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Abstract

Regularization of ill-posed inverse problems under mixed precision arithmetics
By Jennifer Zheng

In numerical computations, using low precision floating point arithmetic enables
computer programs for scientific applications to have faster loops, less communication,
and lower energy consumption. As low precision arithmetic leads to limited accuracy
for certain data, modern computer architectures built on graphics processing units
can be implemented using mixed precision for scientific computations. The basic idea
is to use low precision arithmetic to accelerate speed on certain calculations, mixed
with a limited amount of high precision calculations, while maintaining sufficiently
appropriate accuracy of the final result.

Recent work studies the use of mixed precision arithmetic for algorithms to solve
certain basic, well-conditioned linear systems. In this thesis, we will extend these
ideas to the more complicated class of inverse problems, where it is necessary to
employ a technique known as regularization to compute an approximate solution of
a severely ill-conditioned problem.

We will explore different regularization methods, such as truncated singular value
decomposition, Tikhonov regularization, and methods of choosing their respective
regularization parameters, under mixed precision arithmetic. We will also analyze the
performance of iterative methods with different preconditioners to regularize under
mixed precision arithmetic.
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Chapter 1

Introduction

In numerical computations, using low precision floating point arithmetic enables com-

puter programs for scientific applications to have faster loops, less communication,

and lower energy consumption [12]. As low precision arithmetic leads to limited ac-

curacy for certain data, modern computer architectures built on graphics processing

units can be implemented using mixed precision for scientific computations. The

basic idea is to use low precision arithmetic to accelerate speed on certain calcula-

tions, mixed with a limited amount of high precision calculations, while maintaining

sufficiently appropriate accuracy of the final result.

Recent work by Higham and colleagues [3] studies the use of mixed precision

arithmetic for algorithms to solve certain basic, well-conditioned linear systems. In

this thesis, we extend these ideas to the more complicated class of inverse problems,

where it is necessary to employ a technique known as regularization to compute an

approximate solution of a severely ill-conditioned problem.

We consider the problem

Ax+ e = b (1.1)

developed from

Ax = b (1.2)
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in the context of image or signal reconstruction. A ∈ Rn×n is a matrix representation

of the point spread function (PSF) that blurs the image, x ∈ Rn is the vector repre-

sentation of the true image, e ∈ Rn is the vector representation of the unknown noise

added to the true image, and b ∈ Rn is a vector representation of the blurred image

that we observe. Our goal is to solve for x given A and b with the consideration that

A is ill-conditioned.

There are many different regularization methods, such as truncated singular value

decomposition (TSVD) and Tikhonov regularization [10]. Each regularization method

requires choosing a problem and data dependent regularization parameter, which

adjusts the quality of the solution. There are well known methods, such as generalized

cross validation (GCV), to help estimate good parameters.

Inverse problems arise in many important fields, including medical imaging, as-

tronomy, geophysics, microscopy, and more. While work has been done to develop

algorithms and software implementations for techniques such as TSVD, Tikhonov,

and GCV, little to no work has been done on how these methods perform when using

mixed precision arithmetic.

Other than the previous regularization methods mentioned, we also work on an-

alyzing the performance of iterative methods under mixed precision arithmetic.

1.1 Notation

In this thesis, all matrices are notated with bold upper-case letters such as A, all

vectors are notated with bold lower-case letters such as x, and all scalars are notated

with nonbold lower-case letters such as c. The lower-case u generally indicates half

of the machine epsilon of the different precisions. The norm ∥ · ∥ in this thesis refers

to the 2-norm ∥ · ∥2.
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Chapter 2

Background

In this chapter, we introduce the mathematical and computational background nec-

essary for the later sections. Some algorithms previously developed that serve as the

foundation to section 3 are also introduced.

2.1 Floating Point Arithmetics

Before introducing algorithms under mixed precision arithmetic, we first define the

different precisions considered in this thesis.

Our definitions of precision come from IEEE 754 [1], an industry standard for

representing floating-point numbers in computers. The most recent revision happened

in 2019. We define floating point 16-bit as half precision, floating point 32-bit as single

precision, and a 64-bit format as double precision. The respective bits for storing

significant figures of the fraction and exponent of a number are in the chart below. In

addition, one bit is used to store the sign of the number, and u in the chart indicates

the unit round-off to three significant figures.

The different data types result in different rounding errors and can thus be applied

at different parts of the algorithms to maintain sufficiently appropriate amount of

accuracy.
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Type f bits Exp bits Range u = 2−f

bfloat16 8 8 10±38 3.91× 10−3

fp16 11 5 10±5 4.88× 10−4

fp32 24 8 10±38 5.96× 10−8

fp64 53 11 10±308 1.11× 10−16

Table 2.1: Parameters for four IEEE arithmetic precisions [11].

2.2 Inverse Problems

As mentioned in Chapter 1, we consider a problem of the form

Ax+ e = b,

where A ∈ Rn×n, b ∈ Rn, x ∈ Rn, and the unknown noise e ∈ Rn is added to the

measured data.

When solving a forward problem, we are given A and x, and compute an approx-

imation of the vector b. And when solving an inverse problem, we are given A and

b, and compute an approximation of the vector x.

A challenge we face when solving the inverse problems is that the inverse problems

are often ill-posed, which means that A is an ill-conditioned matrix with a large

condition-number κ(A) = ∥A∥∥A−1∥. In this case, small changes in b can lead to

large changes in our solution x.

The inverse problem can be analyzed and approximate solutions computed with

the singular value decomposition (SVD) of the matrix A which is given by

A = UΣV ⊤ =
n∑

i=1

uiσiv
⊤
i (2.1)

where U and V are orthogonal matrices with columns ui and vi, and Σ is a diagonal

matrix with diagonal entries σi being the singular values of A.
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Using the SVD in equation (2.1), the naive inverse solution can be written as

x̂ = A−1b

= A−1(Ax+ e)

= x+A−1e

= x+
n∑

i=1

u⊤
i e

σi

vi. (2.2)

The naive inverse solution shows that if the error vector e is zero, then x̂ = x, the

exact desired solution. However, if the error is not equal to zero, then it can be seen

from equation (2.2) that division by small singular values will magnify the errors in

vector b. The smaller the singular values, the larger the magnification. For inverse

problems of concern in this project, the singular values decay gradually to zero, such

that errors will be highly magnified making the naive inverse solution, x̂, a very poor

approximation of the true vector x. Regularization is thus needed to damp the effects

caused by division of small singular values.

2.3 Regularization Methods

In this section, we introduce two regularization methods commonly used to reduce

the effects of error magnification caused by division of small singular values.

We express the regularized inverse solution as

xF =
n∑

i=1

ϕi
u⊤

i b

σi

vi (2.3)

where ϕi is the filter factor. The values of ϕi depends on the regularization method

used.
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2.3.1 Truncated SVD

The most traditional regularization method, the Truncated Singular Value Decom-

position (TSVD), truncates the small singular values to avoid the magnification of

errors. We choose a truncation index k such that all σi = 0 for all i > k. The filter

factors are thus

ϕi =


1 if i ≤ k

0 if i > k

Thus the regularized system has solution

xF =
n∑

i=1

ϕi
u⊤

i b

σi

vi =
k∑

i=1

u⊤
i b

σi

vi. (2.4)

The solution can also be written as xF = V Σ†
FU

⊤b where

Σ†
F = diag

(
1

σ1

,
1

σ2

, · · · , 1

σk

, 0, · · · , 0
)
.

2.3.2 Tikhonov Regularization

A potential problem with the TSVD is that the filter factors have too sharp of a

cutoff, thus we seek another regularization method to obtain a smoother transition

of the filter factors. The Tikhonov regularization has filter factors

ϕi =
σ2
i

σ2
i + α2

where α is a small value that regularizes the singular values, called the regularization

parameter. The Tikhonov solution can be written in the form

x =
n∑

i=1

ϕi
u⊤

i b

σi

vi =
n∑

i=1

σiu
⊤
i b

σ2
i + α2

vi (2.5)
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If the σi is large, then ϕi ≈ 1; for tiny σi, ϕi ≈ 0. This approach effectively works

as a filter. Components of the solution corresponding to large singular values pass

through the filter, but components corresponding to small singular values are blocked

by the filter. In this case, xF = V Σ†
FU

⊤b where

Σ†
F = diag

(
σ1

σ2
1 + α2

,
σ2

σ2
2 + α2

, · · · , σn

σ2
n + α2

)
.

Equivalently, we can solve the least squares problem

min
x∈Rn

||Ax− b||2 + α2||x||2.

We can see this equivalence by noticing that

min
x∈Rn

||Ax− b||2 + α2||x||2 = min
x∈Rn

∥∥∥∥∥∥∥
 A

αI

x−

 b

0


∥∥∥∥∥∥∥
2

. (2.6)
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To solve a least squares problem Ax = b, we solve for its normal equation A⊤Ax =

Ab. Substituting A = UΣV ⊤ in the normal equation of equation (2.6), we get

[
A⊤ αI

] A

αI

x =

[
A⊤ αI

] b

0


(A⊤A+ α2I)x = A⊤b

(V ΣU⊤UΣV ⊤ + α2I)x = V ΣU⊤b

(V Σ2V ⊤ + α2I)x = V ΣU⊤b

n∑
i=1

vi(σ
2 + α2)v⊤

i x =
n∑

i=1

viσiu
⊤
i b

x =
n∑

i=1

v⊤
i viσiu

⊤
i b

σ2
i + α2

vi

=
n∑

i=1

σiu
⊤
i b

σ2
i + α2

vi

which is equivalent to equation (2.5).

2.4 Iterative Methods

When solving for a linear system Ax = b as mentioned in equation (1.2), methods

that use matrix factorizations such as PA = LU (i.e. the Gaussian elimination),

A = QR, or A = UΣV ⊤ might require too much time or space. These methods that

compute the exact answers after a finite number of steps are called direct methods. In

contrast, iterative methods do not compute the exact answers after a finite number

of steps but compute successively better approximations at each iteration [4].

2.4.1 Iterative Refinement

Iterative Refinement in multiple precisions was a method proposed by Carson and

Higham to accelerate the solution of linear systems [3]. It solves the problem Ax = b
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with the following approach under precisions ur ≤ u ≤ us ≤ uf :

Algorithm 1: Iterative Refinement in four precisions

Solve Ax0 = b in precision uf and store x0 at precision us.
for i = 0, 1, . . . do
Compute ri = b−Axi at precision ur and round ri to precision us.
Solve Adi = ri at precision us and store di at precision u.
xi+1 = xi + di at precision u.

end for

The idea is to start with an initial guess x0. Under each iteration, we compute the

residual ri of the current solution, compute a correcting term di using the residual as

the right-hand side of the linear system we are solving, and add the correcting term

to the current solution to create a new solution xi+1. These steps are repeated until

the stopping criteria are reached.

Note that u indicates the unit roundoff, thus smaller values of u suggests higher

precision. Variables with sub-indices in iteratvie methods indicate the value of the

variable at the i-th iteration.

Since the initial guess is likely incorrect and heavily distorted by the error terms,

the accuracy of this step is not the most important, it can thus be computed at a

low precision to save computation expenses. On the other hand, the computation of

the residual is the most important step of the algorithm that improves the accuracy

of the solution, thus requires the term to be computed under a high precision. The

solving of the correcting term is again using the ill-conditioned linear system thus

could be computed under a relatively low precision.

In comparison to the traditional fixed precision iterative refinement solver, the

mixed precision algorithm acquires faster computations within reasonable errors.

However, in cases where A is ill-conditioned and the problem is ill-posed, the noise

is maximized in step 1 and 3, thus regularization is needed, which we will cover in

section 3.3
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2.4.2 Iterated Tikhonov Regularization

As Tikhonov Regularization is a popular approach in solving ill-posed inverse prob-

lems, iterated Tikhonov regularization can yield numerical solutions with even higher

accuracy [2].

As we solve for the problem Ax+e = b using the iterated Tikhonov method, the

steps are similar to those of Iterative Refinement (under uniform precision), except

that the step of computing the correcting term di will be solving the same least

squares problem as the one used in the Tikhonov regularization.

Algorithm 2: Iterative Tikhonov method

Solve Ax0 = b.
for i = 0, 1, . . . do
Compute ri = b−Axi.
Solve min

d∈Rn
||Ad− ri||2 + α2

i ||d||2.
xi+1 = xi + di.

end for

The choice of αi can be stationary or non-stationary depending on the problem.

If stationary, α1 = α2 = · · · = αn. If non-stationary αi is dependent on i. We will

discuss more details about the parameters in section 3.3.1.

2.4.3 Krylov Subspace Methods

Krylov subspaces are subspaces of the form

Km(M ,v) := span{v,Mv,M 2v, . . . ,Mm−1v} (2.7)

with M being an n× n matrix and v being a vector of size n [15].

Algorithms introduced in this section all utilize the Krylov subspaces, with differ-

ent choices for M and v, such as M = A or A⊤A, and v = b.
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Conjugate Gradient

The Conjugate Gradient (CG) method is unique among Krylov subspace methods for

it only requires the memory to store four vectors at a time. This algorithm is based

on the Lanczos algorithm that reduces a matrix to symmetric tridiagonal form. It is

similar to the steepest descent method but searches in the gradient search directions

that are A-conjugate [4]. The algorithm is listed below:

Algorithm 3: Conjugate Gradient method

Start with an initial guess x0

Compute r0 = b−Ax0

p0 = r0
for k = 0, 1, . . . do
αk = (rT

k rk)/(p
T
kApk)

xk+1 = xi + αkpk

rk+1 = ri − αkApk

βk = (rT
k+1rk+1)/(r

T
k rk)

pk+1 = rk+1 + βkpk

end for

A restriction of CG is that it can only be implemented on symmetric positive

definite (SPD) matrices. The algorithm has convergence rate

∥ek∥A ≤

(√
κ(A)− 1√
κ(A) + 1

)k

∥e0∥A

where κ(A) refers to the condition number of A.

This result implies that convergence is faster for well-conditioned matrices, which

means that κ(A) ≈ 1. The algorithm converges fast if the eigenvalues of A are tightly

clustered around a nonzero value.
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LSQR

For least squares problems, the CG method can be applied to the normal equations,

A⊤A = A⊤b.

Two well-known implementations of the approach are CGLS and LSQR.

GMRES

The Generalized Minimum Residual Method (GMRES) is a projection method based

on the Krylov subspaces. It utilizes the Arnoldi process to construct the basis and

minimizes the norm of the residual at each iteration. It also utilizes the decomposition

of an upper Hessenberg matrix. The algorithm generated is listed below [15].

Algorithm 4: GMRES

Compute r0 = b−Ax0, β := ∥r0∥, and v1 := r0/β
Define matrix Hm := 0 of size (m+ 1)×m where hij indicates element
for j = 0 : m do
Compute wj := Avj

for i = 1 : j do
hij := (wj,vj)
wj = wj − hijvi

end for
hj+1,j = ∥wj∥
if hj+1,j = 0 then
m = j
Break loop

end if
vj+1 = wj/hj+1,j

end for
Compute ym = min

y
||βe1 −Hmy||2

xm = x0 + Vmym

GMRES can only be applied to square matrices, but symmetry is not required.
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Preconditioning

The idea of preconditioning is to apply the Krylov subspace methods to another

system Âx̂ = b̂ such that Â has more clustered eigenvalues than A that would

reduce the number of iterations.

Common selections of preconditioners are generated by incomplete LU factoriza-

tion (ilu) and incomplete Cholesky factorization (ichol). Take ichol for example, find

an upper triangular matrix R such that A ≈ R⊤R. The new linear system can then

be written as

R−⊤AR−1Rx = R−⊤b (2.8)

where Â = R−⊤AR−1, x̂ = Rx, and b̂ = R−⊤b.

When preconditioning is applied to CG, the algorithm can be called PCG.

2.4.4 GMRES-based iterative refinement

GMRES-based iterative refinement (GMRES-IR) is an algorithm proposed by Carson

and Higham [11] that improves the iterative refinement using GMRES.

Algorithm 5: GMRES-based iterative refinement

Compute an LU factorization A = LU in precision uf

Solve Ax0 = b in precision uf and store x0 at precision us.
for i = 0, 1, . . . do
Compute ri = b−Axi at precision ur and round ri to precision us.
Solve U−1L−1Adi = U−1L−1ri by GMRES at precision us and store di at
precision u.
xi+1 = xi + di at precision u.

end for

In the algorithm proposed, the selection of the preconditioner is constructed by

LU factorization, but we will discuss different selections in later sections.
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Chapter 3

Methods

In this section, we introduce the methods used in this thesis to develop the numer-

ical results. Some are implementations of previous methods under mixed precision

arithmetic, and some are newly developed methods.

3.1 Tikhonov Regularization under Mixed Preci-

sion Arithmetic

As low precision only guarantees sufficient accuracy for certain data, we can improve

the Tikhonov regularization method through performing certain computations of the

SVD under low precision.

Traditional Tikhonov regularization has one parameter α. In this work, we propose

an algorithm that implements Tikhonov regularization under mixed precision with

three regularization parameters, k, α1, and α2. As recalled from equation (2.5) in

section 2.3.2,

xF =
n∑

i=1

σiu
⊤
i b

σ2
i + α2

vi.

In the new method, terms 1 through k are computed under double precision with

filter factor ϕi =
σ2
i

σ2
i +α2

1
and terms k+ 1 through n are computed under half precision
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with filter factor ϕi =
σ2
i

σ2
i +α2

2
. Now that we take the indices into consideration, xF =

V Σ†
FU

⊤b where

Σ†
F = diag

(
σ1

σ2
1 + α2

1

,
σ2

σ2
2 + α2

1

, · · · , σk

σ2
k + α2

1

,
σk+1

σ2
k+1 + α2

2

, · · · , σn

σ2
n + α2

2

)
.

The new solution can be written as

xF =
k∑

i=1

σiu
⊤
i b

σ2
i + α2

1

vi +
n∑

i=k+1

σiu
⊤
i b

σ2
i + α2

2

vi (3.1)

Since α1 and α2 are continuous variables, we use the fmincon function from MAT-

LAB to search for the optimal pair of filtering parameters for each k while enforcing

the constraint that α1 and α2 are between the smallest and the largest singular values.

The optimal set of parameters is then found by minimizing the relative error among

each truncation index k and their corresponding sets of α’s.

3.2 Choosing Regularization Parameters

As we introduced a few regularization methods in section 2.3 and section 2.4, most

methods require an additional parameter such as k in TSVD and α in Tikhonov

regularization. Selecting the optimal parameter improves the regularized solution.

To determine the regularization parameters without the actual solution, there are

two common practices, the Discrepancy Principle and the Generalized Cross Valida-

tion (GCV). While the Discrepancy Principle requires the knowledge and assumption

about the error term ∥e∥2, the GCV is an ∥e∥2-free method [8].

3.2.1 Generalized Cross Validation

The GCV method is based on the assumption that the model should be able to predict

a missing data point if removed. The GCV function of equation (3.2) thus calculates
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the average error between the dropped data point, and the goal of the method is to

minimize this error.

G =
n∥AxF − b∥22

(trace(I −AA†
F ))

2
(3.2)

By the property of

trace(I −ΣΣ†
F ) =

n∑
i=1

(
α2b̂i

σ2
i + α2

)2

where b̂ = U⊤b and

∥AxF − b∥22 =
∥∥∥(ΣΣ†

F − I)U⊤b
∥∥∥2
2
,

we retrieve the GCV function below in equation (3.3) for three regularization param-

eters for the implementation of mixed precision Tikhonov regularization.

G(α1, α2, k) =
n∥AxF − b∥22

(trace(I −AA†
F ))

2

=
n
∥∥∥(ΣΣ†

F − I)U⊤b
∥∥∥2
2

(trace(I −ΣΣ†
F ))

2

=
k
∑k

i=1(
α2
1b̂i

σ2
i +α2

1
)2 + (n− k)

∑n
i=k+1(

α2
2b̂i

σ2
i +α2

2
)2

(
∑k

i=1(
α2
1

σ2
i +α2

1
) +

∑n
i=k+1(

α2
2

σ2
i +α2

2
))2

(3.3)

To solve the optimization problem, we use the MATLAB function fmincon to

restrict the parameter range between the smallest and the largest singular value.

3.2.2 Discrepancy Principle

The Discrepancy Principle is a ∥e∥-based method that restricts the residual of the

solution to be close to the error norm such that ∥AxF − b∥22 −∥e∥22 = 0.

As we want to find a regularization parameter that satisfies the previous equation,
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our goal is to solve for

D(λ) =∥AxF − b∥22 −∥e∥22

where λ refers to the set of regularization parameters.

Considering Σ†
F = diag

(
σ1

σ2
1+α2

1
, σ2

σ2
2+α2

1
, · · · , σk

σ2
k+α2

1
, σk+1

σ2
k+1+α2

2
, · · · , σn

σ2
n+α2

2

)
from sec-

tion 3.1 and using similar properties as the deduction of the GCV function, we derive

a discrepancy function for mixed precision Tikhonov regularization as shown in equa-

tion (3.4).

D(α1, α2, k) =∥AxF − b∥22 −∥e∥22

=
∥∥∥(ΣΣ†

F − I)U⊤b
∥∥∥2
2
− ϵ2

=
k∑

i=1

(
α2
1b̂i

σ2
i + α2

1

)2 +
n∑

i=k+1

(
α2
2b̂i

σ2
i + α2

2

)2 − ϵ2 (3.4)

where ϵ = ∥e∥.

To solve the equation, we use the MATLAB function fsolve to find the closest

set of multiple parameters of the function to zero.

A disadvantage of the Discrepancy method is that it requires the knowledge of

the noise level. In case of absence of such knowledge, we refer back to the GCV as

mentioned in section 3.2.1.

3.3 Iterative Refinement with Tikhonov Regular-

ization

To improve the efficiency of the Iterated Tikhonov Regularization method [2], we

implemented the algorithm under mixed precision arithmetic as well. As Iterative

Refinements [3] involve frequent operations of changing precisions, the codes are im-

plemented in Julia for its easier conversion of Floating-point types.
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To regularize the Iterative Refinement method as referred to in section 2.4.1,

we select the Tikhonov regularization method, which involves solving a least-square

problem of

min
x∈Rn

||Ax− b||2 + α||x||2

as a replacement of step 1 and 4 in the previously stated algorithm. We reduce the

number of precisions to two where uh ≤ ul, and the updated mixed precision iterated

Tikhonov algorithm is shown as below. Again note, since u indicates the unit-roundoff

of the precision, smaller values of uh suggests that uh is the higher precision.

Algorithm 6: Iterative Refinement with Tikhonov Regularization

1: Solve ||Ax0 − b||2 + α||x0||2 and store x0 in precision ul.
2: for i = 0, 1, . . . do
3: Compute ri = b−Axi at precision uh and round ri to precision ul.
4: Solve min

d∈Rn
||Adi − ri||2 + α2

i ||di||2 at precision ul and store di at precision uh.

5: xi+1 = xi + di at precision uh.
6: end for

3.3.1 Non-stationary parameter

Note that, as the algorithm iterates, the filtering parameter converges to zero and

fails to serve the purpose of regularization. Thus, we choose a list of non-stationary

regularization parameters that is dependent on the iteration number, such that we

adjust the regularization parameter as the residual decreases for each iteration.

A common selection of the non-stationary regularization parameters is the geo-

metric sequence, where we start with a positive α0, and αi = α0q
i where q is a positive

real number between 0 and 1, and i is the number of iterations ranging from 1 to n.

This choice of regularization parameter is studied by Hanke [5] and proved to

reach the stopping criteria of the discrepancy principle within O(|δ|) iterations with

δ being the error level.
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3.4 Preconditioning

As mentioned in section 2.4.3, preconditioning is often used with Krylov subspace

iterative methods to reduce the number of iterations needed towards convergence.

While common selections of preconditioners like the incomplete LU factorization and

the incomplete Cholesky factorization are effective, we will be using a preconditioner

that also regularizes the solver.

The idea is to use TSVD to regularize the preconditioner [14]. For A = UΣV ⊤,

we construct a preconditioner P = UΣTV
⊤ where ΣT = diag(σ1, . . . , σk, 0, . . . , 0).

A problem with this approach is that the preconditioner PT is singular, such that the

computed solution xT = V Σ−1
T U⊤b cannot be guaranteed to be nonzero, which will

break the conjugate gradient method.

An alternative approach is to replace the zero in ΣT with ones, such that Στ =

diag(σ1, . . . , σk, 1, . . . , 1), and Pτ = UΣτV
⊤. This approach was proposed by Hanke,

Nagy, and Plemmons [6].

When using the alternative approach, the preconditioned system has the form

P−1
τ A = (UΣτV

⊤)−1UΣV ⊤

= V Σ−1
τ U⊤UΣV ⊤

= V Σ−1
τ ΣV ⊤

= V ∆V ⊤ (3.5)

where

∆ = Σ−1
τ Σ = diag(1, . . . , 1, σk+1, . . . , σn).

In this case, the singular values form two clusters. The larger singular values that

correspond to the signal subspace are clustered around one and well separated from

the small singular values that correspond to the noise subspace.
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Since the convergence of the conjugate gradient method is dependent on the clus-

tered singular values, the regularized solution only needs one iteration in this case.

Building upon the TSVD approach, as the LSQR method is CG applied to the

normal equations A⊤Ax = A⊤b, applying the method to the least-square represen-

tation of Tikhonov regularization method min
x∈Rn

||Ax−b||2+α2||x||2 can further reduce

the disruption of noise.

The normal equations of the minimization problem that we just mentioned is

(A⊤A+ α2I)x = A⊤b (3.6)

Since A⊤A is symmetric positive semidefinite and A⊤A+α2I is symmetric positive

definite, we can apply the Cholesky factorization such that

A⊤A+ α2I ≈ R⊤R (3.7)

where R is an upper-triangular matrix and our preconditioner.

When combining TSVD and Tikhonov, another preconditioner we can use is

V ∆V ⊤ = R⊤
τ Rτ (3.8)

We can also use ΣT as mentioned earlier in this section, such that we will form

RT using the same method as equation (3.8) except replacing ∆ with Σ−1
T ΣT .
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Chapter 4

Numerical Experiments

4.1 Data

Our numerical experiments involve two main datasets.

We took a sample inverse problem from the MATLAB Regularization Tools tool-

box where A represents a first kind Volterra integral equation with [0,1] as integration

interval [9]. This sample problem will be referred to as heat and is very ill-conditioned.

Figure 4.1 shows the original and the observed signal of the problem.

Figure 4.1: The left figure shows the exact solution, and the right figure shows the
right-hand side of heat.

Another test problem taken from the toolbox is a discretization of a first kind

Fredholm integral equation whose kernel K is the Green’s function for the second
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derivative [9]. This sample problem is mildly ill-posed and will be referred to as

deriv2. Figure 4.2 shows the original and the observed signal of the problem.

Figure 4.2: The left figure shows the exact solution, and the right figure shows the
right-hand side of deriv2.

The other sample problem is to improve the resolution of gamma-ray spectra.

We simulate an x-ray spectrum as introduced by Trussell [16]. The true solution is

a single signal of length 64 points consisting of four data peaks. The point spread

function (PSF) is constructed using a Gaussian blur point spread function. This

sample problem will be referred to as spectra. Figure 4.3 shows the original spectra

and the signal that went through the Gaussian blur PSF.

Figure 4.3: The left figure shows the exact signal of spectra, and the right figure
shows the signal going through the Gaussian blur PSF.

As the test problems are generated with MATLAB tools, they are saved as a .mat

file for usage in Julia.
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4.2 Implementation of Mixed Precision Arithmetic

To perform mixed precision arithmetic under the double precision environment in

MATLAB, we implemented the chop function that simulates low precision arithmetic.

The package was developed by Higham and Pranesh [13] where every operation is

rounded using one of the four IEEE arithmetic rounding modes: round to nearest with

ties broken by rounding to an even least significant bit, round towards plus infinity

or minus infinity, and round towards zero. A problem with this approach is that

MATLAB only supports datatypes single and double in its default environment,

and data with manually chopped precisions do not carry the rounding to the later

operations, which means that half precision can only be performed if we chop every

single operation.

Thus, we switched to Julia for the later numerical experiments, where we used

the default function convert(::TypeMyType, x) = MyType(x) of the language to

convert datatypes to achieve mixed precision arithmetic.

4.3 Stopping Criteria

As mentioned in section 2.4, the methods that involve iterations require stopping cri-

teria. For the numerical experiments introduced in this chapter, two types of stopping

criteria will be enforced - the maximum number of iterations and the tolerance.

The maximum number of iterations stopping criteria is typically referred as an

integer parameter of MaxIts in our algorithms, where the parameter is set based on

the computing resource and environment. A common selection of MaxIts value in

this chapter is 100. The iteration terminates when the number of iteration reaches

MaxIts.

The tolerance stopping criteria is typically referred as a constant parameter of tol

and is often set by the discrepancy principle where tol = τδ. δ is the bound of the
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unknown noise such that ∥e∥ ≤ δ, and τ > 1 is a user-supplied constant independent

of δ [2]. Our selection of τ is mostly 1.01. The iteration terminates when the norm

of the residual is smaller than tol, which can be expressed as ∥rk+1∥ ≤ τδ. This can

also be written as ∥r∥
∥b∥ < τν where ν is the noise level such that ν = δ

∥b∥ . A common

selection of ν when generating data in this thesis is ν = 0.05.

4.4 Tikhonov Regularization under mixed preci-

sion

In this section, we will look at the behavior of Tikhonov Regularization under mixed

precision with different sets of regularization parameters. Data will be generated from

the sample problem heat, and computations will be done under MATLAB.

We iterate through every possible truncation index k which ranges from 1 to n and

find the optimal pair of α’s using the MATLAB function fminsearch by minimizing

the relative error produced by the objective function. We then find the index k in

correspondence to the minimized relative error to find the optimal set of regularization

parameters. However, this method can only be used when we know the true solution.

Under mixed precision, the optimal sets of α’s are nearly equal for different k-

values. We thus label each set of the parameters by the k-value and plot each set

with its corresponding error to visualize the optimization.
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Figure 4.4: Relative error (y-axis) at different truncation indices (x-axis) for comput-
ing heat using Tikhonov regularization under mixed precision arithmetic.

In Figure 4.4, the x-axis is the k-index, the truncation index of terms where the

computation switches from the standard computing precision to a lower precision,

which in this case is from double precision to half precision, and the y-axis is the

normalized error. As indicated in the plot, while most selections of k produce similar

error as does the uniform precision algorithm, which is approximately 0.03445, certain

truncation indices produce significantly improved accuracy. At k = 29, the error be-

tween the calculated data and the original data is only 0.0297. The pattern of certain

k-indices in mixed precision having significantly improved accuracy in comparison to

uniform double precision and other k-indices in mixed precision holds for this test

case with other randomly generated noise vectors and other similar test cases.

In order to validate the output, we perform a few numerical experiments.

In Figure 4.5, we graph the singular values σi in red, the noise-free Fourier co-

efficients U⊤bc in blue, and the noise-corrupted Fourier coefficients U⊤b in green

where bc = Ax is the noise-free data, and b = Ax + e is the noise-corrupted data.

It is obvious that the singular values decay towards zero such that regularization is

needed. The discrete Picard condition states that if the Fourier coefficients decay
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to zero faster than the generalized singular values, then the regularized solutions are

guaranteed to have approximately the same properties as the exact solution [7]. The

graph follows the Picard condition in which the noise-corrupted terms oscillate and

deviate from the noise-free computed output starting from the optimal truncation

index at k = 30 that we observed.

Figure 4.5: The graph illustrates the Picard condition of heat with truncation index k
= 30. The red line shows the singular values, the green line shows the noise-corrupted
Fourier coefficients, and the blue line shows the noise-free Fourier coefficients.

4.4.1 Methods selecting regularization parameters

We use the same problem to test the optimality of the parameters found using GCV

and the discrepancy principle. The numerical experiments conducted under this sec-

tion are computed using MATLAB.

From the previous numerical experiments conducted using the real solution, we

learn that the optimal group of regularization parameters are α1 = 0.0006045, α2 =

0.185944, and k = 29. The following experiments are conducted with the initial

search set close to or far away from the optimal result.

For GCV, when the initial search is set close to the optimal parameters, the result-

ing error is 0.248, which is much greater than the average error shown in Figure 4.4,
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and the error of a non-optimal initial search is 0.275, even worse. When we modify

the function to be in terms of only α1 and α2, we are not able to find an optimal

pair of parameters since the initial search is likely a local minimum. The function

would thus return the initial search. The GCV method does not pass the numerical

experiments.

For the discrepancy principle method, we set the initial search to be α1 = 0.06,

α2 = 0.1, and modify the k values to observe changes. When k is set to 29, the optimal

k, the resulting error is 0.0358, slightly higher than the uniform precision error but

still an acceptable optimal result. When k is set to 25, the error improves to be

0.0314. This method produces optimal parameters, we thus test it on different noise

levels. In one of the test cases, we set the initial search to be at the local maximum

where k = 25 as shown in Figure 4.6. The optimal parameters given by this method

produces an error of 0.0358, which not only averts a local maximum error, but also

significantly improves the accuracy in comparison to the error of 0.0380 computed

with only one precision.

Figure 4.6: Relative error (y-axis) at different truncation indices (x-axis) for comput-
ing heat tested using the discrepancy principle.

The discrepancy principle method is tested to be optimal and robust for this
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specific test problem, we thus test the method on another test problem, deriv2.

While the method produces a relatively optimal result for most test problems, its

effect significantly deteriorates in a very ill-posed problem with the singular values

quickly declining as shown in Figure 4.7.

Figure 4.7: The semilog of the singular values of deriv2.

As shown in Figure 4.8, implementing mixed precision does not produce smaller

error in a severely ill-posed problem as no significant local minimums are found.

Figure 4.8: Relative error (y-axis) at different truncation indices (x-axis) for comput-
ing deriv2 tested using the discrepancy principle.
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4.5 Iterative Refinement for Tikhonov

We use the same sample inverse problem, heat, as the one used in Section 4.4. In this

section, we will test the accuracy of the Iterative Refinement for Tikhonov as men-

tioned in section 3.3 across different combinations of precisions. The computations

will be done in Julia.

The initial α we use as the regularization parameter is
√
α0 where α0 is the optimal

α found in Figure 4.4. Since we are taking the square root of α0, it is no longer optimal.

For the first set of numerical experiments, we set the maximum iteration number

to be 200, and label the legend in the format of uh + ul. As shown in Figure 4.9,

there is no significant difference in the different combination of the precisions. As

we zoom into the plot, we observe that the lower precisions generate a slightly larger

error. However, the relative error between (double, single) and (double, half) is

0.0076, the relative error between (double,single) and (single, half) is 0.0077, and the

relative error between (double, half) and (single, half) is only 0.00014. We can thus

conclude that lower precision will not cause significant error in the result other than

accelerating the computation.

Figure 4.9: The left figure shows the relative errors at iterations 1 to 200 for heat

computed using Iterative Refinement for Tikhonov. The right figure is a zoomed in
version of the left figure to illustrate the difference between the computation under
different mixed precision combinations.

When we set the regularization parameter as α = α0, we observe that the error plot



30

no longer converges and increases instead as the number of iteration increases. We

thus increased maximum iteration number to 5000 instead of 200 for uh = Float64 and

ul = Float32. We observe from Figure 4.10 that the algorithm is semi-convergent. The

regularization parameter gets smaller as the algorithm iterates, and after a certain

threshold where the error is minimized, where error = 0.3168, the regularization

parameter becomes too small for it to be functional. It is thus important to end the

refinement process after a certain number of iterations.

Figure 4.10: The figure illustrates the semi-convergence behavior of stationary reg-
ularization parameters by showing the relative error at iterations 1 to 5000 of heat
computed using Iterative Refinement under Tikhonov. The computation is done with
the higher precision set to double precision and the lower precision set to single pre-
cision.

To study the effectiveness of non-stationary parameters as mentioned in sec-

tion 3.3.1, we compare a set of results with stationary and non-stationary parameters

when other parameters are held the same.
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Figure 4.11: The figure compares the relative error of heat computed with stationary
and non-stationary parameters with maximum number of iterations being 1000 using
Iterative Refinement under Tikhonov.

In this experiment, we are using single and half precisions. We can observe directly

from Figure 4.11 that the non-stationary method has smaller relative errors for the

large regularization parameters where more iterations are needed. The non-stationary

parameters thus serve the purpose of preventing the filtering parameter from getting

too close to 1.

4.6 Preconditioned Conjugate Gradient method

In this section, we conduct numerical experiments to compare CG with and without

the preconditioners constructed from section 3.4. Data will be generated from the

sample problem heat, and computations are done under Julia.

Figure 4.12 illustrates the behavior of the algorithm with MaxIts being the only

stopping criteria, and Figure 4.13 adds a tolerance using the discrepancy principle.

While the algorithm converges within tolerance, it behaves differently for different

precision environments and does not necessarily converge.
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Figure 4.12: The figure shows the relative error of heat computed with PCG using
Rτ with the number of iterations being the only stopping criteria.

Figure 4.13: The figure shows the relative error of heat computed with PCG usingRτ

with a tolerance set as the stopping criteria. The method converges in two iterations.

4.7 Preconditioned GMRES-IR

In this section, we will conduct numerical experiments to compare GMRES-IR with

and without the preconditioners constructed from section 3.4. Data will be generated

from the sample problem spectra, and computations are done in Julia.
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Figure 4.14 illustrates the accuracy of the solution computed with GMRES-IR

using the truncated preconditioner RT , and Figure 4.15 illustrates the norm of the

relative error using the same algorithm with the untruncated preconditioner R re-

spectively.

Figure 4.14: The figure shows the relative error of spectra computed with GMRES-
IR using RT .

Figure 4.15: The figure shows the relative error of spectra computed with GMRES-
IR using R.

From the figures, we can observe that both converge within very few iterations.
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No significant difference is observed but both preconditioners serve to regularize the

solution.

The rounding of the different precisions leave small differences in the relative error.

The solution we computed using the truncated preconditioner has relative error larger

than the one computed using the untruncated preconditioner only by a very small

margin as shown in Figure 4.16

Figure 4.16: The figure compares the behavior of GMRES-IR computed using R and
RT which almost overlaps.
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Chapter 5

Concluding Remarks

From the numerical experiments, we can conclude that mixed precision arithmetic

can be more accurate while taking less storage to compute for different regularization

methods, like the Tikhonov method, in solving ill-posed inverse problems. While

improving the accuracy of our algorithm using the Iterated Tikhonov method and

non-stationary regularization parameters, it is also important to set our stopping

criteria using the discrepancy principle.

In some other iterative methods, the computations under mixed precision arith-

metic reduce computational cost while maintaining sufficiently appropriate accuracy

of the final computed solution. We have also constructed preconditioners that im-

prove the accuracy and reduce the computational cost by reducing the number of

iterations.

The algorithms can be used in improving the robustness in image restoration,

blind deconvolution, remote sensing, and other fields. As a common concern about

the Tikhonov regularization method is that it often over-smooths the edges, a possible

solution of improvement is to combine Tikhonov with the Total variation regulariza-

tion method into a Hybrid regularization method. As Hybrid regularization uses

adaptive weighted parameters, the implementation of mixed precision arithmetic be-



36

comes more challenging. In future studies, We will broaden the application of mixed

precision into other regularization methods like the Hybrid regularization.
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