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Abstract

Investigating the Role of Spatial Structure in Genetic Hitchhiking and Sweep
Detection

By Yuanbo Song

A “selective sweep” occurs when a beneficial allele (a variant form of a gene)
rapidly increases in frequency and becomes common in the population. This process
causes “genetic hitchhiking”, in which some nearby genetic variants also increase in
frequency because they are statistically associated with the beneficial allele in the
population. Traditionally, studies on selective sweeps have been in the context of well-
mixed populations, in which every individual has an equal opportunity of interaction
and reproduction. However, many real-world scenarios involve spatially structured
populations where individuals only interact locally. This raises the pertinent question:
How does spatial structure influence the detection and interpretation of selective
sweeps? Our first step is to implement selective sweeps with spatial structure in the
msprime simulation software package. Then we can use the simulation data to assess
the impact of spatial structure on standard methods used to detect selective sweeps.
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Introduction

1.1 Genetic hitchhiking

In a population, when a beneficial mutation appears, one that gives an individual an

advantage in survival or reproduction, it can spread rapidly due to natural selection,

a process known as a selective sweep [40]. This beneficial mutation is located on a

stretch of DNA that also contains neutral genes. As the frequency of the beneficial

mutation increases due to natural selection, the entire stretch of DNA, including

these neutral genes, also becomes more common in the population. This is because

recombination, the process that shuffles genetic material during meiosis, struggles to

separate closely linked genes. Consequently, neutral genes located near the beneficial

mutation are ”hitchhiked” along with it, increasing in frequency as well. However,

other versions of these neutral genes, present in different stretches of DNA that did

not have the beneficial mutation, may decrease in frequency or even be eliminated.

This phenomenon is known as “genetic hitchhiking” [39, 25].

This reduction in diversity around the beneficial allele persists as a distinguishable

genetic signature for an extended period after the sweep has ended. This signature is

1
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the basis for many methods used to infer sweeps [31, 33, 9, 22, 37].

A well-documented example of a selective sweep in humans is the evolution of lactose

persistence, as discussed by Tishkoff et al. [44]. Typically, humans lose the ability

to digest lactose, the main sugar in milk, as they grow into adulthood. However, in

populations where milk consumption became a significant part of the diet, individuals

with mutations that allowed them to continue digesting lactose into adulthood had a

survival advantage. The gene responsible for lactose persistence became the beneficial

allele in this context, and its frequency increased in these populations due to natural

selection. As the lactose persistence gene spread, it likely brought along nearby neutral

genes on the same stretch of DNA, a phenomenon that exemplifies genetic hitchhiking.

The selective pressure for lactose tolerance in these populations was strong enough to

sweep the beneficial allele and its neighboring genetic variants through the gene pool,

leaving a distinct genetic signature that can be traced back through our evolutionary

history.

To offer a visual perspective on this, let us turn our attention to Figure 1. Here,

we represent genetic diversity using a metric called heterozygosity. In simple terms,

heterozygosity [35] measures the variability of genes at a particular locus in a popula-

tion. The graph denotes a decline in heterozygosity around a specific point, marked

as 0 Morgan (a unit measuring genetic linkage), suggesting that selection is centered

around this point.

In genetics, a Morgan (abbreviated ’M’) [43] is a unit of measurement that quantifies

the recombination fraction between genes on a chromosome, effectively representing

genetic map distance. The maximum possible value of genetic linkage is 0.5 Morgan,

which occurs when two genes are unlinked. This means that there is a 50% chance

of recombination between the two genes during the formation of reproductive cells

(meiosis).

Heterozygosity is a metric used to quantify genetic diversity at a specific locus
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within a population. It is calculated as the probability that two randomly chosen

alleles from the population at that locus are different. Mathematically, heterozygosity

(H) can be expressed as:

H = 1 −
∑

i

(p2
i )

where pi is the frequency of the i-th allele at the locus. High heterozygosity

indicates a greater variety of alleles, while low heterozygosity suggests a predominance

of one allele.

The figure 1 illustrates a decline in heterozygosity around a specific point, marked as

0 Morgan. This particular data, generated through MSMS simulations and visualized

using Matplotlib in Python, captures the essence of the genetic hitchhiking effect in a

quantitative manner.

Figure 1: An average heterozygosity graph of the region under selection from the
simulation.

1.2 Properties of Selective Sweeps

Selective sweeps leave behind distinct patterns in the genome, marked by a reduction

in genetic diversity around the region of the beneficial allele. To understand these
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patterns, we need to examine the key characteristics of selective sweeps.

The selective locus specifies the precise genomic location of the beneficial mutation,

revealing which genomic regions are under selection. Next, the selective strength

represents the intensity of a beneficial mutation. Highlights the mutation that improves

the fitness of the population. Selective sweeps can be categorized as either “hard” or

“soft” [13]. A hard sweep arises from a single beneficial mutation spreading through the

population, typically resulting in a reduction in genetic diversity around the selected

region. This is because all individuals with the beneficial allele have inherited it from

the same original mutant, along with a similar set of nearby genetic variants.

On the contrary, a soft sweep occurs when multiple separate beneficial mutations,

occurring independently, spread through the population. This type of sweep tends to

preserve higher genetic diversity around the beneficial allele region, as the beneficial

allele originates from multiple individuals with different surrounding genetic material.

The term “soft” is used to describe this scenario because the sweep is not as “hard” or

strong in its effect on reducing genetic diversity. In a soft sweep, the genetic signature

of selection is more subtle, and the genetic diversity around the beneficial mutation is

not as sharply reduced.

Distinguishing between hard and soft sweeps is crucial for understanding the

selection time scale and genetic variation within populations [12, 28]. The type of

sweep can indicate the relative timing of coalescence and the initiation of the selective

sweep. In a hard sweep, coalescence, or the merging of lineages in a genealogical

tree, occurs after the onset of the selective sweep, making it a relatively recent event.

Conversely, during a soft sweep, coalescence takes place before positive selection begins,

resulting in a higher level of genetic diversity post-sweep. In summary, hard and soft

sweeps impact on genetic diversity and the timing of coalescence differ significantly.
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1.3 The need to incorporate spatial structure in

models of hitchhiking

Selective sweeps, processes through which beneficial genetic mutations become more

common within a population, show distinct dynamics in well-mixed versus spatially

structured populations [29, 40, 23, 46, 7, 5, 2].

In the well-mixed model, where each individual equally interacts and produces

offspring with any other member, beneficial mutations typically spread according to

the logistic growth model. This type of population has traditionally been the primary

focus of hitchhiking studies [39, 19].

In contrast, many real-world populations possess spatial structures, meaning

individuals mainly engage with their nearby members. In a spatially structured

population, beneficial mutations propagate more gradually through traveling waves

rather than the standard logistic growth [11]. In a 1D spatially structured population,

the growth of these beneficial mutations is linear. In a 2D spatially structured

population, the growth adopts a quadratic pattern. As outlined by Barton et al. [4]

and reinforced by Min et al. [29], a selective sweep in a spatially structured population

leads to a lesser reduction in genetic diversity compared to a identical-sized well-mixed

population. The slower pace of selective sweeps in structured environments provides

more opportunities for mutations and recombinations to arise, potentially boosting

genetic diversity [3].

One way that genetic hitchhiking can be measured is through its effect on the site

frequency spectrum (SFS). The SFS provides a summary of how the derived alleles

are distributed at varying frequencies within a sample population.

Pictorially, it can be represented as a histogram where the x-axis represents the

frequency of an allele in the population, and the y-axis shows how many sites (or

loci) have that frequency. Comparison of SFS of well-mixed populations and spatial
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populations can indicate the effects of selective sweeps on genetic diversity, offering

insight into the impact of selection and the demographic history of populations.

Min et al. [29] discovered that the 1D spatial structure significantly modifies the

SFS signatures produced by genetic hitchhiking. Fig.2 displays the SFS produced

from hitchhiking in both well-mixed populations and 1D spatial structures.

Specifically, in populations occupying a 1D range, selective sweeps propagate as

Fisher waves instead of logistically. In a spatially structured population, the progression

of a sweep is more gradual compared to a well-mixed population. This slower spread

provides alleles, which begin to hitchhike midway through a sweep, ample opportunity

to proliferate and achieve high frequencies. Unlike in well-mixed populations where

hitchhiking mainly favors alleles present at the early stages of a sweep, spatially

structured populations allow alleles introduced later in the sweep to achieve high

frequencies. Furthermore, in these 1D structured populations, recombination plays a

much more potent role in restoring genetic diversity when compared to well-mixed

populations.

Notably, in spatially structured populations, the Site Frequency Spectrum (SFS)

exhibited a long, flat tail, indicating higher genetic diversity after the sweep. This

unique SFS could potentially bias estimates of selective sweeps, emphasizing the

importance of considering spatial structure when analyzing genetic data.
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Figure 2: Comparison of Spatial and Well-Mixed Populations on SFS. Both spatial
(black curve) and well-mixed (grey curve) populations have the same population size
(N = 107) and selective coefficient (s = 0.05). The flat high-frequency tail in the
spatial SFS (matching the dotted orange line formula), which stands out higher than
that of the well-mixed SFS (matching the dot-dashed cyan curve formula). From [29]
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Implementing hitchhiking with spatial structure

in msprime

Our research goals of studying the impact of spatial structure require simulating

numerous replicates of large populations across multiple subpopulations (up to 1000

demes). We need a efficient population genetics simulator that allows us to generate

data with realistic population parameters.

2.1 Background

2.1.1 Overview of Simulation Methods

Simulations in population genetics can be broadly categorized into two types based

on the directionality of time: forward simulations and backward simulations. The

following Figures 3 and 4 illustrate the contrasting directionality of these simulations.

In forward simulations, the process is chronological, beginning with an initial

population and proceeding generation by generation into the future. This mirrors the

natural progression of evolutionary events as they occur in real populations.

8
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Backward simulations, also known as coalescent simulations, operate in reverse.

They start from the present and trace the genealogical lineage of alleles back through

time. This reverse engineering of the ancestral tree is efficient because it disregards

lineages that do not contribute to the gene pool of the current population. Hence,

there is no need to store information about these “dead” lineages, which would be

irrelevant for the final genetic data.

Both methods have their distinctive advantages and applications, depending on

the research question at hand. Forward simulations are generally more intuitive,

as they replicate the actual process of evolution as we understand it. Backward

simulations, while less intuitive since they operate in reverse chronological order, can

be computationally more efficient. This is because they do not store information about

every individual in a population, only those that contribute to the genetic makeup of

the sampled individuals at the present time.

Figure 3: Forward Simulation Direction: This figure demonstrates a forward simulation,
where the process unfolds from the past towards the present.
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Figure 4: Backward Simulation Direction: In contrast to Figure 3, this diagram
represents a backward coalescent simulation, where time flows from the present to the
past. The nodes symbolize sampled individuals or genes, and the lines depict ancestral
lineages. The simulation only retains lineages that contribute to the current gene pool,
disregarding those that do not leave descendants, thereby optimizing data storage.

2.1.2 Simulation Packages

MSMS is a mature and widely used genetic simulation package recognized for its

comprehensive functionality. It supports a variety of evolutionary scenarios, including

the ability to simulate selective sweeps within spatially structured populations. MSMS

adeptly combines forward and backward simulations, allowing for a detailed examina-

tion of evolutionary processes [16]. Despite its extensive capabilities, MSMS is limited

by its computational efficiency, particularly when simulating large populations across

many demes, which makes it less practical for large-scale studies.

In contrast, msprime is a more recent addition to the coalescent simulation toolkit.

It has rapidly gained popularity due to its efficient and scalable algorithm. With

linear time complexity and an innovative approach to data storage, msprime performs

large-scale simulations with remarkable speed, making it stand out among coalescent

simulators [20, 21, 30, 6]. Despite these advantages, msprime currently lacks the

functionality to simulate selective sweeps in spatially structured populations, offering
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this feature only within neutral models. This limitation highlights a development

opportunity for msprime to accommodate more complex spatial structures in the

future.

2.2 Research Question

How can we implement selective sweeps within spatial structures in the msprime

simulation package?

2.3 Current Progress

2.3.1 Generating beneficial Allele Trajectory

Msprime simulates selective sweeps using a backward-in-time approach. It typically

starts with a population that has already fixed a beneficial allele and then traces

the ancestry of samples backward until it reaches the start frequency of the sweep.

However, msprime’s standard selective sweep simulation does not incorporate spatial

structure, limiting its ability to model gene flow between different demes or populations.

Additionally, the msprime trajectory generating function does not guarantee a hard

sweep, which is the case we want to study.

To overcome these shortcomings, there is a need for a forward-time simulation

approach that can capture the dynamic fluctuations of allele frequencies and incorpo-

rate spatial structure to model gene flow. Our methodological foundation is based on

insights from Min et al. [29], Barton et al. [3] and MSMS [10]. We aim to integrate

the strengths of forward and backward simulations.

The forward simulation is designed to model the dynamics of allele frequencies

during selective sweeps in spatially structured populations. It starts with defining

a number of demes (spatial units), each containing a fixed number of individuals.
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The simulation is parameterized by several key factors: the selection coefficient (s)

which quantifies the fitness advantage of the beneficial allele, the migration matrix

that determines the rates at which individuals migrate between demes, and the total

duration of the simulation (tfinal).

At the beginning of the simulation, a beneficial allele is introduced into one of the

demes. In each generation, the simulation performs the following steps:

1. Migration: Individuals migrate between demes according to the migration

matrix. This step updates the allele counts in each deme by accounting for the

influx and outflow of alleles due to migration.

2. Selection: The allele frequencies in each deme are updated based on the

selection coefficient. This step models the increase in frequency of the beneficial

allele due to its fitness advantage.

3. Drift: The new generation of individuals in each deme is sampled based on the

updated allele frequencies. This step introduces stochasticity into the simulation,

representing genetic drift.

The simulation continues for a predefined number of generations or until the

beneficial allele reaches a certain frequency threshold in the population. If the

beneficial allele becomes extinct, the simulation can restart from the introduction

of the allele, allowing for the exploration of different evolutionary trajectories. The

output of the simulation is a trajectory that records the allele frequencies in each

deme over time.

2.3.2 Integrating Forward and Backward Simulation

The software msprime is equipped with a built-in backward coalescent simulation.

This program allows only one event to occur during each time interval, which can
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Figure 5: Allele Frequency Trajectories in Different Demes Over Generations. This
figure illustrates the results of a forward genetic simulation depicting the allele
frequencies in three separate demes (Deme 1, Deme 2, and Deme 3) over 70 generations.
Each deme initially contains 2000 individuals (N), with a selection coefficient (s) of
0.25. The simulation’s total time limit is 200 generations, although the sweep only
takes 70 generations. The number of demes (L) is set to 3, and the migration rate
is determined as the inverse of the number of demes (migration rate = 1/L). The
similar trajectories across demes suggest homogenization of allele frequencies due to
migration and selection effects.

include processes such as recombination, coalescence, or migration. For this type of

simulation, specific information need to be provided, such as the migration matrix,

population sizes, sweep trajectory, and time slice. The core of this process is the

Hudson simulation function [17], which examines populations and identifies those

with ancestors of interest. This function then anticipates the next significant genetic

event, be it migration, recombination, or common ancestral. The coalescent history is

captured in the tables which are a representation of the genetic data. The detail of

the table structure is documented in tskit manual [21].
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In our project, we have ensured consistency between the time scales of our forward

and coalescent simulations. Both simulations operate in units of generations, aligning

the temporal framework of allele frequency tracking and population dynamics. This

alignment allows us to focus solely on generation time, eliminating concerns about

transitioning between coalescent time and generations.

However, challenges remain. There are a few key decisions we need to make

regarding the simulation, such as choosing between discrete and continuous time, as

well as discrete allele counts and their continuous frequency counterparts.

The coalescent simulations often conclude with multiple lineages despite the

simulation’s initiation with a single beneficial allele. This observation could suggest a

discrepancy that may stem from the limitations of the deterministic model applied

during the initial stages of the allele spread. The Braverman paper [8], which informs

this implementation, defines the start of the deterministic frequency trajectory based on

the point where the probability of the new mutant’s extinction is negligible. However,

when the initial frequency is very close to zero, the model may not fully capture the

stochastic effects that are pronounced during these early stages of the sweep [18].

On the msprime GitHub repository’s issue tracker #2242, a developer of msprime,

Gertjan Bisschop, clarifies that if the provided start and end frequencies are too close

to 0 or 1, the deterministic approximation may not accurately reflect the stochastic

nature of the genetic sweep. This particularly affects the interpretation of the initial

frequency as an absolute lower bound. In practice, while a hard sweep is expected to

result in a distribution of neutral lineages with the favored allele concentrated around

a single lineage, stochastic elements can cause variations from this expectation.

Given these comments, adjustments may be needed for handling initial conditions

and how we simulate the early stages of allele spread, where random effects are strong.

Due to these inconsistencies, we cannot directly input the allele frequencies from the

forward simulation into the coalescent simulation.
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We first write code for a well-mixed population, and then test the simulation

to ensure integration is performed correctly. Msprime’s setup file contains built-in

test protocols, which we will make use of it to evaluate the validity of our coalescent

simulation. Once the outputs align, our subsequent step will be to implement migration

between subpopulations.
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Assessing the Impact of Spatial Structure on

Sweep Inference Methods

As we work towards implementing spatial structures in msprime simulations, the next

logical step is to examine the performance of the existing selective sweep inference

methods. The state of the art in selective sweep inference has evolved significantly, with

various methods being developed to detect different types of selective sweeps. These

methods are used in a wide range of scenarios, from identifying regions of the genome

under selection in human populations to understanding adaptive evolution in model

organisms. For example, SweepFinder, SweeD and OmegaPlus have been employed to

detect selective sweeps in Drosophila and human populations [31, 33, 1, 36, 12, 14].

These tools are critical for researchers aiming to understand the evolutionary history

of species.

For example, researchers have used these methods to study the domestication of

crops by identifying selective sweeps associated with traits like seed size and plant

architecture [15]. In the study by Sattath et al. [36], they shows two distinct types of

selective sweeps: a common type with weaker effects and a rarer, stronger type from

16
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Drosophila simulans. In human populations, these methods have been employed to

detect regions under selection due to factors like diet, climate, and disease resistance

[34]. In conservation biology, identifying selective sweeps can help understand how

species adapt to changing environments or human-induced pressures [45].

These methods have traditionally been tested in simple, unstructured populations.

However, the presence of spatial structure introduces additional complexities that may

affect the performance of these inference methods. Methods like SweepFinder2 and

diploS/HIC have been developed to incorporate the inference of selective sweeps in

spatially structured populations and other compounding factors [9, 22].

In this chapter, we will outline our approach to evaluate the capability of exist-

ing selective sweep inference packages in detecting selective sweeps within spatially

structured populations. We plan to explore various configurations, starting with basic

linear (1D) setups and progressing to more complex two-dimensional (2D) landscapes.

Min et al. [29] have raised concerns that spatial structure might introduce biases

in inferring past evolutionary events. Our goal is to assess the robustness of these

methods in the context of spatial complexities. We aim to quantify the impact of spatial

structure on the detection power of these methods and explore any potential biases

they may introduce in estimates of selective strength and sweep hardness/softness.

Understanding and accounting for these effects is crucial for making accurate inferences

in evolutionary studies.

At this stage, our analysis is based on preliminary tests and theoretical consider-

ations. As we continue to develop and refine the spatial structure implementation

in msprime, we will update our evaluation to include more comprehensive empirical

results.

Our primary focus is on Sweepfinder2 and diploS/HIC because of their unique

methodologies and the distinct properties of selective sweeps that they infer. We have

chosen Sweepfinder2 because it uses a likelihood ratio test, giving us a solid statistical
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base and helping us measure how well traditional models perform. This enables the

determination of both the location and strength of selective events from genetic data.

Kern and Schrider [22], employed a machine learning-based method, termed

diploS/HIC, for robust identification of soft and hard sweeps. We plan to access the

performance of diploS/HIC for spatial structured population.

The combination of Sweepfinder2 and diploS/HIC allows for a comprehensive

analysis of selective sweep.

3.1 Parameter choice

In our simulations, we specifically model a weakly spatially structured population. For

such a structure under neutral evolution, the spatial pattern within the population is

not immediately apparent. This means the spatial structure has a negligible effect on

neutral alleles, influencing only the selective alleles.

We want to determine the spatial structure effect through the hitchhiking pattern.

To achieve that, we need to understand relationships between various time scales to

find right parameters for the simulation. To break down the relationships, we first

need to understand the notations and parameters:

• N : Total population size.

• D: Effective migration or diffusion rate. It informs us about how lineages

disperse across the spatial domain.

• L: Length of the spatial range. It defines the distance over which the spatial

effects and sweeps.

• s: Selection coefficient of the sweeping allele. A larger s indicates stronger

selection in favor of the allele.
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• r: The recombination rate between the selected locus and other loci in the

genome.

Our parameters of interest include:

• Tpast: The duration elapsed after the occurrence of a selective sweep.

• Tcoal: Neutral coalescence time.

• Tmix: Dispersal time for a lineage across the range, given by L2

D
. This expression

is derived from the theory of diffusion [11].

• Tsweep: The time taken for a sweep to become fixed.

First, we must ensure that spatial structures exert a negligible impact on neutral

alleles. For this to be the case, the rate of spatial mixing must exceed the coalescence

rate, leading to the relationship Tmix ≪ Tcoal ≈ N . In such conditions, the neutral

allele frequency spectrum closely aligns with a well-mixed model [27, 24]. Specifically,

the density of mutant alleles at frequency f matches p(f) ≈ 2NU
f

[47].

Simultaneously, it is essential for the spatial structure to influence selective alleles.

For sweeps possessing a sufficiently robust selective strength, the duration Tsweep is

significantly shorter than Tcoal and potentially Tmix. Such sweeps, heavily influenced

by spatial structure, progress like a Fisher wave at a speed roughly equal to
√

Ds,

making Tsweep ≈ L√
Ds

[11].

Another key parameter to consider is the recentness of the sweeps for them to be

detectable. Only those sweeps recent enough leave traces unerased by genetic drift.

This means Tpast ≪ Tcoal.

In summary, the hierarchy of time scales for many natural populations is Tsweep ≪

Tmix < Tpast ≪ Tcoal.
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3.2 SweepFinder2

SweepFinder2 [9] is a computational tool that employs the site frequency spectrum

(SFS) to identify genomic regions potentially under the influence of recent positive

selection. SweepFinder2 provides high accuracy in detecting genomic regions under

diverse selective sweep scenarios. Its effectiveness is underscored by its widespread

use in various studies [48, 26, 32, 41].

SweepFinder2’s output serves two purposes, offering the likelihood ratio (LR) and

the α metric. LR is a measure of which model better fits the observed data. This

ratio contrasts the fit of the hitchhiking model against the neutral model for the given

dataset. A higher LR value translates to a higher confidence in the presence of a

selective force at any given point on a genome.

Simultaneously, the alpha metric in SweepFinder2 is related to the selective sweep’s

strength and is computed as:

α = r ln(2N)
s

. The alpha value is inversely proportional to the selective strength. A lower alpha

value suggests a stronger selective sweep, as it indicates a higher selection coefficient

for a given recombination rate and population size.

Once we have fed the simulation data into SF2, we can obtain a LR and alpha

prediction for each genomic window we’ve specified. We will then visualize these

results. Note that the alpha value around selective loci is meaningful; elsewhere,

without selective sweeps, the selective strength does not make sense. Since the SFS

is produced by our simulation, we already know the selective locus and strength in

advance. We can compare the inferred results with the actual values to determine

how the spatial structure biases the selective locus and strength.
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3.3 diploS/HIC

The diploS/HIC [22] is a method designed for ’Soft/Hard Inference through Classifica-

tion’.

The diploS/HIC framework is a sweep type classification tool that uses deep

learning, specifically a deep convolutional neural network (CNN) architecture, to

classify genomic windows based on their evolutionary trajectory.

Instead of feeding raw results from coalescent simulations, like those from msms,

directly into the CNN, diploS/HIC converts this raw data into 12 summary statistics.

Each of these statistics is calculated for 11 sub-windows in the genomic data, allowing

the CNN to focus on the most meaningful patterns without being overwhelmed by

raw data noise. The final output is a prediction of the probability of each selective

type for every window.

3.4 Preliminary Results

Fig.6 presents scatter plots of both LR and alpha values predicted by SweepFinder2

across two distinct spatial structure settings: the well-mixed and the 10x10 grid

scenarios.

Spatial structures should distort the traditional signals of selective sweeps. Some

methods might be less adept at deciphering complex spatial scenarios compared to

simpler, well-mixed populations.

We anticipate that the increase in the high-frequency tail of the SFS, caused by the

spatial structure, might lead inference methods to deduce a lower selective strength

compared to that of a well-mixed population. The inference of the selective locus

might also be impacted, as a smaller region of the SFS will be affected by the selective

sweep.
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Figure 6: Scatter plots showcasing distinct population structures: well-mixed and
spatially structured on a 10x10 grid. The x-axis represents the relative position across
the genome, spanning from 0 to 1, while the y-axis depicts the likelihood ratio (LR),
with a higher value indicating a better fit for the selective model. The distribution
of the alpha value across both scenarios - well-mixed and the 10x10 grid - is also
presented. Note that the alpha value around selective loci is meaningful; elsewhere,
without selective sweeps, the selective strength does not make sense. The selective
locus was set at 0.8.

Quantitatively, the width of the hitchhiking region on the genome serves as an

indicator to infer the selective coefficient. This width is approximately represented

by s/ ln(Ns). In real-world observations, Tavares et al. [42] identified strong selective

sweeps in nature. However, in the case of spatially structured Antirrhinum majus

population, there was only reductions in diversity observed within narrow genomic

windows than what predicted by well-mixed assumption.

We should be able to quantify this potential misclassification in inference methods.

We can analyze the results by comparing the predicted sweep type, selective strength,
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and selective locus to those from the simulations. However, the details of the impact

remain unclear based on the preliminary data we have. As you can see from Figure 6,

SweepFinder2 could detect selection with a power of around 0.8. We suspect that we

don’t have a large enough population, so we moved to implement spatial structure in

msprime to generate data that meet our weekly structure constraint.

Additionally, Min et al. [29] discussed how the “soft shoulder” phenomenon might

lead to misclassification of sweep types in spatially structured populations. The

term “soft shoulder” refers to the potential presence of high-frequency recombinant

haplotypes around the selected locus, as highlighted by Schrider et al. [38]. This

phenomenon mimics multiple initial background haplotypes, which make hard sweep

appear softer. In 1D spatially structured populations, these soft shoulders are often

more frequent and closer to the swept locus, potentially causing hard sweeps to be

mistakenly identified as soft.



Bibliography

[1] Alachiotis, N. and Pavlidis, P. (2018). RAiSD detects positive selection based on

multiple signatures of a selective sweep and SNP vectors. Communications Biology,

1:79.

[2] Barton, N. H. (2000). Genetic hitchhiking. Philosophical Transactions of the Royal

Society of London. Series B, Biological Sciences, 355(1403):1553–1562.

[3] Barton, N. H., Etheridge, A. M., Kelleher, J., and Véber, A. (2013a). Genetic
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