
Distribution Agreement

In presenting this thesis or dissertation as a partial fulfillment of the requirements for
an advanced degree from Emory University, I hereby grant to Emory University and
its agents the non-exclusive license to archive, make accessible, and display my thesis
or dissertation in whole or in part in all forms of media, now or hereafter known,
including display on the world wide web. I understand that I may select some access
restrictions as part of the online submission of this thesis or dissertation. I retain
all ownership rights to the copyright of the thesis or dissertation. I also retain the
right to use in future works (such as articles or books) all or part of this thesis or
dissertation.

Signature:

Zelalem Gero Date

Machine learning Methods for Biomedical Keyphrase Extraction

By

Zelalem Gero
Doctor of Philosophy

Computer Science and Informatics

Joyce C. Ho, Ph.D.
Advisor

Abeed Sarker, Ph.D.
Committee Member

Imon Banerjee, Ph.D.
Committee Member

Tristan Naumann, Ph.D.
Committee Member

Accepted:

Kimberly Jacob Arriola, PhD, MPH
Dean of the James T. Laney School of Graduate Studies

Date

Machine learning Methods for Biomedical Keyphrase Extraction

By

Zelalem Gero
B.A., Jimma University, Ethiopia, 2009

M.Sc., AAU, Ethiopia, 2012
M.Sc., Emory University, GA, 2019

Advisor: Joyce C. Ho, Ph.D.

An abstract of
A dissertation submitted to the Faculty of the

James T. Laney School of Graduate Studies of Emory University
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy
in Computer Science and Informatics

2021

Abstract

Machine learning Methods for Biomedical Keyphrase Extraction
By Zelalem Gero

Due to the increased generation and digitization of text documents on the Internet
and digital libraries, automated methods that can improve search, discovery and
mining of the vast body of literature are essential. Efficient automated methods that
extract keywords to retrieve the salient concepts of a document are shown to be of
a paramount importance in text analysis, document summarization, topic detection,
and recommendation systems among others.

Various machine learning approaches have been proposed to solve the problem of
keyword extraction but the results still lag other tasks such as document classification.
The task of keyword extraction in biomedical domain is even more daunting since the
literature is highly domain specific and general methods do not translate well. To
deal with these problems we propose 1) an unsupervised extraction method based on
phrase-embeddings and modified pagerank algorithm which converges faster and per-
forms better than related baseline methods; 2) A deep learning method that pays more
attention to words that are central to the document’s semantics; 3) a semi-supervised
deep learning approach to harness vastly available unannotated biomedical data that
improves keyword extraction based on uncertainty estimation. 4) An encoder-decoder
based extraction for Medical Subject Heading (MeSH) indexing.

Machine learning Methods for Biomedical Keyphrase Extraction

By

Zelalem Gero
B.A., Jimma University, Ethiopia, 2009

M.Sc., AAU, Ethiopia, 2012
M.Sc., Emory University, GA, 2019

Advisor: Joyce C. Ho, Ph.D.

A dissertation submitted to the Faculty of the
James T. Laney School of Graduate Studies of Emory University

in partial fulfillment of the requirements for the degree of
Doctor of Philosophy

in Computer Science and Informatics
2021

Acknowledgments

I am forever indebted to all the people who have supported me throughout my grad-

uate school journey in various capacities. Prof. Joyce Ho deserves the lion’s share of

all the credit for her relentless support and guidance. She has been there for me in

the most difficult of times encouraging and being the voice of hope. Working with

Joyce has taught me more than just research skills. It made me become a better

person and I am profoundly grateful for all her help. Thank you!

I would like to thank all the members of my dissertation committee: Prof Abeed

Sarker, Prof. Imon Banerjee and Dr. Tristan Naumann who have helped me with

constructive feedback to improve the quality of my work.

Finally, I would like to thank the Department of Computer Science and Maths

where the people made me feel at home from day one.

Thank you!!

i

Contents

1 Introduction 1

1.1 What Constitutes a Keyphrase? . 3

1.2 Contributions . 4

1.3 Outline . 6

2 Unsupervised Keyphrase Extraction 7

2.1 Introduction . 7

2.1.1 Related Work . 8

2.1.2 Graph-based Methods . 9

2.2 Proposed Model: NamedKeys . 12

2.2.1 Candidate Keyphrase Generation 13

2.2.2 Phrase Embedding: PMCVec 14

2.2.3 Phrase Quality . 16

2.2.4 Candidate Clustering and Ranking 17

2.3 Experiments . 19

2.3.1 Dataset . 19

2.3.2 Baseline Methods . 20

2.3.3 Conclusion . 25

3 Supervised Keyphrase Extraction 26

3.1 Introduction . 26

3.2 Related Work . 26

3.3 Methodology . 27

3.3.1 Word Embedding Layer . 28

3.3.2 BiLSTM Layer . 28

3.3.3 Centrality Weighting Layer 28

3.3.4 Conditional Random Fields (CRF) 30

3.4 Experiments . 30

3.4.1 Datasets . 30

3.4.2 Experiment Settings . 31

3.4.3 Results . 31

3.4.4 Conclusion . 32

4 Semi-supervised Keyphrase Extraction 33

4.1 Introduction . 33

4.2 Related Work . 34

4.3 Methodology . 34

4.3.1 BiLSTM-CRF Architecture 34

4.3.2 Self-training and Uncertainty Estimation 36

4.4 Experiments . 39

4.4.1 Datasets . 39

4.4.2 Experiment Settings . 39

4.4.3 Evaluation Results . 39

4.5 Conclusion . 41

5 Mesh Indexing: Keyphrase Extraction from Controlled Vocabulary 42

5.1 Introduction . 42

5.2 Related Work . 44

5.3 Proposed Model: Encoder-Decoder with RL for MeSH Indexing . . . 46

5.3.1 Encoder . 48

5.3.2 Decoder . 49

5.3.3 Reinforcement learning for seq2seq training 50

5.4 Experimental Results . 51

5.4.1 Dataset . 51

5.4.2 Evaluation and Results . 51

5.5 Conclusion . 55

6 Conclusion and Future work 56

Bibliography 59

iv

List of Figures

1.1 The conceptual framework of this dissertation. 4

2.1 The NamedKeys model pipeline. 13

2.2 A comparison of the F1 scores across the various keyphrase extraction

models using exact match. 22

2.3 A comparison of the F1 scores across the various keyphrase extraction

models using partial match . 23

3.1 Our model architecture with the various layers. 29

4.1 A common baseline BiLSTM-CRF architecture for keyphrase extraction. 35

4.2 A self-training model architecture . 36

5.1 A sample abstract with manually annotated MeSH terms. 43

5.2 The distribution of MeSH labels. 46

5.3 The Encoder-Decoder architecture with Attention 47

5.4 Examples of MeSH sequences. The left side are two cases where our

model does well while the right side illustrates the challenging examples. 54

v

List of Tables

2.1 Comparison of the baseline models and our model using MeSH terms

as golden annotations . 25

2.2 The effect of various modules of NamedKeys. 25

3.1 Comparison of model performance on different datasets. 32

4.1 Comparison of model performance by fine-tuning pre-trained models. 40

4.2 Comparison of common unsupervised models and our model on PubMed

dataset. 40

5.1 Average MiF scores for the baselines and our model. 52

5.2 Average MiF scores for our model and AttentionMesh using bins. . . 53

5.3 Bootstrap sample statistic using 1000 Monte Carlo simulations. . . . 53

vi

List of Algorithms

1 Pseudo-code for iterative self-training 38

2 Pseudo-code for the REINFORCE algorithm applied to encoder-decoder 50

1

Chapter 1

Introduction

There has been an exponential growth in biomedical literature with over 28 million

articles indexed by PubMed1. This growth enables researchers and practitioners to

work with more literature but also presents a challenge in filtering out relevant content

in reasonable time. Thus, information extraction is a key component in automated

text processing as it facilitates the acquisition of structured information. Keyphrase

extraction, the identification of single-world or multi-word linguistic units that con-

cisely represent a document, is a crucial aspect of information extraction. Keyphrases

help readers rapidly understand, organize, access, and share information of a docu-

ment by providing a short summary of the document. Extracting keyphrases from

documents is of paramount importance for natural language processing (NLP) tasks

such as text summarization [7, 71], text classification [19], topic detection [43, 83],

recommendation systems [59, 75], citation summarization [65] and information visu-

alization [17]. Scientific publishers use keyphrases to identify potential reviewers for

submitted articles, recommend articles to readers, and suggest missing citations to

authors [4].

A variety of models have been introduced for keyphrase extraction due to its

widespread use [32]. Existing keyphrase extraction systems are either supervised

1https://www.ncbi.nlm.nih.gov/pmc/tools/openftlist/

2

or unsupervised. Supervised methods train classifiers on labeled examples and re-

quire large domain-specific annotations. Unfortunately, such labeled data is typically

unavailable in the biomedical domain as the annotation process is labor intensive

and usually necessitates significant domain expertise. Unsupervised methods, on the

other hand, rely on word co-occurrence statistics from large external corpora such as

Wikipedia and WordNet. Large external corpora are good statistical approximations

for general domain keyphrase extraction but lack good representation in domain spe-

cific settings like biomedical text where the vocabulary can be significantly different.

Moreover, many of the unsupervised approaches focus on word level co-occurrence

and prefer keyphrases containing highly ranked words. These biases results towards

keyphrases with more number of words. Recent unsupervised approaches such as

graph-based methods and topic-based methods offer better keyphrase generation yet

can suffer from a lack of diversity of the extracted keyphrases or generate phrases

that may not be meaningful. Despite these efforts, the task remains challenging and

the performance of current systems remains poor in comparison to other NLP tasks

[49].

The challenge of keyphrase extraction is even more daunting in the biomedical

domain where the text contains highly domain-specific terminologies. Given the vast

amount of biomedical literature generated and digitized every year, there is a grow-

ing need to develop methods for discovering, accessing, and sharing knowledge from

medical literature [66]. Significant portions of research articles published in med-

ical journals do not have author-assigned keyphrases. Even when they come with

keyphrases, the number of author-assigned keyphrases available with the articles is

too limited to represent the topical content of the articles. This makes an automatic

keyphrase extraction process highly desirable. Despite this need, keyphrase extrac-

tion for biomedical text has been largely ignored by the research community. Only

two works [47, 70] have been introduced and either have been demonstrated on a

3

small set of documents or necessitated a hand-curated list of keyphrases.

A similar line of work related to keyphrase extraction is the use of Medical Subject

Headings (MeSH) by a prominent medical literature database, MEDLINE. MeSH is a

controlled set of terms manually assigned by human indexers in the National Library

of Medicine. Even though MeSH terms make it easier to search for a document and

cluster similar documents, generating MeSH terms for every document is expensive

and time-consuming; new articles are not immediately indexed until 2 or 3 months

later and approximately ten dollars per article is spent for the manual indexing [54].

MeSH terms can be used implicitly for automatic query expansion or explicitly in

PubMed searches [51]. Compared with the commonly used keyword-based PubMed

searches, MeSH indexing allows for semantic searching and searching against concepts

not necessarily present in the PubMed abstract. In this dissertation, we treat MeSH

indexing as a special case of keyphrase extraction where the keys are extracted from

a controlled set.

1.1 What Constitutes a Keyphrase?

The goal in keyphrase extraction is to extract the most important key elements.

However, what constitutes a key element is not a universally agreed upon concept.

The following properties are usually thought to encompass keyphrases:

• Well-formed: Keyphrases should be well-formed words or phrases which are

linguistically meaningful.

• Representative: Extracted keyphrases should reflect the major aspects discussed

in the document.

• Impartiality: keyphrases should be as objective as possible which reflect the

informational content of the document without personal sentiment.

4

Figure 1.1: The conceptual framework of this dissertation.

• Specific: Keyphrases should be as specific as possible by selecting keys which are

characteristic of a document to differentiate it from other similar documents.

• Minimal: The extracted keys should be different from each other.

• Exhaustive: The extracted keyphrases should cover all the subjects covered in

the document.

1.2 Contributions

Despite the enormous growth of machine learning and NLP techniques in the last

decade, extraction of semantically meaningful and coherent keyphrases from text is

still a non-trivial task. In this dissertation, we develop several reliable keyphrase

extraction models focused on biomedical documents by solving the the two aforemen-

tioned problems: keyphrase extraction and MeSH indexing. The overall conceptual

framework of our work is shown in Figure 1.1.

Our contributions are summarized as follows:

5

• Unsupervised extraction models: Since most of the existing unsupervised mod-

els work better in the general domain, we propose a method specifically focused

on the biomedical domain as the literature is domain-specific. First, we de-

velop a biomedical embedding model which learns vector representations for

words and phrases [25]. As biomedical literature contains multi-word phrases,

phrase embeddings capture the semantics much better. Secondly, we develop

a keyphrase extraction model that utilizes the trained phrase embeddings and

a modified PageRank [61] algorithms to extract words and phrases which are

syntactically and semantically meaningful [26].

• Supervised extraction model: Unsupervised methods work well when there is

not enough annotated training data is available. However, in most settings,

their performance is not on par with supervised methods. The problem of

keyphrase extraction can be modeled as a sequence tagging task where each

token is classified as either being part of the keyphrase or not. This setting

uses the Bidirectional Long Short Memory Network-Conditional Random Fields

architecture commonly applied for such tasks as Named Entity Recognition, yet

the extracted keyphrases may not capture the main gist of the document. We

improve on this architecture by introducing the idea of word centrality using

attention since keyphrases are central to the document [28].

• Semi-supervised extraction model: To take advantage of the large amount of

unlabelled data, we propose a semi-supervised method that starts with a small

amount of labeled data to gradually use more unlabeled data for better per-

formance. Unlike previous works which fail to account for uncertainty of the

psuedo-labels, we use Monte-Carlo simulation for uncertainty estimation [27].

Our model then selects a subset of psuedo-labeled datapoints from the large

unlabeled dataset to re-train the model iteratively.

6

• MeSH indexing using seq2seq: Tagging biomedical documents with list of MeSH

terms is a closly related task with keyphrase extraction. We consider the con-

trolled MeSH vocabulary as the super-set of keyphrases from which we extract

based on the input text. We develop a sequence to sequence model (seq2seq)

which is trained using reinforcement learning with a designed reward function.

This allows the model to learn the high level correlation between the MeSH

labels and improve the overall performance.

1.3 Outline

The rest of this dissertation is structured in four chapters. In Chapter 2, we intro-

duce the commonly used unsupervised keyphrase extraction methods. We detail the

steps and features each method uses. Then we present our proposed unsupervised

extraction model. In the Experiments section, we present comparative results. In

Chapters 3 and 4, we discuss our supervised and semi-supervised extraction mod-

els respectively. Comparisons with baseline models is also presented. In the final

chapter, we propose sequence-to-sequence (seq2seq) models for MeSH indexing task.

We consider the task as generating MeSH labels as sequences which depend on each

other. By incorporating reinforcement learning in the training of the seq2seq model,

we alleviate the problem of label-invariance while generating individual labels.

7

Chapter 2

Unsupervised Keyphrase

Extraction

2.1 Introduction

Unsupervised methods have the advantage that they do not rely on human annotated

datasets to train. Hence, the focus is on the features extraction that can generalize

for all datasets despite the domain. Most of the unsupervised keyphrase extraction

systems share the following steps:

1. Candidate Selection: Select potential keyphrases using predefined heuristics.

Such heuristics commonly remove stopwords, punctuation, and words that have

some specific parts of speech tags.

2. Candidate Ranking: Candidate ranking is performed using various features such

as frequency of occurrence and proximity to other candidates.

3. Post-processing: Top words from the ranked list above will be selected and if

necessary joined to form longer keyphrases.

In the subsections that follow, we detail how these steps are used by each of the

8

methods. We also point out the limitations of the baseline models when applied to

biomedical data. Then we discuss our proposed model in detail with comparative

results with the baselines.

2.1.1 Related Work

Unsupervised keyphrase extraction methods can be broadly categorized into: statis-

tical methods, graph-based methods, and topic-based methods.

Statistical Methods

Statistical methods focus on statistical features based on the current corpus that do

not require external corpora. The most common features used by statistical methods

are the position of the first occurrence of a candidate, word frequency, casing, and

how often a candidate word appears in different sentences.

Term-frequency Inverse document frequency (Tf-Idf) is the most widely

used statistical baseline. The basic premise of Tf-Idf is that terms that occur fre-

quently in a document are likely to be more important while terms that occur across

the corpus are not specific enough to be very important. Tf-Idf for a term t in

document d across a corpus D is calculated as:

tfidf(t, d,D) = tf(t, d) · idf(t,D),

where tf(t, d) is the frequency of the term t in a given document d and idf(t,D) =

logN/(Nd) where N is the total number of documents in the corpus and Nd is the

number of documents that contain the term.

KP-Miner [21] is a keyphrase extraction system that exploits various types of

statistical information beyond the Tf and Idf scores. It follows a quite effective

filtering process of candidate phrases and uses a scoring function similar to Tf-Idf.

9

KP-Miner generates candidate tokens that are not be separated by punctuation marks

or stopwords. These candidates are filtered based on the least allowable frequency

in addition to the number of words after which a phrase appears for the first time.

Finally, it ranks the candidate phrases considering the Tf and Idf scores as well as

the term position and a boosting factor for compound terms over the single terms.

YAKE [16] preprocesses the text by splitting it into individual tokens. In addition

to position and frequency of each token, YAKE uses five additional statistical metrics

that capture context information and the spread of the terms into the document:

• Casing (Wcase): the casing of a word

• Word Position (WPosition): words occurring at the beginning of a document

are valued more

• Word Frequency (WFreq): the observed frequency of the word

• Word Relatedness to Context (WRel): the number of different terms that occur

to the left/right side of the candidate word

• Word DifSentence (WDifSentence): how often a candidate word appears within

different sentences

Finally, all these features are aggregated for the computation of the S(t) score for

each term (the smaller the value, the more important the word t would be).

S(t) =
WRel ·WPos

Wcase+ WFreq
WRel

+ WDif
WRel

2.1.2 Graph-based Methods

The basic idea in graph-based ranking is to create a graph from a document that

has as nodes the candidate phrases from the document and each edge of this graph

10

connects related candidate keyphrases. The final goal is the ranking of the nodes

using a graph-based ranking method, such as PageRank.

TextRank [55] is the first widely adopted graph-based keyphrase extraction

method. The text is tokenized and Part of Speech (POS) tagging is done for ev-

ery token. Based on the POS tags, only nouns and adjectives are kept. Next the

candidates are added to the graph as nodes and an edge is added between the nodes

that co-occur within a window of N words. The graph is undirected and unweighted.

Each node will be initialized with a score of 1, then the PageRank algorithm runs

until it converges. Specifically, for a node Vi, the corresponding score function that

is iteratively computed is:

S(Vi) = (1− λ) + λ
∑

j⊂N(Vi)

1

N(Vj)
S(Vj)

where N(V i) is the set of neighbors of V i, N(V j) is the set of neighbors of V j, and λ

is the probability of jumping from one node to another.

SingleRank [81] extends TextRank and incorporates weights to edges. It uses

co-occurrence statistics for context information among words. Each edge weight is

equal to the number of co-occurrences of the two corresponding words. Then, the

score function for a node V i is computed in a similar way:

WS(Vi) = (1− λ) + λ
∑

j⊂N(Vi)

COij∑
V k⊂N(Vj)

COjk

WS(Vj)

where COij is the number of co-occurrences of word i and word j.

After convergence, for each continuous sequence of nouns and adjectives in the text

document, the scores of the constituent words are summed up and the T top-ranked

candidates are returned as keyphrases.

PositionRank [22] is based on word-word co-occurrences and their corresponding

11

position in the text. It incorporates all positions of a word into a biased weighted

PageRank. The final scores from PageRank are then used to rank the candidates.

Topic-based Methods

Topic-based keyphrase extraction methods try to extract keyphrases that are repre-

sentative of all the topics discussed in a text document. These methods usually apply

clustering techniques or Latent Dirichlet Allocation (LDA) [9] to detect the main

topics discussed.

TopicRank [15], is the widely used topic-based model. It preprocesses the text to

extract the candidate phrases. Then, the candidate phrases are grouped into separate

topics using hierarchical agglomerative clustering. Instead of a word graph, a graph

of topics is constructed whose edges are weighted based on a measure that considers

phrases’ offset positions in the text. Finally, TextRank is used to rank the topics and

a keyphrase candidate is selected from each of the N most important topics.

MultipartiteRank [14] is a method similar to TopicRank which introduces an in-

between step where edge weights are adjusted to capture position information giving

bias towards keyphrase candidates occurring earlier in the document.

Keyphrase extraction specifically for biomedical domain has been experimented

by few researchers. In [47], Li et al. extract noun phrases from medical literature as

keyphrase candidates and assign weights to extracted noun phrases for a medical doc-

ument based on how important they are to that document and how domain-specific

they are in the medical domain using WordNet lexical database and Specialist Lexi-

con. Even though this work is a pioneer in the extraction of keyphrases from medical

documents, the use of a very small test set of 60 documents is not large enough for

conclusive results. In [70], Sarkar presents a hybrid approach to keyphrase extraction

from medical documents. The approach is an amalgamation of two methods: the first

one assigns weights to candidate keyphrases based on combination of features such

12

as position, term frequency, inverse document frequency and the second one assign

weights to candidate keyphrases using some knowledge about their similarities to the

structure and characteristics of keyphrases available in the memory (stored list of

keyphrases). This approach necessitates the availability of hand-curated keyphrases

in memory to learn from, making it harder to use in an unsupervised setting.

Although the aforementioned methods perform well, they have limitations that

can be improved. The methods are based on single-word candidates which make it

difficult to capture keyphrases with multiple words. They attempt to remedy this

by concatenating words during post-processing but our results show that such post-

processing leads to semantically meaningless phrases. Most of the keyphrases that

are constructed from single words during post-processing end up becoming fragments

that are not syntactically valid.

2.2 Proposed Model: NamedKeys

Extracting keyphrases from text can be considered as selecting phrases that capture

the gist of the document and are also semantically and syntactically correct. In [76],

these two measures are referred to as informativeness and phraseness. Informative-

ness measures how good a phrase is in capturing the main theme of the document

while phraseness measures the likelihood of a sequence of words to be a meaningful

phrase. We propose PMCVec– a new keyphrase extraction algorithm, that produces

informative and meaningful keyphrases for biomedical text. Our model, illustrated

in Figure 2.1, consists of the following steps: (1) new candidate keyphrase generation

mechanisms to construct an extensive keyphrase candidate set; (2) a new phrase-

embedding representation for the document and the phrases to better measure the

informativeness of a given phrase; (3) a new “phraseness” metric to assign a nor-

malized score for every phrase generated from the corpus; and (4) a ranking and

13

Figure 2.1: The NamedKeys model pipeline.

clustering module that ranks the candidate phrases and clusters the keyphrases to

ensure that the extracted keyphrases are diverse. The details for each of the four

steps are discussed in the following subsections.

2.2.1 Candidate Keyphrase Generation

We propose two new mechanisms for generating keyphrase candidates. The first

process uses named entity recognition (NER) to extract information such as disease

names, medication, symptoms, and chemicals. Instead of constructing multi-word

phrases based on important consecutively occurring words, we start with phrases as

a single unit of representation. We observed that many keyphrases in biomedical

literature capture concepts such as chemicals, diseases, cell types, proteins, and gene

named entities. Biomedical-specific NER has been shown to help identify problems

and symptoms a patient has exhibited, tests that have been run, and treatments that

14

have been administered [10]. Unfortunately, biomedical named entities may not occur

frequently enough in the text, and thus are often not suggested by existing keyphrase

extraction tools. Thus, we used SciSpacy [60], a specialized NLP library for processing

biomedical texts, to detect all the named entities in the text. SciSpacy contains

different modules for chemicals and disease named entities; cell types; proteins and

gene named entities; and cell lines, DNA, RNA and cancer named entities.

The second mechanism finds phrases that are not named entities but are still

potentially meaningful. Rather than rely only on the NER, we propose a generic

approach to extract more candidate phrases. PMCVec chunks the text by identifying

potential keyphrase boundaries using stopwords and punctuation [70]. From the gen-

erated chunks, those which belong to the following parts of speech will be retained:

‘JJ’, ‘JJR’, ‘JJS’, ‘NN’, ‘NNS’, ‘NNP’, ‘NNPS’. We perform the parts of speech se-

lection using Genia Tagger1, a biomedical tool for text processing. Although stop

words and punctuations will never occur in any proposed keyphrase, it provides a

systematic methodology for generating variable n-graph keyphrases. The detected

named entities from the NER process and from this chunking process are combined

to construct the candidate keyphrase pool.

2.2.2 Phrase Embedding: PMCVec

The next step of PMCVec focuses on identifying the candidate keyphrases with high

informativeness measures. We propose the use of word embeddings to help rank the

candidate phrases based on closeness to the document. Word embeddings are dense-

low dimensional vector representations of words such that related words are close

in vector space. Each dimension in the vector represents a feature of a word, and

the vector can, in theory, capture both semantic and syntactic features of the word.

Word2Vec [30], Glove [29], and FastText [12] are commonly used approaches to train

1http://www.nactem.ac.uk/GENIA/tagger/

15

word vectors. Unfortunately, many of the common word embedding approaches and

pre-trained vectors focus on unigrams, while key concepts in biomedical literature are

often expressed as multi-word phrases [62].

We develop a phrase-based embedding model to capture the semantic and syntac-

tic relation between terms (or n-grams). We use a data-driven approach of extracting

a commonly occurring sequence of words and learn embeddings for the extracted

phrases along with the single words. [29] showed that the presence of unigram words

intermixed with multi-word phrases improves the performance of embedding models.

To avoid pre-specification of the number of words for a phrase, we used a similar idea

as the second mechanism in the keyphrase candidate generation step. We identify po-

tential phrase boundaries using stopwords and punctuations (excluding the hyphen).

A sequence of words that occur more than a pre-defined threshold (100 is used for

our experiments) are considered potential phrases. Phrases are merged into a single

word (e.g., prostate cancer becomes prostate cancer) in the order they originally ap-

peared in the text. The multi-word phrases are trained with all the single words in

the corpus. We use the Word2Vec tool to train our phrase embedding model on over

27 million PubMed abstracts. As a result, our embeddings can capture the semantic

relation between related concepts like “Hypertension” and “High Blood Pressure”.

Once the vector representations are available for all the terms in a document as well

as the candidate keyphrases, PMCVec measures the informativeness of the candidates

compared to the candidate vectors of the document. Given the importance of the

named entities in the biomedical documents, we represent the document, d, using the

IDF-weighted sum of the named entities:

d =

n∑
i=1

idf(i, d,D) · wi

n∑
i=1

idf(i, d,D)

,

16

where wi is the corresponding vector representation of the named entity and idf(i, d,D)

is the inverse document frequency of the named entity. This is used for attenuating

the effect of terms that occur too often in the collection to be meaningful for rel-

evance determination. Then to calculate the informativeness of a given candidate

phrase, we compute the cosine similarity between the document and the keyphrase

representation, wk:

Similarity(d, wk) =
dTwk

||d||2||wk||2
(2.1)

2.2.3 Phrase Quality

A candidate keyphrase can have a high cosine similarity to the document and can

still not be a syntactically meaningful phrase. As an example, “ventricular arrhyth-

mias vary” could have a high cosine similarity to a document discussing “ventricular

arrhythmias” but should not be ranked high since the phrase is not syntactically

sound. A better phrase would be just “ventricular arrhythmias”. Although there are

several common phrase ranking criteria [18, 36], we found they offered a poor trade-

off between phrase frequency, constituent word frequency, and phrase length. For

example, point-wise mutual information (PMI) is often used to find good collocation

pairs as it calculates the probability of co-occurrence relative to the probabilities of

the occurrence of each word. Conversely, phrases that contain frequently occurring

words will have small PMI scores even if the phrase is good. To measure the phrase-

ness of a candidate keyphrase, we propose “Information Frequency (Info Freq)”, a

new ranking metric based on the phrase frequency and constituent words frequency

in the corpus [25]. This criteria achieves the state-of-the-art performance when the

resulting distributed word representations are evaluated on five benchmark datasets

for biomedical semantic similarity. Our metric adds a multiplier to the PMI index

17

that captures the overall frequency of the phrase:

Info Freq(x, y) = log
p(x, y)

p(x)p(y)
· log(freq(x, y)) (2.2)

where p(x, y) is the probability of the two words occurring together, p(x) is the

probability of the first word in the text and p(y) is the probability of the second

word in the text. Thus, Info Freq measures the phraseness of a sequence of words

by considering how often the phrase and the constituent words occur. Info Freq

is calculated for all the candidate keyphrases and the scores are normalized to lie

between 0 and 1.

2.2.4 Candidate Clustering and Ranking

The final two steps of PMCVec are to rank the candidates using the informativeness

and meaningfulness measures, as well as cluster the candidate keyphrases to avoid

redundancy of keyphrases. While phrase embedding and phrase quality capture the

general informativeness and meaningfulness of a given candidate phrase respectively,

we use local co-occurrence of two candidates to capture the local relationship between

the phrases within the context of the given document using a weighted PageRank

algorithm [32]. The document is represented as a weighted undirected graph, where

vertices correspond to the words/phrases and the edges represent the co-occurrence

relations between two terms. Two vertices are connected if they occur in the same

sentences. For a graph with V vertices and E edges, the score for vertex vi is calculated

as:

S(vi) = (1− β)Wi + β
∑

j⊆in(vi)

sim(vi, vj)

|out(vj)|
S(vj), (2.3)

18

where Wi is the importance weight of vertex i measured as the average of its similarity

to the document vector and its phrase quality, sim is the cosine similarity between

keyphrases vi and vj, out is the number of outgoing edges of keyphrase vj, and β

is a damping factor. Thus, high scores reflect phrases that capture the gist of the

document and are also semantically and syntactically correct.

Two common problems with keyphrase extraction algorithms are overgeneration

and redundancy of keyphrases. Overgeneration errors occur when a system correctly

predicts a candidate as a keyphrase because it contains a word that appears frequently

in the associated document, but at the same time erroneously outputs other candi-

dates as keyphrases because they contain the same word. Redundancy errors occur

when a system correctly identifies a candidate as a keyphrase, but at the same time

outputs a semantically equivalent candidate (e.g., it’s alias) as a keyphrase. A recent

study performed error analysis on the various algorithms and showed that 52-64% of

the errors were due to overgeneration and redundancy of keyphrases [32]. For existing

algorithms that rely on frequency, it can be difficult to avoid overgeneration errors as

rejecting a non-keyphrase containing a word with a high term frequency might neg-

atively impact the precision of the algorithm. On the other hand, redundancy errors

occur due to the inability to detect that two candidates are semantically equivalent.

To overcome the overgeneration and redundancy error, we propose clustering the

candidate keyphrases based on their semantic similarity. The cluster analysis achieves

two purposes: identify keyphrases that are semantically similar and diversify the gen-

erated document keyphrases. The clustering algorithm uses the cosine similarity

scores for all pairs of the candidate keyphrases to identify keyphrases that are simi-

lar. The importance of the cluster is then calculated based on the average distance of

each of its candidates to the document. The cluster importance weights are then nor-

malized to sum up to 1, and are used to determine the composition of the extracted

keyphrases. For example, a cluster with a weight of 0.5 will provide approximately

19

50% of the final generated keyphrases, while a cluster with 0.1 weight will contribute

10%. To further avoid redundancy, keyphrases will not be selected if they are too sim-

ilar (e.g., sim(vi, vj) ≥ α where α = 0.75 in our experiments). While any clustering

algorithm based on distances can be used, we used the Affinity Propagation clustering

algorithm [23] with a damping factor of 0.85 and Euclidean affinity. One benefit for

Affinity Propagation is that the number of clusters is automatically learned from the

data.

2.3 Experiments

2.3.1 Dataset

Keyphrase extraction for biomedical text has not been widely studied except for

the two works mentioned in the related works [47, 70]. Thus, we construct a new

benchmark dataset based on the PubMed Central Open Access Subset articles. This

dataset was constructed by selecting all the abstracts which contain at least 5 author-

provided keyphrases. Five is chosen as the minimum number of keyphrases since most

evaluation benchmarks are done at a minimum of five keyphrase extraction. Since

the focus of this work is keyphrase extraction, we propose that the author-provided

keyphrases serve as appropriate summarizations of their articles. Thus, we did not

consider abstracts where there are no author-provided keyphrases.

While the PubMed Central Open Access Subset contains over 28 million articles at

the time of download, only 3049 articles had a title, abstract, and at least five author-

provided keyphrases found in the abstract. A value of 0.85 is used for the damping

factor β as this gave the best score on a separate training set of 2000 abstracts. This

training set is different from this benchmark test set as we used abstracts with less

than five author provided keyphrases.

In our benchmark dataset, we provide the following fields for each article:

20

• title: the title of the article,

• abstractText:the abstract of the article,

• keyphrases: a list of keyphrases provided by the authors

2.3.2 Baseline Methods

We compare the NamedKeys model with the state-of-the-art keyphrase extraction

approaches implemented by Boudin et al. [13]. Graph-based approaches commonly

use PageRank algorithm to determine the importance of candidates by using incom-

ing and outgoing vertices to/from each candidate. Candidates with connections to

other important candidates will have higher rank while candidates with fewer connec-

tions or connections to less important vertices will be ranked lower. Statistical-based

approaches rely on features extracted from the document such as the position of

first occurrence of a candidate, word frequency, casing, and how often a candidate

word appears in different sentences. These approaches commonly use external corpus

like Wikipedia to construct the features and perform well in a general domain while

graph-based methods have the benefit of performing well in any domain since they do

not depend on specific corpus features. We could not find the implementations of two

baselines [53, 82] that reported performing well in the general domain. Our imple-

mentation of their models performed worse than the other baselines used here. Hence,

we did not report the scores from those baselines. For the graph-based approaches

the following are used as baselines:

• MultiPartiteRank [14]: An approach that encodes the topical information

within a multipartite graph structure and exploits their mutually reinforcing

relationship to improve candidate ranking.

• PositionRank [22]: An algorithm that incorporates information from all po-

sitions of a word’s occurrences into a biased PageRank algorithm.

21

• SingleRank [80]: A method that encodes the mutual influences of multiple

documents within a cluster context.

• TextRank [55]: A model that accounts for the local context of a text unit

(vertex) and the information recursively drawn from the entire text (graph).

• TopicRank [15]: A graph-based method that relies on a topical representation

of the document.

For the statistical-based approaches the following are used as baselines:

• TF-IDF: Term frequency-inverse document frequency, a common weighting

technique in information retrieval and text mining.

• KP Miner [21]: A model that makes use of the first position a candidate phrase

appears and the TF-IDF measure as a weight.

• YAKE [16]: A feature-based system for multi-lingual keyword extraction from

single documents.

We first evaluated the algorithms based on exact match as a function of the number

of phrases extracted. Figure 2.2 shows the F1 scores for our NamedKeys model and

the other baseline approaches based on the extracted number of phrases between ten

and thirty in increments of five. NamedKeys consistently achieves the highest score

with a performance gain of up to 35% from the next best method. We also observe

that almost all of the algorithms achieve the highest F1 score when evaluated at 30.

This intuitively makes sense as the algorithms can achieve higher recall without much

loss in precision as the number of extracted phrases increases. From the figure, the

three statistical approaches (KP Miner, YAKE and TFIDF) achieve the worst F1

scores overall. This can be attributed to the fact that such approaches mainly focus

on the number of times the candidate occurs and the position of first occurrence.

22

10 15 20 25 30

number of extracted keyphrases

0.0

0.1

0.2

0.3

0.4

0.5

0.6

f1
sc
or
e

algorithms

TextRank

TopicRank

PositionRank

MultiPartite

NamedKeys

singleRank

KPM

YAKE

TfIdf

Figure 2.2: A comparison of the F1 scores across the various keyphrase extraction
models using exact match.

23

10 15 20 25 30

number of extracted keyphrases

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

f1
sc
or
e

algorithms

TextRank

TopicRank

PositionRank

MultiPartite

NamedKeys

singleRank

KPM

YAKE

TfIdf

Figure 2.3: A comparison of the F1 scores across the various keyphrase extraction
models using partial match

These heuristics are not typically important in biomedical documents as phrases can

be very important without having to occur multiple times.

Exact match evaluation serves as a lower bound on the model performance as par-

tial matches are considered incorrect. For example, if the keyphrase is “high blood

pressure”, a model that identifies “blood pressure” will obtain the same score as

another model that fails to identify “blood pressure”. An alternative performance

measure is the Message Understanding Conference (MUC) standard of partial eval-

uation. According to the MUC, the following terminologies are defined to compare

the system extracted keyphrases against the gold annotations.

24

• Correct (COR): Outputs are the same

• Incorrect (INC): Outputs don’t match

• Partial (PAR): Outputs match partially

• Missing (MIS): Golden annotations not captured by the extraction system.

• Spurious (SPU): System extracts keys which are not in the golden annota-

tions.

The partial match scoring is then calculated as:

Possible = COR + INC + PAR +MIS (2.4)

Actual = COR + INC + PAR + SPU (2.5)

Precision =
COR + 0.5 · PAR

Actual
(2.6)

Recall =
COR + 0.5 · PAR

Possible
(2.7)

In Figure 2.3, we show the performance comparison using MUC partial evalua-

tion. When comparing with Figure 2.2 illustrates that the partial match evaluation

results are much better than the exact match across all the baselines. The score

variance among the methods is also much less. We also observe that NamedKeys

consistently outperforms the other models except at the tail ends (low number of

extracted keyphrases and high number of keyphrases).

Due to high variability of author provided keyphrases, we experimented with using

Medical Subject Headings (MeSH) as the golden annotations. Since MeSH terms are

curated list of terms, only a few are usually assigned as keywords by authors. We

used abstracts which contain at least 1 MeSH term to compare the extractive results.

As shown in 2.1, the performance degrades across all the extraction algorithms.

25

Table 2.1: Comparison of the baseline models and our model using MeSH terms as
golden annotations

SingleRank PositionRank TopicRank NamedKeys
F1@5 0.11 0.12 0.13 0.13
F1@10 0.23 0.25 0.24 0.24
F1@15 0.29 0.31 0.29 0.31

We also performed an ablation experiment to quantify the performance gains for

the various modules in our model as shown in Table 2.2.

Method @10 @15 @20 @25 @30
No NER P 0.24 0.20 0.17 0.15 0.13

R 0.17 0.20 0.24 0.26 0.30
F1 0.19 0.20 0.20 0.19 0.18

NER + Embed P 0.39 0.37 0.37 0.36 0.36
R 0.22 0.29 0.36 0.39 0.42
F1 0.28 0.32 0.36 0.37 0.39

NER + Embed+ chunk P 0.39 0.37 0.38 0.37 0.37
R 0.22 0.29 0.36 0.38 0.42
F1 0.28 0.32 0.37 0.37 0.39

NER + Embed + chunk + phraseQuality P 0.38 0.35 0.33 0.31 0.31
R 0.30 0.40 0.48 0.55 0.55
F1 0.34 0.37 0.39 0.40 0.40

Table 2.2: The effect of various modules of NamedKeys.

2.3.3 Conclusion

In this chapter, we introduced NamedKeys – a method composed of four modules:

NER, phrase embedding, phrase quality score and similarity-based clustering for

keyphrase extraction from biomedical documents. To evaluate the proposed method,

we created a new publicly available benchmark dataset from PubMed Central Open

Access articles. Our unsupervised approach results in performances better than ex-

isting baselines at various numbers of keyphrases extracted.

26

Chapter 3

Supervised Keyphrase Extraction

3.1 Introduction

Supervised learning is a powerful machine learning method when labeled data is avail-

able. Many text processing tasks such as text classification, sentiment analysis, and

information extraction gain performance improvements with supervised methods even

in the presence of a modest amount of labeled data. In this chapter, we propose a new

supervised deep learning model for the task of keyphrase extraction from biomedical

literature. Our model performance is compared with several common baselines.

3.2 Related Work

Supervised keyphrase extraction methods often treat the problem as a binary classi-

fication task [1, 78, 79], where learning algorithms such as support vector machines

[37, 85] and maximum entropy [42, 87] are used. Other supervised approaches pose

the problem as a ranking between candidates [85]. The candidates keys are extracted

using statistical (e.g., tf-idf, number of occurrences, first occurrence of the key) and

structural features (e.g., part of speech tags). Conditional Random Fields (CRFs)

have also been explored on top of the statistical and structural features in [44].

27

Deep learning based models have also been used for supervised keyphrase extrac-

tion. Word embeddings are used to measure the relatedness between words in graph-

based models [82]. [89] used a Recurrent Neural Network (RNN) based approach to

identify keyphrases in Twitter data. The model addresses the problem as sequence

labeling for very short text, where a joint-layer RNN is used to capture the semantic

dependencies in the input sequence. In [69], the authors used an attention-based neu-

ral network to extract keyphrases from scientific documents by retrieving additional

information from other sentences within the same document. Sahrawat et. al [68]

evaluate the effect of various pretrained word embeddings in extracting keyphrases

from benchmark datasets. Al-Zaidy et.al. [1] employ a Long Short-Term Memory

(LSTM) with a CRF layer to model keyphrase extraction as a sequence labelling

task. Even though the latest deep learning models have shown much improvement

over traditional methods, they fail to capture the centrality of the keyphrases which

represents a salient feature of the document. To this end, we propose a centrality

layer on top of a Bidirectional LSTM (BiLSTM) to constrain the importance of each

token with regard to the document. This ensures tokens chosen as keyphrases are the

ones representing the main topics of the document.

3.3 Methodology

The keyphrase extraction task is formulated as a sequence labelling task. Given a

document X = w1, w2, · · · , wt where wi is the ith word and t is the number of words in

the document, we predict the labels y = y1, y2, · · · , yt where each label yi is whether

word wi is a keyphrase or not.

28

3.3.1 Word Embedding Layer

Each word in the document is represented by pre-trained low-dimensional vector rep-

resentations. Any pre-trained vector representation can be used, and we experiment

with various pre-trained embeddings such as Glove [64], word2vec [56], BERT [20]

and BioBERT [46]. The impact of each embedding type is evaluated and discussed

in the experiments section.

3.3.2 BiLSTM Layer

This layer is used to encode each document to obtain the local contextual represen-

tation. A forward and backward LSTM are used to read the input sequence from

left to right,
−→
h1,
−→
h2, · · · ,

−→
ht , and right to left,

←−
h1,
←−
h2, · · · ,

←−
ht , respectively. The out-

puts from the two directions are concatenated and summed for the final hidden state

representation of the document, H = [
∑t

i=1

−→
hi ,
∑t

i=1

←−
hi].

3.3.3 Centrality Weighting Layer

Sequence labelling is commonly used for other token encoding tasks such as Named

Entity Recognition (NER) where the task is to determine whether a token is a named

entity or not. However, keyphrase extraction is different from other sequence labelling

tasks (for example NER) in that, we want the tokens to capture the main gist of the

document. This is in contrast to NER where the importance of the token is irrelevant

as long as it is a named entity. To incorporate the idea of centrality, we learn the

similarity between each token and the document embedding, H to bias towards tokens

which are central to the document.

For words {w1, w2, · · · , wt} in a document D, we learn the centrality weight for

each word α1, α2, · · · , αt. The output representation, zi for each word is then the

centrality weight multiplied by the output of the BiLSTM, zi = [αi
−→
hi , αi

←−
hi]

29

Figure 3.1: Our model architecture with the various layers.

30

3.3.4 Conditional Random Fields (CRF)

CRFs are widely used to model sequence labeling tasks [44]. Given the input docu-

ment as sequence of tokens, CRF produces a probability distribution over the output

label sequence using the dependencies among the labels of the entire input sequence.

This formulation considers the correlations between neighboring labels and allows

joint decoding for the best sequence of labels for the input sequence, rather than

decoding each label independently. Figure 3.1 illustrates our model architecture with

the various layers.

3.4 Experiments

3.4.1 Datasets

We ran our experiment on 2 publicly available keyphrase datasets: PubMed [26],

INSPEC [35]. PubMed consists of 2532 articles from PubMed Central Open Access

Subset with at least 5 author-provided keyphrases while INSPEC contains 200 ab-

stracts of scientific journal papers from Computer Science collected between the years

1998 and 2002. Each document in INSPEC has two sets of keywords assigned: the

controlled keywords, which are manually controlled assigned keywords that appear in

the INSPEC thesaurus but may not appear in the document, and the uncontrolled

keywords which are freely assigned by the editors. The union of both sets is consid-

ered as the ground-truth in this work. Since we use a sequence labeling formulation

of the keyphrase extraction problem, the abstract/keyphrases data pairs are prepared

such that each document is a sequence of word tokens, each with a positive label if it

occurs in a keyphrase, or with a negative label.

31

3.4.2 Experiment Settings

As baseline models, we train BiLSTM, BiLSTM-CRF, and DAKE[69] with different

embedding vectors. The word embeddings are initialized with 100-dimension Glove

pre-trained embedding vectors [29], 768-dimension BERT embeddings [20], and 768-

dimension BioBERT embeddings [46].

The BiLSTM, and BiLSTM-CRF are optimized during training using stochastic

gradient descent with learning rate 0.0001. Gradient clipping of 5.0 is used to prevent

the gradient from overflows during back-propagation. In addition, we use dropout to

avoid over-fitting. We select the model with the best F1 score on the validation set

on three runs.

3.4.3 Results

The BiLSTM and BiLSTM-CRF baselines are trained using Glove and Word2Vec

pretrained embeddings. The results in Table 3.1 are using Glove embeddings which

perform slightly better than Word2Vec embeddings. For the BERT baseline, we used

BERT embeddings with BiLSTM-CRF setting. Similarly, we used the BioBERT

embeddings with BiLSTM-CRF for the BioBERT baseline. DAKE is another state-

of-the- art baseline which uses sentence enriching process from all the documents

using sentence embedding. To replicate their work, we used the Bert model to extract

sentence embeddings for each document and enrich the representation. Finally, our

model is trained using BERT word embeddings for the INSPEC dataset and BioBERT

embeddings for the PubMed dataset. In addition to the word embeddings, we have

the centrality constraint layer using the embedding vectors.

The performance comparison of the baselines and our model is shown in Table 3.1.

Our model performs much better on the PubMed dataset compared to the baselines.

The improvement gained from our model is not as large on the INSPEC dataset.

We hypothesize that for the centrality constraint to be effective, the input sequence

32

Table 3.1: Comparison of model performance on different datasets.
Model PubMed INSPEC
BiLSTM 0.543 0.427
BiLSTM-CRF 0.554 0.453
BERT 0.604 0.581
BioBERT 0.622 0.464
DAKE 0.623 0.463
Ours 0.644 0.586

should be relatively longer. The sentences in the INSPEC dataset are much shorter

hence the difficulty in learning the central theme.

3.4.4 Conclusion

In this chapter, we proposed a keyphrase extraction method that focuses on identi-

fying words which are central to the document semantics. The problem of keyphrase

extraction is posed as a sequence labeling task where each token is tagged as either a

keyphrase or not. In addition to our novel centrality constraint layer, we have used

BiLSTM layers to capture the long term dependencies among the input sequences.

Finally, we have a CRF layer which is well suited to capture the dependencies from

the output labels. Empirical results on two datasets shows that our method gains

significant improvement in the PubMed dataset while performing slightly better on

the INSPEC dataset.

33

Chapter 4

Semi-supervised Keyphrase

Extraction

4.1 Introduction

As we have seen in the previous chapter, with the availability of labeled data, su-

pervised methods show performance gains in comparison to unsupervised methods.

However, in many domains, the availability of manually labeled data is limited. In

contrast, large amount of unlabeled text data is being generated and digitized every

moment. This opens up an opportunity to use these large unlabeled datasets to train

machine learning models. In this chapter, we detail how we combine small amount of

labeled data with large unlabeled data to develop a semi-supervised machine learn-

ing model that performs better than the supervised counterparts. We also detail how

Monte-Carlo dropout can be used to approximate model uncertainty to select samples

from the unlabeled data.

34

4.2 Related Work

Since deep learning models require significant labeled data, self-training for keyphrase

extraction has been explored recently [45, 91]. Conceptually, the model is first trained

on the labeled data and then used to generate pseudo-labels for the unlabeled data.

A subset of the pseudo-labeled data is then used to re-train the model and this

process is iteratively done until all the unlabeled data have been used. Even though

their approaches show performance gains over baseline models, the uncertainty of the

model is not incorporated which can lead to poor learning and noise propagation.

We propose to incorporate the uncertainty of the psuedo-label during self-training for

further improvements.

4.3 Methodology

The keyphrase extraction task is formulated as a sequence labelling task. Given

a document X = w1, w2, · · · , wt where wi is the ith token and t is the number of

tokens in the document, we predict the labels Y = {kB, kI , kO} where kB, kI and kO

denote whether the token is the beginning of, part of, or not a part of a keyphrase,

respectively. The baseline deep learning model we employ is the commonly used

BiLSTM-CRF architecture [1, 45, 68, 91] shown in Figure 4.1. We first briefly describe

the BiLSTM-CRF model before introducing self-training and uncertainty estimation

for keyphrase extraction.

4.3.1 BiLSTM-CRF Architecture

Token Emebedding

Each token, wi, is represented by a low-dimensional vector representations xi. Any

pre-trained word embedding can be used such as Glove [64], word2vec [56], SciBERT

35

Figure 4.1: A common baseline BiLSTM-CRF architecture for keyphrase extraction.

[6] and BioBERT [46]. Contextualized embeddings such as SciBERT have been shown

to provide better results [68].

BiLSTM Layer

A BiLSTM layer is used to encode each document into a local contextual repre-

sentation. The BiLSTM generates two feature representations,
−→
hi and

←−
hi , for each

xi using a forward and backward LSTM, respectively. The two representations are

concatenated and then passed to an affine transformation kt = Wa

↔
[
−→
ht ;
←−
ht].

CRF

Given the sequence of tokens, CRF produces a probability distribution over the output

label sequence using the dependencies among the labels of the entire input sequence

[44]. Given a transition matrix Γ where Γi,j is the transition score from class yt−1 to

yt, the score of an output label sequence s is given by s(s, y) =
∑n

t=1 Γyt−1,yt +Kt, yt.

The overall likelihood score for a given sequence is then calculated by exponentiating

36

Figure 4.2: A self-training model architecture

the individual scores and normalizing over all possible output sequences.

4.3.2 Self-training and Uncertainty Estimation

Self-training is a semi-supervised approach which has state-of-the art performances

across several applications [48, 67, 74]. Under the self-training paradigm, a teacher

model is trained on a small amount of labeled data (Dl) and used to generate pseudo-

labels on unlabeled data (Du). A subset of the pseudo-labeled data is then combined

with the labeled data to train a second model called a student model. The student

then becomes the teacher and this process is repeated until convergence is achieved.

37

The overall process of the self-training architecture is shown in Figure 4.2.

While several self-training keyphrases extraction models have been proposed [45,

91], they fail to consider the teacher uncertainty. These implementations only sample

pseudo-labeled instances where the model confidence is high in a single pass. Predic-

tive probabilities from a softmax output are erroneously taken as model confidence.

Gal et al. [24] demonstrate that a model can be uncertain in its predictions even

with a high softmax output. This can lead to poor learning and noise propagation

through self-training on wrong pseudo-labels [58]. Moreover, selecting samples where

the model is very confident may not improve the performance of the student model

as these may already be correctly classified. However, selecting samples where the

model is least confident can make it difficult to learn anything important. Mukherjee

et al. [58] proposed to select examples based on the uncertainty of the teacher model

to improve the self-training process by modeling a distribution over the parameters

through Bayesian Neural Networks to reflect model uncertainty. Unfortunately, direct

adoption of this framework is not straightforward as questions arise from the multiple

pseudo-keyphrase annotations associated with each document.

Based on the promising results of using uncertainty to improve the self-training

process, we introduce a new uncertainty-based self-training model for keyphrase ex-

traction. For each sample in the unlabeled data (Du), we use Monte-Carlo dropout

[24] to simulate a Bayesian approximation to quantify the uncertainty associated with

the teacher model ft with corresponding model parameters W . This means that M

forward passes are performed where stochastic dropouts are applied to each hidden

layer (W̃m) to approximate the model output as a random sample from the posterior

distribution as in [58]. It is important to note that this process will create different

pseudo keyphrases for each document since dropouts are activated during inference

as well. Thus for each unlabeled sample xu, there are M pseudo-labels for each token

in the document, y∗1, · · · , y∗M . The pseudo-labels are used to compute the stochastic

38

mean and variance of xu:

E(y) =
1

M

M∑
m=1

y∗m(x) (4.1)

V ar(y) ≈ 1

M

M∑
m=1

y∗m(x)>y∗m(x)− E(y)>E(y) (4.2)

From these, model uncertainty is approximated by the summary of variance of

the model outputs from the multiple forward passes. The uncertainty for a given

unlabeled document is the mean of the uncertainties of the individual tokens. This

gives us the pseudo-labels with their corresponding uncertainties u1, u2, ..., um for

each unlabeled document xu. Pseudo-labeled samples with low uncertainty values

are considered easier while high uncertainty valued samples are harder for the teacher

model to predict. To enhance the student learning, we select samples with the average

uncertainty value less than a threshold (we used 0.2 since this gives the best results on

the validation set). This helps with selecting some samples where the teacher model

is not very certain. Algorithm 1 outlines our uncertainty-based self-training process

for keyphrase extraction.

Algorithm 1: Pseudo-code for iterative self-training

1 Train ft teacher model with parameters W on Dl;
2 while not converged do
3 for x ∈ Du do
4 for m ∈ {1, · · · ,M} do
5 W̃m ∼ Dropout(W) ;

6 y∗m = softmax
(
f (Wm)(x)

)
;

7 end
8 Calculate stochastic mean and variance of x ;

9 end
10 Sample instances with uncertainty less than a given threshold (α) ;
11 Retrain model W using the combined data ;

12 end

39

4.4 Experiments

4.4.1 Datasets

We ran our experiment on a publicly available scientific keyphrase dataset: PubMed

[26]. PubMed contains 2532 articles from PubMed Central Open Access Subset with

at least 5 author-provided keyphrases. Since we use a sequence labeling formulation,

the document/keyphrases data pairs are prepared such that each document is a se-

quence of word tokens, where the positive labels (kB, kI) are used if the word occurs

in a keyphrase and a negative label (kO) if it is not part of the keyphrase.

For the self-training based model, we use an unlabeled dataset, PubMed-Medline1

which contains over 28 million abstracts of biomedical journals.

4.4.2 Experiment Settings

We split the dataset into 80%, 10%, and 10% for training, validation and testing,

respectively. Our model is compared against two BiLSTM-CRF with two different

word embeddings: 768-dimension SciBERT [6], and 768-dimension BioBERT [46].

The BiLSTM-CRF models are optimized during training using stochastic gradient

descent with a learning rate 0.0001. Gradient clipping of 5.0 is used to prevent the

gradient from overflows during back-propagation. In addition, we use dropout to

avoid over-fitting. We evaluate the models using the F1 score on the test set using

three different runs.

4.4.3 Evaluation Results

To quantify the performance benefits of self-training for keyphrase extraction, we have

used two of the best performing pre-trained models commonly used: SciBERT and

BioBERT. These pre-trained models already achieve state-of-the art performances in

1https://www.nlm.nih.gov/databases/download/pubmed_medline.html

https://www.nlm.nih.gov/databases/download/pubmed_medline.html

40

many downstream tasks. We fine-tuned the pre-trained models by adding a BiLSTM

and CRF layers with small labeled data available. After fine-tuning on the small

labeled data, we use the self-training module to keep sampling from the unlabeled

set.

The performance comparison of the baselines and our model is shown in Table

4.1. Since pre-trained models already use large amount of unlabeled data, it’s usually

cumbersome to squeeze out performance improvements. Our model shows significant

performance gain on the dataset compared to the baselines.

For comparison with common unsupervised approaches, we ranked our keyphrase

tagging based on the predicted model uncertainty. In Table 4.2, we show F1 scores

when extracting 5,10, and 15 keyphrases from a document. The results show that

unsupervised methods lag significantly behind their semi-supervised counterpart as

our model performs better.

Table 4.1: Comparison of model performance by fine-tuning pre-trained models.
Model F1 score
BiLSTM-CRF (SciBERT) 0.765 (±0.003)
BiLSTM-CRF (BioBERT) 0.768 (±0.003)
SciBERT + JLSD [45] 0.765 (±0.003)
SciBERT sahrawat [68] 0.766 (±0.002)
Ours (BioBERT + CRF + Self) 0.773 (±0.002)

Table 4.2: Comparison of common unsupervised models and our model on PubMed
dataset.

SingleRank PositionRank TopicRank Ours
F1@5 15.2 18.3 26.4 36.2
F1@10 16.3 18.3 28.7 54.3
F1@15 19.2 20.9 29.2 64.5

41

4.5 Conclusion

In this chapter, we proposed a new uncertainty-based self-training keyphrase extrac-

tion method that utilizes unlabeled data to augment small labeled training data. We

proposed the use of Monte-Carlo dropout to approximate the model uncertainty for

each pseudo-labeled document. The uncertainty is then used to sample specific docu-

ments to retrain the model using the combined data. This iterative Teacher-Student

model training is performed until convergence is achieved. The empirical results on

the PubMed dataset showcase that self-training can provide an performance improve-

ment, especially when there is a significant unlabeled corpus.

42

Chapter 5

Mesh Indexing: Keyphrase

Extraction from Controlled

Vocabulary

5.1 Introduction

MEDLINE is the U.S. National Library of Medicine® (NLM) premier bibliographic

database that contains more than 30 million references to journal articles in life sci-

ences with a concentration on biomedicine. A distinctive feature of MEDLINE is that

the records are indexed with NLM Medical Subject Headings (MeSH®)1. MeSH is

a comprehensive controlled vocabulary, which has been developed and maintained by

National Library of Medicine. There are over 29 million MeSH main headings. MeSH

indexing is the task of assigning a set of hierarchically-organized terminology to ci-

tations. An example of manually indexed MEDLINE abstract with the MeSH terms

is shown in Figure 5.1. MeSH terms can then be used implicitly for automatic query

expansion or explicitly in PubMed searches [51]. Compared with the commonly used

1https://www.nlm.nih.gov/bsd/medline.html

43

Figure 5.1: A sample abstract with manually annotated MeSH terms.

keyword-based PubMed searches, MeSH indexing allows for semantic searching and

searching against concepts not necessarily present in the PubMed abstract. MeSH

has also been used in many other applications in biomedical text mining, such as

document summarization [8], document clustering [31, 34], word sense disambigua-

tion [40], and question answering [90]. Thus, accurate MeSH indexing of biomedical

documents is crucial for the biomedical researchers in formulating novel scientific

hypothesis and discovering new knowledge.

To maintain the high quality of term assignment to citations, NLM carefully

indexes citations with MeSH terms manually. On average, each citation is indexed

by 13 Mesh terms. Even though the manual indexing is very valuable, it is taxing

to the curators and expensive. It is estimated that $9.4 is spent to annotate a single

MEDLINE citation [57]. Moreover, the size of the biomedical literature is growing

exponentially over the past few years [50]. This makes the task of indexing manually

even more difficult and prohibitively expensive. To alleviate this, NLM uses MTI

(Medical Text Indexer), a software system that suggests suitable MeSH terms to

human curators [3]. However, the curators still have to read the entire document and

assign MeSH terms manually. The MTI output is merely used as a method to narrow

the large selection space to a reasonable number for the human curators.

44

Manually indexing MEDLINE documents is not only labor intensive and expen-

sive, but also time consuming. Hence, new documents are not indexed until 2 or

3 months after publication [54]. Given the enormity of the task, various machine

learning approaches have been proposed to solve the MeSH indexing problem. In the

sections that follow, we discuss the related works and detail our proposed method

which poses the task as sequence-to-sequence problem using an Encoder-Decoder

Transformer architecture.

5.2 Related Work

MeSH indexing can be approached as a multi-label text classification (MLC) task with

each MeSH heading as a class. In this setup, each citation will have multiple headings

assigned as class. Various techniques that use the MLC method have been applied

to solve the problem of MeSH indexing; Näıve Bayes [38], support vector machines

[39], K-nearest neighbors [77], and Learning to Rank [33]. Most recent methods use

the combination of two or more of the above methods. MTI which is developed by

NLM to provide MeSH recommendations to human indexers has a module which

generates candidate MeSH terms and another to filter and rank the candidates. It

uses MetaMap [2], another text processing tool developed by NLM which identifies

medical concepts from text and maps to UMLS (Unified Medical Language System)

[11] concepts. UMLS is a set of files and software that brings together many health and

biomedical vocabularies and standards to enable interoperability between computer

systems. MTI summarizes text using MetaMap and MeSH to recommend terms.

Using nearest neighbors, MTI extracts more MeSH from related citations and ranks

the final recommendations.

Due to their recent advances and performance gains in many tasks, various deep

learning based methods have been applied to solve the MeSH indexing problem.

45

The first approach, DeepMesh [63] like MTI uses two modules: the first to generate

MeSH candidates and predict the number of output MeSH terms, and the second

is to rank the candidates and take the highest-ranked predicted number of MeSH

terms as output. DeepMeSH uses TF-IDF and document to vector (D2V) schemes

to represent each abstract and generate MeSH candidates using binary classifiers

and a k-nearest neighbor (KNN) method solver using these features. TF-IDF is a

traditional weighted bag of word sparse representation of the text and D2V learns a

deep semantic representation of the text.

MeshNow [54] reformulates the MeSH indexing task as a ranking problem and

applies a learning to rank method. MeshNow is a three-step process: First, given a

target article, it obtains an initial list of candidate MeSH terms from three unique

sources (KNN, MLC, and MTI recommendation). Next, it applies a learning-to-

rank algorithm to sort the candidate MeSH terms based on the learned associations

between the document text and each candidate MeSH term. Finally, it prunes the

ranked list and returns a number of top candidates as the final system output.

Recently Qin et al [41] developed an interpretable MeSH indexer using deep learn-

ing and the attention mechanism. Starting with an input abstract, title and journal

name, words in the document are embedded and fed to BiGRU (BiDirectional Gated

Recurrent Unit) to derive context-aware representations. KNN-derived articles from

training corpus are identified and frequent MeSH terms in them are included as can-

didate annotations for the document. MeSH terms are embedded, and only those

candidates are further considered using the attention mechanism. The attention

mechanism assigns attention weights to each word with respect to each candidate

MeSH term, which leads to a MeSH-specific document representation. Finally, they

use MeSH-specific document representations as input to perform the multi-label clas-

sifications. For each candidate MeSH term of a document, the model outputs a prob-

ability. Even though this model uses attention mechanism to boost performance, it

46

Figure 5.2: The distribution of MeSH labels.

is a multi-label classification model and hence the tail-end labels suffer from lack of

enough training data.

5.3 Proposed Model: Encoder-Decoder with RL

for MeSH Indexing

MeSH indexing can be considered as a multi-label classification (MLC) task. In an

MLC setting, each label is trained independently of the other labels. In the case of

MeSH indexing, there is a complex dependency between each of the assigned labels.

The existence of one label can hint to the inclusion/exclusion of another label. More-

over, there is a large skewness between the MeSH label distribution as shown in Figure

5.2. Most of the MeSH labels have less than 100 supporting documents. Training sep-

arate classifiers using such few data points is a challenge. To capture the high-order

47

Figure 5.3: The Encoder-Decoder architecture with Attention

correlation between labels, we propose a a method based on the sequence-to-sequence

architecture (seq2seq) [73]. Seq2seq models are shown to effectively capture depen-

dencies between labels for tasks ranging from Machine Translation [5], to Question

Answering [86] and DNA function prediction [88].

Seq2seq models’ performance have been impressive in tasks where the input and

output sequences are relatively short. When dealing with long sequences, vanilla

seq2seq models have difficulty coping with long-range dependencies. The RNN build-

ing blocks employed by seq2seq models struggle to encode long sentences. For the

task we are dealing with, MeSH indexing, input sequences can be as long as thousands

of tokens making it difficult to capture the entire input context. To deal with such

issues, the attention mechanism was proposed and has been shown to be effective

[52].

We employ the Encoder-Decoder with attention, shown in Figure 5.3, to model

the MeSH indexing task as a seq2seq problem. NLP tasks which employ the Encoder-

Decoder architecture assume a (loose) correspondence between input tokens and out-

put tokens. In such tasks, the length of the input and output sequences are usually

comparable. In contrast, for MeSH indexing, the input sequence is significantly longer

than the output sequence. There is no one-to-one token correspondence as is common

48

in other tasks such as machine translation which poses challenges during encoding.

Another challenge is the ordering of output sequences. MeSH labels are a set of

unordered terms where there is no inherent natural order. In machine translation,

for example, both the input language as well as the output language have a syn-

tax and semantic rules which govern the order of the sequences. To solve this, we

used the MeSH terms’ distribution frequency as an ordering criteria. Even though

attention-based Encoder-Decoder models have shown to produce competitive results,

two common problems still persist. The first is exposure bias where the model strug-

gles when ground truth tokens are not fed to the decoder during inference. The second

problem is the inconsistency between training and test objectives. During training,

the log-loss objective is used for learning. However, in inference time we want to max-

imize an F1-score. Since F1-score is not differential, it can not be directly maximized

as a model objective. To deal with these issues, we propose using a reinforcement

algorithm on top of the Encoder-Decoder model. The main components of the our

architecture are summarized below.

5.3.1 Encoder

The encoder reads the input sequence and encodes to a fixed-length internal repre-

sentation. This is implemented as a BiLSTM. For each input word, the forward and

backward hidden states are computed using the LSTM passes and are concatenated

for the final representation of the word.

−→
hi =

−−−−→
LSTM(

−−→
hi−1, (wi)) (5.1)

←−
hi =

←−−−−
LSTM(

←−−
hi−1, (wi)) (5.2)

hi = [
−→
hi ,
←−
hi] (5.3)

49

5.3.2 Decoder

Based on the input received from the encoder and its current state, the decoder

generates a label and also updates its own state for the next time step until the

end-of-sequence token is generated.

st = LSTM(st−1, [yt−1; ct]), (5.4)

where ct is the context vector calculated by a weighted sum of the encoder hidden

states.

ci =
∑
j=1

αijhj (5.5)

where αij is the amount of attention the ith output should pay to the jth input and

hj is the encoder state for the jth input. αij is computed by taking a softmax over

the attention scores e of the inputs with respect to the ith output.

αij =
∑
j=1

αijhj (5.6)

αij = softmax(eij) =
exp(eij)∑
k=1 exp(eik)

(5.7)

where

eij = f(si−1, hj) (5.8)

50

Algorithm 2: Pseudo-code for the REINFORCE algorithm applied to
encoder-decoder
1 Input: A sequence of input tokens(X)
2 Output: ground truth MeSH sequences(y)
3 while not converged do
4 Sample N batches from X and y
5 Encode the input using the Encoder RNN
6 Initialize the current token with the start token T= ‘<START>’
7 Initialize the output sequence with empty sequence: Out = []
8 while T != ‘<END>’ do
9 Get the probability distribution of the output tokens

10 Sample the output token Bout from the distribution
11 Add Bout to the output sequence: Out+ = Bout

12 Set the current token T

13 end
14 Calculate the Q = F1-score
15 Estimate the gradients ∇j =

∑
T Q∇ log p(T)

16 Update the model using SGD

17 end

5.3.3 Reinforcement learning for seq2seq training

To alleviate the problems with the Encoder-Decoder model (exposure bias, train/test

measure inconsistency) as well as to prevent the high dependence of the Encoder-

decoder model on the label order, we can model the task as a reinforcement learning

(RL) problem.

The first thing to note is that the decoder outputs the next token probability

distribution at every step, which is very similar to policy gradient models [72]. From

this perspective, the decoder can be seen as an agent trying to decide which token to

produce at every step. This stochastic framing helps to take into account multiple

target sequences and learn how to produce multiple variants of the same sequence

with different ordering. Another advantage of this stochastic framing is that we can

directly minimize the F1-score we care about in inference, instead of minimizing the

cross-entropy. Even when the reward (F1-score) is not differentiable, we can use

gradient methods like REINFORCE [84] to push up the probabilities of successful

51

episodes and decrease the worse ones. The working of the REINFORCE algorithm

applied to Encoder-Decoder models is shown in Algorithm 2.

Thus, the training objective is to minimize the negative expected reward:

L(θ) = −Ey∼pθ[r(y)] (5.9)

We used the F1 score as the reward function by comparing the generated labels with

the ground truth.

5.4 Experimental Results

5.4.1 Dataset

We use the PubMed dataset which contains over 10 million annotated PubMed arti-

cles. The dataset includes 28,789 MeSH terms in total. Each article in the dataset is

annotated with 12 MeSH terms on average. We performed our training on 3 million

articles. Another 100,000 articles are used for testing. Our model is implemented

using tensorflow 2.4 with Adam optimizer and batch size of 128. We employed early

stopping and learning rate decay strategies. To train the model on 4 GPUS (V100s)

takes 2 days.

5.4.2 Evaluation and Results

The performance of our model is evaluated by the harmonic mean of micro-precision

(MiP) and micro-recall (MiR), Micro-F. The Micro-F is calculated as:

Micro− F =
2 ·MiP ·MiR

MiP +MiR
(5.10)

52

where

MiP =

Na∑
i=1

N∑
j=1

yij · ŷij

Na∑
i=1

N∑
j=1

ŷij

(5.11)

MiR =

Na∑
i=1

N∑
j=1

yij · ŷij

Na∑
i=1

N∑
j=1

yij

(5.12)

where Na is the the total number of test articles, N is the number of all MeSH terms,

i is index for articles and j is index for MeSH terms. yij denotes whether MeSH term

j is in article i in the ground truth, and ŷij denotes whether MeSH term j is in article

i in the prediction.

The performance comparisons of our model and baselines is shown in Table 5.1.

As can be seen from the results, modeling MeSH indexing task as a seq2seq problem

can improve performance.

Model MiP MiR MiF
MTI First Line Index 0.6 0.65 0.63

DeepMeSH 0.65 0.6 0.63
MeSHNow 0.61 0.61 0.61

AttentionMeSH 0.68 0.65 0.66
Our model 0.66 0.68 0.67

Table 5.1: Average MiF scores for the baselines and our model.

We also experimented with how the gains from our model compare against the

best performing baseline model in different categories. By binning labels into the

number of supporting training documents each label has, table 5.2 shows the gains

in each bin. We can see that as the number of supporting documents a label has

decreases, the gain from our model increases, hence the benefit of our architecture.

As a case study, we probe our model to determine what kind of MeSH sequences

53

Model ≥ 5000 ≥ 1000 ≥ 500 ≥ 100 ≥ 25 ≤ 25
Our model 0.69 0.61 0.58 0.57 0.46 0.18

AttentionMeSH 0.69 0.59 0.58 0.58 0.42 0.15

Table 5.2: Average MiF scores for our model and AttentionMesh using bins.

are challenging. We show four example MeSH sequences in Figure 5.4. The two

example sequences on the left are where our model was able to correctly generate

the labels “Rhodococcus equi” and “Perfusion imaging” even though these labels

occur fewer than 25 times in the training set. This is due to the fact that the

preceding labels in the sequence are closely related to the rarely occurring labels and

our model was able to learn the relationship. In contrast, the example sequences on

the right were difficult for our model and the two rarely occurring labels “Academic

Medical Centers” and “Poland” are not generated. We hypothesize this is because

the preceding labels in each sequence do not provide enough information to predict

the rarely occurring labels.

In Table 5.3, we calculate the bootstrap sample statistic of the Micro F1 score

using Monte Carlo simulation. We performed the bootstrap procedure 1000 times by

drawing samples of 10,000 abstracts from the dataset with replacement. The Micro

F1 score is the statistic on which we estimated using bootstrap samples. We can

see that there is a 95% likelihood that the range 0.666 to 0.675 contains the true

statistic mean (Micro F1 score) suggesting the performance improvements we gain

are significant over the baseline model AttentionMesh.

Model 2.5th percentile 50th percentile(median) 97.5th percentile
AttentionMesh 0.657 0.661 0.665

Our Model 0.666 0.671 0.675

Table 5.3: Bootstrap sample statistic using 1000 Monte Carlo simulations.

54

Figure 5.4: Examples of MeSH sequences. The left side are two cases where our
model does well while the right side illustrates the challenging examples.

55

5.5 Conclusion

In this chapter, we proposed a reinforcement based encoder-decoder model for the task

of MeSH indexing. We trained an attention-based encoder-decoder model by reorder-

ing the MeSH terms as sequences by their frequency of occurrence. Since the input

sequence and output sequence vary widely in the number of tokens, the employment

of a large attention block is of paramount importance. To further improve limitations

within the encoder-decoder architecture, we fine-tune the model with reinforcement

learning using the REINFORCE algorithm which allows us to optimize for F1-score

instead of the log-loss. The empirical results on the PubMed dataset showcase that

using reinforcement based encoder-decoder model can provide an performance im-

provement over baseline methods which use variations of multi-label classification.

56

Chapter 6

Conclusion and Future work

In this dissertation, we focused on developing machine learning models to solve the

related problems of keyphrase extraction and MeSH Indexing. Although many ma-

chine learning based models have been proposed to solve the tasks, there still is room

for further improvement.

The first three works focused on author provided keyphrase extraction from biomed-

ical documents while the last work is on MeSH indexing. In the first work, we intro-

duced NamedKeys – a method composed of four modules: NER, phrase embedding,

phrase quality score and similarity-based clustering for keyphrase extraction from

biomedical documents. To evaluate the proposed method, we created a new publicly

available benchmark dataset from PubMed Central Open Access articles. We showed

that this method has performance gains over other unsupervised methods.

In the second work, we proposed a keyphrase extraction method that focuses

on identifying words which are central to the document semantics. The problem of

keyphrase extraction is posed as a sequence labeling task where each token is tagged as

either a keyphrase or not. In addition to our novel centrality constraint layer, we used

BiLSTM layers to capture the long term dependencies among the input sequences.

Finally, we have a CRF layer which is well suited to capture the dependencies from

57

the output labels. Empirical results on two datasets shows that our method gains

significant improvement in the PubMed dataset while performing slightly better on

the INSPEC dataset.

A semi-supervised method was proposed in our third work where a new uncertainty-

based self-training keyphrase extraction method is employed that utilizes unlabeled

data to augment small labeled training data. We proposed the use of Monte-Carlo

dropout to approximate the model uncertainty for each pseudo-labeled document.

The uncertainty is then used to sample specific documents to retrain the model using

the combined data. This iterative Teacher-Student model training is performed un-

til convergence is achieved. The empirical results on the PubMed dataset showcase

that self-training can provide an performance improvement, especially when there is

a significant unlabeled corpus.

Finally, in the last work, we proposed a reinforcement based encoder-decoder

model for the task of MeSH indexing. We trained attention based encoder-decoder

model by reordering MeSH terms as sequences by their frequency of occurrence. To

further improve limitations within the encoder-decoder architecture, we fine-tuned

the model with reinforcement learning using the REINFORCE algorithm to optimize

the F1-score instead of the log-loss. The empirical results on the PubMed dataset

showcase that using reinforcement based encoder-decoder model can provide an per-

formance improvement over baseline methods which use variations of multi-label clas-

sification.

We believe there are ways to further improve the proposed methods. For the

task of keyphrase extraction, an obvious potential direction is to include keyphrase

abstraction. In this work, we focused on keyphrases that exist in the abstract and title

of biomedical documents. However, authors usually provide keys that are not in the

abstract and title. Even though the evaluation of such methods is harder, abstractive

extraction has more potential especially given the success of text generation models

58

such as BERT.

For MeSH indexing, we can expand the work by using Transformer based Encoder-

Decoder model which may handle the long distance relation between tokens better.

Another potential direction is to merge the two tasks of keyphrase extraction and

MeSH indexing. Under this setting, an end-to-end model can be designed that gener-

ates the MeSH terms for an input abstract and use those MeSH terms as an additional

input to extract keyphrases.

Finally, another direction that we may consider relates to the fact that the gold

true labels we have used throughout the experiments for keyphrase extraction are keys

submitted by authors. We believe better keyphrases may be extracted if we train on

keyphrases manually annotated by an expert instead of using various authors’ keys.

59

Bibliography

[1] Rabah Alzaidy, Cornelia Caragea, and C Lee Giles. Bi-lstm-crf sequence label-

ing for keyphrase extraction from scholarly documents. In The world wide web

conference, pages 2551–2557, 2019.

[2] Alan R Aronson. Effective mapping of biomedical text to the umls metathe-

saurus: the metamap program. In Proceedings of the AMIA Symposium, page 17.

American Medical Informatics Association, 2001.

[3] Alan R Aronson, James G Mork, Francois-Michel Lang, Willie J Rogers, and

Aurelie Neveol. Nlm medical text indexer: A tool for automatic and assisted

indexing. Bethesda: US National Library of Medicine, 2008.

[4] Isabelle Augenstein, Mrinal Das, Sebastian Riedel, Lakshmi Vikraman, and An-

drew McCallum. Semeval 2017 task 10: Scienceie-extracting keyphrases and

relations from scientific publications. arXiv preprint arXiv:1704.02853, 2017.

[5] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine trans-

lation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473,

2014.

[6] Iz Beltagy, Kyle Lo, and Arman Cohan. Scibert: A pretrained language model

for scientific text. In Proc. of EMNLP, pages 3615–3620, 2019.

60

[7] Santosh Kumar Bharti and Korra Sathya Babu. Automatic keyword extraction

for text summarization: A survey. arXiv preprint arXiv:1704.03242, 2017.

[8] Sanmitra Bhattacharya, Viet Ha-Thuc, and Padmini Srinivasan. Mesh: a window

into full text for document summarization. Bioinformatics, 27(13):i120–i128,

2011.

[9] David M Blei, Andrew Y Ng, and Michael I Jordan. Latent dirichlet allocation.

the Journal of machine Learning research, 3:993–1022, 2003.

[10] Willie Boag, Elena Sergeeva, Saurabh Kulshreshtha, Peter Szolovits, Anna

Rumshisky, and Tristan Naumann. Cliner 2.0: Accessible and accurate clini-

cal concept extraction. arXiv preprint arXiv:1803.02245, 2018.

[11] Olivier Bodenreider. The unified medical language system (umls): integrating

biomedical terminology. Nucleic acids research, 32(suppl 1):D267–D270, 2004.

[12] Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. Enrich-

ing word vectors with subword information. Transactions of the Association for

Computational Linguistics, 5:135–146, 2017. ISSN 2307-387X.

[13] Florian Boudin. pke: an open source python-based keyphrase extraction toolkit.

In Proceedings of COLING 2016, the 26th International Conference on Compu-

tational Linguistics: System Demonstrations, pages 69–73, Osaka, Japan, De-

cember 2016. URL http://aclweb.org/anthology/C16-2015.

[14] Florian Boudin. Unsupervised keyphrase extraction with multipartite graphs.

arXiv preprint arXiv:1803.08721, 2018.

[15] Adrien Bougouin, Florian Boudin, and Béatrice Daille. Topicrank: Graph-based

topic ranking for keyphrase extraction. In International Joint Conference on

Natural Language Processing (IJCNLP), pages 543–551, 2013.

http://aclweb.org/anthology/C16-2015

61

[16] Ricardo Campos, Vı́tor Mangaravite, Arian Pasquali, Aĺıpio Mário Jorge, Célia

Nunes, and Adam Jatowt. Yake! collection-independent automatic keyword

extractor. In European Conference on Information Retrieval, pages 806–810.

Springer, 2018.

[17] Jason Chuang, Christopher D Manning, and Jeffrey Heer. “without the clutter

of unimportant words”: Descriptive keyphrases for text visualization. ACM

Transactions on Computer-Human Interaction (TOCHI), 19(3):19, 2012.

[18] Young Mee Chung and Jae Yun Lee. A corpus-based approach to comparative

evaluation of statistical term association measures. Journal of the American

Society for Information Science and Technology, 52(4):283–296, January 2001.

[19] Frans Coenen, Paul Leng, Robert Sanderson, and Yanbo J Wang. Statistical

identification of key phrases for text classification. In International Workshop

on Machine Learning and Data Mining in Pattern Recognition, pages 838–853.

Springer, 2007.

[20] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-

training of deep bidirectional transformers for language understanding. arXiv

preprint arXiv:1810.04805, 2018.

[21] Samhaa R El-Beltagy and Ahmed Rafea. Kp-miner: Participation in semeval-2.

In Proceedings of the 5th international workshop on semantic evaluation, pages

190–193, 2010.

[22] Corina Florescu and Cornelia Caragea. Positionrank: An unsupervised approach

to keyphrase extraction from scholarly documents. In Proceedings of the 55th

Annual Meeting of the Association for Computational Linguistics (Volume 1:

Long Papers), pages 1105–1115, 2017.

62

[23] Brendan J Frey and Delbert Dueck. Clustering by passing messages between

data points. science, 315(5814):972–976, 2007.

[24] Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Rep-

resenting model uncertainty in deep learning. In Proc. of ICML, pages 1050–1059,

2016.

[25] Zelalem Gero and Joyce C. Ho. Pmcvec: Distributed phrase representation for

biomedical text processing. Journal of biomedical Informatics, in press, 2019.

[26] Zelalem Gero and Joyce C Ho. Namedkeys: Unsupervised keyphrase extraction

for biomedical documents. In Proceedings of the 10th ACM International Con-

ference on Bioinformatics, Computational Biology and Health Informatics, pages

328–337, 2019.

[27] Zelalem Gero and Joyce C Ho. Uncertainty-based self-training for keyphrase

extraction. In Proceedings of the 2021 IEEE EMBS International Conference on

Biomedical & Health Informatics, 2021.

[28] Zelalem Gero and Joyce C Ho. Word centrality constrained representation for

keyphrase extraction. In BioNLP: Workshop on Biomedical Natural Language

Processing, 2021.

[29] Glove vec. Glove: Global vectors for word representation. https://nlp.

stanford.edu/projects/glove/.

[30] Google. word2vec: Tool for computing continuous distributed representations of

words. https://code.google.com/archive/p/word2vec/.

[31] Jun Gu, Wei Feng, Jia Zeng, Hiroshi Mamitsuka, and Shanfeng Zhu. Efficient

semisupervised medline document clustering with mesh-semantic and global-

content constraints. IEEE transactions on cybernetics, 43(4):1265–1276, 2012.

https://nlp.stanford.edu/projects/glove/
https://nlp.stanford.edu/projects/glove/
https://code.google.com/archive/p/word2vec/

63

[32] Kazi Saidul Hasan and Vincent Ng. Automatic keyphrase extraction: A survey of

the state of the art. In Proceedings of the 52nd Annual Meeting of the Association

for Computational Linguistics (Volume 1: Long Papers), volume 1, pages 1262–

1273, 2014.

[33] Minlie Huang, Aurélie Névéol, and Zhiyong Lu. Recommending mesh terms for

annotating biomedical articles. Journal of the American Medical Informatics

Association, 18(5):660–667, 2011.

[34] Xiaodi Huang, Xiaodong Zheng, Wei Yuan, Fei Wang, and Shanfeng Zhu. En-

hanced clustering of biomedical documents using ensemble non-negative matrix

factorization. Information Sciences, 181(11):2293–2302, 2011.

[35] Anette Hulth. Improved automatic keyword extraction given more linguistic

knowledge. In Proceedings of the 2003 conference on Empirical methods in nat-

ural language processing, pages 216–223, 2003.

[36] Aminul Islam, Evangelos E Milios, and Vlado Keselj. Comparing word relat-

edness measures based on Google n-grams. In Proceedings of COLING 2012:

Posters, pages 495–506, 2012.

[37] Xin Jiang, Yunhua Hu, and Hang Li. A ranking approach to keyphrase ex-

traction. In Proceedings of the 32nd international ACM SIGIR conference on

Research and development in information retrieval, pages 756–757. ACM, 2009.

[38] Antonio Jimeno-Yepes, James G Mork, Dina Demner-Fushman, and Alan R

Aronson. A one-size-fits-all indexing method does not exist: automatic selection

based on meta-learning. Journal of Computing Science and Engineering, 6(2):

151–160, 2012.

[39] Antonio Jimeno Yepes, James G Mork, BartBomiej Wilkowski, Dina Dem-

ner Fushman, and Alan R Aronson. Medline mesh indexing: lessons learned

64

from machine learning and future directions. In Proceedings of the 2nd ACM

SIGHIT International Health Informatics Symposium, pages 737–742, 2012.

[40] Antonio J Jimeno-Yepes, Bridget T McInnes, and Alan R Aronson. Exploiting

mesh indexing in medline to generate a data set for word sense disambiguation.

BMC bioinformatics, 12(1):1–14, 2011.

[41] Qiao Jin, Bhuwan Dhingra, William Cohen, and Xinghua Lu. Attentionmesh:

simple, effective and interpretable automatic mesh indexer. In Proceedings of the

6th BioASQ Workshop A challenge on large-scale biomedical semantic indexing

and question answering, pages 47–56, 2018.

[42] Su Nam Kim and Min-Yen Kan. Re-examining automatic keyphrase extraction

approaches in scientific articles. In Proceedings of the workshop on multiword ex-

pressions: Identification, interpretation, disambiguation and applications, pages

9–16. Association for Computational Linguistics, 2009.

[43] G Hemantha Kumar, Seyedmahmoud Talebi, and K Manoj. Users’ topic detec-

tion from tweets based on keyword extraction. International Journal of Computer

Applications, 975:8887, 2017.

[44] John Lafferty, Andrew McCallum, and Fernando CN Pereira. Conditional ran-

dom fields: Probabilistic models for segmenting and labeling sequence data. 2001.

[45] Tuan Manh Lai, Trung Bui, Doo Soon Kim, and Quan Hung Tran. A joint

learning approach based on self-distillation for keyphrase extraction from scien-

tific documents. In Proc. of the 28th International Conference on Computational

Linguistics, pages 649–656, 2020.

[46] Jinhyuk Lee, Wonjin Yoon, Sungdong Kim, Donghyeon Kim, Sunkyu Kim,

Chan Ho So, and Jaewoo Kang. Biobert: a pre-trained biomedical language

65

representation model for biomedical text mining. Bioinformatics, 36(4):1234–

1240, 2020.

[47] Quanzhi Li and Yi-Fang Brook Wu. Identifying important concepts from medical

documents. Journal of biomedical informatics, 39(6):668–679, 2006.

[48] Xinzhe Li, Qianru Sun, Yaoyao Liu, Shibao Zheng, Qin Zhou, Tat-Seng Chua,

and Bernt Schiele. Learning to self-train for semi-supervised few-shot classifica-

tion. In Proc. of NeurIPS, pages 10276–10286, 2019.

[49] Zhiyuan Liu, Wenyi Huang, Yabin Zheng, and Maosong Sun. Automatic

keyphrase extraction via topic decomposition. In Proceedings of the 2010 con-

ference on empirical methods in natural language processing, pages 366–376. As-

sociation for Computational Linguistics, 2010.

[50] Zhiyong Lu. Pubmed and beyond: a survey of web tools for searching biomedical

literature. Database, 2011, 2011.

[51] Zhiyong Lu, Won Kim, and W John Wilbur. Evaluation of query expansion

using mesh in pubmed. Information retrieval, 12(1):69–80, 2009.

[52] Minh-Thang Luong, Hieu Pham, and Christopher D Manning. Effective

approaches to attention-based neural machine translation. arXiv preprint

arXiv:1508.04025, 2015.

[53] Debanjan Mahata, John Kuriakose, Rajiv Ratn Shah, and Roger Zimmermann.

Key2vec: Automatic ranked keyphrase extraction from scientific articles using

phrase embeddings. In Proceedings of the 2018 Conference of the North Ameri-

can Chapter of the Association for Computational Linguistics: Human Language

Technologies, Volume 2 (Short Papers), pages 634–639, 2018.

66

[54] Yuqing Mao and Zhiyong Lu. Mesh now: automatic mesh indexing at pubmed

scale via learning to rank. Journal of biomedical semantics, 8(1):1–9, 2017.

[55] Rada Mihalcea and Paul Tarau. Textrank: Bringing order into text. In Proceed-

ings of the 2004 conference on empirical methods in natural language processing,

2004.

[56] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Dis-

tributed representations of words and phrases and their compositionality. In

Advances in neural information processing systems, pages 3111–3119, 2013.

[57] James G Mork, Antonio Jimeno-Yepes, Alan R Aronson, et al. The nlm medical

text indexer system for indexing biomedical literature. BioASQ@ CLEF, 1, 2013.

[58] Subhabrata Mukherjee and Ahmed Hassan Awadallah. Uncertainty-aware self-

training for text classification with few labels. In Proc. of NeurIPS, pages 21199–

21212, 2020.

[59] Naw Naw and Ei Ei Hlaing. Relevant words extraction method for recommen-

dation system. Bulletin of Electrical Engineering and Informatics, 2(3):169–176,

2013.

[60] Mark Neumann, Daniel King, Iz Beltagy, and Waleed Ammar. Scispacy: Fast

and robust models for biomedical natural language processing. arXiv preprint

arXiv:1902.07669, 2019.

[61] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The pager-

ank citation ranking: Bringing order to the web. Technical report, Stanford

InfoLab, 1999.

[62] Aditya Parameswaran, Hector Garcia-Molina, and Anand Rajaraman. Towards

67

the web of concepts: Extracting concepts from large datasets. Proceedings of the

VLDB Endowment, 0(1-2):566–577, 2010.

[63] Shengwen Peng, Ronghui You, Hongning Wang, Chengxiang Zhai, Hiroshi

Mamitsuka, and Shanfeng Zhu. Deepmesh: deep semantic representation for

improving large-scale mesh indexing. Bioinformatics, 32(12):i70–i79, 2016.

[64] Jeffrey Pennington, Richard Socher, and Christopher D Manning. Glove: Global

vectors for word representation. In Proceedings of the 2014 conference on empir-

ical methods in natural language processing (EMNLP), pages 1532–1543, 2014.

[65] Vahed Qazvinian, Dragomir R Radev, and Arzucan Ozgur. Citation summa-

rization through keyphrase extraction. In Proceedings of the 23rd international

conference on computational linguistics (COLING 2010), pages 895–903, 2010.

[66] Wullianallur Raghupathi and Viju Raghupathi. Big data analytics in healthcare:

promise and potential. Health information science and systems, 2(1):3, 2014.

[67] Chuck Rosenberg, Martial Hebert, and Henry Schneiderman. Semi-supervised

self-training of object detection models. 2005.

[68] Dhruva Sahrawat, Debanjan Mahata, Haimin Zhang, Mayank Kulkarni, Agniv

Sharma, Rakesh Gosangi, Amanda Stent, Yaman Kumar, Rajiv Ratn Shah, and

Roger Zimmermann. Keyphrase extraction as sequence labeling using contex-

tualized embeddings. In European Conference on Information Retrieval, pages

328–335. Springer, 2020.

[69] Tokala Yaswanth Sri Sai Santosh, Debarshi Kumar Sanyal, Plaban Kumar

Bhowmick, and Partha Pratim Das. Dake: Document-level attention for

keyphrase extraction. In European Conference on Information Retrieval, pages

392–401. Springer, 2020.

68

[70] Kamal Sarkar. A hybrid approach to extract keyphrases from medical documents.

arXiv preprint arXiv:1303.1441, 2013.

[71] Kamal Sarkar. A keyphrase-based approach to text summarization for english

and bengali documents. International Journal of Technology Diffusion (IJTD),

5(2):28–38, 2014.

[72] David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and

Martin Riedmiller. Deterministic policy gradient algorithms. In International

conference on machine learning, pages 387–395. PMLR, 2014.

[73] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning

with neural networks. In Advances in neural information processing systems,

pages 3104–3112, 2014.

[74] Jafar Tanha, Maarten van Someren, and Hamideh Afsarmanesh. Semi-supervised

self-training for decision tree classifiers. International Journal of Machine Learn-

ing and Cybernetics, 8(1):355–370, 2017.

[75] Stamatina Thomaidou and Michalis Vazirgiannis. Multiword keyword recom-

mendation system for online advertising. In 2011 International Conference on

Advances in Social Networks Analysis and Mining, pages 423–427. IEEE, 2011.

[76] Takashi Tomokiyo and Matthew Hurst. A language model approach to keyphrase

extraction. In Proceedings of the ACL 2003 workshop on Multiword expressions:

analysis, acquisition and treatment, 2003.

[77] Dolf Trieschnigg, Piotr Pezik, Vivian Lee, Franciska De Jong, Wessel Kraaij,

and Dietrich Rebholz-Schuhmann. Mesh up: effective mesh text classification

for improved document retrieval. Bioinformatics, 25(11):1412–1418, 2009.

69

[78] Peter D Turney. Learning algorithms for keyphrase extraction. Information

retrieval, 2(4):303–336, 2000.

[79] Peter D Turney. Learning to extract keyphrases from text. arXiv preprint

cs/0212013, 2002.

[80] Xiaojun Wan and Jianguo Xiao. Collabrank: towards a collaborative approach to

single-document keyphrase extraction. In Proceedings of the 22nd International

Conference on Computational Linguistics-Volume 1, pages 969–976. Association

for Computational Linguistics, 2008.

[81] Xiaojun Wan and Jianguo Xiao. Single document keyphrase extraction using

neighborhood knowledge. In AAAI, volume 8, pages 855–860, 2008.

[82] Rui Wang, Wei Liu, and Chris McDonald. Corpus-independent generic keyphrase

extraction using word embedding vectors. In Software Engineering Research

Conference, volume 39, 2014.

[83] Christian Wartena and Rogier Brussee. Topic detection by clustering keywords.

In 2008 19th International Workshop on Database and Expert Systems Applica-

tions, pages 54–58. IEEE, 2008.

[84] Ronald J Williams. Simple statistical gradient-following algorithms for connec-

tionist reinforcement learning. Machine learning, 8(3):229–256, 1992.

[85] Ian H Witten, Gordon W Paynter, Eibe Frank, Carl Gutwin, and Craig G Nevill-

Manning. Kea: Practical automated keyphrase extraction. In Design and Us-

ability of Digital Libraries: Case Studies in the Asia Pacific, pages 129–152. IGI

Global, 2005.

[86] Zhao Yan, Duyu Tang, Nan Duan, Shujie Liu, Wendi Wang, Daxin Jiang, Ming

Zhou, and Zhoujun Li. Assertion-based qa with question-aware open information

70

extraction. In Proceedings of the AAAI Conference on Artificial Intelligence,

volume 32, 2018.

[87] Wen-tau Yih, Joshua Goodman, and Vitor R Carvalho. Finding advertising

keywords on web pages. In Proceedings of the 15th international conference on

World Wide Web, pages 213–222. ACM, 2006.

[88] Hanyu Zhang, Che-Lun Hung, Meiyuan Liu, Xiaoye Hu, and Yi-Yang Lin. Nc-

net: Deep learning network models for predicting function of non-coding dna.

Frontiers in genetics, 10:432, 2019.

[89] Qi Zhang, Yang Wang, Yeyun Gong, and Xuan-Jing Huang. Keyphrase extrac-

tion using deep recurrent neural networks on twitter. In Proceedings of the 2016

conference on empirical methods in natural language processing, pages 836–845,

2016.

[90] Yanchun Zhang, S Peng, R You, Z Xie, B Wang, and Shanfeng Zhu. The fudan

participation in the 2015 bioasq challenge: Large-scale biomedical semantic in-

dexing and question answering. In CEUR Workshop Proceedings, volume 1391.

CEUR Workshop Proceedings, 2015.

[91] Xun Zhu, Chen Lyu, Donghong Ji, Han Liao, and Fei Li. Deep neural model

with self-training for scientific keyphrase extraction. Plos one, 15(5):e0232547,

2020.

	Introduction
	What Constitutes a Keyphrase?
	Contributions
	Outline

	Unsupervised Keyphrase Extraction
	Introduction
	Related Work
	Graph-based Methods

	Proposed Model: NamedKeys
	Candidate Keyphrase Generation
	Phrase Embedding: PMCVec
	Phrase Quality
	Candidate Clustering and Ranking

	Experiments
	Dataset
	Baseline Methods
	Conclusion

	Supervised Keyphrase Extraction
	Introduction
	Related Work
	Methodology
	Word Embedding Layer
	BiLSTM Layer
	Centrality Weighting Layer
	Conditional Random Fields (CRF)

	Experiments
	Datasets
	Experiment Settings
	Results
	Conclusion

	Semi-supervised Keyphrase Extraction
	Introduction
	Related Work
	Methodology
	BiLSTM-CRF Architecture
	Self-training and Uncertainty Estimation

	Experiments
	Datasets
	Experiment Settings
	Evaluation Results

	Conclusion

	Mesh Indexing: Keyphrase Extraction from Controlled Vocabulary
	Introduction
	Related Work
	Proposed Model: Encoder-Decoder with RL for MeSH Indexing
	Encoder
	Decoder
	Reinforcement learning for seq2seq training

	Experimental Results
	Dataset
	Evaluation and Results

	Conclusion

	Conclusion and Future work
	Bibliography

