆S = 1 | W )
− P̂n(∆

∗ = 1 | W )

P̂n(A = a,∆S = 1 | W )
)I(A = a)∆S]|

= |EP0 [(Q̄n,L(a,W )− Q̄0,n,L(a,W ))

× (
P0(∆

∗ = 1 | W )

P0(A = a,∆S = 1 | W )
− P̂n(∆

∗ = 1 | W )

P0(A = a,∆S = 1 | W )
)I(A = a)∆S]

+ EP0 [(Q̄n,L(a,W )− Q̄0,n,L(a,W ))

× (
P̂n(∆

∗ = 1 | W ){P̂n(A = a,∆S = 1 | W )− P0(A = a,∆S = 1 | W )}
P0(A = a,∆S = 1 | W )P̂n(A = a,∆S = 1 | W )

)

× I(A = a)∆S]|

= |EP0 [(Q̄n,L(a,W )− Q̄0,n,L(a,W ))(P0(∆
∗ = 1 | W )− P̂n(∆

∗ = 1 | W ))]

+ EP0 [(Q̄n,L(a,W )− Q̄0,n,L(a,W ))

× (
P̂n(∆

∗ = 1 | W ){P̂n(A = a,∆S = 1 | W )− P0(A = a,∆S = 1 | W )}
P̂n(A = a,∆S = 1 | W )

)]|

≤ ||Q̄n,L(a, ·)− Q̄0,n,L(a, ·)||

×
[ ∑

a′∈{0,1}

{
||gn,∆S=1(a

′, ·, 0)gn,∆Y =0(a
′, ·){g0,A=a′(·)− gn,A=a′(·)}||

+ ||gn,∆S=1(a
′, ·, 0){g0,∆Y =0(a

′, ·)− gn,∆Y =0(a
′, ·)}g0,A=a′(·)||

+ ||{g0,∆S=1(a
′, ·, 0)− gn,∆S=1(a

′, ·, 0)}g0,∆Y =0(a
′, ·)g0,A=a′(·)||

}]
+

1

M
||Q̄n,L(a, ·)− Q̄0,n,L(a, ·)||

×
[ ∑

δ∈{0,1}

{
||gn,∆S=1(a, ·, δ)gn,∆Y =δ(a, ·){g0,A=a(·)− gn,A=a(·)}||

+ ||gn,∆S=1(a, ·, δ){g0,∆Y =δ(a, ·)− gn,∆Y =δ(a, ·)}g0,A=a(·)||

+ ||{g0,∆S=1(a, ·, δ)− gn,∆S=1(a, ·, δ)}g0,∆Y =δ(a, ·)g0,A=a(·)||
}]
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≤ ||Q̄n,L(a, ·)− Q̄0,n,L(a, ·)||
[ ∑

a′∈{0,1}

{
||{g0,A=a′(·)− gn,A=a′(·)}||

+ ||{g0,∆Y =0(a
′, ·)− gn,∆Y =0(a

′, ·)}||+ ||{g0,∆S=1(a
′, ·, 0)− gn,∆S=1(a

′, ·, 0)}||
}]

+
1

M
||Q̄n,L(a, ·)− Q̄0,n,L(a, ·)||

[ ∑
δ∈{0,1}

{
||{g0,A=a(·)− gn,A=a(·)}||

+ ||{g0,∆Y =δ(a, ·)− gn,∆Y =δ(a, ·)}||+ ||{g0,∆S=1(a, ·, δ)− gn,∆S=1(a, ·, δ)}||
}]

where the first inequality follows from Cauchy-Schwarz, and the fact that you can decompose

conditional probabilities such as P0(∆
∗ = 1 | W ) into the individual propensity scores e.g.

P0(∆
∗ = 1 | W ) =

∑
a′∈{0,1} g0,∆S=1(a

′,W, 0)g0,∆Y =0(a
′,W )g0,A=a′(W ). The second inequal-

ity follows from the fact that conditional probabilities are bounded, within [0, 1]. Without

loss of generality we can apply the same approach to the remaining terms in Ra(η0, ηn) to

conclude that the asymptotic behavior of the remainder term is governed by the convergence

rates of the nuisance regressions.

B.4.2 Double Robustness

We can show that the proposed TMLE is doubly robust in the sense that is is consistent under

convergence assumptions on a subset of the nuisance regressions: (a) the propensity scores

or (b) the outcome regressions, but not necessarily both. When we say that the function fn

“converges” to f this means that ||fn − f || = [
∫
(fn(w)− f(w))2dP0(W )]1/2 = op(1)

Proof Sketch

The “sample mean” term in equation (B.1) is op(1) by the weak law of large numbers. We also

assume that the empirical process term, (Pn −P0)[D
∗
a(ηn)−D∗

a(η0)] is op(1), and we assume

PnD
∗
a(ηn) = op(1) by convergence of the TMLE algorithm. Under these assumptions the

first three terms of the expansion in equation (B.1) are op(1). If g0,∆S
(a, w, δy), g0,∆Y

(a, w),

g0,A(w), 1 − g0,A(w) and their estimated counterparts are bounded away from zero for all
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possible values of a, w, δy, and (i) we know that ||Q̄n,c − Q̄0,c|| = op(1), ||Q̄n,L − Q̄0,n,L|| =

op(1), and ||Q̄n,I − Q̄0,I || = op(1) or (ii) ||gn,A − g0,A ||= op(1), ||gn,∆Y
− g0,∆Y

||= op(1),

||gn,∆S
− g0,∆S

||= op(1) then we can conclude that R(η0, ηn) = op(1) by the arguments in

Section B.4.1.

This implies, by equation (B.1) and the continuous mapping theorem, that Ψp,a(ηn) −

Ψp,a(η0)
p→ 0, which implies Ψp,a(ηn)

p→ Ψp,a(η0). Hence the estimator is doubly robust with

respect to consistency as long as the aforementioned assumptions are satisfied.

B.4.3 Asymptotic Normality

We can prove that under convergence assumptions on all nuisance regressions, our proposed

TMLE is asymptotically normal.

Proof Sketch

We assume that the empirical process term, (Pn −P0)[D
∗
a(ηn)−D∗

a(η0)] is op(n−1/2), and we

assume that PnD
∗
a(ηn) = op(n

−1/2) by convergence of the TMLE algorithm. If g0,∆S
(a, w, δy),

g0,∆Y
(a, w), g0,A(w), 1 − g0,A(w) and their estimated counterparts are bounded away from

zero for all possible values of a, w, δy, and (i) we know that ||Q̄n,c − Q̄0,c|| = op(n
−q1),

||Q̄n,L − Q̄0,n,L|| = op(n
−q2), and ||Q̄n,I − Q̄0,I || = op(n

−q3) and (ii) ||gn,A − g0,A ||= op(n
−k1),

||gn,∆Y
−g0,∆Y

||= op(n
−k2), ||gn,∆S

−g0,∆S
||= op(n

−k3) then we can conclude that R(η0, ηn) =

op(n
−(q+k)) by arguments in section B.4.1, where q = min(q1, q2, q3) and k = min(k1, k2, k3).

We assume that q + k > 1/2 to conclude that R(η0, ηn) = op(n
−1/2).

Under these assumptions the last three terms of equation (B.1) are op(n
−1/2). This

implies that
√
n(Ψp,a(ηn) − Ψp,a(η0)) =

√
n[PnD

∗
a(η0) − P0D

∗
a(η0))] + op(1). The Central

Limit Theorem and Slutsky’s theorem imply that
√
n(Ψp,a(ηn)−Ψp,a(η0)) is asymptotically

normal with variance equal to P0[(D
∗
a(η0)− P0D

∗
a(η0))

2]. A consistent estimator of the true

variance is given by Pn[(D
∗
a(ηn)− PnD

∗
a(ηn))

2].
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B.5 Data Generating Mechanism for Simulation

We generated data using a complex data generating mechanism (DGM) in order to reflect the

complexity of data from the P3 trial. We included an unobserved “compliance” variable C to

denote whether or not the participant is taking PrEP and unobserved variables denoted by U

that are not confounders. Y represents the DBS measure and S represents survey responses.

The following variables were generated for i = 1, 2, ..., n. The sample size n varied across

simulations.

Ai ∼Multinomial(n = 1, k = 3, p = (2/3, 1/3))

Ui,1 ∼ Uniform(−2, 4)

Ui,2 ∼ Uniform(−1, 1)

Wi,1 ∼ Bernoulli(0.85)

Wi,2 ∼ Uniform(16, 24)

Wi,3 ∼Multinomial(n = 1, k = 6, p = (1/6, 1/6, 1/6, 1/6, 1/6, 1/6))

W
i,4

∼ Bernoulli(0.3 ∗Wi,1)

Ci ∼ Binomial(n = 7, pic)

Yi = Ci ≥ 4

Si,1 = min(Ci +N(0.1, σ2), 7)

Si,2 = min(1,max(0, (Ci +N(0, σ2))/7))

∆Y,i ∼ Bernoulli(p∆Y ,i)

∆S,i ∼ Bernoulli(p∆S ,i)

where pi,c = expit(−1.5 + 0.625Ai + 0.10Wi,4Wi,1 + 0.1I(Wi,3 = 1) + 0.1Wi,2 + Ui,1), p∆Y ,i =

expit(−0.0001Wi,2+0.5Ai+0.1I(Wi,2 = 2)+0.5Ui,2) and p∆S ,i = expit(0.5+Ai+−0.1I(Wi,2 =



119

3) + Ui,2). σ2 was varied to alter the strength of the correlation between the auxiliary

variable and the outcome of interest. We used σ2 = 1, 2.5 to represent scenarios where the

auxiliary variables have high predictive power and moderate predictive power, respectively.

We also ran the simulation under a scenario where the auxiliary covariate was not correlated

with the outcome of interest. We did this by replacing the DGM for Si,1 and Si,2 with

Si,1 = min(3 +N(0.1, 3), 7) and Si,2 = min(1,max(0, (3 +N(0, 3))/7)).

B.6 Real Data Analysis

B.6.1 Assessing Assumptions

Figures B.1 to B.4 display the predicted propensities for ∆Y = 1 and ∆S = 1. Predicted

propensities for P0(∆Y = 1 | A = a,W ) and P0(∆S = 1 | A = a,W ) were calculated for

each individual in the study given their observed W and a given intervention a. Predicted

propensities for P0(∆Y = 1 | A = a,W, S,∆S = 1) are given for the subset of individuals with

∆S = 1 given their observed covariates W and S and a fixed value of intervention, a. Pre-

dicted propensities are bounded from below by 0.34, supporting the positivity assumptions

that were made in Table 3.2.

We conducted an exploratory analysis to assess the plausibility of the independence

assumption S ⊥⊥ ∆Y | A,W,∆S = 1. We first regressed ∆Y on S,A,W among observations

where ∆S = 1 using super learning with multiple generalized linear models (GLMs), LASSO,

and a step-wise GLM included as learners. We assessed the fit of the learner with the lowest

empirical, cross-validated risk, where risk was defined by the negative log-likelihood loss

function. Table B.1 displays the learner with the lowest empirical, cross-validated risk and

the coefficients and corresponding p-values associated with monthly and weekly PrEP, where

applicable. For the 3-month time point, each selected model was a GLM and all p-values

corresponding to coefficients for monthly and weekly PrEP were > 0.21. Alternatively, at

the 6-month time point each model selected was a LASSO model. Each LASSO model had
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a non-zero coefficient for monthly PrEP but the coefficient was small, 0.005 and 0.0002 at

3 and 6-months respectively. These exploratory results are suggestive that the assumption

is plausible, but deriving formal testing procedures may be required to fully validate the

assumption.

Although not directly used in our derivations, our assumed DAG in Figure 3.1 also

implies that ∆S ⊥⊥ Y | A,W,∆Y = 1 which is another testable conditional independence

assumption. We repeated the procedure described above with regression models where ∆S

is regressed on A,W, Y among observations where ∆Y = 1. The results of this analysis

are displayed in Table B.2. Again, any association between Y and ∆S after controlling for

baseline covariates is low or not statistically significant.

Figure B.1: Positivity assessment when the outcome is measured by FTC-TP at 3 months.
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Figure B.2: Positivity assessment when the outcome is measured by FTC-TP at 6 months.

B.6.2 Missing Data

For the real data analysis, there was missingness in important baseline covariates for some

participants. We handled this missing data with simple imputation procedures. For example,

if a participant was missing TFV-DP (or FTC-TP) at baseline, we used the alternative

FTC-TP (TFV-DP) indicator where available. If not available, we imputed as zero if the

participant reported not being on PrEP at baseline. If the participant reported being on

PrEP at baseline, then we used mean imputation. The sample mean of FTC-TP (or TFV-

DP) among those reporting being on PrEP at baseline was used.

Similarly, some participants had partial missingness in follow-up survey information

where they answered questions about weekly PrEP use but not monthly PrEP use or vice

versa. For these participants we used a variety of imputation procedures for the missing
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Figure B.3: Positivity assessment when the outcome is measured by TFV-DP at 3 months.

survey outcome and included multiple learners in the super learner with the different im-

putation procedures, allowing the super learner to choose the best performing algorithm in

terms of predictive value for the outcome (TFV-DP or FTC-TP). The imputation procedures

included mean imputation, simple linear regression between weekly and monthly PrEP, and

converting monthly to weekly or vice versa by changing the scale of the measurement.

B.6.3 Algorithms and Software

As previously mentioned, a variety of learners were included in the super learner to estimate

necessary outcome regressions and propensity scores. Table B.3 lists the algorithms used

and variables included for each regression. The analysis was carried out in R version 4.2.0.
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Figure B.4: Positivity assessment when the outcome is measured by TFV-DP at 6 months.
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Outcome Time
Point
(Months)

Learner Covariates Weekly
PrEP Co-
efficient
(p-value)

Monthly
PrEP Co-
efficient
(p-value)

TFV-DP 3 GLM Intervention, Baseline
TFV-DP, Baseline
TFV-DP * Interven-
tion, Weekly PrEP,
Monthly PrEP

0.10 (0.32) -0.003 (0.68)

TFV-DP 6 LASSO Baseline TFV-
DP*Intervention,
Site, Base-
line On PrEP,
Race/Ethnicity,
Monthly PrEP

NA 0.005

FTC-TP 3 GLM Intervention, Baseline
FTC-TP, Baseline
FTC-TP * Interven-
tion, Weekly PrEP,
Monthly PrEP

0.12 (0.22) -0.004 (0.64)

FTC-DP 6 LASSO Site, Race/Ethnicity,
Monthly PrEP

NA 0.0002

Table B.1: Results of the exploratory analysis assessing the independence assumption, S ⊥
⊥ ∆Y | A,W,∆S = 1. Results displayed are from the regression model (for ∆Y regressed on
A,W, S) with the lowest empirical, cross-validated risk. Coefficients and p-values associated
with weekly and monthly self-reported PrEP use are displayed where applicable.

Outcome Time
Point
(Months)

Learner Covariates Y Co-
efficient
(p-value)

TFV-DP 3 LASSO Intervention*Age, Site, Baseline
On PrEP, Y

0.007 (NA)

TFV-DP 6 GLM Intervention, Baseline TFV-DP,
Baseline TFV-DP * Intervention,
Y

1.29 (0.32)

FTC-TP 3 LASSO Site, Baseline On PrEP NA
FTC-DP 6 LASSO Intercept Only NA

Table B.2: Results of the exploratory analysis assessing the independence assumption, Y ⊥
⊥ ∆S | A,W,∆Y = 1. Results displayed are from the regression model (for ∆S regressed on
A,W, Y ) with the lowest empirical, cross-validated risk. Coefficients and p-values associated
with the outcome Y are displayed where applicable.
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Regression Algorithm Variables
gn,∆Y

SL.glm Intervention, BSPEC, Intervention*BSPEC;
Intervention, BSPEC, On PrEP, Site, Age, race/ethnicity;
Intervention, BSPEC, On PrEP, Site, Age, race/ethnicity,
BSPEC*On PrEP, Intervention*BSPEC, Intervention*Age

SL.earth Intervention, BSPEC, On PrEP, Site, Age, race/ethnicity
SL.hal Intervention, BSPEC, On PrEP, Site, Age, race/ethnicity
SL.step Intervention, BSPEC, On PrEP, Site, Age, race/ethnicity,

BSPEC*On PrEP, Intervention*BSPEC, Intervention*Age
SL.glment Intervention, BSPEC, On PrEP, Site, Age, race/ethnicity,

BSPEC*On PrEP, Intervention*BSPEC, Intervention*Age
gn,∆S

SL.glm Intervention, BSPEC, Intervention*BSPEC, ∆Y ;
Intervention, BSPEC, On PrEP, Site, Age, race/ethnicity, ∆Y ;
Intervention, BSPEC, On PrEP, Site, Age, race/ethnicity,
BSPEC*On PrEP, Intervention*BSPEC, Intervention*Age, ∆Y

SL.earth Intervention, BSPEC, On PrEP, Site, Age, race/ethnicity, ∆Y

SL.hal Intervention, BSPEC, On PrEP, Site, Age, race/ethnicity, ∆Y

SL.step Intervention, BSPEC, On PrEP, Site, Age, race/ethnicity,
BSPEC*On PrEP, Intervention*BSPEC, Intervention*Age

SL.glment Intervention, BSPEC, On PrEP, Site, Age, race/ethnicity,
BSPEC*On PrEP, Intervention*BSPEC, Intervention*Age

Q̄n,I SL.glm Intervention, BSPEC, Intervention*BSPEC, S;
Intervention, BSPEC, On PrEP, Site, Age, race/ethnicity, S;
Intervention, BSPEC, On PrEP, Site, Age, race/ethnicity,
BSPEC*On PrEP, Intervention*BSPEC, Intervention*Age, S

SL.earth Intervention, BSPEC, On PrEP, Site, Age, race/ethnicity, S
SL.hal Intervention, BSPEC, On PrEP, Site, Age, race/ethnicity, S
SL.step Intervention, BSPEC, On PrEP, Site, Age, race/ethnicity,

BSPEC*On PrEP, Intervention*BSPEC, Intervention*Age
SL.glment Intervention, BSPEC, On PrEP, Site, Age, race/ethnicity,

BSPEC*On PrEP, Intervention*BSPEC, Intervention*Age
Q̄n,M SL.glm Intervention, BSPEC, Intervention*BSPEC, ∆∗;

Intervention, BSPEC, On PrEP, Site, Age, race/ethnicity, ∆∗;
Intervention, BSPEC, On PrEP, Site, Age, race/ethnicity,
BSPEC*On PrEP, Intervention*BSPEC, Intervention*Age, ∆∗

SL.earth Intervention, BSPEC, On PrEP, Site, Age, race/ethnicity, ∆∗

SL.hal Intervention, BSPEC, On PrEP, Site, Age, race/ethnicity, ∆∗

SL.step Intervention, BSPEC, On PrEP, Site, Age, race/ethnicity,
BSPEC*On PrEP, Intervention*BSPEC, Intervention*Age

SL.glment Intervention, BSPEC, On PrEP, Site, Age, race/ethnicity,
BSPEC*On PrEP, Intervention*BSPEC, Intervention*Age

Table B.3: Algorithms and variables provided as candidates to the super learner for each
regression type. BSPEC stands for baseline variable specific to the analysis, so TFV-DP or
FTC-TP at baseline according to the outcome of interest. For all regressions including the
covariate S, three versions of the regression were included coinciding with the three different
methods used for imputing partial S values.
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Appendix C

Appendix for Chapter 4

C.1 Data Generation

C.1.1 Illustration of Random Seed Dependence

The data generating mechanism (DGM) used to illustrate random seed dependence is as

follows: for i = 1, 2, ..., 200, we simulated

Wi1 ∼ Uniform(0, 2),

Wi2,Wi3,Wi4 ∼ Bernoulli(0.5),

Ai | Wi ∼ Bernoulli(g(1 | Wi)),

Yi | Ai,Wi ∼ Bernoulli(Q̄(Ai,Wi))

(C.1)

where g(1 | Wi) = expit(Wi1 +Wi2Wi3 − 2Wi4), Q̄(Ai,Wi) = expit(Wi1 +Wi2Wi3 − 3). Note

that Q̄(Ai,Wi) is not a function of Ai, implying that the ATE is zero in this scenario. This

is the illustration DGM studied by Song and Benkeser 2020 [69].

We used super learning to estimate the ORs and PSs with the following algorithms:

generalized linear regression, random forest, and multivariate adaptive regression splines.



127

C.1.2 High-Dimensional Data Generating Mechanism for the Sim-

ulation Study

The following DGM was used for the high-dimensional scenario in the simulation study.

Covariates were distributed as

Wi1 ∼ Uniform(0, 2)

Wi2 ∼ Uniform(0, 1)

Wi3,Wi4,Wi5,Wi6 ∼ Bernoulli(0.5)

Wi7 | Wi1 ∼ N(Wi1, 0.75),

Wi8 | Wi2 ∼ Bernoulli(Wi2),

Wi,9 | Wi3,Wi4 ∼ Wi3 +Wi4 +N(0, 5)

Wi10 | Wi1,Wi5 ∼ 0.5Wi5 + Poisson(Wi1)

Wi11 | Wi5,Wi6 ∼ N(Wi6, 0.5) +N(Wi5, 0.5)

Wi12,Wi13 ∼ Bernoulli(0.5),

Wi14,Wi15,Wi16 ∼ Uniform(0.2)

Wi17,Wi18,Wi19,Wi20 ∼ N(1, 0.5)

(C.2)

Given these covariate values, we generate treatment and outcomes as follows:

Ai | Wi ∼ Bernoulli(g(1 | Wi)),

Yi | Ai,Wi ∼ Bernoulli(Q̄(Ai,Wi)),

(C.3)

where g(1 | Wi) = expit(−0.7Wi1 + 0.5Wi3Wi4 − 0.7Wi5Wi6 + 0.3Wi7) and Q̄(Ai,Wi) =

expit(Wi5+Wi2Wi3+0.1Wi7+0.5Ai−2). Here ψ(1) ≈ 0.354, ψ(0) ≈ 0.256, and ψ(1)−ψ(0) ≈
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0.098.

C.2 Justification Sketch for the Proposed Solutions

1. Averaging on Intermediate Regressions

When intermediate regressions are estimated under multiple seeds and averaged over,

the result is simply a new regression estimate. The theory for AIPTW, TMLE, and

DRTMLE estimators places few restrictions on how the OR and PS are estimated,

but it is required that these regressions meet certain large-sample assumptions for the

estimators to be consistent and asymptotically normal. If these assumptions hold for

the OR and PS under a single seed, we expect that they will also hold for the OR and

PS estimates produced from averaging over multiple seeds. As such, we expect this

estimator to have identical asymptotic behavior as the estimator that does not average

over multiple seeds under essentially the same assumptions. This should be true for

both cross-fit and non-cross-fit estimators.

2. Averaging on Final Estimates

Under assumptions, the AIPTW, TMLE, and DRTMLE estimators for the ATE based

on a single seed are asymptotically linear. The delta method implies that linear com-

binations of a finite number of asymptotically linear estimators are themselves asymp-

totically linear. Therefore, averaging on final estimates should yield an asymptotically

linear estimator under essentially the same conditions as estimators built based on a

single seed. Similarly, we can argue that the variance estimator under each seed is

a consistent estimator for the asymptotic variance of the ATE estimator: Slutsky’s

theorem implies that the average of consistent estimates is itself consistent. These

arguments are expected to hold both with or without cross-fitting.
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C.3 Additional Doubly-robust Estimators

C.3.1 Targeted Maximum Likelihood Estimation (TMLE)

The TMLE estimate of ψ(a) is defined as:

ψn,TMLE(a) =
1

n

n∑
i=1

Q̄∗
n(a,Wi) (C.4)

where Q̄∗
n is an OR estimator obtained by updating the initial estimate of the OR, Q̄n, such

that the following equation is satisfied:

1

n

n∑
i=1

I(Ai = a)

gn(a | Wi)
(Yi − Q̄∗

n(a,Wi) = 0 (C.5)

See van der Laan and Rose (2011), Chapter 5 for details.[76]

C.3.2 Doubly-Robust TMLE (DRTMLE)

As with the TMLE, the DRTMLE estimate of ψ(a) is defined with an abuse of notation as:

ψn,DRTMLE(a) =
1

n

n∑
i=1

Q̄∗
n(a,Wi) (C.6)

However, in the case of the DRTMLE the OR estimate Q̄∗
n is constructed to satisfy additional

equations, and the formulation requires estimation of several additional regressions. The

additional regressions required are called the reduced outcome regression (R-OR) and the

reduced propensity scores (R-PSs). They estimate the following, respectively:
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Q̄r,0n(a, w) :=E[Y − Q̄n(W ) | A = a, gn(W ) = gn(w)], and (C.7)

gr,0n,1(a | w) :=Pr[A = a | Q̄n(W ) = Q̄n(w)] (C.8)

gr,0n,2(a | w) :=E[I(A = a)− gn(a | W )

gn(a | W )
| Q̄n(W ) = Q̄n(w)] (C.9)

Furthermore, the DRTMLE uses an iterative algorithm that updates the initial estimates

of the OR and PS, (Q̄n and gn), to generate new estimates of the OR and PS (Q̄∗
n and g∗n), as

well as the R-OR (Q̄r,n) and R-PSs (gr,n,1, gr,n,2) that satisfy the following three equations:

1

n

n∑
i=1

I(Ai = a)

g∗n(a | Wi)
(Yi − Q̄∗

n(a,Wi)) = 0 (C.10)

1

n

n∑
i=1

Q̄r,n(a,Wi)

g∗n(a | Wi)
{I(Ai = a)− g∗n(a,Wi)} = 0 (C.11)

and
1

n

n∑
i=1

I(Ai = a)

g∗r,n,1(a | Wi)
g∗r,n,2(a | Wi){Yi − Q̄∗

n(a,Wi)} = 0 (C.12)

Once the iterative algorithm is complete, the final estimate for Q̄∗
n is used in equation

C.6. For TMLE, the standard error estimate in equation 4.2 of the main text may be used to

construct CIs and hypothesis tests. In our simulations equation 4.2 was computed based on

the updated OR estimate Q̄∗
n. The standard error estimate for DRTMLE is more complex

and is described in detail in [5].

C.3.3 Cross-Fit TMLE and DRTMLE

The cross-fit versions of TMLE and DRTMLE are similar to cross-fitting as described in

the main text. The OR and PS are estimated as described in the main text to generate

Q̄n,v(a,Wi) and gn,v(a | Wi). Let Q̄n(A,Wi) = Q̄n,Vi
(a,Wi) and gn(A | Wi) = gn,Vi

(a | Wi)

and then proceed with the typical process for estimating the TMLE, DRTMLE, and variance
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after generating initial estimates for the OR and PS. See van der Laan and Rose (2011)

Chapter 27 for details.[76]

C.4 Additional Simulation Results

Here, we provide results from the simulation scenarios omitted from the main text. This

supplement is organized by the estimators that were used in the simulation study: AIPTW,

TMLE, and DRTMLE. For each estimator we varied (i) the data generating mechanism

(DGM) and (ii) the method used for estimating the OR and PS. For all scenarios both non-

cross-fit and cross-fit estimators were implemented and both proposed averaging strategies

were used for the non-cross-fit estimators.

C.4.1 Additional AIPTW Results

Averaging at the Level of Intermediate Regressions. Figures C.1- C.3 and Table C.1 show the

results for AIPTW using super learning and averaging at the level of intermediate regressions.

The results are largely similar to averaging at the level of the AIPTW estimates, leading us

to conclude that either solution is appropriate in this scenario.

Random Forest

Figures C.4 to C.10 and Table C.2 display the results for simulation studies of the AIPTW

estimator when random forest is used in the low-dimensional DGM scenario. As expected, the

impact of random seed is mitigated to some extent when random forest is used to estimate

the OR and PS as opposed to the super learner. Nevertheless, the random forest-based

results still exhibit considerable random seed dependence, suggesting that the results of the

main body are not limited to super learner and that any learning algorithm that involves

stochastic processes should warrant scrutiny.
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High Dimensional

Figures C.11 to C.24 and Tables C.3 and C.4 display the results for simulation studies of the

AIPTW estimator with the high-dimensional DGM. The same trends persist in these simu-

lation studies. Namely, there is significant variability in point estimates, CIs, and hypothesis

test results due to random seed across scenarios. This variability is highest in small sample

sizes and when cross-fit estimators are used, and the proposed solution of averaging at the

level of the point estimate can be used to reduce the variability in results.

C.4.2 TMLE Simulation Results

Figures C.25 through C.52 and Tables C.5 through C.9 display simulation results when

TMLE is used to estimate the ATE. These results are similar to results from the AIPTW

estimator, and the same general conclusions as discussed in the main body and the previous

section hold.

C.4.3 DRTMLE Simulation Results

Figures C.53 through C.80 and Tables C.10 through C.14 display results from simulation

studies of the DRTMLE estimator. There were a few notable differences between the general

conclusions in the main body of the paper and conclusions when DRTMLE was used to

estimate the ATE. First, it is evident from these simulation studies that inference based

on the DRTMLE estimator without cross-fitting can be extremely variable. For example,

Figure C.40 (panel A) illustrates that CI bounds can be abnormally large for some seeds. We

also observed that when non-cross-fit estimators were used, many datasets have completely

discordant CIs due to random seed (Table C.10). In fact, in the high-dimensional case at

the smallest sample size when super learning was used to estimate the OR and PS and no

averaging was performed, all 200 datasets had at least one set of discordant CIs. Considering

cross-fitting, cross-fit DRTMLE estimators generally exhibited reduced variability compared
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to their not cross-fit counterparts. This was the opposite result from what we observed for

the AIPTW and TMLE estimators.
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Table C.1: Augmented inverse probability of treatment weighting (AIPTW) estimator metrics for low-dimensional data gener-
ation scenario when super learning was used to estimate the outcome regression and propensity score, with seed = 1, without
and with cross-fitting. The metrics displays are only for averaging at the level of intermediate regressions. The metrics reported
are bias, Monte Carlo standard deviation (SD), mean square error (MSE), confidence interval (CI) coverage, and power.

Without Cross-Fitting
Averaging Level Method Bias SD MSE Coverage Power
Sample Size = 100

1 0.005 0.082 0.007 0.85 0.375
5 Average on Regressions 0.005 0.081 0.007 0.845 0.36
10 Average on Regressions 0.005 0.081 0.007 0.84 0.365
20 Average on Regressions 0.005 0.081 0.007 0.845 0.375
40 Average on Regressions 0.005 0.08 0.006 0.85 0.37
60 Average on Regressions 0.005 0.081 0.007 0.85 0.37
80 Average on Regressions 0.005 0.081 0.007 0.85 0.37

Sample Size = 500
1 0.003 0.044 0.002 0.93 0.57
5 Average on Regressions 0.003 0.044 0.002 0.925 0.59
10 Average on Regressions 0.004 0.044 0.002 0.925 0.58
20 Average on Regressions 0.004 0.044 0.002 0.925 0.575
40 Average on Regressions 0.004 0.044 0.002 0.925 0.58
60 Average on Regressions 0.004 0.044 0.002 0.925 0.58
80 Average on Regressions 0.004 0.044 0.002 0.925 0.58

Sample Size = 1000
1 -0.001 0.032 0.001 0.9 0.765
5 Average on Regressions -0.001 0.032 0.001 0.9 0.76
10 Average on Regressions -0.001 0.032 0.001 0.9 0.77
20 Average on Regressions -0.001 0.032 0.001 0.9 0.77
40 Average on Regressions -0.001 0.032 0.001 0.9 0.775
60 Average on Regressions -0.001 0.032 0.001 0.9 0.775
80 Average on Regressions -0.001 0.032 0.001 0.9 0.775
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Table C.2: Augmented inverse probability of treatment weighting (AIPTW) estimator metrics for low-dimensional data genera-
tion scenario when random forest was used to estimate the outcome regression and propensity score, with seed = 1, without and
with cross-fitting. The metrics reported are bias, Monte Carlo standard deviation (SD), mean square error (MSE), confidence
interval (CI) coverage, and power.

Without Cross-Fitting Cross-Fitting
Averaging Level Method Bias SD MSE Coverage Power Bias SD MSE Coverage Power
Sample Size = 100

1 -0.002 0.071 0.005 0.765 0.46 0.020 0.218 0.048 0.965 0.115
Average on AIPTW -0.002 0.071 0.005 0.76 0.475 0.028 0.184 0.035 0.980 0.0505 Average on Regressions -0.002 0.071 0.005 0.76 0.48
Average on AIPTW -0.002 0.071 0.005 0.755 0.47 0.026 0.166 0.028 0.980 0.05010 Average on Regressions -0.002 0.071 0.005 0.755 0.47
Average on AIPTW -0.002 0.071 0.005 0.755 0.47 0.027 0.164 0.028 0.985 0.04520 Average on Regressions -0.002 0.071 0.005 0.755 0.47
Average on AIPTW -0.002 0.071 0.005 0.755 0.47 0.028 0.162 0.027 0.985 0.06040 Average on Regressions -0.002 0.071 0.005 0.755 0.47
Average on AIPTW -0.002 0.071 0.005 0.755 0.47 0.027 0.160 0.026 0.985 0.04560 Average on Regressions -0.002 0.071 0.005 0.755 0.47
Average on AIPTW -0.002 0.071 0.005 0.755 0.47 0.027 0.160 0.026 0.980 0.04580 Average on Regressions -0.002 0.071 0.005 0.755 0.47

Sample Size = 500
1 0.005 0.04 0.002 0.835 0.815 0.007 0.061 0.004 0.935 0.390

Average on AIPTW 0.004 0.039 0.002 0.845 0.81 0.009 0.053 0.003 0.960 0.3705 Average on Regressions 0.004 0.039 0.002 0.845 0.81
Average on AIPTW 0.004 0.04 0.002 0.85 0.815 0.009 0.053 0.003 0.955 0.35010 Average on Regressions 0.004 0.039 0.002 0.85 0.815
Average on AIPTW 0.004 0.039 0.002 0.85 0.81 0.009 0.052 0.003 0.960 0.33020 Average on Regressions 0.004 0.039 0.002 0.85 0.81
Average on AIPTW 0.004 0.039 0.002 0.85 0.81 0.009 0.052 0.003 0.960 0.34040 Average on Regressions 0.004 0.039 0.002 0.85 0.81
Average on AIPTW 0.004 0.039 0.002 0.85 0.81 0.009 0.051 0.003 0.960 0.34060 Average on Regressions 0.004 0.039 0.002 0.85 0.81
Average on AIPTW 0.004 0.039 0.002 0.85 0.805 0.009 0.051 0.003 0.960 0.34080 Average on Regressions 0.004 0.039 0.002 0.85 0.805

Sample Size = 1000
1 0.002 0.029 0.001 0.82 0.925 0.001 0.039 0.001 0.930 0.670

Average on AIPTW 0.002 0.029 0.001 0.82 0.92 0.003 0.036 0.001 0.935 0.6755 Average on Regressions 0.002 0.029 0.001 0.82 0.92
Average on AIPTW 0.002 0.029 0.001 0.815 0.92 0.003 0.035 0.001 0.960 0.66010 Average on Regressions 0.002 0.029 0.001 0.815 0.92
Average on AIPTW 0.002 0.029 0.001 0.81 0.92 0.003 0.035 0.001 0.955 0.66020 Average on Regressions 0.002 0.029 0.001 0.81 0.92
Average on AIPTW 0.002 0.029 0.001 0.81 0.92 0.003 0.035 0.001 0.965 0.66040 Average on Regressions 0.002 0.029 0.001 0.81 0.92
Average on AIPTW 0.002 0.029 0.001 0.81 0.915 0.003 0.035 0.001 0.965 0.65060 Average on Regressions 0.002 0.029 0.001 0.81 0.92
Average on AIPTW 0.002 0.029 0.001 0.81 0.915 0.003 0.035 0.001 0.960 0.65580 Average on Regressions 0.002 0.029 0.001 0.81 0.915
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Table C.3: Augmented inverse probability of treatment weighting (AIPTW) estimator metrics for high-dimensional data genera-
tion scenario when super learning was used to estimate the outcome regression and propensity score, with seed = 1, without and
with cross-fitting. The metrics reported are bias, Monte Carlo standard deviation (SD), mean square error (MSE), confidence
interval (CI) coverage, and power.

Without Cross-Fitting Cross-Fitting
Averaging Level Method Bias SD MSE Coverage Power Bias SD MSE Coverage Power
Sample Size = 100

1 -0.041 0.065 0.006 0.75 0.17 0.005 0.124 0.015 0.970 0.175
Average on AIPTW -0.04 0.064 0.006 0.785 0.175 0.003 0.108 0.012 0.970 0.1055 Average on Regressions -0.041 0.063 0.006 0.775 0.185
Average on AIPTW -0.04 0.064 0.006 0.785 0.175 0.001 0.103 0.011 0.970 0.11510 Average on Regressions -0.041 0.063 0.006 0.775 0.19
Average on AIPTW -0.04 0.064 0.006 0.78 0.165 0.003 0.102 0.010 0.975 0.10020 Average on Regressions -0.041 0.064 0.006 0.775 0.195
Average on AIPTW -0.04 0.064 0.006 0.78 0.17 0.002 0.103 0.011 0.980 0.09040 Average on Regressions -0.041 0.064 0.006 0.77 0.19
Average on AIPTW -0.04 0.064 0.006 0.78 0.17 0.004 0.103 0.011 0.980 0.08060 Average on Regressions -0.041 0.064 0.006 0.77 0.185
Average on AIPTW -0.04 0.064 0.006 0.78 0.17 0.004 0.103 0.011 0.980 0.09080 Average on Regressions -0.041 0.064 0.006 0.77 0.185

Sample Size = 500
1 -0.007 0.042 0.002 0.87 0.67 0.001 0.044 0.002 0.955 0.590

Average on AIPTW -0.007 0.041 0.002 0.895 0.675 0.001 0.042 0.002 0.945 0.5905 Average on Regressions -0.007 0.041 0.002 0.89 0.69
Average on AIPTW -0.007 0.041 0.002 0.88 0.69 0.001 0.042 0.002 0.950 0.60010 Average on Regressions -0.007 0.041 0.002 0.88 0.7
Average on AIPTW -0.007 0.041 0.002 0.88 0.695 0.001 0.042 0.002 0.950 0.61020 Average on Regressions -0.007 0.041 0.002 0.875 0.7
Average on AIPTW -0.007 0.041 0.002 0.875 0.695 0.001 0.042 0.002 0.950 0.60040 Average on Regressions -0.007 0.041 0.002 0.875 0.7
Average on AIPTW -0.007 0.041 0.002 0.88 0.685 0.001 0.041 0.002 0.950 0.60060 Average on Regressions -0.007 0.041 0.002 0.875 0.7
Average on AIPTW -0.006 0.041 0.002 0.88 0.69 0.001 0.041 0.002 0.950 0.60080 Average on Regressions -0.007 0.041 0.002 0.875 0.695

Sample Size = 1000
1 -0.001 0.031 0.001 0.895 0.935 0.003 0.031 0.001 0.930 0.910

Average on AIPTW -0.001 0.031 0.001 0.895 0.935 0.003 0.031 0.001 0.940 0.9105 Average on Regressions -0.001 0.031 0.001 0.895 0.935
Average on AIPTW -0.001 0.031 0.001 0.9 0.935 0.003 0.031 0.001 0.945 0.91510 Average on Regressions -0.001 0.031 0.001 0.895 0.935
Average on AIPTW -0.001 0.031 0.001 0.9 0.935 0.003 0.031 0.001 0.945 0.91520 Average on Regressions -0.001 0.031 0.001 0.895 0.935
Average on AIPTW -0.001 0.031 0.001 0.9 0.935 0.003 0.031 0.001 0.935 0.91540 Average on Regressions -0.001 0.031 0.001 0.895 0.935
Average on AIPTW -0.001 0.031 0.001 0.9 0.935 0.003 0.031 0.001 0.930 0.91560 Average on Regressions -0.001 0.031 0.001 0.895 0.935
Average on AIPTW -0.001 0.031 0.001 0.9 0.935 0.003 0.031 0.001 0.930 0.91580 Average on Regressions -0.001 0.031 0.001 0.895 0.935
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Table C.4: Augmented inverse probability of treatment weighting (AIPTW) estimator metrics for high-dimensional data genera-
tion scenario when random forest was used to estimate the outcome regression and propensity score, with seed = 1, without and
with cross-fitting. The metrics reported are bias, Monte Carlo standard deviation (SD), mean square error (MSE), confidence
interval (CI) coverage, and power.

Without Cross-Fitting Cross-Fitting
Averaging Level Method Bias SD MSE Coverage Power Bias SD MSE Coverage Power
Sample Size = 100

1 -0.069 0.036 0.006 0.215 0.29 0.002 0.112 0.013 0.955 0.175
Average on AIPTW -0.069 0.036 0.006 0.21 0.29 -0.001 0.108 0.012 0.940 0.1505 Average on Regressions -0.069 0.036 0.006 0.21 0.29
Average on AIPTW -0.069 0.035 0.006 0.21 0.295 0.000 0.107 0.011 0.950 0.15010 Average on Regressions -0.069 0.035 0.006 0.21 0.295
Average on AIPTW -0.069 0.036 0.006 0.21 0.285 0.000 0.107 0.011 0.950 0.15020 Average on Regressions -0.069 0.036 0.006 0.21 0.29
Average on AIPTW -0.069 0.036 0.006 0.21 0.29 0.000 0.106 0.011 0.950 0.15040 Average on Regressions -0.069 0.036 0.006 0.21 0.29
Average on AIPTW -0.069 0.036 0.006 0.21 0.29 0.000 0.106 0.011 0.955 0.15060 Average on Regressions -0.069 0.036 0.006 0.21 0.29
Average on AIPTW -0.069 0.036 0.006 0.21 0.29 0.000 0.105 0.011 0.950 0.15580 Average on Regressions -0.069 0.036 0.006 0.205 0.29

Sample Size = 500
1 -0.061 0.023 0.004 0.06 0.77 -0.004 0.043 0.002 0.960 0.540

Average on AIPTW -0.061 0.022 0.004 0.055 0.77 -0.005 0.042 0.002 0.955 0.5455 Average on Regressions -0.061 0.022 0.004 0.055 0.77
Average on AIPTW -0.061 0.022 0.004 0.06 0.77 -0.004 0.043 0.002 0.960 0.55010 Average on Regressions -0.061 0.022 0.004 0.06 0.77
Average on AIPTW -0.061 0.022 0.004 0.065 0.77 -0.004 0.042 0.002 0.955 0.55020 Average on Regressions -0.061 0.022 0.004 0.065 0.77
Average on AIPTW -0.061 0.022 0.004 0.065 0.77 -0.004 0.042 0.002 0.955 0.56040 Average on Regressions -0.061 0.022 0.004 0.065 0.77
Average on AIPTW -0.061 0.022 0.004 0.065 0.77 -0.004 0.042 0.002 0.955 0.54560 Average on Regressions -0.061 0.022 0.004 0.065 0.77
Average on AIPTW -0.061 0.022 0.004 0.065 0.77 -0.004 0.042 0.002 0.955 0.55080 Average on Regressions -0.061 0.022 0.004 0.065 0.77

Sample Size = 1000
1 -0.055 0.02 0.003 0.04 0.945 -0.003 0.033 0.001 0.935 0.855

Average on AIPTW -0.055 0.02 0.003 0.055 0.945 -0.002 0.032 0.001 0.915 0.8705 Average on Regressions -0.055 0.02 0.003 0.055 0.945
Average on AIPTW -0.055 0.02 0.003 0.05 0.945 -0.003 0.032 0.001 0.930 0.86010 Average on Regressions -0.055 0.02 0.003 0.05 0.945
Average on AIPTW -0.055 0.02 0.003 0.045 0.945 -0.002 0.032 0.001 0.935 0.86520 Average on Regressions -0.055 0.02 0.003 0.045 0.945
Average on AIPTW -0.055 0.02 0.003 0.045 0.945 -0.002 0.032 0.001 0.930 0.87040 Average on Regressions -0.055 0.02 0.003 0.04 0.945
Average on AIPTW -0.055 0.02 0.003 0.04 0.945 -0.002 0.032 0.001 0.930 0.87060 Average on Regressions -0.055 0.02 0.003 0.04 0.945
Average on AIPTW -0.055 0.02 0.003 0.04 0.945 -0.002 0.032 0.001 0.935 0.87080 Average on Regressions -0.055 0.02 0.003 0.04 0.945
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Table C.5: Summary of confidence interval discordance for all scenarios when targeted max-
imum likelihood estimation (TMLE) is used to estimate the ATE. nseed refers to the number
of random seeds averaged over for the averaging strategy.

Data
Generating
Scenario

OR/PS
Estimation

Cross-
Fitting

Averaging
Strategy

Sample Size Number of
Datasets

with
discordant
confidence

intervals at
nseed = 1

nseed that
achieved 0
discordant
confidence
intervals
for all
datasets

100 5 20
500 0 1Regressions

1000 0 1
100 5 20
500 0 1

No

1000 0 1
100 3 5
500 0 1

Super
Learning

Yes

TMLE

1000 0 1
100 2 5
500 0 1Regressions

1000 0 1
100 2 5
500 0 1

No

1000 0 1
100 2 5
500 0 1

Low-
dimensional

Random
Forest

Yes

TMLE

1000 0 1
100 85 10
500 0 1Regressions

1000 0 1
100 85 10
500 0 1

No

1000 0 1
100 0 1
500 0 1

Super
Learning

Yes

TMLE

1000 0 1
100 3 5
500 0 1Regressions

1000 0 1
100 3 5
500 0 1

No

1000 0 1
100 0 1
500 0 1

High-
dimensional

Random
Forest

Yes

TMLE

1000 0 1
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Table C.6: Targeted Minimum Loss-Based Estimation (TMLE) estimator metrics for low-dimensional data generation scenario
when super learning was used to estimate the outcome regression and propensity score, with seed = 1, without and with cross-
fitting. The metrics reported are bias, Monte Carlo standard deviation (SD), mean square error (MSE), confidence interval (CI)
coverage, and power.

Without Cross-Fitting Cross-Fitting
Averaging Level Method Bias SD MSE Coverage Power Bias SD MSE Coverage Power
Sample Size = 100

1 0.016 0.102 0.011 0.745 0.44 0.010 0.095 0.009 0.970 0.080
Average on TMLE 0.015 0.102 0.011 0.73 0.46 0.009 0.086 0.008 0.985 0.0355 Average on Regressions 0.015 0.103 0.011 0.715 0.475
Average on TMLE 0.015 0.102 0.011 0.73 0.46 0.008 0.083 0.007 0.990 0.02010 Average on Regressions 0.015 0.103 0.011 0.71 0.48
Average on TMLE 0.015 0.101 0.01 0.74 0.465 0.007 0.083 0.007 0.995 0.02020 Average on Regressions 0.015 0.102 0.011 0.735 0.47
Average on TMLE 0.015 0.101 0.011 0.74 0.46 0.009 0.083 0.007 0.995 0.02040 Average on Regressions 0.015 0.102 0.011 0.725 0.475
Average on TMLE 0.015 0.101 0.011 0.745 0.46 0.009 0.083 0.007 1.000 0.02060 Average on Regressions 0.016 0.102 0.011 0.73 0.475
Average on TMLE 0.015 0.102 0.011 0.745 0.465 0.008 0.083 0.007 1.000 0.01580 Average on Regressions 0.015 0.102 0.011 0.73 0.47

Sample Size = 500
1 0.004 0.045 0.002 0.91 0.585 0.002 0.049 0.002 0.980 0.360

Average on TMLE 0.004 0.045 0.002 0.91 0.595 0.002 0.046 0.002 0.985 0.3355 Average on Regressions 0.004 0.045 0.002 0.91 0.595
Average on TMLE 0.004 0.045 0.002 0.915 0.59 0.002 0.045 0.002 0.980 0.29510 Average on Regressions 0.004 0.045 0.002 0.91 0.59
Average on TMLE 0.004 0.045 0.002 0.91 0.59 0.002 0.045 0.002 0.980 0.32020 Average on Regressions 0.004 0.045 0.002 0.91 0.595
Average on TMLE 0.004 0.045 0.002 0.92 0.595 0.002 0.045 0.002 0.985 0.32040 Average on Regressions 0.004 0.045 0.002 0.915 0.595
Average on TMLE 0.004 0.045 0.002 0.91 0.59 0.003 0.044 0.002 0.980 0.32060 Average on Regressions 0.004 0.045 0.002 0.91 0.595
Average on TMLE 0.004 0.045 0.002 0.91 0.585 0.003 0.045 0.002 0.980 0.32080 Average on Regressions 0.004 0.045 0.002 0.91 0.595

Sample Size = 1000
1 -0.001 0.033 0.001 0.9 0.76 -0.004 0.035 0.001 0.940 0.665

Average on TMLE -0.001 0.033 0.001 0.895 0.755 -0.002 0.034 0.001 0.955 0.6355 Average on Regressions -0.001 0.033 0.001 0.895 0.755
Average on TMLE -0.001 0.033 0.001 0.895 0.76 -0.002 0.034 0.001 0.960 0.64010 Average on Regressions -0.001 0.033 0.001 0.895 0.76
Average on TMLE -0.001 0.033 0.001 0.895 0.76 -0.002 0.033 0.001 0.955 0.64520 Average on Regressions -0.001 0.033 0.001 0.895 0.765
Average on TMLE -0.001 0.033 0.001 0.895 0.76 -0.002 0.033 0.001 0.955 0.65040 Average on Regressions -0.001 0.033 0.001 0.895 0.76
Average on TMLE -0.001 0.033 0.001 0.895 0.76 -0.002 0.033 0.001 0.960 0.65060 Average on Regressions -0.001 0.033 0.001 0.895 0.765
Average on TMLE -0.001 0.033 0.001 0.895 0.76 -0.002 0.033 0.001 0.960 0.64580 Average on Regressions -0.001 0.033 0.001 0.895 0.765
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Table C.7: Targeted Minimum Loss-Based Estimation (TMLE) estimator metrics for low-dimensional data generation scenario
when random forest was used to estimate the outcome regression and propensity score, with seed = 1, without and with cross-
fitting. The metrics reported are bias, Monte Carlo standard deviation (SD), mean square error (MSE), confidence interval (CI)
coverage, and power.

Without Cross-Fitting Cross-Fitting
Averaging Level Method Bias SD MSE Coverage Power Bias SD MSE Coverage Power
Sample Size = 100

1 0.025 0.109 0.013 0.535 0.645 0.008 0.097 0.010 0.960 0.105
Average on TMLE 0.025 0.109 0.013 0.515 0.65 0.009 0.089 0.008 0.980 0.0555 Average on Regressions 0.025 0.109 0.013 0.515 0.65
Average on TMLE 0.024 0.109 0.012 0.525 0.645 0.008 0.089 0.008 0.980 0.05510 Average on Regressions 0.025 0.109 0.012 0.52 0.65
Average on TMLE 0.025 0.109 0.012 0.525 0.65 0.008 0.089 0.008 0.985 0.04520 Average on Regressions 0.025 0.109 0.012 0.52 0.65
Average on TMLE 0.025 0.109 0.012 0.525 0.65 0.009 0.089 0.008 0.985 0.03540 Average on Regressions 0.025 0.109 0.012 0.525 0.65
Average on TMLE 0.024 0.109 0.012 0.52 0.65 0.008 0.088 0.008 0.985 0.02560 Average on Regressions 0.025 0.109 0.012 0.525 0.65
Average on TMLE 0.024 0.109 0.012 0.53 0.65 0.008 0.088 0.008 0.985 0.03080 Average on Regressions 0.025 0.109 0.012 0.525 0.65

Sample Size = 500
1 0.013 0.046 0.002 0.76 0.825 0.003 0.051 0.003 0.955 0.355

Average on TMLE 0.012 0.046 0.002 0.76 0.835 0.004 0.045 0.002 0.975 0.3205 Average on Regressions 0.012 0.046 0.002 0.76 0.835
Average on TMLE 0.012 0.046 0.002 0.76 0.83 0.005 0.045 0.002 0.980 0.32010 Average on Regressions 0.012 0.046 0.002 0.76 0.83
Average on TMLE 0.012 0.046 0.002 0.76 0.825 0.005 0.045 0.002 0.980 0.32520 Average on Regressions 0.012 0.046 0.002 0.76 0.825
Average on TMLE 0.012 0.046 0.002 0.76 0.83 0.005 0.045 0.002 0.980 0.32040 Average on Regressions 0.012 0.046 0.002 0.76 0.83
Average on TMLE 0.012 0.046 0.002 0.755 0.825 0.005 0.045 0.002 0.975 0.31560 Average on Regressions 0.012 0.046 0.002 0.76 0.825
Average on TMLE 0.012 0.046 0.002 0.755 0.825 0.005 0.045 0.002 0.975 0.31580 Average on Regressions 0.012 0.046 0.002 0.755 0.825

Sample Size = 1000
1 0.007 0.032 0.001 0.76 0.92 0.000 0.035 0.001 0.940 0.650

Average on TMLE 0.007 0.033 0.001 0.75 0.92 0.002 0.033 0.001 0.965 0.6655 Average on Regressions 0.007 0.033 0.001 0.75 0.92
Average on TMLE 0.007 0.033 0.001 0.755 0.92 0.001 0.033 0.001 0.970 0.64510 Average on Regressions 0.007 0.033 0.001 0.755 0.92
Average on TMLE 0.007 0.033 0.001 0.76 0.92 0.001 0.033 0.001 0.970 0.66520 Average on Regressions 0.007 0.033 0.001 0.76 0.92
Average on TMLE 0.007 0.033 0.001 0.76 0.92 0.001 0.033 0.001 0.970 0.67040 Average on Regressions 0.007 0.033 0.001 0.755 0.92
Average on TMLE 0.007 0.033 0.001 0.76 0.92 0.001 0.033 0.001 0.975 0.67560 Average on Regressions 0.007 0.033 0.001 0.76 0.92
Average on TMLE 0.007 0.033 0.001 0.76 0.92 0.001 0.033 0.001 0.975 0.67080 Average on Regressions 0.007 0.033 0.001 0.76 0.92
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Table C.8: Targeted Minimum Loss-Based Estimation (TMLE) estimator metrics for high-dimensional data generation scenario
when super learning was used to estimate the outcome regression and propensity score, with seed = 1, without and with cross-
fitting. The metrics reported are bias, Monte Carlo standard deviation (SD), mean square error (MSE), confidence interval (CI)
coverage, and power.

Without Cross-Fitting Cross-Fitting
Averaging Level Method Bias SD MSE Coverage Power Bias SD MSE Coverage Power
Sample Size = 100

1 0.013 0.127 0.016 0.63 0.535 -0.015 0.093 0.009 0.980 0.095
Average on TMLE 0.01 0.123 0.015 0.62 0.52 -0.017 0.086 0.008 0.985 0.0655 Average on Regressions 0.009 0.121 0.015 0.62 0.515
Average on TMLE 0.009 0.121 0.015 0.6 0.51 -0.017 0.085 0.008 0.990 0.05510 Average on Regressions 0.008 0.119 0.014 0.605 0.51
Average on TMLE 0.008 0.12 0.014 0.595 0.51 -0.017 0.084 0.007 0.990 0.05520 Average on Regressions 0.007 0.118 0.014 0.605 0.51
Average on TMLE 0.008 0.119 0.014 0.61 0.515 -0.017 0.085 0.008 0.985 0.04040 Average on Regressions 0.006 0.117 0.014 0.6 0.51
Average on TMLE 0.008 0.119 0.014 0.61 0.51 -0.017 0.085 0.008 0.985 0.04060 Average on Regressions 0.006 0.117 0.014 0.615 0.51
Average on TMLE 0.008 0.12 0.014 0.6 0.51 -0.017 0.085 0.008 0.985 0.03580 Average on Regressions 0.006 0.117 0.014 0.615 0.51

Sample Size = 500
1 0.006 0.043 0.002 0.86 0.79 -0.001 0.043 0.002 0.960 0.570

Average on TMLE 0.006 0.043 0.002 0.865 0.8 -0.002 0.041 0.002 0.945 0.5755 Average on Regressions 0.006 0.043 0.002 0.87 0.8
Average on TMLE 0.006 0.043 0.002 0.87 0.8 -0.002 0.042 0.002 0.960 0.59510 Average on Regressions 0.006 0.043 0.002 0.87 0.81
Average on TMLE 0.006 0.043 0.002 0.865 0.8 -0.001 0.041 0.002 0.955 0.58020 Average on Regressions 0.006 0.043 0.002 0.865 0.81
Average on TMLE 0.006 0.043 0.002 0.86 0.8 -0.001 0.041 0.002 0.955 0.58040 Average on Regressions 0.006 0.043 0.002 0.86 0.81
Average on TMLE 0.006 0.043 0.002 0.86 0.805 -0.001 0.041 0.002 0.955 0.58560 Average on Regressions 0.006 0.043 0.002 0.86 0.81
Average on TMLE 0.006 0.043 0.002 0.865 0.805 -0.001 0.041 0.002 0.955 0.58580 Average on Regressions 0.006 0.043 0.002 0.865 0.81

Sample Size = 1000
1 0.003 0.031 0.001 0.89 0.94 0.002 0.031 0.001 0.930 0.900

Average on TMLE 0.004 0.031 0.001 0.875 0.94 0.002 0.031 0.001 0.940 0.9105 Average on Regressions 0.004 0.031 0.001 0.875 0.94
Average on TMLE 0.004 0.031 0.001 0.875 0.945 0.002 0.031 0.001 0.945 0.91010 Average on Regressions 0.004 0.031 0.001 0.875 0.945
Average on TMLE 0.004 0.031 0.001 0.88 0.945 0.002 0.031 0.001 0.940 0.91520 Average on Regressions 0.004 0.031 0.001 0.88 0.95
Average on TMLE 0.004 0.031 0.001 0.885 0.945 0.002 0.031 0.001 0.935 0.90540 Average on Regressions 0.004 0.031 0.001 0.88 0.95
Average on TMLE 0.004 0.031 0.001 0.885 0.945 0.002 0.031 0.001 0.935 0.91560 Average on Regressions 0.004 0.031 0.001 0.875 0.945
Average on TMLE 0.004 0.031 0.001 0.885 0.945 0.002 0.031 0.001 0.930 0.91580 Average on Regressions 0.004 0.031 0.001 0.87 0.945



142

Table C.9: Targeted Minimum Loss-Based Estimation (TMLE) estimator metrics for high-dimensional data generation scenario
when random forest was used to estimate the outcome regression and propensity score, with seed = 1, without and with cross-
fitting. The metrics reported are bias, Monte Carlo standard deviation (SD), mean square error (MSE), confidence interval (CI)
coverage, and power.

Without Cross-Fitting Cross-Fitting
Averaging Level Method Bias SD MSE Coverage Power Bias SD MSE Coverage Power
Sample Size = 100

1 0.013 0.114 0.013 0.335 0.795 -0.014 0.096 0.009 0.965 0.135
Average on TMLE 0.013 0.112 0.013 0.32 0.77 -0.016 0.093 0.009 0.965 0.1005 Average on Regressions 0.013 0.112 0.013 0.315 0.77
Average on TMLE 0.012 0.112 0.013 0.33 0.765 -0.015 0.092 0.009 0.970 0.10010 Average on Regressions 0.012 0.112 0.013 0.325 0.765
Average on TMLE 0.013 0.113 0.013 0.33 0.78 -0.014 0.092 0.009 0.975 0.09020 Average on Regressions 0.012 0.113 0.013 0.32 0.785
Average on TMLE 0.013 0.113 0.013 0.335 0.78 -0.014 0.091 0.009 0.975 0.09040 Average on Regressions 0.012 0.113 0.013 0.325 0.78
Average on TMLE 0.013 0.113 0.013 0.335 0.78 -0.014 0.091 0.009 0.975 0.09560 Average on Regressions 0.012 0.113 0.013 0.34 0.78
Average on TMLE 0.013 0.113 0.013 0.33 0.78 -0.015 0.091 0.009 0.975 0.08580 Average on Regressions 0.012 0.113 0.013 0.335 0.78

Sample Size = 500
1 0.019 0.051 0.003 0.33 0.985 -0.009 0.042 0.002 0.965 0.500

Average on TMLE 0.019 0.051 0.003 0.335 0.98 -0.009 0.041 0.002 0.960 0.5255 Average on Regressions 0.019 0.051 0.003 0.335 0.98
Average on TMLE 0.019 0.051 0.003 0.335 0.98 -0.009 0.041 0.002 0.965 0.53510 Average on Regressions 0.019 0.051 0.003 0.335 0.98
Average on TMLE 0.02 0.051 0.003 0.34 0.98 -0.008 0.041 0.002 0.955 0.53020 Average on Regressions 0.019 0.051 0.003 0.335 0.98
Average on TMLE 0.02 0.051 0.003 0.34 0.98 -0.008 0.041 0.002 0.960 0.53040 Average on Regressions 0.019 0.051 0.003 0.335 0.98
Average on TMLE 0.02 0.051 0.003 0.345 0.98 -0.008 0.041 0.002 0.955 0.51560 Average on Regressions 0.019 0.051 0.003 0.33 0.98
Average on TMLE 0.02 0.051 0.003 0.345 0.98 -0.008 0.041 0.002 0.960 0.52080 Average on Regressions 0.019 0.051 0.003 0.33 0.98

Sample Size = 1000
1 0.023 0.038 0.002 0.285 1 -0.005 0.032 0.001 0.915 0.860

Average on TMLE 0.024 0.038 0.002 0.3 1 -0.005 0.031 0.001 0.935 0.8555 Average on Regressions 0.023 0.038 0.002 0.32 1
Average on TMLE 0.024 0.038 0.002 0.295 1 -0.005 0.031 0.001 0.935 0.86010 Average on Regressions 0.023 0.038 0.002 0.3 1
Average on TMLE 0.024 0.038 0.002 0.295 1 -0.005 0.031 0.001 0.935 0.86520 Average on Regressions 0.023 0.038 0.002 0.295 1
Average on TMLE 0.024 0.038 0.002 0.3 1 -0.005 0.031 0.001 0.935 0.86040 Average on Regressions 0.023 0.038 0.002 0.295 1
Average on TMLE 0.024 0.038 0.002 0.3 1 -0.005 0.031 0.001 0.940 0.86060 Average on Regressions 0.023 0.038 0.002 0.295 1
Average on TMLE 0.024 0.038 0.002 0.3 1 -0.004 0.031 0.001 0.940 0.86080 Average on Regressions 0.023 0.038 0.002 0.295 1
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Table C.10: Summary of confidence interval discordance for all scenarios when doubly-robust
targeted maximum likelihood estimation (DRTMLE) is used to estimate the ATE. nseed refers
to the number of random seeds averaged over for the averaging strategy.

Data
Generating
Scenario

OR/PS
Estimation

Cross-
Fitting

Averaging
Strategy

Sample Size Number of
Datasets

with
discordant
confidence

intervals at
nseed = 1

nseed that
achieved 0
discordant
confidence
intervals
for all
datasets

100 136 40
500 9 5DRTMLE

1000 1 5
100 136 >80
500 9 5

No

Regressions
1000 1 5
100 2 5
500 0 1

Super
Learning

Yes
1000 0 1
100 193 60
500 192 60

DRTMLE

1000 157 60
100 193 >80
500 192 >80

No

Regressions
1000 157 >80
100 10 5
500 0 1

Low-
dimensional

Random
Forest

Yes
1000 0 1
100 200 60
500 144 80

DRTMLE

1000 71 40
100 200 >80
500 144 >80

No

Regressions
1000 71 >80
100 0 1
500 0 1

Super
Learning

Yes
1000 0 1
100 182 40
500 190 60

DRTMLE

1000 189 >80
100 182 >80
500 190 >80

No

Regressions
1000 189 >80
100 0 1
500 0 1

High-
dimensional

Random
Forest

Yes DRTMLE
1000 0 1
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Table C.11: Doubly-Robust Targeted Minimum Loss-Based Estimation (DRTMLE) estimator metrics for low-dimensional data
generation scenario when super learning was used to estimate the outcome regression and propensity score, with seed = 1,
without and with cross-fitting. The metrics reported are bias, Monte Carlo standard deviation (SD), mean square error (MSE),
confidence interval (CI) coverage, and power.

Without Cross-Fitting Cross-Fitting
Averaging Level Method Bias SD MSE Coverage Power Bias SD MSE Coverage Power
Sample Size = 100

1 0.025 0.146 0.022 0.68 0.53 0.027 0.086 0.008 0.960 0.250
Average on DRTMLE 0.023 0.122 0.015 0.695 0.49 0.027 0.083 0.008 0.950 0.2505 Average on Regressions 0.028 0.153 0.024 0.635 0.54
Average on DRTMLE 0.022 0.12 0.015 0.73 0.495 0.026 0.082 0.007 0.955 0.26510 Average on Regressions 0.027 0.155 0.025 0.645 0.52
Average on DRTMLE 0.021 0.118 0.014 0.755 0.495 0.025 0.081 0.007 0.960 0.25020 Average on Regressions 0.029 0.148 0.023 0.655 0.53
Average on DRTMLE 0.023 0.115 0.014 0.735 0.5 0.026 0.082 0.007 0.960 0.26040 Average on Regressions 0.023 0.144 0.021 0.69 0.495
Average on DRTMLE 0.023 0.113 0.013 0.745 0.475 0.025 0.082 0.007 0.965 0.25560 Average on Regressions 0.026 0.145 0.022 0.68 0.49
Average on DRTMLE 0.023 0.112 0.013 0.75 0.475 0.025 0.082 0.007 0.965 0.25080 Average on Regressions 0.026 0.146 0.022 0.67 0.505

Sample Size = 500
1 0.006 0.047 0.002 0.92 0.59 0.009 0.046 0.002 0.930 0.595

Average on DRTMLE 0.006 0.046 0.002 0.925 0.575 0.009 0.043 0.002 0.950 0.5855 Average on Regressions 0.007 0.046 0.002 0.94 0.57
Average on DRTMLE 0.007 0.046 0.002 0.93 0.58 0.009 0.043 0.002 0.955 0.56510 Average on Regressions 0.007 0.047 0.002 0.925 0.57
Average on DRTMLE 0.007 0.047 0.002 0.94 0.57 0.009 0.043 0.002 0.945 0.56520 Average on Regressions 0.007 0.047 0.002 0.925 0.58
Average on DRTMLE 0.007 0.046 0.002 0.94 0.575 0.009 0.043 0.002 0.945 0.56540 Average on Regressions 0.006 0.047 0.002 0.935 0.58
Average on DRTMLE 0.006 0.046 0.002 0.94 0.575 0.009 0.043 0.002 0.945 0.58060 Average on Regressions 0.007 0.047 0.002 0.93 0.58
Average on DRTMLE 0.006 0.047 0.002 0.94 0.575 0.009 0.043 0.002 0.945 0.57080 Average on Regressions 0.006 0.047 0.002 0.93 0.575

Sample Size = 1000
1 0 0.034 0.001 0.91 0.755 0.000 0.033 0.001 0.945 0.750

Average on DRTMLE 0 0.034 0.001 0.91 0.765 0.001 0.032 0.001 0.935 0.7605 Average on Regressions 0 0.034 0.001 0.905 0.755
Average on DRTMLE 0 0.034 0.001 0.905 0.76 0.001 0.032 0.001 0.940 0.74010 Average on Regressions 0 0.034 0.001 0.905 0.755
Average on DRTMLE 0 0.034 0.001 0.9 0.755 0.001 0.032 0.001 0.935 0.76520 Average on Regressions 0 0.034 0.001 0.905 0.755
Average on DRTMLE 0 0.034 0.001 0.9 0.755 0.001 0.032 0.001 0.935 0.75540 Average on Regressions 0 0.034 0.001 0.905 0.76
Average on DRTMLE 0 0.034 0.001 0.9 0.755 0.001 0.032 0.001 0.935 0.75560 Average on Regressions 0 0.034 0.001 0.905 0.75
Average on DRTMLE 0 0.034 0.001 0.9 0.755 0.001 0.032 0.001 0.935 0.76080 Average on Regressions 0 0.034 0.001 0.905 0.755
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Table C.12: Doubly-Robust Targeted Minimum Loss-Based Estimation (DRTMLE) estimator metrics for low-dimensional data
generation scenario when random forest was used to estimate the outcome regression and propensity score, with seed = 1,
without and with cross-fitting. The metrics reported are bias, Monte Carlo standard deviation (SD), mean square error (MSE),
confidence interval (CI) coverage, and power.

Without Cross-Fitting Cross-Fitting
Averaging Level Method Bias SD MSE Coverage Power Bias SD MSE Coverage Power
Sample Size = 100

1 0.052 0.209 0.046 0.59 0.665 0.020 0.093 0.009 0.940 0.245
Average on DRTMLE 0.046 0.148 0.024 0.59 0.625 0.020 0.087 0.008 0.955 0.2455 Average on Regressions 0.036 0.192 0.038 0.64 0.625
Average on DRTMLE 0.045 0.139 0.021 0.59 0.64 0.019 0.085 0.008 0.970 0.24010 Average on Regressions 0.045 0.189 0.038 0.63 0.635
Average on DRTMLE 0.045 0.134 0.02 0.6 0.63 0.020 0.085 0.008 0.965 0.24020 Average on Regressions 0.042 0.192 0.039 0.62 0.64
Average on DRTMLE 0.043 0.131 0.019 0.615 0.64 0.020 0.085 0.008 0.960 0.23040 Average on Regressions 0.049 0.19 0.038 0.63 0.64
Average on DRTMLE 0.044 0.129 0.019 0.605 0.635 0.020 0.084 0.008 0.960 0.24060 Average on Regressions 0.05 0.192 0.039 0.61 0.625
Average on DRTMLE 0.044 0.129 0.019 0.625 0.645 0.020 0.084 0.007 0.960 0.23580 Average on Regressions 0.047 0.197 0.041 0.595 0.645

Sample Size = 500
1 0.062 0.103 0.015 0.435 0.86 0.014 0.046 0.002 0.900 0.615

Average on DRTMLE 0.062 0.088 0.011 0.43 0.875 0.015 0.042 0.002 0.945 0.6055 Average on Regressions 0.055 0.108 0.015 0.365 0.84
Average on DRTMLE 0.061 0.085 0.011 0.435 0.845 0.016 0.043 0.002 0.940 0.62010 Average on Regressions 0.054 0.115 0.016 0.385 0.83
Average on DRTMLE 0.06 0.084 0.011 0.46 0.855 0.015 0.042 0.002 0.935 0.62520 Average on Regressions 0.061 0.115 0.017 0.37 0.86
Average on DRTMLE 0.059 0.082 0.01 0.47 0.855 0.016 0.042 0.002 0.940 0.62540 Average on Regressions 0.052 0.121 0.017 0.37 0.85
Average on DRTMLE 0.06 0.082 0.01 0.455 0.85 0.015 0.042 0.002 0.940 0.63060 Average on Regressions 0.052 0.118 0.017 0.395 0.83
Average on DRTMLE 0.06 0.082 0.01 0.48 0.845 0.016 0.042 0.002 0.945 0.63080 Average on Regressions 0.053 0.117 0.017 0.395 0.86

Sample Size = 1000
1 0.025 0.059 0.004 0.6 0.895 0.009 0.031 0.001 0.920 0.855

Average on DRTMLE 0.025 0.049 0.003 0.67 0.885 0.010 0.031 0.001 0.930 0.8555 Average on Regressions 0.026 0.061 0.004 0.6 0.91
Average on DRTMLE 0.024 0.048 0.003 0.67 0.89 0.010 0.031 0.001 0.940 0.85510 Average on Regressions 0.029 0.061 0.005 0.555 0.885
Average on DRTMLE 0.024 0.048 0.003 0.67 0.88 0.010 0.030 0.001 0.935 0.86020 Average on Regressions 0.027 0.06 0.004 0.58 0.865
Average on DRTMLE 0.025 0.048 0.003 0.675 0.88 0.010 0.030 0.001 0.935 0.86540 Average on Regressions 0.029 0.062 0.005 0.575 0.9
Average on DRTMLE 0.025 0.048 0.003 0.68 0.89 0.010 0.030 0.001 0.935 0.86060 Average on Regressions 0.029 0.062 0.005 0.545 0.875
Average on DRTMLE 0.024 0.048 0.003 0.67 0.885 0.010 0.030 0.001 0.935 0.86080 Average on Regressions 0.027 0.065 0.005 0.545 0.87
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Table C.13: Doubly-Robust Targeted Minimum Loss-Based Estimation (DRTMLE) estimator metrics for high-dimensional
data generation scenario when super learning was used to estimate the outcome regression and propensity score, with seed = 1,
without and with cross-fitting. The metrics reported are bias, Monte Carlo standard deviation (SD), mean square error (MSE),
confidence interval (CI) coverage, and power.

Without Cross-Fitting Cross-Fitting
Averaging Level Method Bias SD MSE Coverage Power Bias SD MSE Coverage Power
Sample Size = 100

1 0.007 0.245 0.06 0.545 0.49 -0.015 0.091 0.009 0.970 0.180
Average on DRTMLE 0.008 0.174 0.03 0.635 0.395 -0.015 0.090 0.008 0.965 0.1505 Average on Regressions 0.006 0.261 0.068 0.545 0.57
Average on DRTMLE 0.003 0.167 0.028 0.66 0.36 -0.014 0.091 0.008 0.965 0.15510 Average on Regressions -0.003 0.265 0.07 0.52 0.54
Average on DRTMLE -0.001 0.164 0.027 0.75 0.3 -0.014 0.090 0.008 0.970 0.14020 Average on Regressions -0.016 0.269 0.072 0.555 0.575
Average on DRTMLE 0 0.16 0.026 0.79 0.21 -0.014 0.090 0.008 0.970 0.14540 Average on Regressions 0.017 0.263 0.07 0.54 0.61
Average on DRTMLE 0.003 0.159 0.025 0.84 0.175 -0.014 0.090 0.008 0.970 0.15060 Average on Regressions 0.009 0.252 0.064 0.54 0.57
Average on DRTMLE 0.003 0.159 0.025 0.86 0.16 -0.014 0.090 0.008 0.970 0.14580 Average on Regressions 0.023 0.259 0.068 0.505 0.595

Sample Size = 500
1 0.001 0.128 0.016 0.675 0.58 -0.001 0.042 0.002 0.950 0.610

Average on DRTMLE -0.004 0.087 0.008 0.76 0.48 -0.002 0.041 0.002 0.950 0.5855 Average on Regressions -0.02 0.116 0.014 0.735 0.54
Average on DRTMLE -0.006 0.081 0.007 0.775 0.42 -0.002 0.041 0.002 0.960 0.59010 Average on Regressions -0.017 0.122 0.015 0.66 0.535
Average on DRTMLE -0.005 0.081 0.007 0.755 0.45 -0.002 0.041 0.002 0.960 0.59520 Average on Regressions -0.02 0.126 0.016 0.705 0.49
Average on DRTMLE -0.006 0.083 0.007 0.755 0.44 -0.002 0.041 0.002 0.960 0.59540 Average on Regressions -0.011 0.119 0.014 0.715 0.52
Average on DRTMLE -0.006 0.082 0.007 0.77 0.41 -0.002 0.041 0.002 0.960 0.59560 Average on Regressions -0.009 0.117 0.014 0.72 0.53
Average on DRTMLE -0.007 0.082 0.007 0.78 0.4 -0.002 0.041 0.002 0.960 0.59580 Average on Regressions -0.015 0.118 0.014 0.72 0.53

Sample Size = 1000
1 -0.008 0.063 0.004 0.82 0.795 0.002 0.031 0.001 0.930 0.905

Average on DRTMLE -0.009 0.056 0.003 0.82 0.745 0.002 0.031 0.001 0.935 0.9105 Average on Regressions -0.01 0.064 0.004 0.845 0.75
Average on DRTMLE -0.009 0.052 0.003 0.84 0.73 0.002 0.031 0.001 0.945 0.92010 Average on Regressions -0.01 0.057 0.003 0.835 0.725
Average on DRTMLE -0.007 0.049 0.002 0.865 0.71 0.002 0.031 0.001 0.940 0.91520 Average on Regressions -0.011 0.059 0.004 0.835 0.705
Average on DRTMLE -0.007 0.048 0.002 0.88 0.715 0.002 0.031 0.001 0.940 0.91540 Average on Regressions -0.008 0.059 0.004 0.83 0.72
Average on DRTMLE -0.007 0.048 0.002 0.88 0.725 0.002 0.031 0.001 0.935 0.91560 Average on Regressions -0.007 0.058 0.003 0.84 0.73
Average on DRTMLE -0.007 0.048 0.002 0.88 0.725 0.002 0.031 0.001 0.935 0.91580 Average on Regressions -0.008 0.059 0.004 0.83 0.725
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Table C.14: Doubly-Robust Targeted Minimum Loss-Based Estimation (DRTMLE) estimator metrics for high-dimensional
data generation scenario when random forest was used to estimate the outcome regression and propensity score, with seed = 1,
without and with cross-fitting. The metrics reported are bias, Monte Carlo standard deviation (SD), mean square error (MSE),
confidence interval (CI) coverage, and power.

Without Cross-Fitting Cross-Fitting
Averaging Level Method Bias SD MSE Coverage Power Bias SD MSE Coverage Power
Sample Size = 100

1 0.023 0.17 0.03 0.715 0.5 -0.014 0.092 0.009 0.950 0.150
Average on DRTMLE 0.026 0.145 0.022 0.79 0.405 -0.015 0.092 0.009 0.960 0.1555 Average on Regressions 0.027 0.174 0.031 0.7 0.525
Average on DRTMLE 0.027 0.141 0.021 0.83 0.355 -0.014 0.091 0.008 0.960 0.15010 Average on Regressions 0.018 0.187 0.035 0.71 0.52
Average on DRTMLE 0.028 0.139 0.02 0.86 0.23 -0.014 0.091 0.009 0.960 0.16520 Average on Regressions 0.021 0.165 0.028 0.75 0.49
Average on DRTMLE 0.027 0.139 0.02 0.9 0.14 -0.014 0.091 0.008 0.960 0.15540 Average on Regressions 0.036 0.182 0.034 0.715 0.535
Average on DRTMLE 0.026 0.138 0.02 0.93 0.105 -0.014 0.091 0.008 0.965 0.16560 Average on Regressions 0.025 0.174 0.031 0.76 0.5
Average on DRTMLE 0.025 0.138 0.02 0.935 0.1 -0.014 0.091 0.008 0.965 0.16080 Average on Regressions 0.035 0.168 0.03 0.735 0.5

Sample Size = 500
1 0.033 0.117 0.015 0.695 0.915 -0.010 0.042 0.002 0.955 0.530

Average on DRTMLE 0.037 0.068 0.006 0.665 0.735 -0.011 0.041 0.002 0.955 0.5305 Average on Regressions 0.047 0.102 0.013 0.69 0.895
Average on DRTMLE 0.039 0.057 0.005 0.755 0.555 -0.010 0.041 0.002 0.950 0.53010 Average on Regressions 0.037 0.094 0.01 0.705 0.875
Average on DRTMLE 0.037 0.051 0.004 0.855 0.395 -0.010 0.041 0.002 0.950 0.54020 Average on Regressions 0.036 0.099 0.011 0.725 0.845
Average on DRTMLE 0.037 0.048 0.004 0.89 0.3 -0.010 0.041 0.002 0.950 0.53540 Average on Regressions 0.032 0.084 0.008 0.77 0.87
Average on DRTMLE 0.036 0.049 0.004 0.925 0.24 -0.010 0.041 0.002 0.950 0.53060 Average on Regressions 0.029 0.089 0.009 0.755 0.905
Average on DRTMLE 0.036 0.048 0.004 0.94 0.185 -0.010 0.041 0.002 0.950 0.53080 Average on Regressions 0.034 0.088 0.009 0.735 0.91

Sample Size = 1000
1 0.047 0.118 0.016 0.725 0.935 -0.007 0.032 0.001 0.930 0.850

Average on DRTMLE 0.036 0.065 0.005 0.655 0.785 -0.007 0.031 0.001 0.930 0.8455 Average on Regressions 0.035 0.116 0.015 0.73 0.915
Average on DRTMLE 0.037 0.061 0.005 0.655 0.685 -0.007 0.031 0.001 0.930 0.86510 Average on Regressions 0.037 0.102 0.012 0.745 0.925
Average on DRTMLE 0.035 0.053 0.004 0.79 0.565 -0.007 0.031 0.001 0.940 0.86520 Average on Regressions 0.028 0.109 0.013 0.73 0.93
Average on DRTMLE 0.036 0.051 0.004 0.865 0.44 -0.007 0.031 0.001 0.940 0.86540 Average on Regressions 0.034 0.11 0.013 0.745 0.935
Average on DRTMLE 0.036 0.05 0.004 0.92 0.36 -0.007 0.031 0.001 0.935 0.87060 Average on Regressions 0.031 0.105 0.012 0.755 0.92
Average on DRTMLE 0.035 0.049 0.004 0.94 0.325 -0.007 0.031 0.001 0.940 0.86580 Average on Regressions 0.025 0.097 0.01 0.765 0.92
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Figure C.1: Vertical box plots of (A) AIPTW point estimates and (B) centered confidence
interval bounds from 150 analyses of each of the 200 datasets using AIPTW estimated
without cross-fitting and when implementing the proposed solution of averaging at the level
of intermediate regressions. Results displayed are from the low-dimensional DGM when
super learning was used to estimate the OR and PS.
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Figure C.2: Confidence interval stability results for averaging at the level of the intermediate
regression for AIPTW in the low-dimensional scenario when super learning was used to
estimate the OR and PS. Panel A displays jittered scatter plots of the maximum relative
range of CI bounds calculated from 150 analyses of each of 200 datasets. Panel B displays
line graphs displaying the relationship between nseed and the proportion of data sets with
unstable confidence intervals as indicated by having a maximum relative range of CI bounds
> 10%.
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Figure C.3: Hypothesis testing stability results for averaging at the level of the intermediate
regression for AIPTW in the low-dimensional scenario when super learning was used to
estimate the OR and PS. Panel A displays jittered scatter plots of rejection proportion (p)
for each of 200 data sets. Panel B displays line graphs displaying the relationship between
nseed and the proportion of data sets with unstable hypothesis testing results as indicated
by a rejection proportion not equal to zero or one.
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Figure C.4: Vertical box plots of ATE point estimates from 150 analyses of each of the
200 datasets using AIPTW estimated (A) without cross-fitting and (B) with cross-fitting
at different values of nseed. Results displayed are from the low-dimensional data generating
mechanism when random forest was used to estimate the OR and PS.
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Figure C.5: Vertical box plots of centered confidence interval bounds from 150 analyses
of each of 200 datasets using AIPTW estimated (A) without cross-fitting and (B) with
cross-fitting at different values of nseed. Results displayed are from the low-dimensional data
generating mechanism when random forest was used to estimate the OR and PS.
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Figure C.6: Vertical box plots of (A) AIPTW point estimates and (B) centered confidence
interval bounds from 150 analyses of each of the 200 datasets using AIPTW estimated
without cross-fitting and when implementing the proposed solution of averaging at the level
of intermediate regressions. Results displayed are from the low-dimensional data generating
mechanism when random forest was used to estimate the OR and PS.



154

Figure C.7: Jittered scatter plots of the maximum relative range of CI bounds calculated
from 150 analyses of each of 200 datasets using AIPTW estimated (A) without cross-fitting
and (B) with cross-fitting at different values of nseed. Results displayed are from the low-
dimensional data generating mechanism when Random Forest was used to estimate the OR
and PS.
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Figure C.8: Line graphs displaying the relationship between nseed and the proportion of
data sets with unstable confidence intervals for (A) non cross-fit and (B) cross-fit AIPTW
estimates, in the low-dimensional data generating mechanism when random forest was used
to estimate the OR and PS.
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Figure C.9: Jittered scatter plots of rejection proportion (p) for each of 200 data sets.
Results shown for the AIPTW estimated (A) without cross-fitting and (B) with cross-fitting
at different values of nseed. Results displayed are from the low-dimensional data generating
mechanism when Random Forest was used to estimate the OR and PS.
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Figure C.10: Line graphs displaying the relationship between nseed and the proportion
of data sets with unstable hypothesis testing results for (A) non cross-fit and (B) cross-fit
AIPTW estimates, in the low-dimensional data generating scenario when random forest was
used to estimate the OR and PS.
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Figure C.11: Vertical box plots of ATE point estimates from 150 analyses of each of the
200 datasets using AIPTW estimated (A) without cross-fitting and (B) with cross-fitting at
different values of nseed. Results displayed are from the high dimensional data generating
mechanism when super learning was used to estimate the OR and PS.
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Figure C.12: Vertical box plots of centered confidence interval bounds from 150 analyses of
each of 200 datasets using AIPTW estimated (A) without cross-fitting and (B) with cross-
fitting at different values of nseed. Results displayed are from the high dimensional data
generating mechanism when super learning was used to estimate the OR and PS.
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Figure C.13: Vertical box plots of (A) AIPTW point estimates and (B) centered confidence
interval bounds from 150 analyses of each of the 200 datasets using AIPTW estimated
without cross-fitting and when implementing the proposed solution of averaging at the level
of intermediate regressions. Results displayed are from the high dimensional data generating
mechanism when super learning was used to estimate the OR and PS.
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Figure C.14: Jittered scatter plots of the maximum relative range of CI bounds calculated
from 150 analyses of each of 200 datasets using AIPTW estimated (A) without cross-fitting
and (B) with cross-fitting at different values of nseed. Results displayed are from the high
dimensional data generating mechanism when Super Learning was used to estimate the OR
and PS.
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Figure C.15: Line graphs displaying the relationship between nseed and the proportion of
data sets with unstable confidence intervals for (A) non cross-fit and (B) cross-fit AIPTW
estimates, in the high dimensional data generating mechanism when super learning was used
to estimate the OR and PS.
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Figure C.16: Jittered scatter plots of rejection proportion (p) for each of 200 data sets.
Results shown for the AIPTW estimated (A) without cross-fitting and (B) with cross-fitting
at different values of nseed. Results displayed are from the high dimensional data generating
mechanism when Super Learning was used to estimate the OR and PS.
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Figure C.17: Line graphs displaying the relationship between nseed and the proportion
of data sets with unstable hypothesis testing results for (A) non cross-fit and (B) cross-fit
AIPTW estimates, in the high dimensional data generating scenario when super learning
was used to estimate the OR and PS.
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Figure C.18: Vertical box plots of ATE point estimates from 150 analyses of each of the
200 datasets using AIPTW estimated (A) without cross-fitting and (B) with cross-fitting at
different values of nseed. Results displayed are from the high dimensional data generating
mechanism when random forest was used to estimate the OR and PS.
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Figure C.19: Vertical box plots of centered confidence interval bounds from 150 analyses of
each of 200 datasets using AIPTW estimated (A) without cross-fitting and (B) with cross-
fitting at different values of nseed. Results displayed are from the high dimensional data
generating mechanism when random forest was used to estimate the OR and PS.
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Figure C.20: Vertical box plots of (A) AIPTW point estimates and (B) centered confidence
interval bounds from 150 analyses of each of the 200 datasets using AIPTW estimated
without cross-fitting and when implementing the proposed solution of averaging at the level
of intermediate regressions. Results displayed are from the high dimensional data generating
mechanism when random forest was used to estimate the OR and PS.
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Figure C.21: Jittered scatter plots of the maximum relative range of CI bounds calculated
from 150 analyses of each of 200 datasets using AIPTW estimated (A) without cross-fitting
and (B) with cross-fitting at different values of nseed. Results displayed are from the high
dimensional data generating mechanism when Random Forest was used to estimate the OR
and PS.
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Figure C.22: Line graphs displaying the relationship between nseed and the proportion of
data sets with unstable confidence intervals for (A) non cross-fit and (B) cross-fit AIPTW
estimates, in the high dimensional data generating mechanism when random forest was used
to estimate the OR and PS.



170

Figure C.23: Jittered scatter plots of rejection proportion (p) for each of 200 data sets.
Results shown for the AIPTW estimated (A) without cross-fitting and (B) with cross-fitting
at different values of nseed. Results displayed are from the high dimensional data generating
mechanism when Random Forest was used to estimate the OR and PS.
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Figure C.24: Line graphs displaying the relationship between nseed and the proportion
of data sets with unstable hypothesis testing results for (A) non cross-fit and (B) cross-fit
AIPTW estimates, in the high dimensional data generating scenario when random forest
was used to estimate the OR and PS.
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Figure C.25: Vertical box plots of ATE point estimates from 150 analyses of each of the
200 datasets using TMLE estimated (A) without cross-fitting and (B) with cross-fitting at
different values of nseed. Results displayed are from the low-dimensional data generating
mechanism when super learning was used to estimate the OR and PS.
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Figure C.26: Vertical box plots of centered confidence interval bounds from 150 analyses
of each of 200 datasets using TMLE estimated (A) without cross-fitting and (B) with cross-
fitting at different values of nseed. Results displayed are from the low-dimensional data
generating mechanism when super learning was used to estimate the OR and PS.
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Figure C.27: Vertical box plots of (A) TMLE point estimates and (B) centered confidence
interval bounds from 150 analyses of each of the 200 datasets using TMLE estimated with-
out cross-fitting and when implementing the proposed solution of averaging at the level of
intermediate regressions. Results displayed are from the low-dimensional data generating
mechanism when super learning was used to estimate the OR and PS.
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Figure C.28: Jittered scatter plots of the maximum relative range of CI bounds calculated
from 150 analyses of each of 200 datasets using TMLE estimated (A) without cross-fitting
and (B) with cross-fitting at different values of nseed. Results displayed are from the low-
dimensional data generating mechanism when Super Learning was used to estimate the OR
and PS.
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Figure C.29: Line graphs displaying the relationship between nseed and the proportion of
data sets with unstable confidence intervals for (A) non cross-fit and (B) cross-fit TMLE
estimates, in the low-dimensional data generating mechanism when super learning was used
to estimate the OR and PS.
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Figure C.30: Jittered scatter plots of rejection proportion (p) for each of 200 data sets.
Results shown for the TMLE estimated (A) without cross-fitting and (B) with cross-fitting
at different values of nseed. Results displayed are from the low-dimensional data generating
mechanism when Super Learning was used to estimate the OR and PS.
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Figure C.31: Line graphs displaying the relationship between nseed and the proportion
of data sets with unstable hypothesis testing results for (A) non cross-fit and (B) cross-fit
TMLE estimates, in the low-dimensional data generating scenario when super learning was
used to estimate the OR and PS.
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Figure C.32: Vertical box plots of ATE point estimates from 150 analyses of each of the
200 datasets using TMLE estimated (A) without cross-fitting and (B) with cross-fitting at
different values of nseed. Results displayed are from the low-dimensional data generating
mechanism when random forest was used to estimate the OR and PS.
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Figure C.33: Vertical box plots of centered confidence interval bounds from 150 analyses
of each of 200 datasets using TMLE estimated (A) without cross-fitting and (B) with cross-
fitting at different values of nseed. Results displayed are from the low-dimensional data
generating mechanism when random forest was used to estimate the OR and PS.
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Figure C.34: Vertical box plots of (A) TMLE point estimates and (B) centered confidence
interval bounds from 150 analyses of each of the 200 datasets using TMLE estimated with-
out cross-fitting and when implementing the proposed solution of averaging at the level of
intermediate regressions. Results displayed are from the low-dimensional data generating
mechanism when random forest was used to estimate the OR and PS.
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Figure C.35: Jittered scatter plots of the maximum relative range of CI bounds calculated
from 150 analyses of each of 200 datasets using TMLE estimated (A) without cross-fitting
and (B) with cross-fitting at different values of nseed. Results displayed are from the low-
dimensional data generating mechanism when Random Forest was used to estimate the OR
and PS.
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Figure C.36: Line graphs displaying the relationship between nseed and the proportion of
data sets with unstable confidence intervals for (A) non cross-fit and (B) cross-fit TMLE
estimates, in the low-dimensional data generating mechanism when random forest was used
to estimate the OR and PS.
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Figure C.37: Jittered scatter plots of rejection proportion (p) for each of 200 data sets.
Results shown for the TMLE estimated (A) without cross-fitting and (B) with cross-fitting
at different values of nseed. Results displayed are from the low-dimensional data generating
mechanism when Random Forest was used to estimate the OR and PS.
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Figure C.38: Line graphs displaying the relationship between nseed and the proportion
of data sets with unstable hypothesis testing results for (A) non cross-fit and (B) cross-fit
TMLE estimates, in the low-dimensional data generating scenario when random forest was
used to estimate the OR and PS.



186

Figure C.39: Vertical box plots of ATE point estimates from 150 analyses of each of the
200 datasets using TMLE estimated (A) without cross-fitting and (B) with cross-fitting at
different values of nseed. Results displayed are from the high dimensional data generating
mechanism when super learning was used to estimate the OR and PS.
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Figure C.40: Vertical box plots of centered confidence interval bounds from 150 analyses
of each of 200 datasets using TMLE estimated (A) without cross-fitting and (B) with cross-
fitting at different values of nseed. Results displayed are from the high dimensional data
generating mechanism when super learning was used to estimate the OR and PS.
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Figure C.41: Vertical box plots of (A) TMLE point estimates and (B) centered confidence
interval bounds from 150 analyses of each of the 200 datasets using TMLE estimated with-
out cross-fitting and when implementing the proposed solution of averaging at the level of
intermediate regressions. Results displayed are from the high dimensional data generating
mechanism when super learning was used to estimate the OR and PS.
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Figure C.42: Jittered scatter plots of the maximum relative range of CI bounds calculated
from 150 analyses of each of 200 datasets using TMLE estimated (A) without cross-fitting
and (B) with cross-fitting at different values of nseed. Results displayed are from the high
dimensional data generating mechanism when Super Learning was used to estimate the OR
and PS.
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Figure C.43: Line graphs displaying the relationship between nseed and the proportion of
data sets with unstable confidence intervals for (A) non cross-fit and (B) cross-fit TMLE
estimates, in the high dimensional data generating mechanism when super learning was used
to estimate the OR and PS.
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Figure C.44: Jittered scatter plots of rejection proportion (p) for each of 200 data sets.
Results shown for the TMLE estimated (A) without cross-fitting and (B) with cross-fitting
at different values of nseed. Results displayed are from the high dimensional data generating
mechanism when Super Learning was used to estimate the OR and PS.
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Figure C.45: Line graphs displaying the relationship between nseed and the proportion
of data sets with unstable hypothesis testing results for (A) non cross-fit and (B) cross-fit
TMLE estimates, in the high dimensional data generating scenario when super learning was
used to estimate the OR and PS.
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Figure C.46: Vertical box plots of ATE point estimates from 150 analyses of each of the
200 datasets using TMLE estimated (A) without cross-fitting and (B) with cross-fitting at
different values of nseed. Results displayed are from the high dimensional data generating
mechanism when random forest was used to estimate the OR and PS.
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Figure C.47: Vertical box plots of centered confidence interval bounds from 150 analyses
of each of 200 datasets using TMLE estimated (A) without cross-fitting and (B) with cross-
fitting at different values of nseed. Results displayed are from the high dimensional data
generating mechanism when random forest was used to estimate the OR and PS.
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Figure C.48: Vertical box plots of (A) TMLE point estimates and (B) centered confidence
interval bounds from 150 analyses of each of the 200 datasets using TMLE estimated with-
out cross-fitting and when implementing the proposed solution of averaging at the level of
intermediate regressions. Results displayed are from the high dimensional data generating
mechanism when random forest was used to estimate the OR and PS.
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Figure C.49: Jittered scatter plots of the maximum relative range of CI bounds calculated
from 150 analyses of each of 200 datasets using TMLE estimated (A) without cross-fitting
and (B) with cross-fitting at different values of nseed. Results displayed are from the high
dimensional data generating mechanism when Random Forest was used to estimate the OR
and PS.
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Figure C.50: Line graphs displaying the relationship between nseed and the proportion of
data sets with unstable confidence intervals for (A) non cross-fit and (B) cross-fit TMLE
estimates, in the high dimensional data generating mechanism when random forest was used
to estimate the OR and PS.



198

Figure C.51: Jittered scatter plots of rejection proportion (p) for each of 200 data sets.
Results shown for the TMLE estimated (A) without cross-fitting and (B) with cross-fitting
at different values of nseed. Results displayed are from the high dimensional data generating
mechanism when Random Forest was used to estimate the OR and PS.
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Figure C.52: Line graphs displaying the relationship between nseed and the proportion
of data sets with unstable hypothesis testing results for (A) non cross-fit and (B) cross-fit
TMLE estimates, in the high dimensional data generating scenario when random forest was
used to estimate the OR and PS.
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Figure C.53: Vertical box plots of ATE point estimates from 150 analyses of each of the
200 datasets using DRTMLE estimated (A) without cross-fitting and (B) with cross-fitting
at different values of nseed. Results displayed are from the low-dimensional data generating
mechanism when super learning was used to estimate the OR and PS.
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Figure C.54: Vertical box plots of centered confidence interval bounds from 150 analyses
of each of 200 datasets using DRTMLE estimated (A) without cross-fitting and (B) with
cross-fitting at different values of nseed. Results displayed are from the low-dimensional data
generating mechanism when super learning was used to estimate the OR and PS.
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Figure C.55: Vertical box plots of (A) DRTMLE point estimates and (B) centered confidence
interval bounds from 150 analyses of each of the 200 datasets using DRTMLE estimated
without cross-fitting and when implementing the proposed solution of averaging at the level
of intermediate regressions. Results displayed are from the low-dimensional data generating
mechanism when super learning was used to estimate the OR and PS.
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Figure C.56: Jittered scatter plots of the maximum relative range of CI bounds calculated
from 150 analyses of each of 200 datasets using DRTMLE estimated (A) without cross-fitting
and (B) with cross-fitting at different values of nseed. Results displayed are from the low-
dimensional data generating mechanism when Super Learning was used to estimate the OR
and PS.
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Figure C.57: Line graphs displaying the relationship between nseed and the proportion of
data sets with unstable confidence intervals for (A) non cross-fit and (B) cross-fit DRTMLE
estimates, in the low-dimensional data generating mechanism when super learning was used
to estimate the OR and PS.
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Figure C.58: Jittered scatter plots of rejection proportion (p) for each of 200 data sets.
Results shown for the DRTMLE estimated (A) without cross-fitting and (B) with cross-fitting
at different values of nseed. Results displayed are from the low-dimensional data generating
mechanism when Super Learning was used to estimate the OR and PS.
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Figure C.59: Line graphs displaying the relationship between nseed and the proportion
of data sets with unstable hypothesis testing results for (A) non cross-fit and (B) cross-fit
DRTMLE estimates, in the low-dimensional data generating scenario when super learning
was used to estimate the OR and PS.



207

Figure C.60: Vertical box plots of ATE point estimates from 150 analyses of each of the
200 datasets using DRTMLE estimated (A) without cross-fitting and (B) with cross-fitting
at different values of nseed. Results displayed are from the low-dimensional data generating
mechanism when random forest was used to estimate the OR and PS.
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Figure C.61: Vertical box plots of centered confidence interval bounds from 150 analyses
of each of 200 datasets using DRTMLE estimated (A) without cross-fitting and (B) with
cross-fitting at different values of nseed. Results displayed are from the low-dimensional data
generating mechanism when random forest was used to estimate the OR and PS.
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Figure C.62: Vertical box plots of (A) DRTMLE point estimates and (B) centered confidence
interval bounds from 150 analyses of each of the 200 datasets using DRTMLE estimated
without cross-fitting and when implementing the proposed solution of averaging at the level
of intermediate regressions. Results displayed are from the low-dimensional data generating
mechanism when random forest was used to estimate the OR and PS.
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Figure C.63: Jittered scatter plots of the maximum relative range of CI bounds calculated
from 150 analyses of each of 200 datasets using DRTMLE estimated (A) without cross-fitting
and (B) with cross-fitting at different values of nseed. Results displayed are from the low-
dimensional data generating mechanism when Random Forest was used to estimate the OR
and PS.
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Figure C.64: Line graphs displaying the relationship between nseed and the proportion of
data sets with unstable confidence intervals for (A) non cross-fit and (B) cross-fit DRTMLE
estimates, in the low-dimensional data generating mechanism when random forest was used
to estimate the OR and PS.
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Figure C.65: Jittered scatter plots of rejection proportion (p) for each of 200 data sets.
Results shown for the DRTMLE estimated (A) without cross-fitting and (B) with cross-fitting
at different values of nseed. Results displayed are from the low-dimensional data generating
mechanism when Random Forest was used to estimate the OR and PS.
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Figure C.66: Line graphs displaying the relationship between nseed and the proportion
of data sets with unstable hypothesis testing results for (A) non cross-fit and (B) cross-fit
DRTMLE estimates, in the low-dimensional data generating scenario when random forest
was used to estimate the OR and PS.
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Figure C.67: Vertical box plots of ATE point estimates from 150 analyses of each of the
200 datasets using DRTMLE estimated (A) without cross-fitting and (B) with cross-fitting
at different values of nseed. Results displayed are from the high dimensional data generating
mechanism when super learning was used to estimate the OR and PS.
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Figure C.68: Vertical box plots of centered confidence interval bounds from 150 analyses
of each of 200 datasets using DRTMLE estimated (A) without cross-fitting and (B) with
cross-fitting at different values of nseed. Results displayed are from the high dimensional
data generating mechanism when super learning was used to estimate the OR and PS.
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Figure C.69: Vertical box plots of (A) DRTMLE point estimates and (B) centered confidence
interval bounds from 150 analyses of each of the 200 datasets using DRTMLE estimated
without cross-fitting and when implementing the proposed solution of averaging at the level
of intermediate regressions. Results displayed are from the high dimensional data generating
mechanism when super learning was used to estimate the OR and PS.
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Figure C.70: Jittered scatter plots of the maximum relative range of CI bounds calculated
from 150 analyses of each of 200 datasets using DRTMLE estimated (A) without cross-fitting
and (B) with cross-fitting at different values of nseed. Results displayed are from the high
dimensional data generating mechanism when Super Learning was used to estimate the OR
and PS.
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Figure C.71: Line graphs displaying the relationship between nseed and the proportion of
data sets with unstable confidence intervals for (A) non cross-fit and (B) cross-fit DRTMLE
estimates, in the high dimensional data generating mechanism when super learning was used
to estimate the OR and PS.
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Figure C.72: Jittered scatter plots of rejection proportion (p) for each of 200 data sets.
Results shown for the DRTMLE estimated (A) without cross-fitting and (B) with cross-
fitting at different values of nseed. Results displayed are from the high dimensional data
generating mechanism when Super Learning was used to estimate the OR and PS.
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Figure C.73: Line graphs displaying the relationship between nseed and the proportion
of data sets with unstable hypothesis testing results for (A) non cross-fit and (B) cross-fit
DRTMLE estimates, in the high dimensional data generating scenario when super learning
was used to estimate the OR and PS.
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Figure C.74: Vertical box plots of ATE point estimates from 150 analyses of each of the
200 datasets using DRTMLE estimated (A) without cross-fitting and (B) with cross-fitting
at different values of nseed. Results displayed are from the high dimensional data generating
mechanism when random forest was used to estimate the OR and PS.
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Figure C.75: Vertical box plots of centered confidence interval bounds from 150 analyses
of each of 200 datasets using DRTMLE estimated (A) without cross-fitting and (B) with
cross-fitting at different values of nseed. Results displayed are from the high dimensional
data generating mechanism when random forest was used to estimate the OR and PS.
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Figure C.76: Vertical box plots of (A) DRTMLE point estimates and (B) centered confidence
interval bounds from 150 analyses of each of the 200 datasets using DRTMLE estimated
without cross-fitting and when implementing the proposed solution of averaging at the level
of intermediate regressions. Results displayed are from the high dimensional data generating
mechanism when random forest was used to estimate the OR and PS.
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Figure C.77: Jittered scatter plots of the maximum relative range of CI bounds calculated
from 150 analyses of each of 200 datasets using DRTMLE estimated (A) without cross-fitting
and (B) with cross-fitting at different values of nseed. Results displayed are from the high
dimensional data generating mechanism when Random Forest was used to estimate the OR
and PS.
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Figure C.78: Line graphs displaying the relationship between nseed and the proportion of
data sets with unstable confidence intervals for (A) non cross-fit and (B) cross-fit DRTMLE
estimates, in the high dimensional data generating mechanism when random forest was used
to estimate the OR and PS.
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Figure C.79: Jittered scatter plots of rejection proportion (p) for each of 200 data sets.
Results shown for the DRTMLE estimated (A) without cross-fitting and (B) with cross-
fitting at different values of nseed. Results displayed are from the high dimensional data
generating mechanism when Random Forest was used to estimate the OR and PS.
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Figure C.80: Line graphs displaying the relationship between nseed and the proportion
of data sets with unstable hypothesis testing results for (A) non cross-fit and (B) cross-fit
DRTMLE estimates, in the high dimensional data generating scenario when random forest
was used to estimate the OR and PS.

C.5 Real Data Analysis Details

In the main text we present real data analysis results from a study on the effectiveness of two

drug regimens in terms of treating Multi-Drug Resistant TB. Covariates included in the real

data analysis were age, height, weight, body mass index, gender, history of imprisonment,

tobacco use, alcohol use, diabetes mellitus, hepatitis C, prior TB diagnosis, case definition,
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TB location, acid-fast bacilli smear, chest radiology results, number of effective drugs, and

number of effective class A or B drugs received.

We estimated the OR and PS using a super learner that included several logistic regres-

sions, random forest, LASSO, ridge regression, multivariate adaptive regression splines, and

gradient boosted decision trees.[14] The logistic regression models included were main terms

logistic regression with a correlation screener and logistic regression with main terms and

all possible two-way interactions, with and without a correlation screener. The correlation

screener used was “screen.CorP” in the SuperLearner package, which subsets covariates down

to those variables which have a significant (p-value < 0.10) univariate correlation with the

outcome of the regression before estimating the regression.

Eighty initial seeds were used to obtain super learner estimates of the OR and PS, and

we report results based on our averaging strategy using 5, 10, 20, 40, 60, and 80 seeds. We

used a level 0.05 Wald test to test the null hypothesis of no ATE, comparing Bedaquiline

to Delamanid. We also analyzed the data with non cross-fit AIPTW and both cross-fit and

non cross-fit TMLE and DRTMLE.

The results from these analyses are displayed in supplementary tables C.15 – C.19. As

expected, results for both the final outcome and SCC varied based on the estimator used.

For a given estimator, across values of nseed, we also saw variation in point estimates, confi-

dence interval bounds, and p-values. In many cases results appear to be converging around

consistent values as nseed increases. Averaging at the level of the final estimate and averaging

at the level of intermediate regressions led to similar results for non-cross-fit AIPTW and

TMLE. For DRTMLE, there is a noticeable difference between results for the two methods.

Averaging at the level of the final estimate led to wider confidence intervals than averaging

at the level of the intermediate regressions when analyzing the final outcome with nseed = 80

, but the converse was true when analyzing SCC. Despite the variation in these results,

Bedaquiline is consistently estimated to outperform Delamanid with positive ATE point

estimates across estimators and values of nseed.
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Table C.15: Non cross-fit augmented inverse probability of treatment weighted (AIPTW)
point and interval estimation of average treatment effects comparing the effects of Be-
daquiline versus Delamanid regimens on two clinical outcomes in patients with multi-drug
resistant tuberculosis. The two outcomes studied were final clinical outcome and binary six-
month sputum culture conversion (SCC). Results are summarized over different averaging
levels, nseed.

nseed Method Treatment Effect 95% CI CI Width p-value
Final Clinical Outcome
1 0.48 -0.187 - 1.147 1.334 0.158
5 Average on AIPTW 0.557 -0.15 - 1.264 1.415 0.123
5 Average on Regressions 0.554 -0.138 - 1.247 1.385 0.117
10 Average on AIPTW 0.526 -0.161 - 1.214 1.375 0.133
10 Average on Regressions 0.528 -0.146 - 1.201 1.347 0.124
20 Average on AIPTW 0.532 -0.167 - 1.232 1.399 0.136
20 Average on Regressions 0.537 -0.145 - 1.22 1.365 0.123
40 Average on AIPTW 0.565 -0.175 - 1.304 1.479 0.134
40 Average on Regressions 0.56 -0.135 - 1.255 1.391 0.114
60 Average on AIPTW 0.552 -0.168 - 1.272 1.44 0.133
60 Average on Regressions 0.547 -0.132 - 1.226 1.357 0.114
80 Average on AIPTW 0.548 -0.163 - 1.258 1.421 0.131
80 Average on Regressions 0.54 -0.124 - 1.205 1.33 0.111
SCC
1 0.165 0.025 - 0.305 0.280 0.021
5 Average on AIPTW 0.161 0.036 - 0.285 0.249 0.011
5 Average on Regressions 0.159 0.040 - 0.277 0.237 0.009
10 Average on AIPTW 0.163 0.035 - 0.291 0.256 0.013
10 Average on Regressions 0.162 0.039 - 0.285 0.246 0.010
20 Average on AIPTW 0.165 0.035 - 0.294 0.260 0.013
20 Average on Regressions 0.164 0.038 - 0.290 0.252 0.011
40 Average on AIPTW 0.164 0.036 - 0.292 0.256 0.012
40 Average on Regressions 0.163 0.039 - 0.287 0.248 0.010
60 Average on AIPTW 0.164 0.036 - 0.293 0.257 0.012
60 Average on Regressions 0.163 0.039 - 0.288 0.249 0.010
80 Average on AIPTW 0.164 0.036 - 0.293 0.257 0.012
80 Average on Regressions 0.163 0.039 - 0.288 0.249 0.010
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Table C.16: Cross-fit targeted maximum likelihood estimation (TMLE) point and interval
estimation of average treatment effects comparing the effects of Bedaquiline versus Dela-
manid regimens on two clinical outcomes in patients with multi-drug resistant tuberculosis.
The two outcomes studied were final clinical outcome and binary six-month sputum culture
conversion (SCC). Results are summarized over different averaging levels, nseed.

nseed Method Treatment Effect 95% CI CI Width p-value
Final Clinical Outcome
1 0.162 -1.074 - 1.398 2.471 0.797
5 Average on TMLE 0.205 -1.224 - 1.634 2.858 0.778
10 Average on TMLE 0.218 -1.062 - 1.498 2.560 0.739
20 Average on TMLE 0.215 -1.104 - 1.534 2.638 0.750
40 Average on TMLE 0.224 -1.127 - 1.576 2.703 0.745
60 Average on TMLE 0.218 -1.153 - 1.588 2.741 0.756
80 Average on TMLE 0.218 -1.110 - 1.547 2.657 0.747
SCC
1 0.178 0.004 - 0.352 0.348 0.045
5 Average on TMLE 0.169 -0.026 - 0.363 0.389 0.089
10 Average on TMLE 0.165 -0.016 - 0.347 0.362 0.073
20 Average on TMLE 0.173 -0.007 - 0.353 0.360 0.060
40 Average on TMLE 0.178 -0.005 - 0.361 0.366 0.057
60 Average on TMLE 0.174 -0.042 - 0.391 0.432 0.114
80 Average on TMLE 0.175 -0.035 - 0.384 0.419 0.102



231

Table C.17: Non Cross-Fit Targeted Maximum Likelihood Estimation (TMLE) point and
interval estimation of average treatment effects comparing the effects of Bedaquiline versus
Delamanid regimens on two clinical outcomes in patients with multi-drug resistant tubercu-
losis. The two outcomes studied were final clinical outcome and binary six-month sputum
culture conversion (SCC). Results are summarized over different averaging levels, nseed.

nseed Method Treatment Effect 95% CI CI Width p-value
Final Clinical Outcome
1 0.232 -0.385 - 0.849 1.233 0.461
5 Average on TMLE 0.229 -0.435 - 0.892 1.327 0.499
5 Average on Regressions 0.228 -0.422 - 0.878 1.300 0.491
10 Average on TMLE 0.227 -0.414 - 0.869 1.283 0.488
10 Average on Regressions 0.228 -0.398 - 0.854 1.252 0.476
20 Average on TMLE 0.224 -0.432 - 0.880 1.312 0.504
20 Average on Regressions 0.225 -0.409 - 0.860 1.268 0.486
40 Average on TMLE 0.224 -0.467 - 0.916 1.383 0.525
40 Average on Regressions 0.224 -0.424 - 0.873 1.297 0.498
60 Average on TMLE 0.226 -0.449 - 0.901 1.350 0.512
60 Average on Regressions 0.226 -0.409 - 0.861 1.271 0.486
80 Average on TMLE 0.227 -0.440 - 0.895 1.335 0.505
80 Average on Regressions 0.228 -0.395 - 0.852 1.247 0.473
SCC
1 0.171 0.034 - 0.308 0.274 0.014
5 Average on TMLE 0.192 0.070 - 0.314 0.244 0.002
5 Average on Regressions 0.190 0.074 - 0.307 0.233 0.001
10 Average on TMLE 0.193 0.068 - 0.318 0.250 0.002
10 Average on Regressions 0.191 0.071 - 0.311 0.241 0.002
20 Average on TMLE 0.192 0.065 - 0.318 0.253 0.003
20 Average on Regressions 0.191 0.068 - 0.313 0.245 0.002
40 Average on TMLE 0.190 0.065 - 0.315 0.250 0.003
40 Average on Regressions 0.189 0.068 - 0.310 0.242 0.002
60 Average on TMLE 0.189 0.064 - 0.314 0.251 0.003
60 Average on Regressions 0.188 0.067 - 0.310 0.243 0.002
80 Average on TMLE 0.189 0.064 - 0.315 0.251 0.003
80 Average on Regressions 0.190 0.068 - 0.311 0.243 0.002
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Table C.18: Cross-fit doubly-robust targeted maximum likelihood estimation (DRTMLE)
point and interval estimation of average treatment effects comparing the effects of Be-
daquiline versus Delamanid regimens on two clinical outcomes in patients with multi-drug
resistant tuberculosis. The two outcomes studied were final clinical outcome and binary six-
month sputum culture conversion (SCC). Results are summarized over different averaging
levels, nseed.

nseed Method Treatment Effect 95% CI CI Width p-value
Final Clinical Outcome
1 0.248 0.088 - 0.408 0.320 0.002
5 Average on DRTMLE 0.231 0.058 - 0.404 0.346 0.009
10 Average on DRTMLE 0.231 0.042 - 0.420 0.377 0.016
20 Average on DRTMLE 0.226 0.046 - 0.406 0.360 0.014
40 Average on DRTMLE 0.230 0.047 - 0.413 0.366 0.014
60 Average on DRTMLE 0.230 0.048 - 0.411 0.363 0.013
80 Average on DRTMLE 0.235 0.013 - 0.457 0.444 0.038
SCC
1 0.187 0.025 - 0.350 0.326 0.024
5 Average on DRTMLE 0.178 0.020 - 0.336 0.315 0.027
10 Average on DRTMLE 0.174 0.016 - 0.332 0.316 0.031
20 Average on DRTMLE 0.179 0.019 - 0.339 0.320 0.028
40 Average on DRTMLE 0.181 0.021 - 0.342 0.320 0.026
60 Average on DRTMLE 0.181 0.020 - 0.343 0.323 0.028
80 Average on DRTMLE 0.182 0.020 - 0.344 0.324 0.028
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Table C.19: Non Cross-Fit doubly-robust Targeted Maximum Likelihood Estimation
(DRTMLE) point and interval estimation of average treatment effects comparing the ef-
fects of Bedaquiline versus Delamanid regimens on two clinical outcomes in patients with
multi-drug resistant tuberculosis. The two outcomes studied were final clinical outcome and
binary six-month sputum culture conversion (SCC). Results are summarized over different
averaging levels, nseed.

nseed Method Treatment Effect 95% CI CI Width p-value
Final Clinical Outcome
1 0.227 0.098 - 0.356 0.258 0.001
5 Average on DRTMLE 0.262 0.042 - 0.481 0.439 0.019
5 Average on Regressions 0.219 -0.523 - 0.962 1.485 0.563
10 Average on DRTMLE 0.248 -0.164 - 0.660 0.824 0.238
10 Average on Regressions 0.309 0.214 - 0.404 0.190 0.000
20 Average on DRTMLE 0.227 -0.103 - 0.557 0.660 0.177
20 Average on Regressions 0.350 -0.039 - 0.739 0.778 0.078
40 Average on DRTMLE 0.240 -0.155 - 0.634 0.789 0.234
40 Average on Regressions 0.359 0.042 - 0.675 0.633 0.026
60 Average on DRTMLE 0.240 -0.192 - 0.673 0.865 0.276
60 Average on Regressions 0.281 0.166 - 0.396 0.229 0.000
80 Average on DRTMLE 0.243 -0.343 - 0.830 1.173 0.416
80 Average on Regressions 0.254 0.150 - 0.358 0.208 0.000
SCC
1 0.162 -0.025 - 0.349 0.374 0.089
5 Average on DRTMLE 0.315 0.138 - 0.491 0.353 0.000
5 Average on Regressions 0.502 0.286 - 0.718 0.432 0.000
10 Average on DRTMLE 0.213 0.041 - 0.386 0.345 0.015
10 Average on Regressions 0.458 -0.086 - 1.002 1.088 0.099
20 Average on DRTMLE 0.255 0.044 - 0.466 0.422 0.018
20 Average on Regressions 0.460 0.186 - 0.734 0.549 0.001
40 Average on DRTMLE 0.323 0.114 - 0.532 0.419 0.002
40 Average on Regressions 0.496 -0.132 - 1.125 1.257 0.122
60 Average on DRTMLE 0.333 0.015 - 0.650 0.635 0.040
60 Average on Regressions 0.459 -0.162 - 1.081 1.244 0.148
80 Average on DRTMLE 0.331 0.038 - 0.623 0.585 0.027
80 Average on Regressions 0.436 -0.143 - 1.014 1.157 0.140
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