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Abstract 

COVID-19 Mitigation Strategies: Implications for  
Pandemic Control and the Incidence  

of Drug-Resistant Tuberculosis 
 

By  
 

Kristin Harrington 
 
COVID-19 is a major global health threat with over 440 million cases and 10.6 million deaths to 
date. Changes in social mixing patterns and shifting resources towards COVID-19 have had 
negative repercussions in the control of diseases such as tuberculosis (TB), the leading cause of 
infectious disease mortality in 2019, with 1.4 million deaths worldwide. The impact of efforts to 
curb the COVID-19 pandemic, and the impact of mitigation strategies on TB control require further 
study. The overarching goal of this dissertation was to evaluate local transmission dynamics of 
COVID-19 and the impact of mitigation strategies on both pandemic spread and drug-resistant 
TB control.  
 
In the first study, we used a network-based model to study the relationship between contact 
tracing activities and hospital utilization. We found that no isolated or combined contact tracing 
intervention could prevent excess strain on ICU bed capacity in the state of Georgia. The positive 
effects of contact tracing were magnified within the period of time shortly after index case 
diagnosis, and plateaued after approximately 1 week. 
 
In the second study, we utilized individual-level exposure histories collected through case 
investigation and contact tracing interviews to construct the contact tracing networks of COVID-
19 at Emory University during the 2020-2021 school year. We found minimal clustering, a low 
proportion of asymptomatic cases, and higher secondary attack rates among contacts of 
symptomatic cases. Our results suggest it was unlikely that asymptomatic cases were missing 
from the observed network.  
 
In the third study, we described changes in the number, spatial distribution, and neighborhood 
characteristics of drug-resistant TB cases before and after the COVID-19 national lockdowns in 
KwaZulu-Natal, South Africa. We observed a 29% reduction in drug-resistant TB cases diagnosed 
in the province after the lockdowns. Further, we observed that cases diagnosed after the 
lockdowns reported worse living conditions and fewer household resources. 
 
The findings from this dissertation contribute to our understanding of the impact of contact tracing 
optimization on hospitalization and ICU utilization at a community level, important drivers of 
transmission in the setting of a university community, and the impact of COVID-19 mitigation 
strategies on drug-resistant TB control.  
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Chapter 1: Introduction 
 
 
1.1 Background and Significance – COVID-19 

 
1.1.1 Coronavirus disease 2019 pandemic 

COVID-19 natural history and transmission 

Coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome 

coronavirus 2 (SARS-CoV-2), is a major global health threat with over 299 million cases and 5.4 

million deaths to date.1 In late 2019, several cases of an acute respiratory illness with unknown 

etiology were reported in Wuhan, Hubei province, China.2,3 Similar disease presentations were 

subsequently identified in several other countries, and the causative agent, SARS-CoV-2, was 

identified in Wuhan in January 2020.4 The emergence of COVID-19 in China coincided with the 

Chinese Lunar New Year, for which millions of individuals make almost 3 billion trips collectively 

to celebrate.5 To limit the amount of spread throughout the country and the rest of Asia, the 

Chinese government halted all province-wide public transportation, and train and plane travel to 

and from Wuhan prior to the start of the holiday.6 Following this, several other countries restricted 

travel to and from China,7 and after 200 deaths had been confirmed globally by the end of January 

2020, the World Health Organization (WHO) declared COVID-19 a Public Health Emergency of 

International Concern.8 Of note, in February 2020, more than half of all global COVID-19 cases 

outside of China were on the Diamond Princess cruise ship, carrying over 3,700 passengers of 

which 712 cases were identified.9 It was later discovered that this outbreak occurred due to a 

single introduction of the virus, that is, one infected person.10 After quickly spreading to over 100 

countries outside of China, COVID-19 was deemed a pandemic by the WHO in March 2020.11,12 

Transmission of COVID-19 was known to occur between close contacts, but whether or 

not it was transmitted via the respiratory route, and if it was able to spread through aerosolized 
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droplets, was a point of contention for many months after the identification of SARS-CoV-2.13–15 

Understanding the specific route of transmission has implications for recommendations to reduce 

disease spread, including communication around mask wearing and the potential exposure range 

around an infected individual, which informed social distancing measures.16,17 Through the 

combination of observational,18–20 experimental,21–23 and modeling studies,24,25 there is now ample 

evidence to support transmission through the respiratory route via coughing, talking, or singing, 

and that airborne transmission through aerosolized droplets is possible.26,27  Public health 

interventions such as mask wearing, social distancing measures, travel restrictions, national 

lockdowns, and school closures helped to limit the spread of COVID-19;28–31 however, setting-

specific differences in public health communication approaches combined with the evolving 

nature of this pandemic and conflicting political messaging have resulted in the varied timing of 

additional individual control measures.32–36 Unique transmission characteristics of COVID-19 

include the infectiousness of individuals 2-3 days prior to the onset of symptoms,37 and the large 

proportion of infected individuals that remain asymptomatic;38,39 both of which have challenged 

overall containment strategies.40 Asymptomatic individuals are estimated to account for 

approximately 45% of all infections, with the potential for an extended timeframe (> 14 days) in 

which they are able to transmit to others.41 

The average incubation period (time from initial exposure to symptoms) for COVID-19 is 

approximately 4-5 days, with almost all individuals who will go on to develop symptoms do so 

within 11.5 days of infection.42–44 There is considerable diversity in the severity and clinical 

manifestations of disease,45 with all age groups affected (albeit at differential rates), almost 20% 

of individuals experiencing severe to critical manifestations, and a preponderance (60-90%) of 

hospitalized individuals with concurrent comorbidities.46–48 Common presenting symptoms include 

fever, cough, shortness of breath, gastrointestinal symptoms, and loss of taste and smell.49–51 
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Hospitalization courses are typically for weeks or longer (in contrast to days for many other viral 

syndromes), and cases requiring mechanical ventilation are not uncommon which have put a 

significant strain on the healthcare system.52–55  

 

COVID-19 epidemiology in the United States 

The first case of COVID-19 was confirmed in the U.S. on January 21st, 2020, and as of 

March 10th, 2022, there have been over 79 million confirmed cases and over 965,000 deaths.1,56 

Although the first cases were identified on the West coast, by mid-March of 2020 50 states and 4 

territories had reported cases.57 Genomic sequencing analyses demonstrated that trans-

continental spread occurred early on and rapidly due to domestic travel.58 Epidemiologic studies 

assessing the causes of seeded community transmission further implicated travel, limited testing 

capacity, and transmission by asymptomatic and pre-symptomatic persons in addition to large 

group gatherings (e.g., Mardi Gras, conferences, funerals) and introductions into vulnerable 

settings such as long-term care facilities that resulted in amplified transmission.59 

In the first several months of the pandemic, greater incidence of confirmed COVID-19 was 

associated with metropolitan, populated areas with high proportions of minorities, and in counties 

closest to core airports.56 Furthermore, there were dynamic patterns between socioeconomic 

status (SES) and COVID-19 incidence and mortality. Greater incidence was initially associated 

with higher SES early on in the pandemic, but this association later shifted to lower SES likely 

due to the ability of higher SES groups to shelter-in-place while lower SES individuals were more 

often essential workers with inadequate protections.60 

 Widespread diagnostic testing for COVID-19, which is essential for accurately tracking 

disease burden and identifying asymptomatic cases,61 was not prioritized in the U.S. as compared 

to other countries,62,63 which resulted in major underestimates in the total number of cases. Bias 
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analyses to account for limited testing and imperfect test accuracy estimated that the U.S. was 

underestimating cases in the first wave of the pandemic, with true numbers of infections likely 3 

to 20 times higher than testing-based reports.64 Further, limited testing capacity and protocols 

aimed at older individuals, those with travel history, or those with symptoms, albeit appropriate 

for identifying cases in high-risk individuals, nevertheless have the potential to severely bias 

estimates of true, underlying population-level disease burden.65 These biased estimates had 

repercussions on our ability to correctly interpret epidemiological trends, which in turn influenced 

policy decisions.66 While testing practices were implicated in biased estimates of transmission 

parameters,67 the role of testing patterns in the shift in age distribution towards younger individuals 

observed in the latter half of 2020 was more complex;68,69 disentangling these trends and others 

would likely have been more feasible with the early establishment of extensive testing 

infrastructure. Due to the potential bias in overall disease burden and reporting, it is important that 

epidemiological studies of COVID-19 take local testing practices and reporting into consideration.  

The disordered and heterogenous (sometimes absent) local implementation of mask 

mandates, business closures, and social distancing orders across the country led to 

asynchronous reductions in transmission in counties, resulting in immensely complicated and 

limited options for disease containment as infections continued to be reintroduced into controlled 

areas by geographically nearby counties with sustained transmission.70,71 Further, the political 

polarization of the U.S. carried over into the risk communication and mitigation responses of entire 

states and counties, which had resultant effects on mobility patterns and engagement in physical 

distancing.72 In an analysis of mobility data in the U.S., it showed that these heterogeneous and 

sporadic state-level responses and mandates resulted in delayed yet significant effects on 

COVID-19 case reductions.73 Social distancing policies and shelter-in-place mandates resulted in 

a 25% and 29% reduction in mobility, respectively, and a 10% reduction in mobility was associated 
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with a 17.5% decrease in COVID-19 cases after 2 weeks.73 Statewide orders were also observed 

to have an effect on COVID-19 mortality; delayed emergency declarations and school closures 

were associated with higher mortality rates, with, on average, a 5% increase in mortality rates for 

every one extra day of delay.74 These between and within state differences in the application and 

impact of mitigation strategies complicated the interpretation of national and even state-level 

studies examining methods to slow disease spread. 

In comparison to many other high-income countries, the U.S. is a geographically large 

area with heterogeneous demographics such as age and race distributed across over 3,000 

counties. This, coupled with a uniquely fragmented and expensive healthcare system with 

variable capacities and resources, has resulted in differential burdens placed on hospitals leading 

to inconsistent access to care and disproportionate impacts and excess deaths among specific 

communities including the elderly, immigrants, and racial minorities.75–80  

 

1.1.2 Mitigation strategies and non-pharmaceutical interventions 

The impact of mitigation strategies on transmission 

 In the context of infectious disease epidemiology, one of the most important metrics to 

describe transmission is the basic reproductive number (R0), which represents the average 

number of people one infected person can infect in a completely susceptible population and can 

also be conceptualized as the approximate ‘strength’ of an epidemic.81,82
 The overarching goal of 

any containment strategy for infectious diseases is to achieve and maintain a reproductive 

number below 1, which would result in the extinguishing of sustained transmission.83 R0 was a 

practical parameter to estimate at the beginning of the COVID-19 pandemic as no one had been 

exposed to SARS-CoV-2 previously; there were widely varying approximations ranging from 1.4 

to 6.5 in China,84 3.3 in Italy,85 and 2.3 on the Diamond Princess cruise ship.86 As more people 
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became infected and were no longer completely susceptible, the more practical metric has been 

the effective reproductive number at time t, (Rt), which does not assume complete susceptibility 

in the population, and can help assess the impact of intervention strategies on the control of 

spread and monitor transmission at a particular point in time and level of population-level 

infection.87 This parameter can provide for a quantitative evaluation of interventions, taking into 

account their timing in an epidemic.88 A similarly important metric for transmission is the 

secondary attack rate, which is the probability of susceptible persons becoming infected after 

effective contact (i.e., frequency, duration, and type of contact necessary for transmission) with 

an infected person.89 This metric requires more specific estimation for reliable estimation, 

including information on exposure histories and accurate enumeration of close and casual 

contacts. Among the studies that have estimated the secondary attack rate for COVID-19, 

probabilities range from 12-53% for household contacts,90–93 to 35% for individuals attending 

group events with an infected case.94 

Mitigation strategies to reduce overall transmission include the implementation of non-

pharmaceutical interventions (NPIs), i.e., applied methods to limit the spread of an infectious 

disease. The utilization of NPIs is distinct from the use of pharmaceuticals (e.g., vaccinations or 

antiviral drugs), which may not be available at the start of a pandemic. NPIs have been 

incorporated into pandemic preparedness plans by the WHO since 2005, for which the evidence 

base draws upon historical experience from the 1918 influenza pandemic.95 During the 1918 

pandemic, many countries across the world adopted measures such as isolating sick individuals, 

quarantining those who had been in contact with someone ill, closure of schools and businesses, 

and cancellation of large gatherings which were documented to have an effect in reducing 

transmission.95 One study combining archival research and epidemiologic analyses observed that 

NPIs implemented in the U.S. during the 1918 pandemic had strong associations with lower 
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mortality rates, especially if these measures were implemented early and were sustained.96 In 

addition to these more widespread public health interventions, individual-level measures such as 

social distancing and mask wearing (in the case of a respiratory pathogen) have been used to 

minimize effective contact between an infectious and susceptible individual. These alterations in 

human behavior are typically transient and associated with an individual’s perceived personal 

risk, and helped explain waves in the epidemic curve observed during the 1918 pandemic not 

entirely explained through viral seasonality or different viral strains.97 

 Observational evidence from the current COVID-19 pandemic similarly shows beneficial 

impacts of implementing NPIs to reduce spread. Practices such as reducing the delay in isolating 

infected individuals, travel restrictions, and quarantining exposed persons have documented 

significant effects on decreasing transmission especially if implemented early on, estimated via a 

range of transmission parameters including incidence and Rt.98–100 Modeling studies have been 

generally useful in assessing the impact of NPIs in various settings during previous pandemics, 

in addition to evaluating and forecasting the effects of different interventions throughout the 

current COVID-19 pandemic. For example, one study concluded that travel-related restrictions in 

the U.S. had little impact after community transmission of SARS-CoV-2 was widespread, while 

stronger transmission-reduction interventions (i.e., social distancing and shelter-in-place orders) 

and expanded testing capacity were more optimal to control disease spread.101 Similarly, national 

lockdowns in France were estimated to have reduced the transmission rate by 76%.102 Policy 

makers have relied on modeling studies to inform their decision-making around the 

implementation of mitigation strategies; an analysis across six different countries found that policy 

actions such as business restrictions, although potentially economically costly, had large and 

consistent beneficial impacts on preventing millions of cases and on achieving better health 

outcomes.103 Estimated projections of hospital and critical-care bed utilization have provided 
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valuable evidence in support of intensive rather than moderate mitigation measures to avoid 

healthcare systems from being overwhelmed.104 These cost-benefit analyses as well as insights 

into the necessary trade-offs required during a pandemic are able to help guide policy makers 

and public health programs on how to balance and prioritize their efforts. 

 During the COVID-19 pandemic, mitigation strategies utilized in previous pandemics have 

been leaned upon and further expanded. These relatively basic public health measures remain 

impactful, including mask wearing, social distancing, hand hygiene, and limiting large social 

gatherings.105 Further measures, including expanded testing availability, case investigations and 

contact tracing, and widespread coverage of effective vaccines have been implemented during 

this pandemic and have been crucial to our efforts in disease containment. 

 

Contact tracing history, process, and application  

Contact tracing has been a staple control measure for the spread of many infectious 

diseases, including TB,106,107 sexually transmitted infections,108,109 and emerging outbreaks.110,111 

Typically, contact tracing is a paired alongside case investigations, in which probable and 

confirmed infected persons are interviewed by a public health worker to recall their activities and 

all of their close contacts during the time they were potentially infectious. After gathering this 

information, contacts of cases are notified of their potential exposure, educated on their risks and 

how to monitor themselves, and encouraged to quarantine themselves away from others. Contact 

tracers have scheduled follow-up communication with all contacts to help monitor their symptoms 

and provide further support, in addition to potentially shortening the contact’s quarantine period 

depending on their test results and symptoms.112  

The effectiveness of contact tracing programs is dependent on factors at the pathogen, 

individual, and population level, including transmissibility, timing of symptoms, and logistical 
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feasibility.113,114 Disease-specific nuances such as the duration of infectiousness and the length 

of the incubation period as well as the practicality of conducting longer interviews with cases to 

collect more contact information have the potential to significantly impact the benefits of contact 

tracing.114 Of note, there is a theoretical threshold for the proportion of contacts that must be 

traced to keep R0 below 1, assuming homogenous mixing and all cases display symptoms: 1 − !
"!

 

(interestingly, this is also the equation for the standard herd immunity threshold, often used as a 

target for immunization coverage for an infectious disease115). For an infection with an R0 of 2, 

contact tracing would have to reach at least 50% of contacts to be effective. Importantly, if there 

is a proportion (p) of untraceable contacts, that is, contacts cases would not know to report (as 

they are unknown to the case due to casual contact, such as is common for airborne diseases), 

the contact tracing threshold would increase for the remaining known contacts: !
!#$ #1 −

!
"!
$. So, 

in the previous case with an R0 of 2, and if 30% of one’s contacts were unknown to them, contact 

tracing would have to reach over 70% of contacts to be effective. In these cases, other 

interventions in addition to increasing the contact tracing threshold would be required to control 

spread. As transmission and logistical feasibility differ across public health programs, a better 

understanding of these thresholds at a local level can help guide which efforts to prioritize and 

focus on and where.  

Contact tracing is known to be more effective in highly clustered environments and 

networks and is typically expected to work well in the context of airborne disease spread; however, 

as airborne transmitted infections have the potential to spread more easily, contact tracing must 

also be more efficient and more quickly performed. An important consideration for improving the 

efficiency of contact tracing is the trade-off between increasing the overall number of contacts 

collected from cases versus a targeted collection of contacts that are most likely to have had an 

effective exposure to the case. One strategy to improve tracing efficiency used for respiratory 
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pathogens such as influenza has been to quarantine entire households after the identification of 

one individual in the home as a contact.116 The benefits of contact tracing are amplified when 

asymptomatic infections are possible (as more infections will be ‘hidden’ from detection), and the 

importance of contact tracing is positively associated with the proportion of new cases that are 

asymptomatic.117 Since these individuals would not display symptoms and may not be detected 

at all, the contact tracing process can identify these persons through their contact networks to 

reduce the overall force of infection. Contact tracing is considered essential when every 

asymptomatic case gives rise to at least one more asymptomatic case (%%"#$%&'(%"')*# ×

'&'()$*+)&*,-	,/01-*,+/ > 1).117 In one modeling study aimed at determining the importance of R0 

and the proportion of asymptomatic transmission on case isolation and contact tracing procedures 

found that if the proportion of asymptomatic transmission is < !"!, case isolation would be enough 

to control the outbreak; however, if the proportion of asymptomatic transmission is > !"!, contact 

tracing must be used together with case isolation to control spread.118 

 Like any other intervention strategy, contact tracing has its limitations. If transmission is 

too widespread in a community and contact tracing cannot identify potentially exposed cases prior 

to becoming infectious, it becomes insufficient to reduce transmission.118–120 As previously 

observed in a modeling analysis of smallpox, there is a ‘race to trace’ – in the case of smallpox, 

vaccinating contacts within a reasonable timeframe was the main goal, whereas for COVID-19 

quarantining contacts in time is required.121 Further, if testing infrastructure is not efficient and 

individuals are not informed of their test results within a reasonable time frame, infected persons 

unaware of their diagnosis can continue to spread the infection. This also hampers the efficiency 

of contact tracing, as cases interviewed later on in their disease course may not remember all of 

their contacts from over a week ago as accurately as their contacts from a few days prior.  
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On another level, there is the aspect of sharing one’s contacts with a public health worker 

and trust in the national government.122 Case investigations are typically performed over a public 

health worker’s personal cell phone or a Google line, and many Americans are unwilling to answer 

phone calls from unknown numbers, let alone provide sensitive personal information to the 

individual on the other end of the line.123 To make matters worse, scammers have posed as 

contact tracers during the COVID-19 pandemic to gather identifiable information from 

individuals.124 Privacy concerns and circulating misinformation about COVID-19 have also 

created additional barriers for contact tracers to overcome in order to simply gain initial 

communication with cases and their contacts.125 Further, there has been significantly reduced 

participation in contact tracing programs by groups disproportionately affected by the pandemic. 

Reasons for this include the politicization of the pandemic in the U.S., in addition to the earned 

distrust by minority populations in public health institutions due to historical research practices 

and discrimination.126–128  

Although logistically arduous and with its other limitations, contact tracing is still able to 

provide some of the most valuable data for estimating transmission of an infectious disease, as it 

can produce individual-level exposure histories to inform both transmission parameters and 

epidemiologic links within a transmission network.129,130 Further, although contact tracing steps 

are implemented at the beginning of an outbreak, contact tracing is also often a critical tool utilized 

in the final stages of an outbreak to reach elimination, such as was the case for the eradication of 

smallpox131,132 and the Ebola outbreak in 2014.133 Even within the context of an effective vaccine, 

contact tracing will continue to be an indispensable tool for controlling the pandemic, and its 

importance will inevitably increase as caseloads are potentially reduced by vaccinations.134,135 

Thus, assessments and modeling studies of contact tracing programs at earlier stages in the 
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pandemic when caseloads were much lower may serve as useful illustrations for eradication 

efforts.  

 

Modeling contact tracing effectiveness 

Modeling studies, as discussed previously, are useful in planning interventions as well as 

evaluating the impact of previous and future interventions.136 Examinations of the impact of 

contact tracing in various settings have described variable success of programs during the 

COVID-19 pandemic, due to the various factors described above that can affect contact tracing 

effectiveness.137,138 Many early studies to inform contact tracing programs at the beginning of the 

pandemic utilized models parameterized with data from initial cases in China or simulated 

populations.139–142 Although conclusions from these studies are important, they commonly 

highlight limitations in their data sources and emphasize the need for more data to clarify 

epidemiologic parameters.143 While previous studies emphasize minimizing testing delays and 

optimizing tracing coverage, this guidance is provided at a general rather than a local level.144 

Further, the size and capacity of the local public health workforce should be considered when 

determining feasible and sustainable programmatic goals.145 There is scarce literature on targeted 

modeling studies utilizing local public health data; however, existing studies have been able to 

provide more specific estimates of the impact of local interventions given not only disease 

characteristics in the area, but also demographics and the local public health workforce.146 

The majority of mathematical modeling studies of transmission have also used a 

compartmental framework, which is a foundational method used to represent the dynamics of 

infectious diseases. However, due to its underlying assumptions, this framework cannot directly 

incorporate individual-level variation within a population, such as the range of clinical variability in 

those infected, and does not feasibly represent distinct steps or potential delays in the contact 
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tracing process.147,148 These simple models are excellent for initial hypothesis generation for 

disease transmission and control, but modeling an intervention such as contact tracing requires 

an accurate representation of contact network structure that can drive disease transmission.149 

For example, modeling methods capable of distinguishing between high-risk, close contacts and 

lower-risk, casual or unknown contacts may have more utility when estimating intervention 

impacts for respiratory infections. Further, the act of quarantine itself is an intrinsically individual-

level action, and treatment of this behavior as a group-level process as compartmental models 

must do relies on a vast number of assumptions, such as a very large and well-mixed 

population.150 

 Individual-level models, rather than being comprised of different population 

compartments, include a synthetic simulated population, computational algorithms dictating social 

contact among this population, and a disease process framework.151 The utility and validity of 

advanced modeling techniques such as individual-level models is enhanced by the integration of 

empiric data specific to the population of interest, and results must always be interpreted within 

the limits of the data inputs and assumptions made.152 For these models to have the most useful 

impact during the COVID-19 pandemic, predictions and evaluations at the local level should be 

performed using data from the local level, rather than aggregated data from a different setting.153  

 

1.1.3. School and university re-opening  

Re-opening strategies globally and in the U.S. 

Re-opening, or the loosening of stay-at-home orders and other restrictions on businesses 

and schools during the pandemic, inevitably changes the ways in which individuals interact and 

connect with others. Studies assessing the rate of interpersonal contact among individuals in the 

U.S. have shown that there were massive reductions across all ages during the first wave of the 
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pandemic, with subsequently increasing rates corresponding to the unbalanced lifting of social 

distancing measures across the country.154 Contact rates have also been observed to be greater 

overall among certain demographic groups, including those < 45 years, and Black and Hispanic 

individuals.154 In the limited data that exist on contact patterns specifically within the primary 

school setting, there were large reductions (53-80%) among students, teachers, and staff after 

re-opening compared to before the pandemic.155 Modeling studies predicting the impact of re-

opening in certain settings expected rebounds in incidence and mortality,156 which were 

subsequently observed across the nation.157 Methods such as local re-openings prior to larger-

scale re-openings had more successful outcomes in modeling studies; however, this is under the 

assumption that areas flattened their epidemic curves before re-opening, which was not the case 

for the disparate and uncoordinated re-opening plans across the U.S.158 

There is recent evidence to suggest that school and university re-openings increase 

COVID-19 spread due to their many communal spaces.159–162 Safely re-opening universities 

requires a combination of strategies such as active screening on campus, quarantine protocols, 

dormitory regulation, mask and personal hygiene requirements, and air ventilation practices.163 

However, assessment of whether or not measures are sufficient to contain COVID-19 spread on 

campuses is dependent on local transmission. For example, South Korea, where the pandemic 

has been well-controlled compared to the U.S., did not observe an increase in the number of 

COVID-19 cases after re-opening schools, and had a successful transition from online to in-

person teaching.164 In modeling studies aimed at providing guidance for universities, it was found 

that a multi-faceted approach was more effective, with an emphasis on expanding testing 

infrastructure allowing for wide-spread randomized testing.165 Specifically, one study modeling 

university transmission found that under a scenario in which 68% of contacts were traced, 75% 

of symptomatic individuals would need to be tested, with all positive cases isolated in order to 
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prevent a second COVID-19 wave after school re-opening; with only 40% of contacts traced, the 

testing requirement would increase to 87%.166 

 

Impact of network characteristics on re-opening strategies 

In a network, individuals are represented as ‘nodes’ and the connections between them 

are classified as ‘edges’ in the case of a respiratory pathogen which can be spread in either 

direction.167 A node’s position in a network can be defined by the number of connections it has to 

others in the network (degree) and the proportion of paths between other nodes that pass through 

it (betweenness).167 Clustering in a network occurs when three or more nodes are connected in a 

network, and path length represents the number of connections that separate two nodes.167 In the 

context of an outbreak, ‘flattening the curve,’ or mitigating further waves of a pandemic while re-

opening can be done through increasing the path length (by increasing the number of 

connections) from an infected person to others in the network.168 Social-distancing also helps to 

increase the average path length of the entire network, so differentiating between highly 

connected and less connected nodes in a network is crucial to adjust interactions in the context 

of re-opening.168 Clustering, or maintaining isolated, small social circles also tends to reduce the 

spread of a disease within a network.169 

In contrast to sexually transmitted infections which are spread through sexual networks, 

respiratory pathogens are able to spread through social and community contact networks. Thus, 

understanding the structure of an underlying network is crucial to the design of effective social 

distancing strategies. Attributes of a community, including the groups to which people belong and 

the number of contacts individuals have, influence the local transmission dynamics and can guide 

targeted and more effective mitigation strategies.170 There is evidence to support transmission in 

a university setting from a transmission network perspective, as shared classrooms, dormitories, 
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laboratories, and other campus spaces allow for close and casual connections among students, 

faculty, and staff.171,172 The specific structure of a network can provide insight into what factors 

may be important in spreading infection within a community. For example, one study of the 

transmission networks of COVID-19 at a university found that 91% of gatherings that took place 

in the context of COVID-19 restrictions were associated with sorority and fraternity events, with 

these events accounting for 72% of links among all gatherings on campus.173 In response, the 

university banned gatherings of ≥ 10 persons, and other Greek-life events were held virtually. 

High-risk individuals and groups likely differ across different university settings, thus creation of 

these context-specific contact networks can inform targeted strategies.  

Among the several studies that have documented social mixing patterns,174–177 few have 

focused on examining patterns in school settings,178,179 especially at the university-level.180 There 

has been work to uncover the ‘class size paradox’, in which the experienced number of 

connections between students is typically greater than the average class size, due to the 

presence of large lecture courses in many students’ schedules.181 Further work has described 

that both high and low enrollment courses can act as powerful connectors of university students, 

and that certain types of students (e.g., pre-medical) may act as unique connectors across a 

network.182 One recent study was aimed at exploring the characteristics of several university-level 

networks via transcript data, and how a hybrid mode of instruction (as a result of the COVID-19 

pandemic) would impact these characteristics.183 They found that all university settings were 

‘small worlds’ in that they were highly clustered with short path lengths connecting students.183 

Interestingly, although switching all classes with ≥ 30 students to an online format significantly 

reduced student connectivity, > 50% of students were still connected in four steps within the 

network, suggesting that full online instruction was necessary to prevent COVID-19 transmission 

on campuses.183 These studies have provided the necessary framework for further transmission 
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modeling work specific to the university setting. Specifically, as most of these studies have 

evaluated networks dichotomizing the existence of edges over time (edges are fixed or turnover), 

further studies utilizing methods that can incorporate a distribution of edge durations can build 

upon this work. 

There are similarly scarce data extending school-level contact networks to infectious 

disease transmission networks. One study documented close proximity interactions using 

electronic sensors to construct social networks in a high school to understand network structures 

relevant for transmission of an influenza-like illness.184 They found that in their small-world 

network185 with short repeated interactions, little variability in the degree, number, and strength of 

interactions were most relevant for transmission. Further, their work supported previous findings 

which have found that long, right-tailed distributions in the number of social contacts (i.e., potential 

super-spreaders, or individuals with significantly more contacts than average) are not typically 

observed at the local community level, as they are for sexual contact networks.186 Given the 

importance of underlying network structures to infectious disease transmission dynamics, it has 

been noted that further empirical studies are necessary, with a focus on estimating model 

parameters for more complex interactions; this could be done through collecting data on 

demographics of contacts in addition to location information of interactions.187  

With the completion of the 2020-2021 school year, lessons learned should be applied to 

strategies for re-opening and disease containment, and to do so, a closer look at social network 

structures, risk factors for COVID-19 infection, and potentially under-surveilled groups will be 

required.  
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The impact of COVID-19 mitigation strategies was examined in relation to COVID-19 spread in 

Aims 1 and 2 of this dissertation, as well as in relation to the spread of another respiratory-

transmitted infection, tuberculosis, in Aim 3. 

 

1.2 Background and Significance – Tuberculosis 

 
1.2.1 Global epidemiology of tuberculosis 

The global burden, history, and transmission of TB 

Tuberculosis (TB), caused by the bacillus Mycobacterium tuberculosis, is a major public 

health burden worldwide as the leading cause of death from an infectious agent and one of the 

top ten causes of death worldwide, with the exception of the year 2020 during the COVID-19 

pandemic.188 Approximately 10 million individuals were infected with TB just in 2019, with 1.4 

million deaths, including over 200,000 deaths among people with HIV.188 Although any individual 

is at risk for TB, 30 high-burden countries account for almost 90% of all new TB cases.189 TB is 

also a disease of poverty, with individuals typically managing not only their disease course, but 

also food insecurity, housing instability, and discrimination.190,191 The WHO’s End TB Strategy’s 

goals include a 20% reduction in new TB cases worldwide between 2015–2020; however, we 

have only achieved a global cumulative reduction of 9% in cases by 2019.188 The 2025 goals have 

been set at a 50% reduction in incidence compared to 2015 which will require an even more 

accelerated rate of decline;192 clearly, these goals will not be achieved without new, targeted 

strategies aimed at reducing transmission in high-incidence settings.193–195 

The causative agent of TB, Mycobacterium tuberculosis, was first discovered by Robert 

Koch in 1884.196 At that time, there were no pharmaceutical treatments available for TB, and 

instead, presumed infected individuals were typically sent to a sanatorium, or an isolated 

institution where patients were encouraged to rest and had continuous access to open-air 
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spaces.197 The first vaccine for TB, the bacille Calmette-Guérin (BCG) vaccine, was distributed in 

1921 to children, and remains the most commonly used vaccine in the world.198 Unfortunately, 

due to its relatively low efficacy,199,200 its use has been limited to high-burden TB countries for 

children to prevent severe disease, for which it remains a cost-effective intervention.201,202 The 

first treatment for TB was found in 1944 with the discovery of streptomycin, followed by the rapid 

development of para-aminosalicyclic acid, isoniazid, pyrazinamide, cycloserine, ethionamide, 

ethambutol, and rifampicin.203 After a long lull in drug discovery, there have been recent additions 

to potential drug treatments for TB including bedaquiline, pretomanid, and delamanid.204–206 

Transmission of TB occurs via the airborne route, which makes population-level conditions 

such as poverty and crowding relevant to disease transmission.207 Bacteria are transmitted via 

airborne droplets after activities such as talking, coughing, and singing.208 After TB is transmitted 

to an individual, there are two disease progression pathways possible. Approximately 2-5% of 

individuals will develop active TB disease within a couple of years after infection, which results in 

the presentation of common symptoms including fever, cough, weight loss, and hemoptysis.209 

The majority of individuals (> 95%) who become infected with TB will never become ill with TB 

disease. Instead, these individuals will clear the infection or develop latent TB infection (LTBI), 

which is a state of persistent immune response lacking the clinical manifestation of symptoms. 

An infected person is not believed to transmit the bacteria in the LTBI state.210 If left untreated, 

individuals with LTBI may harbor this latent infection for their entire lives, or they may develop 

active TB disease, otherwise known as re-activation. The lifetime risk of this occurring is 

approximately 10%, and there are groups for which this risk is increased, including very young 

children and the elderly, immunosuppressed populations (e.g., those with HIV or on TNF-alpha 

inhibitors), and persons with silicosis or diabetes.211  
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It is estimated that approximately one-quarter of the world’s population (~1.7 billion 

individuals) is latently infected with TB, and this group remains a large reservoir for incident active 

TB cases.212 TB mainly manifests in the lungs as pulmonary TB but is also capable of affecting 

other body sites such as the brain and spine (known as extrapulmonary TB).209 The vast majority 

of individuals (~85%) who contract TB can be successfully treated and cured with a 6-month drug 

regimen; appropriate and consistent treatment is also able to prevent onward transmission from 

an infected individual.188 As a 6-month treatment course can be difficult for an individual to follow 

and maintain, programs such as directly observed treatment, short course (DOTS) implemented 

by the WHO have provided for a standardized framework in TB treatment courses, allowing for 

community health care workers to monitor and check in on TB patients daily.213 

 

Drug-resistant TB  

  Very shortly after the first treatments were discovered for TB, drug resistance was 

documented in M. tuberculosis strains.214 Through both experimental and observational studies, 

differences in drug-resistant (DR) TB clinical outcomes and the need for combination treatments 

were reported, and these remain extremely important concepts today.215,216 Almost fifty years after 

DR TB strains were discovered, the WHO, in collaboration with the International Union against 

Tuberculosis and Lung Disease, created the Global Project on Anti-Tuberculosis Drug Resistance 

Surveillance to track the spread of drug resistance worldwide, which remains the largest and 

longest-running initiative for antimicrobial drug resistance in the world.217 In 2019, approximately 

50% of all DR TB cases were located in India, China, and the Russian Federation.188 

TB drugs are classified into first-line and second-line drugs, largely based upon usage 

priority (i.e., first-line drugs prioritized over second-line) regarding the efficacy, risks, and 

bactericidal activity associated with the drugs. First-line drugs include isoniazid, rifampin, 
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ethambutol, and pyrazinamide, which comprise the staple treatment package for individuals with 

drug-susceptible TB. Second-line drugs, which typically carry more side-effects, are more 

expensive, and are prescribed for a much longer period of time, are used for the treatment and 

management of certain forms of DR TB. These are comprised of different drug classes including 

fluoroquinolones, injectable agents, and others including the newer drugs bedaquiline, linezolid 

and delamanid, and drug combinations are ideally prescribed according to drug susceptibility 

results for a given individual. Guidelines outlining potential treatment courses based upon drug 

resistance patterns are published regularly with the aim to simplify and streamline treatment to 

improve clinical outcomes.218 DR TB can be grouped into different categories, including mono-

resistant, poly-resistant, multidrug resistant (MDR), pre-extensively drug-resistant (pre-XDR) and 

extensively drug-resistant (XDR), dependent on the specific drugs to which an isolate is resistant. 

Mono- and poly-resistance are defined as resistance to one first-line drug and resistance to more 

than one first-line drug (other than both isoniazid and rifampin), respectively. MDR TB is defined 

as resistance to at least isoniazid and rifampicin, pre-XDR TB is defined as MDR TB disease with 

additional resistance to any fluoroquinolone, and XDR TB is defined as MDR TB disease with 

additional resistance to any fluoroquinolone and to at least one Group A second-line drug (i.e., 

levofloxacin, moxifloxacin, bedaquiline, and linezolid).219  

 Among all new TB cases from high-burden countries, approximately 3.6% are classified 

as MDR TB, and this proportion increases dramatically to 18% among individuals who have been 

previously treated for TB.188 Although these proportions have stayed relatively stable across 

aggregated TB measures, country-specific trends are more diverse based upon the TB epidemic 

in their setting. For example, while the average annual rate of change of MDR TB in South Korea 

has decreased over the past decade, it has continued to increase over time in many countries in 

Eastern Europe.188 The spread of XDR TB – the most drug-resistant form of TB – to over 100 
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countries is of grave concern.188 As current treatments are extremely limited and expensive,220 

and with mortality rates ranging from 50-90%,221 it has been deemed a public health crisis by the 

WHO.188 While drug treatment cure rates for MDR and XDR TB have remained quite low at 12% 

and 6.8%, respectively, newer TB drugs including bedaquiline, linezolid, and delamanid have 

allowed for more feasible and shorter treatment options, resulting in reductions in treatment cost, 

and increases in treatment cure rates.222 

 

TB epidemiology in South Africa 

Worldwide, the TB burden is mainly fueled by transmission in high-incidence settings, 

such as Asia and sub-Saharan Africa.223,224 Two-thirds of all new TB cases are found in just eight 

countries, one of which is South Africa.189 South Africa has the highest per capita number of new 

TB cases globally.224–226 TB was deemed a national emergency in South Africa in 1996, and the 

DOTS treatment program was implemented nationally.227 Yet, prior to this, the combination of 

disorganized health services, no standard treatment courses, and the beginning of the HIV 

epidemic in South Africa led to high rates of HIV and MDR TB co-infection,228 which remains a 

defining epidemiologic feature of the TB epidemic in this setting. Further, within the important 

mining industry in South Africa, miners are estimated to have one of the world’s highest incidence 

rates at 3,000 per 100,000 persons annually.229 

 The first reports of DR TB were in the 1980s,230 and although the national roll out of 

second-line drug treatments was prompt, delays in the start of treatment after diagnosis are still 

common. Even after the implementation of the Xpert MTB/RIF test, which provides rapid drug 

susceptibility test results for rifampicin allowing for earlier treatment initiation, delays in treatment 

initiation persist.231 The number of reported cases of MDR TB has risen steadily since it was first 

reported in South Africa, with very large increases after 2010, likely due to improvements in case 
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detection.232 KwaZulu Natal province in South Africa has one of the most challenging DR TB 

landscapes in the world, which had its first reported outbreak of XDR TB in 2005.233 This outbreak 

highlighted not only the existence of community transmission of XDR TB rather than its 

development through unsuccessful treatment, but also a much higher local prevalence of MDR 

TB than previously thought.233 After this outbreak was reported, it was determined that XDR TB 

had likely been present in South Africa over a decade prior.234  

 

1.2.2 Progress towards tuberculosis elimination 

Strategies to reduce the global TB burden 

 Strategies that are most relevant to the reduction in TB transmission in any setting include 

prompt diagnosis, appropriate treatment, and infection prevention.235 Diagnosis of TB ideally 

should be paired with universal drug susceptibility testing in order to determine the most 

appropriate individual treatment regimen.236 Rapid testing for drug resistance allows for both 

prompt diagnosis and appropriate treatment; however, rapid testing has been limited to rifampicin 

alone. Newer tests for a larger subset of TB drugs including second-line drugs are in 

development,237 and these diagnostics are critical to reducing the global burden of DR TB. Delays 

in TB treatment, as a result of an infected individual not seeking care, laboratory or drug 

distribution delays, poor prescribing practices, or programmatic shutdowns are significantly 

associated with increased transmission as infected individuals may still be in contact with 

others.238  

Development of drug resistance as a result of improper or insufficient treatment has 

highlighted the need for shorter and easier drug regimens for TB patients in order to prevent the 

continuation of drug resistance via this method. Long drug regimens are difficult to maintain, 

especially for DR TB, and cost of treatments remain a limiting factor to how far local TB programs 
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are able to invest into their treatment programs.239 Although the vast majority of new TB cases 

can be treated with first-line drugs, it is essential that we continue to make progress in developing 

shorter treatment regimens for drug-susceptible TB, which remains a consistent reservoir for DR 

TB cases.240 Further, latent TB infection acts as a reservoir for both drug-susceptible and DR TB; 

this means that preventative therapies are urgently required for latent DR TB infection, as well as 

diagnostics to identify individuals at greater risk for re-activation of TB disease.240 

In order to reach the ambitious TB elimination targets set by the WHO, strategies to reduce 

TB transmission will need to become more creative and locally-targeted. Specifically, a better 

understanding of the local TB epidemiology through district health systems can provide a more 

granular perspective of local catalysts of TB transmission to guide community-level 

interventions.241 Local TB epidemiology is closely related to the concept of active case finding, a 

strategy focused on testing specific areas or neighborhoods in a setting where there are likely to 

be more TB cases, which can lead to earlier detection and treatment of infected individuals.242 

Further, identifying areas that could potentially act as ‘pockets of susceptibility’ based upon age, 

occupation, or living conditions within a specific setting combined with active case finding can 

lead to more efficient use of community health resources.241 

 

Potential secondary impacts of COVID-19 on TB control 

Changes in social mixing patterns243 and shifting resources towards COVID-19 have 

inevitably had negative repercussions in the control of other diseases such as TB.244 On a global 

scale, COVID-19 has negatively impacted our healthcare systems and has the potential to 

severely disrupt services for TB, HIV, and malaria, the leading global killers among infectious 

diseases.245,246 In particular, TB surveillance data indicate substantial negative effects of the 

pandemic with large reductions in case notifications, ranging from 20–78%.247–254 In South Africa, 
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which has the highest per capita number of new TB cases globally,224 case notifications 

decreased by 33% in early 2020 as compared to previous years.255 Monthly notifications fell by > 

50% in South Africa over the course of March – June 2020.188 This pattern has precedent, with 

similar trends in TB case notifications seen in Hong Kong during the SARS epidemic.256 With the 

complicated nature of TB disease including a long incubation period and latent disease,257 

reduced case notifications should not be considered a reflection of decreased incidence. Rather, 

decreased detection may lead to increased incidence and mortality, as individuals with 

undetected TB may continue spreading the disease while treatment is delayed.258  

In a modeling analysis by the WHO, if the proportion of detected and treated individuals 

with TB were to fall by 25–50% over the course of three months (similar to trends described 

above), there may be up to 400,000 excess TB deaths in 2020 alone, which could push the total 

annual number of TB deaths up to 1.9 million, levels not observed since 2012.259 Further, a 3-

month lockdown with an extended 10-month period of reinstating TB services has been predicted 

to lead to at least 6 million additional cases from 2020–2025, with an additional 1.4 million deaths 

during this period.246 Unfortunately, we have now seen some of these estimates come to fruition. 

There was a large drop in individuals reported as newly diagnosed with TB in 2020 – from 7.1 

million in 2019 to 5.8 million in 2020.260 There has also been a resultant increase in TB deaths 

with the best estimates reporting just over 1.5 million deaths, a total not observed since 2017.260 

The pandemic has also impacted access to treatment, with a 15% drop in DR TB treatment, a 

21% drop in TB preventative treatment, and an overall drop spending for TB diagnostic, treatment, 

and preventative services (totaling $5.3 billion, which is less than half of what is needed).260 

Social distancing and mask wearing policies may have an effect on TB transmission; 

however, the impact of these interventions are unlikely to outweigh those of longer periods of 

infectiousness, poor treatment outcomes, increased malnutrition, prolonged household TB 
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exposure, and increased rates of unemployment leading to higher levels of poverty.261 Further, 

economic contractions as a result of the COVID-19 pandemic have the potential to affect both 

global TB response programs as well as individuals most at risk for contracting TB.188 Methods to 

try and reduce the number of individuals infected with TB who remain undetected include more 

intensive active case finding approaches to target specific areas where cases are more likely 

going undetected, scaling up preventative treatment and contact tracing, as well as maintaining 

direct and uninterrupted diagnostic and treatment supply chains.246  

 

1.3 Significance and Overview of Aims 

Local public health programs have limited resources and determining which efforts will have the 

greatest benefit in terms of fewer COVID-19 cases, deaths, and hospitalizations is very difficult in 

a dynamic pandemic environment. In certain scenarios such as during levels of very high COVID-

19 transmission, contact tracing may not be an efficient add-on to enhanced case investigations 

by local public health workers, yet these scenarios are not yet defined for specific settings. 

Further, exploring the impacts of both different levels and types of public health interventions 

within a specific setting has the potential to not only assess how well the pandemic could have 

been handled during the initial stages, but also to determine optimal timing of these interventions, 

which will be useful information as we work towards further reduction (and perhaps the 

endemicity) of COVID-19. A focused evaluation of local public health programs using modeling 

methods equipped to integrate the complexities of the testing, tracing, and COVID-19 disease 

processes has the potential to provide tailored programmatic goals for the greatest impact. In Aim 

1 of this dissertation, we utilized a network-based transmission model to determine the impact of 

feasible changes in specific steps in the contact tracing process in the state of Georgia. 
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It is crucial to have a better understanding of factors that drive disease transmission at the local 

level, taking into account the specific context whether that be a county-level contact tracing 

program or a university setting. Further, it is important to document transmission characteristics 

within the specific re-opening structure a university has taken to assess the overall effectiveness 

of current strategies, to build on future campus prevention strategies for epidemics. It is not yet 

known whether schools and universities have unique transmission characteristics: e.g., 

secondary attack rates, the extent of asymptomatic transmission, and contact patterns among 

students and faculty. Thus, it is unclear whether mitigation strategies applied in the community 

differ from those optimal for campuses. For example, whether further restrictions on group 

activities are warranted due to high numbers of close contacts, or more frequent testing 

requirements are necessary to address high levels of asymptomatic transmission. Estimation of 

transmission network characteristics in this setting is not only critical to informing re-opening 

strategies, but for maintaining safe learning environments as we slowly transition towards 

normalcy. In Aim 2, we constructed the contact tracing networks on the Emory University campus 

to explore network dynamics during the academic year. 

 

Repercussions of COVID-19 mitigation strategies have already been observed for the control of 

other infectious diseases such as TB. Efforts to curb the COVID-19 pandemic and avoid setbacks 

in TB and DR TB control, specifically, require further studies to understand disease transmission 

dynamics and the secondary impacts of mitigation strategies, including how these strategies may 

need to vary by location and setting. The impact of mitigation strategies, such as national 

lockdowns, on TB incidence remains unknown. Important metrics to further understand the 

potential impact of mitigation strategies is the estimated number of undiagnosed DR TB cases 

and their spatial distribution. Quantifying changes in TB diagnoses and their geospatial 



 

 
 
 
 
 

28 

distribution after national lockdowns especially within a high-burden TB setting is needed to 

identify the impact of mitigation strategies on TB control, which will ultimately inform ongoing 

progress towards TB elimination. Identifying both the extent as well as the estimated locations of 

undetected DR TB cases has the potential to guide enhanced active case finding methods, as 

well as identify areas at greater risk of localized community transmission. In Aim 3 of this 

dissertation, we examined trends in both the number and geospatial distribution of DR TB 

diagnoses in KwaZulu-Natal, South Africa and evaluated the potential extent of undiagnosed 

cases as a result of the COVID-19 national lockdowns. 

 
 
1.4 Specific Aims 

 

Aim 1: To determine the optimal combination of feasible interventions that can prevent the 

greatest proportion of COVID-19 transmission in Georgia.  

Hypothesis: We hypothesize that reducing time from positive test to index case interview to ≤ 2 

days and eliciting information for ≥ 65% of close contacts will have the greatest impact on reducing 

transmission given the public health and clinical trade-offs among a set of defined feasible 

interventions (1–14 days to index case interview; 40–70% of close contacts elicited). 

 

Aim 2: To characterize transmission networks of COVID-19 at Emory University and determine 

the proportion of transmission epidemiologically linked to an asymptomatic index case. 

Hypothesis: We hypothesize that approximately 30% of cases reported on campus during the 

2020–2021 school year are epidemiologically linked to an asymptomatic index case.  
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Aim 3: To estimate the change in DR TB diagnosed cases and their spatial distribution after the 

COVID-19 pandemic lockdowns in KwaZulu-Natal province, South Africa. 

Hypothesis: We hypothesize that the number of diagnosed cases of DR TB will be 35% lower in 

the 12 months after pandemic shutdowns (April 2020), as compared to prior years. 

Neighborhoods with lower socioeconomic status will account for a greater proportion of cases 

than before the pandemic.  

 

1.5 Data Sources 
 

Georgia Department of Public Health (GDPH) 

The Georgia Department of Public Health (GDPH) COVID-19 surveillance and contact 

tracing data includes demographic, symptom, date, and home location information on cases and 

close contacts.  

 

State Electronic Notifiable Disease Surveillance System (SendSS) 

  The State Electronic Notifiable Disease Surveillance System (SendSS) is an electronic 

database used for the capture and report of notifiable diseases in the state of Georgia. It allows 

for data input and tracking of individuals across the state, in order to monitor disease trends. 

Patient demographics, laboratory testing, and clinical information is captured, in addition to other 

information depending on the specific notifiable disease. Patients are uniquely identified using a 

‘Person Under Investigation’ (PUI) ID.  

 

Google/MTX 

 In response to the COVID-19 pandemic, the state of Georgia implemented a new contact 

tracing platform developed by Google/MTX in order to improve contact tracing efficiency.262 This 
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is a web-based portal that allows for close contacts of diagnosed cases to be monitored via text 

by contact tracers, self-enroll as a close contact of a diagnosed case, and have their questions 

answered.  

 

The GDPH databases to be utilized for this aim contain extensive information on diagnosed cases 

and their close contacts. Data elements utilized for this aim include demographics, location 

information (e.g., county of residence), date information (e.g., of interview, symptom onset, 

testing, hospital course), symptomaticity, and essential worker status. Further details on these 

data sources, variables used, and sample sizes are provided in Appendix Table I-1. 

 

Online Analytical Statistical Information System (OASIS)  

 The Online Analytical Statistical Information System (OASIS) is a publicly available online 

platform comprised of tools to access GDPH’s health data repository. The state’s health data 

repository contains aggregated data on vital statistics, hospital visit and discharge information, 

behavioral risk factor surveillance, and other population-level data stratified by demographic 

characteristics such as age, race, and sex.  

 

Emory University Contact Tracing Program 

The Emory University Contact Tracing Program was created in response to the COVID-

19 pandemic in preparation for the re-opening of the university in the Fall of 2020. The program 

utilizes a REDCap database to capture and store the information they gather through case 

investigation and contact tracing interviews for index cases and their reported close contacts.  

This REDCap database contains extensive information on diagnosed cases and their reported 

close contacts. Data elements utilized for this aim include demographics, university affiliations, 
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location information, travel and close contact data, testing information, symptoms and risk factors, 

and dates of isolation and quarantine. Cases are uniquely identified with their Emory ID number. 

Further details on this data source, variables used, and sample sizes are provided in Appendix 

Table I-2. 

 

Statistics South Africa 

 Statistics South Africa (Stats SA) collects population-level information through collection 

of the census in addition to many other country-wide surveys. Stats SA conducts over 300 

different statistical releases annually. These data are publicly available for research use. This aim 

utilized sociodemographic and living condition information from the South African census, the 

Demographic and Health Survey, General Household Survey, and Living Conditions Survey. 

KwaZulu-Natal province data was exported by Stats SA and include detail to the census unit of 

main place, which are smaller spatial units within municipality, district, and province units. 

KwaZulu-Natal province consists of 10 districts, 43 municipalities, and 197 main places. The 

datasets acquired from Stats SA provided municipality-level information on population density, 

socioeconomic information, and general household information.   

 

‘The Role of Casual Contact and Migration in Extensively Drug-Resistant (XDR) TB 

Transmission in South Africa: a Geospatial, Genomic and Social Network Study’ 

(CONTEXT) 

  ‘The Role of Casual Contact and Migration in XDR TB Transmission in South Africa: a 

Geospatial, Genomic and Social Network Study’ (CONTEXT) (R01AI138646) is our group’s 

current NIH-R01 prospective cohort study. The parent study aims to estimate the impact of casual 

contact and migration on XDR TB transmission in KwaZulu-Natal, South Africa. All culture-
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confirmed DR TB patients diagnosed in KwaZulu-Natal province are eligible regardless of sex, 

age or vital status and are identified at the provincial TB reference laboratory weekly. Eligibility 

has been confirmed for n = 1,273 to date. DR TB cases will be geocoded based on the healthcare 

facility of diagnosis. From the CONTEXT study, DR TB patient demographics including age and 

sex, as well as comorbidity, occupation, and education information. Geocoded information 

including healthcare facility of diagnosis, home location, and places frequently visited will also be 

utilized in this analysis. Participants are uniquely identified with a Screening ID and, if eligible, a 

Study ID. Further details on these data sources, variables used, and sample sizes are provided 

in Appendix Table I-3 and Appendix Table I-4. 
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Chapter 2: The balance between public health capacity and clinical capacity in the early 

stages of the COVID-19 pandemic in the state of Georgia: a modeling study 

 

Abstract 

Background 

Local assessments of public health programs and their impact on healthcare strain during the 

COVID-19 pandemic are needed to inform decision making throughout the ongoing pandemic 

and in preparation for future disease outbreaks. We sought to assess the trade-offs between 

public health capacity and clinical capacity in the early stages of the COVID-19 pandemic in the 

state of Georgia.  

Methods 

We leveraged data from the Georgia Department of Public Health (GDPH) to parameterize a 

network-based mathematical model to study the relationship between contact tracing activities 

and hospital utilization. We represented the transmission and natural history of COVID-19 

infection in Georgia from March 1st, 2020 to August 31st, 2020. We modeled two network contact 

structures (within household and community-level) within the full network using temporal 

exponential random graph model statistical frameworks. We estimated the impact of increasing 

the proportion of close contacts traced and reducing the time from index case diagnosis to case 

investigation interview on COVID-19 cases, deaths, and hospitalizations.  

Results 

We found that even with complete and immediate contact tracing, hospitals would remain over 

capacity for greater than a week during ICU census peaks. Complete and immediate contact 

tracing was able to avert 5% of infections and 4% of deaths and reduced the time during which 

ICU capacity was exceeded by 8 days. We found a greater impact for improvements to the speed 
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of tracing versus the completeness of tracing, with a 1-day lag negatively impacting outcomes to 

a greater degree than a reduction in the proportion of contacts traced by 20%. 

Discussion 

Overall, we found that in our modeled scenarios, any isolated or combined contact tracing 

intervention was unable to prevent the over-capacity of ICU beds in the state of Georgia. While 

contact tracing had a positive effect on outcomes, these effects were greatest shortly after index 

case diagnosis and declined thereafter before plateauing after approximately 1 week. Our results 

bring into question the utility of contact tracing programs in the setting of a widespread respiratory 

viral pandemic and highlight the importance of the use of multiple mitigation strategies and 

ensuring adequate clinical infrastructure in the context of emerging outbreaks and our preparation 

for the next pandemic. 
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Introduction 

With over 79 million cases and 960,000 deaths in the United States as of March 2022, the COVID-

19 pandemic has put a catastrophic strain on both our public health systems and clinical 

infrastructure.1 With unprecedented hospital utilization in the initial waves of the pandemic, 

healthcare providers were forced to implement new frameworks around surge planning and adapt 

to the uncertainties of a novel infectious disease.263–265 As with other infectious diseases, public 

health systems have implemented case investigation and contact tracing programs to prevent or 

relieve the strain placed on clinical capacity by halting transmission and new infections.113,114 Like 

any other intervention strategy, contact tracing has its limitations. If transmission becomes too 

widespread in a community and potentially exposed cases cannot be identified prior to their 

becoming infectious, contact tracing becomes insufficient to reduce transmission. In turn, higher 

transmission levels may lead to strains on clinical capacity depending on the severity of 

disease.118,119  

 

This balance between public health capacity and clinical capacity differs across settings, but there 

is typically an inverse relationship between public health staff workload and completeness and 

timeliness of contact tracing.266 Local assessments of public health programs have described wide 

variation in local COVID-19 epidemiology in addition to large differences in a health department’s 

ability to reach cases and elicit contacts; thus, comparisons between local health departments 

are difficult.267 Careful assessment of local programs is needed to better inform decision making 

and implementation during the ongoing pandemic and preparation for future disease outbreaks.268 

It is important to determine whether or not a local public health program has the capacity to 

complete the majority of its case investigation and contact tracing responsibilities. Due to the 

diversity in programmatic approaches and little empirical evidence to inform best practices, it is 



 

 
 
 
 
 

36 

important to examine this at the local level to determine if resources may be better allocated to 

other mitigation strategies and clinical programs.269 

 

While previous modeling studies aimed at providing guidance to public health programs have 

emphasized minimizing testing delays and optimizing tracing coverage, this advice is provided at 

the general level and lacks an assessment of the relationship to clinical utilization.144 Further, the 

size and capacity of a local public health workforce (i.e., the number of staff and workload 

potential) should be considered when determining feasible and sustainable programmatic 

goals.145,146 Even within the context of an effective vaccine, contact tracing will continue to be an 

indispensable tool for controlling the spread of COVID-19 amidst pandemic fatigue and new 

variants.134,135,270 Thus, assessments and modeling studies of contact tracing programs at earlier 

stages in the pandemic with smaller caseloads may provide useful information as we move 

towards endemicity.  

 

Local public health programs have limited resources and determining which efforts will have the 

greatest benefit in terms of fewer COVID-19 cases, deaths, and hospitalizations is challenging in 

a dynamic pandemic environment. During periods of very high COVID-19 transmission, contact 

tracing may not be an efficient add-on to enhanced case investigations by local public health 

workers. This may be especially true from a clinical capacity perspective, yet these scenarios are 

not well defined for specific settings. A focused evaluation of a local public health program using 

modeling methods equipped to integrate the complexities of the testing, tracing, and COVID-19 

disease processes has the potential to identify programmatic goals with the greatest potential 

impact. In this study, we sought to assess the trade-offs between public health capacity and 

clinical capacity in the early stages of the COVID-19 pandemic in the state of Georgia. We 
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leveraged data from the Georgia Department of Public Health (GDPH) to parameterize a network-

based mathematical model to study the relationship between contact tracing activities and 

hospital utilization.  

 

Methods 

We used a network-based model of infectious disease dynamics to represent the transmission 

and natural history of COVID-19 infection across the state of Georgia. The model was built and 

simulated using the EpiModel software platform.271 This model represented individuals in Georgia 

with temporal exponential random graph models (TERGMs) that estimated and simulated 

dynamic contact networks based upon the formation and dissolution of both close (household) 

and casual (community-level) contacts.272 We simulated individual scenarios from March 1st, 2020 

to August 31st, 2020 (prior to subsequent waves) in daily time steps and classified individuals 

based upon age structure.  

 

Network Structure 

This model uniquely represented individuals in Georgia classified by age (represented as a 

continuous attribute), with initial distributions drawn from the empirical age distribution of Georgia 

estimated by US Census Bureau. The population on average was 37 years old. The 

approximately 10 million people who reside in Georgia were represented by a population of 

100,000 individuals in the network simulations for computational efficiency; however, all summary 

model outputs are population standardized.  

 

We modeled two network contact structures within the full network: a within-household network 

and community-level contact network (Figure 2.1). The same set of nodes (individuals) were used 
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for the full network, with differing connections (edges) between individuals based upon the distinct 

contact structures.  

 

Among household-household contacts, individuals made repeated contacts with the other 

members in their household with a longer duration of contact. Individuals were assigned to a 

‘household’ within the network to reach the average number of people per household in each 

county as estimated by the U.S. census (i.e., 2.7). The average daily community-community 

degree was 5 based upon reports of population contact patterns in the US during the COVID-19 

pandemic (Table 2.1).154 Both types of contacts were formed at random with respect to 

demographics.  

 

We represented these networks using two multi-layer dynamic network approaches with TERGMs 

to simulate the interactions between household members over time, and ERGMs to simulate 

community-level contacts which were refreshed at every time step. Both approaches were fit to 

the network degree distributions of a household and a community. Models were estimated and 

simulated using standard MCMC-based fitting procedures272,273, and then diagnosed by 

comparing the simulated network data against the input data points. 

 

COVID-19 Transmission and Progression 

This model represented COVID-19 transmission and disease processes via a modified SEIR 

framework (Figure 2.2). After infection, individuals in the network could stochastically transition 

from the susceptible to exposed compartment, followed by a transition into one of two infected 

pathways based upon presence or lack of symptoms. Following estimates from the Georgia 

Department of Public Health (GDPH), 57–81% of persons went through the symptomatic 
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infectious pathway, with the probability of symptoms dependent on age decile. Following prior 

modeling parameters, asymptomatic infected individuals had 50% the transmission probability 

compared to symptomatic infected individuals.274  

 

For symptomatic individuals, there was a pre-symptomatic infectious stage followed by a clinical 

infectious stage. Contact rates were reduced for infected and symptomatic individuals, in addition 

to those hospitalized and in an intensive care unit (ICU). Infected individuals with symptoms may 

have had a mild or severe hospitalization course, represented by admissions to a hospital floor 

or an ICU, respectively.  

 

Age-specific mortality rates were applied using general age-specific mortality data from OASIS 

for the state of Georgia, with an excess mortality factor due to COVID-19 approximated from the 

GDPH data. We calibrated the model to both daily case counts and daily death counts from the 

first month of the pandemic in Georgia (March 1st, 2020 to April 1st, 2020). 

 

Intervention Scenarios 

Control scenarios were fitted to observed daily case counts prior to the timing of each set of 

interventions, and these were compared to the simulations in which interventions were applied to 

reduce disease transmission. The flow from cases to eligible contacts for which interventions were 

applied is displayed in Figure 2.3. Further details regarding the rules dictating movement in the 

network model are described in the appendix. We modeled three intervention scenarios: 

increasing the fraction of traced contacts, decreasing the time from positive index test to interview 

date, and both of these interventions together.  
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Outcomes included the total number of COVID-19 cases, hospitalizations, and deaths. The 

intervention scenarios ran for the full six months. The fraction of traced contacts was varied from 

25–100%. This intervention was implemented through a reduction in the number of contacts for 

a corresponding subset of the contacts in the network to represent the quarantine period for a 

fraction of traced contacts. Although close contacts could have been in any of the disease 

transmission and progression compartments, a larger proportion of contacts were represented by 

the S, E, and I (excluding those tested) compartments via defining the probability of tracing 

conditional on disease stage. A baseline lag in time to index case interview from positive test date 

was set at 2 days. Time to index case interview from positive test date was varied from 0–28 days. 

This intervention was implemented by the incorporation of a parameter that introduced a time lag 

prior to the quarantine period for the fraction of traced contacts by the corresponding number of 

days in which the index case interview is delayed. A baseline fraction of traced contacts was set 

at 60%. Combined increases in the fraction of traced contacts and decreases in the time to index 

case interview were assessed using fractions ranging from 25–100% with either a 1-day lag or no 

lag to index case interview. Intervention scenarios were applied on Day 35. For all intervention 

scenarios, we assumed that 80% of close contacts traced would successfully complete 

quarantine.275 

 

In order to quantify the feasibility of trade-offs between public health and clinical capacity, various 

proxy measurements were captured during model simulations. To estimate local public health 

utilization and needs, the number of diagnosed cases and their eligible close contacts were 

quantified, corresponding to the eligible pool for case investigation and contact tracing, 

respectively. Clinical capacity was estimated by comparing the number of individuals in 
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hospitalized and ICU compartments in the disease transmission and progression framework to 

the total number of hospital and ICU beds in the state of Georgia. 

 

Calibration, Simulation, and Analysis 

The model was calibrated to observed cases and deaths in the first month of the outbreak (March 

2020) prior to the timing of the interventions. Free parameters for model calibration were: daily 

screening rates (stratified by symptomatic status); the multiplier for COVID-19 mortality; and the 

probability of infection per contact. 

 

Scenarios were simulated for a period of six months in daily time steps. The model was simulated 

1000 times for each intervention scenario, and results were summarized with medians and 95% 

simulation intervals. Outcomes of the number and percent of infections and deaths averted, as 

well as the peak number of ICU admissions and length of time above ICU capacity were used to 

compare observed outcomes to simulated scenarios. 

 

Results 

Model calibration results are displayed in Figure 2.4. March 1st, 2020 represents Day 1 in the 

modeled scenarios. The empirical 7-day rolling average number of new cases diagnosed on April 

1st was 522, compared to the fitted model of 520 (interquartile range [IQR]: 497, 539). The total 

incidence from this calibration which included both undiagnosed cases and false-negative cases 

(from imperfect PCR sensitivity) was 1327 (IQR: 1310, 1348). The empirical 7-day rolling average 

number of deaths on April 1st was 26, compared to the fitted model of 31 (IQR: 27, 34).  
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Table 2.2 displays the results of the three implemented interventions at Day 185. In the no-

intervention scenario, the median cumulative incidence was 96550 (simulation interval [SI]: 

96531, 96579) and the median cumulative mortality was 6571 (SI: 6554, 6596). Varying the 

proportion of traced contacts resulted in a percent of infections averted (PIA) ranging from 1% 

with 25% of contacts traced to 3.2% with 100% of contacts traced. There was no impact on the 

number of deaths averted for tracing only 25% of contacts. Tracing up to 80% or 100% of contacts 

averted 172 (SI: 118, 207) or 190 (SI: 164, 224) deaths, respectively. Regardless of the timing of 

when an index case was interviewed after a positive test, the PIA was 2.1% if contact tracing was 

performed, corresponding to approximately 2000 infections averted.  

 

The number of infections averted, when put into the context of how many contacts were traced, 

can roughly estimate the ‘number needed to trace’ to avert 1 infection, or can be interpreted as 

the efficiency of contact tracing. The estimates for combined interventions are shown in Table 

2.3, with the most efficient being the 100% traced with no lag scenario, where approximately 15 

contacts would need to be traced to avert 1 infection. All scenarios in which there was no lag in 

tracing needed less than 20 contacts to be traced to avert 1 infection, while any of the scenarios 

with a 1-day lag needed 20 or more contacts to be traced to avert 1 infection.  

 

With the combined increase in the fraction of traced contacts and reduction in time to index case 

interview, at 80% of contacts traced, reducing the time to interview from 1 to 0 days could avert 

almost 1000 infections and 82 deaths. This effect was magnified for contact tracing 100% 

contacts, with a similar reduction in reaching cases, over 1000 infections and 58 deaths could be 

averted. Even with only 25% contact tracing, immediately reaching index cases could avert over 

300 cases compared with waiting 1 day. Transmission mainly occurred between household 
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contacts compared to community contacts (61% versus 39%) regardless of intervention scenario 

(Table 2.4).  

 

The number and peak of ICU admissions over time are displayed in Figure 2.5 and Table 2.5. 

The dotted red line in Figure 2.5 represents the total ICU bed capacity in the state of Georgia. 

Under the no intervention scenario, the peak number of ICU admissions over capacity was 338 

(SI: 330, 365) and the time over capacity was 19 days (SI: 18.5, 19.7). None of the interventions 

implemented were able to reduce the number of ICU admissions to below capacity; however, the 

time over capacity was affected by the various interventions. Increasing the proportion of traced 

contacts had an inverse dose-dependent response to peak number of ICU admissions over 

capacity. With 100% of contacts traced, the number of days over capacity could be reduced by 4 

days, with 117 fewer ICU admissions at the peak.  

 

Similar to the relationship between variation in time to index case interview and cumulative 

incidence, there was little impact on timing variation on the peak number of ICU admissions or 

time over capacity. Still, contact tracing at any point reduced the number of peak ICU admissions 

by at least 42, and the days over capacity by 1.5 days.  

 

Combined interventions were able to reduce the peak number of ICU admissions by 211 and the 

time over capacity by 8 days in the 100% traced with no lag scenario. Approximately 100 peak 

ICU admissions could be averted with at least 50% contact tracing and no lag to index interview.  

 

The number of eligible contacts differed across interventions varying the proportion traced and 

were similar across interventions solely varying the time to index case interview (Figure 2.6).   
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To better understand the impact of combined interventions, scenarios were plotted against 

outcome measures (Figure 2.7). There was a similar relationship between the combined 

intervention scenarios and cumulative incidence, with a greater impact of increases in the 

proportion traced on incidence at shorter lag times. The impact of increasing the proportion traced 

plateaued around days 10–14, resulting in minimal impacts of increasing the proportion traced on 

cumulative incidence beyond that point.  

 

Similar overall patterns are observed for cumulative deaths and peak ICU admissions. There were 

sharp decreases in both outcomes if the proportion of contacts traced was increased shortly after 

an index case is diagnosed. The impact of these interventions plateaued around day 10 after 

index case diagnosis. Interestingly, the impact on cumulative deaths was similar given 100% or 

80% of contacts traced, as well as for 60% or 50% of contacts traced, regardless of time lag. 

There were no differences in the impact of combined interventions on peak ICU admissions 

beyond day 5 after index case diagnosis.   

 

Discussion 

In this study, we modeled the impact of contact tracing interventions to determine the trade-offs 

between public health and clinical capacity. We found that even with complete and immediate 

contact tracing, hospitals would remain over ICU capacity for greater than a week. Complete and 

immediate contact tracing was able to avert 5% of infections and 4% of deaths and reduced the 

time over peak ICU capacity by 8 days, from 19 days to 11 days. While contact tracing had a 

positive effect on outcomes, we observed that these effects were greatest shortly after index case 

diagnosis, and that effects plateaued after approximately 1 week. Given this relatively modest 
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impact on infections and hospitalizations, our results emphasize the importance of ensuring 

adequate clinical infrastructure in the context of emerging outbreaks and our preparation for the 

next pandemic.  

 

Previous studies have described that for airborne infections, contact tracing has to be far more 

efficient and rapid in order to have an impact.117 Specifically, when the number of contacts cases 

have are heterogenous with little clustering among individuals, this necessitates a greater 

increase in the efficiency of contact tracing. Further, for airborne infections such as COVID-19, 

there may be a significant fraction of contacts that remain untraceable, which may make it 

impossible to achieve the desired reductions in incidence and hospitalizations, at which time 

additional control measures would be required for control. In our model, we theoretically captured 

all close contacts and targeted them for tracing and were still unable to avoid strained and 

overflowing ICUs.  

 

We found a much greater impact of the speed of tracing versus the completeness of tracing, with 

a 1-day lag negatively impacting outcomes to a greater degree than a reduction in the proportion 

traced by 20%. This may have relevance when considering the prioritization of index cases to 

interview – prioritizing tracing for those individuals with many more contacts might help to reduce 

the healthcare burden to a greater degree than focusing efforts homogenously across all index 

cases. Similar findings emphasizing the importance of minimizing the delay to tracing have 

estimated up to 80% prevention of transmissions if tracing was able to occur immediately through 

the use of a digital contact tracing or app-based methods.141 
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It is important to note that we modeled contact tracing interventions apart from any other mitigation 

strategies such as effective vaccines, behavioral interventions, and lockdown policies. Other 

studies have shown that as an isolated intervention, contact tracing is unable to fully contain 

transmission at high levels, and should be implemented in conjunction with other measures.138,276 

Regardless, as a single intervention measure, it is still an effective tool for pandemic 

preparedness.277 While contact tracing solely may not be able to control future waves of a 

pandemic, it does have the ability to reduce transmission and hospital admissions, as observed 

in our study and others.278 

 

We found that combined contact tracing interventions had diminishing returns over time. These 

findings echo those of studies demonstrating that incremental increases in budgets for contact 

tracing programs have yielded diminishing returns in reducing disease prevalence.120 In dense 

networks, where individuals have many contacts with their community and household, contact 

tracing typically has a low impact.149 An important factor to consider is the primary contact 

structure that underlies disease transmission in a community, which can be done through 

empirical data analysis. We observed that transmission fractions of network layers did not differ 

across various intervention strategies, but this may not be the case in other settings. The majority 

of transmission in our scenarios occurred at the household level; however, we did not observe 

differential impacts on the fraction of transmission occurring within the household given varying 

contact tracing interventions. Thus, it may be important to prioritize household contacts in contact 

tracing protocols even if there is a delay between index case diagnosis and interview.  

 

This study has important implications for resource allocation and outbreak preparedness. Contact 

tracing is a useful and necessary tool to reduce mortality and the burden on healthcare settings.279 
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However, in the case of a global pandemic, it is crucial to prioritize adequate clinical resources or 

have existing surge capacity units ready for use. Strengths of this analysis included its use of 

existing local surveillance data to inform model parameters, which make it more suited to provide 

locally targeted conclusions. Further, although these models and intervention scenarios were 

applied to the time period at the beginning of the pandemic, these results may be helpful in 

understanding the dynamic trade-offs within the context of other emerging infectious diseases, or 

within infection reduction or elimination programs.  

 

There were several limitations to this study. First, we assumed homogenous age-mixing in our 

contact structures, which was unlikely and would have an impact on outcome measures given the 

greater risk for hospitalization and severe outcomes among the elderly population. Second, we 

did not consider contact tracing ‘errors’ in which elicited contacts were not truly contacts by 

definition. Third, we did not incorporate age- or time-stratified testing probabilities or an under-

reporting factor, which was a noted limitation of incidence estimates at the beginning of the 

pandemic. Fourth, behavioral interventions such as stay-at-home orders and mask mandates 

were not incorporated into our model and would have impacted outcomes.  

 

Overall, we found that in our modeled scenarios, either isolated or combined contact tracing 

interventions were unable to prevent an excess of critically ill patients above and beyond the 

capacity of ICU beds in the state of Georgia. Our findings have implications for the prioritization 

and preparation for future pandemics and outbreaks, in the context of allocating resources 

towards public health and clinical capacity. Specifically, increases in regional clinical capacity may 

be required as an adjunct to contact tracing activities to limit future outbreaks and their strain on 

local hospital systems.  
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Figure 2.1. Network model schematic. This model represented individuals within and across household and community network 
structures. Networks are comprised of household-household, community-community, and household-community contacts.  
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Figure 2.2. Model progression. COVID-19 transmission and disease progression processes were represented as transitions in a 
modified Susceptible-Exposed-Infected-Recovered compartmental framework. 
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Figure 3. COVID-19 transmission and disease progression processes will be represented as 
transitions in a modified Susceptible-Exposed-Infected-Recovered compartmental framework. 

S = Susceptible
E = Exposed
Ipresym = Presymptomatic infection
Iaym = Asymptomatic infection
Isym = Symptomatic infection
H = Hospitalized
HICU = Admitted to ICU
R = Recovered
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Table 2.1. Primary model parameters. 

Parameter Value - Georgia Source 

Populations   

Total population size 100,000  
Median age 36.7 years US Census Bureau 

Natural history & clinical   

Proportion symptomatic* 57.3, 64.2, 76.0, 80.0, 81.3, 81.4, 
76.9, 72.3, 66.6 SendSS dataset 

Proportion hospitalized given 
symptomatic infection* 

6.0, 6.3, 8.1, 15.4, 20.7, 26.8, 35.7, 
46.5, 53.9 SendSS dataset 

Proportion needing intensive 
care given symptomatic 
infection* 

1.8, 2.2, 2.0, 4.6, 7.5, 10.9, 17.8, 
22.5, 20.0 SendSS dataset 

Proportion recovered given 
symptomatic infection* 

92.2, 91.5, 89.9, 80.0, 71.8, 62.3, 
46.5, 31.0,  26.1 SendSS dataset 

Proportion needing intensive 
care given hospitalization* 

23.5, 26.0, 20.7, 22.7, 26.5, 28.9, 
33.3, 32.7, 27.1 SendSS dataset 

Duration of latent period 4 days Davies, 2020104 
Duration of preclinical 
infectious period 1.5 days Davies, 2020 

Duration of clinical infectious 
period prior to recovery 3.5 days Davies, 2020 

Duration of clinical infectious 
period prior to hospitalization median 3 days (IQR 0,7) SendSS dataset 

Duration of clinical infectious 
period prior to intensive care 9.5 days 

https://www.cdc.gov/cor
onavirus/2019-
ncov/hcp/clinical-
guidance-management-
patients.html 

Duration of subclinical 
infectious period 5 days Davies, 2020 

Duration of hospitalization prior 
to recovery median 4 days (IQR 2,7) SendSS dataset 

Duration of hospitalization prior 
to intensive care 2 days Vekaria, 2021280 

Duration of intensive care stay 
prior to recovery median 5 days (IQR 2,11) SendSS dataset 

Natural mortality rate^ 

607.6, 29.6, 12.8, 21.6, 62.8, 116.1, 
142.8, 186.5, 228.3, 300.4, 416.1, 

600.4, 945.0, 1453.1, 1952.3, 
2817.0, 4368.9, 7158.8, 15626.4 

https://oasis.state.ga.us/
oasis/webquery/qryMort
ality.aspx 

COVID-related mortality 
multiplier 1300 Fitted 

Transmission   

Transmission probability per 
contact 0.11 Kraay, 2021281; Fitted 
Relative risk of asymptomatic 
individuals 0.5 Davies, 2020 
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Contact Patterns   

Household-Household Daily 
Mean Degree 2.7 

https://www.census.gov/
quickfacts/GA 

Community-Community Daily 
Mean Degree 5 Feehan, 2021154 

Testing & Quarantine   

PCR test sensitivity 0.8 Lopman et al., 2021283 
Interventions   

Time lag to case investigation 
at baseline 2 days Assumed 
Proportion of contacts traced 
at baseline 0.6 Assumed 

 
*Proportions displayed for following age groups: 0-10, 11-20, 21-30, 31-40, 41-50, 51-60, 61-70, 71-80, 
80+ 
^Rates displayed for following age groups: <1, 1-4, 5-9, 10-14, 15-19, 20-24, 25-29, 30-34, 35-39, 40-44, 
45-49, 50-54, 55-59, 60-64, 65-69, 70-74, 75-79, 80-84, 85+ 
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Figure 2.3. Network model flow and contacts eligible for intervention. Overview of the identification of eligible contacts for 
intervention scenarios from all cases in the network.  
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Figure 2.4. Model calibration. Network models were calibrated to (A) observed daily case 
counts and (B) observed daily death counts in the first month of the pandemic in Georgia. 
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Table 2.2. Number and proportion of infections and deaths averted for intervention scenarios. 

 
Scenario 

Cumulative Incidence Cumulative Mortality 
Total NIA PIA Total NDA PDA 
Median (95% SI) Median (95% SI) Median (95% SI) Median (95% SI) Median (95% SI) Median (95% SI) 

No Intervention 96549.5 (96530.9, 96578.9) – – 6570.5 (6553.6, 6596.0) – – 
Variation in Proportion of Traced Contacts1     
     25% 95633.5 (95607.3, 95675.3) 945.5 (875.3, 951.9) 1.0 (0.9, 1.0) 6564.5 (6512.9, 6568.4) 14.5 (-5.9, 74.3) 0.2 (-0.1, 1.1) 
     50% 94862.0 (94786.4, 94898.9) 1716.0 (1646.9, 1777.6) 1.8 (1.7, 1.8) 6499.0 (6459.9, 6518.3) 80.0 (52.2, 119.1) 1.2 (0.8. 1.8) 
     60% 94477.0 (94448.4, 94594.6) 2025.0 (1959.3, 2117.6) 2.1 (2.0, 2.2) 6478.0 (6456.5, 6501.7) 86.0 (58.4, 132.9) 1.3 (0.9, 2.0) 
     80% 93990.5 (93889.0, 94067.4) 2550.0 (2484.3, 2669.1) 2.6 (2.6, 2.8) 6406.0 (6377.8, 6447.8) 172.0 (117.5, 206.5) 2.6 (1.8, 3.1) 
     100% 93437.0 (93312.8, 93523.6) 3131.0 (3023.2, 3250.3) 3.2 (3.1, 3.4) 6381.5 (6351.6, 6400.1) 189.5 (164.0, 233.9) 2.9 (2.5, 3.5) 
Variation in Lag in Tracing2     
     28-day 94550.5 (94498.9, 94652.5) 1984.5 (1899.6, 2058.8) 2.1 (2.0, 2.1) 6463.5 (6454.1, 6505.8) 104.0 (59.1, 130.6) 1.6 (0.9, 2.0) 
     14-day 94529.0 (94497.9, 94616.7) 2052.0 (1930.7, 2064.6) 2.1 (2.0, 2.1) 6467.0 (6444.9, 6495.3) 87.5 (64.7, 144.7) 1.3 (1.0, 2.2) 
     10-day 94482.0 (94428.2, 94566.6) 2037.0 (1988.3, 2126.7) 2.1 (2.1, 2.2) 6475.5 (6455.7, 6507.4) 93.0 (60.5, 125.9) 1.4 (0.9, 1.9) 
      5-day 94548.0 (94499.2, 94608.1) 2012.5 (1945.8, 2055.8) 2.1 (2.0, 2.1) 6452.0 (6442.0, 6515.3) 121.0 (49.3, 143.1) 1.8 (0.7, 2.2) 
      2-day 94506.5 (94434.2, 94557.2) 2010.0 (1990.2, 2128.3) 2.1 (2.1, 2.2) 6472.5 (6454.9, 6508.7) 99.5 (59.0, 127.0) 1.5 (0.9, 1.9) 
      0-day 94528.0 (94467.3, 94604.1) 2024.5 (1951.0, 2087.4) 2.1 (2.0, 2.2) 6450.5 (6432.3, 6486.0) 151.5 (78.2, 153.1)  2.3 (1.2, 2.3) 
Combined Variation in Proportion and Lag in Tracing     
     25% and 1-day 95434.5 (95411.2, 95485.0) 1100.0 (1067.4, 1146.2) 1.1 (1.1, 1.2) 6546.0 (6508.3, 6561.3) 29.5 (12.2, 67.7) 0.4 (0.2, 1.0) 
     25% and no lag 95116.5 (95089.5, 95156.9) 1441.5 (1392.9, 1470.6) 1.5 (1.4,1.5) 6522.0 (6484.9, 6538.1) 77.0 (29.9, 96.7) 1.2 (0.4, 1.5) 
     50% and 1-day 94401.5 (94334.8, 94445.0) 2166.0 (2098.8, 2228.2) 2.2 (2.2, 2.3) 6460.0 (6437.3, 6486.9) 96.5 (79.5, 145.9) 1.5 (1.2, 2.2) 
     50% and no lag 93913.0 (93824.3, 93971.6) 2643.5 (2580.6, 2733.3) 2.7 (2.7, 2.8) 6427.5 (6397.3, 6454.7) 143.5 (114.3, 183.3) 2.2 (1.7, 2.8) 
     80% and 1-day 93486.5 (93364.5, 93539.9) 3058.5 (3014.8, 3190.6) 3.2 (3.1, 3.3) 6385.0 (6358.9, 6405.6) 183.5 (158.1, 227.0) 2.8 (2.4, 3.4) 
     80% and no lag 92576.0 (92526.0, 92706.0) 3960.5 (3846.8, 4031.1) 4.1 (4.0, 4.2) 6321.5 (6287.9, 6351.9) 265.5 (219.5, 290.2) 4.1 (3.3, 4.4) 
     100% and 1-day 92842.0 (92698.4, 92904.5) 3721.0 (3648.2, 3858.7) 3.9 (3.8, 4.0) 6354.5 (6337.6, 6380.9) 224.0 (182.1, 248.9) 3.4 (2.8, 3.8) 
     100% and no lag 91743.0 (91628.0, 91820.3) 4825.0 (4728.0, 4933.5) 5.0 (4.9, 5.1) 6297.5 (6265.2, 6319.7) 282.0 (249.9, 314.7) 4.3 (3.8, 4.8) 

1A baseline lag in time to index case interview from positive test date was set at 2 days. 
2A baseline fraction of traced contacts was set at 60%. 
Abbreviations: SI, simulation interval; NIA, number of infections averted; PIA, percent of infections averted; NDA, number of deaths averted; PDA, 
percent of deaths averted.  
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Table 2.3. Number needed to trace for intervention scenarios.  

 Number Needed to Trace to 
Prevent 1 Infection 

Variation in Proportion of Traced Contacts 
     25% 29.7 
     50% 28.2 
     60% 27.3 
     80% 25.9 
     100% 23.9 
Variation in Lag in Tracing 
     28-day 27.6 
     14-day 26.7 
     10-day 27.2 
      5-day 27.4 
      2-day 27.5 
      0-day 27.2 
Combined Variation in Proportion and Lag in Tracing 
     25% and 1-day 25.5 
     25% and no lag 19.3 
     50% and 1-day 22.4 
     50% and no lag 18.2 
     80% and 1-day 21.4 
     80% and no lag 16.5 
     100% and 1-day 20.0 
     100% and no lag 15.4 
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Table 2.4. Transmission fractions across network layers for intervention scenarios. 

 
Scenario 

Total Household Layer Community Layer 
Cumulative Incidence Cumulative Incidence Proportion of Total Cumulative Incidence Proportion of Total 
Median (95% SI) Median (95% SI) Median (95% SI) Median (95% SI) Median (95% SI) 

No Intervention 96549.5 (96530.9, 96578.9) 58916.0 (58867.2, 58974.4) 61.0 (60.1, 61.1) 37653.0 (37581.9, 37686.3) 39.1 (38.9, 39.0) 
Variation in Proportion of Traced Contacts1    
     25% 95633.5 (95607.3, 95675.3) 58425.5 (58354.6, 58474.5) 61.1 (61.0, 61.1) 37225.5 (37175.0, 37278.5) 38.9 (38.9, 39.0) 
     50% 94862.0 (94786.4, 94898.9) 57964.0 (57855.8, 58005.4) 61.1 (61.0, 61.1) 36927.0 (36854.4, 36969.7) 38.9 (38.9, 39.0) 
     60% 94477.0 (94448.4, 94594.6) 57752.0 (57705.6, 57832.4) 61.1 (61.1, 61.2) 36730.0 (36678.5, 36816.6) 38.9 (38.8, 38.9) 
     80% 93990.5 (93889.0, 94067.4) 57486.5 (57442.6, 57577.8) 61.2 (61.1, 61.3) 36454.5 (36394.8, 36541.2) 38.8 (38.7, 38.9) 
     100% 93437.0 (93312.8, 93523.6) 57189.0 (57118.7, 57283.6) 61.2 (61.2, 61.3) 36238.5 (36149.4, 36284.7) 38.8 (38.7, 38.8) 
Variation in Lag in Tracing2    
     28-day 94550.5 (94498.9, 94652.5) 57764.5 (57724.3, 57854.7) 61.1 (61.0, 61.2) 36774.5 (36730.9, 36841.6) 38.9 (38.8, 38.9) 
     14-day 94529.0 (94497.9, 94616.7) 57767.0 (57739.7, 57852.5) 61.1 (61.1, 61.2) 36771.5 (36714.5, 36807.9) 38.9 (38.8, 38.9) 
     10-day 94482.0 (94428.2, 94566.6) 57678.0 (57638.6, 57777.4) 61.1 (61.0, 61.1) 36798.5 (36732.2, 36846.6) 38.9 (38.9, 39.0) 
      5-day 94548.0 (94499.2, 94608.1) 57836.5 (57779.4, 57904.9) 61.2 (61.1, 61.2) 36717.5 (36654.8, 36768.2) 38.8 (38.8, 38.9) 
      2-day 94506.5 (94434.2, 94557.2) 57771.5 (57688.2, 57820.4) 61.1 (61.1, 61.2) 36707.5 (36677.1, 36805.7) 38.9 (38.8, 38.9) 
      0-day 94528.0 (94467.3, 94604.1) 57806.5 (57713.8, 57874.4) 61.1 (61.1, 61.2) 38742.0 (36676.3, 36806.9) 38.9 (38.8, 38.9) 
Combined Variation in Proportion and Lag in Tracing    
     25% and 1-day 95434.5 (95411.2, 95485.0) 58305.0 (58279.8, 58404.3) 61.1 (61.1, 61.2) 37119.5 (37041.7, 37170.5) 38.9 (38.8. 38.9) 
     25% and no lag 95116.5 (95089.5, 95156.9) 58109.5 (58041.9, 58141.2) 61.1 (61.0, 61.1) 37053.0 (36980.3, 37082.9) 38.9 (38.9, 39.0) 
     50% and 1-day 94401.5 (94334.8, 94445.0) 57711.0 (57663.4, 57778.3) 61.2 (61.1, 61.2) 36668.0 (36621.3, 36719.8) 38.8 (38.8, 38.9) 
     50% and no lag 93913.0 (93824.3, 93971.6) 57422.5 (57347.3, 57471.2) 61.2 (61.1, 61.2) 36509.0 (36433.2, 36544.2) 38.8 (38.8, 38.9) 
     80% and 1-day 93486.5 (93364.5, 93539.9) 57100.5 (57034.9, 57196.3) 61.1 (61.1, 61.2) 36328.0 (36271.8, 36401.5) 38.9 (38.8, 38.9) 
     80% and no lag 92576.0 (92526.0, 92706.0) 56600.0 (56563.1, 56731.6) 61.1 (61.1, 61.2) 35940.5 (35930.6, 36006.7) 38.9 (38.8, 38.9) 
     100% and 1-day 92842.0 (92698.4, 92904.5) 56775.5 (56703.0, 56842.6) 61.2 (61.1, 61.2) 36009.0 (35949.4, 36107.8) 38.8 (38.8, 38.9) 
     100% and no lag 91743.0 (91628.0, 91820.3) 56067.5 (56009.5, 56174.7) 61.1 (61.1, 61.2) 35637.5 (35581.2, 35682.8) 38.9 (38.8, 38.9) 

1A baseline lag in time to index case interview from positive test date was set at 2 days. 
2A baseline fraction of traced contacts was set at 60%. 
Abbreviations: SI, simulation interval.  
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Figure 2.5. ICU admissions over time for intervention scenarios. Number of individuals 
admitted to an intensive care unit (ICU). Time over peak ICU capacity levels is displayed as 
inset.  
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Table 2.5. Number and length of time over ICU capacity by intervention scenario. 

Scenario 
Peak number of ICU 

admissions over capacity 
Total number of days over 

capacity 
Median (95% SI) Median (95% SI) 

No Intervention 337.5 (329.8, 365.3) 19.0 (18.5, 19.7) 
Variation in Proportion of Traced Contacts1 
     25% 334.5 (316.1, 347.4) 19.0 (18.4, 19.4) 
     50% 283.5 (274.8, 315.2) 17.0 (17.0, 18.3) 
     60% 277.5 (261.8, 302.4) 17.0 (16.7, 18.3) 
     80% 259.0 (237.3, 277.3) 17.0 (15.5, 17.0) 
     100% 220.5 (209.2, 251.8) 15.0 (15.0, 16.2) 
Variation in Lag in Tracing2 
     28-day 270.5 (266.5, 304.7) 17.5 (16.9, 18.2) 
     14-day 271.0 (260.7, 299.5) 17.5 (16.4, 18.0) 
     10-day 277.0 (265.1, 298.4) 17.0 (16.8, 18.1) 
      5-day 296.0 (276.9, 311.3) 17.5 (17.0, 18.0) 
      2-day 286.0 (267.9, 299.8) 17.0 (16.7, 17.9) 
      0-day 274.5 (242.7, 281.0) 17.0 (16.1, 17.3) 
Combined Variation in Proportion and Lag in Tracing 
     25% and 1-day 311.5 (292.4, 325.1) 18.0 (18.0, 19.0) 
     25% and no lag 292.5 (271.1, 309.5) 18.0 (17.2, 18.7) 
     50% and 1-day 261.0 (247.6, 277.8) 17.0 (16.2, 17.5) 
     50% and no lag 237.0 (211.8, 262.1) 16.0 (15.2, 16.9) 
     80% and 1-day 232.5 (194.9, 240.2) 15.0 (14.1, 16.0) 
     80% and no lag 179.5 (151.6, 198.9) 13.0 (12.2, 14.3) 
     100% and 1-day 200.5 (184.2, 219.3) 14.5 (13.8, 15.4) 
     100% and no lag 126.0 (117.1, 157.4) 11.0 (10.6, 12.8) 

1A baseline lag in time to index case interview from positive test date was set at 2 days. 
2A baseline fraction of traced contacts was set at 60%. 
Abbreviations: SI, simulation interval.  
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Figure 2.6. Eligible contacts for contact tracing by intervention scenario. Number of 
individuals identified as contacts and who were eligible for contact tracing over time.  
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Figure 2.7. Relationship between combined interventions and outcomes. (A) Cumulative 
incidence, (B) cumulative deaths, and (C) number of intensive care unit (ICU) admissions over 
peak capacity and the relationship to proportion traced and lag in tracing.  
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Chapter 3: The application of social network analysis to examine COVID-19 contact 

tracing networks in a university setting 

 
Abstract 

Background 

Despite the importance of underlying network structures in the spread of respiratory infectious 

diseases such as COVID-19, there are limited data on contact patterns relevant for the spread of 

disease in university settings. We constructed COVID-19 contact tracing networks within a 

university community to examine the role of individual characteristics and network structures on 

transmission during the 2020-2021 school year. 

Methods 

We used individual-level exposure histories collected through case investigation and contact 

tracing interviews performed by the Emory University contact tracing program during the hybrid 

Fall 2020 semester to construct contact tracing networks. Networks were visualized, and global 

network statistics and secondary attack rates (SAR) were estimated. We conducted a bias 

analysis using exponential random graph models (ERGMs) to simulate complete networks with 

imputed missing cases based on observed characteristics.  

Results 

During the Fall 2020 semester, we identified 441 COVID-19 cases, 1121 close contacts, and 1206 

links between individuals. Most cases were female (62%), off-campus students (49%), and 

symptomatic (82%). The mean degree of the network was 2.9, and the maximum path length was 

8. The overall SAR was 9.7, and contacts of symptomatic cases had a higher SAR compared to 

contacts of asymptomatic cases (11.8 vs. 4.9). Networks were minimally clustered with the 

highest levels of clustering observed in September (k=0.05). We found that bias analysis 
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assumptions including random sampling and sampling based on symptomaticity were 

inconsistent with the observed network. 

Conclusions 

In this assessment of contact tracing network structure and transmission characteristics of 

COVID-19 on the Emory University campus during the Fall 2020 semester, we found minimal 

clustering, a low proportion of asymptomatic cases, higher SAR among contacts of symptomatic 

cases, and observed that it was unlikely that symptomatic cases were oversampled in our 

observed network. Our findings suggest that university campuses have unique transmission 

characteristics, even in the context of a hybrid learning environment in which social interactions 

and contacts may be attenuated.  
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Introduction 

The COVID-19 pandemic has had a severe global health impact, resulting in over 380 million 

cases and 5 million deaths to date.1 The causative infectious agent, SARS-CoV-2, is transmitted 

via the respiratory route and spreads through both close and casual contacts.284–286 Universities 

are unique locations from a social mixing perspective, as shared classrooms, dormitories, 

laboratories, and other campus spaces (e.g., dining halls, fitness centers, etc.) allow for both close 

and casual connections between students, faculty, and staff.171,172 Given this diversity of settings, 

transmission risk of SARS-CoV-2 may be heterogenous across a university community. The 

heterogeneity of these interactions and social mixing patterns within a campus community 

complicate the dynamics of respiratory disease transmission; however, a better understanding of 

the network structures in this setting can provide insight into what factors may help drive the 

spread of infection.   

 

Although several studies have documented social mixing patterns with respect to the spread of 

infectious diseases in the general population,174–177 few have focused on examining patterns in 

school settings.178,179 Universities have been described as ‘small-world networks’,183 which are 

networks in which any two individuals can be connected through only a small number of other 

people. These networks are further characterized by having ‘hubs’, or certain individuals in the 

network who have a very high number of contacts that connect many other individuals in the 

network. Among studies conducted at the university-level,180 both high and low enrollment 

courses have been identified as powerful connectors of students within a university, in that they 

make both a large number of connections as well as act as a unique connection between 

students.182 Further, certain types of students (e.g., those in highly populated majors or double-
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majors) act as unique connectors across university networks.182 There are scarce data extending 

these school-level contact networks to infectious disease transmission networks. 

 

Advances in individual electronic sensors and modeling analyses have made it possible to 

construct and estimate social network structures relevant for the transmission of respiratory 

diseases.184 Modeling studies incorporating social network structure have found that infectious 

diseases have the potential to spread quickly in small-world networks, as would be found in 

universities. However, context-specific network structure, such a subtle differences in the number 

or type of  contacts, can influence both the speed and extent of disease transmission.185 Given 

the importance of underlying network structures to infectious disease transmission dynamics, 

combined with the lack of availability of individual-level contact pattern and disease data within a 

university setting, further empirical studies are needed to better estimate contact structures in 

dynamic infectious disease models.187  

 

Universities are also likely to have unique transmission characteristics for respiratory pathogens. 

A closer look at social network structures, risk factors for infection, and potentially under-surveilled 

groups will be critical to develop a comprehensive understanding of transmission dynamics and 

contact structures in this setting that will enable the design of improved campus prevention 

strategies for future epidemics. Information from individual-level datasets including contact tracing 

programs can provide estimates on secondary attack rates, assess risk factors for infection, and 

allow for documentation of chains of transmission.287 The aim of this study was to construct a 

COVID-19 contact tracing network within a university community in order to examine the 

importance of individual characteristics and network structures. We utilized individual-level 

exposure histories collected through case investigation and contact tracing interviews to construct 
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and assess the social networks of COVID-19 cases and their contacts on a medium-sized, private 

university in the U.S. during the 2020-2021 school year. 

 

Methods 

Data Source 

Data for this analysis came from the Emory University Contact Tracing Program. The Emory 

University Contact Tracing Program was created in response to the COVID-19 pandemic in 

preparation for the re-opening of the university in the Fall of 2020. The program utilizes a REDCap 

database to capture and store the information they gather through case investigation and contact 

tracing interviews for index cases and their reported close contacts. The database contains 

extensive information on diagnosed cases and their reported close contacts. Information collected 

via interviews included demographics, university affiliations, location information, travel and close 

contact data, testing information, symptoms and risk factors, and dates of isolation and 

quarantine. 

 

Study Population  

The study population for this analysis included all confirmed COVID-19 cases and their elicited 

close contacts during the Fall 2020 semester (August 17, 2020–December 19, 2020). Emory 

University had a hybrid-learning environment during this time period. 

 

Definitions 

A confirmed case was defined as an individual who had a positive COVID-19 test results from 

any University source, including saliva RT-PCR and nasopharyngeal RT-PCR test performed at 

testing sites on the university campus. A confirmed close contact was an individual who was 
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reported by an index case to have been within six feet of an infected person for ≥15 minutes 

during two days before illness onset (or positive specimen collection for asymptomatic cases) 

until the isolation date of the infected person, regardless of mask usage.  

 

Network Structure  

To define the contract tracing network structure, we created edge and node lists to construct the 

empirical contact tracing networks on the Emory University campus during the Fall 2020 

semester. The edge list was a record of the directed nominations of contacts by cases in the 

network. These relationships were determined via manual review of index case interview notes 

taken by case investigators to identify all elicited close contacts for each index case. The node 

list was a compilation of all of the individuals in the network (i.e., index cases and elicited close 

contacts) along with their corresponding attributes (e.g., sex, race, symptomaticity, university 

affiliation, month of test date, and county of residence). 

 

Known clusters and outbreaks 

There were a number of known clusters and outbreaks that occurred at Emory University during 

the Fall 2020 semester. A dichotomous variable was created for all index cases and close 

contacts known to be affiliated with a cluster or outbreak as determined by the contact tracing 

program and the university cluster investigation team via weekly review of index case 

investigation interview notes. Stratification of certain analyses was performed using this indicator 

as isolated clusters and outbreaks may inherently have different global network statistics 

compared to the full empirical network.  

 

Statistical Analysis 
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The empirical contact tracing network was built and visualized with the ‘igraph’ package in R.288 

Demographic, clinical, and network characteristics were analyzed using the statnet suite of R 

packages.289 Global network statistics were estimated for the empirical network and were stratified 

by month of index case test date. Calculated global network statistics included are listed below 

and displayed in Figure 3.1: 

 

• degree distribution: number of direct connections an individual to others in the 

network 

• path length: the number of connections that separate any two nodes in the network 

• degree centrality: measure of the ‘connectedness’ of an individual in the network 

to other individuals 

• betweenness centrality: measure of the proportion of the paths between other 

nodes that pass through an individual node 

• clustering coefficient: measure of the degree to which individuals tend to cluster 

together (when two nodes connect to a third) 

 

Secondary attack rates were estimated for the observed network and networks stratified by 

month.  

 

Bias Analyses 

A bias analysis was performed on the empirical network via sampling methods to estimate the full 

(unobserved) network. Although sampled networks do not necessarily contain all possible nodes 

and edges compared to the true, complete network (in which all cases had been detected and all 

close contacts had been elicited), inferences about the complete network are still able to be made 



 

 
 
 
 
 

68 

given certain assumptions about cases included and excluded in the sampled network regarding 

their transmission potential.290 An important violation of these assumptions may include exclusion 

of very highly connected cases; however, as testing protocols were implemented and enforced 

throughout Emory’s re-opening, we assumed that cases sampled and cases excluded are not 

systematically different with regard to their transmission potential.  

 

We used exponential random graph models (ERGMs) to simulate complete networks with 

imputed missing cases based on information from the observed network including demographic, 

symptom, month of test date, and affiliation covariates to estimate the propensity of nodes to 

create edges in the network.291 These models were modeled using the ergm R package.292,293 

The size of the full, unobserved network was estimated based upon local seroprevalence 

estimates294, in addition to testing protocols and aggregated adherence data collected by the 

university for students, faculty, and staff throughout the Fall 2020 semester (Table 3.1). For each 

scenario, we simulated 1,000 complete contact tracing networks. We assumed a complete 

network size of 1,200 for our analyses. The missing network data scenarios tested were: 1) cases 

missing at random; and 2) asymptomatic cases are more likely to be missing from the observed 

network. For each modeled network, we sampled a similar number of cases (n = 450) as the 

observed network (Figure 3.2). We aimed to examine the scenarios and their similarity to the 

observed network. Quantiles of degree distribution were compared between observed and 

modeled networks, and 2-sided p-values were calculated using a modified Kolmogorov-Smirnov 

test calculated using boot-strapping techniques.295–297 

 

All analyses were performed in R version 4.1.2 (Vienna, Austria). This study was approved by the 

Emory University IRB. 



 

 
 
 
 
 

69 

Results 

During the Fall 2020 semester, Emory University identified 441 COVID-19 cases. The majority 

(49%) of cases were off-campus students, followed by faculty and staff (40%) and on-campus 

students (11%) (Table 3.2). Less than half (38%) of cases were male, and most (82%) were 

symptomatic. Almost one-third (28%) of cases were between 17-22 years of age, with one-quarter 

of cases falling into the 23-28 years of age group. Approximately half of cases (46%) lived in 

DeKalb County. The largest proportion of cases were diagnosed in December (39%) and 

November (31%).  

 

The observed contact tracing networks and their global network statistics stratified by month of 

index case diagnosis are displayed in Figure 3.2 and Table 3.3. The number of both cases and 

contacts increased over time, from 15 cases and 34 contacts in August to 174 cases and 424 

contacts in December. The number of connections between nodes in the network (edges) was 

1,206 in the full Fall 2020 network. There were 43 (9.7%) cases with no links (degree = 0). The 

number of edges similarly increased by month, from 35 in August to 439 in December. The 

maximum path length between two nodes was 8. The highest levels of clustering occurred in 

September (clustering coefficient = 0.05) followed by November (clustering coefficient = 0.03). 

Across all months, November displayed the highest degree, longest path length, and largest 

betweenness centrality measures across the stratified monthly contact tracing networks. There 

were cases involved in a cluster investigation by the university from September to October, with 

the proportion of nodes involved in a cluster investigation increasing over time from 5% of the 

network in September, to 7% of the network in October, to 16% of the network in November. 
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Degree distributions are displayed in Figure 3.3. In the Fall 2020 contact tracing network, each 

case had an average of 2.9 contacts (mean network degree), with the highest mean degree in 

October (3.4) followed by September (3.2). The maximum degree of the full network was 20, 

which was observed in both October and November. The median degree of the Fall 2020 network 

was 2, with 1 and 4 degrees as the 25th and 75th percentiles, respectively. Mean degree tables 

stratified by index case characteristics are further detailed in the Chapter 3 Technical Appendix. 

 

The proportion of cases with a specified number of close contacts was calculated and is displayed 

in Figure 3.4. From September to December, approximately half of all cases had two or fewer 

close contacts. Over 10% of all cases in the Fall 2020 network had ≥6 contacts. In contrast, almost 

one-third of cases associated with a “known” cluster investigation had greater than five or greater 

close contacts. 

 

Secondary attack rates (SAR) differed across month and between symptomatic and 

asymptomatic cases (Table 3.5). The overall SAR for the Fall 2020 semester was 9.7, and 

monthly SAR ranged from 3.4 in October to 14.2 in November. When stratifying by symptomaticity 

of the index case, the SAR was greater among contacts of symptomatic cases in comparison to 

that among contacts of asymptomatic cases. During the Fall 2020 semester, the SAR among 

contacts of symptomatic cases was 11.8, and among contacts of asymptomatic cases was 4.9. 

Among all close contacts that converted into a case, 16% (8/50) were epidemiologically linked to 

an asymptomatic case.  

 

Our bias analysis assumption that cases were sampled randomly from the complete network was 

inconsistent with our observed network (Table 3.6 and Figure 3.5A). Models with a mean degree 
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of 5 under this scenario could reproduce the 25th percentile and median of the observed degree 

distribution (1 and 2 degrees, respectively). However, models with a mean degree of 8 were 

required to reproduce the 75th percentile of the observed degree distribution (4 degrees). P-values 

suggested that none of the randomly sampled models were consistent with the observed network.  

 

Sampling cases differentially by symptomaticity did not produce different results based upon the 

proportion of symptomatic cases (Table 3.6 and Figure 3.5B). Results for this assumption were 

similar to those for the randomly sampled network with a mean degree of 5. P-values suggested 

that none of our modeled networks were consistent with the observed network, likely due to the 

inability of the modeled networks to capture the highly connected individuals in our observed 

network.  

 

Discussion 

In this study, we constructed the contact tracing networks of COVID-19 on the Emory University 

campus to examine network structures and assess the importance of risk factors for transmission 

on a university campus. Contact tracing networks were minimally clustered, suggesting either a 

high amount of missing data from the network, or immediate discontinuation of transmission 

propagation through the work of the contact tracing program in reaching cases and contacts, or 

self-imposed isolation and quarantine by individuals. As observed through our bias analyses, 

missingness in our observed contact tracing network was unlikely to have been random, and it 

may have been possible that we oversampled more highly connected individuals via the university 

contact tracing protocols and cluster investigations performed throughout the semester. The 

individual-level exposure information captured for this analysis allowed for key network structures 

and characteristics to be described for this unique population and helps set the groundwork for 
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future transmission network studies within a university population. 

 

Asymptomatic cases comprised less than 20% of index cases during the Fall 2020 semester, 

which is lower than published estimates that have described estimates around 35-40%.41 The 

frequency of asymptomatic infection was a motivating factor for one of our bias analysis 

scenarios. SAR were substantially greater among contacts of symptomatic cases compared to 

among contacts of asymptomatic cases. This finding is consistent with several other studies, 

including household contact studies that have observed a limited role of asymptomatic index 

cases in household transmission.298 This may suggest a similarly limited role of asymptomatic 

cases on university campuses for transmission in this setting.  

 

The mean degree for on-campus students was greater than that for both off-campus students and 

faculty/staff, which may highlight the more connected nature of undergraduate university students. 

Similarly, the mean degree was the highest for the youngest age group (17-22 years), again 

emphasizing the differences in individual social network size across age groups. Interestingly, 

mean degree decreased for the age groups spanning 23-40 years of age, and subsequently 

increased for individuals >40 years old. This may reflect differences in life events that occur across 

ages, such as transitions to home ownership or parenthood. Our findings are consistent with 

general trends in social network size across the life span.299 Mean degree was highest during the 

middle of the semester (October), which may suggest extracurricular activities or other 

opportunities for contact were more prevalent during this time.  

 

It is important to consider the impact of the hybrid nature of Emory’s campus during the Fall 2020 

semester, in which most classes were remote, with mainly undergraduates living on campus in 
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single dormitory rooms (no roommates). This may have had an impact on their mean degree 

estimates as well as the clustering coefficients calculated for the networks, in that our observed 

estimates may be attenuated compared to what would be seen in a more typical university setting. 

Clustering has been a common observation among university networks, thus our finding of 

minimal clustering for cases and close contacts was unexpected. Recent work has reported that 

non-student resident populations near a university setting restricted their movement patterns 

more so than residents of neighboring counties, which may have also contributed to our 

findings.300 

 

While none of the bias analysis models were able to fully explain the observed network, this may 

suggest that other scenarios we did not test may help to better explain observed network 

distributions. For example, although testing protocols were taken into account when estimating 

the full size of the network, we did not assess whether different testing protocols would have 

helped to explain the full network. While we assumed that symptomatic individuals were 

oversampled in our observed network, we could have also assumed that individuals with more 

rigorous testing protocols were oversampled in our network. This could have been implemented 

by undersampling on-campus students (with or without off-campus students). Interestingly, we 

found similar results for modeled networks in which either 60% or 40% of cases were 

symptomatic. This is the opposite of what we had hypothesized, in which symptomatic cases were 

preferentially sampled based upon their higher testing rates as asymptomatic cases may not know 

they are infected, and thus may never get tested. This apparent discrepancy may indicate that 

standard testing protocols, even at infrequent intervals, may be enough to capture asymptomatic 

cases. Moreover, the university population may be more inclined to perform screening tests 

regularly. To capture the more highly connected individuals in our network, it may also be 
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important to test whether a super-spreading factor may help to explain the observed network – 

that is, whether or not there was a factor strongly related to having a high degree in a minority of 

cases.  

 

There are several limitations to this work. First, due to the self-reported nature of close contact 

elicitation, close contacts are likely missing from the observed network due to recall or social 

desireability biases. Second, we calculated the SAR only among Emory-affiliated contacts as 

testing information was not available for individuals outside of Emory. As a result, these estimates 

may be impacted for contacts of symptomatic and/or asymptomatic cases. Third, the university 

campus used for these analyses is a heterogenous population, and although we aimed to capture 

some of this through our bias analyses, we were likely unable to account for all major sources of 

bias. Fourth, we recognize the population and environment of our setting does not reflect that of 

many university campuses, so network and transmission characteristics described here may be 

limited in their generalizability to other university settings.  

 

In this assessment of contact tracing network structure and transmission characteristics of 

COVID-19 on the Emory University campus during the Fall 2020 semester, we found minimal 

clustering, a low proportion of asymptomatic cases, higher SAR among contacts of symptomatic 

cases, and observed that it was unlikely that symptomatic cases were oversampled in our 

observed network. Our findings suggest that university campuses have unique transmission 

characteristics, even in the context of a hybrid learning environment in which social interactions 

and contacts may be attenuated. These results build further upon the work that has been done 

examining contact structures on university campuses, and how these structures may affect 

transmission of respiratory infections. Future work may apply these and other methods to 
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university campuses to better inform targeted prevention strategies in preparation for future 

outbreaks. 
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Figure 3.1. Visualization of global network statistics calculated for all networks. 
Visualizations for global network statistics including degree, path length, degree centrality, 
betweenness, and clustering. 
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Figure 3.2. Depiction of network model sampling for bias analyses. Full unobserved networks were simulated and networks 
were sampled given tested scenarios for a similar number of observed cases.  

 

 
 

 

Observed Networks Simulated Networks

All index cases

Populations to analyze

Only interviewed index 
cases
Cases associated 
with known outbreaks

Cases unassociated 
with known outbreaks
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2

3
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Scenarios to be tested Proposed sampling methods

Index cases are missing at random Random, unweighted sampling

Index cases with greater or fewer close contacts 
more likely to be missing

Sampling weighted by either degree or inverse degree

Index cases with different testing protocols and 
living/working situations more often missing

Add model term to represent university affiliation and 
location information 

Index cases with asymptomatic disease more 
likely to be missing

Oversampling of asymptomatic cases relative to 
inferred network

Unmeasured ?super-spreading? factor Add model term to represent a factor related to 
transmission in a small proportion of cases
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Figure 5. Global network statistics will be calculated for observed and simulated networks. Stratified analyses will be 
performed on the observed network to better understand how certain populations are affecting network statistics. 
Simulated networks will have various sampling methods applied to test hypotheses regarding the mechanism of missing 
index cases in the network.
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Table 3.1. Testing protocols implemented by Emory University for on- and off-campus students, faculty, and staff 
throughout the Fall 2020 semester.  

 2020 
 August September October November December 

Students - 
On Campus 

Testing required 
before return to 

campus. Follow-up 
testing in late August. 

Testing once a week. Testing once a week. 

Testing once a week. 
Transition to saliva-

based collection 
begins November 16 
and fully in-place by 

November 25. 

Testing once a week. 

Students - 
Off Campus 

Testing required 
before return to 

campus. 

Testing required 
before return to 

campus. 

Testing required 
before return to 

campus. 

Testing required 
before return to 

campus. 

Testing required 
before return to 

campus. 

Faculty/Staff 
Testing required 
before return to 

campus. 

Testing required 
before return to 

campus. 

Testing required 
before return to 

campus. 

Testing required 
before return to 

campus. 

Testing required 
before return to 

campus. 
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Table 3.2. Characteristics of index cases during the Fall 2020 semester at Emory 
University (N = 441). 

 N (%) 
Characteristics  
   Affiliation  
      On-Campus Student 48 (11) 
      Off-Campus Student 215 (49) 
      Faculty/Staff 176 (40) 
   Male 166 (38) 
   Symptomatic 362 (82) 
      Headache 252 (57) 
      Fatigue 234 (53) 
      Cough 218 (49) 
      Loss of taste/smell 135 (31) 
      Fever 75 (17) 
      Shortness of breath 64 (15) 
   Age group  
      17-22 years 122 (28) 
      23-28 years 111 (25) 
      29-40 years 99 (22) 
      >40 years 104 (24) 
   Race  
      Black 11 (26) 
      White 239 (54) 
      Asian 55 (12) 
      Other  
   Non-Hispanic/Latino 381 (86) 
   County   
      DeKalb 201 (46) 
      Fulton 83 (19) 
      Gwinnett 39 (9) 
   Month of test  
      August 15 (3) 
      September 50 (11) 
      October 63 (14) 
      November 139 (31) 
      December 174 (39) 
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Figure 3.2. Empirical contact tracing networks at Emory University during the Fall 2020 semester. Contact tracing networks 
stratified by month of index case diagnosis from August to December. Cases and contacts involved in a cluster investigation are 
indicated. 
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Table 3.3. Global network statistics of empirical contact tracing networks. 

 
 

Fall 2020 August September October November December 

Number of nodes 1,562 49 188 274 453 598 

Number of cases 441 15 50 63 139 174 

Number of contacts 1,121 34 138 211 314 424 

Number of edges 1,206 35 153 216 371 439 

Median degree (IQR) 2 (1,4) 1 (1,4.5) 2.5 (1,4) 3 (1,4) 2 (1,4) 2 (1,4) 

Mean degree 2.9 2.4 3.2 3.4 3.0 2.5 

Maximum degree 20 7 17 20 20 12 

Median shortest path length (IQR) 2 (1,2) 2 (1,2) 2 (1,2) 2 (1,2) 2 (2,3) 2 (1,2) 

Minimum path length 1 1 1 1 1 1 

Maximum path length 8 2 4 4 8 4 

Maximum betweenness centrality 20 1 12 3 20 3 

Clustering coefficient 0.02 0.0 0.05 0.01 0.03 0.01 

Abbreviations: IQR, interquartile range. 
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Figure 3.3. Degree distribution of empirical contact tracing networks. Contact tracing network degree distributions stratified by 
month of index case diagnosis.  
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Figure 3.4. Distribution of the proportion of cases with certain number of contacts. Distributions stratified by month of index 
case diagnosis for the number of close contacts reported by index cases.  

 
0

25

50

75

100

Fall 2020 August September October November December Outbreak

Pr
op

or
tio

n 
of

 C
as

es
 w

ith
 N

um
be

r o
f C

on
ta

ct
s

Number of Contacts
>8

7

6

5

4

3

2

1

0



 

 
 
 
 
 

84 

Table 3.5. Secondary attack rates stratified by symptomaticity of index case and index case test date month. 

 
 Fall 2020 August September October November December 
Proportion of cases that were symptomatic 82.1 86.7 82.0 81.0 80.6 83.3 
Proportion of cases that were 
asymptomatic 

17.9 13.3 18.0 19.0 19.4 16.7 

Number of contacts 518 9 93 89 210 118 
Number of cases among contacts 50 1 8 3 30 8 
Overall secondary attack rate 9.7 11.1 8.6 3.4 14.2 6.8 
     Number of symptomatic cases 362 13 41 51 112 145 
     Number of contacts 356 8 61 62 144 82 
     Number of cases among contacts 42 1 7 3 24 7 
        SAR for symptomatic cases 11.8 12.5 11.5 4.8 16.7 8.5 
     Number of asymptomatic cases 79 2 9 12 27 29 
     Number of contacts 162 1 32 27 66 36 
     Number of cases among contacts 8 0 1 0 6 1 
        SAR for asymptomatic cases 4.9 0.0 2.6 0.0 9.1 2.8 

All calculations were performed among Emory-affiliated close contacts. 
There was N = 1 Emory-affiliated close contact that was elicited in two separate months. 
There were N = 2 cases that were counted twice as they were elicited as a contact in one month and converted into an index case in the following 
month (1 case in both September and October and 1 case in October and November). 
Abbreviations: SAR, secondary attack rate. 
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Table 3.6. Target statistics for observed and modeled networks.  

 

Scenario Degree Distribution p-value 25th Percentile Median 75th Percentile 
Observed Network Target Statistics 1 2 4  
Random sampling     
   2 degrees 0 (0–0) 1 (1–1) 1 (1–1) 0 (0–0) 
   5 degrees 1 (1–1) 2 (2–2) 3 (3–3) 0 (0–0.001) 
   8 degrees 2 (2–2) 3 (3–3) 4 (4–4) 0.001 (0–0.002) 
   10 degrees 2 (2–2) 4 (3–4) 5 (5–5) 0.002 (0.001–0.003) 
   15 degrees  4 (4–4) 5 (5–5) 7 (7–7) 0.001 (0–0.002) 
   20 degrees 5 (5–5) 7 (7–7) 9 (9–9) 0 (0–0) 
Cases preferentially sampled by symptomaticity     
   40/60 symptomatic/asymptomatic 1 (1–1) 2 (2–2) 3 (3–3) 0 (0–0.001) 
   60/40 symptomatic/asymptomatic 1 (1–1) 2 (2–2) 3 (3–3) 0 (0–0.001) 
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Figure 3.5. Degree distributions of observed and modeled networks. Median frequencies of 
mean degrees for observed and modeled networks for (A) randomly sampled cases and (B) 
cases sampled based upon symptomaticity. 
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Chapter 4: The impact of COVID-19 national lockdowns on drug-resistant tuberculosis in 

KwaZulu-Natal, South Africa: a spatial analysis 

 

Abstract 

Background 

Observed declines in case notifications for tuberculosis (TB) associated with the COVID-19 

pandemic are not yet well understood. Quantifying changes in TB diagnoses and their spatial 

distribution throughout the pandemic is needed to identify the impact of COVID-19 mitigation 

strategies on TB control. We sought to understand the impact of COVID-19 mitigation strategies 

on drug-resistant (DR) TB cases in KwaZulu-Natal, South Africa. Here we describe changes in 

the number, spatial distribution, and neighborhood characteristics of DR TB cases before and 

after the COVID-19 national lockdowns. 

Methods 

We collected individual-level information on drug-resistant (DR) TB cases from a prospective 

cohort study of all culture-confirmed DR TB patients diagnosed in KwaZulu-Natal province. We 

utilized two populations: 1) the provincial population (all DR TB patients in the province) and 2) 

the enrolled cohort population (those who fell into the eThekwini Cohort catchment area) which is 

a subset of the provincial population. Population-level demographic information and census data 

came from Statistics South Africa. Time periods before and after the pandemic national lockdowns 

were defined by the date of the lockdown announcement on March 26th, 2020. Individuals were 

stratified based upon their laboratory sample collection date. We examined patient characteristics 

and assessed spatial patterning of cases using spatial log relative-risk surface maps. To examine 

spatial predictors of DR TB incidence, we used Bayesian conditional autoregressive models 

accounting for spatial autocorrelation. 
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Results 

Among the provincial population, there were 405 cases diagnosed prior to the COVID-19 national 

lockdowns and 288 after the lockdowns (29% decrease). Similarly, among the enrolled cohort, 

there were 95 cases diagnosed prior to the COVID-19 national lockdowns and 74 diagnosed after 

the lockdowns (22% decrease). Compared to cases diagnosed before the COVID-19 lockdowns, 

cases diagnosed after were less likely to have any source of fuel for heating (73% vs. 48%; p-

value = 0.001) and were less likely to have either piped water (62% vs. 84%; p-value = 0.001) or 

a flush toilet (39% vs. 57%; p-value = 0.021). Across the province, there were two regions (one 

in the center of the province and one in the southern region) that had significantly greater relative 

risks for DR TB after the lockdowns. 

Conclusions 

We found a reduction in the number of diagnosed DR TB cases after the COVID-19 pandemic 

lockdowns in KwaZulu-Natal, South Africa, and observed that cases diagnosed after the 

lockdowns had worse living conditions, fewer household resources, and had more adults living in 

their household compared to before the pandemic. This work sheds light on the impacts of 

COVID-19 mitigation strategies on TB control in the context of reductions in both case notifications 

and diagnoses observed globally. 
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Introduction 

Tuberculosis (TB) has been a leading cause of infectious disease morbidity and mortality 

worldwide for the past decade. Approximately 10 million individuals fell ill with TB in 2019, with 

1.4 million deaths, including over 200,000 deaths among people with HIV.188 The COVID-19 

pandemic has significantly impacted rates of TB diagnosis, with an 18% decline in the number of 

cases in 2020 compared to 2019. There are large gaps between the number diagnosed and the 

number estimated to have developed active TB in 2020 (5.8 million versus 10 million).260 With the 

prolonged nature of TB infection and disease,257 reduced case notifications should not be 

considered a reflection of decreased incidence. Importantly, there has been a recorded increase 

in TB deaths to over 1.5 million, bringing the total back up to the level observed in 2017260 – an 

observation that corroborates an increase in cases.  

 

Disruptions in health care services for TB and other infectious diseases due to the COVID-19 

pandemic have led to fewer available staff and laboratory tests.301–305 Patients have also reported 

hesitance and unwillingness to visit health care facilities out of fear of contracting COVID-19 in 

these locations.306,307 Further, longer periods of infectiousness, poor treatment outcomes, 

increased malnutrition, prolonged household TB exposure, and increased rates of unemployment 

leading to higher levels of poverty have all been described as potential consequences of the 

pandemic.261,308 Concurrently, common COVID-19 mitigation strategies such as social distancing 

and mask wearing policies may have had beneficial effects by reducing the transmission of 

respiratory pathogens such as TB.309,310 Restrictions on mobility and indoor gatherings likely 

decreased interaction between individuals. Moreover, the use of masks by individuals and use of 

ventilation and air purifying systems by businesses may have had beneficial impacts through 

reducing airborne transmission. 
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Although many COVID-19 mitigation strategies such as national lockdowns, mask mandates, and 

reductions in indoor capacity of public spaces were implemented at the national or subnational 

level, the impacts of these mitigation strategies is unlikely to have been homogenous across all 

populations.311,312 Differential impacts may exist due to individual differences in education, 

employment (essential versus non-essential workers), public transportation use, and household 

structure and size.313,314 Although it may not be possible to determine the exact drivers of 

observed declines in case notifications and their implications for broader TB control efforts, 

available data may be able to improve our understanding of the impact of the COVID-19 pandemic 

on the incidence and distribution of TB. 

 

Quantifying changes in TB diagnoses and their spatial distribution as a result of the COVID-19 

pandemic, especially within a high-burden TB setting, is needed to identify the impact of mitigation 

strategies on TB control. Such efforts will ultimately inform ongoing progress towards TB 

elimination. In this study, we sought to understand the impact of COVID-19 mitigation strategies 

on drug-resistant (DR) TB cases in KwaZulu-Natal province, South Africa. Leveraging data from 

a prospective cohort study of TB patients and the South African census, we describe and compare 

observed and expected changes in the number, spatial distribution, and neighborhood 

characteristics of DR TB cases before and after the COVID-19 national lockdowns. We 

hypothesized that fewer TB cases would be observed after the initiation of national lockdowns, 

and that cases observed in the period after the lockdowns would be in areas of lower income with 

poor living conditions. 

 

Methods 
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Data Sources 

Population-level demographic information and census data (e.g., population density, employment 

and education levels, and living conditions) were collected from Statistics South Africa (Stats SA). 

All variables were collected at the level of the census unit of main place and local municipality, 

which are both smaller spatial units within district and province units. KwaZulu-Natal province 

consists of 10 districts, 54 municipalities, and 197 main places.  

 

Individual-level information on drug-resistant (DR) TB cases was collected from a prospective 

cohort study: ‘The Role of Casual Contact and Migration in XDR TB Transmission in South Africa: 

a Geospatial, Genomic and Social Network Study’ (CONTEXT) (R01AI138646). The parent study 

aims to estimate the impact of casual contact and migration on XDR TB transmission in KwaZulu-

Natal, South Africa. All culture-confirmed DR TB patients diagnosed in KwaZulu-Natal province 

were eligible regardless of sex, age or vital status and were identified at the provincial TB 

reference laboratory weekly. DR TB cases were geocoded based on the healthcare facility of 

diagnosis to both main place and local municipality spatial areas. 

 

From the CONTEXT study, we utilized two populations: 1) the provincial population (defined as 

all culture-confirmed DR TB patients above) and 2) the enrolled cohort population (those who fell 

into the eThekwini Cohort catchment area) which is a subset of the provincial population. From 

the time of study initiation (December 2018) until June 2020, the catchment area consisted of the 

eThekwini district municipality. Due to reductions in study enrollment during the COVID-19 

pandemic, the catchment area was expanded to include the eThekwini, iLembe, Ugu, and 

uMgungundlovu district municipalities as of June 2020 (Figure 4.1). 
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Age was captured for individuals in the provincial population, while the enrolled cohort underwent 

in-depth interviews that captured extensive information on their demographics, HIV status, 

comorbidities, living conditions, places frequently visited, and home locations. Appendix Table I-

4. displays further detail on the spatial and individual variables used in this analysis. Location 

information captured residences, overnight visits, and daily locations. Specific questions to prompt 

recall of these locations during the interview included the following: 

 

Residences: ‘Please tell me about where you stay right now?’ ‘Is there any other place 

that you stayed for more than 1 month in the past 2 years?’ 

Overnight visits: ‘Were there any places where you spent the night at least 5 times in the 

past two years?’ 

Daily locations: ‘Where did you regularly go during the daytime and evenings on weekdays 

and weekends? Regularly means that you visited a place for at least 2 hours most weeks.’ 

 

Definitions 

The definition of DR TB used by the CONTEXT study was a set of laboratory results documenting 

resistance to at least one second-line drug or drug class. Time periods before and after the 

pandemic national lockdowns were defined by the date of the lockdown announcement on March 

26th, 2020. Individuals were stratified into either time period based upon their laboratory sample 

collection date. Date ranges for the provincial population were October 4th, 2018–March 25th, 2020 

(539 days) and April 2nd, 2020–February 1st, 2022 (671 days) for before and after the national 

lockdowns, respectively. Date ranges for the enrolled cohort were October 4th, 2018–March 19th, 

2020 (533 days) and April 6th, 2020–May 31st, 2021 (421 days) for before and after the national 

lockdowns, respectively.  



 

 
 
 
 
 

93 

 

Outcomes 

The primary outcomes of this analysis were the frequency and spatial distribution of DR TB 

diagnosed cases before and after national lockdowns. Secondary outcomes included differences 

in both individual- and spatial-level characteristics of DR TB cases before and after pandemic 

lockdowns. Incidence of DR TB was calculated using the number of cases per spatial unit divided 

by the full population of the corresponding spatial unit, multiplied by 100,000 persons. 

 

Statistical Analysis 

Descriptive statistics (absolute frequencies or medians with interquartile ranges [IQR]) were used 

to describe patient characteristics prior to and after the pandemic lockdowns. Comparisons were 

performed using the Chi-square and Kruskal-Wallis test for categorical and continuous variables, 

respectively, with p<0.05 considered statistically significant.  

 

To assess spatial patterning of cases across the two time periods before and after lockdowns, 

spatial log relative-risk (RR) surface maps were created for DR TB cases comparing healthcare 

facility locations of diagnosis across time periods. Under the assumption that the population at-

risk remained mainly unchanged over time, kernel density estimations of case locations were 

calculated and compared. An adaptive log RR bandwidth was used to improve estimation 

accuracy by accounting for greater uncertainty in areas with fewer cases with greater 

smoothing.315 Scalar smoothing bandwidths for kernel density estimates were calculated using 

the geometric mean of case counts. The ratio of densities for cases before and after COVID-19 

lockdowns created a continuous estimate of RR which was then mapped. Areas with statistically 

significantly increased or decreased DR TB RRs were detected and highlighted by calculating 
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tolerance contour lines at a threshold of p<0.05.316 For the enrolled cohort map, we limited the 

spatial area to only those local municipalities with cases detected to compute stable estimates. 

As there were no cases diagnosed in the outlying local municipalities, edge effects resulted in 

unstable estimates. 

 

We utilized Bayesian conditional autoregressive models to estimate the relationship of spatial 

characteristics with local DR TB incidence for the enrolled cohort. The number of new DR TB 

cases was modeled as Poisson random variables. The natural log of the Poisson distribution 

mean was divided by the natural log of the population at risk to estimate the per capita incidence 

rate. Local municipality characteristics (flush toilet connected to sewage, ownership of stove, 

ownership of motor car, access to internet, electricity for lighting), !!", were modeled as fixed 

effects over each geographical census unit ". Neighborhood characteristics were publicly 

accessible and came from the South African census for each census unit. A non-spatially 

correlated random effect, #", was included and fitted to a Gaussian distribution. Spatial 

dependence was incorporated into the model through a random effect, $", and accounted for the 

effects of spatial proximity via a conditional autoregressive prior distribution with neighbors 

defining the prior mean (weighted average of neighboring random effects) and variance (itself 

following an inverse gamma distribution). The model was run for local municipality units " = 1 to 

18, for which at least one DR TB case was diagnosed during the study period. A geographic 

neighborhood matrix was constructed using the ‘poly2nb’ function from the ‘spdep’ packaged in 

R. Neighbors were defined as spatial units with any shared boundary point (‘queen’ criterion).   

 

For % + 1 regression coefficients (! and intercept (#, non-informative prior distributions were 

chosen resulting in estimates similar to maximum likelihood estimates. For model estimates, 
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samples were drawn from posterior distributions utilizing Markov Chain Monte Carlo methods and 

the model was run for 200,000 iterations with 20,000 warm-up samples. Model convergence was 

checked via Gelman-Rubin statistics, inspection of trace plots, plots of residuals and of the spatial 

distribution of differences between predicted and observed cases of DR TB. 

 

Model fit was examined via the deviance information criterion (DIC) statistic for the models to 

determine the benefit of accounting for spatial dependence as a random effect (i.e., including $"). 

We plotted credible intervals for fixed effect parameters and evaluated the spatial pattern of 

residuals to check for residual clustering. 

 

Statistical, geospatial, and modeling analyses were performed using a combination of functions 

in the ‘spdep’, ‘sparr’, ‘spatstat’, ‘CARBayes’, and ‘geoR’ packages in R version 4.1.2 (Vienna, 

Austria). Base-layer maps were created and scaled using the R package ‘ggmap’.317 

 

Results 

During October 2018–February 2022, there were 693 DR TB cases diagnosed in the provincial 

population. Throughout October 2018–May 2021, there were 169 cases eligible for the enrolled 

cohort. Among the provincial population, there were 405 cases diagnosed prior to the COVID-19 

national lockdowns and 288 after the lockdowns, corresponding to a 29% decrease. Similarly, 

among the enrolled cohort, there were 95 cases diagnosed prior to the COVID-19 national 

lockdowns and 74 diagnosed after the lockdowns, corresponding to a 22% decrease. 

 

The median age of DR TB cases in the provincial population was 35 years (IQR = 28,43). Median 

age did not significantly differ between time periods (prior = 35 years [IQR = 27,42]; post = 35 



 

 
 
 
 
 

96 

years [IQR = 28,44]; p-value = 0.307). Characteristics of the enrolled cohort population are 

displayed in Tables 4.1A–E. Median age of DR TB cases prior to the lockdowns was 36 years 

(IQR = 30,44), and after the lockdowns was 34 years (IQR = 28,42; p-value=0.141). Distribution 

of sex, marital status, employment and education of cases was similar across the two time 

periods. The median number of adults living in a household that completed ≥5 years of school 

was significantly greater after the lockdowns (3; IQR = 1,4) compared to before the lockdowns (2; 

IQR = 1,3) (p-value = 0.016). Compared to cases diagnosed before the COVID-19 lockdowns, 

cases diagnosed after were more likely to use wood for cooking (45% vs. 26%; p-value = 0.01), 

less likely to have any source of fuel for heating (73% vs. 48%; p-value = 0.001), and were less 

likely to have either piped water (62% vs. 84%; p-value = 0.001) or a flush toilet (39% vs. 57%; p-

value = 0.021) in their household. While almost all (98%) of cases diagnosed before the 

lockdowns owned a telephone, this proportion decreased to 81% after the lockdowns (p-value 

<0.001). Almost all cases diagnosed prior to the lockdowns had been tested for HIV at some point 

before (97%), and this proportion decreased to 82% for cases diagnosed after the lockdowns (p-

value = 0.001).  

 

Figure 4.2 displays dot plot maps for the healthcare facilities of diagnosis for cases in the (A) the 

provincial population and (B) the enrolled cohort. Most cases were diagnosed near or around 

Durban, the largest city in the KwaZulu-Natal province. Incidence rates per 100,000 persons for 

local municipalities differed across time period for both the provincial population and enrolled 

cohort (Figure 4.3). In the provincial population, Hlabisa and uMlazi in the northeastern region of 

the province had the highest incidence rates at 16.7 and 12.1 cases per 100,000 persons prior to 

the lockdowns. Incidence rates were more dispersed after the lockdowns, with 3 local 

municipalities (Hibiscus Coast, Msinga, and Umtshezi) that had incidence rates greater than 6 
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cases per 100,000. In the enrolled cohort area, eThekwini and Ndwedwe had the highest 

incidence rates prior to the lockdowns (2.3 and 2.1 cases per 100,000, respectively). Similar to 

the provincial population, incidence rates were more dispersed after the lockdowns, with 3 local 

municipalities (Hibiscus Coast, Maphumulo, and Ndwedwe) that had incidence rates greater than 

2 cases per 100,000.  

 

Differences in incidence were quantified using a relative-risk surface comparing the period after 

the lockdowns to the period before the lockdowns (Figure 4.4). Across the province, there were 

two regions (one approximately in the center of the province, and one in the southern region) that 

had significantly greater relative risks for DR TB after the lockdowns. These regions correspond 

to the local municipalities of Umtshezi, Msinga, Umvoti, and the area around the Umzimkhulu and 

Umzumbe border. In the enrolled cohort space, the northeastern and southwestern regions had 

significantly greater relative risks for DR TB. The regions at greatest risk corresponded to the local 

municipalities of Maphumulo, Ndwedwe, and Vulamehlo. 

 

Posterior distributions from Bayesian CAR model fixed parameters are displayed in Figure 4.5, 

with credible intervals indicated by vertical lines. Before pandemic lockdowns, there was an 

inverse relationship between DR TB incidence and having electricity for lightning, and a positive 

correlation between incidence and having access to the internet or owning a stove. After 

pandemic lockdowns, posterior distributions were generally not as wide compared to those before 

the lockdowns. After the lockdowns, there was an inverse relationship between DR TB incidence 

and having a flush toilet connected to sewage and having electricity for lighting. Similarly to before 

pandemic lockdowns, there was a positive association between DR TB incidence and the 

ownership of a stove. 
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We examined the characteristics of residences, overnight visit locations, and daily visit locations 

reported by DR TB cases in the enrolled cohort. There were no differences in the number of 

overnight visit or daily visit locations between before and after the lockdowns; however, there was 

a shift in the distribution of residences reported which decreased in number after the COVID-19 

lockdowns (Figure 4.6) (p-value = 0.07). The proportion of individuals who stated they moved to 

their residence as it was their childhood home was 19% prior to the lockdowns, and 35% after the 

lockdowns (Figure 4.7). For overnight visit locations, there was an increase in individuals stating 

they visited these locations after the lockdowns compared to before for work (11% vs. 0%) and to 

visit an intimate partner (22% vs. 12%) (Figure 4.8).  

 

There was a 10% increase in the proportion of individuals reporting a private home as a daily visit 

location after the lockdowns compared to before (Figure 4.9). Further, the number of people they 

interacted with in these daily visit locations decreased after the lockdowns with 84% of cases after 

the lockdowns reporting 0-4 close contacts compared to before the lockdowns in which 66% of 

cases reported 0-4 close contacts.  

 

Discussion 

In this study, we combined data from a cohort study of DR TB patients and census information to 

explore differences in the number and spatial distribution of diagnosed DR TB cases before and 

after the COVID-19 national lockdowns in KwaZulu-Natal, South Africa. We observed a 29% 

reduction in the number of DR TB cases diagnosed in the province during the two-year period 

after the COVID-19 lockdowns compared to the year and a half prior to the lockdowns. Although 

the catchment area for the enrolled population was expanded shortly after the COVID-19 
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pandemic, we observed a reduction of 22% in the number of DR TB cases diagnosed during the 

period after the lockdowns compared to before the lockdowns. We found further individual-level 

and spatial-level differences between cases diagnosed prior to versus after the COVID-19 

lockdowns, with cases diagnosed after the lockdowns associated with worse living conditions and 

a greater number of people living in their households. Our results shed light on the impacts of 

COVID-19 mitigation strategies on TB control.  

 

We observed a reduction in DR TB diagnoses across the time periods before and after the 

COVID-19 national lockdowns. To examine the potential drivers of this reduction, we assessed 

location information reported by participants. Characteristics of and reported interactions within 

locations visited by DR TB cases in the enrolled cohort differed before and after the COVID-19 

lockdowns. In general, cases after the lockdowns reported visiting locations consistent with more 

limited movement such as a private home, work, or an intimate partner’s home. Close interactions 

with others also decreased after the lockdowns. These findings are broadly consistent with 

differences in mobility patterns described after global COVID-19 lockdowns.318 At the same time, 

studies have shown that although mobility to work locations dramatically decreased early in the 

pandemic for high-income countries, this was not necessarily the case in low- to middle-income 

countries.319 These findings, in conjunction with the individual-level characteristics of DR TB cases 

after the pandemic, suggest that those looking for or traveling for work after pandemic lockdowns 

may be at higher at risk for infection. Although we observed an overall decline in incidence, this 

decrease was likely heterogeneous. Perhaps a larger portion of individuals may have been at 

decreased risk as a result of staying at home and interacting with fewer individuals, while a 

minority of individuals were at greater risk as a result of their movement or mobility patterns after 

the pandemic lockdowns. Further, this decrease may have been observed if household 
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transmission (versus community transmission) became the main contributor to new infections 

after the pandemic lockdowns due to the finite threshold of potential transmissions within a 

household setting.  

 

There were many individual and household characteristics reported by DR TB patients in the 

enrolled cohort that differed significantly after the national lockdowns. Changes in these 

household characteristics across time periods were also observed at the spatial level. Cases 

diagnosed after the lockdowns were less likely to have owned a telephone or have a flush toilet 

or piped water, the majority did not have any source of fuel for heat, and almost half of individuals 

used wood for cooking. Further, DR TB cases reported significantly more adults living in their 

household compared to cases prior to the lockdowns. These results are important in that they 

highlight the importance of households and social networks in South Africa. An analysis of mobility 

and living arrangements in South Africa during the pandemic emphasized the ‘translocality’ of 

South African adults, characterized by an attachment to their childhood homes to which many 

returned during the lockdowns.320 This notion is consistent with our findings, in which we observed 

a greater proportion of DR TB cases after pandemic lockdowns reporting the reason they moved 

to their primary residence was because it was a childhood home. Further, during the lockdowns, 

households were found to become more ‘stretched’ or ‘extended’ due to the absorption of 

dependent kin networks as a result of job loss or poverty.320 We observed a similar increase in 

the number of adults in the household after the lockdowns.  

 

Areas were identified to have a greater risk of DR TB after the COVID-19 lockdowns in both the 

provincial population and enrolled cohort in the central and southern regions of the KwaZulu-

Natal. Roughly, these regions correspond to the district of Ugu, and area around the borders of 
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uThukela, uMzinyathi, and uMgungundlovu districts. There is limited literature on specific 

directional migration patterns across South Africa during the pandemic, and existing data are 

unable to determine explicit patterns across district municipalities other than that clustered 

municipalities (based upon mobile phone tracking) were in general not located spatially closer to 

one another.321 Thus, increases in incidence in local municipalities outside of the more urban 

regions of the province may be explained by clustering due to a factor other than spatial proximity.  

 

This study has several limitations. First, within the enrolled cohort dataset, interviews with 

participants were substantial and took a considerable amount of time to complete. Therefore, 

biases associated with respondent fatigue such as recall bias, answering “Don’t know” more often, 

and providing less detail in their answers are likely. Further, as many of the questions specifically 

regarding location information was in the context of locations spanning the previous two years, 

there is also the potential for recall bias with respect to these responses. Second, this work was 

not meant to determine a causal relationship between COVID-19 lockdowns and DR TB incidence 

but rather aimed to examine the relationship of the lockdown time periods to frequency and spatial 

patterns in DR TB diagnoses. Further work could apply causal inference methods to better 

understand the relationship between lockdown levels and TB incidence.  

 

In conclusion, we found a reduction in the number of diagnosed DR TB cases after the COVID-

19 pandemic lockdowns in KwaZulu-Natal, South Africa, and observed that cases diagnosed after 

the lockdowns had worse living conditions, fewer household resources, and more adults living in 

their household compared to before the pandemic. This work provides valuable insight into the 

transmission dynamics of DR TB and helps to refine the need for further study of these regions 

and the impacts of COVID-19 mitigation strategies on TB control. Prevention strategies such as 
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targeted active case finding and allocation of resources to at-risk geographic regions may be 

implemented in areas identified to be at higher risk for DR TB after the COVID-19 lockdowns.
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Figure 4.1. Map of provincial population and enrolled cohort population spatial boundaries. Lines represent boundaries for the 
provincial population area (black), and enrolled cohort population catchment area initially (blue) and after its expansion (purple).  
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Table 4.1. Descriptive tables for enrolled cohort characteristics. 

Table 4.1A. Sociodemographic characteristics of participants. 
 Total Prior to COVID lockdowns Post COVID lockdowns  
 N = 169 N = 95 N = 74 p value 
Age (median, IQR) 35 (29, 43) 36 (30, 44) 34 (28, 42) 0.141 
Male 92 (54) 53 (56) 39 (53) 0.698 
Marital Status    0.839 
   Single 130 (77) 76 (80) 54 (73)  
   Cohabitating/Married 28 (17) 16 (17) 12 (16)  
   Divorced/Separated 1 (1) 1 (1) 0 (0)  
   Widowed 4 (2) 2 (2) 2 (3)  
Currently Employed 47 (28) 29 (31) 18 (24) 0.316 
Employed in past two years 19 (11) 10 (11) 9 (12) 0.840 
Highest Educational Level    0.856 
   No formal schooling 5 (3) 3 (3) 2 (3)  
   Primary school 22 (13) 12 (13) 10 (14)  
   Secondary school, but not Matric 90 (53) 56 (59) 34 (46)  
   Matric 33 (20) 17 (18) 16 (22)  
   University or other higher degree 10 (6) 6 (6) 4 (5)  
Adults Living in Household (median, IQR) 3 (2, 5) 3 (2, 4) 4 (2, 6) 0.085 
Unemployed Adults in Household (median, IQR) 1 (1, 2) 1 (1, 2) 2 (1, 3) 0.315 
Total Monthly Household Income (median, IQR) 2,100  

(1,500, 3,300) 
2,500  

(1,500, 3,500) 
2,000 

(1,300, 3,000) 
0.251 

   Household Members Supported by Income (median, IQR) 4 (3, 5) 4 (3, 5) –  
      Fully Supported (median, IQR) 5 (3, 7) 5 (3, 6) 5 (3, 7) 0.742 
      Partially Supported (median, IQR) 0 (0, 1) 0 (0, 2) 0 (0, 1) 0.332 
Adults in Household that completed ≥5 yrs school 2 (1, 3) 2 (1, 3) 3 (1, 4) 0.016 
School-aged children in household 86 (51) 47 (49) 39 (53) 0.700 
   Children currently in school 82 (49) 45 (47) 37 (50) 0.700 
Death of Child <5 in household in past year 2 (1) 1 (1) 1 (1) – 

Numbers presented are reported as N (%) unless otherwise stated. 
Abbreviations: IQR, interquartile range. 
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Table 4.1B. Residences, overnight visits, and daily visits reported by participants. 
 Total Prior to COVID lockdowns Post COVID lockdowns  
 N = 169 N = 95 N = 74 p value 
Number of residences reported 
(median, IQR) 

1 (1, 1) 1 (1, 2) 1 (1, 1) 0.017 

Number of daily visits reported 
(median, IQR) 

2 (2, 3) 3 (2, 3) 2 (2, 3) 0.193 

Number of overnight visits reported 
(median, IQR) 

1 (1, 2) 1 (1, 2) 1 (1, 1) 0.290 

Abbreviations: IQR, interquartile range. 
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Table 4.1C. Household characteristics of participants. 
 Total Prior to COVID lockdowns Post COVID lockdowns  
 N = 169 N = 95 N = 74 p value 
Electricity in Household 150 (89) 88 (93) 62 (84) 0.064 
Fuel for Cooking     
   Electricity 149 (88) 87 (92) 62 (84) 0.107 
   Gas 28 (17) 18 (19) 10 (14) 0.390 
   Paraffin 32 (19) 18 (19) 14 (19) – 
   Wood 58 (34) 25 (26) 33 (45) 0.010 
   Coal 4 (2) 3 (3) 1 (1) 0.372 
Fuel for Lighting     
   Electricity 150 (89) 88 (93) 62 (84) 0.064 
   Paraffin 11 (7) 6 (6) 5 (7) 0.793 
   Candles 93 (55) 48 (51) 45 (61) 0.196 
   Solar 1 (1) 1 (1) 0 (0) 0.390 
Fuel for Heating     
   Electricity 48 (28) 41 (43) 7 (9) <0.0001 
   Paraffin 1 (1) 1 (1) 0 (0) 0.390 
   Wood 11 (7) 7 (7) 4 (5) 0.592 
   Coal 1 (1) 1 (1) 0 (0) 0.390 
   None 100 (59) 46 (48) 54 (73) 0.001 
Piped Water in Household 126 (75) 80 (84) 46 (62) 0.001 
Flush Toilet in Household 83 (49) 54 (57) 29 (39) 0.021 
Type of Home    0.270 
   Brick/concrete house on private land 115 (68) 62 (65) 53 (72)  
   Dwelling made of traditional materials 6 (4) 4 (4) 2 (3)  
   Townhouse or semi-detached house 1 (1) 1 (1) 0 (0)  
   Flat or apartment 5 (3) 5 (5) 0 (0)  
   Flat/room on another property (in a backyard) 4 (2) 3 (3) 2 (3)  
   Dwelling in Informal Settlement 28 (17) 19 (20) 9 (12)  
At least 1 car for Household 21 (12) 10 (11) 11 (15) 0.441 
Radio 120 (71) 69 (73) 51 (69) 0.570 
TV 127 (75) 70 (74) 57 (77) 0.655 
Telephone 153 (91) 93 (98) 60 (81) <0.001 
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Refrigerator 132 (78) 76 (80) 56 (76) 0.533 
Numbers presented are reported as N (%) unless otherwise stated. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 
 
 
 
 

108 

Table 4.1D. Tobacco, dagga, and alcohol use of participants. 
 Total Prior to COVID lockdowns Post COVID lockdowns  
 N = 169 N = 95 N = 74 p value 
Smoked ≥100 cigarettes in lifetime 51 (30) 30 (32) 21 (28) 0.576 
Smoked cigarettes in past 6 months 36 (21) 20 (21) 16 (22) 0.876 
Cigarettes smoked daily    0.063 
   0-1 3 (2) 2 (2) 1 (1)  
   2-10 26 (15) 14 (15) 12 (16)  
   11-20 4 (2) 2 (2) 12 (16)  
   >20 3 (2) 2 (2) 1 (1)  
Smoke cigarettes    0.343 
   Every day 28 (17) 15 (16) 13 (18)  
   Some days 4 (2) 1 (1) 3 (4)  
   Not at all 4 (2) 4 (4) 0 (0)  
Smoking indoors in home 14 (8) 9 (9) 5 (7) 0.638 
Smoke dagga in past 2 years 25 (15) 13 (14) 12 (16) 0.718 
Smoke dagga    0.389 
   Almost everyday 19 (11) 9 (9) 10 (14)  
   A few days per week 4 (2) 3 (3) 1 (1)  
   A few days per month 1 (1) 1 (1) 0 (0)  
   A few days per year 1 (1) 0 (0) 1 (1)  
Alcohol use    0.081 
   Never 108 (64) 52 (55) 28 (38)  
   Monthly or less 20 (12) 11 (12) 2 (3)  
   2 to 4 times a month 19 (11) 14 (15) 1 (1)  
   2 to 3 times a week 8 (5) 5 (5) 1 (1)  
Alcoholic drinks/day    0.347 
   None 108 (64) 60 (63) 48 (65)  
   1 to 2 drinks 10 (6) 8 (8) 2 (3)  
   3 to 5 drinks 17 (10) 12 (13) 5 (7)  
   6 or more drinks 15 (9) 9 (9) 6 (8)  
≥6 drinks on occasion    0.083 
   Never 123 (73) 71 (75) 52 (70)  
   Less than monthly 7 (4) 7 (8) 0 (0)  
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   Monthly 15 (9) 6 (6) 9 (12)  
   Weekly 6 (4) 5 (5) 1 (1)  

Numbers presented are reported as N (%) unless otherwise stated. 
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Table 4.1E. Co-morbidities and HIV status of participants. 
 Total Prior to COVID lockdowns Post COVID lockdowns  
 N = 169 N = 95 N = 74 p value 
Ever diagnosed with diabetes 7 (4) 3 (3) 4 (5) 0.505 
Ever diagnosed with cancer 2 (1) 1 (1) 1 (2) 0.589 
Ever tested for HIV 153 (91) 92 (97) 61 (82) 0.001 
Currently on ARVs 96 (57) 57 (60) 39 (53) 0.363 
Aggregated HIV Result     
   Negative 47 (28) 27 (28) 20 (27) 0.886 
   Positive 105 (62) 64 (67) 41 (55) 0.112 

Numbers presented are reported as N (%) unless otherwise stated. 
Abbreviations: ARVs, antiretrovirals. 
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Figure 4.2 Drug-resistant tuberculosis cases diagnosed in the (A) provincial population 
and (B) enrolled cohort areas. Cases diagnosed prior to the lockdowns are denoted as circles, 
and those diagnosed after lockdowns are denoted as X’s. Local municipality regions are 
outlined in gray.  
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Figure 4.3 Choropleth maps of drug-resistant tuberculosis incidence. Incidence rates for the provincial population (A) prior to 
and (B) after the COVID-19 national lockdowns and for the enrolled cohort (C) prior to and (D) after the COVID-19 national 
lockdowns. Local municipality regions are outlined in gray. 

 
 
In (C) and (D), the thick black line indicates the spatial area in which at least one case was diagnosed either before or after the lockdowns. This 
smaller spatial region was used for subsequent analyses to compute stable estimates.
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Figure 4.4. Risk-ratio surface maps. Maps are shown for the (A) provincial population and (B) 
enrolled cohort areas. Areas with significantly higher relative risk for drug-resistant tuberculosis 
after the lockdowns are highlighted with contour lines.  
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Figure 4.5. Posterior distributions of fixed parameters from Bayesian autocorrelated regression models. Distributions from 
(A) before and (B) after the pandemic lockdowns are displayed. Fixed parameters from top to bottom are: flush toilet connected to 
sewage; ownership of a stove; ownership of a car; access to internet; and electricity for lighting. 
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Figure 4.6. Number of locations reported by enrolled cohort participants. Number of (A) residences, (B) overnight visit 
locations, and (C) daily visit locations for individuals diagnosed before and after COVID-19 pandemic lockdowns.  
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Figure 4.7. Characteristics of residence locations reported by enrolled cohort participants. Distribution of (A) the reason why 
individuals moved to their residence location and (B) which district their residence locations were located in for individuals diagnosed 
before and after COVID-19 pandemic lockdowns. 
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Figure 4.8. Characteristics of overnight visit locations reported by enrolled cohort 
participants. Distribution of (A) the reason for visiting the overnight visit location, (B) the 
number of nights spent per visit, (C) the number of people, (D) the number of people interacted 
with, and (E) which district their overnight visit locations were located in for individuals 
diagnosed before and after COVID-19 pandemic lockdowns.  
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Figure 4.9. Characteristics of daily visit locations reported by enrolled cohort participants. Distribution of (A) the type of 
location for daily visit locations, (B) which district their daily visit locations were located in, (C) the months per year spent in the 
location, (D) the days per week spent in the location, (E) the number of hours spent in the location, (F) the number of people, (G) the 
number of people interacted with, and (H) whether contacts were reported for individuals diagnosed before and after COVID-19 
pandemic lockdowns. 
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Chapter 5: Public Health Implications and Future Directions 
 

There remain gaps in our understanding around how nationally implemented COVID-19 mitigation 

strategies such as contact tracing and social distancing impact transmission dynamics on a local 

scale, such as at the state level or on a university campus. Unique settings such as university 

communities likely have different respiratory disease transmission dynamics due to differences in 

their underlying social network structures.171,172 Further, widespread mitigation strategies for 

COVID-19 impact other disease control programs and these myriad effects have yet to be fully 

understood. To address these gaps, the overarching goal of this dissertation was to explore local 

transmission dynamics of COVID-19 and the secondary impacts of COVID-19 on both pandemic 

spread and DR TB control.  

 

Review of Major Findings 

In Chapter 2, we assessed trade-offs between public health capacity and clinical capacity in the 

early stages of the COVID-19 pandemic in the state of Georgia. Considering the utility of contact 

tracing as a mitigation strategy for many other infectious diseases106,109,111, we hypothesized that 

reducing the time to index case interview to ≤ 2 days and eliciting ≥ 65% of close contacts from 

index cases would have the greatest impact on transmission and reducing strain on the healthcare 

system. We found that while all contact tracing intervention scenarios reduced the number of 

infections, deaths, and ICU admissions, even with complete and immediate contact tracing, 

hospitals would remain over capacity for greater than a week. Importantly, the speed of contact 

tracing seemed to play a larger role in impacting outcomes compared to the completeness of 

contact tracing.  
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In Chapter 3, we constructed the contact tracing networks for COVID-19 cases and their reported 

close contacts on the Emory University campus during the Fall 2020 semester. Given the unique 

nature of a university community, with shared classrooms, dormitories, laboratories, or other 

campus spaces, the heterogeneity of interactions and social mixing patterns may result in unique 

transmission characteristics. With the importance of asymptomatic transmission emphasized 

throughout the beginning of the pandemic38–41, we hypothesized that approximately 30% of 

secondary cases reported on campus would be epidemiologically linked to an asymptomatic index 

case. We found that contact tracing networks were minimally clustered, with SAR higher among 

contacts of symptomatic cases compared to contacts of asymptomatic cases. Among all contacts 

that converted into an index case, 16% were epidemiologically linked to an asymptomatic index 

case. Further, in subsequent bias analyses, our results suggest that it was unlikely that many 

asymptomatic cases were missing from the observed network, likely due to standard testing 

protocols.  

 

In Chapter 4, we compared the number, spatial distribution, and individual- and spatial-level 

characteristics of DR TB diagnosed before and after the national pandemic lockdowns cases to 

better understand their impact on TB control in KwaZulu-Natal, South Africa. The simultaneous 

observation of reduced case notifications and diagnoses paired with increased TB mortality to 

levels not observed since 2017 suggest complicated interactions between different drivers of 

transmission.260 We hypothesized that the number of diagnosed DR TB cases would be 35% 

lower in the period after the pandemic lockdowns compared to the period before, and that 

neighborhoods with lower socioeconomic status would account for a greater proportion of cases 

observed. We observed a 29% reduction in DR TB cases across the province after the COVID-

19 lockdowns, and a 22% decrease observed in local municipalities surrounding the major urban 
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city of Durban. Importantly, the cases observed after the pandemic lockdowns reported worse 

living conditions, fewer household resources, and more individuals living in their households than 

before the pandemic lockdowns.  

 

Strengths and Limitations 

There were several strengths and limitations of this dissertation. A major strength of the analyses 

presented in this dissertation was its use of individual-level datasets as inputs for making 

estimations. In Chapter 2, this allowed our network model to be uniquely parameterized to the 

state of Georgia through the use of the statewide notifiable disease surveillance system database. 

In Chapter 3, we had case investigation interview notes and systematic follow-up of reported close 

contacts which allowed for us to identify individual links between the cases and contacts in our 

networks. In Chapter 4, extensive interviews with DR TB patients allowed for the collection of 

granular information on their demographics, their living conditions, and their movement patterns. 

Other strengths included the range of epidemiologic methods applied throughout this dissertation, 

spanning infectious disease mathematical modeling and spatial statistics. We implemented 

contact tracing interventions via the modification of contact rates for individuals in our network 

model for Chapter 2. An exponential random graph model framework was used for the simulation 

of networks in Chapter 2, as well as to explore potential bias in our observed networks in Chapter 

3. Techniques accounting for spatial autocorrelation, an important consideration in the context of 

an airborne-transmitted infectious disease, were used to examine patterns correlates of DR TB 

incidence in Chapter 4. 

 

Main limitations of this dissertation include the common biases that come with data collected 

through interviewing methods. In all aims of this dissertation, individual-level information was 
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collected through case investigation, contact tracing, or study-specific interviews. These include 

interviewee fatigue, recall bias, social desirability bias, and interviewer bias. Further, the extent of 

these biases likely differs across individuals in each aim, depending on the timing of their interview 

in relation to their diagnostic test date. Other limitations include the assumptions made for 

analyses performed in this dissertation, including homogenous age-mixing for individuals in the 

network model in Chapter 2, the restriction to Emory-affiliated close contacts in SAR estimates in 

Chapter 3, and the requirement of Bayesian methods for the selection of pre-defined prior 

distributions in Chapter 4. 

 

Relevance and Public Health Impact 

The results of this dissertation provide support for the implementation of mitigation strategies for 

COVID-19 at the local level and highlight important considerations for the use of and secondary 

impacts of globally applied prevention strategies aimed at one disease.  

 

At the state-level, we found a much greater impact of the speed of tracing versus the 

completeness of tracing, which provides support for the potential use of app-based methods or 

digital contact tracing.322 Prioritization schemes outlining which index cases to complete 

interviews for may also help to reduce the burden on both public health and clinical capacity if 

index cases who have a higher number of close contacts are chosen to be interviewed first. It is 

important to note that contact tracing, an incredibly useful non-pharmaceutical intervention, is 

typically not suitable as an isolated intervention strategy in the setting of an emerging infectious 

disease, especially one that is airborne-transmitted. The probability of having ‘untraceable’ 

contacts given the potential opportunities for casual contacts in various settings in which air is 

shared is much greater, and present an almost impossible barrier to successful contact tracing 
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without the use of technology such as proximity sensors.179 Lastly, contact tracing interventions 

have diminishing returns over time. These findings imply that thoughtful and careful consideration 

of the efficiency and capacity of a local public health program must be taken before making 

decisions around resource allocation for outbreak epidemic planning. If contact tracing cannot be 

performed quickly and thoroughly, resources may be better allocated to additional mitigation 

strategies or clinical capacity. At the university-level, we found that the contact tracing network 

did not represent a ‘small-world’ network but was minimally clustered with very few chains of 

transmission. These results may imply that in the setting of a hybrid learning environment, what 

is often described as a highly connected network is considerably disrupted. This empirical data 

differs from what has been described in modeling studies on the impact of hybrid learning 

environments on epidemic control, which have previously shown that only completely virtual 

learning environments had the ability to prevent spread.183 Testing protocols in addition to the 

work of the contact tracing program on the Emory University campus seemed to have successfully 

prevented major transmission events during the Fall 2020 semester.  

 

Taking into account the various ways in which the pandemic may have affected TB incidence, 

there were likely trade-offs between the impact of healthcare disruptions leading to interruptions 

in TB services versus mask mandates and social distancing preventing airborne disease 

transmission.302,309,310 These trade-offs were unlikely to have been experienced equally by the 

population, although many of these disruptions and mitigation strategies were occurring at the 

national or subnational level. The implications from results of Chapter 4 of this dissertation include 

the importance of the different risks for TB infection experienced by various groups of individuals 

based upon certain characteristics (such as employment and education), and how these risks 

may have increased or decreased after the COVID-19 lockdowns (due to lack of employment or 
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housing instability). Shifts in these risks, depending on the size of the groups involved, may result 

in observed overall reduced case notification and incidence estimates. Areas identified in the 

spatial analyses of this dissertation that had a higher risk of DR TB may be potential regions to 

focus active case finding methods on, or areas in which localized community transmission may 

be occurring throughout pandemic lockdowns.   

 

Future Directions 

This dissertation contributes to the groundwork of future studies.  

1. Examining the impact of age-targeted contact tracing interventions on the morbidity 

and mortality of elderly individuals. Contact tracing interventions may have differential 

impacts on different age groups. Stratification of the network model by age and 

implementing contact tracing interventions by targeting specific age groups may result in 

further reductions in peak ICU numbers and length of time above capacity. This work 

would be possible given the existing model infrastructure built for this dissertation. 

2. Testing alternative hypotheses for missing cases in the university network. This 

work would include examining the importance of a superspreading factor on the observed 

network, as well as testing the impact of different testing protocols on the propensity of 

cases being observed in the network. The existing model infrastructure created for this 

dissertation would be able to incorporate these different sampling methods. 

3. Assessing movement patterns of DR TB cases prior to and after the pandemic 

lockdowns. Specific movement patterns and the timing of movement of individuals before 

and after the pandemic lockdowns would provide further insight into the impact of COVID-

19 mitigation strategies on TB control. Geocoded locations for residence locations, 

overnight visit locations, daily visit locations, and public transportation routes are currently 
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being collected by the parent prospective cohort study for Chapter 4 of this dissertation, 

thus mobility patterns can be more thoroughly analyzed at the end of the data collection 

period.  
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Appendix I. Data Sources 
 
Appendix Table I-7. Data source description, date ranges, variables used, and sample sizes for chapter 1.  

 
Data Source Description Date Range Variables  Estimated 

Sample Size 
URL/Source 

SendSS Electronic database used for the 
capture and report of notifiable 
diseases in the state of Georgia 

01/01/2020 – 
12/31/2020 

age, sex, race, ethnicity, county 
of residence, date information 
(symptom onset, testing, 
interview, admission and 
discharge), symptoms, 
comorbidities, essential worker 
status details, relevant 
exposure details, hospitalization 
course (ICU admission, 
intubation), mortality (date and 
cause) 

>500,000 cases 
in GA; ~50,000 
cases in Fulton 
County 

https://sendss.state.ga.us/  

MTX Web-based portal implemented in 
the state of Georgia in response 
to the pandemic that allows for 
close contacts of diagnosed cases 
to be monitored via text by contact 
tracers and self-enroll as a close 
contact of a diagnosed case 

01/01/2020 – 
12/31/2020 

age, sex, race, ethnicity, 
monitoring dates, essential 
worker status, symptoms, 
testing dates, zip code 

~15,000 Shared via OneDrive file 
by Juliana Prieto at 
FCBOH on 03/02/2021 

OASIS Aggregated data from GDPH’s 
health data repository 

2020 age, race, ethnicity, sex, 
mortality, hospital discharge, 
and emergency room visits 

N/A https://oasis.state.ga.us/  
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Appendix Table I-1. Data source description, date ranges, variables used, and sample sizes for chapter 2. 
 
 

Data Source Description Date Range Variables  Estimated 
Sample Size 

URL/Source 

Emory University 
Contact Tracing 
Program 

REDCap database to capture 
and store information 
gathered via case 
investigation and contact 
tracing interviews for index 
cases and their reported 
close contacts 

06/01/2020 – 
06/30/2021 

age, sex, race, ethnicity, 
university affiliation, clinician 
and/or research status, location 
information (work and residence 
locations), use of public 
transportation, travel locations 
(48 hours prior to and since 
symptom onset), contacts 
(number of household and 
close contacts), testing 
information (type, date, result, 
location), symptoms, co-
morbidities, dates of isolation 
and quarantine   

>1,300 index 
cases; ~2,000 
close contacts 

Data exported from 
Emory Contact Tracing 
Program project at 
https://redcap.emory.edu/   
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Appendix Table I-2. Data source description, date ranges, variables used, and sample sizes for chapter 3. 

 
 

Data Source Description Date Range Variables  Estimated 
Sample Size 

URL/Source 

Statistics 
South Africa 

Stats SA is the national 
statistical service of the 
country and conducts over 
300 different statistical 
releases annually 

2011 – 2018 South African Census (2011); 
Demographic and Health Survey 
(2016); General Household Survey 
(2018); Living Conditions Survey 
(2014) 

N/A http://www.statssa.gov.za/
?page_id=3955; 
https://microdata.worldba
nk.org/index.php/catalog   

CONTEXT 
Study 

REDCap database to capture 
and store information 
gathered from provincial TB 
reference laboratories, in-
depth participant interviews, 
and location geocoding 

01/2018 – 
12/2021 

age, sex, employment status and 
occupation, educational attainment, 
number of adults and/or dependents 
in household, income, household 
characteristics (type, electricity and 
fuel usage, access to piped water 
and flush toilet), smoking status, 
symptoms, history of TB disease 
(dates and results of testing and 
drug-susceptibility testing and 
previous and current treatments), 
potential exposures (mine or 
healthcare worker, incarceration), 
risk factors (diabetes, cancer, HIV), 
healthcare facility of diagnosis, home 
location, places frequently visited 

>680 enrolled in 
provincial 
population; 
~220 enrolled in 
eThekwini 
cohort 

Data exported from 
CONTEXT project at 
https://redcap.emory.edu/   

Oxford 
COVID-19 
Government 
Response 
Tracker 
(OxCGRT) 

Collection of systematic 
information on policy 
measures that governments 
have taken to tackle COVID-
19 

01/2020-
present 

Stringency index N/A https://www.bsg.ox.ac.uk/r
esearch/research-
projects/covid-19-
government-response-
tracker  
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Appendix Table I-3. Variables and characteristics at the individual level and spatial level for 
chapter 3. 

 
 Individual-level (Source: CONTEXT Study) Spatial-level (Source: Stats SA) 

Variable/Characteristic Provincial Population Enrolled Cohort Main-place Level Municipal Level 
Age X X X X 
Sex X X X X 
Marital Status  X X X 
Employment  X   
Educational Level  X X X 
Adults in Household  X   
Household Size*  X X X 
Household Income  X X X 
Death of Child in Household  X   
Electricity in Household^  X X X 
Fuel for Cooking  X X X 
Fuel for Lighting  X X X 
Fuel for Heating  X X X 
Piped Water in Household  X X X 
Flush Toilet in Household  X X X 
Type of Home  X X X 
Car Ownership  X X X 
Radio  X X X 
TV  X X X 
Telephone  X X X 
Refrigerator  X X X 
Tobacco use  X   
Dagga use  X   
Alcohol use  X   
Cough symptoms  X   
Exposure histories  X   
Co-morbidities  X   
HIV results  X        
Location Variables#  X   
Healthcare Facility of 
Diagnosis X X   

 
*Interview question (F20 CRF) asks how many household members are supported by household income. 
^From Stats SA, percentage of population with electricity in household is estimated using percentage who 
use electricity for lighting. 
#Residence locations, daily visit locations, overnight visit locations.
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Appendix II. Chapter 2 Technical Appendix 
 
Appendix Figure II-1. Epi curves for the state of Georgia were re-created using Georgia Department of Public Health data. 
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Appendix Figure II-2. Cascade diagrams for case investigation processes stratified by month from March 2020-February 2021 
estimated from Georgia Department of Public Health data. 
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Appendix Figure II-3. Distribution of the proportion of symptomatic individuals across time from March 2020-March 2021 stratified 
by age decile estimated from Georgia Department of Public Health data. 
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Appendix Figure II-4. Distribution of the proportion of individuals who were recovered, admitted to the hospital, or admitted to the 
intensive care unit across time from March 2020-March 2021 stratified by age decile estimated from Georgia Department of Public 
Health data.  
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Appendix Figure II-5. Distribution of the proportion of individuals needing intensive care hospitalization across time from March 
2020-March 2021 stratified by age decile estimated from Georgia Department of Public Health data. 
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Exponential Random Graph Models 

The relationships between the nodes in our network were represented by a set of conditional logit 

equations. The probability that an edge will form between time ! and ! + 1 given its non-existence 

at time ! was represented by the following:  

$%&'!()*+!",$%& = 1-+!",$' ./ = 0′ ∂*&(4). 

where time, !, was simulated in discrete time steps in days, +!",$%& represented the connection 

formed between nodes ' and 6 between time ! and ! + 1, +!",$'  represented the rest of the network, 

0 represented the vector of parameters in the model, and &(4) represented the vector of network 

statistics corresponding to each contact network structure described in the table above. The 

probability that an edge dissolved between time ! and ! + 1 given its existence at time ! was 

represented by the following:  

$%&'!()*+!",$%& = 0-+!",$' ./ = 0′ ∂*&(4). 

where variables were analogous to those in the formation formula, except for +!",$%&, which 

represented the dissolved connection between nodes ' and 6 between time ! and ! + 1. 

 

Network Model Conditions 

The following conditions were coded for network model interventions: 

 Pool of eligible cases: Individuals within the ‘a’, ‘ip’, or ‘ic’ compartments at time t 

Cases identified for case investigation: Were diagnosed via a screening or 

diagnostic test before time t 

Close contacts of cases identified for case investigation: Retrieved from cumulative 

discordant edgelist for within household and community layer contact networks 

Eligible contacts for contact tracing: Within appropriate time range as defined by the 

Georgia Department of Public Health in 2020 (close contact within 48 hours prior to 
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symptom onset or positive test to 10 days after symptom onset or time of symptom 

resolution [whichever is longer] or positive test) 
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Appendix III. Chapter 3 Technical Appendix 
 
Appendix Figure III-1. Structure of the Emory University contact tracing program during the 2020-2021 school year at Emory 
University. 
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Appendix Figure III-2. Visualization of the testing, tracing, and isolation and quarantine processes of the Emory contact tracing 
program during the 2020-2021 school year. 

 

 

Te
st

in
g

Tr
ac

in
g

Is
ol

at
io

n 
an

d 
Q

ua
ra

na
tin

e

COVID-19 
Testing

Index 
Case 

Interview 
Attempt

Symptom 
Onset

Index 
Case 

Interview 
Completion

Elicited 
Close 

Contacts

Index Case 
Isolation

Close 
Contact 

Quarantine

COVID-19 
Test Results

Close 
Contact 
Interview 

Completion

a b

c

d e f

g h

a Time from case symptoms to test date
b Test turnaround time
c Time from test to first call attempt
d Number of contact attempts to successful interview
e Number of contacts elicited

f Time from assignment of close contacts to close 
contact interview / Number of close contacts traced

g Number of cases who completed isolation (or advised 
to isolate during review period)

h Number of contacts who completed quarantine (or 
advised to quarantine during review period)



 

 
 
 
 
 

139 

Bias analysis model framework 

The network models used in the bias analyses were used to simulate networks of COVID-19 

cases and their close contacts. In our models, each case in the network was assigned specific 

clinical and demographic attributes according to pre-defined distributions. Each attribute is 

represented by a ‘nodefactor’ term in the network model. This allowed the number of links to vary 

by an individual’s attributes. We defined target statistics for the number of edges attributed to a 

case with a given set of attributes in the network. We used data collected by the Emory University 

contact tracing program to estimate all attributes and their target statistics. The attributes assigned 

to each case influence the number of other individuals that case is connected to in the network.  

 

Full network size estimates 

To simulate full networks, we needed to make assumptions about the true size of the network. 

We estimated the denominators for individuals by affiliation (i.e., on-campus students, off-campus 

students, and faculty/staff) using university-estimated counts as well as aggregated compliance 

measure statistics used by the university to track the number of on-campus students required to 

test weekly. We also took into account the rigor of testing requirements for each affiliation, and 

how that would impact the potential number of missing cases (Table 1).  

 Population denominators 

 Student body (on-campus) = 1,570 

 Student body (off-campus) = 9,868 

 Faculty/staff = 8,442 

 

 Seroprevalence estimate = 8.6% (6.3%-11.8%)294 

 Assumptions for each population given testing protocols 
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Student body (on-campus): Very unlikely to have many missed cases. Used 

seroprevalence estimate / 2 

Student body (off-campus): Unlikely to have many missed cases. Used seroprevalence 

estimate / 2 

Faculty/staff: Very likely to have many missed cases. Used seroprevalence estimate / 1 

 

Estimated number of cases: (1,570 x 0.043) + (9,868 x 0.043) + (8,442 x 0.086) = 1,218 

cases 

 

For our primary analysis, we estimated a total number of COVID-19 cases at n = 1,200.  

 

Demographic and Clinical measures  

We categorized mean degree tables based on symptomaticity, university affiliation, gender, age 

group, race, ethnicity, month of index case test, county, and housing (for students). Models with 

target statistics specified for every level of each attribute did not easily converge, so we reduced 

the number of target statistics to the distributions for: symptomaticity, month of index case test, 

and the joint distribution for university affiliation and housing. Using these target statistics, we 

simulated full transmission networks from each model. 

 

Appendix Tables III-1. Number, percent, and mean degree of individuals based upon 
characteristics including symptomaticity, affiliation, housing, gender, age group, race, ethnicity, 
month of index case diagnosis, and county. 

Symptomatic No. (%) Mean Degree 
Yes 362 (82) 2.9 
No 79 (18) 3.0 

 
 

Affiliation No. (%) Mean Degree 
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Student 263 (60) 3.0 
Faculty/Staff 176 (40) 2.8 

 
Student Housing No. (%) Mean Degree 

On-Campus 48 (18) 3.8 
Off-Campus 215 (82) 2.8 

 
Gender No. (%) Mean Degree 

Male 166 (38) 3.2 
Female 271 (61) 2.7 

 
 

Age Group No. (%) Mean Degree 
17-22 years 122 (28) 3.5 
23-28 years 111 (25) 2.5 
29-40 years 99 (22) 2.5 
>40 years 104 (24) 3.0 

 
 

Race No. (%) Mean Degree 
Black 113 (26) 2.9 
White 239 (54) 3.0 
Asian 55 (12) 2.6 

 
 

Ethnicity No. (%) Mean Degree 
Non-Hispanic/Latino 381 (86) 3.0 

Hispanic/Latino 30 (7) 2.9 
 
 

Month No. (%) Mean Degree 
August 15 (3) 2.4 

September 50 (11) 3.2 
October 63 (14) 3.4 

November 139 (31) 3.0 
December 174 (39) 2.5 

 
 

County No. (%) Mean Degree 
DeKalb 201 (46) 2.9 
Fulton 83 (19) 2.3 

Gwinnett 39 (9) 3.7 
Cobb 16 (4) 2.2 

Rockdale 7 (2) 2.6 
Henry 6 (1) 2.3 
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Affiliation + Housing No. (%) Mean Degree 
On-Campus Student 48 (11) 3.8 
Off-Campus Student 215 (49) 2.8 

Faculty/Staff 176 (40) 2.8 
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Appendix IV. Chapter 4 Technical Appendix 
 
Appendix Figure IV-1. Timeline of lockdowns with the estimated stringency index for South 
Africa from February 2020-December 2021. 
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The CAR distribution smoothes data according to an adjacency structure given by a neighborhood 

matrix that specifies neighbors as units sharing a boundary.323 The CAR distribution is as follows: 

!!|#"#~% &!'$! ,
)%&
*$!

+ 

Where !'$! = *$!"'∑ !(()$! , and .! and *$! represent the set of neighbors and number of neighbors 

of area /, respectively. 

 

Models were fit using the following structure: 

 

%!0123	56	78929	~	56692:(log(?5?!@8:/5*	75!*:)) + C* + C+D+! + !! + E! 

 

Where D+! were neighborhood characteristics of the local municipality unit, D(+-')!( was the 

number of diagnosed DR TB cases in the spatial units that shared a border with the index census 

unit, !! was a spatially correlated random effect, and E! was a non-spatially correlated random 

effect. 

 

Final models were chosen based upon optimizing DIC values across the two time periods.  

 

Fixed effect variables for each model are listed below: 

Model 1: Flush toilet connected to sewage, weekly refuse removal, electricity for lighting  

Model 2: Flush toilet connected to sewage, owns stove, owns motor car, access to 

internet, electricity for lighting 

Model 3: Formal dwellings, female headed household, tribal settlement, average 

household size  
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Model 4: Flush toilet connected to sewage, electricity for lighting, formal dwellings, tribal 

settlement, female headed household 

Model 5: Flush toilet connected to sewage, owns stove, electricity for lighting, female 

headed house 

Model 6: Flush toilet connected to sewage, owns stove, electricity for lighting, access to 

internet 

 
 
Appendix Table IV-1. Estimated deviance information criterion for Bayesian autocorrelated 
models for drug-resistant tuberculosis cases diagnosed before and after COVID-19 pandemic 
lockdowns.   

 
 Before lockdowns After lockdowns 
 DIC 
Model 1 45.89 66.00 
Model 2 42.17 52.23 
Model 3 51.61 56.03 
Model 4 47.32 58.40 
Model 5 47.36 58.05 
Model 6 40.87 54.82 
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