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Abstract

Harmonic Measure, Reduced Extremal Length and Quasicircles

By Huiqiang Shi

It is well known that there is a close connection between the analytic behavior

of the sewing homeomorphism induced by a Jordan curve and the geometry of this

Jordan domain. For example, the sewing homeomorphism is quasisymmetric if and

only if the Jordan domain is a quasidisk. This dissertation is devoted to the further

study of this type of connection. Several equivalent conditions are established for

sewing homeomorphism to be bi-Lipschitz or bi-Hölder. In particular, we explore

these conditions by using conformal invariants such as harmonic measure, extremal

distance and reduced extremal distance. Furthermore, some parallel conditions for

a quasicircle are obtained.
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2.1 Grötzsch extremal domain . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Teichmüller extremal domain . . . . . . . . . . . . . . . . . . . . . 12

2.3 Mori extremal domain . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4 The images of upper half plane under different S-C maps . . . . . . 14

2.5 Application of symmetry principle . . . . . . . . . . . . . . . . . . . 15

2.6 w maps D\[−1, 0] to G . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.1 Sewing homeomorphism h = f2 ◦ f−1
1 . . . . . . . . . . . . . . . . . 26

6.1 Map between J and the circle with radius r . . . . . . . . . . . . . 59

6.2 compare of λ(J,∆R,Ω
∗) and λ(∂D,∆R,Ω

∗) . . . . . . . . . . . . . . 62



1

Chapter 1

Introduction

1.1 Extremal length

In this section, we introduce a geometric method named the method of extremal

length. This method has a profound influence on the theory of conformal mapping

as well as the more general theory of quasiconformal mapping. The roots can be

tracked back to the length-area comparisons, to the strip method and to even

earlier works. In 1940’s, extremal length was introduced as the measure of curve

families which is invariant under a conformal mapping by Ahlfors. It is such a

powerful tool for estimating conformal invariants, like harmonic measure, in terms

of more geometric quantities. Actually most conformal invariants can be linked

to extremal properties. More details about extremal length can be found in [1],

[13], [15], [20], [21] and [24].

Definition 1.1.1. [2, p51] Let Ω be a domain in the complex plane. Suppose

Γ is a curve family in Ω. Let P be the set of all non-negative Borel measurable

functions on Ω. For each curve γ ∈ Γ, it has ρ length

L(γ, ρ) =

∫
γ

ρ|dz|, ρ ∈ P,
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which may be infinite, and the domain Ω has a ρ area

A(Ω, ρ) =

∫∫
Ω

ρ2dxdy.

Then the extremal length of Γ in Ω is defined as

λΩ(Γ) = sup
ρ

inf
γ
L(γ, ρ)2

A(Ω, ρ)
, (1.1.1)

where ρ is subject to the condition 0 < A(Ω, ρ) <∞.

From this definiton, we can see that the extremal length is invariant under

a conformal map f , since it is clear that Γ(γ, ρ) = Γ(f(γ), ρ∗) and A(Ω, ρ) =

A(f(Ω), ρ∗) where ρ = ρ∗(f(z))|f ′(z)|. Furthermore, λΩ(Γ) depends only on Γ

and not on Ω. Therefore we simplify the notation to λ(Γ).

Lemma 1.1.2. (The Composition Laws) [2, p55] Let Ω1 and Ω2 be disjoint sets.

Let Γ1, Γ2 consist of arcs in Ω1 and Ω2 respectively, and let Γ be a third set of

arcs.

(1) If every γ ∈ Γ contains a γ1 ∈ Γ1 and a γ2 ∈ Γ2, then

λ(Γ) ≥ λ(Γ1) + λ(Γ2).

(2) If every γ1 ∈ Γ1 and every γ2 ∈ Γ2 contains a γ ∈ Γ, then

1

λ(Γ)
≥ 1

λ(Γ1)
+

1

λ(Γ2)
.

The composition laws are best illustrated by the following two examples.
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Figure 1.1: Every γ ∈ Γ contains a γ1 ∈ Γ1 and a γ2 ∈ Γ2

Example 1.1.3. In Figure 1.1, Ω = Ω1 ∪Ω2 ∪E2. Every arc in Ω from E1 to E3

contains an arc in Ω1 from E1 to E2, and one in Ω from E2 to E3. Therefore part

one of the composition laws implies

λ(Γ) ≥ λ(Γ1) + λ(Γ2).

Figure 1.2: Every γ1 ∈ Γ1 and every γ2 ∈ Γ2 contains a γ ∈ Γ

Example 1.1.4. In Figure 1.2, Ω = Ω1 ∪Ω2. Every arc in Ω1 from E1 to E
′
1 and

every arc in Ω2 from E2 to E
′
2 not only contains but actually is an arc in Ω from
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E1 ∪ E2 to E
′
1 ∪ E

′
2. Therefore part two of the composition laws yields

1

λ(Γ)
≥ 1

λ(Γ1)
+

1

λ(Γ2)
.

1.2 Modulus

In (1.1.1), the ratio is unchanged if the metric ρ is multiplied by a positive constant,

because of the homogeneity. By normalizing the metric ρ, one can introduce the

following definition.

Definition 1.2.1. [26] Suppose Γ is a curve family in the plane. ρ is a non-

negative Borel measurable function such that

∫
γ

ρ|dz| ≥ 1 (1.2.1)

for every locally rectifiable curve γ in Γ. Then the modulus of Γ is defined by

mod(Γ) = inf
ρ

∫
ρ2

where the infimum is taken over all ρ that satisfies (1.2.1).

From this definition, it can be easily deduced that modulus only depends on

Γ and modulus is just the reciprocal of extremal length. It is a matter of taste

whether one prefers to use extremal length or the modulus. Since extremal length

is conformally invariant, the modulus is also conformally invariant.

Theorem 1.2.2. [3, p8] Let Γ be a family of curves in a domain D ⊂ C and

w = f(z) be a conformal map of D onto f(D) ⊂ C, then

mod(Γ) = mod(f(Γ)).

We refer the reader to [2], [3], [15], [20] and [24] for more details on extremal

length and modulus.
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1.3 Extremal distance

Extremal distance is the most useful example of extremal length and will be fre-

quently used in this thesis.

Definition 1.3.1. [13, p130] Let Ω be a domain in the plane, E and F be two

disjoint subsets in the closure of Ω. The extremal distance between E and F

relative to Ω is defined as

dΩ(E,F ) = λ(Γ),

where Γ is the family of connected arcs in Ω that join E and F .

Definition 1.3.2. [13, p144] Let Ω be a Jordan domain, E be an arc on ∂Ω and

z0 ∈ Ω. The extremal distance from z0 to E is defined as

λ(z0, E,Ω) = sup
σ
dΩ\σ(σ,E),

where σ is a Jordan arc in Ω that joins z0 and ∂Ω \ E. The supremum is taken

all over such Jordan arcs.

Figure 1.3: σ is the arc in Ω that joins z0 and ∂Ω \ E

One important property of extremal distance is the so called symmetric prin-

ciple (see [1] and [13]). Here we introduce this principle in the upper half plane,

actually it also works in the unit circle, because there exists a conformal map of

C that maps upper half plane to the unit disk.
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Lemma 1.3.3. [13, p137] Let Ω be a domain that is contained in the upper half

plane, E and F be two disjoint subarcs of ∂Ω, and let Ω∗, E∗, F ∗ be the reflections

of Ω, E and F over the real axis, respectively. Set Ω̃ = Ω ∪ Ω∗, Ẽ = E ∪ E∗ and

F̃ = F ∪ F ∗, then

dΩ̃(Ẽ, F̃ ) =
1

2
dΩ(E,F ).

Figure 1.4: Ω∗ is the reflection of Ω in the real axis

If Ω is the unit disk and E is an subarc on the boundary, then the extremal

distance from 0 to E can be estimated by the capacity of this subarc.

Lemma 1.3.4. [23, p212] Let E be a Borel set on ∂D and let ΓE(r) (0 < r < 1)

denote the family of all curves in {r < |z| < 1} that connect E with {|z| = r},

then √
r

1 + r
capE ≤ e

−π
modΓE(r) ≤

√
r

1− r
capE,

for 0 < r ≤ 1
3

and thus

capE = lim
r→o

1√
r
e

−π
modΓE(r) .

In this lemma, “cap” means logarithmic capacity and is definied by using the

Robin’s constant for E. For more details, see [2], [13] and [21].

1.4 Quasiconformal mapping

The concept of quasiconformal mappings were introduced by Grötzsch, but the

importance of quasiconformal mappings in complex analysis was first realized by
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Ahlfors and Teichmüller. There are three definitions for quasiconformal map-

pings: metric definition, geometric definition and analytic definition. The reader

is referred to [1], [15], [16], [21] for details. In this section we introduce the an-

alytic definition. This definition is useful in estimating the Hölder continuity of

quasiconformal mappings.

Definition 1.4.1. [15] A map f : I → C is absolutely continuous on I, if for

any ε > 0, there is a positive number δ > 0, such that for any finite sequence of

pairwise disjoint subintervals (xk, yk) of I satisfying

n∑
k=1

|xk − yk| < δ,

it holds that
n∑
k=1

|f(xk)− f(yk)| < δ.

Definition 1.4.2. (Class ACL) [15] We say a continuous function f is absolutely

continuous on lines (or ACL) in a domain Ω ⊂ C if for any rectangle R = {x+iy :

a < x < b, c < y < d}, R ⊂ Ω, it has the following properties:

(1) f(x+ iy) is absolutely continuous in x for a.e. y ∈ [c, d].

(2) f(x+ iy) is absolutely continuous in y for a.e. x ∈ [a, b].

Definition 1.4.3. [13, p241] Let Ω and Ω′ be domains in the extended plane, let

f : Ω→ Ω′ be a homeomorphism which preserves the orientation, and let K ≥ 1.

Then we say f is a K-quasiconformal mapping if:

(1) f is ACL in Ω.

(2) The derivatives

fz =
fx − ify

2
and fz̄ =

fx + ify
2

satisfy

|fz̄| ≤
K − 1

K + 1
|fz|

almost everywhere in Ω.
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1.5 Quasicircle

Quasicircles were originally introduced independently by Pfuger and Tienari. In

[21] and older articles, it was referred to as quasiconformal curve. Quasicircles

play an important role in the theory of quasiconformal mappings and complex

dynamical systems.

Definition 1.5.1. [15] A domain Ω is a K-quasidisk if it is the image of an open

disk or half plane under a K-quasiconformal self mapping of C. The boundary ∂Ω

is called a quasicircle.

By this definition, we see that quasicircle is the image of a unit circle under a

quasiconformal mapping of the extended complex plane. The following result is

called Ahlfors’ two point inequality. It gives us a geometrically intuitive way to

determine if a Jordan curve is a quasicircle or not.

Lemma 1.5.2. [23, p94] A Jordan curve J is a quasicircle, if and only if there

exists a constant M ≥ 1, such that

diamJ(a, b) ≤M |a− b|

for all a, b ∈ J , where J(a, b) is the smaller arc of J between a and b.

We note that a quasicircle J can be non-rectifiable. If J is a piecewise smooth

quasicircle, then it has no cusps (of angle 0 or 2π).

1.6 Riemann mapping theorem and Schwarz—

Christoffel formula

The Riemann mapping therorem is one of the most important results of complex

analysis. It was first stated by Bernhard Riemann under the assumption that the

boundary is piecewise smooth in 1851 in his PhD thesis. See [7] and [8] for more

details.
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Theorem 1.6.1. [8, p160] (Riemann Mapping Theorem) Let G be a simply con-

nected region which is not the whole plane and let a ∈ G. Then there is a unique

analytic function f : G→ C having the following properties:

(1) f(a) = 0 and f ′(a) > 0;

(2) f is one-one;

(3) f(G) = {z : |z| < 1}.

Riemann mapping theorem tells us that there exists a conformal mapping

that maps the unit disk onto any simply connected domain ohter than the whole

plane. But it doesn’t give an explicit formula. Two German mathematicians H.

A. Schwarz and E. B. Christoffel discovered this conformal mapping when the

domain is a polygon independently (See [9]).

Theorem 1.6.2. [9, p10] Let P be the interior of a polygon Γ having vertices w1,

w2, · · · , wn and interior angles α1π, α2π, · · · , αnπ in counterclockwise order. Let

f be any conformal map from the upper half plane to P with f(∞) = wn. Then

f(z) = A+ C

∫ z n−1∏
k=1

(ξ − zk)αk−1dξ

for some complex constants A and C, where wk = f(zk) for k = 1, · · · , n− 1.

1.7 Reduced extremal distance

The extremal distance between two arcs will tend to ∞ if one of them shrinks to

a point. However, their difference may be a finite number. Therefore, one can

define reduced extremal distance as follows. The reader is referred to [2], [20] and

[24] for details.

Definition 1.7.1. [20, p241] let Ω be a domain, bounded or unbounded, in the

extended complex plane, E be any set on ∂Ω, and z0 ∈ Ω be a finite point. Let

{z : |z0 − z| ≤ r} be contained in Ω and ∆r = {z : |z0 − z| = r}. The extremal

distance between the ∆r and E relative to Ω is denoted by λ(E,∆r,Ω). Then the
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reduced extremal distance between z0 and E is defined to be

δ(z0, E,Ω) = lim
r→0

[λ(E,∆r,Ω)− λ(∂Ω,∆r,Ω)], if z0 6=∞.

In case z0 = ∞ ∈ Ω, λ(E,∆r,Ω) will mean the extremal distance between {z :

|z| = r} and E relative to Ω.

δ(∞, E,Ω) = lim
r→∞

[λ(E,∆r,Ω)− λ(∂Ω,∆r,Ω)], if z0 =∞.
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Chapter 2

Conformal invariants

It is well known that the extremal distance and reduced extremal distance are two

conformal invariants. In this Chapter, we will discuss these two invariants on the

unit circle and give a comparision.

2.1 Extremal domains for modulus

In this section, we introduce three extremal domains. The moduli of these extremal

domains play an important role in the estimate of modulus or extremal distance

and will be used frequently in this paper.

Let G be a doubly connected domain in the finite plane, C1 and C2 be the

bounded and unbounded component of its complement.

2.1.1 Grötzsch extremal domain

If C1 is the unit disk D, C2 contains the point R > 1, then the maximal modulus

of curve family that separates C1 and C2 is obtained in the following case:
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Figure 2.1: Grötzsch extremal domain

This domain is called Grötzsch extremal domain. The modulus is denoted by

1
2π

log Φ(R).

2.1.2 Teichmüller extremal domain

If C1 contains 0 and −1, C2 contains a point with modulus P , then the maximal

modulus of curve family that separates C1 and C2 is obtained in the following

case:

Figure 2.2: Teichmüller extremal domain

This domain is called Teichmüller extremal domain. The modulus is denoted

by 1
2π

log Ψ(P ).

2.1.3 Mori extremal domain

If diam(C1

⋂
D) ≥ λ, C2 contians the origin, then the maximal mudulus of curve

family that separates C1 and C2 is obtained in the following case:
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Figure 2.3: Mori extremal domain

This domain is called Mori extremal domain and the modulus is denoted by

1
2π

logX(λ).

There are some useful relations between the above moduli. For more details,

see [1], [3] and [21].

Φ(R)2 = Ψ(R2 − 1), (2.1.1)

X(λ) = Φ(

√
4 + 2λ+

√
4− 2λ

λ
), (2.1.2)

16P ≤ Ψ(P ) ≤ 16(P + 1), (2.1.3)

lim
P→∞

log Ψ(P )

logP
= 1. (2.1.4)

For simplification of notation, we introduce the functions µ(r) and Λ(P ) to

denote the modulus of the Grötzsch extremal domain and Teichmüller extremal

domain respectively:

µ(r) =
1

2π
log Φ(

1

r
), Λ(P ) =

1

2π
log Ψ(P ). (2.1.5)

This together with (2.1.1), yields that:

µ(r) =
1

2
Λ(

1

r2
− 1), (2.1.6)

for 0 < r < 1. Furthermore, by applying the symmetry principle to the Te-

ichmüller extremal domain, we can get Λ(R) = 1
2
Λ(R)+. Here Λ(R)+ is the

modulus of curve familiy in the upper half plane that seperate C1 and C2. By the
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Schwarz-Christoffel mapping theorem, the function

w =

∫ z

0

1√
z(z + 1)(z − P )

dz

maps the upper half plane to a rectangle. Choose different P , we get two different

rectangles:

Figure 2.4: The images of upper half plane under different S-C maps

The modules of these rectangles are:

Λ(R) =
1

2
Λ(R)+ =

b

2a
and Λ(

1

R
) =

1

2
Λ(

1

R
)+ =

b′

2a′
,

where

a =

∫ R

0

dz√
z(z + 1)(R− z)

, a′ =

∫ 1
R

0

dz√
z(z + 1)( 1

R
− z)

,

b =

∫ ∞
R

dz√
z(z + 1)(z −R)

, b′ =

∫ ∞
1
R

dz√
z(z + 1)(z − 1

R
)
.

After a simple calculation, one can see that

b′ =
√
Ra and a′ =

√
Rb.
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Therefore, the product of Λ(R) and Λ( 1
R

) is

Λ(R)Λ(
1

R
) =

b

2a

b′

2a′
=

b

2a

√
Ra

2
√
Rb

=
1

4
, (2.1.7)

for any R > 0.

2.2 Estimate of extremal distance in the unit

disk

In this section, we give an estimate of extremal distance on the unit circle by using

the modules of extremal domains.

Theorem 2.2.1. Let D be the unit disk and E be an arc on the boundary of D

with central angle α. Then

λ(0, E,D) = 2µ(sin
α

4
) = Λ(

cos2 α
4

sin2 α
4

).

Furthermore, let Ẽ = ∂D \ E be the complement of E on ∂D. Then

λ(0, E,D)λ(0, Ẽ,D) =
1

4
.

Proof. Suppose first that α ∈ [0, π], by the symmetry principle, one can convert

this domain to the Mori domain and deduce that

Figure 2.5: Application of symmetry principle
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λ(0, E,D) =
1

π
logX(d),

where d = 2 sin α
2

is the diameter of E.

Thus, by (2.1.2) and (2.1.5), a simple calculation yields that

λ(0, E,D) =
1

π
log Φ(

√
4 + 2d+

√
4− 2d

d
)

= 2µ(
d√

4 + 2d+
√

4− 2d
)

= 2µ(
2 sin α

2√
4 + 4 sin α

2
+
√

4− 4 sin α
2

)

= 2µ(
2 sin α

2

sin α
4

+ cos α
4

+ cos α
4
− sin α

4

)

= 2µ(
2 sin α

2

2 cos α
4

)

= 2µ(sin
α

4
).

By (2.1.6),

µ(sin
α

4
) =

1

2
Λ(

1

sin2 α
4

− 1) =
1

2
Λ(

cos2 α
4

sin2 α
4

),

and thus

λ(0, E,D) = 2µ(sin
α

4
) = Λ(

cos2 α
4

sin2 α
4

).

Next, assume that α ∈ [π, 2π]. In this case we may assume, after a rotation if

necessary, that E is the arc on the unit circle joining e−i
α
2 to ei

α
2 counterclockwise.

One can verify that the following transformation

Figure 2.6: w maps D\[−1, 0] to G
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w(z) =

√
z − eiα4
√
z + ei

α
4

· e
iα

4 + e−i
α
4

ei
α
4 − e−iα4

maps the slit disk D\[−1, 0] conformally onto the upper half disk denoted by

G = w(D\[−1, 0]), centered at (−1, 0) with radius 1
sin α

4
and

w(ei
α
2 ) = 0, w(e−i

α
2 ) = −1.

The diameter of G on the real line joins the two points

(
−1− 1

sin α
4

, 0

)
and

(
−1 +

1

sin α
4

, 0

)
,

which are the images of points z1 = eπi and z2 = e−πi under the map of w. By

the conformal invariance of extremal length, one can see that

λ(0, E,D) = λ(E, [−1, 0],D) = λ([−1, 0], ∂G ∩H, G).

By associating the extremal length λ([−1, 0], ∂G ∩H, G) with the modulus of an

appropriate Grötzsch domain, tedious but routine calculation yields that

λ(0, E,D) = 2µ(sin
α

4
) = Λ(

cos2 α
4

sin2 α
4

).

Finally, let Ẽ = ∂D\E be the complement of E on ∂D. Then the central angle

with respect to arc Ẽ is 2π − α. And the extremal distance is

λ(0, Ẽ,D) = Λ(
cos2 2π−α

4

sin2 2π−α
4

) = Λ(
sin2 α

4

cos2 α
4

).

Hense by (2.1.6), one can deduce that

λ(0, E,D)λ(0, Ẽ,D) =
1

4
.
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2.3 Comparision of extremal distance and re-

duced extremal distance

In order to prove the equivalent conditions for the sewing homeomorphism of a

Jordan domain to be bi-Lipschitz or bi-Hölder , we establish the following compar-

ison result between extremal distance λ(z0, E,Ω) and reduced extremal distance

δ(z0, E,Ω), which also has its own interest. Without loss of generality, due to the

conformal invariance, we may assume Ω = D, z0 = 0.

Theorem 2.3.1. Denote the central angle with respect to an arc E ⊂ ∂D by α(E).

(1) If 0 ≤ α(E) ≤ π, then

δ(0, E,D) +
3

2π
ln 2 ≤ λ(0, E,D) ≤ δ(0, E,D) +

2

π
ln 2;

(2) If π ≤ α(E) < 2π, then

1
8
π

ln 2− 2
π

ln(1− e−2πδ(0,E,D))
≤ λ(0, E,D)

≤ 1
6
π

ln 2− 2
π

ln(1− e−2πδ(0,E,D))
.

Proof. For simplicity of notation, we write α(E) as α for a fixed arc E ⊂ ∂D.

First assume that 0 ≤ α ≤ π. By Theorem 2.2.1 we have

λ(0, E,D) = 2µ(sin
α

4
) = Λ

(
cos2 α

4

sin2 α
4

)
.

It follows from estimate (2.1.3) and (2.1.5) on Teichmüller function that

1

2π
ln 16

cos2 α
4

sin2 α
4

≤ λ(0, E,D) ≤ 1

2π
ln 16

(
cos2 α

4

sin2 α
4

+ 1

)
.

Furthermore, since for 0 ≤ α ≤ π

1

2π
ln cos2 α

4
≥ − 1

2π
ln 2,
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routine estimates yield that

− 1

π
ln sin

α

4
+

3

2π
ln 2 ≤ λ(0, E,D) ≤ − 1

π
ln sin

α

4
+

2

π
ln 2.

On the other hand, by the definition of reduced extremal distance, it can be

calculated as

δ(0, E,D) = lim
r→0

[λ(∆r, E,D)− λ(∆r, ∂D,D)].

By Lemma 1.3.4,

δ(0, E,D) = lim
r→0

[
1

π
ln

1√
t sin α

4

− 1

2π
ln

1

r
]

=
1

π
ln

1

sin α
4

= − 1

π
ln sin

α

4
.

(2.3.1)

Thus we obtain the desired inequalities

δ(0, E,D) +
3

2π
ln 2 ≤ λ(0, E,D) ≤ δ(0, E,D) +

2

π
ln 2,

when 0 ≤ α ≤ π.

Next assume that π ≤ α < 2π. By Theorem 2.2.1 and relation (2.1.7), we have

λ(0, E,D) = Λ

(
cos2 α

4

sin2 α
4

)
=

1

4

1

Λ
(

sin2 α
4

cos2 α
4

) .
Thus it follows from (2.1.3) and (2.1.5) that

Λ

(
sin2 α

4

cos2 α
4

)
≤ 1

2π
ln 16(

sin2 α
4

cos2 α
4

+ 1)

≤ 2

π
ln 2− 1

π
ln cos

α

4
,
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and

Λ

(
sin2 α

4

cos2 α
4

)
≥ 1

2π
ln 16(

sin2 α
4

cos2 α
4

)

≥ 3

2π
ln 2− 1

π
ln cos

α

4
,

therefore

1
8
π

log 2− 4
π

ln cos α
4

≤ λ(0, E,D) ≤ 1
6
π

ln 2− 4
π

ln cos α
4

. (2.3.2)

Finally, taking into account that δ(0, E,D) = − 1
π

ln sin α
4
, we obtain that

cos2 α

4
= 1− e−2πδ(0,E,D). (2.3.3)

Applying (2.3.3) to (2.3.2), it follows that

1
8
π

log 2− 2
π

ln(1− e−2πδ(0,E,D))
≤ λ(0, E,D)

≤ 1
6
π

ln 2− 2
π

ln(1− e−2πδ(0,E,D))
,

when π ≤ α < 2π.

We close this chapter by deriving two corollaries from Theorem 2.3.1. With

the same notation as in Theorem 2.3.1, we have

Corollary 2.3.2.

(a) lim
α(E)→0

λ(0,E,D)
δ(0,E,D)

= 1,

(b) lim
α(E)→2π

λ(0,E,D)
δ(0,E,D)

= +∞.

Proof. For the proof of (a), dividing the inequalities in Theorem 2.3.1 part (1) by

δ(0, E,D), we obtain that

1 +
3

2π
ln 2

δ(0, E,D)
≤ λ(0, E,D)

δ(0, E,D)
≤ 1 +

2
π

ln 2

δ(0, E,D)
.

Furthermore, by (2.3.1),

δ(0, E,D) = − 1

π
ln sin

α

4
→∞
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as α(E)→ 0. Thus, by the squeeze theorem in Calculus, it follows that

lim
α(E)→0

λ(0, E,D)

δ(0, E,D)
= 1.

For the proof of (b), by Theorem 2.3.1, we have

1
8
π

ln 2− 2
π

ln(1− e−2πδ(0,E,D))
≤ λ(0, E,D)

≤ 1
6
π

ln 2− 2
π

ln(1− e−2πδ(0,E,D))
.

Dividing each side of the above inequalities by δ(0, E,D), we obtain that

λ(0, E,D)

δ(0, E,D)
≥ 1

δ(0, E,D)[ 8
π

log 2− 2
π

ln(1− e−2πδ(0,E,D))]
. (2.3.4)

Now we need to show the right sides of (2.3.4) tend to ∞ as α(E) → 2π.

Consider the function

f(x) = x[
8

π
ln 2− 2

π
ln(1− e−2πx)].

As x→ 0,

lim
x→0

f(x) = lim
x→0

x[
8

π
ln 2− 2

π
ln(1− e−2πx)]

= lim
x→0

− 2
π

1
(1−e−2πx)

(2πe−2πx)

− 1
x2

= lim
x→0

4x2

1− e−2πx

= lim
x→0

8x

2πe−2πx
= 0.

Now replace x by δ(0, E,D), we obtain the following limit

lim
α(E)→2π

1

δ(0, E,D)[ 8
π

log 2− 2
π

ln(1− e−2πδ(0,E,D))]
=∞.

Applying this limit to (2.3.4), we get

lim
α(E)→2π

λ(0, E,D)

δ(0, E,D)
= +∞.
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Corollary 2.3.3. For any arc E ⊂ ∂D, λ(0, E,D) > δ(0, E,D).

Proof. If the central angle with respect to E is no more than π, by Theorem 2.3.1

part (1), we have the following inequality

δ(0, E,D) +
3

2π
ln 2 ≤ λ(0, E,D) ≤ δ(0, E,D) +

2

π
ln 2.

It is easy to see that λ(0, E,D) > δ(0, E,D).

When the central angle with respect to E is greater than π, by (2.3.1),

0 < δ(0, E,D) <
1

2π
ln 2.

By Theorem 2.3.1, we get

λ(0, E,D) ≥ 1
8
π

ln 2− 2
π

ln(1− e−2πδ(0,E,D))
.

Next, we show that

1
8
π

ln 2− 2
π

ln(1− e−2πδ(0,E,D))
> δ(0, E,D).

For any x ∈ (0, 1
2π

ln 2), consider the function

f(x) =
1

8
π

ln 2− 2
π

ln(1− e−2πx)
.

By some calculations, we have

f ′(x) =
π2e−2πx

(1− e−2πx)(4 ln 2− ln(1− e−2πx))2

and

f ′′(x) =
2π3e−2πx(2e−2πx − (4 ln 2− ln(1− e−2πx)))

(1− e−2πx)2(4 ln 2− ln(1− e−2πx))3
.
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It is easy to see that for any x ∈ (0, 1
2π

ln 2), f ′(x) > 0.

Now we consider the concavity of f(x). Let

g(x) = 2e−2πx − (4 ln 2− ln(1− e−2πx)).

Then the derivative of g(x) is

g′(x) = 2πe−2πx

(
1

1− e−2πx
− 2

)
,

which is positive for any x ∈ (0, 1
2π

ln 2). Since g(0) = −∞ and g(x) < 0, for any

x ∈ (0, 1
2π

ln 2), it follows that f ′′(x) < 0. So f(x) is concave down. By the proof

of Corollary 2.3.2, we know

lim
x→0

f(x)

x
= +∞

and

f

(
1

2π
ln 2

)
=

π

10 ln 2
>

1

2π
ln 2.

Taking into account of the concavity of f(x), it follows that

1
8
π

ln 2− 2
π

ln(1− e−2πδ(0,E,D))
> δ(0, E,D),

which implies

λ(0, E,D) > δ(0, E,D).
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Chapter 3

Equivalent conditions for

Bi-Lipschitz sewing

homeomorphism

In this chapter we establish some equivalent conditions for the sewing homeo-

morphism hΩ of a Jordan domain to be bi-Lipschitz by using harmonic measure,

extremal distance and reduced extremal distance in Ω.

3.1 Harmonic measure

Before proceeding to the main result of this section, we recall the definition of

harmonic measure and its relation to extremal distance. In general, harmonic

measure in a Jordan domain is defined using the solution of a Dirichlet prob-

lem. The reader is referred to [5], [6],[13], [15], [18] for more details. Since it is

conformally invariant, it can also be defined more intuitively as follows.

Definition 3.1.1. Let E be an arc on the unit circle ∂D. Then the harmonic

measure of E with respect to the origin 0 in D is defined as

ω(0, E,D) =
α(E)

2π
,
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where α(E) is the central angle of E. Furthermore, for an arc E on the boundary

of a Jordan domain Ω and a point z0 ∈ Ω, the harmonic measure ω(z0, E,Ω) is

defined by means of a conformal map f : Ω→ D with f(z0) = 0 and the harmonic

measure on D defined above.

Since the extremal distance λ(z0, E,Ω) is strictly decreasing with respect to

E while the harmonic measure ω(z0, E,Ω) is strictly increasing, one can expect

that there is some functional relation between these two conformal invariants. We

quote the following result from [13], which will be needed in this thesis.

Lemma 3.1.2. [13, p145] Let Ω be a Jordan domain, E be a subarc of ∂Ω and

z0 ∈ Ω. Then

e−πλ(z0,E,Ω) ≤ ω(z0, E,Ω) ≤ 8

π
e−πλ(z0,E,Ω).

Moreover

lim
λ→∞

ω(z0, E,Ω)eπλ(z0,E,Ω) =
8

π
,

and

lim
λ→0

ω(z0, E,Ω)eπλ(z0,E,Ω) = 1.

3.2 Equivalent conditions for hΩ to be bi-Lipschitz

homeomorphism

We are now ready to establish one of the main results in this paper, which gives sev-

eral equivalent conditions for the sewing homeomorphism hΩ to be a bi-Lipschitz

map.

Theorem 3.2.1. Suppose Ω is a Jordan domain with z0 ∈ Ω and z∗0 ∈ Ω∗ =

C\Ω. Let f1 and f2 be Riemann mappings from Ω and Ω∗ onto D and D∗ with

f1(z0) = 0 and f2(z∗0) =∞, respectively. Let h = f2◦f−1
1 : ∂D→ ∂D be the sewing

homeomorphism induced by Ω. Then the following conditions are equivalent:
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Figure 3.1: Sewing homeomorphism h = f2 ◦ f−1
1

(1) h is a bi-Lipschitz homeomorphism, that is there exists a constant L ≥ 1

such that for any x, y ∈ ∂D,

1

L
|y − x| ≤ |h(y)− h(x)| ≤ L|y − x|.

(2) There exists a constant M ≥ 1, such that

1

M
≤ ω(z∗0 , E,Ω

∗)

ω(z0, E,Ω)
≤M

for any subarc E ⊂ ∂Ω.

(3) There exists a constant N ≥ 1, such that

|λ(z∗0 , E,Ω
∗)− λ(z0, E,Ω)| ≤ N

for any subarc E ⊂ ∂Ω.

(4) There exists a constant C ≥ 1, such that

|δ(z∗0 , E,Ω∗)− δ(z0, E,Ω)| ≤ C
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for any subarc E ⊂ ∂Ω.

3.3 Proof of Theorem 3.2.1

Roughly speaking, condition (2) says that the harmonic measures in Ω and Ω∗ are

comparable in the sense that their ratio is bounded above and below. Condition

(3) (or (4)) reveals that the extremal distances (or reduced extremal distances) in

Ω and Ω∗ are comparable in the sense that their difference is bounded above and

below. This section is devoted to the proof of Theorem 3.2.1, which requires some

delicate analysis and estimates of various conformal invariants.

Proof. (1)⇒ (2): For any arc E ⊂ ∂Ω, we consider two cases.

Case 1: ω(z0, E,Ω) ≥ 1
πL

. Since harmonic measure is less than or equal to 1,

ω(z∗0 , E,Ω
∗) ≤ 1 ≤ πL ω(z0, E,Ω).

This implies

ω(z∗0 , E,Ω
∗)

ω(z0, E,Ω)
≤ πL.

Case 2: ω(z0, E,Ω) < 1
πL

. In this case,

l(f1(E)) = 2πω(z0, E,Ω) <
2π

πL
< π.

Claim: l(f2(E)) < π.

If not, that is l(f2(E)) ≥ π, then there exists a subarc E ′ ⊂ E such that

l(f2(E ′)) = π. Since

|f1(E ′)| < 2 sin
1

L
,

we have

|f2(E ′)|
|f1(E ′)|

>
2

2 sin 1
L

> L.
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But by condition (1), we have

1

L
≤ |f2(E ′)|
|f1(E ′)|

≤ L,

which leads to a contradiction. This proves the above claim.

Thus in this case, we have both l(f1(E)) < π and l(f2(E)) < π. Hence, using

condition (1) and elementary inequalities on sin θ, one can derive that

ω(z∗0 , E,Ω
∗)

ω(z0, E,Ω)
=
l(f2(E))

l(f1(E))
=

2 arcsin |f2(E)|
2

2 arcsin |f1(E)|
2

≤
π
2
|f2(E)|
|f1(E)|

≤ πL

2
.

Let M = πL. Then in both case 1 and case 2, we have

ω(z∗0 , E,Ω
∗)

ω(z0, E,Ω)
≤M.

By symmetry, we also have

ω(z∗0 , E,Ω
∗)

ω(z0, E,Ω)
≥ 1

M
.

Thus, the bi-Lipschitz condition (1) implies condition (2) with M = πL.

(2)⇒(3): By Lemma 3.1.2, we obtain the following inequalities:

e−πλ(z0,E,Ω) ≤ ω(z0, E,Ω) ≤ 8

π
e−πλ(z0,E,Ω)

and

e−πλ(z∗0 ,E,Ω
∗) ≤ ω(z∗0 , E,Ω

∗) ≤ 8

π
e−πλ(z∗0 ,E,Ω

∗).

Combining these inequalities, we obtain

e−πλ(z∗0 ,E,Ω
∗) ≤ ω(z∗0 , E,Ω

∗) ≤Mω(z0, E,Ω)

≤ 8M

π
e−πλ(z0,E,Ω).
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This implies that

λ(z∗0 , E,Ω
∗)− λ(z0, E,Ω) ≥

ln 8M
π

−π
.

By symmetry, we have

−N ≤ λ(z∗0 , E,Ω
∗)− λ(z0, E,Ω) ≤ N,

with N = 1
π

ln 8M
π

.

(3)⇒(1): Suppose the central angle at 0 with respect to f1(E) in D is α, the

central angle at 0 with respect to f2(E) in D is β. By symmetry, it is obvious that

λ(0, f2(E),D) = λ(∞, f2(E),D∗).

By the representation of extremal distance in the unit disk,

λ(0, f1(E),D) = 2µ
(

sin
α

4

)
= Λ

(
cos2 α

4

sin2 α
4

)
,

λ(0, f2(E),D) = 2µ

(
sin

β

4

)
= Λ

(
cos2 β

4

sin2 β
4

)
.

Taking into account of the continuity of sewing homeomorphism h, there exists a

sufficiently small constant r0 , such that when |y − x| ≤ r0, |h(y) − h(x)| is also

sufficiently small.

For any x, y ∈ ∂D, let E be the pre-image under the mapping f1 of the arc

connecting x and y in ∂D such that f1(E) does not cover more than half of the

unit circle. We consider two cases.

Case 1: |y − x| ≥ r0. Then

|h(y)− h(x)| ≤ 2 ≤ 2

r0

|y − x|.
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Case 2: |y − x| < r0. Then

λ(z∗0 , E,Ω
∗)− λ(z0, E,Ω) = 2µ(sin

β

4
)− 2µ(sin

α

4
)

= Λ

(
cos2 β

4

sin2 β
4

)
− Λ

(
cos2 α

4

sin2 α
4

)

≤ 1

2π
ln 16

(
cos2 β

4

sin2 β
4

+ 1

)
− 1

2π
ln 16

(
cos2 α

4

sin2 α
4

)
=

1

π
ln

sin α
4

sin β
4

− 1

π
ln cos

α

4
.

On the other hand,

λ(z∗0 , E,Ω
∗)− λ(z0, E,Ω) = Λ

(
cos2 β

4

sin2 β
4

)
− Λ

(
cos2 α

4

sin2 α
4

)
≥ 1

2π
ln 16

cos2 β
4

sin2 β
4

− 1

2π
ln 16

(
cos2 α

4

sin2 α
4

+ 1

)
=

1

π
ln

sin α
4

sin β
4

+
1

π
ln cos

β

4
.

Combining the above two inequalities and taking into account of condition (3),

one can deduce that there exists a positive constant M , such that

1

M
≤

sin α
4

sin β
4

≤M.

Since α and β are all sufficiently small, we have

cos
α

4
≥ 1

2
, cos

β

4
≥ 1

2
.

Hence it follows that

2 sin
β

4
≤ |h(y)− h(x)| = 2 sin

β

2
≤ 4 sin

β

4

and

2 sin
α

4
≤ |y − x| ≤ 4 sin

α

4
.
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A simple calculation yields that

1

2

sin β
4

sin α
4

≤ |h(y)− h(x)|
|y − x|

≤ 2
sin β

4

sin α
4

.

Therefore, we obtain that

1

2M
≤ |h(y)− h(x)|

|y − x|
≤ 2M,

which implies that h is a bi-Lipschitz homeomorphism.

(1)⇒(4): For any arc E ⊂ ∂Ω, denote the two end points of E by x̃ an ỹ,

x = f1(x̃), y = f1(ỹ). Suppose the central angle with respect to f1(E) is α(f1(E)).

To show that h satisfies condition (4), there are three cases to be considered.

Case 1: α(f1(E)) < 2 arcsin 1
L

. In this case, it follows that

|f2(x̃)− f2(ỹ)| = |f2 ◦ f−1
1 (x)− f2 ◦ f−1

1 (y)|

= |h(x)− h(y)|

≤ L|x− y| = 2L sin
α(f1(E))

2

< 2L sin

(
1

2
· 2 arcsin

1

L

)
= 2.

Claim: f2(E) can not overlap half of the unit circle.

If f2(E) overlaps half or more of the unit circle, then there exists a subarc

E0 ⊂ E, such that f2(E0) is exactly half of the unit circle. However, since

α(f1(E0)) < α(f1(E)) < 2 arcsin
1

L
,

the distance between two end points of f2(E0) is less than 2, which contradicts

the fact that f2(E0) is half of the unit circle. Therefore f2(E) can not overlap half

or more of the unit circle.

By the relationship between bi-Lipschitz sewing homeomorphism and extremal
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distance, there exists a constant N ≥ 1, such that

|λ(z∗0 , E,Ω
∗)− λ(z0, E,Ω)| ≤ N.

Since α(f1(E)) < 2 arcsin 1
L

, f1(E) can not overlap half of the unit circle. Taking

into account of the fact that f2(E) can not overlap half of the unit circle, by

Theorem 2.3.1, we have

δ(z∗0 , E,Ω
∗)− δ(z0, E,Ω)

≤ λ(z∗0 , E,Ω
∗)− 3

2π
ln 2−

(
λ(z0, E,Ω)− 2

π
ln 2

)
= λ(z∗0 , E,Ω

∗)− λ(z0, E, ω) +
1

2π
ln 2

≤ N +
1

2π
ln 2

and

δ(z∗0 , E,Ω
∗)− δ(z0, E,Ω)

≥ λ(z∗0 , E,Ω
∗)− 2

π
ln 2−

(
λ(z0, E,Ω)− 3

2π
ln 2

)
= λ(z∗0 , E,Ω

∗)− λ(z0, E, ω)− 1

2π
ln 2

≥ −N − 1

2π
ln 2.

Case 2: 2 arcsin 1
L
≤ α(f1(E)) ≤ 2π − 2 arcsin 1

L
. In this case, it follows that

|f2(x̃)− f2(ỹ)| = |f2 ◦ f−1
1 (x)− f2 ◦ f−1

1 (y)|

= |h(x)− h(y)|

≥ 1

L
|x− y| = 2

1

L
sin

α(f1(E))

2

≥ 2
1

L
sin

(
1

2
· 2 arcsin

1

L

)
=

2

L2
,

which implies that

2 arcsin
1

L2
≤ α(f2(E)) ≤ 2π − 2 arcsin

1

L2
.
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By the monotonicity of reduced extremal length, we have

δ(z∗0 , E,Ω
∗)− δ(z0, E,Ω)

= δ(∞, f2(E),D∗)− δ(0, f1(E),D)

≤ − 1

π
ln sin

2 arcsin 1
L2

4
−
(
− 1

π
ln sin

2π − 2 arcsin 1
L

4

)
=

1

π
ln

cos
arcsin 1

L

2

sin
arcsin 1

L2

2

and

δ(z∗0 , E,Ω
∗)− δ(z0, E,Ω)

= δ(∞, f2(E),D∗)− δ(0, f1(E),D)

≥ − 1

π
ln sin

2π − 2 arcsin 1
L2

4
−
(
− 1

π
ln sin

2 arcsin 1
L

4

)
=

1

π
ln

sin
arcsin 1

L

2

cos
arcsin 1

L2

2

.

Case 3: α(f1(E)) > 2π − 2 arcsin 1
L

. In this case, denote the complement of

f1(E) and f2(E) by f̃1(E) and f̃2(E), respectively. Same reason as the claim in

case 1 induces that f̃2(E) can not overlap half of the unit circle. That means

α(f2(E)) > π.

By the monotonicity of reduced extremal length, we get

δ(z∗0 , E,Ω
∗)− δ(z0, E,Ω)

= δ(∞, f2(E),D∗)− δ(0, f1(E),D)

< − 1

π
ln sin

π

4
− 0

=
1

2π
ln 2
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and

δ(z∗0 , E,Ω
∗)− δ(z0, E,Ω)

= δ(∞, f2(E),D∗)− δ(0, f1(E),D)

> 0−
(
− 1

π
ln sin

π

4

)
= − 1

2π
ln 2.

Taking

C = max

N +
1

2π
log 2,

1

π

∣∣∣∣∣∣log
cos

arcsin 1
L

2

sin
arcsin 1

L2

2

∣∣∣∣∣∣
 ,

we have

|δ(z∗0 , E,Ω∗)− δ(z0, E,Ω)| ≤ C.

(4)⇒(1): For any x, y ∈ ∂D, let E be the arc connecting x and y which does not

overlap half of the unit circle. Since the sewing homeomorphism h is continuous,

we can take r0 sufficiently small, such that when |x − y| < r0, h(E) does not

overlap half of the unit circle. Suppose the central angle with respect to E in D

is α, the central angle with respect to h(E) in D is β. We consider two cases.

Case 1: |x− y| ≥ r0. In this case, it follows that

|h(x)− h(y)| ≤ 2 ≤ 2

r0

|x− y|.

Case 2: |x− y| < r0. In this case, we have

|δ(∞, h(E),D∗)− δ(0, E,D)|

=

∣∣∣∣− 1

π
log sin

β

4
−
(
− 1

π
log sin

α

4

)∣∣∣∣
=

∣∣∣∣∣ 1π log
sin β

4

sin α
4

∣∣∣∣∣ .
Taking into account of condition (4), one can deduce that there exists a constant

C, such that

1

C
≤

sin β
4

sin α
4

≤ C.
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Since r0 is sufficiently small, this implies that α and β are both sufficiently small.

Then we have

cos
α

4
≥ 1

2
, cos

β

4
≥ 1

2
.

Therefore, we can deduce the following inequalities

2 sin
β

4
≤ |h(y)− h(x)| = 2 sin

β

2
≤ 4 sin

β

4

and

2 sin
α

4
≤ |x− y| = 2 sin

α

2
≤ 4 sin

α

4
.

By the above two inequalities, one can easily get

sin β
4

2 sin α
4

≤ |h(y)− h(x)|
|x− y|

≤
2 sin β

4

sin α
4

,

which implies

1

2C
≤ 1

2

sin β
4

sin α
4

≤ |h(y)− h(x)|
|y − x|

≤ 2
sin β

4

sin α
4

≤ 2C.

Combining case 1 and case 2, we get that h is a bi-Lipschitz homeomorphism.
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Chapter 4

Equivalent conditions for

bi-Hölder sewing homeomorphism

To follow up on Theorem 3.2.1, one may ask the the following question. What

can one say about the sewing homeomorphism hΩ, if in the condition (3) or (4) of

Theorem 3.2.1, the difference of the corresponding extremal distances or reduced

extremal distance in Ω and in Ω∗ is replaced by their ratio? In this chapter, we

answer this and other questions by establishing equivalent conditions for hΩ to be

bi-Hölder.

4.1 Equivalent conditions for hΩ to be bi-Hölder

homeomorphism

Lemma 3.1.2 gives us the connection between extremal distance and harmonic

measure. Theorem 2.3.1 tells us extremal distance and reduced extremal are com-

parable. Therefore the reduced extremal distance and harmonic measure should

also be comparable. The following lemma shows us that we can estimate the

harmonic measure by using the reduced extremal distance.

Lemma 4.1.1. [13, p164] If Ω is a Jordan domain and if E is a finite union of
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closed arcs on ∂Ω, then

ω(z0, E,Ω) ≤ e−πδ(z0,E,Ω).

If E is a single arc, then

ω(z0, E,Ω) =
2

π
sin−1(e−πδ(z0,E,Ω) ≥ 2

π
e−πδ(z0,E,Ω).

Theorem 4.1.2. Suppose Ω is a Jordan domain with z0 ∈ Ω, and z∗0 ∈ Ω∗ = C\Ω.

Let f1 and f2 be Riemann mappings from Ω and Ω∗ onto D and D∗ with f1(z0) = 0

and f2(z∗0) = ∞, respectively. Let h = f2 ◦ f−1
1 be the sewing homeomorphism

induced by Ω. Then the following conditions are equivalent:

(1) h is a bi-Hölder homeomorphism, that is, there exist constants L ≥ 1, 0 <

β ≤ 1 such that

|h(y)− h(x)| ≤ L|y − x|β and |h−1(y)− h−1(x)| ≤ L|y − x|β

for any x, y ∈ ∂D.

(2) There exist constants M ≥ 1 and 0 < α ≤ 1, such that

ω(z∗0 , E,Ω
∗) ≤Mωα(z0, E,Ω) and ω(z0, E,Ω) ≤Mωα(z∗0 , E,Ω

∗)

for any subarc E ⊂ ∂Ω.

(3) There exists a constant N ≥ 1, such that

1

N
≤ λ(z∗0 , E,Ω

∗)

λ(z0, E,Ω)
≤ N

for any subarc E ⊂ ∂Ω.
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(4) There exists a constant C ≥ 1, such that

1

C
≤ δ(z∗0 , E,Ω

∗)

δ(z0, E,Ω)
≤ C

for any subarc E ⊂ ∂Ω provided that δ(z0, E,Ω) ≥ 1
2π

log 2.

4.2 Proof of Theorem 4.1.2

For the proof of Theorem 4.1.2, we deploy the same tools such as Theorem 2.2.1

and Lemma 3.1.2 as in the proof of Theorem 3.2.1. But the structure is some

what different from the proof of Theorem 3.2.1.

Proof. (1) ⇒ (2): Let L and β be as in condition (1). Fix any subarc E ⊂ ∂Ω.

We will divide into three cases:

Case 1: we first assume that both harmonic measures w(z0, E,Ω) and w(z∗0 , E,Ω
∗)

are less than or equal to 1
2
:

w(z0, E,Ω) ≤ 1

2
, w(z∗0 , E,Ω

∗) ≤ 1

2
.

In this case we have both

l(f1(E)) ≤ π and l(f2(E)) ≤ π.

Thus condition (1) together with some elemetary estimates yields that

w(z∗0 , E,Ω
∗)

wβ(z0, E,Ω)
=

1
2π
l(f2(E))

( 1
2π

)βlβ(f1(E))
≤

1
2π

π
2
|f2(E)|

( 1
2π

)β|f1(E)|β

≤ (2π)βL

4
,



39

and, by symmetry, it follows that

w(z0, E,Ω)

wβ(z∗0 , E,Ω
∗)

=
1

2π
l(f1(E))

( 1
2π

)βlβ(f2(E))
≤

1
2π

π
2
|f1(E)|

( 1
2π

)β|f2(E)|β

≤ (2π)βL

4
.

This verifies condition (2).

Case 2: we assume that one harmonic measure is less than or equal to 1
2

and

the other is greater than 1
2
:

w(z0, E,Ω) ≤ 1

2
, w(z∗0 , E,Ω

∗) >
1

2
.

In this case, one can choose a subarc E0 ⊂ E such that w(z∗0 , E0,Ω
∗) = 1

2
. Then

we have

w(z0, E0,Ω) ≤ 1

2
, w(z∗0 , E0,Ω

∗) =
1

2
.

Applying the above case to E0, one can conclude that

w(z∗0 , E,Ω
∗)

wβ(z0, E,Ω)
≤ 2w(z∗0 , E0,Ω

∗)

wβ(z0, E0,Ω)
=

2 1
2π
l(f2(E0))

[ 1
2π
l(f1(E0))]β

≤
π
2π
|f2(E0)|

( 1
2π

)β|f1(E0)|β

≤ (2π)βL

2
.

Furthermore, it follows immediately that

ω(z0, E,Ω)

ωβ(z∗0 , E,Ω
∗)
≤ 1/2

(1/2)β
=

2β

2
.

Thus condition (2) is verified in this case.

Case 3: we assume both harmonic measures ω(z0, E,Ω) and ω(z∗0 , E,Ω
∗) are

greater than 1
2
:

w(z0, E,Ω) >
1

2
, w(z∗0 , E,Ω

∗) >
1

2
.
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In this case, it follows immediately that

ω(z0, E,Ω)

ωβ(z∗0 , E,Ω
∗)
≤ 1

(1/2)β
= 2β,

w(z∗0 , E,Ω
∗)

wβ(z0, E,Ω)
≤ 1

(1/2)β
= 2β.

Taking M = πL, α = β, then the condition (2) is verified.

(2) ⇒ (1): Fix x, y ∈ ∂D. Let E ⊂ ∂Ω denote the image of the smaller

component of ∂D\{x, y} under f−1
1 . Then f1(E) is a subarc on ∂D joining x and

y with central angle less than or equal to π. We note that

l(f1(E)) = 2πw(z0, E,Ω) ≤ π,

and

l(f2(E)) = 2πw(z∗0 , E,Ω
∗).

Thus the first inequality in condition (2) can be written as

l(f2(E))

2π
≤M

(
l(f1(E))

2π

)α
.

Therefore, routine estimates yield that

|h(y)− h(x)| = |f2(E)| ≤ l(f2(E)) ≤ 2πM

(2π)α
lα(f1(E))

≤ 2πM

(2π)α

(π
2
|f1(E)|

)α
=

2πM

4α
|f1(E)|α

=
2πM

4α
|y − x|α.

Thus we have

|h(y)− h(x)| ≤ 2πM

4α
|y − x|α.
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By symmetry, applying the above argument to h−1, we obtain that

|h−1(y)− h−1(x)| ≤ 2πM

4α
|y − x|α.

This verifies condition (1) with L = 2πM and β = α.

(3)⇒ (2): By applying Lemma 3.1.2 repeatedly, one can deduce that

ω(z0, E,Ω) ≤ 8

π
e−πλ(z0,E,Ω) ≤ 8

π
e−

π
N
λ(z∗0 ,E,Ω

∗)

≤ 8

π
ω

1
N (z∗0 , E,Ω

∗).

By symmetry,

ω(z∗0 , E,Ω
∗) ≤ 8

π
ω

1
N (z0, E,Ω).

Thus condition (2) holds with

M =
8

π
, α =

1

N
.

(2)⇒ (3): The proof of this implication is more sophisticated than the others.

Using Lemma 3.1.2 again, we obtain that

e−πλ(z∗0 ,E,Ω
∗) ≤ ω(z∗0 , E,Ω

∗) ≤Mωα(z0, E,Ω)

≤M(
8

π
)αe−παλ(z0,E,Ω).

It follows that

−πλ(z∗0 , E,Ω
∗) ≤ ln(M(

8

π
)α)− παλ(z0, E,Ω).

Divide both sides by παλ(z∗0 , E,Ω
∗),

− 1

α
≤

ln(M( 8
π
)α)

πα

1

λ(z∗0 , E,Ω
∗)
− λ(z0, E,Ω)

λ(z∗0 , E,Ω
∗)
.
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Rearrange the inequality, get

λ(z0, E,Ω)

λ(z∗0 , E,Ω
∗)
≤ 1

α
+

ln(M( 8
π
)α)

πα

1

λ(z∗0 , E,Ω
∗)
. (4.2.1)

Choose subarc E0 ⊂ ∂Ω such that

l(f1(E0)) =
2π

(2M)
1
α

,

and let

l0 = l(f1(E0)), λ0 = λ(z0, E0,Ω).

To verify condition (3), we divide the argument into two cases.

Case 1: we assume that λ(z∗0 , E,Ω
∗) ≥ 1

4λ0
. Then it follows immediately from

(4.2.1) that

λ(z0, E,Ω)

λ(z∗0 , E,Ω
∗)
≤ 1

α
+

4λ0 ln(M( 8
π
)α)

πα
. (4.2.2)

Case 2: we assume that λ(z∗0 , E,Ω
∗) < 1

4λ0
.

By Theorem 2.2.1,

λ(z∗0 , Ẽ,Ω
∗) =

1
4

λ(z∗0 , E,Ω
∗)
>

1
4
1

4λ0

= λ0,

where Ẽ is the complement of E on ∂Ω.

Since the extremal distance is strictly decreasing and by the choice of λ0, it

follows that

l(f2(Ẽ)) ≤ 2π

(2M)
1
α

.

Therefore

l(f1(Ẽ)) = 2πω(z0, Ẽ,Ω) ≤ 2πMωα(z∗0 , Ẽ,Ω
∗)

= 2π ·M ·

(
l(f2(Ẽ))

2π

)α

≤ 2π ·M ·

(
1

(2M)
1
α

)α

= π.
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This together with Theorem 2.2.1 implies

λ(z0, Ẽ,Ω) ≥ 1

2
.

Hence, we deduce that

λ(z0, E,Ω)

λ(z∗0 , E,Ω
∗)

=
λ(z∗0 , Ẽ,Ω

∗)

λ(z0, Ẽ,Ω)

≤ 1

α
+

ln(M( 8
π
)α)

πα

1

λ(z, Ẽ,Ω)

≤ 1

α
+

2 ln(M( 8
π
)α)

πα
.

By symmetry again, this together with (4.2.2) shows that condition (3) in Theorem

4.1.2 holds with the constant N determined by

N = max

{
1

α
+

2 ln(M( 8
π
)α)

πα
,

1

α
+

4λ0 ln(M( 8
π
)α)

πα

}
.

(4)⇒ (2): For the proof of the equivalence of condition (4) and condition (2),

we use the relation between harmonic measure and reduced extremal distance in

Lemma 4.1.1:

2

π
e−πδ(z0,E,Ω) ≤ ω(z0, E,Ω) ≤ e−πδ(z0,E,Ω), (4.2.3)

for any single subarc E ⊂ ∂Ω.

Fix a subarc E ⊂ ∂Ω and denote the central angle of f1(E) by θ. To verify

condition (2), we divide into two cases.

Case 1: we assume that θ ≤ π. By Lemma 1.3.4, we get

δ(z0, E,Ω) = δ(0, f1(E),D)

= lim
r→0

[λ(∆r, f1(E),D)− λ(∆r, ∂D,D)]

= lim
r→0
{ 1

π
ln

1
√
r sin θ

4

− 1

2π
ln

1

r
}

= − 1

π
ln sin

θ

4
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Since θ ≤ π, it’s easy to get

δ(z0, E,Ω) ≥ 1

2π
log 2.

Thus it follows from (4.2.3) and condition (4) that

ω(z∗0 , E,Ω
∗) ≤ e−πδ(z

∗
0 ,E,Ω

∗) ≤
(
e−πδ(z0,E,Ω)

) 1
C

≤
(π

2
ω(z0, E,Ω)

) 1
C .

By symmetry, we have

ω(z0, E,Ω) ≤
(π

2

) 1
C (ω(z∗0 , E,Ω

∗))
1
C .

This verifies condition (2) with M = (π/2)
1
C and α = 1/C.

Case 2: we assume that θ > π. Applying the above argument to the comple-

ment Ẽ of E yields that

ω(z∗0 , Ẽ,Ω
∗) ≤

(π
2

) 1
C (ω(z0, Ẽ,Ω))

1
C ≤

(π
4

) 1
C .

Thus

ω(z∗0 , E,Ω
∗) = 1− ω(z∗0 , Ẽ,Ω

∗) ≥ 1−
(π

4

) 1
C .

Hence, it follows that

ω(z0, E,Ω) ≤ 1 ≤M1 · (ω(z∗0 , E,Ω
∗))

1
C ,

where

M1 =
[ 41/C

41/C − π1/C

] 1
C .

On the other hand, θ > π implies ω(z0, E,Ω) > 1
2
, we obtain that

ω(z∗0 , E,Ω
∗) ≤ 1 ≤ 2

1
C (ω(z0, E,Ω))

1
C .
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This completes the verification of condition (2) with constants

M = max{M1, 2
1
C }, α =

1

C
.

(2)⇒ (4): To derive condition (4), we shall use both condition (2) and condi-

tion (3) since they are equivalent as shown above. Fix a subarc E ⊂ ∂Ω such that

the central angle θ of f1(E) is less than or equal to π. Using (4.2.3) and condition

(2), one can deduce that

e−πδ(z
∗
0 ,E,Ω

∗) ≤ π

2
ω(z∗0 , E,Ω

∗) ≤ πM

2
ω(z0, E,Ω)α

≤ πM

2
e−παδ(z0,E,Ω).

Taking the natural log of both sides

−πδ(z∗0 , E,Ω∗) ≤ ln(
πM

2
)− παδ(z0, E,Ω).

Thus it follows that

δ(z0, E,Ω)

δ(z∗0 , E,Ω
∗)
≤ 1

α
+

ln(πM
2

)

πα
· 1

δ(z∗0 , E,Ω
∗)
. (4.2.4)

Furthermore, since θ ≤ π, we have λ(z0, E,Ω) ≥ 1
2

by Theorem 2.2.1.

Thus condition (3) implies that

λ(z∗0 , E,Ω
∗) ≥ λ(z0, E,Ω)

N
≥ 1

2N
.

Since the reduced extremal distance is decreasing, which yields that

δ(z∗0 , E,Ω
∗) ≥ δ0 = − 1

π
log sin

θ0

4
,

where the angle θ0 is determined by

2µ(sin
θ0

4
) =

1

2N
.
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Taking

C =
1

α
+

ln(πM
2

)

πα
· 1

δ0

.

This together with (4.2.4) yields that

δ(z0, E,Ω)

δ(z∗0 , E,Ω
∗)
≤ 1

α
+

ln(πM
2

)

πα
· 1

δ0

= C.

Taking the reciprocal, get

δ(z∗0 , E,Ω
∗)

δ(z0, E,Ω)
≥ 1

C
,

which is the first inequality in condition (4).

To prove the second inequality in condition (4), we note that, by the symmet-

rical nature of (4.2.3) and condition (2), the same argument as in the proof of

(4.2.4) yields that

δ(z∗0 , E,Ω
∗)

δ(z0, E,Ω)
≤ 1

α
+

ln(πM
2

)

πα
· 1

δ(z0, E,Ω)
. (4.2.5)

Since θ ≤ π implies that δ(z0, E,Ω) ≥ 1
2π

ln 2, (4.2.5) shows that the second

inequality in condition (4) holds with the constant

C =
1

α
+

2 ln(πM
2

)

α ln 2
.

This completes the proof of Theorem 4.1.2.

Remark: It is worth noting that it is necessary to assume in condition (4) that

the central angle θ of f1(E) is less than or equal to π. This is because when θ → 2π

condition (2) or (3) may not imply condition (4).



47

Chapter 5

Harmonic measure property and

quasicircle

In chapter 3 and 4, we established equivalent conditions for the sewing homeo-

morphism hΩ of a Jordan domain to be bi-Lipschitz or bi-Hölder. Apparently, all

bi-Lipschitz homeomorphisms are bi-Hölder and the converse is not true. How-

ever, there is an important class of homeomorphisms between these two, called

quasisymmetric (or QS) homeomorphisms. It is well known that (see [15], [16],

[17] [19], [22] and [27]) the sewing homeomorphism hΩ is quasisymmetric if and

only if Ω is a quasidisk or, equivalently, ∂Ω is a quasicircle. In this chapter, we

will establish some parallel equivalent conditions for Ω to be a quasidisk and give

counterexamples to show that Theorem 3.2.1 condition (1) and Theorem 4.1.2

condition (1) are not equivalent to the condition that Ω is a quasicircle.

5.1 Preliminary

In this section, we will name two important properties. After that some definitions

and lemmas about quasisymmetric and quasiconformal maps will be given. More

details about quasiconformal maps can be found in [1], [3], [16] and [21].

Definition 5.1.1. A Jordan curve J = ∂Ω is said to have the harmonic measure

property (or HMP) if there exist points z0 ∈ Ω, z∗0 ∈ Ω∗, and a constant M <∞,
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such that for any arc E ⊂ J ,

1

M
ω(z0, E,Ω) ≤ ω(z∗0 , E,Ω

∗) ≤Mω(z0, E,Ω).

J is said to have the Hölder harmonic measure property (or Hölder HMP) if

there exist points z0 ∈ Ω, z∗0 ∈ Ω∗, and constants 0 < α ≤ 1, M < ∞, such that

for any arc E ⊂ J ,

1

M
ω

1
α (z0, E,Ω) ≤ ω(z∗0 , E,Ω

∗) ≤Mωα(z0, E,Ω).

Definition 5.1.2. [23, p109] A map h that maps ∂D into C is called quasisym-

metric if it is injective and if there exists a strictly increasing continuous function

λ(x) (0 ≤ λ(x) <∞) with λ(0) = 0 such that

|h(z1)− h(z2)

h(z2)− h(z3)
| ≤ λ(|z1 − z2

z2 − z3

|),

for all distinct z1, z2, z3 ∈ ∂D.

Lemma 5.1.3. (Mori’s Theorem) [1, p30] Let f : D→ D be a K quasiconformal

mapping, normalized by f(0) = 0. Then for any z1, z2 ∈ D,

|f(z1)− f(z2)| ≤ 16|z1 − z2|
1
K .

and 16 cannot be replaced by a smaller constant.

Lemma 5.1.4. [23, p110] If f and g map D and D∗ conformally onto the inner

and outer domains of a quasicircle, then φ = g−1 ◦ f is a quasisymmetric map of

∂D onto ∂D.

Lemma 5.1.5. [23, p112] Any sense-preserving homeomorphism φ of ∂D onto

∂D can be extend to a homeomorphism φ̃ of D onto D that is real-analytic in D

and has the following properties:

(1) If σ, τ ∈ Möb(D) then the extension of σ ◦ φ ◦ τ is given by σ ◦ φ̃ ◦ τ .
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(2) If φ is quasisymmetric then φ̃ is quasiconformal in D.

Lemma 5.1.6. [18] Let J be a Jordan curve in the extended plane and let Ω, Ω∗

be its complementary domains. The curve J is a quasicircle if and only if there

exists two points z0 ∈ Ω, z∗0 ∈ Ω∗ and a constant M ≥ 1 such that for any two

adjacent disjoint open subarcs E1, E2 of J such that

ω(z0, E1,Ω) = ω(z0, E2,Ω)

we have

ω(z∗0 , E1,Ω
∗)

ω(z∗0 , E2,Ω∗)
≤M.

5.2 Equivalent conditions for a quasicircle

In this section, we establish some parallel equivalent conditions for Ω to be a

quasidisk.

Theorem 5.2.1. Suppose Ω is a Jordan domain and let Ω∗ = C\Ω. Then the

following conditions are equivalent:

(1) J = ∂Ω is a quasicircle;

(2) There exist z0 ∈ Ω, z∗0 ∈ Ω∗ and a constant M such that

ω(z∗0 , E1,Ω
∗)

ω(z∗0 , E2,Ω∗)
≤M

for any two adjacent disjoint arcs E1, E2 ⊂ J with ω(z0, E1,Ω) = ω(z0, E2,Ω);

(3) There exist z0 ∈ Ω, z∗0 ∈ Ω∗ and a constant N such that

|λ(z∗0 , E2,Ω
∗)− λ(z∗0 , E1,Ω

∗)| ≤ N

for any two adjacent disjoint arcs E1, E2 ⊂ J with λ(z0, E1,Ω) = λ(z0, E2,Ω);
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(4) There exist z0 ∈ Ω, z∗0 ∈ Ω∗ and a constant C such that

|δ(z∗0 , E2,Ω
∗)− δ(z∗0 , E1,Ω

∗)| ≤ C

for any two adjacent disjoint arcs E1, E2 ⊂ J with δ(z0, E1,Ω) = δ(z0, E2,Ω).

5.3 Proof of Theorem 5.2.1

Proof. Lemma 5.1.6 establishes the equivalence of conditions (1) and (2). Next

we prove the equivalence of conditions (2) and (3).

(2) ⇒ (3): Assume that condition (2) holds with z0 ∈ Ω, z∗0 ∈ Ω∗ and a

constant M . By Lemma 3.1.2, it follows from condition (2) that

e−πλ(z∗0 ,E1,Ω∗) ≤ ω(z∗0 , E1,Ω
∗)

≤Mω(z∗0 , E2,Ω
∗)

≤M
8

π
e−πλ(z∗0 ,E2,Ω∗).

Taking the natural log on both sides leads to

−πλ(z∗0 , E1,Ω
∗) ≤ ln(

8M

π
)− πλ(z∗0 , E2,Ω

∗),

which yields that

λ(z∗0 , E2,Ω
∗)− λ(z∗0 , E1,Ω

∗) ≤ 1

π
ln(

8M

π
).

Thus, by symmetry, condition (3) holds with the same points z0 ∈ Ω, z∗0 ∈ Ω∗ as

in (2) and constant N = 1
π

ln
(

8M
π

)
.

(3)⇒ (2): By condition (3), the inequality

|λ(z∗0 , E2,Ω
∗)− λ(z∗0 , E1,Ω

∗)| ≤ N
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holds with z0 ∈ Ω, z∗0 ∈ Ω∗ and a constant N . After some algebraic manipulation,

we get

−πλ(z∗0 , E2,Ω
∗) ≤ πN − πλ(z∗0 , E1,Ω

∗).

Thus

e−πλ(z∗0 ,E2,Ω∗) ≤ eπNe−πλ(z∗0 ,E1,Ω∗).

By Lemma 3.1.2, we get

π

8
ω(z∗0 , E2,Ω

∗) ≤ e−πλ(z∗0 ,E2,Ω∗)

≤ eπNe−πλ(z∗0 ,E1,Ω∗)

≤ eπNω(z∗0 , E1,Ω
∗).

Therefore

ω(z∗0 , E2,Ω
∗)

ω(z∗0 , E1,Ω∗)
≤ 8

π
eπN ,

this implies condition (2) with constant M = 8
π
eπN .

Now we are going to establish the equivalence of conditions (2) and (4) by

using Lemma 4.1.1.

(2) ⇒ (4): Assume that condition (2) holds with z0 ∈ Ω, z∗0 ∈ Ω∗ and a

constant M . By Lemma 4.1.1, it follows from condition (2) that

2

π
e−πδ(z

∗
0 ,E1,Ω∗) ≤ ω(z∗0 , E1,Ω

∗)

≤Mω(z∗0 , E2, ω
∗)

≤Me−πδ(z
∗
0 ,E2,Ω∗).

Taking the natural log on both sides yields that

−πδ(z∗0 , E1,Ω
∗) ≤ ln(

πM

2
)− πδ(z∗0 , E2,Ω

∗),

then, we get

δ(z∗0 , E2,Ω
∗)− δ(z∗0 , E1,Ω

∗) ≤ 1

π
ln(

πM

2
).
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Thus, by symmetry, condition (4) holds with the same points z0 ∈ Ω, z∗0 ∈ Ω∗ as

in (2) and constant C = 1
π

ln(πM
2

).

(4)⇒ (2): By condition (4), we have

|δ(z∗0 , E2,Ω
∗)− δ(z∗0 , E1,Ω

∗)| ≤ C,

for any two adjacent disjoint arcs E1, E2 ⊂ J with δ(z0, E1,Ω) = δ(z0, E2,Ω).

After a simple calculation, we obtian that

−πδ(z∗0 , E1,Ω
∗) ≤ Cπ − πδ(z∗0 , E2,Ω

∗).

Taking the natural log both sides yields that

e−πδ(z
∗
0 ,E1,Ω∗) ≤ eCπe−πδ(z

∗
0 ,E2,Ω∗).

By Lemma 4.1.1,

ω(z∗0 , E1,Ω
∗) ≤ e−πδ(z

∗
0 ,E1,Ω∗)

≤ eCπe−πδ(z
∗
0 ,E2,Ω∗)

≤ π

2
eCπω(z∗0 , E2,Ω

∗).

Therefore

ω(z∗0 , E1,Ω
∗)

ω(z∗0 , E2,Ω∗)
≤ π

2
eCπ,

which leads to condition (2) with constant M = π
2
eCπ.

5.4 HMP and quasicircle

Roughly speaking, a Jordan curve J has the HMP if the harmonic measures on

both sides of the curve ”looks alike” from both sides, it is tempting to use HMP

to characterize quasicircles. In this direction, we have the following result.

Theorem 5.4.1. If J has the HMP, then J is a quasicircle.
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Proof. Since J has the HMP, by the definition, there exist points z0 ∈ Ω, z∗0 ∈ Ω∗,

and a constant M <∞, such that for any subarc E ∈ J ,

1

M
≤ ω(z∗0 , E,Ω

∗)

ω(z0, E,Ω)
≤M.

For any two adjacent disjoint arcs E1, E2 ∈ J , suppose they have the same har-

monic measure from inside

ω(z0, E1,Ω) = ω(z0, E2,Ω). (5.4.1)

By HMP, we get two inequalities:

1

M
≤ ω(z∗0 , E1,Ω

∗)

ω(z0, E1,Ω)
≤M, (5.4.2)

and

1

M
≤ ω(z∗0 , E2,Ω

∗)

ω(z0, E2,Ω)
≤M. (5.4.3)

Combine (5.4.1), (5.4.2) and (5.4.3), we obtain that

ω(z∗0 , E1,Ω
∗)

ω(z∗0 , E2,Ω∗)
=
ω(z∗0 , E1,Ω

∗)

ω(z0, E1,Ω)

ω(z0, E1,Ω)

ω(z0, E2,Ω)

ω(z0, E2,Ω)

ω(z∗0 , E2,Ω∗)

≤M2.

By Theorem 5.2.1, J is a quasicircle.

Unfortunately, the converse of Theorem 5.4.1 is not true. On the one hand,

there are some very complicated quasicircles that may have the harmonic measure

property. Such examples can be found in [4] and [25]. On the other hand, there

are some simple quasicircles that do not have this property. The following is such

an example.

Example 5.4.2. The boundary of a quarter plane does not have the HMP.

Proof. Denote the quarter plane by Ω. For each pair of finite points z1, z2 on the
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boundary, we always have the inequality

min
j=1,2

dia(γj) ≤
√

2|z1 − z2|,

where dia denotes the Euclidean diameter and γ1, γ2 are the components of ∂Ω \

{z1, z2}.

It is easy to see that the boundary of the quarter plane satisfies the Ahlfors’

two point inequality. Therefore the boundary of the quarter plane is a quasicircle.

Now we show that it does not have the harmonic measure property. Suppose f

maps the upper half plane onto the quarter plane and g maps the upper half plane

onto the complement of the quarter plane. By the Schwarz-Christoffel formula,

f(z) = c1

√
z and g(z) = c2z

3
2 ,

where c1, c2 are two constants. Let z1 = f(i), z2 = g(i). Choose a small interval

[0, δ]. We are going to show that

ω(z1, [0, δ],Ω)

ω(z2, [0, δ],Ω∗)
→ 0 or ∞

as δ → 0.

Since f and g are conformal mappings and conformal mapping doesn’t change

the harmonic measure, we obtian that

ω(z1, [0, δ],Ω)

ω(z2, [0, δ],Ω∗)
=
ω(i, [0, f−1(δ)],H)

ω(i, [0, g−1(δ)],H)
=
arctan(f−1(δ))

arctan(g−1(δ))
.

By a simple calculation, we get

lim
δ→0

arctan(f−1(δ))

arctan(g−1(δ))
= lim

δ→0

arctan( δ
2

c21
)

arctan( δ
2
3

c
2
3
2

)
= lim

δ→0
c3δ

4
3 = 0,

where c3 is a constant.
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Therefore, we get

ω(z1, [0, δ],Ω)

ω(z2, [0, δ],Ω∗)
→ 0, as δ → 0.

This implies that the boundary of the quarter plane does not have the harmonic

measure property.

Combining Lemma 5.1.3 and Theorem 4.1.2, we conclude this chapter by show-

ing that quasicircles have the Hölder HMP.

Theorem 5.4.3. If J is a quasicircle, then J has the Hölder HMP.

Proof. If J is a quasicircle, by Lemma 5.1.4, the sewing homeomorphism h is

quasisymmetric. By Lemma 5.1.5, h can be extended to a quasiconformal map of

D to D. By Lemma 5.1.3, we know that it is Hölder continuous, therefore it is a

bi-Hölder homeomorphism. By Theroem 4.1.2, h is a bi-Hölder homeomorphism

implies that J has Hölder HMP.



56

Chapter 6

Characterization of unit circle by

using Robin Capacity

In connection with the theory of quasiconformal mappings, characterizations of

quasicircles in particular, there are many ways to characterize the unit circle (See

[15]). For example, a Jordan domain Ω is a quasicircle if and only if its QED

constant M(Ω) is finite, and it is a disk if and only if M(Ω) = 2. This constant

can be used to reflect the geometry of a domain (See [14], [15], [16], [26] for

details). In this chapter, we will use a new index to characterize the unit circle.

The idea comes from the observation that if a curve is very “close” to the unit

circle, then the ratio of Robin capacity inside and outside the curve is close to 1.

6.1 Robin Function and Robin Capacity

Definition 6.1.1. [10] Let Ω be a finitely connected domain in the extended com-

plex plane C̄, containing the point at infinity and bounded by smooth Jordan curves.

Let A ⊂ ∂Ω be an arbitrary closed subset and B = ∂Ω\A. For a fixed point ξ ∈ Ω,

the Robin function R(z, ξ) is defined by the following requirements:

(a) R(z, ξ) is harmonic in Ω and continuous in Ω̄ together with its first deriva-

tives, except at z = ξ, where R(z, ξ) + log |z − ξ| is harmonic;
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(b) R(z, ξ) = 0 for all z ∈ A;

(c) ∂R
∂n

(z, ξ) = 0, for all z ∈ B, where ∂
∂n

denotes the inner normal derivative.

For ξ = ∞, the property (a) is modified to require R(z,∞) − log |z| be harmonic

in Ω.

From this definition, one can easily see that Robin function is simply Green’s

function g(z, ξ) on Ω if A is the whole boundary. For more details, see [10], [11]

and [12].

Definition 6.1.2. [10] The Robin capacity of A at ξ with respect to Ω is defined

as

σ(A) = e−ρ(A),

where

ρ(A) = lim
z→ξ
{R(z, ξ) + log |z − ξ|}.

In particular, if ξ = 0, then the Robin capacity of A at 0 is given by

σ0(A) = e−ρ0(A), ρ0(A) = lim
z→0

(R(z, 0) + log |z|).

If ξ =∞, then the Robin capacity of A at ∞ is given by

σ∞(A) = e−ρ∞(A), ρ∞(A) = lim
z→∞

(R(z,∞)− log |z|).

Actually we can investigate Robin capacity from a more geometric viewpoint.

One can use extremal distance to interpret Robin capacity. The following lemma

builds the connection between Robin capacity and extremal distance. By this

lemma, one can express the Robin capacity in terms of extremal distance.

Lemma 6.1.3. [20, p243]: let Ω be a domain bounded by a finite number of closed

Jordan curves, and E be a closed set consisting of a finite number of arcs on ∂Ω,

z0 ∈ Ω. Then

ρz0(E) = 2π lim
r→0

(λ(E,∆r,Ω) +
1

2π
log r),
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where λ(E,∆r,Ω) is the extremal distance between E and disk ∆r = {z; |z− z0| =

r}.

6.2 Characterization of unit circle

In this section, we define an index I(J), then use this index to characterize the

unit circle.

Lemma 6.2.1. [8, p130] (Schwarz’s Lemma) Let D = {z : |z| < 1} and suppose

f is analytic on D with |f(z)| ≤ 1 for z ∈ D and f(0) = 0. Then

|f ′(0)| ≤ 1 and |f(z)| ≤ |z|

for all z in the disk D. Moreover if |f ′(0)| = 1 or if |f(z)| = |z| for some z 6= 0,

then there is a constant c, |c| = 1, such that f(w) = cw for all w in D.

In order to compare the Robin capacity on both sides of a Jordan curve, we

introduce the following index I(J).

Definition of I(J): For a closed Jordan curve in the extended complex plane,

without loss of generality, we assume that the curve J lies in the unit circle D and

J
⋂
∂D 6= ∅. Then J separates the plane into two complementary domains: Ω and

Ω∗. Suppose 0 ∈ Ω and ∞ ∈ Ω∗. Define the index I(J) as follows,

I(J) = max[sup
A

(
σ0(A)

σ∞(A)
), sup

A
(
σ∞(A)

σ0(A)
)],

where the supremum is taken over all non-degenerate subarcs A of J .

Theorem 6.2.2. For a normalized Jordan curve J as in the above definition,

I(J) = 1 if and only if J is the unit circle.

Proof. If J is the unit circle, then by the Lemma 6.1.3,

ρ0(A) = 2π lim
r→0

[λ(A,∆r,Ω) +
1

2π
ln r] in Ω
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and

ρ∞(A) = 2π lim
R→∞

[λ(A,∆R,Ω
∗)− 1

2π
lnR] in Ω∗.

Using the map f(z) = 1
z

and the conformal invarianve of extremal length, one

easily obtains that

ρ0(A) = ρ∞(A)

for any subarc A of J . Thus, it follows that

I(J) = 1.

In order to prove the other direction of the theorem by contradiction, we start

with the assumption that J is a normalized Jordan curve that is not a unit circle.

Then by Riemann mapping theorem, there exists a unique conformal map

ϕ(z) : Ω→ D,

such that ϕ(0) = 0, ϕ′(0) > 0.

Figure 6.1: Map between J and the circle with radius r

Now define a map

g(z) =
1

ϕ′(0)
ϕ(z).

Then g(0) = 0 and g′(0) = 1. Furthermore, g(z) is a conformal mapping of Ω and



60

g(z) maps J to a circle with radius r. By a computation done in [20] (p238-p249),

we obtain that

ρg(0)(g(A)) = ρ0(A) + | log |g′(0)|| = ρ0(A).

By the definition of Robin capacity, we have

σ0(A) = σ0(g(A)).

Applying Schwartz Lemma to the map ϕ−1 : D → Ω ⊆ D, with ϕ−1(0) = 0, we

obtian that |(ϕ−1)′(0))| ≤ 1, which yields that

|ϕ′(0)| = 1

|(ϕ−1)′(ϕ(0))|
≥ 1.

And hence

r =
1

|ϕ′(0)|
≤ 1.

Moreover, since J is a normalized Jordan curve other than the unit circle, by

Schwartz Lemma, the strict inequality |(ϕ−1)′(0))| < 1 holds. Thus it follows that

r < 1.

Now we need to calculate the Robin capacity of a subarc on the circle with

radius r < 1. First, we recall some calculation on the unit disk D. For any A ⊂ ∂D,

we have

σ0(A) = e−ρ0(A),

where

ρ0(A) = 2π lim
t→0

[λ(A,∆t,Ω) +
1

2π
ln t].

By Lemma 1.3.4,

λ(A,∆t,Ω) =
1

π
ln

1√
t sin α

4

,
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where α is the angle spanned by A. Thus, the Robin capacity of A is:

σ0(A) = e−ρ0(A)

= e−2π limt→0[λ(A,∆t,Ω)+ 1
2π

ln t]

= e
−2π limt→0[ 1

π
ln 1√

t sin α4
+ 1

2π
ln t]

= e
−[2 ln 1

sin α4
]

= sin2 α

4
.

Next, consider the map f(z) = rz which maps the unit disk to a disk with radius

r. By the result of [20] (p238-p249), we get the following:

ρ0(f(A)) = ρ0(A) + ln r.

Therefore the Robin capacity of f(A) on the circle with radius r is given by

σ0(f(A)) = e−ρ0(f(A)) = e−ρ0(A)−ln r

=
1

r
e−ρ0(A) =

1

r
δ0(A)

=
1

r
sin2 α

4
.

If we take A to be the whole boundary J , then

α = 2π and σ0(g(J)) =
1

r
.

We already know that σ0(J) = σ0(g(J)) and r < 1, therefore

σ0(J) = σ0(g(J)) =
1

r
> 1.

Finally, we need to estimate σ∞(J). As we see in the following graph, each

curve connecting J and ∆R contains a subarc that connect ∂D and ∆R.
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Figure 6.2: compare of λ(J,∆R,Ω
∗) and λ(∂D,∆R,Ω

∗)

By Lemma 1.1.2 (the composition law), we get

ρ∞(J) = 2π lim
R→∞

(λ(J,∆R,Ω
∗)− 1

2π
lnR)

≥ 2π lim
R→∞

(λ(∂D,∆R,Ω
∗)− 1

2π
lnR)

= 2π lim
R→∞

(
1

2π
lnR− 1

2π
lnR)

= 0.

Therefore

σ∞(J) = e−ρ∞(J) ≤ 1.

This together with the strict inequality σ0(J) = 1
r
> 1 yields that

I(J) ≥ σ0(J)

σ∞(J)
> 1,

which contradicts the assumption that I(J) = 1. This shows that if I(J) = 1,

then J must be the unit circle.
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Chapter 7

Future work

We close this thesis by proposing some future work motiveted by results obtained

above.

As mentioned before, a Jordan curve is a quasicircle if and only if it “looks

alike” from both sides of the curve. Based on this philosophy, many character-

izations have been established for quasicircles (See [15]). One of these charac-

terizations compares the harmonic measure of two adjacent subarcs, see Theorem

5.2.1. Another one is so called quasiextremal distance property (for more details,

see [14], [16] and [26] ). It can be stated as follows.

A Jordan curve J in the complex plane is a quasicircle if and only if there

exists a constant M <∞ such that

1

M
mod(A,B; Ω) ≤ mod(A,B; Ω∗) ≤Mmod(A,B; Ω),

for any two disjoint continua A, B ⊂ J .

Note that both of these characterizations compare conformal invariants of two

continua on the curve with respective to the two complementary domains Ω and

Ω∗. Our goal is to characterize quasicircles by comparing some conformal invari-

ants (such as the harmonic measure) of a single continuum on the curve with

respect to the two complementary domains.
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Actually, the relation between HMP (harmonic measure property - see Defini-

tion 5.1.1) and quasicircle is very complicated. On the one hand, there exist exotic

and complex quasicircles that have the HMP. Such examples can be found in [4]

and [25]. For instance, Bishop constructed a quasicircle which has HMP, but the

Hausdorff dimension is between 1 and 2. On the other hand, some simple and

“nice” quasicircles, such as the one in Example 5.4.2, do not have the HMP. The

proof of Example 5.4.2 can be generalized to show that any Jordan curve with a

“corner” does not have HMP. These together with other examples prompt us to

make the following conjecture:

Conjecture 1: For a locally rectifiable Jordan curve J , it has the HMP if and

only if it is a symmetric quasicircle.

A Jordan curve J is said to be a symmetric quasicircle if

max
w∈J(a,b)

|a− w|+ |w − b|
|a− b|

→ 1

as a, b ∈ J and |a− b| → 0, where J(a, b) is the smaller arc of J between a and b

(see [23]).

Note that locally rectifiable assumption is necessary since an arbitrary sym-

metric quasicircle may not have HMP. Here is such an example:

h(x) =



ln 2+1
log2 2

x x ≤ −1
2
;

−t
ln(−t) −1

2
< x < 0;

−t
ln t

0 ≤ x < 1
2
;

ln 2+1
ln2 2

x 1
2
≤ x.

h(x) is the sewing homeomorphism induced by a Jordan domain Ω. Since

lim
t→0

h(x+ t)− h(x)

h(x)− h(x− t)

converge uniformly to 1 for x near zero, this means the ∂Ω is symmetric quasicircle.
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On the other hand, we can prove that

lim
x→0

h(x)

x
= 0

which implies the curve does not have the HMP. Therefore we need to add an

extra condition such as local rectifiability.

Another future project is to use the index I(J) definied in previous chapter

to characterize quasicircles. In chapter 6, we have proved that I(J) = 1 if and

only if the curve is the unit circle. Recall that the index I(J) is definied by the

ratio of Robin capacities in the complementary domains and the Robin capacity

can be expressed in terms of extremal distance. By the geometric definition of

quasiconformal maps, we know that the extremal distance doesn’t change too much

under a quasiconformal map. This property prompts us to make the following

conjecture:

Conjecture 2: J is a quacicircle if and only if 1 ≤ I(J) ≤M for some constant

M.

Without loss of generality, we assume J is a normalized Jordan curve. We can

prove that if J is a quasicircle, then I(J) is bounded by some constant. But the

other direction is hard and we still have a lot of work to do.
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