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Abstract 
 

Investigating genetic associations using power-optimizing analytic approaches 
 

By Aaron M. Holleman 

 Substantial progress has been made toward identifying genetic factors that contribute to 
many complex phenotypes, yet there remains an incomplete understanding of the genetics 
underlying such traits. This is partly due to insufficient study power. Increases in sample size will 
yield greater power, but may be challenging to accomplish given study constraints; and, at 
times, other approaches may be preferable for achieving power gains. In these situations, 
power-optimizing analytic techniques can be particularly useful. For this dissertation, we applied 
such techniques to more powerfully investigate genetic associations with phenotypes of interest. 

In Aim 1, we employed polygenic risk score (PRS) methods to optimally examine the 
contribution of common genetic variation to atrioventricular septal defects (AVSD) in individuals 
with Down syndrome (DS). Using one of the largest available AVSD in DS case-control 
datasets, we constructed PRS based on large sets of common variants for each individual, 
using effect estimates from the largest available GWAS of congenital heart defects as weights. 
PRS were associated with AVSD with odds ratios ranging from 1.2 to 1.3 per standard deviation 
increase in PRS, suggesting at least a small contribution by common variants collectively to DS-
associated AVSD. 

In Aim 2, we evaluated the Gene Association with Multiple Traits (GAMuT) method as a 
potentially powerful approach to identify genes harboring common variants that influence 
psychiatric phenotypes. When applied to simulated data, GAMuT’s multivariate modeling of 
Beck Depression Inventory (BDI) items demonstrated greater power for identifying common 
variant associations than univariate methods analyzing a summary BDI score. Application of 
GAMuT to Grady Trauma Project data identified common variant associations with the PTSD 
Symptom Scale and the BDI. 

In Aim 3, we investigated associations of rare regulatory variants with gene expression, 
for genes with schizophrenia-associated expression levels. We employed a modified version of 
a burden method developed to increase power for investigating rare variant associations with 
gene expression, and consistently observed U-shaped patterns of estimated association 
whereby rare regulatory allele burden was increased at both low and high expression levels. 

 By applying certain power-optimizing analytic approaches, we have generated novel 
findings suggestive of genetic associations with phenotypes of interest. 
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Chapter 1:  

Introduction and Background 
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INTRODUCTION 

 Although genetic epidemiology investigations over the past decade have made 

substantial progress in identifying genetic factors that contribute to the heritability (the proportion 

of phenotypic variation due to genetic variation) of many complex diseases and phenotypes,1 

methodological and other practical limitations have prevented researchers from attaining a more 

complete understanding of the genetics underlying nearly all such traits. An important limitation, 

though by no means the only one, is inadequate power for identifying genetic associations of 

interest.  

Power for detecting genetic signals is frequently considered in relation to sample size, 

whereby the sample size must be sufficiently large to have a given amount of power (often 80%) 

for detecting the expected association. The importance of sample size for identifying genetic 

associations has been demonstrated over time as genetic epidemiology studies with larger 

sample numbers have yielded greater quantities of robust genetic signals, with larger sample 

numbers particularly important for identifying genetic variants with smaller effect sizes and/or 

rarer minor allele frequencies (MAF).1 Thus, an obvious means of improving the ability to detect 

genetic associations is to vastly increase sample numbers (Note: This assumes that systematic 

biases including selection bias, information bias, and confounding are sufficiently negligible to 

enable increasingly accurate effect size estimation with increases in sample size). This is 

precisely the approach currently being taken by multiple international consortia. For instance, 

the Schizophrenia Working Group of the Psychiatric Genomics Consortium has accumulated 

~67,000 schizophrenia/schizoaffective disorder cases and ~94,000 controls,2 with plans to 

assemble at least 150,000 cases.3  

However, for a given study, large increases in sample size may not be feasible given 

resource limitations (financial or otherwise); or may be feasible but only over a several-year or 

longer time frame. For such a study, alternative analytical approaches may be employed to 

increase power for investigating an association of interest without the need to increase sample 
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size. Furthermore, in certain situations as will be described below, the gain in power for 

detecting genetic associations that results from using a more appropriate statistical modeling 

approach may exceed the additional power gained from increasing sample size. 

Overarching goal and specific aims 

 This dissertation applied recently developed and cutting-edge genetic epidemiologic 

analysis methods to data from three study samples to more powerfully examine genetic 

associations of interest. In Aim 1, we employed polygenic risk score (PRS) methods to optimally 

examine the collective contribution of common (minor allele frequency [MAF] > 1%) genetic 

variation to atrioventricular septal defect (AVSD) in individuals with Down syndrome (DS). In 

Aim 2, we first used simulated datasets to examine the power of a cutting-edge multivariate 

analysis approach called the Gene Association with Multiple Traits (GAMuT) test for identifying 

common variant associations with multivariate questionnaire data, and then used this 

multivariate approach to examine genetic associations with two multivariate psychiatric 

phenotypes using real data. In Aim 3, we investigated associations of rare (MAF < 1%) 

regulatory variants with gene expression for a set of genes with schizophrenia-associated 

expression, gaining statistical power by using a modified version of a recently developed rare 

variant burden approach.  

 

BACKGROUND 

Aim 1 

 The primary objective of Aim 1 was to examine the collective contribution of common 

genetic variants to AVSD among individuals with DS. AVSD is a type of congenital heart defect 

with a substantially increased prevalence among those with DS as compared with the general 

population. Although the presence of a third copy of chromosome 21 appears to be a key factor 
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driving the increased risk for AVSD among those with DS, it is likely that additional variation 

throughout the genome, both common and rare, also contributes to elevated risk. Common 

genetic variant contributions to DS-associated AVSD were previously investigated in a genome-

wide association study (GWAS) including 210 AVSD cases and 242 controls with structurally 

normal hearts, all of whom had DS.4 This prior GWAS analyzed 606,195 autosomal single 

nucleotide polymorphisms (SNPs) genotyped using an Affymetrix SNP array, and did not 

identify any robust signals of association between common variants and DS-associated AVSD, 

despite adequate power to detect odds ratios (ORs) > 2; suggesting that large-effect common 

variants may not play an important role in DS-associated AVSD. However, a contribution by 

moderate- to low-effect common variants has yet to be sufficiently examined, primarily due to 

sample size limitations.  

Due to challenges inherent in recruiting participants with a condition as rare as DS-

associated AVSD, currently available case-control datasets are limited to hundreds of samples. 

However, sample sizes required to identify common variants with moderate to small effect sizes 

are on the order of thousands to tens of thousands of participants (assuming a 20% prevalence 

of AVSD in the DS population, and Bonferroni correction for 606,195 SNP tests).5 Thus, the 

standard GWAS approach for identifying common variants associated with disease is severely 

underpowered for detecting anything but large effect common variants in current DS-associated 

AVSD study samples.  

For the purposes of Aim 1, we were able to use a final analytic sample of 487 

participants with DS, including 245 AVSD cases and 242 controls (including the majority of the 

210 cases and 242 controls analyzed in the prior GWAS as just described). To examine the 

extent to which common genetic variants might play a role in increased risk for AVSD among 

those with DS, we decided to employ polygenic risk score (PRS) methods. Although standard 

GWAS tests each genetic variant individually, yielding hundreds of thousands to millions of 

separate tests across the entire genome, the PRS approach aggregates the contributions of 
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SNPs across the genome into a single score, named the polygenic risk score (also called a 

polygenic score or genetic risk score), which is then tested for association with the phenotype of 

interest. A PRS approach can offer increased power over a GWAS of common variants in at 

least two ways: 1) thousands of SNPs with small individual effects may be statistically 

undetectable by GWAS in relatively smaller sample sizes, whereas the cumulative effect of 

these thousands of SNPs, investigated using PRS, is more likely to be sufficiently large to 

enable detection; and 2) the huge quantity of SNP tests performed by GWAS requires a far 

stricter multiple testing correction as compared with PRS analyses that involve far fewer tests. A 

limitation of using PRS methods to examine the role of common genetic variation in DS-

associated AVSD is that, since variants are considered collectively rather than individually, a 

PRS analysis will not be informative regarding the specific individual genetic variants that 

contribute to AVSD. However, an observed association between PRS and DS-associated AVSD 

might suggest that common variants in general do contribute to AVSD among those with DS, 

helping to advance our understanding of the genetic architecture of DS-associated AVSD; and it 

may inform the design of future studies to better understand the individual common variants that 

are most important. 

Aim 2 

The objectives of Aim 2 were twofold: 1) Use simulated data to evaluate the power of a 

previously developed multivariate genetic association method for identifying associations 

between common genetic variants and multivariate psychiatric phenotypes; and 2) apply this 

method to real data to examine genetic associations with two psychiatric phenotypes. 

Psychiatric disorders, such as depression or anxiety disorders, are characterized by the 

Diagnostic and Statistical Manual of Mental Disorders (DSM-5) as behavior or psychological 

‘syndromes’,6 with a syndrome being defined as a set of correlated signs or symptoms, the 

cooccurrence of which may be said to constitute a particular disease or disorder (Note: The 
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DSM-5 actually uses the term mental disorder rather than psychiatric disorder).7 As syndromes, 

clinicians diagnose psychiatric disorders based on specific criteria (such as those set forth by 

the DSM-5 or the International Classification of Diseases [ICD-10]), which often involves 

examining the number of syndrome-related symptoms an individual is presenting with, in 

combination with additional criteria such as whether the symptoms cause significant distress or 

impairment and are not better accounted for by a different condition.6 Psychiatric disorders and 

mental health status are also frequently assessed using questionnaires (often self-reported). For 

instance, the PTSD Symptom Scale (PSS) is a 17-item questionnaire designed to assess and 

diagnose post-traumatic stress disorder (PTSD). Each item of the PSS corresponds to a PTSD 

symptom and is rated on an ordinal scale from 0 to 3, with higher scores indicating greater 

symptom frequency/intensity.8,9 PTSD severity is then determined by totaling the scores for the 

17 items (scores can range from 0 to 51), and a PTSD diagnosis can be made based on the 

reported presence of at least a minimum number of symptoms in three PSS subcategories. 

Similarly, the Beck Depression Inventory (BDI-II) is a 21-item questionnaire for assessing major 

depressive disorder (MDD), with each item scored on an ordinal scale from 0 to 3 (higher scores 

indicating more severe symptoms), and with the ability to sum across items and generate a 

cumulative score reflecting depression severity.10  

These psychiatric disorder diagnoses (presence or absence of the disorder) or 

cumulative scores from questionnaires like the PSS and BDI are frequently analyzed as 

univariate outcomes in psychiatric research. However, as syndromes consisting of multiple 

correlated yet discrete symptoms, psychiatric disorders would perhaps more accurately be 

analyzed as multivariate phenotypes. For genetic epidemiology research seeking to identify 

genetic factors that may underlie various psychiatric phenotypes, analyzing a univariate 

measure that is a summary across multivariate symptom data has the potential to decrease 

power for detecting genetic associations. Specifically with respect to genetic analyses of 

multivariate ordinal data, it has been shown that a univariate summary measure will fail to 
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function as an adequate summary of the multivariate data under circumstances that include the 

genetic factor not having identical effects on all of the multivariate items.11 A scenario such as 

this is entirely plausible for most psychiatric disorders, given the variety of symptoms that 

collectively constitute each syndrome. As one example, a genetic factor may have different 

effects on BDI items that are more somatic-related (e.g., items assessing sleep or appetite) as 

compared with items that are more mood-related (e.g., those assessing feelings of sadness or 

guilt). In turn, if the univariate measure does not adequately summarize the multivariate data, 

then the choice of using the univariate measure for analysis has the potential to decrease power 

for identifying genetic associations with the psychiatric phenotype.11 In such a circumstance, 

use of analytic techniques that allow for proper modeling of the multivariate phenotype data may 

provide increased power for detecting genetic signals as compared with univariate analysis 

approaches. 

Multivariate analysis methods that enable modeling of ordinal data which is commonly 

generated using questionnaires are currently suboptimal.12 We therefore evaluated the 

effectiveness of a novel multivariate analysis approach in identifying genetic associations with 

multivariate psychiatric questionnaire data. The method we examined, named the Gene 

Association with Multiple Traits (GAMuT) test, was developed previously as a means of testing 

for rare variant pleiotropy.13 We repurposed GAMuT and evaluated it as a potentially powerful 

method for identifying common variant associations with multivariate psychiatric phenotypes, 

specifically those assessed with ordinal questionnaire items, with special attention paid to 

scenarios in which the genetic effect differs across the various phenotypes assessed by the 

questionnaire items. In the first part of Aim 2, we simulated genetic and BDI data under a variety 

of scenarios (e.g., varying the causal SNP; varying the proportion of BDI items affected by the 

causal SNP), and used these simulated datasets to evaluate GAMuT with respect to Type I 

error control and power for identifying SNP effects. We also applied two univariate analysis 

approaches, kernel machine regression (KMR) and standard linear regression, to the simulated 
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datasets to compare univariate analysis of the cumulative BDI score (summed across all items) 

with GAMuT. In the second part of Aim 2, we applied GAMuT and the two univariate analysis 

methods to real genetic and phenotypic data accumulated through the Grady Trauma Project 

(GTP). For these applied analyses, we specifically examined common variant associations with 

psychiatric phenotypes interrogated by the PSS and BDI questionnaires. 

Aim 3 

 In Aim 3, we had the objective of examining associations of rare regulatory genetic 

variants with gene expression levels, for a set of genes enriched for having expression levels 

previously identified to be associated with schizophrenia (SZ). In recent years, numerous genes 

have been identified to have expression levels that are associated with SZ.14-16 The role of 

various factors in regulating the expression of these genes is presently not well understood, and 

merits investigation to advance understanding of upstream elements that may affect SZ risk 

through modification of gene expression. Considering SZ’s high heritability (estimates are as 

high as ~80% for SZ heritability)17,18 and the established role for both common and rare genetic 

variants in influencing SZ risk,19-23 it is particularly important to explore the potential impact of 

genetic variants on the expression of these SZ-linked genes.  

A role for common variants in modifying the expression of genes across the genome is 

well-supported through a collection of many studies.24 However, the impact of rare variants on 

expression, which has potential to be greater than that of common variants, has been much less 

well studied, both for genes with SZ-associated expression and for genes in general. Rare 

variants located within regulatory sequences, which may be especially involved in the regulation 

of gene expression, are particularly understudied. The lag in studying rare variants, as 

compared with common variants, is largely due to technological and power (related to sample 

size) limitations: identification of rare variants, particularly small rare variants like single 
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nucleotide variants (SNVs), requires DNA sequencing of large sample sets, which has 

historically been quite costly. 

A limited number of studies have investigated associations of rare (defined by some of 

the studies as MAF < 0.05) non-coding variants with gene expression, yielding findings 

consistent with a role for rare regulatory variants in modifying gene expression.25-30 

Investigations specifically focused on the contribution of rare regulatory variants to gene 

expression variation for genes with SZ-associated expression have been even more limited, as 

well as underpowered.14 Aim 3 sought to help fill this knowledge gap, by using a power-

optimizing approach to investigate the contribution of rare regulatory variants to gene 

expression for genes with SZ-associated expression levels.  

For this aim, we analyzed a set of 725 samples that had undergone both targeted DNA 

sequencing and genome-wide RNA sequencing. The targeted DNA sequencing had been 

performed for 1) exonic and regulatory sequence (including 2,000 bases upstream of the first 

exon) for 64 genes previously identified as having SZ-associated expression levels, and 2) 

exonic sequence for 172 genes or gene regions with prior evidence for involvement in SZ due to 

being located within a SZ-associated large CNV interval. As approaches traditionally employed 

for studying common variant associations (e.g., expression quantitative trait loci analyses, 

genome-wide association studies) tend to suffer from low power when analyzing rare variants, 

we employed a modified version of an alternative analytic method that was recently developed 

specifically for examining associations of rare genetic variation with gene expression.27 This 

approach first assigns rare alleles within a gene region to ordered expression bins (ranging from 

low to high) for the gene, and then gains substantial power by aggregating rare alleles for each 

expression bin across all genes being considered and examining association of rare allele 

burden with gene expression level for this aggregated dataset. We employed this basic 

approach to more powerfully examine associations of rare regulatory variants with gene 

expression, specifically considering rare variants located within gene promoter regions, as well 
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as those in the 5’ untranslated region (5’UTR) or the 3’ untranslated region (3’UTR). These 

analyses have the potential to be informative with respect to the role of rare regulatory variation 

in altering expression levels specifically for genes with SZ-associated expression, as well as for 

genes more broadly. 

 

 The remainder of this dissertation is organized as follows. Chapter 2 details work related 

to Aim 1, which involved examining the common variant contribution to DS-associated AVSD, 

through application of PRS methods. Chapter 3 presents the Aim 2 work, which explored the 

GAMuT method as a potentially powerful alternative approach for identifying common variant 

associations with multivariate psychiatric phenotypes. Chapter 4 describes the research 

conducted for Aim 3, which examined associations of rare regulatory variants with expression 

for genes with SZ-associated expression levels. Chapter 5 serves as the concluding chapter to 

this dissertation, and provides a summary of the main dissertation findings, as well as an 

interpretation of these findings in relation to existing knowledge and a discussion of potential 

future studies which can build on these results. 
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Chapter 2:  

Employing polygenic risk score methods to examine the contribution of common genetic 
variants to atrioventricular septal defects in infants with Down syndrome 
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Abstract 

 
Background: Individuals with Down syndrome (DS), which is also referred to as trisomy 21, 

have a substantially increased risk for congenital heart defects as compared with the general 

population. This increased risk is particularly pronounced for a subtype of congenital heart 

defect called atrioventricular septal defect (AVSD): among those with DS, AVSD is over 300 

times more prevalent compared with the general population and over 2,000 times more 

prevalent compared with non-syndromic individuals. While it is evident that the extra copy of 

chromosome 21 plays an important role in this increased AVSD risk, it is also likely that 

additional genetic factors throughout the genome are involved. Prior studies of the role of 

common genetic variation in DS-associated AVSD have not identified common variants with 

large effect sizes (e.g., odds ratios > 2.0), and have been underpowered to investigate a 

potential contribution to risk by small- to moderate-effect common variants, with the result that 

the extent to which common variants may play a role in DS-associated AVSD remains unknown. 

 

Methods: We examined the contribution by common variants to DS-associated AVSD using a 

case-control dataset including 245 AVSD cases and 242 controls, all with DS. Samples had 

undergone either whole genome sequencing or array-based genotyping followed by genome-

wide imputation. Rather than using a standard genome-wide association study approach to 

examine associations between individual variants and AVSD, which would suffer from 

inadequate power given our small sample size, we used polygenic risk score (PRS) methods to 

examine the collective contribution of common genetic variants to DS-associated AVSD. We 

performed primary analyses that examined the genome-wide common variant polygenic 

contribution to DS-associated AVSD, and secondary analyses specifically examining the 

additional polygenic contribution made by variants on chromosome 21. 
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Results: Constructing PRS using weights based on the largest genome-wide association study 

of congenital heart defects available (2,594 cases and 5,159 controls; all without DS), we found 

genome-wide PRS to be associated with AVSD with odds ratios ranging from 1.2 to 1.3 per 

standard deviation increase in PRS, with PRS explaining approximately 1% of variance in 

outcome on the liability scale. Results from the secondary analyses suggested that common 

variants on chromosome 21 contribute negligibly to polygenic risk. 

 

Conclusions: Results from the genome-wide PRS analyses suggest at least a small common 

variant polygenic contribution to DS-associated AVSD. Supplemental power analyses indicated 

that a PRS explaining 1% of variance on the liability scale is near the maximum contribution 

detectable given our small training GWAS size, and that if a larger polygenic contribution exists, 

it should be detectable with larger training GWAS sizes. Thus, future studies using larger 

training datasets are needed to more accurately quantify the collective contribution of common 

genetic variants to DS-associated AVSD. 
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INTRODUCTION 

 Individuals with Down syndrome (DS), which is also referred to as trisomy 21 given the 

presence of a third copy of chromosome 21, have a substantially elevated risk for congenital 

heart defects (CHD) as compared with the general population. Specifically, it has been 

estimated that in 44% of DS live births the infant has a CHD,31 as compared with an 

approximately 1% CHD prevalence for births in the general population.32,33  

Of the different types of CHDs affecting individuals with DS, atrioventricular septal 

defects (AVSD) are the most common.31 AVSD is a severe heart defect that involves the 

presence of holes between the heart’s chambers and valves, which may be malformed, 

resulting in problems with blood flow and oxygenation.34 AVSD usually requires surgical repair 

early in life, with those undergoing surgery still subject to potential lifelong complications.34 

Among infants with DS and a CHD, approximately 45% have an AVSD; meaning that in about 

20% of DS live births the infant has AVSD.31 In comparison, AVSD occurs with a prevalence of 

about 1 in 1,859 births in the general population;35 it occurs in 0.83/10,000 live births when 

excluding individuals with chromosomal abnormalities (including DS) or single-gene disorders.36 

Thus, the prevalence of AVSD among those with DS is > 300 times that of the general 

population and > 2,000 times that of the non-syndromic population.  

The dramatically increased prevalence of AVSD among those with DS strongly indicates 

involvement of the extra copy of chromosome 21 in DS-associated AVSD. Considering that 80% 

of infants with DS do not have AVSD, it is also likely that additional genetic factors throughout 

the genome contribute to AVSD among those with DS, potentially including both common 

(minor allele frequency [MAF] > 1%) and rare (MAF < 1%) genetic variants. The role played by 

such other genetic factors, however, is largely unknown. The effort to more completely 

understand the genetic etiology of DS-associated AVSD, including the contribution by factors 

other than the trisomy 21, is important as it may inform the development of strategies to reduce 

the burden of AVSD among those with DS. Furthermore, it has potential to provide insights into 
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the biological underpinnings of CHD more generally, with the possibility of yielding benefits that 

extend beyond the community of individuals with DS and into the wider population. 

For this study, we focused on attempting to advance understanding regarding the 

potential role of common variants in DS-associated AVSD. Multiple studies have been 

conducted to examine the contribution by common variants to DS-associated AVSD, the largest 

such study being a genome-wide association study (GWAS) involving 210 complete AVSD 

cases and 242 controls with structurally normal hearts, all with DS. These multiple studies have 

not identified any robust common variant associations (based on exceeding the genome-wide 

significance threshold), despite being sufficiently powered to detect common variants with large 

effect sizes.4,37,38 These results suggest that large-effect common variants (e.g., those with odds 

ratios > 2.0) do not play a considerable role in elevating AVSD risk among those with DS. 

However, a potential role for small- to moderate-effect common variants has yet to be 

adequately examined. 

 The limited success in identifying individual common variants associated with AVSD 

among those with DS may be due to small sample sizes that have been underpowered for 

discovery. If this is the case, then greatly increasing sample sizes should yield power increases 

sufficient to allow robust detection of common variant associations, including for common 

variants with smaller effects on AVSD. For a condition with the rarity of DS-associated AVSD, 

however, attaining a sufficiently powered sample size would take substantial resources and 

time. 

An alternative approach for investigating the contribution of common variants to DS-

associated AVSD, which involves little additional resources and time, is to use the methods of 

polygenic risk score (PRS) analysis to examine whether and to what extent common variants 

may be collectively contributing to AVSD in DS. PRS methods are designed to quantify and 

analyze potential polygenicity for disorders and traits, with polygenicity referring to the 

contribution by many genes or genetic variants to a phenotype. PRS methods typically focus on 
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common genetic variants (usually SNPs) to examine the extent to which large numbers of 

common variants, with exceedingly small individual effects, collectively contribute to the disorder 

or trait. Such methods have already indicated that complex disorders including schizophrenia 

and cardiovascular disease possess sizable polygenic components consisting of hundreds to 

thousands of common variants.19,39  

Although enabling examination of polygenicity and thus informing on the genetic 

architecture of a given disorder or trait, PRS methods also act as an alternative approach for 

assessing the role of common genetic variation in a phenotype that can overcome certain 

limitations of the standard genome-wide association study (GWAS) approach for examining 

SNPs. Specifically, a PRS approach can offer increased power over a GWAS of common 

variants, which is accomplished in at least two ways: 1) thousands of SNPs with small individual 

effects may be statistically undetectable by GWAS in relatively smaller sample sizes, whereas 

the cumulative effect of these thousands of SNPs, investigated using PRS, is more likely to be 

sufficiently large to enable detection; and 2) the huge quantity of SNP tests performed by 

GWAS requires a far stricter multiple testing correction as compared with PRS analyses, which 

involve far fewer tests.  

PRS methods therefore offer a means of gaining information about the potential role of 

common genetic variation in DS-associated AVSD, which standard individual-variant-level 

approaches like GWAS are not able to provide due to current sample size limitations. By 

applying PRS methods to our DS dataset, which includes 245 AVSD cases and 242 normal 

heart controls (sample size after quality control), we can more powerfully examine whether 

common variants collectively are associated with AVSD. We can also assess whether, contrary 

to original hypotheses, the genetic architecture of DS-associated AVSD might exhibit complexity 

similar to that observed for numerous other disorders that research suggests involve individually 

small contributions by up to thousands of common variants. Such a polygenic component for 
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AVSD, if it exists, might be particularly relevant when combined with the dysregulation of many 

genes due to trisomy 21. 

A limitation of the PRS approach is that it does not pinpoint individual common variants 

as associated with the phenotype. However, an observed association between PRS and DS-

associated AVSD may suggest that common variants in general do contribute to AVSD among 

those with DS, helping to advance our understanding of the genetic architecture of DS-

associated AVSD and informing the design of future studies to better understand which 

particular common variants, proximal to which genes, may be making the greatest contributions. 

With this in mind, we applied the PRS approach to our DS dataset to examine whether and to 

what extent common variants may be contributing to DS-associated AVSD. We performed two 

main sets of PRS analyses: 1) PRS analyses to investigate the genome-wide common variant 

contribution to DS-associated AVSD; and 2) PRS analyses to examine the additional common 

variant contribution specifically due to the trisomic chromosome 21.  

 

METHODS 

Overview of the PRS method 

PRS analysis requires a “target” dataset that includes the individuals for which PRS will 

be constructed and analyzed, and a “discovery” or “training” dataset that typically takes the form 

of summary results from a GWAS, with the GWAS variant effect estimates used as weights for 

the PRS construction in the target dataset. In our study, the target dataset was our case-control 

sample of individuals with DS and with or without AVSD, and we employed two discovery 

datasets generated from independent GWAS of CHD. Following PRS construction, analyses are 

performed to examine the association between PRS and target phenotype, with the results 

informing whether common variants associated with the discovery GWAS phenotype may be 

contributing to the target phenotype.  
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Target dataset sources 

We generated our target dataset by merging samples from two DS AVSD case-control 

datasets, one for which participants had undergone whole genome sequencing (WGS), while 

participants in the other dataset had undergone SNP array genotyping (with subsequent 

genome-wide imputation by us). 

Whole genome sequencing dataset 

The WGS dataset originally included 169 AVSD cases and 39 normal-heart controls, all 

with Down syndrome. Participants were recruited through two projects: the Down Syndrome 

Heart Project (DSHP) and the Pediatric Cardiac Genomic Consortium (PCGC). Details 

regarding participant ascertainment and assessment for the DSHP4,37 and the PCGC40,41 have 

been described previously.  

Briefly, the DSHP recruited subjects through sites in multiple locations across the United 

States. Participants were required to have Down syndrome, based on diagnosis of full trisomy 

21. Cases (n = 122) were defined as individuals with a complete, balanced AVSD, as 

determined through review of echocardiogram or surgical reports. Controls (n = 39) were 

defined as individuals with a structurally normal heart, patent foramen ovale, or patent ductus 

arteriosus, with determination primarily based on echocardiogram and in some cases medical 

records. We note that all controls in our WGS dataset were ascertained through the DSHP. 

The PCGC recruited subjects with various heart defects from multiple locations in the 

United States and the United Kingdom. This study determined AVSD in the same manner as the 

DSHP — based on echocardiogram or surgical reports documenting a complete, balanced 

AVSD. From this study, we only used data from the subset of individuals with AVSD and trisomy 

21 (n = 47).  
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Genome-wide imputation dataset 

Our dataset of samples with genome-wide imputed genotypes originated from a set of 

459 individuals with DS, including 211 AVSD cases and 248 controls, all of whom had been 

assayed using the Affymetrix Genome-Wide Human SNP 6.0 genotype array. These 459 

samples included the 210 cases and 242 controls analyzed in the prior genome-wide 

association study (GWAS) of DS-associated AVSD.4 These samples were also ascertained 

through the DSHP, and thus recruitment and determination of AVSD case or control status were 

identical to that described above for the DSHP WGS samples. As described in detail in a later 

section, we ultimately performed genome-wide genotype imputation for these samples. 

For ease of reporting, we refer to cases as “DS+AVSD cases” and controls as “DS+NH 

controls” throughout this manuscript. We also assert that all recruitment of participants and 

collection of data and biological samples accomplished through the DSHP and PCGC were 

performed in accordance with experimental protocols approved by the Institutional Review 

Boards of the participating sites. This includes ascertainment of informed consent from the 

parent or guardian of each minor participant prior to completing assessments and obtaining 

biological samples. 

Target dataset preparation 

Primary analyses 

Whole genome sequencing dataset 

Paired-ended WGS was performed on 169 DS+AVSD cases and 39 DS+NH controls by 

Hudson Alpha to a target depth of 30x. We mapped raw sequence reads to the most recent 

human genome build (hg38) using PEMapper.42 Average read depth was 30.2 (with standard 

deviation [SD] of 4.1), indicating good coverage. We then called variant sites using PECaller,42 

and used the online tool Bystro to annotate the variants.43 In all, 12,302,231 variants were 

identified across the 169 cases and 39 controls. Mean ratio of transitions to transversions 
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considering all samples was 2.05 (SD = 0.007), squarely within the range for mean 

transition/transversion that is expected for a set of high-quality WGS calls for a human dataset. 

We note that, due to trisomy, sequence data for chromosome 21 were variant called and quality 

controlled (QC’d) separately from the rest of the genome. 

Our sample QC involved removing samples identified as outliers for certain variant-

based metrics reported by Bystro, including samples with theta < 3 SD below the mean, 

transition/transversion ratio < 3 sd below the mean, and heterozygosity/homozygosity ratio > 4 

sd above the mean. We also excluded samples with excess missing genotypes (missing > 1% 

of genotypes), those with discordant reported and inferred sex as determined using PLINK1.9’s 

‘check-sex’ flag, and one individual from each pair of samples identified as related based on 

having a proportion of alleles shared identical by descent (IBD) > 0.1875.44,45 This combination 

of sample QC steps resulted in the identification and exclusion of 16 low quality WGS samples. 

We ultimately removed one other sample in the process of additionally preparing this WGS 

dataset for certain analyses distinct from the PRS analyses described in this chapter. Variant 

QC of the WGS dataset involved removing variants missing for > 10% of samples, and those 

significantly deviating from Hardy-Weinberg equilibrium (HWE) expectation based on a HWE 

exact test p-value < 10-12 when considering cases and controls combined.  

We applied principal component analysis (PCA) to identify and remove sample outliers 

with respect to ancestry. Using PLINK1.9, we first limited our data to a set of sufficiently 

common (MAF > 0.05) and independent variants (pruned to have linkage disequilibrium [LD] r2 < 

0.2 with nearby common variants), strictly for the purpose of PCA. Then, through three rounds 

of PCA, we identified 16 additional samples meriting exclusion due to being PC outliers.  

Following these sample and variant QC steps, our WGS dataset contained 175 samples 

(148 cases and 27 controls) and 12,279,101 variants. At this point, we applied additional variant 

filters to more closely match the variant QC procedures that were applied to the imputed dataset 

(described directly below). We removed variants with MAF < 0.01, those missing for > 2% of 
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samples, and indels (insertions and deletions), leaving a WGS dataset with 175 samples and 

4,173,676 autosomal SNPs (excluding chromosome 21).  

Genome-wide imputation dataset 

Affymetrix SNP array genotype data were available for 211 DS+AVSD cases and 248 

DS+NH controls. Using PLINK1.9 and R (version 3.4.1),46 we applied standard GWAS QC 

procedures, excluding subjects for sex discordance, outlier heterozygosity rates (+/- 3 SD from 

the mean), missing > 3% of genotypes, and one subject from each pair with proportion of alleles 

shared IBD > 0.1875. Variants were excluded if they were missing for > 5% of samples, had 

minor allele frequency (MAF) < 0.01, yielded a HWE mid-p-value < 0.00001 (among controls), 

or showed significantly different rates of missingness in cases versus controls (p < 0.00001). 

We then used PCA to identify and remove any population outliers, which involved identifying 

and removing non-European samples using the HapMap347 dataset as a population reference 

(we identified ancestral outliers based on the Anderson et al. 2010 protocol48). All together, 

these QC steps yielded a dataset with 207 DS+AVSD cases and 234 DS+NH controls, and 

612,125 autosomal single nucleotide polymorphisms (SNP), excluding chromosome 21. 

For these samples, we then performed genotype imputation using the Michigan 

Imputation Server.49 Prior to imputation, all alleles were aligned to the (+) strand, and we used a 

program50 written by the McCarthy Group to check our dataset against the Haplotype Reference 

Consortium (HRC) panel and ensure that our data were properly configured for imputation using 

the HRC panel. We then submitted the DS dataset to the Michigan Imputation Server, for 

imputation based on the HRC panel (version r1-1 2016),51 which includes 32,470 samples 

predominantly of European ancestry. 

The post-imputation files included 38,596,402 autosomal variants (all SNPs). Mean 

correlation between true and imputed genotypes for the ~600,000 genotyped SNPs was 0.990, 

suggesting high quality imputation. Considering all post-imputation variants, those with MAF ≥ 
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0.05 (5,349,403 variants) had mean imputation r2 = 0.971, those with 0.01 ≤ MAF < 0.05 

(2,300,344 variants) had mean r2 = 0.882, and those with MAF < 0.01 (30,946,655 variants) had 

mean r2 = 0.180. This indicates good imputation quality for variants with common MAF. We 

decided to drop variants with MAF < 0.01, those missing for more than 2% of samples, and 

those with imputation r2 < 0.80; and we set to missing genotypes with a maximum imputed 

genotype probability < 0.80. 

We then applied standard GWAS QC to the imputed dataset. We dropped one sample 

with an outlying heterozygosity rate (> 3 SDs below the mean). No samples were dropped for 

excess missing genotypes (all had < 1% missingness). Following removal of the single sample, 

we again excluded variants missing for > 2% of individuals and those with MAF < 0.01, and also 

dropped variants with HWE mid-p-value < 0.00001 and those with significant differences in 

missing genotype rate between cases and controls (p < 0.05). We also removed variants with 

A/T, T/A, C/G, and G/C alleles which can be difficult to match between datasets due to strand 

ambiguity. This was done in preparation for merging this imputed dataset with unique WGS 

samples, to create a larger sample for the PRS analyses. This left a dataset with 440 samples 

(206 DS+AVSD cases, 234 DS+NH controls) and 5,079,537 autosomal SNPs. 

Merging WGS and imputed samples 

         Coordinates for the WGS dataset were based on human genome build 38 (hg38), while 

those for the imputed dataset were based on human genome build 19 (hg19). Before merging 

the datasets, we used the University of California Santa Cruz (UCSC) Genome Browser 

LiftOver52 tool to convert the WGS data coordinates from hg38 to hg19, and also modified 

dbSNP Reference numbers (rsIDs) for each variant as needed using an external file based on 

HRC panel variants containing hg19 rsIDs and coordinates. We chose to convert the WGS data 

to hg19 rather than converting the imputed data to hg38 as a matter of convenience, given the 

PRS training files we used had hg19 coordinates. 
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 As one additional step before merging the WGS and imputed datasets, we compared 

allele frequencies for SNPs in each dataset to identify any instances in which allele frequency 

for a SNP in one dataset differed considerably from its allele frequency in the other dataset, 

which could indicate genotyping error for the variant. We identified and removed 77 SNPs with 

allele frequencies that differed by at least 0.20 between the WGS and imputed datasets. 

         We then merged the WGS and imputed datasets on rsID, position, and alleles (using 

PLINK1.9), yielding a single dataset with 615 samples and 2,366,788 SNPs. For all 615 

samples missingness was < 1%. An IBD check identified 90 sample duplicates and 1 sample 

pair with a sibling or child/parent relation. Each of these related pairs involved a WGS sample 

and an imputed sample (i.e., the duplicates were the result of each sample being represented in 

both the imputed and WGS datasets; this amount of sample overlap was expected). For these 

samples, we kept the data from the WGS dataset as it appeared to be of slightly better quality 

overall, and we dropped the imputed duplicates (Note: We ultimately performed sensitivity 

analyses using a dataset that kept the imputed duplicates rather than the WGS samples, and 

obtained highly similar PRS results). No additional variant QC filters were needed — all SNPs 

had missingness ≤ 2% among all samples and ≤ 3% among both cases and controls, all had 

MAF approximately ≥ 1% (we applied stricter MAF filters during PRS construction), and no 

SNPs required dropping for HWE violation. Thus, this intermediate data set included 524 

samples (263 cases, 261 controls) and 2,366,788 autosomal SNPs.  

         We next performed PCA, first anchoring our dataset in the HapMap3 dataset and 

constructing PCs to identify and remove DS samples with PC values outside of the HapMap3 

CEPH/Utah (CEU) cluster (in order to match the European ancestry of the discovery datasets). 

We then removed the HapMap samples and performed further outlier removal based only on 

the DS samples. We constructed PCs for just the DS samples, and removed samples with 

values > 3 SD from the mean for PC1 or PC2 (which explained most of the genetic variation in 

the sample). We then reconstructed PCs for the remaining samples and again identified 3 SD 
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outliers for removal, repeating this PCA process until all substantial outliers had been identified 

and removed. This PCA approach identified 37 sample outliers for removal. 

            As a final step in preparing the DS target dataset for PRS analysis, we removed the 

extended major histocompatibility complex region (chromosome 6, ~25000000-34000000, 

human genome build 19), which is a region of extended high linkage disequilibrium that can 

overly influence PRS results. Our final data set included 487 samples (245 DS+AVSD cases, 

242 DS+NH controls) and 2,351,951 autosomal SNPs (excluding chromosome 21). The multiple 

steps involved in generating this final data set for the primary PRS analyses are presented as a 

flowchart in Figure 2.1. 
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Figure 2.1. Flowchart showing the multiple steps involved in generating the final data set for the 
primary PRS analyses. 
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Secondary analyses 

Our secondary PRS analyses examined the contribution by alleles on the trisomic 

chromosome 21 to a polygenic component for DS-associated AVSD. To do this, we compared 

PRS results based on polygenic scores generated using all autosomes (including chromosome 

21) to PRS results based on scores using all autosomes except for chromosome 21. 

We analyzed the same set of target samples as for the primary analyses (245 DS+AVSD 

cases, 242 DS+NH controls). We were able to do this because, though imputed data were not 

available for chromosome 21 (due to the complexities of imputing trisomic genotypes), all 329 

imputed samples did have Affymetrix Genome-Wide Human SNP 6.0 array genotypes for 

chromosome 21. Furthermore, all 158 WGS samples had sequencing data for chromosome 21. 

For all target samples analyzed in the primary analyses, we therefore obtained SNP-array-level 

data for the trisomic chromosome 21 

Given that trisomic data cannot be represented by the PLINK1.9 binary format, we 

handled these chromosome 21 data separately from the other chromosomes. Before merging 

chromosome 21 data for these WGS and array samples, we applied certain QC filters. None of 

the 158 WGS samples nor the 329 array samples had an excess of missing genotypes for 

chromosome 21 (all had approximately 5% or less missingness). For variant QC, we excluded 

SNPs missing for > 5% of samples, as well as SNPs with A/T, T/A, C/G, and G/C alleles that 

can be difficult to match between datasets due to strand ambiguity. We also removed SNPs with 

substantially different allele frequencies between the WGS and array datasets (we determined 

that a frequency difference of ≥ 0.125 was an appropriate threshold for these chromosome 21 

datasets). Post-merger, we removed SNPs with excess missingness specifically among cases 

or controls (missing for > 3% of cases or > 3% of controls), and we also excluded SNPs that 

were monoallelic in the full sample. These steps yielded a merged chromosome 21 dataset with 

487 samples and 3,984 SNPs. 
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We then took the dataset used for the primary analyses (487 samples and 2,351,951 

autosomal SNPs, excluding chromosome 21), and limited it to SNPs on the Affymetrix Genome-

Wide Human SNP 6.0 array, leaving 389,544 SNPs. This was done since the chromosome 21 

data were also necessarily limited to the array SNPs. We used these SNP-array-level genotype 

data, both with and without the chromosome 21 data, in order to perform the secondary PRS 

analyses. 

Analytic approach 

We have grouped our PRS analyses into primary and secondary analyses. The primary 

analyses had the goal of examining the genome-wide polygenic contribution to DS-associated 

AVSD, while the secondary analyses had the goal of estimating the additional polygenic 

contribution specifically due to the trisomic chromosome 21. These primary and secondary PRS 

analyses used slightly different target datasets (as described above) and slightly different 

processes for generating and analyzing the PRS (as described below), but employed the same 

discovery datasets for weighting alleles in the PRS. 

Discovery data used to define weights for the PRS 

For discovery datasets, there were no GWAS of AVSD or other congenital heart defects 

(CHD) among individuals with DS that were independent of our target dataset nor were there 

any GWAS specifically for non-syndromic AVSD. Thus, we used results from two of the largest 

available independent GWAS of mixed CHD, diagnosed among those without DS who were 

ancestrally matched to our target samples. 

The first discovery dataset was a GWAS of 2,594 cases with a mixture of CHD 

diagnoses (see Table 2.1) and 5,159 population-based controls, all of European ancestry. 

Genotyping was performed using the Illumina Human660W-Quad array for cases and the 

Illumina 1.2M chip for controls. The GWAS results included summary statistics for 501,899 
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autosomal SNPs. GWAS of particular diagnostic CHD subsets of this dataset have been 

published previously.53,54  

 

Table 2.1. First discovery dataset: diagnoses for 2,594 mixed CHD cases. For a more complete 
list of included CHD diagnosis, see 53,54  

 
CHD diagnosis Number (%) of samples 

Tetralogy of Fallot 835 (32.2) 

Left-sided malformations 387 (14.9) 

Ostium secundum atrial septal defect 340 (13.1) 

Transposition of the great arteries 207 (8.0) 

Ventricular septal defect 191 (7.4) 

Conotruncal malformations 151 (5.8) 

Double outlet right ventricle 96 (3.7) 

AVSD (partial and complete) 73 (2.8) 

Other CHD* 314 (12.1) 

 

The second discovery dataset was a GWAS of 406 mixed CHD cases (Table 2.2) and 

2,976 pediatric controls, all recruited from the same hospital and self-reporting as non-Hispanic 

Caucasian.55 Samples were genotyped with Illumina arrays (550 v1/v3, 610, or 2.5M chip), and 

genome-wide imputation was then carried out using the 1000 Genomes Project data as a 

reference. The GWAS results included summary statistics for 4,612,359 autosomal SNPs, all of 

which had imputation r2 > 0.80. 
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Table 2.2. Second discovery dataset: diagnoses for 406 mixed CHD cases55 

 
CHD diagnosis Number (%) of samples 

Tetralogy of Fallot 134 (33.0) 

Ventricular septal defect 109 (26.8) 

D-transposition of the great arteries 80 (19.7) 

Double outlet right ventricle 25 (6.2) 

Isolated aortic arch anomalies 22 (5.4) 

Truncus arteriosus 19 (4.7) 

Other CHD 17 (4.2) 

 

 We used each of these discovery datasets separately as training data for the PRS 

analyses. We also meta-analyzed the summary results from these two GWAS using Genome-

Wide Association Meta-Analysis (GWAMA) software,56 and used the resulting estimates as 

training data.  

Generating PRS for the primary analyses 

            For the primary PRS analyses, PRSice-2 (version 2.1.6)57 was used to generate PRS for 

each sample in the target dataset. Before PRS construction, PRSice performs clumping on the 

discovery dataset to obtain a set of independent SNPs for scoring (clumping parameters: 500-

kilobase window, r2 threshold 0.10). The clumped SNPs are then used to generate PRS, which 

are calculated as 

!"#$ = 	'
() 	×	+,)$

-$)
 

where the subscript i denotes a specific SNP contributing to the PRS, the subscript j denotes a 

particular individual in the target dataset, β is the estimated effect from the discovery GWAS 

(e.g., the natural logarithm of the odds ratio), EA is the number of effective alleles possessed by 
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the target individual (0,1 or 2 for a disomic chromosome; the effective allele is the same as the 

allele for which an increase corresponds to β from the discovery GWAS), and N is the total 

number of alleles considered for scoring. To facilitate interpretation of results, we applied an 

option in PRSice to standardize the PRS. We constructed multiple PRS for each target 

individual using different subsets of the set of clumped SNPs, with subsets determined by 

applying different p-value thresholds to the discovery GWAS results (e.g., PRS may be 

constructed using SNPs with discovery p-value < 1x10-6, < 0.05, < 1).  

With respect to PRS analyses, the sample sizes for our two discovery GWAS were 

rather small, both individually and combined. GWAS effect estimates based on smaller sample 

sizes are more subject to random error, and will frequently be more likely to miss the mark in 

terms of capturing true effect sizes as compared with estimates produced using similar, rigorous 

genetic epidemiologic methods that are based on larger sample sizes. Specifically, assuming 

negligible bias (i.e., systematic error), increases in sample size will increase the probability of 

obtaining an effect estimate close to the truth. SNP effect estimates that are less precise and 

accurate due to being derived from smaller GWAS will, in turn, result in PRS that perform more 

poorly in capturing the true polygenicity of a phenotype. This has been demonstrated by PRS 

analyses of schizophrenia performed by the Psychiatric Genomics Consortium (PGC): Using the 

same schizophrenia case-control target dataset, larger discovery datasets yielded greater 

maximum Nagelkerke’s r2 values (variance in schizophrenia case/control status explained by 

the PRS), with a discovery GWAS of 2,615 schizophrenia cases and 3,338 controls producing 

an r2 of 3% and a discovery GWAS of 32,838 schizophrenia cases and 44,357 controls yielding 

an r2 of 18.4%.19 Considering this limitation of smaller discovery datasets along with the 

relatively small sample sizes used to generate our discovery GWAS datasets, we decided to 

perform PRS analyses by first applying minor allele frequency (MAF) filters ranging from 0.10 to 

0.40 to the discovery datasets. Our rationale for this approach was that SNPs with higher MAFs 

are likely to have more accurately estimated GWAS effect sizes, with poor estimation of lower 
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MAF SNPs particularly likely for GWAS with smaller sample sizes. Thus, for our smaller 

discovery GWAS datasets, only using SNPs with MAF > 0.25, for instance, may yield more 

discriminating PRS than using all discovery SNPs with MAF > 0.10. Assuming a polygenic 

component is present, applying a filter such as MAF > 0.25 will result in PRS that almost 

certainly will not capture the full extent of the polygenic contribution, since it is expected that 

common variants with lower MAF would also contribute; however, if effects for the less common 

variants are poorly estimated, then such a filter may reduce the contribution of noise to the PRS 

and result in a better assessment of polygenicity than would otherwise be achieved. Therefore, 

for each discovery dataset, we applied MAF filters in addition to the aforementioned filtering 

based on discovery GWAS p-value thresholds, resulting in separate PRS construction and 

analyses for each unique combination of these two filtering parameters. 

Generating PRS for the secondary analyses 

For the secondary PRS analyses, which involved analyses both with and without the 

trisomic chromosome 21 data, we constructed PRS using PLINK1.9. The PLINK1.9 binary, 

which is the file format that we used in conjunction with PRSice for the primary PRS analyses, is 

not able to represent trisomic genotype data. However, we were able to modify the chromosome 

21 genotype data to fit the PLINK1.9 dosage file format, which can be used in conjunction with 

PLINK’s allelic scoring flag to generate PRS. This involved dividing each allele count by 3 and 

thereby converting allele counts of 0, 1, 2 and 3 to values of 0, 1/3, 2/3 and 1 (interpreted by 

PLINK as dosages ranging from 0 to 1). We then used this chromosome 21 dosage format file 

in combination with the clumped training data (clumped using PRSice) to generate PRS, which 

were generated by PLINK as a simple sum score (a sum of the products of SNP weight times 

transformed allele count for each scoring SNP). Finally, we multiplied each outputted PRS by 3, 

yielding PRS that accurately reflected allele counts of 0, 1, 2 and 3 for the trisomic chromosome 

21. 
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Separately, we used PLINK1.9 to construct PRS for the remaining autosomes. Given 

that these remaining autosomes were diploid, we were able to use the standard PLINK1.9 

binary in combination with the allelic scoring flag to generate PRS. To be consistent with the 

chromosome 21 PRS, we used an option to generate these PRS as sum scores. For the 

analyses including chromosome 21, we then summed the chromosome 21 PRS and the PRS 

for the remaining autosomes for each target individual, yielding a PRS based on alleles from all 

autosomes combined. The analyses excluding chromosome 21 only utilized the PRS based on 

all autosomes minus chromosome 21. As for the primary PRS analyses, we standardized the 

final PRS, and generated multiple PRS for each target individual based on different discovery 

GWAS p-value and MAF thresholds. 

Testing association of PRS with DS+AVSD 

            We used logistic regression to test associations of PRS with the outcome; this was 

performed by PRSice for the primary analyses and within R for the secondary analyses. We 

included sex, platform (WGS vs. imputed), and the top five principal components of ancestry as 

covariates in the analyses. Tests were two-tailed. Given the multiple testing involved in these 

PRS analyses (394 tests for different combinations of MAF filter, p-value threshold, and 

discovery and target datasets, considering the primary and secondary PRS analyses together), 

we employed the P-value Adjusted for Correlated Tests (PACT)58 method to generate p-values 

corrected for multiple correlated tests.  

 

RESULTS 

Primary analyses  

         Over a range of MAF filters and discovery GWAS p-value thresholds for constructing 

PRS, the analyses using the GWAS of 2,594 mixed CHD cases and 5,159 controls as the 
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discovery dataset (501,899 autosomal SNPs) tended to yield maximum odds ratios (ORs) of 1.2 

to 1.3 for association of PRS with AVSD among those with DS, meaning that a 1 standard 

deviation increase in PRS was associated with a 20-30% greater odds of having AVSD in the 

DS target sample (Figure 2.2). Corresponding Nagelkerke’s r2 values ranged from 0.75-1.25% 

(calculated as Nagelkerke’s r2 for the model with PRS and covariates minus Nagelkerke’s r2 for 

the model with only covariates), with p-values that were non-significant following adjustment for 

multiple correlated tests (adjusted p-values > 0.15; unadjusted p-values approximately 0.01-

0.09). These maximum results were most evident at higher MAF filters (i.e., MAF ≥ 0.30, ≥ 0.35, 

≥ 0.40) and discovery GWAS p-value thresholds between 0.001 and 0.3. Figure 2.3 and Table 

2.3 present results when PRS were constructed using SNPs with MAF ≥ 0.35, which are 

representative of the maximum PRS results achieved when using this particular discovery 

dataset.  

     PRS results when using the GWAS of 406 CHD cases and 2,976 pediatric controls as 

the discovery dataset (4,612,359 autosomal SNPs) exhibited a different pattern than when using 

the GWAS of 2,594 mixed CHD cases and 5,159 controls as training data. Across various MAF 

filters and p-value thresholds, ORs tended to hover near the null and on both sides of the null, 

indicating that these PRS were minimally associated with AVSD (Figure 2.4). A few results 

were stronger, with ORs in the 1.2 to 1.3 range (adjusted p-values > 0.15); these results 

occurred when using MAF filters of ≥ 0.10 and ≥ 0.15 in combination with the smallest discovery 

GWAS p-value thresholds for selecting scoring SNPs. 

     In addition, we performed a meta-analysis of the two GWAS datasets, yielding a single 

discovery dataset with association estimates for 4,684,854 autosomal SNPs, of which 429,336 

SNPs had estimates based on both studies (meta-analysis sample size of 3,000 CHD cases 

and 8,135 controls), while the remainder had estimates based on just one of the two studies. In 

constructing PRS based on this meta-analysis discovery dataset, we applied an inverse 

variance weighting approach such that SNP association estimates based on a larger sample 
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size (e.g., two studies) were weighted more heavily. Using the meta-analysis dataset in this 

manner produced results which, as might be expected, were a mixture of the PRS results 

obtained when using each discovery GWAS dataset separately (Figure 2.5). In general, 

maximum ORs for association of AVSD in DS with PRS and corresponding Nagelkerke’s r2 

values were slightly attenuated compared with results when using the GWAS of 2,594 mixed 

CHD cases and 5,159 controls as the discovery dataset. 

 We also performed sensitivity analyses using the GWAS of 2,594 mixed CHD cases and 

5,159 controls as the discovery dataset and using a target dataset that had excluded the AVSD 

cases obtained from the PCGC study, leaving a set of 217 cases and 242 controls who had all 

been recruited through the DSHP study. We did this in order to examine the potential influence 

of including PCGC participants among the cases but not among the controls (recall that our 

PCGC subjects were all AVSD cases). These sensitivity analyses yielded results that were 

effectively identical to those displayed in Figure 2.2, which were obtained from analyses of our 

full set of 487 samples. 
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Figure 2.2. PRS results using discovery GWAS of 2,594 mixed CHD cases and 5,159 controls and various MAF thresholds. MAF 

thresholds were applied to the discovery GWAS; SNPs with MAF below the threshold were excluded from PRS construction. Top 

row: Each plot displays odds ratio per standard deviation in PRS and the corresponding 95% confidence interval (y-axis) for PRS 

constructed based on particular discovery GWAS p-value thresholds (x-axis). Padj are adjusted p-values (corrected for multiple 

correlated tests). 95% CIs correspond to unadjusted p-values. Bottom row: Each plot displays Nagelkerke’s r
2 
(y-axis) for PRS 

constructed based on particular discovery GWAS p-value thresholds (x-axis). Numbers above each r
2 
bar are the number of SNPs 

used to construct PRS at that particular p-value threshold and MAF filter combination. 
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Figure 2.3. PRS results using discovery GWAS of 2,594 mixed CHD cases and 5,159 controls 
and SNPs with MAF ≥ 0.35. Plot shows odds ratio per standard deviation increase in PRS, with 
corresponding 95% confidence interval (CI). ‘P-value threshold’ indicates that SNPs with 
discovery GWAS p-values below the threshold were used for PRS construction. Padj is the p-
value after correction for multiple correlated tests. 
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Table 2.3. PRS results using discovery GWAS of 2,594 mixed CHD cases and 5,159 controls 
and SNPs with MAF ≥ 0.35. ‘Threshold’ indicates that SNPs with discovery GWAS p-values 
below the threshold were used for PRS construction, and ‘No. SNP’ is the corresponding 
number of SNPs used for scoring. OR: Odds ratio per standard deviation increase in PRS, CI: 
Confidence interval (corresponding to uncorrected p-value), Nag. r2: Nagelkerke’s r2, Punadj: 
Uncorrected p-value, Padj: P-value corrected for multiple correlated tests. 

 
Threshold No. SNP OR 95% CI Nag. r2 Punadj Padj 

1e-05 1 1.12 0.91-1.38 0.24% 0.278 > 0.15 

1e-04 5 1.19 0.96-1.47 0.54% 0.107 > 0.15 

0.001 93 1.27 1.03-1.57 1.03% 0.027 > 0.15 

0.005 328 1.25 1.01-1.54 0.91% 0.037 > 0.15 

0.01 597 1.35 1.09-1.67 1.61% 0.006 > 0.15 

0.05 2,421 1.25 1.02-1.54 0.95% 0.033 > 0.15 

0.1 4,275 1.28 1.03-1.57 1.09% 0.023 > 0.15 

0.2 7,590 1.22 0.99-1.50 0.75% 0.059 > 0.15 

0.3 10,432 1.18 0.96-1.46 0.54% 0.108 > 0.15 

0.4 12,982 1.11 0.91-1.37 0.22% 0.303 > 0.15 

0.5 15,197 1.12 0.91-1.38 0.25% 0.278 > 0.15 

1 22,507 1.09 0.89-1.34 0.15% 0.389 > 0.15 
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Figure 2.4. PRS results using discovery GWAS of 406 mixed CHD cases and 2,976 controls and various MAF thresholds. MAF 

thresholds were applied to the discovery GWAS; SNPs with MAF below the threshold were excluded from PRS construction. Top 

row: Each plot displays odds ratio per standard deviation in PRS and the corresponding 95% confidence interval (y-axis) for PRS 

constructed based on particular discovery GWAS p-value thresholds (x-axis). Padj are adjusted p-values (corrected for multiple 

correlated tests). 95% CIs correspond to unadjusted p-values. Bottom row: Each plot displays Nagelkerke’s r
2 
(y-axis) for PRS 

constructed based on particular discovery GWAS p-value thresholds (x-axis). Numbers above each r
2 
bar are the number of SNPs 

used to construct PRS at that particular p-value threshold and MAF filter combination. 
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Figure 2.5. PRS results using meta-analysis of two GWAS as discovery dataset and employing inverse-variance-weighted SNP 

effects for scoring, for various MAF thresholds. MAF thresholds were applied to the discovery GWAS; SNPs with MAF below the 

threshold were excluded from PRS construction. Top row: Each plot displays odds ratio per standard deviation in PRS and the 

corresponding 95% confidence interval (y-axis) for PRS constructed based on particular discovery GWAS p-value thresholds (x-

axis). Padj are adjusted p-values (corrected for multiple correlated tests). 95% CIs correspond to unadjusted p-values. Bottom row: 

Each plot displays Nagelkerke’s r
2 
(y-axis) for PRS constructed based on particular discovery GWAS p-value thresholds (x-axis). 

Numbers above each r
2 
bar are the number of SNPs used to construct PRS at that particular p-value threshold and MAF filter 

combination. 
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Secondary analyses 

     We performed the secondary analyses using only the training dataset derived from 

2,594 mixed CHD cases and 5,159 controls, since using these training data produced the best 

results for the primary PRS analyses. The results from PRS analyses including and excluding 

chromosome 21 were essentially the same, with only slight fluctuations in ORs and 

corresponding Nagelkerke’s r2 values (Figures 2.6 and 2.7). These results generally followed a 

similar pattern to those observed for the primary PRS analysis using the same discovery 

dataset (Figure 2.2), wherein use of greater MAF filters yielded larger associations. However, 

the results from these secondary analyses fluctuated more across discovery GWAS p-value 

thresholds and included more outlier OR estimates, which was likely a result of the smaller 

number of SNPs used for scoring in the secondary analyses (which were limited to SNPs 

included on the Affymetrix array). 
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Figure 2.6. PRS results for all autosomes excluding chromosome 21. These analyses used the discovery GWAS of 2,594 mixed 
CHD cases and 5,159 controls. Various MAF thresholds were applied to the discovery GWAS; SNPs with MAF below the threshold 
were excluded from PRS construction. Top row: Each plot displays odds ratio per standard deviation in PRS and the corresponding 
95% confidence interval (y-axis) for PRS constructed based on particular discovery GWAS p-value thresholds (x-axis). Padj are 
adjusted p-values (corrected for multiple correlated tests). 95% CIs correspond to unadjusted p-values. Bottom row: Each plot 
displays Nagelkerke’s r2 (y-axis) for PRS constructed based on particular discovery GWAS p-value thresholds (x-axis). Numbers 
above each r2 bar are the number of SNPs used to construct PRS at that particular p-value threshold and MAF filter combination. 
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Figure 2.7. PRS results for all autosomes including chromosome 21. These analyses used the discovery GWAS of 2,594 mixed 
CHD cases and 5,159 controls. Various MAF thresholds were applied to the discovery GWAS; SNPs with MAF below the threshold 
were excluded from PRS construction. Top row: Each plot displays odds ratio per standard deviation in PRS and the corresponding 
95% confidence interval (y-axis) for PRS constructed based on particular discovery GWAS p-value thresholds (x-axis). Padj are 
adjusted p-values (corrected for multiple correlated tests). 95% CIs correspond to unadjusted p-values. Bottom row: Each plot 
displays Nagelkerke’s r2 (y-axis) for PRS constructed based on particular discovery GWAS p-value thresholds (x-axis). Numbers 
above each r2 bar are the number of SNPs used to construct PRS at that particular p-value threshold and MAF filter combination. 
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DISCUSSION 

Prior research attempts to illuminate the role of common genetic variants in DS-

associated AVSD have yielded no robust common variant associations.4,37,38 While these 

studies were adequately powered to detect common variants with large effects on AVSD, they 

did not have sufficient power for investigating common variants with small- to moderate-sized 

effects. At present, small sample sizes continue to be a limiting factor for investigating the 

contribution by common variants to AVSD in DS, particularly for single-variant analysis 

approaches like GWAS.  

In the current study, we used PRS methods as an alternative means of assessing the 

role of common variants in DS-associated AVSD. The PRS approach involves examining the 

collective contribution of many common variants across the genome to AVSD. By focusing on 

the aggregate effect of numerous SNPs, this approach provides increased power for 

investigating the overall role played by common variants in DS-associated AVSD, particularly 

given our small sample size.  

These PRS analyses are the first such analyses of AVSD in DS, and to the best of our 

knowledge they are also the first use of PRS methods to examine polygenicity of CHD 

generally. Our analyses of PRS calculated from GWAS studies of non-syndromic CHD suggest 

at minimum a small polygenic contribution by common variants to AVSD among individuals with 

DS. When using dense SNP data (WGS or imputed data) for the 487 individuals in the target 

sample and excluding chromosome 21, a single standard deviation increase in PRS was 

associated with a 20-30% increased odds for having AVSD, with Nagelkerke’s r2 values for PRS 

of around 1% (Figures 2.2 and 2.3); this occurred when using the larger of the two independent 

discovery datasets. Assuming a population prevalence of 20% for AVSD among those with DS, 

these Nagelkerke’s r2 values are quite similar to the corresponding liability scale r2 values 

(correcting for case-control ascertainment). For instance, the PRS analyses depicted in Figure 

2.3 yielded a Nagelkerke’s r2 of 1.03% when applying MAF ≥ 0.35 and discovery GWAS p-value 
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≤ 0.001 thresholds; the corresponding liability r2 estimate is 1.11%.42 As demonstrated by the 

PRS results presented in Figures 2.6 and 2.7, which involved the use of array SNPs only, 

inclusion of dense genotype data for chromosome 21 is unlikely to substantially alter these 

estimates for the association of PRS with DS-associated AVSD; SNPs on chromosome 21 are 

perhaps not a key factor driving AVSD in DS.  

Given the small sample sizes for the discovery GWAS datasets and prior research 

demonstrating that variance explained by PRS tends to increase as discovery GWAS sample 

size increases,19 which is attributable to increased accuracy of the SNP effect estimates used 

as weights for the PRS, it seems likely that the use of a larger discovery GWAS of CHD will 

uncover a greater polygenic contribution of common variants to AVSD in DS. Furthermore, use 

of a large discovery GWAS that only includes the particular CHD subtypes that are most closely 

genetically related to AVSD (perhaps a GWAS including only AVSD and septal defect cases) 

may reveal a polygenic contribution to DS-associated AVSD that exceeds what we have 

identified. We demonstrate this in Figure 2.8, showing that under reasonable assumptions, 

using a discovery GWAS of phenotypes that are highly genetically correlated with the target 

phenotype (AVSD) will result in PRS r2 values that increase as discovery GWAS sample size 

increases; the discovery samples similar in size to those used for the current PRS analyses are 

only able to capture a portion of the true polygenic component (plots generated using the 

‘avengeme’ R package).59  

The finding of an association of AVSD in DS with PRS constructed based on SNPs 

identified as having some measure of association with CHD in mixed CHD samples suggests 

the possibility of genetic overlap between AVSD and various other subtypes of CHD. This is 

consistent with the potential for investigations of DS-associated AVSD to shed light on 

fundamental biology relevant to CHD more generally. To further examine this potential genetic 

overlap, including which CHD subtypes may have the greatest shared genetic architecture with 
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AVSD, it will be important to utilize large GWAS datasets of specific CHD subtypes rather than a 

mixture of CHD types. 

     We observed that PRS constructed based on the discovery GWAS of 2,594 mixed CHD 

cases and 5,159 controls consistently yielded ORs > 1 (indicating, as expected, that increased 

PRS was associated with increased AVSD risk). In contrast, PRS constructed using the 

discovery GWAS of 406 CHD cases and 2,976 pediatric controls yielded OR estimates 

generally quite close to the null, and on both sides of the null. One possible reason for this 

difference is that the smaller-sized discovery GWAS had more imprecisely estimated SNP 

associations, leading to less informative PRS. Another possibility is that particular CHD 

diagnoses included within the larger discovery GWAS may be more genetically related to AVSD 

in DS than the CHD diagnoses in the smaller discovery GWAS. Indeed, the larger GWAS 

included 73 cases with AVSD, while in the smaller GWAS there were only seven instances of 

AVSD (six of the cases with double outlet right ventricle also had AVSD, and a single case had 

tetralogy of Fallot with atrioventricular canal septal defect). 

 In conclusion, our PRS analyses yielded association estimates that are consistent with 

common variants, acting collectively through a polygenic component, playing a role in 

increasing AVSD risk among those with DS. Future conduct of larger CHD-focused GWAS will 

enable the use of more accurate weights in PRS construction, which in turn will allow more 

accurate quantification of the collective common variant contribution to DS-associated AVSD. 

As PRS become more accurate, we will also be better positioned to investigate whether 

polygenic risk due to common variants is especially pronounced in the presence of particular 

environmental influences. In addition, should methods such as the PRS approach continue to 

support a role for common variants in DS-associated AVSD, GWAS and SNP-set analyses of 

larger DS-associated AVSD sample sets may help identify which particular common variants, 

acting through which particular genes, are making the greatest contribution to AVSD risk, which 

would further our understanding of the biology underlying AVSD. Lastly, continued accumulation 
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of findings regarding the genetic architecture of DS-associated AVSD, including the contribution 

by common variants both collectively and individually, has the potential to inform investigation 

and understanding of CHD in the general population, with the possibility and hope of benefiting 

individuals both with and without DS. 

 

Figure 2.8. Maximum variance in target phenotype that can be explained by PRS (y-axis: 
liability scale r2) given a range of training sample sizes (x-axis: number of cases in thousands). 
Assumptions: training sample with case:control ratio of 1:2 (same as ratio for larger of the two 
independent CHD discovery datasets); target sample with case:control ratio of 1:1 (same as 
ratio for DS target dataset); prevalence of CHD in training population is 1%; prevalence of 
AVSD in DS target population is 20%; 100,000 independent variants in the training SNP panel; 
genetic effects for training and target samples are identical (correlation = 1); proportion of SNPs 
in the training set panel that affect the training phenotype is 1%, 10% or 100%. For plot A, 
amount of variance in the training phenotype explained by the training set SNP panel (Vgtrain) is 
15%; for plot B Vgtrain is 25%; for plot C Vgtrain is 35%. Solid black horizontal line marks the 
maximum r2 that can be explained by PRS using an infinitely large training sample size (given 
the assumed parameters). Vertical orange line marks the number of CHD cases in the larger of 
the two independent discovery datasets (2,594 cases). 
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Abstract 

 

Background: Psychiatric disorders are syndromes involving the co-occurrence of multiple 

correlated yet discrete symptoms. They are assessed based on multivariate diagnostic criteria 

(e.g., DSM or ICD criteria). In research settings, this assessment is often accomplished by 

administering psychiatric questionnaires, such as the 17-item PTSD Symptom Scale (PSS) and 

the 21-item Beck Depression Inventory (BDI). Responses to such questionnaires are commonly 

aggregated (e.g., through summation) to generate a single overall measure of the psychiatric 

condition of interest which is then analyzed using univariate methods. However, with respect to 

genetic epidemiology research, if a genetic factor only affects a subset of the symptoms 

assessed by the psychiatric questionnaire items, the genetic effect may be very challenging to 

detect with univariate approaches that analyze a single, aggregated score. 

 

Methods: We evaluated GAMuT, a multivariate method previously developed for tests of rare 

variant pleiotropy, as a potentially powerful approach for identifying common (MAF > 1%) 

variant associations with multivariate psychiatric phenotypes. We applied GAMuT to simulated 

datasets of SNP genotypes and BDI responses to examine Type I error control and power for 

GAMuT, and we applied univariate kernel machine regression (KMR) and standard linear 

regression (both of which analyze a single overall score) to compare with GAMuT. We then 

utilized GAMuT to examine associations of common variants within gene regions with both the 

PSS and the BDI for a sample of 3,826 African-American participants in the Grady Trauma 

Project.  

 

Results: Our simulated data analyses demonstrated that GAMuT properly controls Type I error, 

and that it is substantially more powerful than standard univariate approaches for identifying 
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common variant associations with the BDI, particularly in scenarios where a SNP only affects 

half of the BDI items or fewer. When applied to the GTP datasets, GAMuT identified common 

variants in or near SIRPA and ZHX2 to be significantly associated with the PSS and BDI, 

respectively. In comparison, univariate KMR and linear regression detected no study-wise 

significant associations. 

 

Conclusions: Through analyses of simulated and real data, we have demonstrated GAMuT to 

be a powerful method for detecting common variant associations with multivariate psychiatric 

phenotypes. Application of GAMuT in future psychiatric genetics studies has good potential to 

facilitate the identification of robust common variant associations which have often evaded 

detection by traditional analytic approaches. 
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INTRODUCTION 

Psychiatric disorders are etiologically complex and result from a combination of genetic 

and environmental risk factors.60 Recently performed meta-analyses of twin studies estimate the 

heritability (broadly defined as the overall genetic contribution to phenotypic variance) for 

psychiatric disorders collectively to be 46%.61,62 Heritability estimates for specific psychiatric 

disorders range from 34% for major depression and 30-46% for posttraumatic stress disorder 

(PTSD), to > 60% for bipolar disorder and schizophrenia.61-67 These heritability estimates reflect 

contributions by all genetic variants, including common (minor allele frequency [MAF] > 1%) and 

rare (MAF < 1%) variants. Heritability estimates that only consider the additive contributions by 

common variants, termed the single nucleotide polymorphism (SNP; a type of common variant) 

heritability, are 12% and 15% for major depression and PTSD, respectively; and 21% and 24% 

for bipolar disorder and schizophrenia, respectively, indicating that common variants play an 

important role in psychiatric disorders.68,69 However, the proportion of phenotypic variance 

explained by common variants that have been identified as robustly associated with various 

psychiatric disorders (based on exceeding genome-wide significance thresholds) falls well short 

of the estimated SNP-heritabilities. For instance, the 128 SNPs identified as significantly 

associated with schizophrenia in a recent genome-wide association study (GWAS) consisting of 

36,989 cases and 113,075 controls collectively explained 3.4% of variation in schizophrenia 

status,19 which is just a small proportion of the 24% SNP-heritability estimated for 

schizophrenia. As GWAS sample sizes grow ever larger, it is likely that more robust common 

variant associations will be identified. However, another possible explanation for the observed 

challenges in identifying the common variants contributing to psychiatric disorders relates to the 

ways in which psychiatric phenotypes are typically modeled in genetic epidemiology analyses.  

Psychiatric disorders, such as depression or anxiety disorders, are characterized by the 

Diagnostic and Statistical Manual of Mental Disorders (DSM-5)6 as behavior or psychological 

‘syndromes’, with a syndrome defined as a set of correlated signs or symptoms, the 
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cooccurrence of which may be said to constitute a particular disease or disorder (Note: The 

DSM-5 uses the term mental disorder in place of psychiatric disorder).7 As syndromes, clinicians 

diagnose psychiatric disorders based on specific criteria (such as those set forth by the DSM-5 

or the International Classification of Diseases [ICD-10]), which often involves examining the 

number of syndrome-related symptoms an individual is presenting with, in combination with 

additional criteria such as whether the symptoms cause significant distress or impairment and 

are not better accounted for by a different condition.6 Psychiatric disorders and mental health 

status are also frequently assessed using questionnaires, which may be administered or self-

reported. For instance, the PTSD Symptom Scale (PSS) is a 17-item questionnaire designed to 

assess and diagnose PTSD based on DSM-IV criteria. Each item of the PSS corresponds to a 

PTSD symptom and is rated on an ordinal scale from 0 to 3, with higher scores indicating 

greater symptom frequency/intensity.8,9 PTSD severity is then determined by totaling the scores 

for the 17 items (scores can range from 0 to 51), and a PTSD diagnosis can be made based on 

the reported presence of a certain number of symptoms in the three PSS subcategories. 

Similarly, the Beck Depression Inventory (BDI-II) is a 21-item questionnaire for assessing major 

depressive disorder (MDD) according to DSM-IV criteria, with each item scored on an ordinal 

scale from 0 to 3 (higher scores indicative of more severe symptoms), and with the ability to 

sum across items and generate a cumulative score reflecting depression severity.10  

These psychiatric disorder diagnoses (presence or absence of the disorder) or 

cumulative scores from questionnaires like the PSS and BDI are commonly analyzed as 

univariate outcomes in psychiatric research, including genetic studies of psychiatric disorders. 

However, as syndromes consisting of multiple correlated yet discrete symptoms, psychiatric 

disorders perhaps would be more accurately analyzed as multivariate phenotypes. This 

perspective is consistent with the National Institute of Mental Health’s (NIMH) recent focus on 

Research Domain Criteria (RDoC), which were developed in response to recognition of the 

limitations of research based on traditional diagnostic categories, such as the observation that 
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two individuals can share the same psychiatric diagnosis yet have few symptoms in common, 

with these differing symptom manifestations potentially influenced by different underlying 

mechanisms.70,71 To address these limitations, RDoC emphasize research focused on basic 

functional dimensions or mechanisms involved in psychopathology (e.g., fear, reward-seeking, 

attention, perception, arousal) rather than DSM or ICD diagnostic categories. 

With regard to genetic epidemiology research seeking to identify genetic factors that 

may underlie various psychiatric phenotypes, analyzing a univariate measure that is a summary 

across multivariate symptom data has the potential to decrease power for detecting genetic 

associations. Specifically with respect to genetic analyses of multivariate ordinal data, it has 

been shown that a univariate summary measure will fail to function as an adequate summary of 

the multivariate data under circumstances that include the genetic factor not having identical 

effects on all of the multivariate items.11 A scenario such as this is entirely plausible for most 

psychiatric disorders, given the variety of symptoms that collectively constitute each syndrome. 

As one example, a genetic factor may have different effects on BDI items that are more 

somatic-related (e.g., items assessing sleep or appetite) as compared with items that are more 

mood-related (e.g., those assessing feelings of sadness or guilt). In turn, if the univariate 

measure does not adequately summarize the multivariate data, then the choice of using the 

univariate measure for analysis has the potential to decrease power for identifying genetic 

associations with the psychiatric phenotype.11 In such a circumstance, use of analytic 

techniques that allow for proper modeling of the multivariate phenotype data are likely to provide 

increased power for detecting genetic signals as compared with univariate analysis approaches. 

Multivariate analysis methods that enable modeling of ordinal data that is commonly 

generated using questionnaires are currently suboptimal in various respects. For instance, 

principal component analysis (PCA) is frequently employed for multivariate analysis of 

correlated measures such as items in a psychiatric questionnaire, but the standard practice of 

analyzing the top principal components (PCs) (those which capture the majority of phenotypic 
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variance) was recently shown to often yield low power.12 With these current limitations in mind, 

we decided to examine the effectiveness of a novel multivariate analysis approach for 

identifying genetic associations with multivariate psychiatric questionnaire data. The method we 

examined, named the Gene Association with Multiple Traits (GAMuT) test, was developed 

recently as a means of testing for rare variant pleiotropy.13 GAMuT enables high-dimensional 

modeling of multiple traits and multiple rare variants (e.g., within a gene), and tests for 

association between these high-dimensional phenotype and genotype data through use of a 

kernel distance-covariance (KDC) framework. We repurposed GAMuT and evaluated it as a 

potentially powerful method for identifying common variant associations with multivariate 

psychiatric phenotypes, specifically those assessed with ordinal questionnaire items, with 

special attention paid to scenarios in which the genetic effect differs across the various 

phenotypes assessed by the questionnaire items.  

In the first part of Aim 2, we simulated genetic and BDI data under a variety of scenarios 

(e.g., varying the causal SNP; varying the proportion of BDI items affected by the causal SNP), 

and used these simulated datasets to evaluate GAMuT with respect to Type I error control and 

power for identifying SNP effects. We also applied two univariate analysis approaches, standard 

linear regression and kernel machine regression (KMR), to the simulated datasets to compare 

univariate analysis of the cumulative BDI score (summed across all items) with GAMuT. 

Univariate linear regression is a standard, SNP-level analysis approach used in GWAS for 

identifying associations between individual common variants and continuous phenotypes. KMR, 

on the other hand, is like GAMuT in that it models multiple genetic variants together and thereby 

enables gene-level analyses.  

In the second part of Aim 2, we applied GAMuT and the two univariate analysis methods 

to real genetic and phenotypic data accumulated through the Grady Trauma Project (GTP). For 

these applied analyses, we first examined common variant associations with the PSS among 

3,826 individuals with African-American ancestry. The PSS consists of 17 questionnaire items 
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that can be considered all together to provide an overall assessment of PTSD, or can be 

partitioned into three non-overlapping subscales, including PSS subscales assessing the re-

experiencing of trauma (PSS Intrusive; 5 items), avoidance-numbing (PSS AvoidNumb; 7 

items), and hyperarousal (PSS Hyperarousal; 5 items). We performed separate analyses for the 

PSS overall and also for each of the three PSS subscales. We then also performed analyses to 

examine common variant associations with the BDI, using the subset of 3,520 individuals with 

complete BDI data. 

 

METHODS   

Overview of GAMuT 

A detailed technical description of the GAMuT method has been provided in the original 

GAMuT publication.13 Here, we provide a summary of GAMuT. For a sample of N unrelated 

subjects, GAMuT examines the association between a set of Q questions (which may be 

continuous and/or ordinal categorical variables with an arbitrary number of levels) and a set of V 

genetic variants such as the set of variants defined by a gene. GAMuT is motivated by the idea 

that, for a pair of individuals, increased genetic similarity at phenotype-influencing variant sites 

across a gene should lead to increased similarity in the phenotype data. Consequently, GAMuT 

employs a KDC framework to construct two separate similarity matrices, one for the multivariate 

phenotype outcomes and the other for the genetic variants within a gene. Each similarity matrix 

has N rows and N columns, and each element of the matrix is a measure representing the 

similarity in multivariate data (phenotypic or genetic) between two individuals. The similarity 

matrices can be modeled in different ways depending on user preference. For instance, 

similarity in phenotypes can be modeled using a projection matrix72 or various kernel 

functions;73,74 while similarity in genetic data can be modeled using the same kernel functions 

used for the phenotypes or using genetic-specific kernel functions.75 The genetic similarity 
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matrix can also be modeled using weighted kernel functions, allowing different genetic variants 

to carry different weight based on prior information, with the potential result of increased power. 

Using the KDC framework, GAMuT then tests for association between the individual elements in 

the genetic similarity matrix and the individual elements in the phenotype similarity matrix. The 

resulting test statistic follows a known asymptotic distribution, enabling accurate and rapid 

calculation of p-values (making GAMuT analyses faster than alternative multivariate approaches 

that employ permutations to generate p-values). The GAMuT framework is also amenable to 

adjustment for covariates, which can be accomplished by regressing the multivariate 

phenotypes onto the covariates of interest, and then using the resulting regression residuals as 

the phenotypes for GAMuT analysis. 

Simulated data analyses  

 We applied GAMuT to simulated datasets of 1,000 or 2,500 unrelated subjects to 

examine Type I error control and power when using GAMuT to examine associations between 

common variants within a gene and multivariate psychiatric questionnaire data. For comparison, 

we also applied KMR and standard linear regression to the simulated datasets; these methods 

differ from GAMuT in that they model the phenotype as univariate, analyzing the cumulative 

score which results from summing across all questionnaire items.  

We simulated common variant data for the gene LRFN5 (leucine rich repeat and 

fibronectin type III domain containing 5) on chromosome 14. This gene was recently identified 

as potentially involved in MDD.76 LRFN5 is a relatively large gene: it is 297 kilobases (kb) in 

length and includes > 120 common variants with MAF > 5% (we applied a 5% MAF threshold for 

our analyses in this study).77 In the top of Figure 3.1, we present a heatmap showing the 

linkage disequilibrium (LD) structure for 127 common variants within or in close proximity to 

LRFN5 (close proximity defined as within 2 kb of either gene end). The bottom of Figure 3.1 is a 

plot of the MAF for each of these 127 common variants (all variants have MAF > 5%). The 
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SNPs as shown in the heatmap are ordered according to genomic position, and the ordering of 

SNPs in the MAF plot (labeled numerically) matches that of the heatmap. 
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Figure 3.1: Pairwise LD (R2) heatmap (top) and MAF (bottom) for 127 common variants in the 
LRFN5 gene. SNPs are ordered by genomic position. Numeric label on x-axis of MAF plot 
corresponds to SNP number in heatmap. The 50 SNPs present on the Illumina array are 
denoted with an ‘x’ in the MAF plot. 
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As a larger gene, LRFN5 is more likely to include certain combinations of SNPs that are 

in lower LD with one another (namely, the SNPs that are located farther away from one 

another); whereas for a shorter gene, LD between SNPs would tend to be higher given the 

SNPs would generally be located in closer proximity to each other. We intentionally selected 

LRFN5, as opposed to a smaller gene, based on its relatively weaker LD structure, whereby a 

substantial proportion of its SNPs are in relatively low LD with one another. Our reason for this 

selection criteria was that such a gene would present a greater challenge for GAMuT to 

successfully detect a causal SNP association, and would therefore enable a more convincing 

demonstration of GAMuT’s utility for identifying common variant associations with multivariate 

psychiatric phenotypes. The challenge would be greater for a gene like LRFN5 because the 

particular SNP assigned as causal for the phenotype (which we varied across simulations) 

would be in relatively low LD with many other SNPs in the gene, making the causal genetic 

signal more difficult to detect once these “low-LD SNPs” were grouped together with the causal 

SNP and the other remaining common variants for the gene-based analyses. This setting is 

contrasted with a smaller gene, for which the SNPs would be in closer proximity to each other 

and would thus be expected to generally be in higher LD with one another, resulting in a greater 

boost in the genetic signal and making detection by GAMuT easier. 

We used the HAPGEN2 package to simulate realistic SNP data for LRFN5.78 HAPGEN2 

enables the generation of large quantities of simulated haplotypes that mirror the LD structure of 

participants in the International HapMap Project.47 We generated 20,000 haplotypes for the 

region corresponding to LRFN5 for use as our simulation haplotype pool, which we sampled to 

generate genotypes. For the purposes of these simulated data analyses, we included common 

variants within the genomic window ranging from 2kb upstream to 2kb downstream of LRFN5. 

This window, which we simply refer to as the gene LRFN5, included 127 common variants.  
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For phenotypes, we simulated BDI questionnaire responses. BDI responses were 

simulated under a null genetic model for the Type I error analyses, and under a variety of causal 

genetic models for power analyses (described in detail below). For all analyses, we simulated 

realistic BDI datasets that approximated the BDI correlation structure (pairwise correlations 

between different BDI items ranged from 0.22 to 0.60) and distribution of ordinal responses 

observed among the GTP participants.  

Type I error 

 For the Type I error analyses, we simulated datasets of 1,000 and 2,500 unrelated 

subjects under the assumption that none of the 127 SNPs within LRFN5 had a causal effect on 

any of the 21 BDI items. For each simulated subject, we randomly sampled genotypes from our 

haplotype pool.  

For phenotypes, we simulated 21 ordinal BDI responses for each subject by first 

randomly sampling values from a multivariate normal distribution with dimension 21, mean 

vector 0, and sigma equal to the 21x21 pairwise correlation matrix generated by calculating 

Spearman rank correlations between BDI items using data from all GTP participants. Once this 

process was completed for all simulated subjects, for each of the 21 phenotype items, we 

transformed the continuous values to ordinal BDI responses (with values of 0, 1, 2 or 3) by a 

process that yielded response distributions matching the observed response distribution for 

each BDI item among the GTP participants. For example, considering BDI item 4 (which 

assesses loss of pleasure), the proportions of GTP participants selecting 0 (no loss of pleasure), 

1, 2 and 3 (high loss of pleasure) were 49%, 34%, 12% and 4%, respectively. For this item, we 

took the continuous values simulated for all subjects and assigned the lowest 49% of values a 

response of 0, the next lowest 34% of values a response of 1, the next lowest 12% of values a 

response of 2, and the highest 4% of values a response of 3. In this manner, we generated 

realistic BDI questionnaire responses for all simulated subjects. 
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Using this process, we simulated 10,000 null datasets of 1,000 subjects and 10,000 null 

datasets of 2,500 subjects. For each simulated dataset, we applied GAMuT to test for 

association between common variants within LRFN5 and BDI phenotypes. We applied GAMuT 

with a weighted linear genotype kernel, with weights based on estimated MAF for each common 

variant (rarer variants carrying greater weight); and we modeled phenotypic similarity with a 

projection matrix as well as a linear kernel. We also applied gene-based KMR and SNP-based 

linear regression to compare GAMuT with standard univariate approaches. We applied KMR 

with a weighted linear genotype kernel with MAF-based weights, in order to match GAMuT. 

While we simulated genotypes for all 127 common variants within or near LRFN5, our 

association tests only considered the subset of 50 SNPs present on the Illumina HumanOmni1-

Quad genotyping array. This was done to mirror the realistic scenario wherein a limited set of 

SNPs would be available for consideration in a study employing array-based genotyping without 

subsequent imputation. This decision to only test common variants on the SNP array perhaps 

has greater relevance for the power analyses, as described in the next section. 

We computed Type I error for a values of 0.05, 0.01 and 0.001. For a method that 

properly controls Type I error, we would expect that approximately 5% of the 10,000 p-values 

(outputted by applying the method to 10,000 simulated datasets) have p < 0.05, approximately 

1% have p < 0.01, and approximately 0.1% have p < 0.001. GAMuT and KMR are both gene-

based (or variant set) methods that yield a single p-value per simulated dataset, while linear 

regression is applied at the SNP-level and therefore involves 50 tests and 50 resulting p-values 

for each simulated dataset, one for each of LRFN5’s 50 SNPs present on the Illumina array. For 

each simulated dataset, we selected the linear regression p-value (out of 50 total) that was the 

smallest, used an approach called PACT
58 to adjust this p-value for the multiple correlated tests 

performed across the gene, and stored this adjusted p-value as the single value representing 

the linear regression results, thus yielding the 10,000 linear regression p-values used for 

estimating Type I error. 
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Power 

 For the power analyses, we generated simulated datasets of 2,500 subjects. We 

simulated genotypes for the 127 SNPs in LRFN5 by sampling from our HAPGEN2-generated 

haplotype pool. We then simulated BDI responses for each subject by setting one of the 127 

SNPs as causal for a specified proportion of the BDI items. We considered scenarios where 

18/21, 12/21, and 6/21 BDI items were affected by the causal SNP. The effect size of the causal 

SNP on each associated BDI item was drawn from a normal distribution with mean 0.10 and 

variance 0.03, resulting in an overall modest effect of SNP on the cumulative BDI score. For 

instance, these SNP effect parameters yield r2 = 0.009 when a SNP with MAF = 0.30 is causally 

associated with all BDI items.  

 As with the simulated phenotypes for the Type I error analyses, we applied a process to 

ensure simulated BDI responses displayed a correlation structure (pairwise BDI item 

correlations) which mirrored that of the GTP samples. However, different from the Type I error 

simulations, we included consideration of trait-specific heritability (the relative variance in 

responses for a given BDI item explained by the causal SNP) in the process of controlling 

residual correlation among simulated BDI items. We calculated trait-specific heritability for a 

given BDI item as 

ℎ" =	%&,"( ∗ 2 ∗	+,-& ∗ (1 − +,-&) 

where bv,q is the effect size of the causal variant v on the BDI questionnaire item q, MAFv is the 

minor allele frequency of the causal variant v, and hq is the heritability for BDI questionnaire item 

q. The correlation between two BDI items q and q’, adjusted for trait specific heritability, is then 

2","3 = 	41 −	ℎ" ∗ 41 −	ℎ"5 ∗ 	Σ","5 

where Sq,q’ is the pairwise correlation between BDI items q and q’, estimated using the GTP 

samples.  
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 For each simulated subject, we then sampled from a multivariate normal distribution with 

dimension 21, and with mean equal to the vector of SNP effect sizes described at the beginning 

of this section, and sigma equal to Eq,q’. We subsequently transformed the resulting values to 

ordinal BDI scores using the approach described in the Type I error section above, ultimately 

yielding simulated datasets in which a subset of BDI questionnaire items were causally 

associated with a given SNP, with BDI responses mirroring the correlation structure and 

distribution of BDI responses observed among the GTP samples. 

 We simulated datasets for the power analyses with each of the 127 SNPs within LRFN5 

set as causal, one at a time. For each combination of causal SNP (127 total) and proportion of 

BDI items affected by the causal SNP (18/21, 12/21, 6/21), we simulated 500 datasets of 2,500 

samples. We applied GAMuT to each of these simulated datasets, using a weighted linear 

genotype kernel (with MAF-based weights), and both a projection matrix and linear kernel for 

modeling phenotypic similarity. For comparison with univariate approaches, we also applied 

KMR and standard linear regression, using a weighted linear genotype kernel (with MAF-based 

weights) for KMR. 

 Though we simulated genotypes for all 127 LRFN5 SNPs and we set each of these 

SNPs as causal, one at a time, when simulating BDI phenotypes, we only considered the 50 

SNPs present on the Illumina array for association testing (as described in the Type I error 

section above). Therefore, if the causal SNP was not among the 50 SNPs included for testing, 

detection of the causal association relied entirely on LD of the causal SNP with the testing 

SNPs. This mirrors the realistic scenario wherein the array SNPs may tag the causal SNP but 

are not causal themselves, with the observed association between tag SNP and phenotype 

likely attenuated (depending on extent of LD) compared with the association that would be 

observed for the causal SNP.  

 For each unique causal scenario (each unique combination of causal SNP and 

proportion of associated BDI items) we calculated power as the proportion of p-values from the 
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500 simulated data analyses that were < 0.001. As with the Type I error analyses, for linear 

regression, we selected the smallest p-value resulting from 50 SNP-level tests, used PACT to 

adjust this p-value for multiple correlated tests, and used the resulting set of 500 linear 

regression p-values for power calculations.  

Applied analyses 

As described previously, major depression has an estimated heritability of 34%,61,62 with 

approximately one-third of this heritability thought due to common genetic variants;68 and PTSD 

following trauma shows heritability estimates ranging from 30-46%,63-67 with SNP-heritability 

estimated to be approximately 15%.69 Despite strong evidence for an important role by common 

variants, however, presently identified robust common variant associations with depression and 

PTSD fall well short of accounting for the expected full contribution by common variants. 

To more powerfully investigate common variant associations with these two psychiatric 

conditions, we applied GAMuT to genetic and phenotypic data collected as part of the Grady 

Trauma Project. A key objective of the GTP is to advance understanding of the role played by 

genetics in PTSD and related psychiatric disorders.79 To this end, GTP staff recruit study 

participants from Grady Memorial Hospital in Atlanta, GA, approaching potential subjects in the 

waiting rooms of primary care clinics, obstetrics and gynecology clinics, as well as other clinics, 

and consenting participants. GTP participants are majority African-American, city-dwelling, and 

are of relatively low socioeconomic status. Participants provide an Oragene salivary sample for 

DNA extraction and subsequent genotyping on the Illumina HumanOmni1-Quad array. They are 

also assessed with regard to demographics, history of stressful experiences, and psychiatric 

symptoms. The examination of psychiatric symptoms includes completion of the PSS and the 

BDI. Recruitment and assessment of subjects for the GTP has been carried out according to 

protocols approved by the IRBs of Emory University School of Medicine and Grady Memorial 

Hospital.  
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PSS analyses 

Applying standard GWAS quality control filters left 4,607 African-American subjects with 

good quality genotype data. Further removal of subjects not reporting having experienced a 

traumatic event, missing PSS data, or with incomplete covariate data (age, gender, and the top 

ten principal components to account for ancestry) yielded a final sample size of 3,826 subjects 

for the PSS analyses.   

For this sample of 3,826 individuals, we identified 769,270 common variants (MAF > 5%) 

corresponding to 22,067 autosomal genes (we assigned SNPs to genes using the Illumina 

annotation files). We then dropped ‘small’ genes, which we defined as having fewer than 5 

common variants, resulting in a set of 19,609 ‘big’ genes and a total of 765,580 corresponding 

SNPs. 

  As described previously, the PSS consists of 17 questionnaire items designed to assess 

PTSD symptoms, which can be analyzed all together or split into three non-overlapping 

subscales, including subscales assessing the re-experiencing of trauma (PSS Intrusive; 5 

items), avoidance-numbing (PSS AvoidNumb; 7 items), and hyperarousal (PSS Hyperarousal; 5 

items).8,9 We performed separate analyses for the PSS overall and also for each of the three 

PSS subscales. 

We applied GAMuT with a linear kernel to model genotype similarity, and performed 

both unweighted analyses and weighted analyses. For the weighted analyses, we employed 

weights based on variants’ MAF, with rarer variants carrying greater weight, as in the simulated 

data analyses. In addition, we employed weights based on each SNP’s reported association 

(log odds ratio) with particular psychiatric disorders as estimated from external and independent 

large-scale GWAS of MDD, bipolar disorder, and schizophrenia; these estimates are available 

from the Psychiatric Genomics Consortium.19,80,81 Results from comparably large-scale GWAS 

of PTSD were not available at the time of these analyses. Using external weights derived from 
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association studies of psychiatric disorders that are different from the conditions we were 

examining likely has utility, considering studies that have demonstrated sizable genetic overlap 

between multiple psychiatric disorders.82 To model phenotypic similarity in the PSS responses, 

we performed GAMuT analyses both with a projection matrix and with a linear kernel. For 

comparison with GAMuT, we applied SNP-based linear regression and gene-based KMR to the 

cumulative, univariate PSS, PSS Intrusive, PSS AvoidNumb, and PSS Hyperarousal scores. 

For KMR, we utilized the same linear kernels to model genotypic similarity and applied the same 

genotype weighting schemes as used in the GAMuT analyses. 

Prior to GAMuT and KMR analyses, we controlled for age, gender and the top 10 

genetic PCs (which capture ancestry) by regressing the relevant phenotype (each questionnaire 

item in the case of GAMuT; cumulative scores in the case of KMR) onto these variables, then 

extracting the regression residuals and using these as the phenotypes to be analyzed by 

GAMuT and KMR. For the linear regression analyses, we controlled for these same variables by 

including them as covariates within the regression model.  

BDI analyses 

 We also utilized GAMuT to examine associations of common genetic variants in gene 

regions with phenotypes assessed using the 21-item BDI questionnaire. For these analyses, we 

took the group of 3,826 subjects from the PSS analyses and limited it to subjects with complete 

BDI data, leaving 3,520 subjects, and we considered the same 19,609 genes as mentioned 

above containing 765,580 SNPs. We then applied GAMuT in the same fashion as described for 

the PSS analyses, using both a projection matrix and linear kernel for the phenotype and 

employing the same genotype weighting schemes under a linear genotype kernel. For 

comparison with GAMuT, we performed SNP-based linear regression and gene-based KMR on 

the univariate, cumulative BDI score. 
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Multiple testing differences and correction 

As noted above, the PSS and BDI analyses using GAMuT considered 19,609 genes and 

765,580 common variants for analysis. Analyses employing no genotype weights and analyses 

employing MAF-based weights involved association testing for all of these 19,609 genes. 

However, when employing the external PGC GWAS-derived weights, we observed that not all of 

the 765,580 common variants available for analyses were present within the PGC GWAS 

results, thus necessitating that analyses utilizing these external weights include fewer SNPs and 

corresponding genes than the analyses using MAF-based weights or no weights. Specifically, 

GAMuT analyses using PGC MDD weights involved 16,716 genes containing 469,582 SNPs; 

analyses using PGC bipolar disorder weights involved 16,761 genes containing 586,505 SNPs; 

and analyses using PGC schizophrenia weights involved 18,067 genes containing 661,879 

SNPs.  

As stated above, the univariate KMR analyses employed the same genotyping weighting 

schemes as used for GAMuT, and therefore tested the exact same genes as tested in the 

GAMuT analyses. For standard linear regression, we individually tested 775,255 common 

variants for association with each cumulative phenotype.  

Since GAMuT and KMR analyze genes whereas linear regression analyzes SNPs, the 

multiple-testing adjusted significance thresholds differed for the former and latter approaches. 

For each GAMuT and KMR analysis, we used a Bonferroni correction procedure to establish a 

study-wise significance threshold, calculating this threshold as 0.05 divided by the number of 

genes analyzed. Thus, the study-wise significance threshold differed depending on the 

particular genotype weights used, ranging from a threshold of 0.05/16,716 = 2.99x10-6 for PGC 

MDD weights to 0.05/19,609 = 2.55x10-6 for MAF-based weights and no weights. For all GAMuT 

and KMR analyses we selected p < 1x10-4 as a suggestive significance threshold. For SNP-

based linear regression, which involved testing 775,255 SNPs across the genome, we used a 
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study-wise significance threshold of 0.05/775,255 = 6.45x10-8 and a suggestive significance 

threshold of p < 1x10-6. We note that for these linear regression analyses we could have used 

the standard GWAS significance threshold of 5x10-8, but we decided against this given that this 

standard threshold is more conservative than a Bonferroni correction based on the number of 

SNPs tested. 

 

RESULTS 

Simulated data analyses 

Type I error 

 Application of GAMuT to 10,000 null simulated datasets, for which none of the 127 SNPs 

within LRFN5 had a causal effect on any of the 21 BDI items, revealed that GAMuT properly 

controls Type I error. This was observed for simulated datasets of both 1,000 and 2,500 

subjects. Proper control of Type I error was also observed for univariate KMR and linear 

regression.  

Table 3.1 presents empirical Type I error rates for GAMuT, as well as for KMR and 

linear regression. As an example of GAMuT’s success in controlling Type I error, we can 

consider alpha (a) level = 0.001. For this a, a statistical test that properly controls Type I error 

should generate significant p-values (p < 0.001) approximately 0.1% of the time when applied to 

null datasets. This indeed is what we observed for GAMuT when setting a = 0.001: GAMuT 

using a projection matrix for modeling phenotypic similarity yields 12/10,000 = 0.12% significant 

results when analyzing 1,000 simulated samples and 8/10,000 = 0.08% significant results when 

analyzing 2,500 samples; while GAMuT using a linear kernel for modeling phenotypic similarity 

produces 14/10,000 = 0.14% significant findings for simulated datasets of 1,000 samples and 

10/10,000 = 0.1% significant results for datasets of 2,500 samples. 
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 The quantile-quantile (QQ) plots shown in Figure 3.2, which plot the -log10 

transformation of the 10,000 observed p-values against 10,000 p-values expected from a null 

distribution, also demonstrate proper Type I error control by GAMuT, KMR and linear 

regression. Inadequate Type I error control would result in an obvious departure of points from 

the diagonal red line (which has slope = 1 and thus is the line defined by observed p-values 

equaling expected p-values), particularly beginning at larger p-values (those points relatively 

closer to the bottom left corner of the plots). Such worrisome deviation is not observed for 

GAMuT, nor for KMR and linear regression. 

 

Table 3.1. Empirical Type I error rates are presented for GAMuT (with projection matrix or linear 
kernel for modeling phenotypic similarity), univariate KMR and linear regression, for different 
combinations of sample size and significance (a) level. Error rates are calculated as the 
proportion of p-values less than the specified significance threshold given 10,000 null 
simulations. All GAMuT and KMR analyses used a weighted linear genotype kernel, with 
weights based on sample MAF. GAMuT, KMR and linear regression properly control Type I 
error across all scenarios tested. 

 
 Sample Size = 1,000 Sample Size = 2,500 

 a = 0.05 a = 0.01 a = 0.001 a = 0.05 a = 0.01 a = 0.001 
GAMuT:  
Projection Matrix 0.0506 0.0095 0.0012 0.0445 0.0080 0.0008 

GAMuT:  
Linear Kernel 0.0480 0.0096 0.0014 0.0492 0.0105 0.0010 

KMR 0.0491 0.0102 0.0010 0.0500 0.0107 0.0006 
Linear 
Regression 0.0508 0.0111 0.0011 0.0533 0.0104 0.0007 
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Figure 3.2. Quantile-quantile (QQ) plots of p-values resulting from applying GAMuT (with 
projection matrix or linear kernel for modeling phenotypic similarity), univariate KMR, and 
standard linear regression to 10,000 simulated null data sets of either 1,000 (top) or 2,500 
(bottom) samples. GAMuT and KMR analyses used a weighted linear genotype kernel, with 
weights based on sample MAF. 

 

 

 

Power 

 To evaluate the power of GAMuT to detect causal associations between common 

variants in a gene and multivariate psychiatric phenotypes, relative to the power of standard 

univariate approaches, we applied GAMuT, KMR and linear regression to datasets simulated 

under the variety of causal scenarios corresponding to each unique combination of causal SNP 

(127 SNPs within LRFN5, set as causal one at a time) and proportion of BDI questionnaire 

items affected by the causal SNP (18/21, 12/21 or 6/21). Each dataset included simulated 

genetic and BDI data for 2,500 subjects. Figure 3.3 plots power for each of these unique causal 



 
 

 

73 

scenarios, with power defined as the proportion of p-values < 0.001 based on 500 simulated 

data analyses for the unique causal scenario. In this figure, the particular SNP set as causal 

(out of 127 SNPs) is noted on the x-axis, with SNPs ordered by genomic position and 

numerically labeled to correspond to the ordering and labeling of SNPs as presented in Figure 

3.1. We remind the reader that while each of the 127 SNPs in LRFN5 was set as causal in turn, 

only the 50 SNPs directly represented on the Illumina SNP array were included in association 

analyses.  

 Figure 3.3 shows that, across the various causal scenarios considered, GAMuT has a 

clear tendency to outperform the univariate approaches of KMR and linear regression with 

respect to power. The power differential favoring GAMuT is particularly pronounced for 

scenarios in which the causal SNP is associated with approximately half (12/21) or fewer of the 

21 BDI items, and is also more evident when applying GAMuT with a projection matrix for 

modeling phenotypic similarity. When the causal SNP affects 12 of the 21 BDI items, univariate 

KMR and linear regression both show less than 20% power for detecting all 127 causal SNPs; 

whereas GAMuT employing a projection matrix to model phenotypic similarity observes greater 

than 80% power to detect 55 of the causal SNPs and greater than 50% power to detect 96 

causal SNPs. When only 6 of the 21 BDI items are affected by the causal SNP, the univariate 

approaches have almost zero power for detecting all 127 causal SNPs, while GAMuT with a 

projection matrix maintains greater than 50% power for detecting 57 of the causal SNPs.  

These results demonstrate the benefits of using the multivariate GAMuT framework to 

examine associations of common genetic variants with psychiatric phenotypes such as those 

assessed by the BDI. Such phenotypes are correlated but may be heterogeneous with respect 

to risk factors like genetic variants, and therefore aggregating these multivariate phenotypes into 

a single score for analysis using univariate methods can greatly reduce power for detecting 

associations. 



 
 

 

74 

Figure 3.3 (next page). Power for GAMuT (with projection matrix or linear kernel for modeling 
phenotypic similarity), univariate KMR, and standard linear regression, across various causal 
scenarios defined by unique combinations of causal SNP (127 SNPs within LRFN5) and 
proportion of BDI questionnaire items affected by the causal SNP (18/21, 12/21 or 6/21 
questions associated with the causal SNP). GAMuT and KMR used a weighted linear genotype 
kernel, with MAF-based weights. Simulated datasets had sample size of 2,500. Power was 
calculated as the proportion of p-values < 0.001, based on 500 simulated data analyses for the 
unique causal scenario. In the plots, the particular SNP set as causal is noted on the x-axis, with 
SNPs ordered by genomic position and numerically labeled to correspond to the ordering and 
labeling of SNPs as presented in Figure 3.1. 



 
 

 

75 

 

 

GAMuT: Projection matrix
GAMuT: Linear kernel
KMR
Linear regression

0 20 40 60 80 100 120

0.
0

0.
4

0.
8

18/21 Questions associated

P
ow
er

Causal SNP

0 20 40 60 80 100 120

0.
0

0.
4

0.
8

12/21 Questions associated

P
ow
er

Causal SNP

0 20 40 60 80 100 120

0.
0

0.
4

0.
8

6/21 Questions associated

P
ow
er

Causal SNP



 
 

 

76 

Applied analyses 

PSS 

 We used GAMuT to examine associations of common genetic variants in gene regions 

with PSS questionnaire items for a sample of 3,826 African-American individuals who were 

participants in the GTP. To model phenotypic similarity for GAMuT, we employed a projection 

matrix as well as a linear kernel. We also performed analyses using univariate KMR and linear 

regression. We modeled genotypic similarity in the same way for both GAMuT and KMR (linear 

genotype kernel) and employed the same genotype weighting schemes for both approaches. In 

addition to analyzing the PSS overall (17 items), we performed analyses for the three non-

overlapping subscales: PSS Intrusive (5 items), PSS AvoidNumb (7 items), and PSS 

Hyperarousal (5 items).  

We provide QQ and Manhattan plots for all GAMuT, KMR, and linear regression 

analyses of overall PSS, PSS Intrusive, PSS AvoidNumb, and PSS Hyperarousal in 

Supplementary Figures 3.1-3.4, respectively. We also present genes identified by GAMuT, 

KMR or linear regression to be associated with PSS or its subscales at study-wise or suggestive 

significance levels within Supplementary Tables 3.1-3.4. The GAMuT analyses of PSS and its 

subscales identified one gene that exceeded the study-wise significance threshold. In 

comparison, univariate KMR and linear regression found no genes or SNPs to be associated 

with PSS or its subscales at a study-wise significant level. GAMuT identified SIRPA, a gene on 

chromosome 20, as significantly associated with the PSS AvoidNumb subscale (p = 2.07x10-6), 

when using a projection matrix to measure phenotypic similarity and genotype weights based on 

estimated log odds ratios from the PGC GWAS for bipolar disorder. The first column of Figure 

3.4 displays QQ and Manhattan plots for this particular GAMuT analysis. SIRPA also showed 

suggestive association in the analysis of PSS AvoidNumb using a linear kernel for phenotypic 

similarity and weights based on the PGC GWAS of bipolar disorder (see Supplementary Table 



 
 

 

77 

3.3), and in the analysis of overall PSS when using a projection matrix and PGC GWAS bipolar 

disorder weights (see Supplementary Table 3.1). To the best of our knowledge, there are no 

previous reports of SIRPA being associated with neuropsychiatric phenotypes. However, 

research shows that SIRPA has highly elevated expression levels in the brain.83 In comparison, 

analysis of the cumulative PSS AvoidNumb score using KMR with PGC GWAS bipolar disorder 

weights did not identify SIRPA as even suggestively associated (Figure 3.4, middle column; 

Supplementary Figure 3.3c), and univariate linear regression identified no SNPs suggesting 

association within SIRPA or any other gene on chromosome 20 (Figure 3.4, last column; 

Supplementary Figure 3.3d). 

To more fully examine the detection of SIRPA by GAMuT and not by standard univariate 

methods, we used KMR to analyze the associations between SIRPA and each of the 7 items 

comprising the PSS AvoidNumb subscale (i.e., we evaluated these 7 items one-by-one rather 

than collapsing them into a cumulative PSS AvoidNumb score). As in the above analyses, we 

weighted the genotype matrices by estimated log odds ratios from the PGC GWAS for bipolar 

disorder. These analyses identified SIRPA as associated with one PSS AvoidNumb item with p 

= 6.37x10-9 (the item “Have you persistently been making efforts to avoid thoughts or feelings 

associated with the event(s) we’ve talked about”), associated with 4 items with p-values ranging 

from approximately 0.001 to 0.10, and unassociated with 2 items based on p-values greater 

than 0.50. These findings suggest that SIRPA is associated with only a subset of the PSS 

AvoidNumb items. As we previously showed using simulated data, in such a situation, standard 

univariate methods using collapsed, cumulative phenotypes provide inadequate power for 

detecting genetic associations, while GAMuT maintains good power. The finding that SIRPA is 

associated with only a subset of PSS AvoidNumb items therefore provides an explanation for 

the failure of KMR using the cumulative PSS AvoidNumb score to identify SIRPA, while GAMuT 

succeeded in detecting this gene association. 
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As shown in Supplementary Table 3.3 and Figure 3.4, the same GAMuT analysis that 

identified SIRPA as study-wise significant also found PDYN, located nearby SIRPA on 

chromosome 20, as having strongly suggestive evidence of association (p = 5.78x10-6). PDYN 

was also identified as suggestively significant in the analysis of PSS AvoidNumb with a 

projection matrix and no genotype weights (Supplementary Table 3.3). PDYN has been found 

to be associated with a variety of neuropsychiatric phenotypes, including mood disorders,84 

schizophrenia,85,86 memory disorders,87 epilepsy,88 and substance use disorders,84,89-93 and it 

shows expression that is restricted toward the brain.83 Analysis of cumulative PSS AvoidNumb 

scores using KMR with PGC GWAS bipolar disorder weights did not identify PDYN as even 

suggestively associated with PSS AvoidNumb (Figure 3.4, middle column; Supplementary 

Figure 3.3c), and univariate linear regression identified no SNPs suggesting association within 

PDYN (Figure 3.4, last column; Supplementary Figure 3.3d).  
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Figure 3.4. QQ and Manhattan plots for GAMBITS, KMR, and linear regression analyses of 
PSS AvoidNumb. The GAMBITS analysis used a projection matrix to model phenotypic 
similarity and genotype weights derived from results of the PGC GWAS for bipolar disorder. The 
KMR analysis also used weights based on the PGC GWAS for bipolar disorder. In the 
Manhattan plots, the red line represents the study-wise significance threshold and the blue line 
represents the suggestive significance threshold. The study-wise significance thresholds for the 
GAMBITS and KMR analyses are based on a Bonferroni correction for 16,761 genes tested, 
while the study-wise significance threshold for the linear regression analysis is based on a 
Bonferroni correction for 775,255 SNPs tested. In the Manhattan plot for the GAMBITS results, 
the point exceeding the study-wise significance threshold is the -log10(p-value) for SIRPA, a 
gene on chromosome 20. These analyses used a sample of n = 3,826. 

 

	

 

BDI 

 We also applied GAMuT to investigate associations of common genetic variants in gene 

regions with BDI questionnaire items. This was done using the subset of 3,520 African-

American GTP participants with complete analysis BDI information. As with the PSS analyses, 

GAMuT: 
Projection Matrix KMR Linear Regression 
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GAMuT employed both a projection matrix and linear kernel to model the phenotypic similarity 

matrix, and a weighted or non-weighted linear kernel to model genotypic similarity (employing 

the same weighting schemes as used for the PSS analyses). We also performed univariate 

KMR and standard linear regression to compare with GAMuT.  

We present QQ and Manhattan plots for all GAMuT, KMR, and linear regression 

analyses of BDI in Supplementary Figure 3.5. We also present the full listing of genes found 

by GAMuT, KMR or linear regression to be associated with BDI at study-wise or suggestive 

significance levels in Supplementary Table 3.5. The GAMuT analyses of BDI identified one 

gene exceeding study-wise significance, whereas univariate KMR and linear regression of BDI 

did not detect any study-wise significant genes or SNPs. GAMuT found ZHX2, on chromosome 

8, to be significantly associated with BDI (p = 2.73x10-6, study-wise significant after Bonferroni 

correction for 18,067 genes tested), when using a linear kernel to measure phenotypic similarity 

and genotype weights based on estimated log odds ratios from the PGC GWAS for 

schizophrenia. We present QQ and Manhattan plots for this particular analysis in the first 

column of Figure 3.5. ZHX2 was also found to be highly suggestively associated with BDI when 

using a linear kernel for the phenotype and employing genotype weights based on the PGC 

GWAS of MDD. Previous research suggests a possible link between ZHX2 and autism 

spectrum disorder.94 In comparison with the GAMuT analyses, univariate KMR analyzing the 

cumulative BDI score did not identify ZHX2 as having even suggestive association (Figure 3.5, 

middle column; Supplementary Figure 3.5c), and univariate linear regression revealed no 

SNPs suggestively associated with BDI within ZHX2 or anywhere else across the genome 

(Figure 3.5, last column; Supplementary Figure 3.5d).  
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Figure 3.5. QQ and Manhattan plots for GAMuT, KMR, and linear regression analyses of BDI. 
The GAMuT analysis used a linear kernel to model phenotypic similarity and genotype weights 
derived from results of the PGC GWAS for schizophrenia. The KMR analysis also used weights 
based on the PGC GWAS for schizophrenia. In the Manhattan plots, the red line represents the 
study-wise significance threshold and the blue line represents the suggestive significance 
threshold. The study-wise significance thresholds for the GAMuT and KMR analyses are based 
on a Bonferroni correction for 18,067 genes tested, while the study-wise significance threshold 
for the linear regression analysis is based on a Bonferroni correction for 775,255 SNPs tested. 
In the Manhattan plot for the GAMuT results, the point exceeding the study-wise significance 
threshold is the -log10(p-value) for ZHX2, a gene on chromosome 8. These analyses used a 
sample of n = 3,520.  
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DISCUSSION 

We have examined GAMuT, a multivariate method previously developed for tests of rare 

variant pleiotropy, as a potentially powerful approach for identifying common variant 

associations with multivariate psychiatric phenotypes such as those assessed using commonly 

administered psychiatric questionnaires like the PSS and BDI. Responses to items in these 

types of questionnaires are commonly summed or otherwise aggregated into a single, overall 

score, which is then analyzed using univariate techniques. However, for the realistic 

circumstance in which a genetic factor affects only a subset of the phenotypes assessed by the 

psychiatric questionnaire items, or affects the various phenotypes differently, the genetic effect 

may be very challenging to detect with univariate approaches that analyze a single, aggregated 

score.  

By analyzing simulated SNP genotypes within the gene LRFN5 and simulated 

responses for 21 BDI items, we have shown that GAMuT properly controls Type I error and that 

GAMuT’s joint modeling of the multivariate BDI items offers substantially greater power for 

detecting genetic associations than standard univariate methods like KMR and linear regression 

which analyze a single, cumulative score. GAMuT’s gain in power over univariate approaches 

was especially pronounced for scenarios in which only half of the questionnaire items or fewer 

were affected by the causal SNP. 

We then applied GAMuT, univariate KMR and standard linear regression to data 

accumulated by the GTP to examine associations of common variants in gene regions with both 

the PSS and BDI. We employed various genotype weighting schemes, demonstrating that the 

GAMuT framework is able to incorporate prior biological information that may facilitate 

identifying genetic associations. In these applied analyses, GAMuT identified a strong 

association between the PSS subscale for avoidance-numbing (PSS AvoidNumb) and SIRPA (p 
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= 2.07x10-6), which is a gene on chromosome 20 that shows high expression in the brain.83 

GAMuT also found a strong association between the BDI and a gene on chromosome 8 called 

ZHX2 (p = 2.73x10-6), which previous research suggests might be associated with autism 

spectrum disorder.94 In comparison, univariate KMR and linear regression did not identify the 

SIRPA gene or SNPs within SIRPA to be associated with PSS AvoidNumb, nor did they identify 

ZHX2 or SNPs within it to be associated with BDI, at even suggestive levels. These two genes 

require further, independent investigation before making any conclusions about their role in 

PTSD and depression symptomology. These applied analyses demonstrate through use of real-

world data the capacity for GAMuT to detect genotype-phenotype associations that would be 

missed using standard cumulative univariate approaches. 

As a powerful, computationally efficient method for detecting genetic associations with 

multivariate phenotype data, GAMuT has potential to facilitate the identification of robust 

common variant associations with psychiatric phenotypes, which have often evaded detection 

by traditional analytic approaches. It is worth noting that the GAMuT framework is also 

amenable to analyses of rare genetic variants and other omics data types like methylation data, 

and we expect the findings from this study to generalize to these other variant classes and data 

types. 

GAMuT is well-positioned to facilitate the types of investigations and analyses promoted 

by NIMH’s RDoC. As genetic studies of psychiatric phenotypes increasingly shift to the study of 

high-dimensional symptom data, in greater alignment with RDoC, multivariate methods like 

GAMuT are expected to grow in importance and use within the domain of psychiatric genetics 

research. The findings from this study support GAMuT as a method which can help meet this 

growing need for powerful multivariate analysis techniques. 

WEB RESOURCES 

R script for implementing the GAMuT method is available at https://github.com/epstein-software 
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SUPPLEMENT 

 

Supplementary Table 3.1. Full GAMuT results for PSS overall (17 items). Genes with p < 1x10-

4 identified in the GAMuT and KMR analyses are shown (p-values in bold). GAMuT and KMR 
utilized a linear genotype kernel (possibly weighted) for all analyses. For this PSS overall 
phenotype, standard linear regression identified no SNPs exceeding genome-wide significance, 
and only two SNPs with suggestive significance (p < 1x10-6): one SNP assigned to PRR15 (p = 
1.63x10-7) and one SNP assigned to MBTPS1 (p = 6.68x10-7). PGC MDD, PGC BPD, PGC SZ 
denote weights based on log odds ratios from the Psychiatric Genomics Consortium GWAS of 
major depressive disorder, bipolar disorder, and schizophrenia, respectively; MAF-based = 
weights based on minor allele frequencies of variants calculated using the Grady Trauma 
Project genotype data. 

 
	

Gene Chr 
Number 

of 
variants 

Genotype 
weights 

GAMuT Phenotypic 
Similarity Matrix 

KMR 

Linear 
Regression 
(minimum 
p-value of 

SNP in 
gene) 

Projection 
Matrix 

Linear 
Kernel 

TNFAIP3 6 296 PGC BPD 1.54x10-4 1.32x10-4 1.23x10-5 3.60x10-6 

PSEN2 1 36 PGC BPD 2.32x10-2 1.42x10-4 1.30x10-5 5.18x10-5 

ADAD1 4 

25 PGC SZ 1.34x10-5 3.76x10-2 9.22x10-2 1.16x10-2 

17 PGC BPD 4.71x10-5 6.75x10-2 9.78x10-2 1.16x10-2 

57 MAF-based 8.73x10-5 1.09x10-1 4.86x10-1 1.16x10-2 

ZNF410 14 
6 PGC MDD 1.10x10-1 4.24x10-4 1.47x10-5 1.05x10-5 

7 PGC SZ 2.15x10-1 1.79x10-3 7.36x10-5 1.05x10-5 

NFIC 19 33 PGC BPD 3.43x10-4 5.61x10-5 1.90x10-5 1.38x10-5 

BRUNOL5 19 38 PGC BPD 3.04x10-3 7.45x10-5 2.13x10-5 1.38x10-5 

CABC1 1 24 PGC BPD 7.03x10-3 1.33x10-4 2.63x10-5 5.18x10-5 

SMOX 20 76 PGC MDD 1.09x10-2 3.11x10-5 8.22x10-4 7.85x10-4 

RNF24 20 65 PGC MDD 1.10x10-2 3.12x10-5 8.19x10-4 7.85x10-4 

SHB 9 120 PGC MDD 2.36x10-3 3.69x10-5 3.91x10-4 1.67x10-3 
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OR2S2 9 56 No weights 2.72x10-1 4.37x10-5 8.74x10-5 5.54x10-5 

TSPAN19 12 
10 PGC MDD 1.34x10-1 1.40x10-3 4.46x10-5 4.55x10-5 

13 PGC BPD 8.87x10-2 9.50x10-4 5.05x10-5 4.55x10-5 

LOC1002894
85 12 

9 PGC MDD 1.35x10-1 1.40x10-3 4.51x10-5 4.55x10-5 

12 PGC BPD 9.00x10-2 9.51x10-4 5.03x10-5 4.55x10-5 

EPHB2 1 87 PGC BPD 6.82x10-2 5.73x10-4 4.65x10-5 6.05x10-5 

LOC256483 1 10 PGC SZ 1.18x10-2 1.47x10-3 5.27x10-5 4.43x10-5 

LTBP4 19 15 PGC MDD 5.31x10-5 1.37x10-1 4.29x10-1 5.46x10-2 

UROS 10 
10 PGC BPD 2.25x10-2 1.24x10-4 5.47x10-5 8.77x10-6 

12 PGC SZ 1.63x10-2 1.36x10-4 5.84x10-5 8.77x10-6 

CCDC66 3 22 PGC BPD 9.74x10-3 5.52x10-5 2.59x10-4 1.69x10-4 

SIPA1L3 19 54 PGC SZ 5.70x10-5 9.39x10-2 7.45x10-1 4.46x10-2 

LRIG3 12 301 PGC BPD 3.21x10-1 1.14x10-4 6.63x10-5 2.82x10-4 

GPR151 5 18 PGC MDD 6.83x10-5 3.81x10-2 4.59x10-2 6.88x10-3 

LOC286177 8 64 PGC BPD 2.11x10-1 1.48x10-3 6.84x10-5 5.26x10-6 

B4GALT7 5 5 PGC BPD 7.32x10-5 1.65x10-1 9.82x10-1 6.98x10-1 

PRG1 19 
8 PGC MDD 7.56x10-5 7.08x10-2 4.77x10-2 3.97x10-2 

9 PGC BPD 8.48x10-5 7.19x10-2 5.00x10-2 3.97x10-2 

PSG9 19 
8 PGC MDD 7.56x10-5 7.08x10-2 4.77x10-2 3.97x10-2 

9 PGC BPD 8.48x10-5 7.19x10-2 5.00x10-2 3.97x10-2 

SIRPA 20 73 PGC BPD 7.73x10-5 3.20x10-4 3.42x10-3 9.50x10-4 

PKIB 6 49 PGC MDD 8.62x10-5 3.67x10-2 3.09x10-1 1.33x10-2 

FABP7 6 21 PGC MDD 8.84x10-5 3.68x10-2 3.04x10-1 1.33x10-2 

IL2 4 161 MAF-based 9.57x10-5 6.23x10-2 3.94x10-1 3.29x10-2 

PSCA 8 16 PGC BPD 9.96x10-5 1.62x10-1 7.17x10-1 4.00x10-1 

	
	
	
	
	
	
  



 
 

 

86 

Supplementary Table 3.2. Full GAMuT results for PSS Intrusive (5 items). Genes with p < 
1x10-4 identified in the GAMuT and KMR analyses are shown (p-values in bold). GAMuT and 
KMR utilized a linear genotype kernel (possibly weighted) for all analyses. For this PSS 
Intrusive phenotype, standard linear regression identified no SNPs of suggestive significance (p 
< 1x10-6). PGC MDD, PGC BPD, PGC SZ denote weights based on log odds ratios from the 
Psychiatric Genomics Consortium GWAS of major depressive disorder, bipolar disorder, and 
schizophrenia, respectively; MAF-based = weights based on minor allele frequencies of variants 
calculated using the Grady Trauma Project genotype data. 

 
	

Gene Chr 
Number 

of 
variants 

Genotype 
weights 

GAMuT Phenotypic 
Similarity Matrix 

KMR 

Linear 
Regression 

(minimum p-
value of SNP 

in gene) 
Projection 

Matrix 
Linear 
Kernel 

SF3B3 16 18 PGC MDD 1.32x10-3 2.72x10-5 1.87x10-4 1.58x10-4 

TNFAIP3 6 296 PGC BPD 4.81x10-4 1.02x10-4 3.54x10-5 4.16x10-5 

CCDC66 3 22 PGC BPD 3.68x10-3 5.65x10-5 9.76x10-5 3.31x10-4 

SNX1 15 5 PGC BPD 8.68x10-4 6.14x10-5 1.69x10-4 1.64x10-4 

MAST2 1 32 No 
weights 9.01x10-3 3.92x10-3 6.62x10-5 7.25x10-5 

SMOX 20 76 PGC MDD 2.33x10-3 7.39x10-5 8.62x10-4 8.12x10-4 

RNF24 20 65 PGC MDD 2.34x10-3 7.40x10-5 8.62x10-4 8.12x10-4 

LRIG3 12 301 PGC BPD 4.55x10-2 1.22x10-3 7.93x10-5 5.18x10-4 

SLC22A5 5 49 No 
weights 2.45x10-4 9.48x10-5 1.05x10-4 2.02x10-5 

FAM13A 4 59 PGC MDD 7.37x10-4 9.87x10-5 4.29x10-3 1.73x10-3 
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Supplementary Table 3.3. Full GAMuT results for PSS AvoidNumb (7 items). Genes with p < 
1x10-4 identified in the GAMuT and KMR analyses are shown (p-values in bold). GAMuT and 
KMR utilized a linear genotype kernel (possibly weighted) for all analyses. For this PSS 
AvoidNumb phenotype, standard linear regression identified no SNPs exceeding genome-wide 
significance, and only three SNPs with suggestive significance (p < 1x10-6): one SNP assigned 
to PRR15 (p = 1.63x10-7), one SNP assigned to RORA (p = 3.59x10-7), and one assigned to 
APBB2 (p = 4.23x10-7). PGC MDD, PGC BPD, PGC SZ denote weights based on log odds 
ratios from the Psychiatric Genomics Consortium GWAS of major depressive disorder, bipolar 
disorder, and schizophrenia, respectively; MAF-based = weights based on minor allele 
frequencies of variants calculated using the Grady Trauma Project genotype data. ** denotes 
that the result exceeds the study-wise significance threshold. 

 
	

Gene Chr 
Number 

of 
variants 

Genotype 
weights 

GAMuT Phenotypic 
Similarity Matrix 

KMR 

Linear 
Regression 

(minimum p-
value of 
SNP in 
gene) 

Projection 
Matrix 

Linear 
Kernel 

SIRPA 20 73 PGC BPD 2.07x10-6 ** 7.74x10-5 4.06x10-4 2.11x10-4 

PDYN 20 
71 PGC BPD 5.78x10-6 1.31x10-4 6.87x10-4 2.11x10-4 

90 No 
weights 6.78x10-5 5.74x10-4 5.61x10-3 2.11x10-4 

CABC1 1 24 PGC BPD 5.35x10-3 1.25x10-4 1.27x10-5 5.34x10-5 

CCL4 17 
7 MAF-

based 1.98x10-5 6.97x10-2 6.38x10-1 2.18x10-1 

7 No 
weights 4.63x10-5 6.40x10-2 6.44x10-1 2.18x10-1 

FOXC1 6 
79 PGC MDD 5.62x10-3 1.98x10-5 2.34x10-4 1.68x10-4 

99 PGC BPD 5.51x10-3 2.46x10-5 4.12x10-4 1.68x10-4 

FOXF2 6 
80 PGC MDD 5.72x10-3 2.20x10-5 2.43x10-4 1.68x10-4 

102 PGC BPD 5.63x10-3 2.53x10-5 4.25x10-4 1.68x10-4 

CCDC66 3 
22 PGC BPD 1.04x10-3 8.67x10-5 2.80x10-5 1.62x10-5 

18 PGC MDD 2.14x10-2 4.34x10-4 7.73x10-5 1.62x10-5 

ZNF410 14 6 PGC MDD 1.25x10-2 1.65x10-4 2.95x10-5 3.57x10-5 

TNFAIP3 6 296 PGC BPD 6.96x10-4 8.95x10-4 3.16x10-5 5.60x10-6 

SHB 9 

120 PGC MDD 4.42x10-3 3.34x10-5 3.48x10-5 4.57x10-5 

159 MAF-
based 1.94x10-1 1.13x10-3 5.96x10-5 4.57x10-5 

159 No 
weights 1.45x10-1 1.29x10-3 7.28x10-5 4.57x10-5 

146 PGC SZ 4.72x10-2 4.15x10-4 7.48x10-5 4.57x10-5 
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PSEN2 1 36 PGC BPD 4.95x10-2 2.86x10-4 5.07x10-5 5.34x10-5 

TBX5 12 109 PGC MDD 7.38x10-5 4.60x10-3 1.40x10-1 1.10x10-2 

PROX1 1 267 PGC SZ 5.33x10-3 8.64x10-5 7.48x10-4 1.37x10-4 

RPL3 22 31 MAF-
based 4.06x10-3 8.96x10-5 1.00x10-3 2.76x10-4 

UROS 10 10 PGC BPD 5.45x10-3 9.01x10-5 1.11x10-4 1.61x10-5 

RBM17 10 37 No 
weights 2.58x10-3 9.22x10-5 7.79x10-4 2.38x10-3 

LRIG3 12 301 PGC BPD 8.30x10-2 6.91x10-4 9.27x10-5 5.55x10-5 

NAP1L5 4 9 MAF-
based 4.29x10-3 9.67x10-5 1.12x10-3 3.27x10-3 
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Supplementary Table 3.4. Full GAMuT results for PSS Hyperarousal (5 items). Genes with p < 
1x10-4 identified in the GAMuT and KMR analyses are shown (p-values in bold). GAMuT and 
KMR utilized a linear genotype kernel (possibly weighted) for all analyses. For this PSS 
Hyperarousal phenotype, standard linear regression identified no SNPs of suggestive 
significance (p < 1x10-6). PGC MDD, PGC BPD, PGC SZ denote weights based on log odds 
ratios from the Psychiatric Genomics Consortium GWAS of major depressive disorder, bipolar 
disorder, and schizophrenia, respectively; MAF-based = weights based on minor allele 
frequencies of variants calculated using the Grady Trauma Project genotype data. 

 
	

Gene Chr 
Number 

of 
variants 

Genotype 
weights 

GAMuT Phenotypic 
Similarity Matrix 

KMR 

Linear 
Regression 
(minimum 
p-value of 

SNP in 
gene) 

Projection 
Matrix 

Linear 
Kernel 

GLTSCR1 19 35 PGC SZ 8.59x10-3 2.63x10-4 1.38x10-5 2.61x10-4 

SMOX 20 76 PGC MDD 6.88x10-4 1.79x10-5 5.57x10-5 5.31x10-5 

RNF24 20 65 PGC MDD 6.94x10-4 1.80x10-5 5.58x10-5 5.31x10-5 

GPC1 2 103 No 
weights 7.31x10-4 3.12x10-5 1.03x10-3 1.79x10-3 

NFIC 19 33 PGC BPD 3.05x10-4 1.09x10-4 3.21x10-5 2.53x10-5 

BRUNOL5 19 38 PGC BPD 1.12x10-3 1.04x10-4 3.47x10-5 2.53x10-5 

OTOS 2 104 No 
weights 9.31x10-4 3.58x10-5 1.16x10-3 1.79x10-3 

LOC10028
7311 19 7 PGC MDD 5.31x10-4 5.85x10-5 4.79x10-3 4.33x10-3 

PDE1C 7 287 PGC SZ 1.05x10-2 1.52x10-3 6.61x10-5 3.17x10-4 

OR2S2 9 56 No 
weights 4.05x10-2 6.72x10-5 1.19x10-4 2.53x10-5 

CAMTA1 1 231 PGC MDD 7.16x10-5 4.87x10-2 3.31x10-1 2.33x10-2 

EPHB2 1 87 PGC BPD 1.05x10-2 2.34x10-4 8.54x10-5 4.38x10-5 

LBH 2 97 PGC SZ 9.75x10-5 3.96x10-4 2.76x10-3 7.08x10-5 
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Supplementary Table 3.5. Full GAMuT results for BDI (21 items). Genes with p < 1x10-4 
identified in the GAMuT and KMR analyses are shown (p-values in bold). GAMuT and KMR 
utilized a linear genotype kernel (possibly weighted) for all analyses. For this BDI phenotype, 
standard linear regression identified no SNPs of suggestive significance (p < 1x10-6). PGC 
MDD, PGC BPD, PGC SZ denote weights based on log odds ratios from the Psychiatric 
Genomics Consortium GWAS of major depressive disorder, bipolar disorder, and schizophrenia, 
respectively; MAF-based = weights based on minor allele frequencies of variants calculated 
using the Grady Trauma Project genotype data. ** denotes that the result exceeds the study-
wise significance threshold. 

 
	

Gene Chr 
Number 

of 
variants 

Genotype 
weights 

GAMuT Phenotypic 
Similarity Matrix 

KMR 

Linear 
Regression 
(minimum 
p-value of 

SNP in 
gene) 

Projection 
Matrix 

Linear 
Kernel 

ZHX2 8 
97 PGC SZ 1.64x10-2 2.73x10-6 ** 4.42x10-4 1.00x10-3 

76 PGC MDD 5.41x10-3 8.59x10-6 1.36x10-3 1.00x10-3 

SLC2A4 17 6 PGC MDD 1.88x10-5 2.22x10-2 3.78x10-1 2.86x10-1 

BRWD2 10 147 PGC MDD 3.91x10-5 3.13x10-4 2.16x10-3 2.27x10-3 

C10orf85 10 80 PGC MDD 5.04x10-5 3.47x10-4 2.29x10-3 2.27x10-3 

PAXIP1 7 
15 MAF-

based 2.76x10-2 1.21x10-3 5.37x10-5 1.34x10-4 

15 No 
weights 9.29x10-3 1.39x10-3 8.27x10-5 1.34x10-4 

PIK3CG 7 143 PGC SZ 5.59x10-5 1.07x10-1 4.09x10-1 6.27x10-3 

FLJ36031 7 219 PGC SZ 5.95x10-5 1.71x10-1 1.83x10-1 1.65x10-3 

LRP1B 2 620 PGC MDD 2.49x10-2 2.06x10-4 6.76x10-5 1.10x10-3 

TXNIP 1 
11 MAF-

based 6.81x10-5 1.77x10-1 2.01x10-1 6.59x10-2 

11 No 
weights 7.60x10-5 1.38x10-1 2.08x10-1 6.59x10-2 

FAM43A 3 115 PGC BPD 1.69x10-1 7.35x10-5 4.15x10-4 2.27x10-5 

NUP214 9 19 MAF-
based 5.49x10-1 7.97x10-5 5.16x10-3 5.57x10-3 

E2F6 2 29 PGC MDD 3.37x10-2 9.45x10-5 4.91x10-2 3.32x10-2 

GUK1 1 6 PGC SZ 1.64x10-1 9.54x10-5 5.52x10-3 2.34x10-3 

SLC22A5 5 38 PGC SZ 4.63x10-3 9.69x10-5 3.20x10-3 3.98x10-4 
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Supplementary Figures 3.1a-3.1d. Application of GAMuT, univariate KMR, and standard linear 
regression to overall PSS (17 items). Supplementary Figure 3.1a includes plots for the GAMuT 
analyses that used a projection matrix to model phenotypic similarity, showing the results for 
each genotype weighting method. In the Manhattan plots, the red line represents the study-wise 
significance threshold (based on a Bonferroni correction for the number of genes tested), and 
the blue line represents the suggestive significance threshold. Supplementary Figure 3.1b 
provides analogous GAMuT results using a linear kernel for the phenotype. Supplementary 
Figures 3.1c and 3.1d show results from the corresponding univariate KMR (gene-level testing) 
and linear regression (SNP-level testing) analyses. 

 

 

Supplementary Figure 3.1a. Overall PSS (17 items), GAMuT with Projection Matrix for 
modeling phenotypic similarity 
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Supplementary Figure 3.1b. Overall PSS (17 items), GAMuT with Linear Kernel for modeling 
phenotypic similarity 
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Supplementary Figure 3.1c. Overall PSS (cumulative score), univariate KMR 

 

 

Supplementary Figure 3.1d. Overall PSS (cumulative score), standard linear regression 
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Supplementary Figures 3.2a-3.2d. Application of GAMuT, univariate KMR, and standard linear 
regression to PSS Intrusive (5 items). Supplementary Figure 3.2a includes plots for the GAMuT 
analyses that used a projection matrix to model phenotypic similarity, showing the results for 
each genotype weighting method. In the Manhattan plots, the red line represents the study-wise 
significance threshold (based on a Bonferroni correction for the number of genes tested), and 
the blue line represents the suggestive significance threshold. Supplementary Figure 3.2b 
provides analogous GAMuT results using a linear kernel for the phenotype. Supplementary 
Figures 3.2c and 3.2d show results from the corresponding univariate KMR (gene-level testing) 
and linear regression (SNP-level testing) analyses. 

 
 

Supplementary Figure 3.2a. PSS Intrusive (5 items), GAMuT with Projection Matrix for 
modeling phenotypic similarity 
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Supplementary Figure 3.2b. PSS Intrusive (5 items), GAMuT with Linear Kernel for modeling 
phenotypic similarity 
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Supplementary Figure 3.2c. PSS Intrusive (cumulative score), univariate KMR 

 

 

 

Supplementary Figure 3.2d. PSS Intrusive (cumulative score), standard linear regression 
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Supplementary Figures 3.3a-3.3d. Application of GAMuT, univariate KMR, and standard linear 
regression to PSS AvoidNumb (7 items). Supplementary Figure 3.3a includes plots for the 
GAMuT analyses that used a projection matrix to model phenotypic similarity, showing the 
results for each genotype weighting method. In the Manhattan plots, the red line represents the 
study-wise significance threshold (based on a Bonferroni correction for the number of genes 
tested), and the blue line represents the suggestive significance threshold. Supplementary 
Figure 3.3b provides analogous GAMuT results using a linear kernel for the phenotype. 
Supplementary Figures 3.3c and 3.3d show results from the corresponding univariate KMR 
(gene-level testing) and linear regression (SNP-level testing) analyses. 

 
 

Supplementary Figure 3.3a. PSS AvoidNumb (7 items), GAMuT with Projection Matrix for 
modeling phenotypic similarity 
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Supplementary Figure 3.3b. PSS AvoidNumb (7 items), GAMuT with Linear Kernel for 
modeling phenotypic similarity 
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Supplementary Figure 3.3c. PSS AvoidNumb (cumulative score), univariate KMR 

 

 

 

Supplementary Figure 3.3d. PSS AvoidNumb (cumulative score), standard linear regression 
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Supplementary Figures 3.4a-3.4d. Application of GAMuT, univariate KMR, and standard linear 
regression to PSS Hyperarousal (5 items). Supplementary Figure 3.4a includes plots for the 
GAMuT analyses that used a projection matrix to model phenotypic similarity, showing the 
results for each genotype weighting method. In the Manhattan plots, the red line represents the 
study-wise significance threshold (based on a Bonferroni correction for the number of genes 
tested), and the blue line represents the suggestive significance threshold. Supplementary 
Figure 3.4b provides analogous GAMuT results using a linear kernel for the phenotype. 
Supplementary Figures 3.4c and 3.4d show results from the corresponding univariate KMR 
(gene-level testing) and linear regression (SNP-level testing) analyses. 

 
 

Supplementary Figure 3.4a. PSS Hyperarousal (5 items), GAMuT with Projection Matrix for 
modeling phenotypic similarity 
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Supplementary Figure 3.4b. PSS Hyperarousal (5 items), GAMuT with Linear Kernel for 
modeling phenotypic similarity 
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Supplementary Figure 3.4c. PSS Hyperarousal (cumulative score), univariate KMR 

 

 

 

Supplementary Figure 3.4d. PSS Hyperarousal (cumulative score), standard linear regression 
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Supplementary Figures 3.5a-3.5d. Application of GAMuT, univariate KMR, and standard linear 
regression to BDI (21 items). Supplementary Figure 3.5a includes plots for the GAMuT analyses 
that used a projection matrix to model phenotypic similarity, showing the results for each 
genotype weighting method. In the Manhattan plots, the red line represents the study-wise 
significance threshold (based on a Bonferroni correction for the number of genes tested), and 
the blue line represents the suggestive significance threshold. Supplementary Figure 3.5b 
provides analogous GAMuT results using a linear kernel for the phenotype. Supplementary 
Figures 3.5c and 3.5d show results from the corresponding univariate KMR (gene-level testing) 
and linear regression (SNP-level testing) analyses. 

 
 

Supplementary Figure 3.5a. BDI (21 items), GAMuT with Projection Matrix for modeling 
phenotypic similarity 
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Supplementary Figure 3.5b. BDI (21 items), GAMuT with Linear Kernel for modeling 
phenotypic similarity 
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Supplementary Figure 3.5c. BDI (cumulative score), univariate KMR 

 

 

 

Supplementary Figure 3.5d. BDI (cumulative score), standard linear regression 
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Chapter 4:  

Investigating the association of rare regulatory variation and gene expression among 
genes with schizophrenia-associated expression levels 
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Abstract 

 
Background: Schizophrenia is known to involve a substantial genetic component, with 

contributions to risk made by both common (MAF > 0.01) and rare (MAF < 0.01) genetic 

variants. In recent years, numerous genes have been identified to have expression levels that 

are associated with schizophrenia, potentially playing a role in the causal pathway leading to 

this disorder. It is likely that genetic factors are involved in regulating the expression of these 

genes, with rare regulatory variants perhaps having especially large effects on gene expression 

levels. However, investigations of rare regulatory variation in relation to gene expression have 

been limited, particularly for genes with SZ-associated expression. We sought to help fill this 

research gap, employing next generation DNA and RNA sequencing and a modified version of a 

recently developed burden approach to more powerfully examine associations of rare regulatory 

variants with gene expression levels for genes with SZ-associated expression. 

 

Methods: Our analytic sample consisted of 725 individuals, including 355 schizophrenia cases 

and 370 controls. These individuals had undergone targeted DNA sequencing for 64 genes 

previously identified to have schizophrenia-associated expression and 172 gene regions located 

within or near schizophrenia-associated large CNV intervals. They had also undergone 

genome-wide RNA sequencing. We analyzed these data using a modified version of a burden 

method that was recently developed for the specific purpose of increasing power for 

investigating rare regulatory variant associations with gene expression. We used this approach 

to examine associations of rare promoter, 5’UTR and 3’UTR variants with gene expression 

levels for our set of schizophrenia-associated genes. 
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Results: We consistently observed U-shaped patterns of estimated association between rare 

regulatory allele burden and gene expression, whereby rare regulatory alleles were most likely 

to be observed at the extremes (low and high) of gene expression. We also observed a 

consistent tendency for the U-shaped estimated associations to be more pronounced when 

limiting analyses to the rarest variants (MAF < 0.001), variants more likely to be deleterious 

(CADD ≥ 5), and when only considering variants in the 5’UTR. As one example, when analyzing 

genes with SZ-associated expression, and considering only 5’UTR variants with MAF < 0.001 

and CADD ≥ 5, we observed a U-shaped estimated association between rare regulatory allele 

burden and gene expression, with OR = 0.56 (95% CI: 0.33, 0.97) for the odds of observing a 

rare allele at a medium expression level versus the lowest expression level. Additional analyses 

revealed that estimated associations between rare regulatory variants and gene expression 

were weaker for genes intolerant to LoF or missense variation as compared with genes tolerant 

to these variant types, possibly reflecting selection against variants with strong influences on 

expression for highly constrained genes.  

 

Conclusions: Our findings are consistent with a potential effect of rare regulatory variants on 

the expression levels of genes with SZ-associated expression, whereby rare regulatory alleles 

may cause decreased or increased expression. Our results also suggest that such effects might 

be particularly strong for variants that are rarer, more likely deleterious, and located in the 

5’UTR. Although many of our estimates were rather imprecise, their plausibility is supported by 

prior studies. Future research that considers a larger number of genes and/or employs larger 

sample sizes will enable more accurate and precise association estimates.  
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INTRODUCTION 

Schizophrenia (SZ) is a chronic and severe psychiatric disorder characterized by 

delusions, hallucinations, disorganized speech or behavior, as well as other symptom 

manifestations.6 It causes substantial functional impairment, and is associated with a greatly 

elevated risk for suicide.6,95 SZ has a lifetime risk of ~1% in the general population, thus 

impacting substantial numbers of individuals.6 With an estimated heritability of ~80%, genetic 

factors play a particularly important role in SZ.17,18 Investigation of the genetics underlying SZ, 

including the biological pathways through which genetic factors increase SZ risk, is therefore 

important to gain a better understanding of its etiology and to facilitate identification of novel 

biological targets for treatment and prevention. 

Both common (minor allele frequency [MAF] > 1%) and rare (MAF < 1%) genetic 

variants are known to contribute to SZ, though the role of common variation has been more 

extensively and robustly investigated and is better characterized as compared with the role of 

rare variants. At present, it is estimated that common variants collectively explain one-quarter to 

one-third of SZ risk variance, acting through a polygenic component whereby hundreds to 

thousands of common variants with exceedingly small individual effects contribute to SZ en 

masse.19 Common variants thus make an important contribution to SZ risk, yet appear to 

account for only a minority of SZ’s ~80% heritability. It is thought that the remaining heritability 

(sometimes termed the “missing heritability”) may be largely explained by rare variants. Known 

associations between rare variants and SZ include at least nine rare, large (> 100kb) copy 

number variants (CNVs, which are genomic deletions or duplications at least 1 kilobase in size) 

that have been identified as strongly associated with SZ, with odds ratios ranging from 2 to > 

40.20-23 Smaller rare variants, including single nucleotide variants (SNVs), are also expected to 

contribute to SZ risk. However, progress in characterizing the role played by such genetic 

variants has been slow due to the need for large sample sets with DNA sequencing data to 

have sufficient power and genomic interrogation for identifying rare variant associations. Large-
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scale studies employing DNA sequencing approaches for rare variant investigation have only 

recently become more feasible with the introduction and decreasing costs of next generation 

sequencing (NGS).96 

Genetic variants, both common and rare, likely affect SZ risk in part by regulating gene 

expression. Over the past several years, numerous genes have been identified as having 

expression (i.e., transcription) levels that are associated with SZ.14-16 For instance, a meta-

analysis of results from differential expression analyses of two independent SZ case-control 

studies identified 647 genes differentially expressed by affection status.15 Another study 

examined enrichment of SZ cases (versus controls) within the extreme tails of a gene’s 

expression distribution (> 2 standard deviations from the expression mean), and identified 

numerous genes for which extremes of expression were associated with SZ.14 These studies 

examined gene expression using tissue from lymphoblastoid cell lines (LCLs), which the 

investigators note are expected to be fairly removed from environmental and state aspects of 

the individual, in theory increasing the likelihood that any causal pathway is directed from gene 

expression to SZ and not vice versa.  

The role of various factors in modifying the expression levels of these genes with SZ-

associated expression is presently not well understood, and is important to investigate to 

advance knowledge of the upstream elements that may affect SZ through modification of 

expression levels. While numerous factors, both biological and environmental, are known to 

affect gene expression, genetic factors are particularly important to consider for the set of genes 

with SZ-associated expression levels, given the prominent role of genetics in SZ risk. Common 

variants are known to affect gene expression for many genes across the genome;24 and many 

of the more than 100 individual common variants that have been identified as robustly 

associated with SZ are located in non-coding sequences and have been found to be associated 

with the expression of nearby genes.19,97 Rare variants have the potential to exert larger 

influences on expression, but have been much less well studied in relation to gene expression, 
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both for genes with SZ-associated expression and for genes overall. This is in large part due to 

the technological and power (related to sample size) limitations mentioned above. Furthermore, 

rare regulatory variants in particular have been understudied, due a greater emphasis 

historically on identifying rare coding variants versus regulatory variants, as well as the poorer 

characterization of regulatory regions as compared with coding regions. 

A small number of studies have investigated associations of rare non-coding variants 

with gene expression (sometimes defining rare as MAF < 0.05 rather than the current standard 

definition of rare as MAF < 0.01).25-29 These studies have yielded findings consistent with a role 

for rare regulatory variants in modifying gene expression. Investigations specifically focused on 

the contribution of rare regulatory variants to gene expression variation for genes with SZ-

associated expression have been more limited. One such investigation (to our knowledge, the 

only study examining associations of rare regulatory variants with SZ-associated expression 

levels) focused on 17 genes with SZ-associated expression based on having expression outliers 

(individuals with expression levels > 2 standard deviations from the mean expression level) 

enriched for SZ cases as compared with controls.14 For these 17 genes, the researchers 

examined whether the subjects with outlier expression levels (expression levels > 2 SD from the 

mean) were enriched for rare variants within coding and regulatory sequences (DNase I 

hypersensitive sites within 50 kb upstream of the gene) as compared with non-outlier subjects. 

They found that, compared with coding variants, rare putative regulatory variants showed the 

strongest association with being an expression outlier, with 7/17 genes showing nominally 

significant associations. This study involved a small sample size, including only 157 SZ cases 

and 118 controls. To more thoroughly examine associations of rare regulatory variants with 

expression for genes with SZ-associated expression levels, larger sample sizes are needed. In 

addition, the use of analytical approaches that are specifically designed to increase power for 

identifying rare variant associations with gene expression is warranted. 
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For this study, we had a main objective of investigating the contribution of rare regulatory 

variants to gene expression for genes with SZ-associated expression levels. With this objective 

in mind, we set out to analyze two independent datasets derived from SZ case-control studies, 

one with 725 samples (a combination of 355 SZ cases and 370 controls) and the other with 400 

samples (a combination of 265 SZ cases and 135 controls). All samples had undergone 

targeted DNA sequencing of 1) exonic and regulatory sequence (including 2,000 bases 

upstream of the first exon) for 64 genes previously identified as having SZ-associated 

expression levels, and 2) exonic sequence for 172 genes and gene fusions (regions spanning 

two or more genes) with prior evidence for involvement in SZ due to being located within or in 

close proximity to a SZ-associated large CNV interval. They had also all undergone genome-

wide expression profiling, with RNA sequencing employed for the sample set of 725 individuals 

and microarray profiling used for the sample set of 400. We sought to analyze these datasets 

separately and then perform meta-analyses. 

Efforts to identify rare variant associations using analytical methods that have 

traditionally been employed for studying common variant associations (e.g., genome-wide 

association studies, expression quantitative trait loci [eQTL] studies) tend to suffer from low 

power, both due to the very low frequency of the rare variants and the massive multiple testing 

burden corresponding to individually testing rare variants that theoretically may be present at 

any base in the genome. To address these challenges, investigators often employ methods 

such as burden tests or the sequence kernel association test (SKAT),74 which are approaches 

that group rare variants together by region (e.g., by gene) and test these variant sets for 

association with a phenotype. This has the dual benefit of testing the aggregate effects of many 

rare variants within a region, which should facilitate identification of associations, and also 

reducing the multiple testing burden in comparison with testing each rare variant individually. 

Against this background of variant set approaches for investigating rare variant associations, a 

unique burden approach was recently developed for examining associations of rare genetic 
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variation specifically with gene expression. This approach, originally described in Zhao et al. 

(2016),27 first assigns rare alleles within a gene region to ordered expression bins (ranging from 

low to high) for the gene, and then gains substantial power by aggregating rare alleles for each 

expression bin across all genes being considered and examining association of rare allele 

burden with gene expression level for this aggregated dataset. We have employed this 

approach, making certain modifications as detailed in the Methods section below, to more 

powerfully examine associations of rare regulatory variants with gene expression for our set of 

genes with SZ-associated expression. We have specifically considered rare variants located 

within gene promoter regions, as well as those in the 5’ untranslated region (5’UTR) or the 3’ 

untranslated region (3’UTR). 

 In addition to analyzing the set of genes with SZ-associated expression levels, we 

decided to perform analyses that incorporated the larger set of genes that were targeted for 

sequencing due to being located within or near a large SZ-associated CNV interval. These 

CNVs are genomic deletions or duplications, implying that reduced or increased transcript 

dosages for certain genes within these CNV intervals are important contributors to SZ risk. 

Consistent with this, prior research has found that for genes located within SZ-associated CNV 

intervals, low outlier expression levels (> 2 SD below mean expression) are more frequently 

observed among SZ cases as compared with controls.14 Genes within SZ-associated CNV 

regions therefore seem likely to be enriched for genes with transcript dosage that is associated 

with SZ. Considering this, grouping the 64 genes with SZ-associated expression together with 

the 172 genes located within or near SZ CNV intervals is expected to yield an overall gene set 

enriched with genes for which expression level is associated with SZ. Analysis of this larger, 

overall gene set, which is better powered for examining rare regulatory variant associations with 

gene expression levels, should therefore yield informative results with regard to the association 

of rare regulatory variants with SZ-linked expression levels, which supplement the analyses that 

strictly focus on the 64 genes previously identified to have SZ-associated expression. Analysis 
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of the overall gene set should also be informative with respect to the association between rare 

regulatory variants and gene expression more broadly, as such investigations have been limited 

to date. 

 

METHODS 

Data sources 

Analyses were carried out using data from the Molecular Genetics of Schizophrenia 

(MGS) case-control sample, which was assembled during the mid 2000’s.98 The MGS study 

includes genetic (GWAS) and phenotypic data for 8,257 samples. Of these, 3,503 samples with 

European ancestry have undergone targeted DNA sequencing (by Emory University and 

NorthShore University HealthSystem), and a partially overlapping set of 2,171 samples with 

European ancestry have undergone RNA sequencing or microarray expression profiling. We 

have analyzed samples with targeted DNA sequencing data, expression data, and genome-

wide SNP data to examine associations between rare regulatory variation and gene expression. 

MGS Cases: Cases were recruited at 9 sites in the U.S. and 1 site in Australia, and were 

identified through clinics, hospitals, physician referrals, advocacy organizations, and media 

advertisements. They were 18 or older with a primary diagnosis of 1) DSM-IV SZ or 2) DSM-IV 

schizoaffective disorder with at least six months of meeting DSM Criterion A for SZ (e.g., 

delusions, hallucinations). The inclusion of individuals with schizoaffective disorder and a 

prolonged period of SZ Criterion A symptoms is standard in SZ genetics research, as it enables 

recruitment of the full range of SZ presentations, including those with and without concurrent 

mood symptoms (schizoaffective and SZ cases, respectively).98 We refer to all cases as SZ 

cases (following standard practice). For each participant, two senior clinicians independently 

assigned diagnoses based on clinical information gathered through interview using the 

Diagnostic Interview for Genetic Studies, Family History Interview for Genetic Studies, and 
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medical records. Inclusion as a SZ case required consensus diagnoses by the two clinicians. 

Subjects with moderate or severe mental disability were ineligible, as were subjects who did not 

consent to provide a blood sample. In all, 2,873 SZ cases of European ancestry were recruited, 

of which 2,681 remained following GWAS quality control filters to form the final European 

ancestry case group for the MGS sample.  

MGS Controls: Controls were drawn from a nationally representative online participant 

panel assembled by a survey and marketing research company. Participants in the panel were 

recruited from across the U.S., including from case recruitment areas, through random-digit 

dialing of residential phone numbers. In total, a member from 30% of targeted households 

joined the participant panel. Communication with panel members was performed via internet, 

but initial recruitment did not require internet access; web-based equipment was provided to 

participants lacking internet access. Additionally, weighting techniques were applied to reduce 

bias due to nonresponse and non-sampling of residences without telephones. The final online 

participant panel was representative of the U.S. population in terms of important demographic 

dimensions including age, sex, race/ethnicity, education, and urban/rural residence. Out of 

approximately 60,000 individuals of European ancestry in the panel, 15,485 were randomly 

selected and sent information about participation in the MGS study, of which 3,364 (21.7%) 

completed the required self-report clinical assessment and blood draw. Weighting adjustments 

were applied to this group of 3,364 individuals to reduce non-sampling error. Individuals who 

endorsed or did not answer items assessing SZ, schizoaffective disorder, bipolar disorder, 

hallucinations, or delusions were then excluded, as were individuals who were outliers in the 

number of missing items (4 or more missing items out of 69 items) or in the number of “yes” 

responses (50 or more “yes” responses out of 69 items), which reduced the sample of 3,364 by 

approximately 8%. A small portion of the remaining individuals had been studied previously by 

the MGS investigators, and were known to have biological samples that performed poorly or 

were known to be ancestral outliers based on ancestry-informative genotype data. These 
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individuals were also excluded, leaving 2,817 for GWAS genotyping. Subsequent GWAS quality 

control procedures resulted in 2,653 European ancestry controls remaining for the final MGS 

sample. A flowchart of the control selection process is shown in Figure 4.1.  

Figure 4.1. Flowchart demonstrating selection of 
European ancestry controls. 

 

Targeted DNA sequencing: From the set of 2,681 European-ancestry cases, 1,962 were 

randomly selected for DNA sequencing; and from the set of 2,653 European-ancestry controls, 

1,536 were randomly selected for DNA sequencing. These randomly selected samples 

underwent targeted DNA sequencing for 172 genes and gene fusions (regions spanning two or 

more genes) with prior evidence for involvement in SZ due to being located within or near a SZ-

associated large CNV interval (see Table 4.1); sequencing was performed for all exons within 

these genes, including 5’UTR and 3’UTR sequence. Targeted DNA sequencing was also 

performed for 64 genes with heightened probability for involvement in SZ due to exhibiting gene 

expression levels associated with SZ based on prior studies.14,16 For these 64 genes, all exons 

were sequenced, and sequencing was also performed for the genomic interval spanning the 

transcription start site (TSS) to 2 kilobases (kb) upstream of the TSS (promoter sequence). 

15,485	 Targeted	for	recruitment

3,364	 Completed	 self-report
assessment	&	blood	draw

2,817	 Remained	for	genotyping	after	exclusions
(SZ-related	history,	questionnaire	outliers/	missing
items,	known	poor	sample	or	ancestral	outlier)	

2,653	 Passed	GWAS	QC	filters	–
Final	MGS	control	group

1,536	 Randomly	selected	for	sequencing	–
Dissertation	control	group
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Targeted DNA sequencing was carried out with an Illumina Hi-Seq 2000 instrument in ten 

separate batches, including a pilot batch and 9 batches with approximately 384 samples each. 

 

Table 4.1. SZ-associated CNV intervals containing 172 genes sequenced. 

CNV  
Interval 

Variant  
Type 

Size # Genes SZ Odds Ratio 
(95% CI) 

1q21.1 Deletion 1.35 Mb 10 8.35 (4.65-14.99)21 
3q29 Deletion 1.6 Mb 23 41.1 (5.6-1,953.6)22 

7q11.23 Duplication 1.5 Mb 29 10.78 (1.46-79.62)23 
15q13.3 Deletion 1.58 Mb 8 7.52 (3.98-14.19)21 
16p11.2 Duplication 600 kb 31 11.52 (6.86-19.34)21 
22q11.2 Deletion 1.6 or 3 Mb 70 INF (28.27-INF)21 

CNTNAP2 Deletion 220 kb 1 n.d.    
172 

 

 

RNA profiling: A subset of the 2,681 European-ancestry cases and the 2,653 European-

ancestry controls (i.e., the final MGS GWAS dataset) was previously selected for microarray 

expression profiling.16 Specifically, Illumina HT-12v4 microarrays were used to obtain 

expression profiles based on LCLs. Previous examination of these microarray expression data 

indicated good data quality, with mean correlations of 0.99 and 0.98 for expression level among 

technical and biological replicates, respectively. Microarray expression profiles for the previously 

analyzed set of 859 samples (413 SZ cases and 446 controls) were accessed through dbGaP 

following required approvals. 

A subset of the European-ancestry cases and controls in the final MGS GWAS dataset 

was also previously selected for expression profiling using RNA sequencing technology.14,15 

This RNA sequencing subset largely did not overlap with the microarray expression samples 

(intentionally). For this RNA sequencing dataset, the investigators note that both the case group 

and control group were selected to have approximately equal proportions of females and males, 

and that cases and controls were roughly matched based on 5-year age brackets, with the goal 

of reducing confounding for their analyses. Sequencing was carried out on LCLs using an 
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Illumina Hi-Seq 2000 to a depth of 10 million reads per sample, generating 50-bp single-ended 

reads. Previous examination of these data found mean correlations of ~0.99 for expression level 

among technical and biological replicates, indicating high data quality.14 FASTQ files containing 

raw RNA sequence reads for the previously analyzed set of 1,381 samples (657 SZ cases and 

724 controls) are available through the National Center for Biotechnology Information’s (NCBI) 

Database of Genotypes and Phenotypes (dbGaP), and were downloaded following approval of 

our data accession request.  

Although we had the impression that the microarray expression samples and the RNA 

sequencing samples likely were selected from the final MGS GWAS dataset through random 

selection processes (random other than the gender and age matching employed for the RNA 

sequencing dataset), we were unable to confirm this. Concerns related to the impact of non-

random selection on our results are addressed in a later section. 

Figure 4.2 below depicts the overlap between the final MGS European-ancestry GWAS 

dataset, the targeted DNA sequenced samples, the RNA sequenced samples, and the samples 

with microarray expression profiles. 
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Figure 4.2. Overlap in samples between four datasets: the final MGS European-ancestry 
GWAS dataset, the targeted DNA sequenced samples, the RNA sequenced samples, and the 
samples with microarray expression profiles. 

 

 
 

Processing and QC of targeted DNA sequencing and expression datasets 

Targeted DNA sequencing dataset 

Sample processing and QC 

We mapped the raw targeted DNA sequencing reads for 3,503 samples to the human 

genome (hg38) using PEMapper.42 Note that this is 5 more samples than the 3,498 total 

targeted DNA sequenced samples described above. We were unsuccessful in linking 5 of the 

3,503 DNA sequenced samples back to their corresponding phenotype and covariate data, and 

therefore above we describe the case-control breakdown for 3,498 targeted sequenced 

samples.  

We then called variant sites using PECaller.42 We first excluded 85 samples with mean 

or median coverage < 10x. Due to observed variation in average coverage level across different 

Targeted DNA sequence: 3,498 samples
• 1,962 cases
• 1,536 controls

MGS EA GWAS: 5,334 samples
• 2,681 cases
• 2,653 controls

RNAseq: 1,381 samples
• 657 cases
• 724 controls

Microarray expression: 859 samples
• 413 cases
• 446 controls

904 samples
• 472 cases
• 432 controls

26 samples
• 4 cases
• 22 controls

468 samples
• 319 cases
• 149 controls
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sequencing batches, we then grouped samples by coverage decile and batch-called samples 

separately for each of these groupings, including approximately equal numbers of samples in 

each coverage decile grouping. We subsequently merged the called datasets, yielding a single 

dataset with 3,418 samples and 24,463 variant sites. We set any genotypes with confidence 

score < 95% to missing.  

Among these 3,418 samples, we removed 92 with genotype completion rate less than 3 

standard deviations (SD) below the mean. We also removed 22 samples that were apparent 

duplicates with another targeted sequencing sample based on sharing 2 alleles identical-by-

state (IBS2) for ≥ 90% of sites.  

As a further quality check, we examined concordance between samples in the targeted 

DNA sequence dataset and those in the MGS GWAS dataset (recall that the former samples 

are a subset of the latter). We merged these datasets, limiting sites to up to ~180 high-quality 

overlapping variants with MAF > 1%. Using both custom scripts and PLINK1.944 functions, we 

computed IBS2 for all sample pairs, specifying IBS2 proportion ≥ 90% as indicating a genetic 

match (i.e., same sample). This process identified 56 sample pairs involving a targeted 

sequencing dataset sample and a GWAS dataset sample that were genetic matches but that 

were not expected to be matches based on sample ID. We also identified 10 instances in which 

the targeted sequencing and GWAS samples were expected to match based on sample ID, yet 

were not genetic matches. We excluded the targeted sequenced sample involved in each of the 

66 discordant instances. 

We performed additional sample QC based on various sample-level metrics computed 

by the annotation program Bystro.43 We excluded 40 samples with heterozygosity/homozygosity 

ratio beyond +/- 3 SD from the mean; 1 sample with silent/replacement ratio < 3 SD below the 

mean; 2 samples with theta < 3 SD below the mean; 1 sample with transition/transversion ratio 

< 3 SD below the mean; and 3 samples with heterozygosity/homozygosity ratio < 1.6 who were 
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also a 3 SD outlier on another Bystro metric (one sample with high transition/transversion; one 

with low exonic theta; and one with high silent/replacement). 

We used the GWAS dataset corresponding to our targeted sequenced samples to 

identify and remove 6 samples with discordant reported and inferred sex. We used PLINK’s --

check-sex to infer natal sex from inbreeding coefficients from both X and Y chromosome data. 

We also used the GWAS data to confirm that, after removing the sample duplicates mentioned 

above, no additional targeted sequenced samples required removal due to excessive 

relatedness with another sample (i.e., all sample pairs had IBD proportion < 0.1875). In the 

process of performing this sample QC, we also identified 5 targeted sequencing samples that 

we were unable to successfully map to phenotype and covariate data (as mentioned 

previously). We therefore excluded these 5 samples.  

These various QC steps left 3,180 high-quality targeted sequencing samples for 

analysis. We confirmed European ancestry for these post-QC samples by anchoring this 

targeted sequencing dataset to the HapMap3 dataset, constructing principal components (PCs) 

for all samples, and plotting PC1 versus PC2 for all samples. All of the targeted sequencing 

samples clearly clustered on or very near the HapMap3 CEPH/Utah (CEU) cluster, confirming 

European ancestry for this targeted sequencing dataset (see Figure 4.3 below). Table 4.2 

offers a summary of the steps leading to our final set of 3,180 samples. 
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Figure 4.3: PCA plot for post-QC targeted sequencing samples. Black crosshairs represent 
targeted sequencing samples. Red cluster (mostly covered by black crosshairs) is the CEU 
population (European ancestry). Purple cluster (top) is the CHB+JPT population (Asian 
ancestry). Green cluster is the YRI population (African ancestry).  

 

 

Table 4.2: Sample QC for the targeted DNA sequencing dataset. 

 No. Samples 

Total samples that underwent targeted DNA sequencing 3,503 

Sample QC Mean/median coverage < 10x 85 

Genotype completion rate < 3 SD below mean 92 

Duplicate (IBS2 ≥ 90%) 22 

Discordant with MGS GWAS dataset 66 

Bystro metric outlier 47 

Discordant sex 6 

Unable to match with phenotype/covariate data 5 

Final post-QC sample 3,180 
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Variant QC 

 The targeted DNA sequencing dataset initially included 24,463 variant sites. We 

removed sites that were monomorphic among the cleaned set of 3,180 samples, as well as sites 

missing for more than 5% of samples, leaving 19,949 variant sites.  

As an extra step to ensure maximal quality of variant calls to be used for analysis, we 

compared sample alternate allele frequencies (based on all 3,180 samples) with frequencies 

based on version 2 of the Genome Aggregation Database99 (gnomAD v2; frequencies are 

based on samples that include a sizable minority of individuals with various neuropsychiatric 

disorders) and excluded variants with sample-based frequencies that differed significantly from 

gnomAD frequencies. The 19,949 variant sites included a total of 20,470 alternate alleles (due 

the presence of some sites with more than one alternate allele). We used Bystro to obtain 

gnomAD allele frequencies for the non-Finnish European (NFE) population (which matched the 

ancestry of our 3,180 targeted DNA sequencing samples): 11,577 alternate alleles had gnomAD 

NFE allele frequencies reported (based either on the gnomAD exome sample or genome 

sample), while the remaining 8,893 alternate alleles were missing from gnomAD. For each of 

the 11,577 alleles with gnomad NFE frequencies, we used a binomial test (R’s binom.test() 

function) to calculate the probability of getting the observed number of alternate alleles 

(considering all 3,180 samples) or an observation more extreme, given the total number of 

observed alleles and assuming an alternate allele frequency equal to the gnomAD NFE 

frequency (two-sided test). We decided that alternate allele tests yielding Bonferroni-corrected 

p-values < 0.05/11,577 indicated sample-based allele frequencies that were significantly 

different from gnomAD frequencies, meriting removal to reduce the likelihood of including low-

quality calls in our final analytic dataset. Furthermore, we decided to remove any alternate (or 

minor) allele observed in our sample set more than twice but with gnomad NFE frequency = 0%, 

regardless of the binomial test p-value. These steps resulted in 324 alternate alleles being 
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flagged for removal. For the 8,893 alternate alleles missing from the gnomAD NFE database 

(which may have been missing from gnomAD due to being extremely rare), we decided to 

remove such alleles if more than 2 were observed in our sample set; this resulted in 1,855 

alternate alleles being flagged for removal. In total, these 2,179 alleles flagged for removal 

corresponded to 2,098 variant sites (among multiallelic sites, if one of the alternate alleles was 

flagged for removal, we decided to remove the entire variant site). Excluding these sites left 

17,851 variants.  

We then used PLINK244,100 to identify and remove 35 variant sites with Hardy-Weinberg 

equilibrium mid-p-value < 1e-6, leaving a total of 17,816 variants. In order to further maximize 

quality of the variant call set used for our analyses, we also decided to remove all sites involving 

insertions or deletions, calls for which tended to be lower confidence as compared with SNVs. 

This yielded a dataset with 3,180 samples and 16,573 SNVs (some multiallelic). 

RNA sequencing dataset 

We used FastQC (version 0.11.9)101 and MultiQC (version 1.9)102 to perform initial quality 

checks of the FASTQ files for the 1,381 samples with raw RNA sequence data. These checks 

indicated that the FASTQ files contained a small amount of Illumina adapter content (primarily 

adapter dimers). We removed this adapter content using Trimmomatic (version 0.39),103 using a 

comprehensive list of adapter sequences that included those provided with the BBmap 

program.104 We then ran FastQC and MultiQC once again, this time on the adapter-trimmed 

FASTQ files, confirming that Illumina adapter content had been successfully removed and 

determining that none of the 1,381 samples required removal for poor read quality before read 

mapping. Among the 1,381 samples, total read count ranged from 5.5 to 95.1 million, with 

median 11.9 million and mean 13.6 million (a small number of samples with known 

schizophrenia-associated copy number variants were intentionally sequenced to greater depth, 

yielding higher total read counts for these samples).  
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We mapped the raw RNA sequence reads to the human genome (build hg38) using 

STAR (version 2.7.0f),105 requiring at least 16 matched bases between read and reference, and 

that the ratio of mismatched bases to total mapped length not exceed 5%. Among the 1,381 

samples, percent of uniquely mapped reads (among all mapped and unmapped reads) ranged 

from 58.8% to 85.3%, with median 83.0% and mean 82.7%. Twenty samples had proportions of 

uniquely mapped reads less than 3 SD below the mean proportion of uniquely mapped reads for 

all 1,381 samples. We removed these 20 mapping outliers, leaving a minimum percent of 

uniquely mapping reads equal to 78.0%. We also examined other mapping quality metrics (e.g., 

mismatch rate per base among uniquely mapped reads; total unique reads crossing splice 

junctions; proportion of unmapped reads) and identified no additional outliers for removal. For 

the 1,361 remaining samples, we quantified read counts for each gene using the htseq-count 

script from the HTseq package (version 0.12.4).106 Only uniquely mapping reads that 

overlapped exons for a single gene were counted.  

Next, we performed additional sample QC using the R package DESeq2.107 We applied 

a variance stabilizing transformation (VST) to the count data, as the DESeq2 user manual 

recommends for sample visualization and clustering. We then performed PCA on the 

transformed expression matrix (using R’s prcomp()). Considering PCs 1 through 10, we 

identified 20 outlier samples with PC value beyond 3.5 SDs from the mean PC value. We also 

obtained Euclidian distance measures for each pair of samples (using the VST expression 

matrix), and identified outliers as samples with distance ≥ 3 SD above the mean (mean and SD 

for distance based on all sample pairs, considering 1,361 samples) with at least 200 other 

samples (this 200 sample threshold corresponds to 3 SD above the average number of samples 

with which an individual has distance ≥ 3 SD above the mean). This distance outlier analysis 

identified 3 additional samples for removal. Removing these 23 outliers left 1,338 samples with 

RNA sequencing data. 
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We applied edgeR’s108 trimmed mean of M-values (TMM) normalization to the count 

matrix, as has been done in previous association analyses of genetic variants with RNA 

sequencing expression data.24 Before applying TMM normalization, we limited the dataset to 

only include genes for which at least 20% of samples had counts-per-million ≥ 0.1 and read 

count ≥ 6. This filtering out of lowly expressed genes reduced the dataset from 26,485 to 13,584 

genes. We then TMM normalized the count data for the matrix of 13,584 genes and 1,338 

samples.  

Microarray expression dataset 

The microarray dataset that we accessed through dbGaP included expression data for 

859 samples and 27,118 probes. These 859 samples had been cleaned and outliers removed, 

and formed the sample set previously analyzed in Sanders et al. (2013).16 The 27,118 probes 

had been filtered to exclude lowly expressed probes (after starting from 47,231 initial probes), 

and raw expression intensities had been transformed and normalized using background noise 

subtraction, log2 transformation, and quantile normalization (see Sanders et al. (2013) for more 

details on filtering and normalization of this microarray expression dataset).  

Generating final analytic datasets 

RNA sequencing samples 

There were 819 samples that overlapped between the normalized RNA sequencing 

dataset (which included 1,338 samples) and the cleaned targeted DNA sequencing dataset 

(which included 3,180 samples). For these 819 samples, we performed PCA using available 

GWAS SNP data to identify and remove PC outliers and create a more homogenous sample set 

(outlier PC values often indicate that a subject differs from the rest of the sample with respect to 

potential confounders such as ancestry). PCA was performed with PLINK1.9’s --pca flag, using 

a set of ~50,000 common (MAF > 5%), LD-pruned SNPs (pruning was accomplished using the 
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following flag: --indep-pairwise 50 5 0.11). Outliers were defined as individuals with PC1, PC2 or 

PC3 value beyond +/- 3 SD from the sample mean for the same PC. Removal of PC outliers 

was performed in an iterative fashion that involved computing PCs, identifying and removing 

outliers, recomputing PCs using the remaining samples, identifying and removing outliers based 

on these new PCs, and so on until no major outliers remained in the dataset. Three rounds of 

PCA collectively identified 94 outliers for removal, leaving a post-PCA dataset with 725 samples 

(including 355 SZ cases and 370 controls). A final set of PCs was generated using just these 

725 samples, and the first 5 PCs were used as covariates in the rare variant analyses. 

Microarray expression samples 

There were 455 samples that overlapped between the normalized microarray expression 

dataset (which included 859 samples) and the cleaned targeted DNA sequencing dataset 

(which included 3,180 samples). Among these 455 samples, 23 were represented in the final 

set of 725 RNA sequenced samples; removing these left 432 unique samples with microarray 

expression data. We used available GWAS SNP data for these samples to perform PCA outlier 

analysis in the same manner as described above for the RNA sequencing samples. Through 2 

rounds of PCA we identified 32 PC outliers for removal, leaving a set of 400 samples with 

microarray expression data for analysis (including 265 SZ cases and 135 controls). PCs 1 

through 5 computed using these 400 samples were included as covariates in the rare variant 

analyses. 

Analytic approach 

Overview of burden method 

To examine associations of rare regulatory variation with gene expression level, we 

employed an approach based on a burden method originally developed and applied by Zhao et 

al. (2016).27 The primary steps of this method are depicted in Figure 4.4. For a given gene, 
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samples are ordered based on expression level, from lowest to highest expression; samples are 

then assigned to equally sized bins, whereby the lowest bin contains the samples with the 

lowest expression values for this gene, and the highest bin contains the samples with the 

highest expression for the gene (Step 1a). For instance, for the set of 725 samples with RNA 

sequencing data, we performed analyses that employed 25 bins that each contained 29 

samples. For the samples within each bin, rare alleles within or near the gene being considered 

are summed, yielding a total rare allele count for each bin for this gene (Step 1b). This process 

is repeated for all genes to be analyzed. Then, to increase power for detecting rare variant 

associations with gene expression, the rare allele totals for each bin are summed across all 

genes (Step 2), yielding an overall rare allele total for each bin (i.e., sum rare allele totals for Bin 

1 across all genes, yielding an overall rare allele total for Bin 1; do the same for all bins). Finally, 

association between rare allele total and bin number (with low bin number corresponding with 

low expression and high bin number corresponding with high expression) is examined using a 

linear model that regresses rare allele total onto bin number, with and without a quadratic term 

for bin, to evaluate different possible relationships between rare allele burden and gene 

expression (Step 3). Although the rare alleles are expected to affect gene expression, and not 

vice versa, regression of rare allele total onto expression bin number is a valid means of 

examining the nature of the association between rare allele burden and gene expression bin, 

and is preferable to regressing bin number on rare allele total as it facilitates interpretation of 

results (e.g., the change in rare allele burden corresponding to a 1-unit increase in expression 

bin is more easily interpreted than the fractional change in expression bin corresponding to an 

additional rare allele). Confounders and other covariates are adjusted before Step 1 by 

regressing normalized expression values for each gene onto covariates, and then taking the 

residualized expression values forward to Step 1.



 
 

 

129 

Figure 4.4. Demonstration of steps involved in the Zhao et al. (2016)27 rare allele burden method. Figure adapted from Figure 1 of 
Zhao et al. (2016). 
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The approach of analyzing cumulative rare allele counts has certain undesirable 

properties. For one, the parameters estimated from a linear regression of rare allele count onto 

bin number are limited in their informativeness and may lead to incorrect conclusions regarding 

rare allele associations with gene expression. For instance, in Figure 4.5 below, the beta for a 

linear regression of rare allele count (y-axis) on expression bin (x-axis) and is -10 for scenarios 

1 and 2, meaning that in both instances an increase in bin number by 1 corresponds to a 

decrease in rare allele count by 10. In addition, the standard errors and p-values for these two 

analyses are identical. However, these identical estimates mask the important fact that rare 

alleles are distributed quite differently for scenarios 1 and 2, with the proportion of rare alleles 

per bin very different across the bins in scenario 1 (e.g., bin 1 contains 7.7% of all rare alleles 

and bin 25 contains 0.3% of rare alleles), and not so different across the bins in scenario 2; 

compared with scenario 2, the distribution of rare alleles in scenario 1 is actually consistent with 

a stronger association of rare alleles and gene expression. 
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Figure 4.5. Illustration of one undesirable property of analyzing cumulative rare allele counts for 
the burden analysis. Figure 4.5 A (top) shows the distribution of rare allele counts (y-axis) 
across expression bins (x-axis) for scenarios 1 and 2. Linear regression of rare allele count on 
expression bin yields identical betas (b = -10), standard errors and p-values for these two 
scenarios, masking differences that are revealed when considering rare allele proportions as 
shown in Figure 4.5 B (bottom). The distribution of rare allele proportions for scenario 1 is 
consistent with a stronger association of rare alleles with gene expression. 
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A second undesirable property of analyzing cumulative rare allele counts is the 

counterintuitive and potentially misleading observation that, when performing multiple separate 

analyses, as the total number of rare alleles considered in an analysis increases (for instance, 

due to increasing the number of genes considered, or relaxing the MAF threshold or other 

variant filters), the variance in rare allele counts across all bins also tends to increase, along 

with increases in the standard error (SE) of the estimated beta. This is counterintuitive because 

we would expect that a larger quantity of rare alleles considered for the analysis would typically 

correspond with increased precision of the estimate, in the same way that increases in sample 

size yield increased precision. As with the first undesirable property described in the preceding 

paragraph, this tendency of cumulative allele count analyses to exhibit oddly behaving variance 

has the potential to lead to incorrect conclusions regarding the associations of interest, 

especially when comparing results from separate analyses based on differing numbers of rare 

alleles. 

These two undesirable properties related to performing the burden analyses using 

cumulative rare allele counts can be overcome by modeling rare allele proportions rather than 

counts. We therefore modified the burden approach by converting rare allele counts for each 

gene into rare allele proportions, effectively normalizing the counts for all genes, and we then 

directly analyzed these proportions. Specifically, for each gene, we divided the rare allele count 

for each bin (as obtained in Step 1b of Figure 4.4) by the total rare allele count for the gene, 

yielding rare allele proportions for each bin that collectively summed to 1 for the gene. We then 

used R’s rbind() function to stack each gene’s set of rare allele proportions atop one another 

(keeping the data for each gene separate, as opposed to the Zhao et al. (2016) approach of 

summing rare allele counts across all genes as shown in Step 2 of Figure 4.4), and we used 

logistic regression to model rare allele proportion as a function of expression bin number. We 

accomplished this through R’s glm() function with family=quasibinomial(link=logit) and with 

observations for each gene weighted according to the number of rare variant sites for the gene. 
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Modeling the response variable using a quasibinomial distribution is often recommended when 

the outcome data are proportions. Weighting data according to the total number of rare sites in 

the corresponding gene tends to result in genes with a larger number of rare allele observations 

carrying greater weight, which is generally desirable. We decided not to simply weight based on 

the total observed rare alleles for each gene since doing so could result in genes harboring a 

greater amount of higher frequency variants carrying the greatest weight, and such genes may 

exhibit a different association between rare alleles and gene expression than other genes. The 

steps of our modified burden approach are depicted in Figure 4.6. 
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Figure 4.6. Demonstration of steps involved in our modified rare allele burden approach. 
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Genes for analyses 

To be eligible for analysis, a gene needed to be present in the normalized, post-QC 

expression datasets and to have SNVs present in the post-QC targeted DNA sequencing 

dataset. The post-QC targeted DNA sequencing dataset had 16,573 total SNVs. We used 

Bystro to obtain annotation information for these variants. The 16,573 SNVs were annotated to 

a total of 268 unique genes. Of these 268 genes, 211 were included among the set of genes 

that had undergone DNA sequencing due to having SZ-associated expression (64 of the 211 

genes) or being located within or near a SZ CNV interval (147 of the 211 genes, non-

overlapping with the 64 SZ-associated expression genes). Taking the intersection of these 211 

targeted DNA sequencing dataset genes and the 13,584 genes present in the final RNA 

sequencing dataset yielded 160 genes with both SNV and RNA sequencing expression data. 

To determine the overlap between the 211 targeted DNA sequencing dataset genes and 

genes represented in the microarray expression dataset, we first mapped the 27,118 filtered 

microarray expression probes to their corresponding genes using the manifest provided by 

Illumina for their HT-12v4 chip. Then, limiting to probes mapping to genes among the 211 

targeted sequencing genes yielded 226 probes that collectively mapped to 157 unique genes. 

For genes represented by multiple probes, we averaged expression values across the probes to 

obtain a single expression value for the gene, which is consistent with the approach used by 

Zhao et al. (2016).27 Thus, we had 157 genes with both SNV and microarray expression data. 

Original meta-analytic plan and subsequent modification: 

 Of the 160 genes with SNV and RNA sequencing expression data, 139 genes were also 

included among the 157 genes with SNV and microarray expression data. Our original analytic 

plan was to only analyze these 139 overlapping genes, first performing separate rare allele 

burden analyses for these 139 genes using the RNA sequencing dataset and the microarray 

dataset, and then combining the results via meta-analysis. However, as described in depth in 
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the Results section below, we came to the realization that for a large proportion of genes the 

microarray dataset appeared limited in its ability to accurately order individuals with respect to 

expression level, which is essential for our analytic approach. As a result, we modified our 

analysis plan. After considering various options, we decided that the best approach for our 

purposes would be to focus only on the RNA sequencing data, which we had reason to believe 

were overall of higher quality and better able to accurately place samples with respect to 

expression ordering.109,110 Thus, we ultimately set aside the microarray expression dataset, and 

moved forward with analyzing the 160 genes overlapping between the targeted DNA 

sequencing dataset and the RNA sequencing dataset. 

Covariate adjustment 

We considered numerous covariates for adjustment, including potential confounders of 

the estimated association of rare allele burden with gene expression level, as well as covariates 

that are unlikely to be confounders but which contribute to increased variance in gene 

expression level and as such may make associations between rare alleles and gene expression 

more difficult to detect and estimate. The potential confounders that we ultimately controlled 

included fine-scale ancestry (controlled by adjusting for genomic PCs 1 through 5) and targeted 

DNA sequencing batch (10 batches). Covariates controlled for the purpose of reducing 

unwanted variance in gene expression included expression batch (analyses of the RNA 

sequencing data adjusted for 5 RNA sequencing batches; analyses of the microarray 

expression data adjusted for 2 microarray batches), LCL growth rate, LCL energy level (ATP 

level), LCL viral load (Epstein-Barr virus [EBV] load), LCL EBV transformation site, sex and age 

(at the time of sample collection). These variables were included as covariates in previous 

analyses of these RNA sequencing and microarray expression data,14-16 and/or have been 

controlled for in other previous investigations of associations between genetic variants and gene 

expression levels.24,27  
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As was done by the Zhao et al. (2016) group, we also adjusted for common SNVs (MAF 

> 1%) found to be associated with gene expression levels. These SNVs, known as eQTLs, are 

an important contributor to gene expression variability, and also may at times be associated with 

nearby rare variants, warranting adjustment for them to gain a better estimate of the association 

between rare alleles and gene expression. We identified eQTLs by performing eQTL analyses 

using our expression datasets, as described in the subsection directly below. 

 In addition, based on scientific literature related to the proper analysis of secondary 

phenotypes using a combined sample of cases and controls, we adjusted for case-control 

status. We hypothesized that SZ case-control status might be a collider variable, with gene 

expression level (our outcome) expected to affect SZ risk, and rare regulatory variation (our 

predictor) possibly impacting SZ in part through pathways independent of gene expression. If 

this were the case, the standard epidemiologic approach would be to not condition on case-

control status, as conditioning on a collider has the potential to open a biasing path between 

variables of interest. However, numerous studies examining the conduct of secondary analyses 

in combined case-control datasets have demonstrated through both simulated and real data 

analyses that, if the disease defining case status is rare (prevalence < 2%), then not adjusting 

for case-control status when it is a collider is likely to yield biased estimates of the association 

between the predictor and the secondary phenotype of interest, whereas adjusting for case-

control status is expected to yield results that are not biased by the case-control ascertainment 

and that are good approximations of the true association (assuming other sources of bias are 

small).111-115 As SZ has a prevalence of ~1%, it meets this rare disease criteria, and as such 

adjusting for case-control status is the recommended approach. We note that other methods, 

including weighting observations by the inverse probability of selection, are also able to correct 

bias resulting from oversampling of cases; however, these alternative methods are not clearly 

applicable to our analyses given the unique burden approach which we employed. We further 
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discuss the issue of properly accounting for case-control ascertainment in our analyses in the 

Sensitivity Analyses section below. 

A number of prior studies investigating associations between genetic variants and gene 

expression have used computational approaches to infer hidden factors or principal components 

from gene expression data, and then included these factors as covariates in their analyses in 

order to control for unmeasured sources of expression variability (e.g., unmeasured batch 

effects) which may confound or otherwise impede estimation of associations.24,27,116 We tested 

several such approaches, including inferring hidden determinants of gene expression using 

probabilistic estimation of expression residuals (PEER)117 as well as computing PCs from the 

expression data (using R’s prcomp()), and then including the inferred factors as covariates in 

our eQTL analyses. Such approaches actually served to increase inflation in eQTL results, 

therefore we decided against controlling for these inferred expression factors in our rare allele 

burden analyses and in our final eQTL analyses. 

Identifying eQTLs for inclusion as covariates 

 We originally performed eQTL analyses separately for the RNA sequencing dataset (725 

samples) and the microarray expression dataset (400 samples), and then meta-analyzed the 

results to identify eQTLs that would be used as covariates. However, after realizing the 

questionable quality of the microarray expression data for our study purposes and deciding to 

move forward only with the RNA sequencing dataset, we also moved forward with only 

identifying eQTLs based on the RNA sequencing dataset. We describe these RNA sequencing 

dataset eQTL analyses in the following paragraphs. 

 We carried out eQTL analyses using the software MatrixEQTL.118 Expression data input 

were the fully cleaned and normalized RNA sequencing data (160 genes). Given the use of 

linear regression for the eQTL analyses, we transformed the expression values for each gene to 

be normally distributed. Genotype data were the cleaned GWAS SNP data limited to variants 
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with MAF > 1%. We only performed cis-eQTL analyses, and considered as in-cis any SNP 

within the window of 1 Mb upstream of the transcription start site for the gene to 1 Mb 

downstream of the transcription stop site. Transcription start and stop sites for each gene were 

determined using a combination of the RefSeq Select+MANE table and the GENCODE v32 

knownCanonical from UCSC’s Table Browser (hg38 positions).119 We also used UCSC’s 

LiftOver tool to update SNP coordinates to hg38, in order to match the gene coordinates.52 

Covariates adjusted were the same as those included for the rare allele burden analyses (other 

than adjusting for eQTLs), but instead of targeted DNA sequencing batch we controlled for 

genotyping batch. 

 The overall eQTL results were inflated, based on quantile-quantile plots (see Figure 4.7 

below for a depiction of inflation observed for the RNA sequencing sample) and genomic 

inflation factor lambda (lRNAseq = 1.20). We note that this inflation in eQTL results had also been 

observed for analyses of the microarray expression sample. 
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Figure 4.7. Quantile-quantile (QQ) plots for eQTL results using the RNA sequencing sample. 
Right plot is zoomed in at the bottom left corner to better show inflation. 

  

 

As has been done in previous studies,24,27,116 we estimated hidden factors from the RNA 

sequencing expression data (using PEER software and R’s prcomp()) and controlled for 

different subsets of these hidden factors in the eQTL analyses, but this only served to increase 

the inflation. We also tried other approaches, such as only including certain subsets of the 

covariates in the analyses, but inflation in the eQTL results remained. We ultimately decided to 

correct for the inflation using the method of genomic control, which involves dividing all c2 test 

statistics for the eQTL results by the genomic inflation factor lambda. We then recomputed false 

discovery rate (FDR) q-values using these adjusted test statistics. We considered q-values < 

0.05 as indicative of a possible eQTL; out of 70,820 SNP-gene pairs 1,312 had inflation-

adjusted q < 0.05. 

 Furthermore, as was done by Zhao et al. (2016), we only adjusted for ‘conditional 

eQTLs’, which are SNPs that are associated with gene expression independent of nearby 
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SNPs. We identified conditional eQTLs for each gene through an iterative process that involved 

the following steps: 

1. Regress gene expression values onto the most significant eQTL for the gene (the eQTL 

with the smallest q-value, among those eQTLs with inflation-adjusted q < 0.05) as well 

as all covariates included in the original eQTL analyses;  

2. Extract the expression residuals from this regression, and regress these residuals onto 

each remaining potential eQTL for the gene one at a time; 

3. For each additional potential eQTL tested in (2), compute an inflation-adjusted q-value 

(using lRNAseq = 1.20, the lambda value calculated using the original, complete RNA 

sequencing dataset results); 

4. Take the eQTL from (3) with the smallest q-value (among those with inflation-adjusted q 

< 0.05), and regress the expression residuals generated in (1) onto this eQTL; 

5. Extract the expression residuals from the regression in (4), and repeat steps (1) through 

(4) until there are no longer any eQTLs with inflation-adjusted q < 0.05. 

The identified conditional eQTLs were then controlled for in the rare allele burden analyses. 

Analysis subsets 

We performed analyses for the set of 64 genes sequenced due to having expression 

levels previously identified to be associated with SZ. We also stratified these 64 genes into 

those with evidence of low expression associated with SZ, and those with evidence of high 

expression associated with SZ, and we performed separate analyses for these two gene sets to 

examine whether rare allele associations with gene expression may differ for genes with low 

versus high expression linked with SZ. We then combined these 64 SZ-associated expression 

genes with the genes sequenced due to being located within or near a large SZ CNV interval 

(which we expect to be enriched for genes with SZ-associated expression), yielding an overall 
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combined set of 160 genes. It turned out that 11 of these 160 genes had no remaining rare 

regulatory variants after limiting to the variants of interest for our combined set analyses; thus, 

149 genes were ultimately analyzed for the overall combined gene set. We analyzed this 

combined gene set, and then split this set of 149 genes into those with suggestive evidence of 

low dosage associated with SZ (genes with low expression associated with SZ, or existing 

within or near a SZ-associated large deletion) and those with suggestive evidence of high 

dosage associated with SZ (genes with high expression associated with SZ, or existing within or 

near a SZ-associated large duplication), and performed separate burden analyses for these two 

gene sets. If a gene was located in or near a SZ duplication interval and was found to have low 

expression associated with SZ (this was the case for 2 genes), we only included this gene in the 

set of SZ-associated low dosage genes; there were no instances of a gene being located in or 

near a SZ deletion interval and having high expression associated with SZ. 

In addition, we took the combined set of 149 genes and subsetted it based on evidence 

of intolerance to loss-of-function (LoF) variation, as well as intolerance to missense variation. 

Constraint metrics for each gene were identified using the gnomAD gene constraint table from 

UCSC’s Table Browser. We created and analyzed gene sets for genes with probability of 

intolerance to LoF variation (pLi) < 0.10 (suggesting tolerance to LoF variants) and pLi ≥ 0.90 

(suggesting intolerance to LoF variants). We also created and analyzed gene sets that included 

genes that were highly tolerant to missense variation, and those that were intolerant to 

missense variation. We defined high tolerance to missense variants as having a ratio of 

observed to expected missense variants (with MAF < 0.001) that was greater than 1, with a 

90% confidence interval (CI) that did not overlap 1; while our set of missense-intolerant genes 

all had missense variant observed to expected ratios of less than 1, with the 90% CI not 

overlapping 1. 

In addition to analyzing these various gene sets, we performed analyses that applied a 

variety of rare variant filters. We varied the MAF threshold for SNVs, applying filters of MAF < 
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0.01 and < 0.001. This was done to examine the extent to which very rare alleles (MAF < 0.001) 

may be driving associations between rare SNVs and gene expression. MAFs used for filtering 

were based on gnomAD frequencies if they were available (i.e., if they were not missing in the 

gnomAD v2 database); otherwise they were based on the post-QC targeted DNA sequencing 

dataset with 3,180 samples. For multiallelic SNVs, we required that the sum of the non-major 

alleles not exceed the MAF threshold. 

We also filtered variants according to Combined Annotation Dependent Depletion 

(CADD) score, which is a prediction of variant deleteriousness; variants with higher scores are 

predicted to be more deleterious.120 We performed analyses with no CADD filter, and analyses 

only including variants with CADD ≥ 5. We originally considered applying a stricter threshold of 

CADD ≥ 10, which is often used by researchers, but we realized that such a filter would 

generally result in quite small numbers of rare alleles available for analysis and consequently 

highly imprecise association estimates.  

In addition, we performed analyses that varied site type for the variants. For the set of 64 

genes with SZ-associated expression, we performed analyses that included any regulatory 

variants (those located within the promoter, 5’UTR or 3’UTR), only regulatory variants upstream 

of the coding sequence (promoter or 5’UTR), and only UTR variants (5’UTR or 3’UTR); as well 

as analyses that only included promoter, 5’UTR or 3’UTR variants. We defined a gene’s 

promoter region (or promoter-proximal region) as the genomic window encompassing DNA 

sequence from 1 kb upstream to 1 kb downstream of the gene’s TSS, which matches the 

promoter region window used by Zhao et al. (2016).27 We identified TSS for each gene using 

UCSC’s Table Browser, as described previously. 5’UTR and 3’UTR for each gene were based 

on UCSC’s refGene,119 with assignment of variants to these regions made by the Bystro 

annotation tool.43 When analyzing gene sets that included the genes sequenced due to being 

located within or near a large SZ CNV interval (e.g., the combined set of 149 genes), we only 

performed analyses for UTR variants, including 5’UTR and 3’UTR variants together and 
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separately; we did not include promoter variants for these gene sets, since the SZ CNV genes 

had not been sequenced upstream of the TSS. 

 Considering the numerous analyses performed for various combinations of genes and 

variant filters, we employed a multiple testing correction procedure. Use of a traditional 

approach such as the Bonferroni correction would be overly strict, since the Bonferroni method 

assumes independence of analyses, and our analyses are highly correlated (e.g., many 

analyses involve genes and variants that are subsets of those used for other analyses). We 

therefore employed a permutation approach to multiple testing correction, performing our 

analyses for 10,000 randomly permuted datasets (randomly shuffling samples’ sets of gene 

expression data) to determine a significance threshold that maintains the study-wise Type I 

error level (a) at 5%. 

Sensitivity analyses 

Overrepresentation of cases in the final analytic sample 

Our goal in performing the analyses described in this manuscript was (to the extent 

possible) to accurately and precisely estimate the nature of the association between rare 

regulatory variants and gene expression for the population of individuals with European 

ancestry (the source population for our analytic sample). Our analytic sample of 725 participants 

was drawn from an existing case-control study of SZ, and included 355 SZ cases and 370 

controls without SZ; thus, individuals with SZ were greatly overrepresented in our analytic 

sample as compared with the ~1% SZ prevalence observed for the source population.  

This overrepresentation of cases in our analytic sample has the potential to bias 

estimates of the association of rare regulatory alleles with gene expression levels. Such bias 

might arise if rare regulatory alleles, gene expression, and SZ status are causally related as 

depicted in the directed acyclic graph (DAG) presented in Figure 4.8. This DAG shows our 

expectations that rare regulatory variants can cause deviations in gene expression level that 
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push expression levels toward the tails (lower and/or upper) of the expression distribution; and 

that, in turn, aberrant expression levels may increase risk for SZ. In addition, it is possible that 

rare regulatory variants increase SZ risk through pathways that do not involve gene expression, 

though the extent to which this may occur is unclear. Lastly, the DAG shows that whether or not 

an individual has SZ affects their probability of participating in our final analytic sample, since 

the prevalence of SZ in the source population is ~1%, while SZ cases make up 49% of our 

analytic sample. Our analyses necessarily condition on participation in the analytic sample 

(represented by the box around the ‘Participation’ variable in Figure 4.8), and as participation is 

a proxy for SZ status (in the DAG, ‘SZ status’ directly affects ‘Participation’), we are also 

effectively conditioning on SZ status, reflected by the overrepresentation of cases in our sample. 

As SZ status is a collider in the DAG, this has the potential to open a biased pathway between 

rare regulatory variants and gene expression, which could result in bias that mixes with any 

causal effect.  

Figure 4.8. Directed acyclic graph (DAG) depicting possible causal associations between 
variables in our study. 

 

 Another consideration related to the overrepresentation of SZ cases in our analytic 

sample is that, if the association between rare regulatory alleles and gene expression differs for 

individuals with and without SZ, then the overrepresentation of cases in our analytic sample 

could yield estimated associations that are different from the true association in the full source 
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population. However, we had little reason to think that the effect of a given rare regulatory 

variant on gene expression would differ meaningfully for individuals with and without SZ. 

Accounting for the overrepresentation of cases in the final analytic sample 

If SZ status were a collider variable with respect to our variables of interest, the typical 

epidemiologic guidance might be to apply a method such as inverse probability of selection 

weighting (IPW) to recreate the source population with respect to the distribution of those with 

and without SZ (and possibly other variables, as well), enabling valid estimates of the 

association of interest (assuming no bias from other sources).111,121 However, IPW and similar 

techniques typically involve applying weights at the individual subject level, and there is no clear 

and validated approach for joining these techniques with our unique burden analysis method 

which examines associations at the level of expression bin.  

Another approach for avoiding bias due to an overrepresentation of cases would be to 

simply limit our analyses to the 370 controls only. As SZ is rare condition (prevalence ~1%), the 

controls (who are free from SZ) would be expected to be a fairly good representation of the 

source population, assuming they were sampled at random. Indeed, numerous studies have 

demonstrated that, if the disease defining case status is rare, then performing secondary 

analyses using only the controls from a case-control study is expected to yield results that are 

very good approximations of the association in the full source population.111,112,115,122 However, 

limiting analyses to controls only has the drawback of excluding a large amount of potentially 

good data (cases make up ~50% of our sample), and as a result would yield estimates that are 

less precise than those obtained from valid approaches that utilize data from cases and 

controls. 

As described previously, an alternative approach to properly account for the 

overrepresentation of SZ cases in our final analytic sample is to directly condition on case-

control status (e.g., include case-control status as a covariate). Though this may seem to be at 
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odds with the standard epidemiologic guidance to avoid conditioning on a potential collider 

variable, the success of this approach in yielding valid estimates for particular scenarios such as 

ours has been demonstrated by numerous studies employing both simulated and real data 

analyses to examine how to properly carry out secondary analyses of combined case and 

control data. Specifically, investigators have shown that, when the predictor and secondary 

phenotype independently affect the disease defining case status (i.e., case status is a collider 

variable, as shown in Figure 4.8), then if the disease is rare (prevalence < 2%), analyses that 

condition on case-control status (i.e., include it as a covariate) will yield estimates that closely 

approximate the true association of the predictor and the secondary phenotype in the source 

population (assuming minimal interaction between the predictor and the disease defining case 

status); if case-control status is not controlled in this scenario, the estimate is likely to be 

meaningfully biased.111-115 These studies have also demonstrated that, in this rare disease 

scenario, analyses of controls only and cases only are both expected to yield estimates that 

closely approximate true associations in the overall source population (if there is meaningful 

interaction, the cases-only estimates will differ from the source population, but the controls-only 

estimates remain a good approximation due to the rarity of disease). However, the controls only 

or cases only approaches offer less statistical power than the combined approach, which 

adjusts for case-control status.  

As SZ is a rare disease, and we think it unlikely that the effect of rare regulatory variation 

on gene expression would differ by SZ status, performing analyses using the combined case 

and control data and adjusting for case-control status is expected to yield estimated 

associations that closely approximate the association in the source population (assuming other 

sources of bias are small). Thus, our main analyses consider cases and controls together and 

adjust for case-control status. We decided to perform additional, sensitivity analyses using 

controls only, SZ cases only, and also using the combined set of cases and controls but not 

adjusting for case-control status. As an additional validated approach for secondary analyses of 
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case-control data when the disease is rare, controls-only estimates that are consistent with the 

estimated associations from our main analyses will further support our analytic approach. 

Estimates based on cases only can be compared with the controls-only estimates to examine 

whether our expectation of no meaningful interaction by SZ status is empirically supported by 

the data. Estimates from analyzing the combined set of cases and controls and not adjusting for 

case-control status, if consistent with associations estimated from our main analyses, may 

indicate that SZ status is in fact not a concern as a collider in our analyses.  

Selection considerations for controls and cases in the final analytic sample 

 It is worth discussing the selection processes for the controls and SZ cases included in 

our final analytic sample, and the extent to which they may be representative of their respective 

source populations (individuals without and with SZ, respectively). These are important to 

consider since these were the samples that made up our full analytic dataset, and also since 

such consideration would inform interpretation of our sensitivity analyses of controls only and 

cases only. We previously mentioned that the individuals who underwent targeted DNA 

sequencing represent a random sample of the SZ cases and controls from the final MGS 

GWAS, which in turn is expected to be at least decently representative of individuals with and 

without SZ in the population of individuals with European ancestry. We also had the impression 

that the RNA sequencing dataset likely represented a randomly selected set of samples from 

the final MGS GWAS (aside from matching cases and controls on age and gender); in which 

case the overlapping samples between the targeted DNA sequencing sample set and the RNA 

sequencing sample set (i.e., the samples included in our final analytic dataset) would represent 

a conditionally (within strata of sex and age) random selection from the MGS GWAS 

participants. However, we were unable to verify whether the RNA sequenced individuals were 

indeed selected in this manner. 
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 We decided to compare the distribution of certain demographic variables for the 355 SZ 

cases and 370 controls in our final analytic dataset with the distributions observed in the larger 

case and control datasets from which our final participants were selected, with the latter 

datasets thought to be fairly good representations of individuals with and without SZ among 

those with European ancestry (EA). We were unfortunately quite limited in the number of 

potentially relevant variables available for comparison, and so were unable to perform as 

thorough an examination as would have been liked.  

Table 4.3 presents distributions of three variables for the set of EA SZ cases recruited 

by the MGS study (the full dataset before sample QC), and also for the set of EA SZ cases 

present in the final analytic dataset. The gender distribution is noticeably different for the MGS 

study and our set of SZ cases: the male to female ratio is 2.3:1 for the MGS study (reflecting 

known sex differences in the manifestation of SZ),123 while it is approximately 1:1 for our cases. 

This difference is expected since, as noted previously, cases and controls were selected have 

1:1 gender ratios for the RNA sequencing dataset. The other two variables, age and location of 

recruitment, are distributed very similarly for the MGS cases and the final set of cases. The 

observed distributions of these three variables provide at least minimal support for the idea of 

cases having been selected on gender but otherwise being representative of the full set of EA 

SZ cases recruited by the MGS study, possibly through a random selection process.  
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Table 4.3. Distributions of three variables for the set of EA SZ cases recruited by the MGS 
study (the full dataset prior to sample QC), and also for the set of EA SZ cases present in our 
final analytic dataset. 

 

  2,873 MGS EA SZ cases  
(before GWAS QC) 

355 EA SZ cases in final 
analytic dataset 

Gender 
Male 69.7% 47.3% 

Female 30.3% 52.7% 

Age (years) 

18-29 14.8% 13.8% 
30-44 37.8% 36.9% 
45-59 39.3% 39.4% 
60+ 6.6% 9.9% 

Recruitment  
location 

Australia 23.9% 23.1% 
California 10.0% 9.9% 
Colorado 15.5% 18.6% 
Georgia 9.2% 8.2% 

Iowa 7.6% 9.3% 
Illinois 12.2% 9.3% 

Louisiana 3.3% 4.8% 
Massachusetts 1.1% 0.0% 

Montana 6.2% 7.9% 
New York 6.3% 4.8% 

Pennsylvania 4.5% 3.9% 
Texas 0.2% 0.3% 

 

Table 4.4 presents distributions of five variables for four sets of samples: the initial group 

of 15,485 EA individuals who were randomly selected for potential participation as controls in 

the MGS study (selected from a large participant panel that was representative of the U.S 

population in terms of important demographic dimensions), the subset of 3,364 EA individuals 

(among the 15,485 targeted EA individuals) who completed the required self-report clinical 

assessment and blood draw, the set of EA controls after excluding ineligible participants 

(including those with a history of SZ) but before performing GWAS QC, and the set of EA 

controls present in our final analytic dataset. The distributions of gender and age appear to be 

rather different for our final control set compared with the three larger sample sets, with the 

three larger sample sets having quite similar distributions for these variables. The age 

distribution for our controls is actually expected, as it approximately matches the age distribution 

of our 355 cases, and we know that RNA sequenced cases and controls were matched on age 

categories. The distribution of gender among our final controls is rather unexpected, assuming 
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intended selection of females and males in a 1:1 ratio. The variable educational attainment is 

distributed somewhat differently across all sample sets, with the proportion of more highly 

educated individuals gradually increasing from left (the initial group targeted for recruitment) to 

right (the final analytic control set). Considering the final set of controls, the relatively higher 

proportion of individuals with greater educational attainment could partly be due to exclusion of 

individuals with SZ and SZ-related conditions, as SZ has been found to be associated with 

lower educational attainment;124 while other unintended, non-random selective forces may have 

had a role as well. The distributions of region and urbanicity appear rather similar across these 

four sample sets. Considering these comparisons, particularly those for gender and educational 

attainment, it seems possible that there was some degree of unintended, non-random selection 

forces in operation during the processes which ultimately led to our final RNA sequenced control 

set.  
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Table 4.4. Distributions of five variables for four sets of samples: the initial group of 15,485 EA 
individuals who were randomly selected for potential participation as controls in the MGS study 
(selected from a large participant panel which was representative of the U.S population in terms 
of important demographic dimensions); the subset of 3,364 EA individuals (among the 15,485 
targeted EA individuals) who completed the required self-report clinical assessment and blood 
draw; the set of EA controls after excluding ineligible participants (including those with a history 
of SZ) but before performing GWAS QC (this is slightly less that the previously mentioned 2,817 
genotyped EA controls, because we were not able to ascertain information on all 2,817 
participants); and the set of EA controls present in our final analytic dataset. 

 

  
15,485 EA 

randomly selected 
for control 

recruitment 

3,364 EA 
completing 

assessment and 
blood draw 

2,806 MGS EA 
controls  

(before GWAS QC) 

370 EA controls in 
final analytic 

dataset 

Gender 
Male 48% 47% 48.0% 59.5% 

Female 52% 53% 52.0% 40.5% 

Age (years) 

18-29 13% 14% 13.0% 13.8% 
30-44 27% 27% 26.1% 41.9% 
45-59 30% 29% 29.1% 39.5% 
60+ 30% 30% 31.8% 4.9% 

Education 

< HS 10% 8% 7.2% 5.7% 
HS 30% 27% 26.1% 23.5% 

Some college 31% 31% 30.0% 30.3% 
≥ Bachelor 29% 34% 36.2% 40.5% 

Region of 
residence 

Northeast 22% 18% 18.5% 15.1% 
Midwest 27% 27% 27.7% 30.0% 

South 35% 37% 36.0% 34.3% 
West 16% 18% 17.8% 20.5% 

Urbanicity 
of residence 

Non-metro 18% 15% 15.1% 19.5% 
Metro 82% 85% 84.9% 80.5% 

 

Regarding the limited set of variables just considered, we do not expect gender or age to 

be collider variables in our analyses, and therefore do not expect non-representative gender 

and age distributions in our final analytic sample to result in biased estimates of the association 

of rare regulatory variants and gene expression. Educational attainment could potentially be a 

collider, in which case the overrepresentation of more highly educated individuals among our 

final controls might contribute some bias to associations estimated from the analyses of controls 

only. However, considering evidence of SZ’s association with lower educational attainment, a 

comparison of the controls-only results with the all-samples (controls and SZ cases combined) 

results which shows little difference in patterns of estimated associations would seem to 

suggest that the overrepresentation of more highly educated participants among the final 
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controls has little biasing effects. Ultimately, we expect the control-only and case-only analyses 

to yield decent approximations of the associations that would be estimated in the source 

populations (EA individuals without and with SZ, respectively). 

 

RESULTS 

RNA sequencing and microarray expression discordance 

 In preliminary analyses of the set of genes overlapping between the RNA sequencing 

and microarray expression datasets, we observed unexpectedly discrepant results between the 

two datasets. We investigated a multitude of different potential explanations for these 

discrepancies, including differences in sample characteristics (distributions of sex, age, LCL 

transformation site, etc.) between the 725 RNA sequencing and 400 microarray samples, with 

no success in understanding why the discrepancies might exist.  

We then identified a set of 68 samples who had both RNA sequencing data and 

microarray expression data; 23 of these samples were included among the 725 final RNA 

sequencing samples, while the remaining 45 were not included in the final RNA sequencing or 

microarray expression analysis datasets (most of these 45 samples were excluded due to not 

having targeted DNA sequencing data). We used these 68 samples to check concordance 

between RNA sequencing and microarray expression. For these concordance checks, we only 

considered the 139 genes described above which overlapped between RNA sequencing and 

microarray datasets, and we use the normalized expression data. Sample-wise correlations 

(generated by correlating the 139 RNA sequencing gene expression values for a particular 

individual with the 139 microarray gene expression values for the same individual) were 

moderate, ranging from approximately 0.50-0.60.  
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Gene-wise correlations (generated by correlating the RNA sequencing expression 

values of all 68 samples for a particular gene with the microarray expression values of all 68 

samples for the same gene), however, were notably low. Median gene-wise correlation in 

expression values was 0.26. We also performed gene-wise correlation of the expression ranks, 

after ranking each of the 68 samples with respect to expression (separately for the RNA 

sequencing and the microarray expression datasets). Expression rank correlations are perhaps 

even more relevant for our purposes since accurate ordering of expression values is of primary 

importance to the rare allele burden approach we were employing. Gene-wise correlations for 

expression ranks exhibited a median correlation of 0.24.  

In addition, we calculated gene-wise correlations by taking the normalized RNA 

sequencing and microarray expression values, regressing out all covariates controlled for in the 

final burden analyses aside from targeted DNA sequencing batch, and correlating these 

expression residuals. This is perhaps a better means of assessing expression concordance, as 

differences in normalized RNA sequencing and microarray expression rankings could be 

influenced by things like RNA sequencing or microarray batch, as well as LCL growth rate and 

LCL energy level which can differ between RNA sequencing and microarray datasets for the 

same sample. Median correlation between expression residuals was 0.18, and median 

correlation between ranks of expression residuals was also 0.18.  

We attempted to find an explanation for why certain genes were more weakly correlated 

between RNA sequencing and microarray datasets than others. Things we considered included 

median microarray and RNA sequencing expression level for the gene; variance in microarray 

and RNA sequencing expression for the gene; number of microarray probes averaged to obtain 

the microarray gene expression level; whether any microarray probes have an original Illumina 

gene assignment that differs from a reannotation to the latest human genome build (hg38); 

transcript length; and whether applying higher expression threshold filters to the microarray and 

RNA sequencing data would impact correlations. None of the factors we considered explained 
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the large amount of low gene-wise correlations between the RNA sequencing and microarray 

expression datasets.  

We ultimately concluded that the observed low correlations between RNA sequencing 

and microarray expression values likely reflected a reduced ability of microarray expression 

technology to accurately estimate relative expression levels in comparison with RNA 

sequencing technology. RNA sequencing is a newer technology for profiling gene expression 

that offers a number of advantages over the older microarray methods, including a greater 

dynamic range enabling more accurate profiling of lowly expressed genes.109,110 The conclusion 

that the RNA sequencing data represented the better quality dataset was also supported by the 

observation that preliminary analyses of the RNA sequencing dataset yielded estimated 

associations between rare regulatory allele burden and gene expression that, in comparison 

with the microarray findings, tended to be more consistent with estimates from prior research;27 

as well as the observation that removing genes exhibiting low gene-wise correlations tended to 

change the RNA sequencing results minimally while bringing the microarray expression results 

more in line with the RNA sequencing results. 

 We considered several options for addressing the presumed lower quality microarray 

expression data, including multiple imputation of microarray expression values as well as 

subsetting the microarray genes to those exhibiting sufficiently high gene-wise correlations. In 

the end, though, we decided that simply excluding the microarray dataset and moving forward 

by only analyzing the RNA sequencing dataset was the approach that would enable the greatest 

confidence that our study results were based on the best quality of expression data available. 

The results sections that follow describe findings based on analyzing up to 149 genes using 

RNA sequencing data only. 
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RNA-sequencing-only analyses 

Genes with SZ-associated expression levels 

 We performed burden analyses for a set of 64 genes previously identified to have 

expression levels that were associated with SZ. For these genes, in addition to all exons being 

sequenced (which includes the 5’UTR and 3’UTR), the region 2kb upstream of the TSS had 

also been sequenced. This additional upstream sequencing allowed identification of rare 

variants within each gene’s promoter region. Our analyses of rare regulatory variants for this set 

of 64 genes therefore included promoter variants, as well as variants within the 5’UTR or 3’UTR. 

We performed analyses that included any rare regulatory variants (promoter, 5’UTR or 3’UTR 

variants), only regulatory variants upstream of the coding sequence (promoter or 5’UTR), and 

only UTR variants (5’UTR or 3’UTR); as well as analyses that only included promoter, 5’UTR or 

3’UTR variants. We also applied two MAF thresholds (MAF < 0.01 and MAF < 0.001) and two 

CADD filters (no CADD filter and CADD ≥ 5). In total, we performed rare allele burden analyses 

for each of the 24 unique filter combinations. 

 Across all analyses, results were consistent with a non-linear association between rare 

regulatory alleles and gene expression, whereby rare allele burden was greatest for the lowest 

and highest gene expression bins (see Supplementary Table 4.1); thus, a ‘U-shaped’ 

association was consistently observed. These U-shaped associations were more pronounced 

(greater concavity) when limiting analyses to the rarest variants (variant sites with MAF < 

0.001), and also tended to be more pronounced when only analyzing variants with CADD ≥ 5. In 

addition, the U-shaped associations were most pronounced when only analyzing the 5’UTR rare 

variants, as compared with analyses that combined 5’UTR variants with other regulatory 

variants or that only considered promoter or 3’UTR variants. Figure 4.9 shows an example of 

the tendency for rarer variants and those with CADD ≥ 5 to yield stronger estimated 

associations between rare allele burden and gene expression level. This figure was generated 
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based on results from the quadratic model analyses of 5’UTR variants only. In order to facilitate 

interpretation of association estimates outputted by these models, Figure 4.9 plots rare allele 

ORs comparing each expression bin to bin 1, along with 95% CIs (ORs for the different 

comparisons were calculated using the beta estimates resulting from the corresponding 

analyses, which are presented in Supplementary Table 4.1). The aforementioned differences 

in estimated associations across MAF thresholds and CADD filters are apparent in this figure. 

For instance, considering the analyses that did not apply a CADD filter, using a MAF < 0.01 filter 

yielded a minimum OR = 0.760 (95% CI: 0.521, 1.109), which occurs for the comparison of 

expression bin 14 with bin 1 and is interpreted as middle-range expression bins being 

associated with a 24% reduced odds of having a rare allele as compared with the lowest 

expression bin; whereas using a MAF < 0.001 filter yielded a minimum OR = 0.617 (95% CI: 

0.370, 1.029), also occurring for the comparison of bin 14 with bin 1. However, as can be seen 

by the 95% CIs plotted in Figure 4.9, these estimated associations are rather imprecise, the 

same being true for the other analyses of these 64 genes with SZ-associated expression levels. 

None of these analyses yielded a p-value exceeding the permutation-based multiple-testing-

corrected statistical significance threshold of 2.61 x 10-4. Though interesting, the random error of 

these estimates limits the ability to render more confident judgements regarding a potential 

association between rare alleles and gene expression for these genes, and whether such an 

association may differ across various MAF, CADD, and genomic region (e.g., 5’UTR versus 

promoter) filters. 
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Figure 4.9. Results from analyses of 64 genes with SZ-associated expression, when limiting to 
5’UTR variants only. Points are ORs comparing each expression bin to bin 1, and vertical lines 
are corresponding 95% CIs. ORs and 95% CIs were calculated using estimates from the 
corresponding quadratic regression models. 

 

 

Genes with low versus high expression associated with SZ 

We then stratified these 64 genes based on whether SZ was associated with low 

expression (17 genes) or high expression (39 genes) (direction of association could not be 

determined for 8 of the 64 genes), and we performed separate rare allele burden analyses for 

these two gene sets. We observed that estimated associations tended to be rather different for 

the genes with low versus high expression associated with SZ (Supplementary Tables 4.2 and 

4.3). Analyses of the genes with high expression associated with SZ yielded U-shaped 

estimated associations between rare allele burden and gene expression. In contrast, analyses 

of the genes with low expression associated with SZ tended to yield estimated associations that 

were more linear and with positive slopes, consistent with increases in expression bin being 

associated with greater odds of observing rare alleles. As an example of this observed 

difference, Figure 4.10 plots ORs generated based on results from analyzing each gene set 

(genes with low versus high expression associated with SZ) when applying MAF < 0.001 and 

CADD ≥ 5 filters and including variants in any regulatory region (promoter, 5’UTR or 3’UTR). 
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Should these results reflect genuine differences in the association of rare allele burden with 

expression for genes with low versus high expression associated with SZ, a partial explanation 

might be that genes with low expression levels associated with SZ are depleted for rare 

regulatory variants that cause reduced expression, due to selection against the harmful 

consequences of such variants for these genes. However, the association estimates for these 

sets of analyses were quite imprecise, and observed differences might readily be explained by 

error in the estimates. 

An additional interesting observation related to these analyses was that, while nearly all 

analyses yielded the basic result depicted in Figure 4.10 of an apparent difference in 

association for genes with low versus high expression associated with SZ, the analyses 

including only 5’UTR variants produced similarly U-shaped estimates of association between 

rare allele burden and gene expression for both gene sets. This similarity is depicted in Figure 

4.11, which presents ORs generated from analyses of 5’UTR variants with MAF < 0.01 and 

CADD ≥ 5. 
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Figure 4.10. Comparison of results from analyses of 17 genes with SZ-associated low 
expression and 39 genes with SZ-associated high expression, when including all available 
regulatory variants (promoter, 5’UTR and 3’UTR variants), and applying MAF < 0.001 and 
CADD ≥ 5 filters. Points are ORs comparing each expression bin to bin 1, and vertical lines are 
corresponding 95% CIs. ORs and 95% CIs were calculated using estimates from the 
corresponding quadratic regression models. 
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Figure 4.11. Comparison of results from analyses of 17 genes with SZ-associated low 
expression and 39 genes with SZ-associated high expression, when limited to 5’UTR variants 
only, and applying MAF < 0.01 and CADD ≥ 5 filters. Points are ORs comparing each 
expression bin to bin 1, and vertical lines are corresponding 95% CIs. ORs and 95% CIs were 
calculated using estimates from the corresponding quadratic regression models. 

 

 

Genes with SZ-associated expression levels or within a SZ CNV 

 We then combined the set of 64 genes with SZ-associated expression with a larger set 

of genes that had been sequenced due to being located within or near a SZ-associated large 

CNV (deletion or duplication) interval. We theorized that just as transcript dosage is associated 

with SZ for the genes with SZ-associated expression, transcript dosage is also likely to be 

associated with SZ for numerous genes within the CNV intervals, and thus analyses of this 

“combined gene set” can serve as a useful supplement to the previously described analyses. 

Furthermore, these larger gene set analyses are expected to be of interest and value beyond 

genes with SZ-associated expression. 
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 Unlike the 64 genes with SZ-associated expression levels, the genes that underwent 

targeted DNA sequencing due to existing within or near a SZ CNV interval only had exonic 

regions sequenced and were not sequenced to 2kb upstream of the TSS. Therefore, our 

analyses of this combined gene set did not include promoter region variants. The genomic 

regions analyzed were 5’UTR and 3’UTR, both combined and separately. We applied the same 

MAF and CADD filters (MAF < 0.01 and < 0.001; no CADD filter and CADD ≥ 5) as we did when 

only analyzing the genes with SZ-associated expression. We performed analyses for each of 

the 12 unique filter combinations. The maximum number of genes available for these analyses 

was 149, including 62 of the previously analyzed 64 genes with SZ-associated expression (2 of 

these previously analyzed genes no longer had variants available for analysis after excluding 

promoter variants), and 87 SZ CNV genes.   

 Results from these analyses were largely similar to those obtained from analyzing the 64 

genes with SZ-associated expression, though these analyses yielded more precise estimates 

due to being based on a greater quantity of rare regulatory alleles, corresponding to the larger 

number of genes analyzed (see Supplementary Table 4.4). Estimated associations between 

rare regulatory allele burden and gene expression primarily exhibited U-shaped patterns, which 

tended to be somewhat more pronounced for the rarest variants (MAF < 0.001) and for variants 

more likely to be deleterious (CADD ≥ 5). In addition, U-shaped estimated associations were 

most pronounced when analyzing 5’UTR variants only. An example of this latter finding is 

depicted by Figure 4.12, which presents ORs generated from 5’UTR- and 3’UTR-only analyses 

which applied MAF < 0.01 and CADD ≥ 5 filters. For these filters, the analyses of 5’UTR variants 

yielded a minimum OR = 0.639 (for expression bin 14 versus bin 1; 95% CI: 0.483, 0.844; joint 

p-value for the quadratic model = 0.0064), while analyses of 3’UTR variants yielded a minimum 

OR = 0.844 (for expression bin 18 versus bin 1; 95% CI: 0.686, 1.040; joint p-value for the 

quadratic model = 0.2567). Imprecision of the estimated associations from these combined 

gene set analyses, though less than that of the estimates based analyzing the 64 genes with 
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SZ-associated expression, warrants caution in interpretation of results. No results from these 

analyses were statistically significant at the multiple-testing-corrected significance threshold. 

 

Figure 4.12. Results from analyzing the combined set of 149 genes, including genes with SZ-
associated expression and genes located within or near a large SZ-associated CNV interval. 
These results were obtained when limiting to variants with MAF < 0.01 and CADD ≥ 5. Points 
are ORs comparing each expression bin to bin 1, and vertical lines are corresponding 95% CIs. 
ORs and 95% CIs were calculated using estimates from the corresponding quadratic regression 
models. 

 

Genes with low versus high dosage associated with SZ 

We then stratified the genes within the combined set based on whether genes had 

suggestive evidence of low versus high transcript dosage associated with SZ. We analyzed 72 

genes with evidence of low dosage linked with SZ, including 19 genes with low expression 

associated with SZ (16 of which were among the previously analyzed 64 genes with SZ-

associated expression; 3 of which were not included amongst the previously analyzed 64 genes 

since promoter regions for these 3 genes had not be sequenced), and 54 genes within or near a 
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large SZ-associated deletion (1 of which also had low expression levels associated with SZ). 

We also analyzed a total of 69 genes with evidence of high dosage linked with SZ, including 43 

genes with high expression associated with SZ (38 of which were included among the 

previously analyzed 64 genes with SZ-associated expression, with the remaining 5 not included 

due to lacking promoter sequence), and 31 genes within or near a large SZ-associated 

duplication (5 of which also had high expression associated with SZ). Two genes located within 

SZ duplications were previously identified to have low expression levels associated with SZ; we 

included these genes among the 72 genes with suggestive evidence of low transcript dosage 

linked with SZ and not among the genes with evidence of high dosage associated with SZ. For 

each gene set, we performed rare allele burden analyses corresponding to the 12 unique 

combinations of variant filters, as we did for the fully combined set of 149 genes. 

Results from analyzing these two gene sets were rather different from the previously 

described results from only analyzing genes among the set of 64 genes with SZ-associated 

expression levels. The analyses of 72 genes with evidence of low dosage linked with SZ tended 

to yield U-shaped estimated associations between rare regulatory allele burden and gene 

expression (see Supplementary Table 4.5); this is in contrast to the more linear, positive 

sloped pattern of estimated associations observed when only analyzing the 17 genes with SZ-

associated low expression levels. It is possible that the previously observed linear, positive 

sloped pattern does not reflect true underlying associations for genes with low expression 

associated with SZ; we note the imprecision of these previous estimates based on only 17 

genes. It is also possible that the previously observed pattern does reflect actual underlying 

associations for genes with low expression associated with SZ, and that estimated associations 

based on all 72 genes are rather different due to including many genes that in fact may not have 

low expression levels associated with SZ. A result which was consistent between analyses of 

the 17 genes with SZ-associated low expression and the 72 genes with evidence of low dosage 

linked with SZ was an especially pronounced U-shaped estimated association between rare 
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allele burden and gene expression observed when only analyzing 5’UTR variants. An example 

of this consistent result is presented in Figure 4.13. As can be seen in this figure, the U-shaped 

estimated association for the larger set of genes with SZ-associated expression or within a SZ 

deletion is more precise, yielding a minimum OR = 0.635 (95% CI: 0.372, 1.085; joint p-value for 

quadratic model = 0.0835). This result is consistent with rare 5’UTR variants potentially playing 

a role in regulating gene expression for genes with increased likelihood of having SZ-associated 

low expression levels. 

The analyses of up to 69 genes with evidence of high dosage linked with SZ tended to 

yield estimated associations between rare regulatory allele burden and gene expression which 

were rather linear and with negative slopes (indicating that decreases in gene expression were 

associated with greater rare allele burden; see Supplementary Table 4.6); this was somewhat 

different from the consistently more U-shaped estimated associations observed when only 

analyzing the 39 genes with high expression associated with SZ. However, these observed 

differences in estimates were generally rather minor and could readily be explained by statistical 

imprecision.  
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Figure 4.13. Comparison of results when analyzing the 17 genes with SZ-associated 
expression (‘Low express’) and the 72 genes with evidence of low dosage linked with SZ (‘Low 
express or Del’). These results were obtained when including 5’UTR variants only, and limiting 
to variants with MAF < 0.001 and CADD ≥ 5. Points are ORs comparing each expression bin to 
bin 1, and vertical lines are corresponding 95% CIs. ORs and 95% CIs were calculated using 
estimates from the corresponding quadratic regression models. 

 

Filtering the combined gene set based on gene constraint metrics 

 In order to examine whether associations between rare regulatory allele burden and 

gene expression may vary across different levels of gene constraint, we took the combined set 

of 149 genes and applied various gene constraint filters, and then performed rare allele burden 

analyses (for 12 unique filter combinations, as described above) for each resulting gene set. 

pLi filters 

 From the combined set of 149 genes, we identified 87 genes with pLi < 0.10 (low 

intolerance to LoF mutations) and 33 genes with pLi ≥ 0.90 (high intolerance to LoF mutations). 

Results from analyzing these two gene sets were noticeably different (see Supplementary 
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Tables 4.7 and 4.8). Genes with pLi < 0.10 tended to yield stronger estimated associations 

between rare regulatory alleles and gene expression (more pronounced U-shaped associations) 

as compared with the pLi ≥ 0.90 genes. As an example, Figure 4.14 plots ORs generated from 

analyzing these two gene sets, with variants limited to those within 5’UTR or 3’UTR, and with 

MAF < 0.01 and CADD ≥ 5. For these specific analyses, the minimum OR when analyzing the 

pLi < 0.10 genes was 0.641 (when comparing expression bin 15 with bin 1; 95% CI: 0.498, 

0.824; joint p-value for quadratic model = 0.0029); while the smallest OR obtained when 

analyzing the pLi > 0.90 genes was 0.852 (comparing bin 20 with bin 1; 95% CI: 0.662, 1.095; 

joint p-value for quadratic model = 0.4437). A tendency for genes with relatively low intolerance 

to LoF mutations to exhibit stronger U-shaped associations between rare regulatory allele 

burden and gene expression has plausibility, as extremes in expression level for such genes 

may be relatively more tolerable, and in turn there may be less negative selective pressure 

against rare variants with strong effects on gene expression. Consistent with findings from our 

prior analyses, the strongest estimated associations for the pLi < 0.10 genes were observed 

when analyzing 5’UTR variants only. 
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Figure 4.14. Comparison of results when analyzing genes with pLi < 0.10 and genes with pLi ≥ 
0.90. These results were obtained when analyzing any UTR variants (5’UTR and 3’UTR 
variants), and limiting to variants with MAF < 0.01 and CADD ≥ 5. Points are ORs comparing 
each expression bin to bin 1, and vertical lines are corresponding 95% CIs. ORs and 95% CIs 
were calculated using estimates from the corresponding quadratic regression models. 

  

Missense variation constraint filters 

 Starting from the combined set of 149 genes, we then identified 89 genes intolerant to 

missense variation, and 7 genes extremely tolerant to missense variation. Of the 89 missense-

intolerant genes, 32 genes had pLi ≥ 0.90 and 34 had pLi < 0.10 (we note that potential 

inconsistencies in the assignment of pLi and missense constraint are due to methodological 

differences for determining these metrics, and that incorporating both approaches into our 

analyses is of benefit). Of the 7 genes with evidence of extreme tolerance to missense variation, 
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unique filter combinations as described previously.  
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The analyses of genes intolerant to missense variation yielded U-shaped estimates of 

association between rare alleles and gene expression, while the analyses of genes extremely 

tolerant to missense variants tended to yield negatively sloped, linear association estimates, 

with the latter association estimates generally stronger than the former but becoming highly 

imprecise with stricter variant filters due to the small numbers of rare alleles available for 

analysis (see Supplementary Tables 4.9 and 4.10). An illustration of these differences are the 

results from analyzing these two gene sets limited to variants in any UTR (5’UTR or 3’UTR), 

MAF < 0.01 and CADD ≥ 5; plots based on these results are shown in Figure 4.15. The 

stronger, more linear pattern of estimated associations produced from analyzing the genes 

extremely tolerant to missense variation is evident in this figure, with the non-quadratic analysis 

of these genes yielding a minimum OR = 0.329 (comparing expression bin 25 with bin 1; 95% 

CI: 0.153, 0.709; p-value for the non-quadratic model = 0.0048); in contrast, results from 

analyzing the genes intolerant to missense variation are observed to exhibit a more U-shaped 

pattern, with the quadratic analysis of these genes generating a minimum OR = 0.868 

(comparing expression bin 16 with bin 1; 95% CI: 0.713, 1.056; joint p-value for the quadratic 

model = 0.3697). Overall, the results from these analyses are consistent with a stronger 

association of rare regulatory allele burden with gene expression level for genes that are 

extremely tolerant to missense mutations as compared with those intolerant to such mutations. 

This finding is consistent with our LoF constraint findings, and seems similarly plausible in light 

of potentially stronger negative selection for highly intolerant genes. 
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Figure 4.15. Comparison of results when analyzing genes extremely tolerant versus intolerant 
to missense variants. These results were obtained when analyzing any UTR variants (5’UTR 
and 3’UTR variants), and limiting to variants with MAF < 0.01 and CADD ≥ 5. Points are ORs 
comparing each expression bin to bin 1, and vertical lines are corresponding 95% CIs. ORs and 
95% CIs were calculated using estimates from the corresponding quadratic regression models. 

 

 

Sensitivity analyses 

 We reperformed the rare variant burden analyses of the 64 genes with SZ-associated 

expression, for the controls only, SZ cases only, and for all samples combined but without 

adjusting for case-control status as we did for the main analyses. In order to be consistent with 

our main analyses, which used 25 expression bins, we randomly excluded 20 of the 370 

controls, and analyzed the remaining 350 controls (25 expression bins of 14 participants each); 

and we randomly excluded 5 of the 355 SZ cases, analyzing the remaining 350 cases. We 

observed patterns of estimated associations that were highly consistent across analyses based 

on all samples combined with adjustment for case-control status (our main analyses), all 

samples combined without adjustment for case-control status, controls only and cases only (see 

Supplementary Tables 4.11, 4.12 and 4.13). Analyzing all samples combined yielded the most 

precise estimates. As observed for our main analyses, the analyses of controls only, cases only, 

and all samples without adjustment for case-control status all produced U-shaped patterns of 
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association between rare regulatory allele burden and gene expression, which were frequently 

more pronounced when only including the rarest variants (MAF < 0.001), when limiting to 

variants with CADD ≥ 5, and when only including 5’UTR variants. Figure 4.16 shows results 

from the quadratic model analyses of 5’UTR regulatory variants with MAF < 0.001 and CADD ≥ 

5; the version of this analysis performed for generating our main results was plotted previously 

in Figure 4.9, with ORs from this main analysis shown again here. It is apparent from Figure 

4.16 that the patterns of estimated associations when analyzing controls only, cases only, and 

all samples with or without adjustment for case-control status do not exhibit evidence of 

meaningful differences. For the controls-only analysis, the OR at the bottom of the U-shaped 

curve was estimated as 0.499; dividing this by the minimum OR estimated for our main analysis 

yields a ratio of 0.499/0.563 = 0.887. For the cases-only analysis, the OR at the bottom of the 

U-shaped curve was estimated as 0.565; the ratio of this OR to the main analysis OR is 

0.565/0.563 = 1.004. For the analysis of all samples without case-control adjustment, the 

minimum OR was 0.557, yielding a ratio of 0.557/0.563 = 0.989 when compared with the 

corresponding OR from the main analysis of all samples with case-control adjustment. These 

ratios indicate little difference in the smallest OR estimated across these different analyses. 
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Figure 4.16. Comparison of results when performing burden analyses for all samples with 
adjustment for case-control status (‘All samples - Adjusted’; main analyses), all samples without 
adjustment for case-control status (‘All samples - Unadjusted’), controls only, and cases only. 
Analyses were performed for the 64 genes with SZ-associated expression, limiting to 5’UTR 
variants with MAF < 0.001 and CADD ≥ 5. Points are ORs comparing each expression bin to bin 
1, and vertical lines are corresponding 95% CIs. ORs and 95% CIs were calculated using 
estimates from the corresponding quadratic regression models. 

 

We also used the datasets of 350 controls, 350 SZ cases, and all samples unadjusted 

for case-control status to reperform the rare burden analyses of the full set of 149 genes either 

with SZ-associated expression and/or located within or near a large SZ CNV interval. For these 

largest gene set analyses, we again observed results that were highly consistent across 

analyses of the controls only, cases only, and all samples with or without adjustment for case-

control status: non-linear estimated associations between rare regulatory allele burden and 

gene expression which tended to exhibit U-shaped patterns, which were most pronounced when 

analyzing 5’UTR variants only, and which were often somewhat more pronounced when 

applying MAF < 0.001 and CADD ≥ 5 filters (see Supplementary Tables 4.14, 4.15 and 4.16). 

We previously plotted results from the main analyses all 149 genes, including only 5’UTR 

variants with MAF < 0.01 and CADD ≥ 5 (see Figure 4.12). In Figure 4.17, we again plot these 
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results (which are based on all samples, with adjustment for case-control status), along with OR 

estimates from analyzing only the controls, only the cases, and all samples without adjusting for 

case-control status. The estimated associations from each of these datasets are very similar. 

The ratio comparing minimum OR from the controls-only analysis to minimum OR from the main 

analysis is 0.705/0.639 = 1.104; the ratio comparing minimum ORs from the cases-only analysis 

and the main analysis is 0.685/0.639 = 1.072; and the ratio of minimum OR from the analysis of 

all samples without case-control adjustment to minimum OR from our main analysis is 

0.653/0.639 = 1.023.  

 

Figure 4.17. Comparison of results when performing burden analyses for all samples with 
adjustment for case-control status (‘All samples - Adjusted’; main analyses), all samples without 
adjustment for case-control status (‘All samples - Unadjusted’), controls only, and cases only. 
Analyses were performed for the combined set of 149 genes, including genes with SZ-
associated expression and those located within or near a large SZ-associated CNV. These 
results are based on analyzing 5’UTR variants with MAF < 0.01 and CADD ≥ 5. Points are ORs 
comparing each expression bin to bin 1, and vertical lines are corresponding 95% CIs. ORs and 
95% CIs were calculated using estimates from the corresponding quadratic regression models. 
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 In addition, we reperformed the analyses depicted in Figures 4.10, 4.14, and 4.15 using 

controls only, cases only, and all samples without case-control adjustment. We observed that 

the patterns of estimated associations were quite similar across the analyses of all samples with 

or without case-control adjustment, controls only and cases only, with the differences previously 

described for the main analyses (differences in estimated associations between genes with low 

versus high expression associated with SZ, genes with pLi < 0.10 versus pLi ≥ 0.90, and genes 

extremely tolerant versus intolerant to missense variation) also observed for these supplemental 

analyses (see Supplementary Figures 4.1, 4.2, and 4.3). 

 The approach of analyzing all cases and controls combined and adjusting for case-

control status, employed for our main analyses, and the approach of analyzing controls only, 

have both been demonstrated to yield valid results for the secondary analysis of case-control 

data when the disease defining case status is rare.111-115,122 The finding that these two 

approaches yielded highly similar estimated associations between rare regulatory allele burden 

and gene expression for our study is therefore unsurprising; nonetheless, this consistency lends 

additional credibility to our main results. The observed consistency between the results 

generated from analyzing controls only and SZ cases only is in line with our expectation that an 

effect of rare regulatory variation on gene expression would likely not be meaningfully different 

for individuals with and without SZ.  

In addition, the fact that estimates were nearly identical when analyzing all samples with 

and without adjustment for case-control status may reflect that SZ is not a collider variable in 

our analyses, or that it is only a very weak collider; if it were a strong collider, prior studies 

indicate that it is likely the unadjusted analyses would yield results that are biased and therefore 

differ from the adjusted analyses. One possibility is that many or most of the rare regulatory 

variants included in our analyses do not affect SZ through pathways other than those involving 

gene expression, or do so only weakly, in which case the designation of SZ status as a collider 

in the DAG could be incorrect. 
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DISCUSSION 

 Recent studies have identified numerous genes to have expression levels that are 

associated with SZ.14-16 Rare variants within regulatory regions may play an important role in 

modifying the expression of such genes. However, research studying the functional 

consequences of rare regulatory variants has been very limited, including for investigations of 

the contribution of rare regulatory variation to SZ-associated expression. Studies of the role of 

rare regulatory variants in modifying gene expression have lagged due to technological and 

power limitations. For the present study, we were able to overcome or reduce these limitations 

by making use of targeted DNA sequencing data, and by employing a modified version of a 

recently developed rare variant burden analysis technique specifically designed to offer more 

power for examining associations of rare alleles with gene expression. We analyzed a subset of 

725 individuals from the MGS study, all of whom had both targeted DNA sequence and RNA 

sequence data. We had also originally planned to analyze an independent sample of 400 

individuals with microarray expression data, but during preliminary work we realized that the 

microarray data appeared limited in its ability to accurately order individuals’ expression levels 

for our analyses, and so we ultimately moved forward only analyzing the RNA sequencing 

dataset. 

 We first analyzed a set of 64 genes previously identified to have SZ-associated 

expression levels. All exons for these genes had been sequenced, along with a 2 kb region 

upstream of the TSS. Our regulatory variant analyses for these genes included rare variants 

within the promoter, 5’UTR or 3’UTR (or various combinations of these regions); and considered 

different MAF filters (MAF < 0.01 or < 0.001) and different CADD filters (no CADD filter or CADD 

≥ 5). Across multiple analyses we consistently observed a U-shaped pattern of estimated 

association between rare regulatory allele burden and gene expression, whereby rare allele 

burden was greatest both at the lowest and highest expression levels. These U-shaped 

estimated associations tended to be more pronounced when analyses were limited to the rarest 
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variants (MAF < 0.001) and the variants more likely to be deleterious (CADD ≥ 5); and also 

when analyses were performed only for 5’UTR variants (as opposed to promoter or 3’UTR 

variants). These same basic findings were also observed when we analyzed a larger set of 149 

genes, which combined the aforementioned SZ-associated expression genes with a set of 

genes likely to be enriched for SZ-associated expression due to being located within or near a 

SZ-associated large CNV (deletion or duplication). For this larger gene set, we only considered 

5’UTR and 3’UTR variants since regions upstream of the TSS had not been sequenced for the 

SZ CNV genes. Among these particular analyses, the strongest statistical support for an 

association between rare regulatory alleles and gene expression was provided by the analysis 

of the larger gene set, when only including 5’UTR variants with MAF < 0.01 and CADD ≥ 5; this 

quadratic model analysis yielded OR = 0.639 for the odds of observing a rare allele in 

expression bin 14 versus bin 1 (95% CI: 0.483, 0.844; joint p-value for the quadratic model = 

0.0064).  

Our observation of U-shaped estimated associations between rare regulatory allele 

burden and gene expression is consistent with the findings by Zhao et al. (2016), who are the 

investigators that developed the burden analysis approach on which our modified approach was 

based. These investigators analyzed associations of low-frequency (MAF < 0.05) promoter-

proximal variants with peripheral blood transcript level for 472 genes (not focusing on SZ-

associated genes), and identified an enrichment of these variants for both low and high 

expression (they replicated this finding in a supplemental analysis of MAF < 0.01 variants). They 

also observed that this pattern of enrichment was stronger for variants within 1kb downstream of 

the TSS as compared with variants within 1kb upstream of the TSS, which is consistent with our 

finding that U-shaped estimated associations were most pronounced when only analyzing 

5’UTR variants (which are directly downstream of the TSS). 

We also stratified the 64 genes with SZ-associated expression into genes with low 

versus high expression associated with SZ, and separately analyzed these two gene sets. The 
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resulting association estimates were rather different for the two gene sets, possibly reflecting a 

genuine difference in the distribution of rare regulatory allele burden for genes with low versus 

high expression associated with SZ. However, the estimates from these analyses were 

insufficiently precise to be confident in any real difference. Furthermore, these differences in 

estimated associations did not replicate when analyzing the larger sets of genes with low versus 

high dosage associated with SZ (gene sets generated by stratifying the combined set of 149 

genes based on SZ-associated low expression or deletion versus SZ-associated high 

expression or duplication). 

In addition, we analyzed gene sets created by filtering the combined set of 149 genes 

based on LoF and missense variant constraint metrics. These analyses yielded our strongest 

association estimates. In comparison with pLi ≥ 0.90 genes (highly intolerant to LoF mutations), 

analyzing genes with pLi < 0.10 (LoF-tolerant) tended to yield more pronounced U-shaped 

estimated associations between rare regulatory allele burden and gene expression. Application 

of missense constraint filters yielded similar results: we observed much stronger association 

estimates for genes extremely tolerant to missense variation (with rare allele odds by far 

greatest at the lowest expression levels) as compared with missense-intolerant genes. These 

results are consistent with prior findings by Lek et al. (2016)125 that genes that are highly 

constrained for protein-truncating variants as well as genes highly constrained for missense 

variation are depleted for eQTLs (common variant associations with gene expression) as 

compared with genes exhibiting medium or low constraint for these variant classes. A plausible 

explanation for these findings is that rare regulatory variants with stronger effects on gene 

expression may have been eliminated to a certain extent from the intolerant genes through 

negative selection, since aberrant gene expression caused by such rare variants might have 

particularly detrimental consequences for these genes, which are known to be intolerant to 

alterations arising from missense and/or LoF mutations (note that pLi ≥ 0.90 means that the 

gene is highly likely to be haploinsufficient and therefore intolerant to a 50% reduction in 
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expression due to the loss of one gene copy). The remaining rare variants would then be less 

likely to strongly impact gene expression. On the other hand, genes with evidence of being 

tolerant or highly tolerant to such mutations might also be highly tolerant to rare regulatory 

variants with large effects on gene expression, with the result that such variants are less likely to 

be eliminated due to negative selective pressure. Our gene constraint findings may be 

supported by the observation by Zhao et al (2016)27 that the association between rare promoter 

allele burden and gene expression was much stronger (more pronounced U-shape) for a set of 

genes not associated with disease than it was for a set of metabolic disease-related genes. 

These investigators noted that this difference might be explained by relaxed purifying selection 

on the former set of genes, which is perhaps less likely to include highly constrained genes as 

compared with the set of disease genes. 

We performed sensitivity analyses using controls only, SZ cases only, and all samples 

without adjustment for case-control status, and observed that these analyses yielded estimated 

associations of rare regulatory allele burden and gene expression that were highly consistent 

with the estimates obtained from our main analyses (which analyzed all cases and controls 

combined, and adjusted for case-control status). This finding lends additional credibility to the 

results from our main analyses, and also supports the notion that an effect of rare regulatory 

variation on gene expression may not be different for those with and without SZ. 

For this study, we examined a set of genes with LCL-based expression levels previously 

identified as associated with SZ, and our study also involved directly analyzing LCL-based 

expression levels. The use of LCLs to investigate SZ-associated gene expression is perhaps 

not ideal, as brain tissue is considered the most relevant tissue for SZ.14 However, 

ascertainment of postmortem brain tissue or neuronal cell lines for a psychiatric study is often 

not feasible, particularly for a large genetic epidemiology study. As a result, LCLs have 

frequently been used in psychiatric studies as a substitute tissue. The relevance of LCLs is 

supported by research indicating that 35-80% of transcripts are expressed in both brain and 
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blood, with correlation between brain and blood gene expression levels estimated at r = 0.24-

0.64.14,126,127 In addition, research supports an important role for immune mechanisms in SZ, 

and LCLs are well-suited to investigate gene expression that may be involved in such 

processes.14,16,19,128-130 Furthermore, the set of 64 genes with SZ-associated expression (based 

on LCLs) that we analyzed in this study are enriched for genes that are also expressed in the 

brain.14 LCLs also provide the benefit of potentially reduced environmental influences on gene 

expression. Specifically, the process of generating LCLs results in a cell line that is thought to 

be more removed from the environmental influences and state aspects of the individual (e.g., 

disease status, medication usage), as compared with the original cell from which the LCL was 

derived.16 

Our study focused exclusively on regulatory variants that are proximal to the gene. It is 

possible that including distal regulatory variants (e.g., those within enhancer, silencer and 

insulator sequences) may yield modified estimates of association between rare regulatory allele 

burden and gene expression. However, distal regulatory regions are presently less well defined 

in comparison with proximal regulatory regions, presenting challenges for identifying and 

studying variants located within these distal regulatory elements. In addition, there is evidence 

that variants proximal to genes tend to have larger effects than distal variants.131 

The rare variant burden approach that we employed to examine relations of rare 

regulatory alleles and gene expression gains power for examining associations of rare variants 

and gene expression by analyzing sets of genes that have been grouped together. A 

consequence of this approach is that genes are not examined individually, and a unique pattern 

of association between rare regulatory alleles and gene expression for a given gene may be 

missed. With time, substantial increases in study sample sizes should provide sufficient power 

for analyzing genes individually; until then, a burden approach such as that which we used may 

be the best alternative.   
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In addition, the rare variant burden approach that we employed provides estimates of 

association that reflect the pattern of rare allele burden across gene expression levels, but does 

not inform as to why such patterns may exist. An analysis of genes yielding a rather weak U-

shaped pattern of association between rare regulatory allele burden and gene expression may 

reflect little effect of any rare variation on expression for the gene set; alternatively, certain rare 

variants may have large effects on expression for these genes, with the weak U-shaped 

estimated association reflecting that such variants have been largely removed due to negative 

selective pressure. The latter possibility is illustrated by our different findings across levels of 

gene constraint. Thus, it is important to be cautious about interpreting a given set of results as 

representative of associations that would be estimated for any rare regulatory variation within 

the genes of interest. Supplemental approaches may be employed to gain a more accurate and 

complete understanding of the potential effects of rare regulatory variants on expression level 

for given genes.  

Our rare variant burden approach was designed to examine associations between rare 

allele burden and gene expression bin; as such, it is able to provide suggestive evidence about 

whether rare regulatory alleles may be causing decreased and/or increased gene expression. 

However, the approach is inherently limited with respect to providing information about the 

magnitude of expression change (e.g., number of standard deviations in expression shifted) that 

might be caused by a rare allele. Alternative analytic methods, which do not assign expression 

values to bins, will be needed to examine this aspect of the association between rare regulatory 

variants and gene expression. Substantial sample size increases should eventually enable well-

powered application of eQTL analysis methods to rare variants, which would allow quantification 

of the amount that expression levels differ for those with and without specific rare regulatory 

alleles. Future work might also include in vitro studies that examine the amount of change in 

gene expression corresponding to experimental manipulation of rare regulatory alleles.  
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An additional point of interest, which was beyond the scope of this project, is whether 

expression for the genes considered in our study (specifically, those identified to have SZ-

associated expression levels) may in fact be mediators on potential causal pathways from rare 

regulatory variation to SZ. Additional analyses are needed to properly explore this possibility, 

including re-analyzing associations between gene expression and SZ while controlling for the 

rare regulatory variants of interest, to rule out the possibility that an observed association 

between gene expression and SZ is simply due to confounding by these rare regulatory 

variants.132,133 Should future research support a causal pathway from rare regulatory variation to 

aberrant gene expression to SZ for genes among those which we have analyzed, it is possible 

that such knowledge could be leveraged in the effort to more effectively treat and prevent SZ. 

In summary, most results from the analyses described in this chapter were consistent 

with a U-shaped pattern of association between rare regulatory variants and gene expression 

for genes with SZ-associated expression levels, whereby rare regulatory allele burden was 

greatest at the expression extremes. Despite employing a unique burden approach specifically 

designed to increase power for investigating associations of rare variants with gene expression, 

many of our estimates were rather imprecise, and no results were statistically significant 

following correction for multiple tests. Future studies involving more participants and/or 

analyzing more genes with SZ-associated expression will enable the precision needed to better 

estimate these associations. 
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SUPPLEMENT 

 

Supplementary Table 4.1 (next page). Results from analyzing 64 genes with SZ-associated expression, using non-quadratic (no 
Bin2 term) and quadratic (includes Bin2 term) models, and applying various combinations of MAF, CADD, and region filters to the 
variants. In the model formulas, Y = 1 indicates presence of a rare regulatory allele, and Bin represents expression bin number 
(these analyses used 25 expression bins, with 29 samples assigned to each bin). For the group of middle columns corresponding to 
the non-quadratic model, OR, CIs and P all correspond to Bin. For the quadratic model, ‘P: Joint’ is the p-value resulting from a joint 
test of b1 and b2. In the ‘Gene Region’ column, ‘Any reg’ means variants within the promoter, 5’UTR or 3’UTR were included; 
‘Upstream reg’ means only variants within the promoter or 5’UTR were included; ‘Any UTR’ means only variants within the 5’UTR or 
3’UTR were included; ‘Prom only’ means only variants within the promoter region were included. The column ‘Genes’ shows the 
number of genes analyzed, which is less than 64 when variant filters removed all variants of interest from a gene. ‘Rare sites’ and 
‘Rare alleles’ are the total number of rare variant sites and rare alleles, respectively, remaining after variant filters. MAF = minor allele 
frequency; CADD = Combined Annotation Dependent Depletion; OR = odds ratio; L 95% CI = lower bound for the 95% confidence 
interval; U 95% CI = upper bound for the 95% confidence interval; P = p-value; SE = standard error. 
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Dataset Model: 
!"#"$$%(' = )) = 	, + 	.) ∗ 012 

Model: 
!"#"$$%(' = )) = 	, + 	.) ∗ 012 + 	.3 ∗ 	0123 

MAF Gene Region CADD Genes 
Rare 
Sites 

Rare 
Alleles OR L 95% CI U 95% CI P .)  SE(.)) P: 012 .3  SE(.3) P: 0123 P: Joint 

< 0.01 Any reg No filter 64 1,275 2,494 1.000 0.993 1.006 0.8731 -0.0184 0.0129 0.1550 6.90E-04 4.80E-04 0.1543 0.3599 

< 0.01 Any reg ≥ 5 64 820 1,592 0.999 0.991 1.007 0.8090 -0.0302 0.0162 0.0629 1.13E-03 6.10E-04 0.0636 0.1766 

< 0.01 Upstream reg No filter 64 629 1,210 1.001 0.992 1.010 0.8314 -0.0149 0.0191 0.4358 6.10E-04 7.10E-04 0.3922 0.6792 

< 0.01 Upstream reg ≥ 5 63 488 951 1.003 0.993 1.013 0.5669 -0.0346 0.0213 0.1041 1.44E-03 7.90E-04 0.0694 0.1662 

< 0.01 Any UTR No filter 62 856 1,744 0.999 0.992 1.006 0.7524 -0.0234 0.0150 0.1179 8.60E-04 5.60E-04 0.1257 0.2969 

< 0.01 Any UTR ≥ 5 61 515 1,027 0.995 0.985 1.005 0.3064 -0.0453 0.0206 0.0278 1.55E-03 7.70E-04 0.0447 0.0810 

< 0.01 Prom only No filter 64 604 1,160 1.002 0.993 1.011 0.6575 -0.0160 0.0194 0.4107 6.90E-04 7.20E-04 0.3384 0.5747 

< 0.01 Prom only ≥ 5 63 469 919 1.005 0.995 1.015 0.3574 -0.0332 0.0217 0.1271 1.45E-03 8.10E-04 0.0719 0.1321 

< 0.01 5'UTR only No filter 52 210 460 0.997 0.982 1.012 0.6670 -0.0456 0.0313 0.1456 1.63E-03 1.18E-03 0.1647 0.3512 

< 0.01 5'UTR only ≥ 5 51 183 386 0.995 0.978 1.011 0.5188 -0.0810 0.0338 0.0169 2.92E-03 1.27E-03 0.0217 0.0613 

< 0.01 3'UTR only No filter 59 646 1,284 1.000 0.991 1.008 0.9152 -0.0207 0.0184 0.2620 7.80E-04 6.90E-04 0.2590 0.5280 

< 0.01 3'UTR only ≥ 5 51 332 641 0.994 0.981 1.007 0.3909 -0.0488 0.0272 0.0728 1.67E-03 1.02E-03 0.1030 0.1864 

< 0.001 Any reg No filter 64 1,006 1,147 1.000 0.991 1.009 0.9693 -0.0304 0.0182 0.0962 1.16E-03 6.80E-04 0.0885 0.2373 

< 0.001 Any reg ≥ 5 64 649 734 1.001 0.990 1.012 0.8961 -0.0500 0.0229 0.0289 1.95E-03 8.50E-04 0.0225 0.0763 

< 0.001 Upstream reg No filter 64 498 568 1.001 0.989 1.014 0.8211 -0.0435 0.0259 0.0924 1.73E-03 9.60E-04 0.0736 0.2009 

< 0.001 Upstream reg ≥ 5 63 387 440 1.005 0.991 1.019 0.4880 -0.0491 0.0290 0.0906 2.07E-03 1.08E-03 0.0555 0.1292 

< 0.001 Any UTR No filter 61 664 760 0.997 0.987 1.007 0.5788 -0.0322 0.0216 0.1360 1.13E-03 8.10E-04 0.1628 0.3263 

< 0.001 Any UTR ≥ 5 58 399 453 0.994 0.980 1.008 0.3680 -0.0648 0.0287 0.0241 2.27E-03 1.08E-03 0.0362 0.0772 

< 0.001 Prom only No filter 64 479 543 1.003 0.991 1.016 0.6073 -0.0404 0.0266 0.1280 1.68E-03 9.90E-04 0.0900 0.2122 

< 0.001 Prom only ≥ 5 63 372 420 1.008 0.993 1.022 0.2992 -0.0450 0.0299 0.1328 2.00E-03 1.11E-03 0.0710 0.1172 

< 0.001 5'UTR only No filter 50 156 181 0.992 0.971 1.013 0.4494 -0.0778 0.0427 0.0685 2.71E-03 1.61E-03 0.0926 0.1871 

< 0.001 5'UTR only ≥ 5 47 137 159 0.992 0.970 1.014 0.4792 -0.0945 0.0454 0.0376 3.36E-03 1.71E-03 0.0502 0.1190 

< 0.001 3'UTR only No filter 57 508 579 0.998 0.986 1.010 0.6879 -0.0228 0.0250 0.3613 7.90E-04 9.40E-04 0.4011 0.6498 

< 0.001 3'UTR only ≥ 5 49 262 294 0.994 0.977 1.011 0.4810 -0.0548 0.0359 0.1274 1.88E-03 1.35E-03 0.1641 0.3009 
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Supplementary Table 4.2 (next page). Results from analyzing 17 genes with low expression associated with SZ, using non-
quadratic (no Bin2 term) and quadratic (includes Bin2 term) models, and applying various combinations of MAF, CADD, and region 
filters to the variants. In the model formulas, Y = 1 indicates presence of a rare regulatory allele, and Bin represents expression bin 
number (these analyses used 25 expression bins, with 29 samples assigned to each bin). For the group of middle columns 
corresponding to the non-quadratic model, OR, CIs and P all correspond to Bin. For the quadratic model, ‘P: Joint’ is the p-value 
resulting from a joint test of b1 and b2. In the ‘Gene Region’ column, ‘Any reg’ means variants within the promoter, 5’UTR or 3’UTR 
were included; ‘Upstream reg’ means only variants within the promoter or 5’UTR were included; ‘Any UTR’ means only variants 
within the 5’UTR or 3’UTR were included; ‘Prom only’ means only variants within the promoter region were included. The column 
‘Genes’ shows the number of genes analyzed, which is less than 17 when variant filters removed all variants of interest from a gene. 
‘Rare sites’ and ‘Rare alleles’ are the total number of rare variant sites and rare alleles, respectively, remaining after variant filters. 
MAF = minor allele frequency; CADD = Combined Annotation Dependent Depletion; OR = odds ratio; L 95% CI = lower bound for the 
95% confidence interval; U 95% CI = upper bound for the 95% confidence interval; P = p-value; SE = standard error. 
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Dataset Model: 
!"#"$$%(' = )) = 	, + 	.) ∗ 012 

Model: 
!"#"$$%(' = )) = 	, + 	.) ∗ 012+ 	.3 ∗ 	0123 

MAF Gene Region CADD Genes Rare 
Sites 

Rare 
Alleles 

OR L 95% CI U 95% CI P .)  SE(.)) P: 012 .3  SE(.3) P: 
0123  

P: Joint 

< 0.01 Any reg No filter 17 332 631 1.006 0.994 1.017 0.3496 0.0043 0.0247 0.8622 5.00E-05 9.10E-04 0.9593 0.6450 

< 0.01 Any reg ≥ 5 17 232 464 1.007 0.993 1.021 0.3206 0.0172 0.0298 0.5638 -3.90E-04 1.10E-03 0.7244 0.5737 

< 0.01 Upstream reg No filter 17 165 298 1.007 0.991 1.025 0.3862 -0.0036 0.0360 0.9201 4.20E-04 1.33E-03 0.7516 0.6536 

< 0.01 Upstream reg ≥ 5 17 139 262 1.008 0.989 1.028 0.4006 0.0004 0.0407 0.9922 3.00E-04 1.50E-03 0.8445 0.6890 

< 0.01 Any UTR No filter 16 221 438 1.000 0.986 1.014 0.9665 -0.0072 0.0295 0.8081 2.60E-04 1.10E-03 0.8106 0.9708 

< 0.01 Any UTR ≥ 5 16 144 304 1.000 0.983 1.018 0.9932 0.0013 0.0371 0.9728 -5.00E-05 1.38E-03 0.9737 0.9994 

< 0.01 Prom only No filter 17 162 295 1.007 0.990 1.025 0.4088 -0.0079 0.0365 0.8287 5.80E-04 1.35E-03 0.6699 0.6495 

< 0.01 Prom only ≥ 5 17 137 260 1.007 0.988 1.027 0.4690 -0.0030 0.0411 0.9422 3.80E-04 1.52E-03 0.8005 0.7454 

< 0.01 5'UTR only No filter 12 54 105 0.985 0.954 1.018 0.3709 -0.1026 0.0639 0.1093 3.45E-03 2.43E-03 0.1569 0.2489 

< 0.01 5'UTR only ≥ 5 12 51 102 0.989 0.957 1.023 0.5270 -0.1039 0.0667 0.1203 3.63E-03 2.52E-03 0.1514 0.2974 

< 0.01 3'UTR only No filter 15 167 333 1.006 0.990 1.022 0.4430 0.0034 0.0340 0.9198 1.10E-04 1.26E-03 0.9326 0.7426 

< 0.01 3'UTR only ≥ 5 14 93 202 1.011 0.988 1.034 0.3461 0.0140 0.0484 0.7730 -1.20E-04 1.78E-03 0.9459 0.6399 

< 0.001 Any reg No filter 17 260 298 1.015 0.999 1.032 0.0733 0.0333 0.0357 0.3514 -6.90E-04 1.30E-03 0.5963 0.1739 

< 0.001 Any reg ≥ 5 17 181 212 1.012 0.992 1.033 0.2412 0.0310 0.0438 0.4804 -7.20E-04 1.61E-03 0.6566 0.4551 

< 0.001 Upstream reg No filter 17 127 145 1.010 0.987 1.033 0.3863 0.0337 0.0493 0.4946 -9.00E-04 1.82E-03 0.6206 0.6070 

< 0.001 Upstream reg ≥ 5 17 108 124 1.014 0.988 1.040 0.2840 0.0493 0.0565 0.3833 -1.33E-03 2.06E-03 0.5200 0.4558 

< 0.001 Any UTR No filter 16 173 199 1.015 0.995 1.036 0.1466 -0.0015 0.0433 0.9733 6.20E-04 1.58E-03 0.6971 0.3223 

< 0.001 Any UTR ≥ 5 16 110 131 1.007 0.981 1.033 0.5974 -0.0314 0.0541 0.5620 1.46E-03 2.00E-03 0.4665 0.6692 

< 0.001 Prom only No filter 17 124 142 1.010 0.987 1.033 0.4061 0.0288 0.0501 0.5655 -7.20E-04 1.84E-03 0.6955 0.6554 

< 0.001 Prom only ≥ 5 17 106 122 1.013 0.987 1.039 0.3352 0.0454 0.0569 0.4259 -1.23E-03 2.09E-03 0.5552 0.5259 

< 0.001 5'UTR only No filter 11 40 46 0.999 0.958 1.041 0.9445 -0.0978 0.0848 0.2494 3.71E-03 3.18E-03 0.2432 0.5122 

< 0.001 5'UTR only ≥ 5 11 37 43 1.005 0.962 1.050 0.8274 -0.0978 0.0892 0.2737 3.92E-03 3.32E-03 0.2378 0.4938 

< 0.001 3'UTR only No filter 15 133 153 1.019 0.995 1.043 0.1197 0.0257 0.0512 0.6167 -2.60E-04 1.86E-03 0.8877 0.2935 

< 0.001 3'UTR only ≥ 5 14 73 88 1.005 0.973 1.039 0.7521 -0.0021 0.0706 0.9769 2.80E-04 2.62E-03 0.9143 0.9459 



 
 

 

186 

Supplementary Table 4.3 (next page). Results from analyzing 39 genes with high expression associated with SZ, using non-
quadratic (no Bin2 term) and quadratic (includes Bin2 term) models, and applying various combinations of MAF, CADD, and region 
filters to the variants. In the model formulas, Y = 1 indicates presence of a rare regulatory allele, and Bin represents expression bin 
number (these analyses used 25 expression bins, with 29 samples assigned to each bin). For the group of middle columns 
corresponding to the non-quadratic model, OR, CIs and P all correspond to Bin. For the quadratic model, ‘P: Joint’ is the p-value 
resulting from a joint test of b1 and b2. In the ‘Gene Region’ column, ‘Any reg’ means variants within the promoter, 5’UTR or 3’UTR 
were included; ‘Upstream reg’ means only variants within the promoter or 5’UTR were included; ‘Any UTR’ means only variants 
within the 5’UTR or 3’UTR were included; ‘Prom only’ means only variants within the promoter region were included. The column 
‘Genes’ shows the number of genes analyzed, which is less than 39 when variant filters removed all variants of interest from a gene. 
‘Rare sites’ and ‘Rare alleles’ are the total number of rare variant sites and rare alleles, respectively, remaining after variant filters. 
MAF = minor allele frequency; CADD = Combined Annotation Dependent Depletion; OR = odds ratio; L 95% CI = lower bound for the 
95% confidence interval; U 95% CI = upper bound for the 95% confidence interval; P = p-value; SE = standard error. 
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Dataset Model: 
!"#"$$%(' = )) = 	, + 	.) ∗ 012 

Model: 
!"#"$$%(' = )) = 	, + 	.) ∗ 012 + 	.3 ∗ 	0123 

MAF Gene Region CADD Genes Rare 
Sites 

Rare 
Alleles OR L 95% CI U 95% CI P .)  SE(.)) P: 012 .3  SE(.3) P: 

0123  
P: Joint 

< 0.01 Any reg No filter 39 832 1,705 0.999 0.992 1.007 0.8583 -0.0261 0.0157 0.0961 9.80E-04 5.90E-04 0.0952 0.2471 

< 0.01 Any reg ≥ 5 39 509 1,017 0.997 0.987 1.007 0.5139 -0.0516 0.0205 0.0119 1.86E-03 7.70E-04 0.0153 0.0444 

< 0.01 Upstream reg No filter 39 394 811 0.998 0.987 1.010 0.7847 -0.0212 0.0237 0.3711 7.60E-04 8.80E-04 0.3936 0.6710 

< 0.01 Upstream reg ≥ 5 38 290 599 1.000 0.988 1.013 0.9498 -0.0587 0.0267 0.0278 2.27E-03 1.00E-03 0.0226 0.0773 

< 0.01 Any UTR No filter 38 570 1,210 1.001 0.993 1.010 0.8150 -0.0233 0.0179 0.1916 9.40E-04 6.70E-04 0.1605 0.3660 

< 0.01 Any UTR ≥ 5 37 329 665 0.994 0.981 1.006 0.3366 -0.0566 0.0259 0.0292 1.96E-03 9.80E-04 0.0453 0.0877 

< 0.01 Prom only No filter 39 374 770 0.999 0.988 1.011 0.9032 -0.0212 0.0242 0.3805 7.90E-04 9.10E-04 0.3828 0.6798 

< 0.01 Prom only ≥ 5 38 275 575 1.003 0.990 1.016 0.6749 -0.0556 0.0275 0.0431 2.24E-03 1.02E-03 0.0288 0.0871 

< 0.01 5'UTR only No filter 32 132 316 1.000 0.982 1.019 0.9708 -0.0121 0.0386 0.7534 4.80E-04 1.44E-03 0.7394 0.9457 

< 0.01 5'UTR only ≥ 5 31 110 247 0.995 0.975 1.016 0.6233 -0.0657 0.0424 0.1215 2.34E-03 1.59E-03 0.1416 0.3064 

< 0.01 3'UTR only No filter 38 438 894 1.001 0.990 1.011 0.9046 -0.0223 0.0225 0.3209 8.80E-04 8.40E-04 0.2927 0.5729 

< 0.01 3'UTR only ≥ 5 31 219 418 0.991 0.975 1.007 0.2741 -0.0627 0.0336 0.0623 2.09E-03 1.27E-03 0.1004 0.1465 

< 0.001 Any reg No filter 39 654 747 0.997 0.986 1.008 0.5987 -0.0497 0.0229 0.0303 1.81E-03 8.60E-04 0.0360 0.0994 

< 0.001 Any reg ≥ 5 39 402 448 0.999 0.985 1.013 0.8860 -0.0857 0.0294 0.0036 3.26E-03 1.10E-03 0.0031 0.0137 

< 0.001 Upstream reg No filter 39 313 357 1.001 0.985 1.017 0.8902 -0.0787 0.0332 0.0179 3.06E-03 1.24E-03 0.0135 0.0498 

< 0.001 Upstream reg ≥ 5 38 232 261 1.005 0.987 1.023 0.6075 -0.1004 0.0374 0.0073 4.02E-03 1.39E-03 0.0039 0.0150 

< 0.001 Any UTR No filter 37 437 498 0.994 0.981 1.007 0.3763 -0.0345 0.0270 0.2016 1.11E-03 1.02E-03 0.2747 0.3743 

< 0.001 Any UTR ≥ 5 34 252 278 0.992 0.974 1.010 0.3772 -0.0750 0.0374 0.0450 2.60E-03 1.41E-03 0.0657 0.1291 

< 0.001 Prom only No filter 39 299 341 1.003 0.987 1.020 0.7278 -0.0728 0.0340 0.0326 2.90E-03 1.27E-03 0.0222 0.0725 

< 0.001 Prom only ≥ 5 38 221 249 1.008 0.989 1.027 0.4075 -0.0936 0.0387 0.0156 3.87E-03 1.43E-03 0.0071 0.0205 

< 0.001 5'UTR only No filter 31 96 108 0.996 0.969 1.023 0.7459 -0.0712 0.0557 0.2010 2.58E-03 2.09E-03 0.2173 0.4492 

< 0.001 5'UTR only ≥ 5 28 82 91 0.992 0.963 1.022 0.6135 -0.0954 0.0599 0.1118 3.41E-03 2.26E-03 0.1318 0.2895 

< 0.001 3'UTR only No filter 36 341 390 0.993 0.979 1.008 0.3525 -0.0270 0.0305 0.3750 7.80E-04 1.15E-03 0.4967 0.5156 

< 0.001 3'UTR only ≥ 5 29 170 187 0.992 0.971 1.014 0.4657 -0.0683 0.0445 0.1257 2.34E-03 1.68E-03 0.1638 0.2967 
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Supplementary Table 4.4. Results from analyzing combined set of 149 genes, including genes with SZ-associated expression and 
genes located within or near a SZ-associated large CNV interval, using non-quadratic (no Bin2 term) and quadratic (includes Bin2 
term) models, and applying various combinations of MAF, CADD, and region filters to the variants. In the model formulas, Y = 1 
indicates presence of a rare regulatory allele, and Bin represents expression bin number (these analyses used 25 expression bins, 
with 29 samples assigned to each bin). For the group of middle columns corresponding to the non-quadratic model, OR, CIs and P 
all correspond to Bin. For the quadratic model, ‘P: Joint’ is the p-value resulting from a joint test of b1 and b2. In the ‘Gene Region’ 
column, ‘Any UTR’ means variants within the 5’UTR or 3’UTR were included. The column ‘Genes’ shows the number of genes 
analyzed, which is less than 149 when variant filters removed all variants of interest from a gene. ‘Rare sites’ and ‘Rare alleles’ are 
the total number of rare variant sites and rare alleles, respectively, remaining after variant filters. MAF = minor allele frequency; 
CADD = Combined Annotation Dependent Depletion; OR = odds ratio; L 95% CI = lower bound for the 95% confidence interval; U 
95% CI = upper bound for the 95% confidence interval; P = p-value; SE = standard error. 

 

Dataset Model: 
!"#"$$%(' = )) = 	, + 	.) ∗ 012 

Model: 
!"#"$$%(' = )) = 	, + 	.) ∗ 012+ 	.3 ∗ 	0123 

MAF Gene Region CADD Genes 
Rare 
Sites 

Rare 
Alleles OR L 95% CI U 95% CI P .)  SE(.)) P: 012 .3  SE(.3) P: 0123 P: Joint 

< 0.01 Any UTR No filter 149 1,872 3,929 0.999 0.994 1.004 0.6468 -0.0149 0.0105 0.1573 5.30E-04 3.90E-04 0.1795 0.3671 

< 0.01 Any UTR ≥ 5 147 1,172 2,432 0.995 0.988 1.001 0.1251 -0.0349 0.0136 0.0107 1.15E-03 5.10E-04 0.0249 0.0255 

< 0.01 5'UTR only No filter 117 434 1,028 0.995 0.985 1.005 0.3500 -0.0650 0.0215 0.0024 2.32E-03 8.10E-04 0.0040 0.0109 

< 0.01 5'UTR only ≥ 5 113 382 893 0.994 0.983 1.006 0.3347 -0.0746 0.0232 0.0013 2.67E-03 8.70E-04 0.0023 0.0064 

< 0.01 3'UTR only No filter 139 1,438 2,901 1.000 0.994 1.006 0.9479 -0.0002 0.0128 0.9858 0.00E+00 4.80E-04 0.9983 0.9979 

< 0.01 3'UTR only ≥ 5 125 790 1,539 0.994 0.985 1.002 0.1531 -0.0205 0.0178 0.2495 5.50E-04 6.70E-04 0.4077 0.2567 

< 0.001 Any UTR No filter 148 1,438 1,707 0.998 0.991 1.005 0.5410 -0.0227 0.0147 0.1222 7.90E-04 5.50E-04 0.1502 0.2967 

< 0.001 Any UTR ≥ 5 142 909 1,081 0.995 0.986 1.004 0.2899 -0.0453 0.0186 0.0146 1.57E-03 7.00E-04 0.0247 0.0473 

< 0.001 5'UTR only No filter 106 319 383 0.994 0.980 1.009 0.4386 -0.0821 0.0298 0.0060 2.96E-03 1.12E-03 0.0085 0.0249 

< 0.001 5'UTR only ≥ 5 100 281 339 0.996 0.980 1.012 0.6079 -0.0763 0.0320 0.0170 2.79E-03 1.20E-03 0.0201 0.0618 

< 0.001 3'UTR only No filter 135 1,119 1,324 0.998 0.990 1.007 0.7076 -0.0087 0.0170 0.6080 2.80E-04 6.30E-04 0.6635 0.8481 

< 0.001 3'UTR only ≥ 5 121 628 742 0.994 0.984 1.005 0.3172 -0.0348 0.0228 0.1261 1.13E-03 8.60E-04 0.1856 0.2549 
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Supplementary Table 4.5. Results from analyzing 72 genes with evidence of low dosage associated with SZ, including genes with 
low expression associated with SZ and genes located within or near a SZ-associated large deletion interval, using non-quadratic (no 
Bin2 term) and quadratic (includes Bin2 term) models, and applying various combinations of MAF, CADD, and region filters to the 
variants. In the model formulas, Y = 1 indicates presence of a rare regulatory allele, and Bin represents expression bin number 
(these analyses used 25 expression bins, with 29 samples assigned to each bin). For the group of middle columns corresponding to 
the non-quadratic model, OR, CIs and P all correspond to Bin. For the quadratic model, ‘P: Joint’ is the p-value resulting from a joint 
test of b1 and b2. In the ‘Gene Region’ column, ‘Any UTR’ means variants within the 5’UTR or 3’UTR were included. The column 
‘Genes’ shows the number of genes analyzed, which is less than 72 when variant filters removed all variants of interest from a gene. 
‘Rare sites’ and ‘Rare alleles’ are the total number of rare variant sites and rare alleles, respectively, remaining after variant filters. 
MAF = minor allele frequency; CADD = Combined Annotation Dependent Depletion; OR = odds ratio; L 95% CI = lower bound for the 
95% confidence interval; U 95% CI = upper bound for the 95% confidence interval; P = p-value; SE = standard error. 

 

Dataset Model: 
!"#"$$%(' = )) = 	, + 	.) ∗ 012 

Model: 
!"#"$$%(' = )) = 	, + 	.) ∗ 012 + 	.3 ∗ 	0123 

MAF Gene Region CADD Genes Rare 
Sites 

Rare 
Alleles 

OR L 95% CI U 95% CI P .)  SE(.)) P: 012 .3  SE(.3) P: 
0123  

P: Joint 

< 0.01 Any UTR No filter 72 944 1,978 1.001 0.994 1.009 0.6994 -0.0232 0.0153 0.1307 9.40E-04 5.70E-04 0.0984 0.2392 

< 0.01 Any UTR ≥ 5 71 609 1,302 1.000 0.991 1.009 0.9528 -0.0396 0.0189 0.0361 1.51E-03 7.10E-04 0.0321 0.1031 

< 0.01 5'UTR only No filter 56 205 470 0.994 0.978 1.011 0.4810 -0.1184 0.0328 0.0003 4.36E-03 1.23E-03 0.0004 0.0018 

< 0.01 5'UTR only ≥ 5 54 184 428 0.997 0.980 1.014 0.7225 -0.1051 0.0351 0.0028 3.94E-03 1.32E-03 0.0029 0.0121 

< 0.01 3'UTR only No filter 67 739 1,508 1.004 0.995 1.012 0.3885 0.0019 0.0180 0.9175 7.00E-05 6.70E-04 0.9157 0.6857 

< 0.01 3'UTR only ≥ 5 62 425 874 1.001 0.990 1.012 0.8930 -0.0126 0.0237 0.5937 5.10E-04 8.80E-04 0.5600 0.8368 

< 0.001 Any UTR No filter 72 719 872 1.005 0.995 1.014 0.3648 -0.0339 0.0206 0.0996 1.47E-03 7.60E-04 0.0547 0.1070 

< 0.001 Any UTR ≥ 5 70 469 578 1.003 0.990 1.015 0.6748 -0.0557 0.0253 0.0277 2.24E-03 9.40E-04 0.0177 0.0575 

< 0.001 5'UTR only No filter 52 154 190 1.000 0.979 1.022 0.9761 -0.1125 0.0429 0.0088 4.34E-03 1.60E-03 0.0069 0.0284 

< 0.001 5'UTR only ≥ 5 49 138 172 1.007 0.985 1.030 0.5205 -0.0888 0.0457 0.0520 3.66E-03 1.69E-03 0.0309 0.0835 

< 0.001 3'UTR only No filter 65 565 682 1.006 0.994 1.017 0.3327 -0.0146 0.0240 0.5431 7.70E-04 8.90E-04 0.3866 0.4312 

< 0.001 3'UTR only ≥ 5 60 331 406 1.000 0.985 1.015 0.9840 -0.0444 0.0312 0.1548 1.70E-03 1.16E-03 0.1444 0.3492 
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Supplementary Table 4.6. Results from analyzing 69 genes with evidence of high dosage associated with SZ, including genes with 
high expression associated with SZ and genes located within or near a SZ-associated large duplication interval, using non-quadratic 
(no Bin2 term) and quadratic (includes Bin2 term) models, and applying various combinations of MAF, CADD, and region filters to the 
variants. In the model formulas, Y = 1 indicates presence of a rare regulatory allele, and Bin represents expression bin number 
(these analyses used 25 expression bins, with 29 samples assigned to each bin). For the group of middle columns corresponding to 
the non-quadratic model, OR, CIs and P all correspond to Bin. For the quadratic model, ‘P: Joint’ is the p-value resulting from a joint 
test of b1 and b2. In the ‘Gene Region’ column, ‘Any UTR’ means variants within the 5’UTR or 3’UTR were included. The column 
‘Genes’ shows the number of genes analyzed, which is less than 69 when variant filters removed all variants of interest from a gene. 
‘Rare sites’ and ‘Rare alleles’ are the total number of rare variant sites and rare alleles, respectively, remaining after variant filters. 
MAF = minor allele frequency; CADD = Combined Annotation Dependent Depletion; OR = odds ratio; L 95% CI = lower bound for the 
95% confidence interval; U 95% CI = upper bound for the 95% confidence interval; P = p-value; SE = standard error. 

 

 

  

Dataset Model: 
!"#"$$%(' = )) = 	, + 	.) ∗ 012 

Model: 
!"#"$$%(' = )) = 	, + 	.) ∗ 012 + 	.3 ∗ 	0123 

MAF Gene Region CADD Genes 
Rare 
Sites 

Rare 
Alleles OR L 95% CI U 95% CI P .)  SE(.)) P: 012 .3  SE(.3) P: 

0123  
P: Joint 

< 0.01 Any UTR No filter 69 863 1,855 0.998 0.991 1.005 0.5043 -0.0007 0.0148 0.9600 -6.00E-05 5.50E-04 0.9093 0.7951 

< 0.01 Any UTR ≥ 5 68 521 1,072 0.990 0.980 1.000 0.0453 -0.0226 0.0204 0.2683 4.90E-04 7.70E-04 0.5251 0.1101 

< 0.01 5'UTR only No filter 53 205 519 0.995 0.981 1.009 0.4832 -0.0061 0.0292 0.8358 4.00E-05 1.10E-03 0.9691 0.7814 

< 0.01 5'UTR only ≥ 5 51 176 428 0.990 0.975 1.006 0.2264 -0.0382 0.0320 0.2337 1.11E-03 1.21E-03 0.3575 0.3160 

< 0.01 3'UTR only No filter 66 658 1,336 0.998 0.989 1.007 0.6341 0.0039 0.0187 0.8347 -2.30E-04 7.00E-04 0.7393 0.8448 

< 0.01 3'UTR only ≥ 5 57 345 644 0.988 0.975 1.001 0.0618 -0.0206 0.0272 0.4487 3.20E-04 1.03E-03 0.7576 0.1664 

< 0.001 Any UTR No filter 68 665 772 0.993 0.983 1.004 0.2094 -0.0033 0.0220 0.8809 -1.30E-04 8.30E-04 0.8739 0.4490 

< 0.001 Any UTR ≥ 5 64 403 459 0.989 0.976 1.003 0.1252 -0.0280 0.0288 0.3305 6.70E-04 1.09E-03 0.5386 0.2559 

< 0.001 5'UTR only No filter 46 145 166 0.992 0.971 1.014 0.4900 -0.0506 0.0452 0.2635 1.67E-03 1.71E-03 0.3290 0.4920 

< 0.001 5'UTR only ≥ 5 43 125 142 0.988 0.965 1.012 0.3302 -0.0596 0.0489 0.2232 1.86E-03 1.85E-03 0.3147 0.3775 

< 0.001 3'UTR only No filter 64 520 606 0.993 0.982 1.005 0.2593 0.0076 0.0250 0.7608 -5.60E-04 9.40E-04 0.5528 0.4433 

< 0.001 3'UTR only ≥ 5 55 278 317 0.990 0.974 1.006 0.2321 -0.0164 0.0344 0.6350 2.50E-04 1.30E-03 0.8504 0.4811 
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Supplementary Table 4.7. Results from analyzing 87 genes with pLi < 0.10, using non-quadratic (no Bin2 term) and quadratic 
(includes Bin2 term) models, and applying various combinations of MAF, CADD, and region filters to the variants. In the model 
formulas, Y = 1 indicates presence of a rare regulatory allele, and Bin represents expression bin number (these analyses used 25 
expression bins, with 29 samples assigned to each bin). For the group of middle columns corresponding to the non-quadratic model, 
OR, CIs and P all correspond to Bin. For the quadratic model, ‘P: Joint’ is the p-value resulting from a joint test of b1 and b2. In the 
‘Gene Region’ column, ‘Any UTR’ means variants within the 5’UTR or 3’UTR were included. The column ‘Genes’ shows the number 
of genes analyzed, which is less than 87 when variant filters removed all variants of interest from a gene. ‘Rare sites’ and ‘Rare 
alleles’ are the total number of rare variant sites and rare alleles, respectively, remaining after variant filters. MAF = minor allele 
frequency; CADD = Combined Annotation Dependent Depletion; OR = odds ratio; L 95% CI = lower bound for the 95% confidence 
interval; U 95% CI = upper bound for the 95% confidence interval; P = p-value; SE = standard error. 

  

Dataset 
Model: 

!"#"$$%(' = )) = 	, + 	.) ∗ 012 
Model: 

!"#"$$%(' = )) = 	, + 	.) ∗ 012+ 	.3 ∗ 	0123 

MAF Gene Region CADD Genes Rare 
Sites 

Rare 
Alleles 

OR L 95% CI U 95% CI P .)  SE(.)) P: 012 .3  SE(.3) P: 
0123  

P: Joint 

< 0.01 Any UTR No filter 87 854 1,793 0.994 0.986 1.001 0.0907 -0.0471 0.0153 0.0022 1.58E-03 5.80E-04 0.0063 0.0060 

< 0.01 Any UTR ≥ 5 85 510 1,108 0.991 0.981 1.001 0.0908 -0.0697 0.0209 0.0009 2.37E-03 7.90E-04 0.0027 0.0029 

< 0.01 5'UTR only No filter 73 257 589 0.990 0.976 1.004 0.1763 -0.0861 0.0284 0.0025 2.98E-03 1.07E-03 0.0056 0.0093 

< 0.01 5'UTR only ≥ 5 69 220 500 0.991 0.976 1.006 0.2331 -0.0948 0.0310 0.0023 3.33E-03 1.17E-03 0.0046 0.0096 

< 0.01 3'UTR only No filter 79 597 1,204 0.994 0.985 1.004 0.2464 -0.0277 0.0195 0.1567 8.60E-04 7.30E-04 0.2430 0.2600 

< 0.01 3'UTR only ≥ 5 68 290 608 0.989 0.975 1.003 0.1355 -0.0475 0.0295 0.1071 1.43E-03 1.12E-03 0.2000 0.1470 

< 0.001 Any UTR No filter 86 654 769 0.992 0.982 1.002 0.1213 -0.0393 0.0215 0.0672 1.21E-03 8.10E-04 0.1354 0.1000 

< 0.001 Any UTR ≥ 5 80 385 464 0.990 0.976 1.004 0.1490 -0.0643 0.0281 0.0219 2.12E-03 1.06E-03 0.0464 0.0502 

< 0.001 5'UTR only No filter 65 190 230 0.993 0.974 1.012 0.4689 -0.1096 0.0379 0.0039 3.98E-03 1.43E-03 0.0054 0.0176 

< 0.001 5'UTR only ≥ 5 59 161 197 0.995 0.975 1.016 0.6532 -0.1110 0.0410 0.0069 4.11E-03 1.54E-03 0.0077 0.0283 

< 0.001 3'UTR only No filter 75 464 539 0.991 0.979 1.004 0.1660 -0.0138 0.0263 0.6004 1.90E-04 9.90E-04 0.8477 0.3761 

< 0.001 3'UTR only ≥ 5 64 224 267 0.986 0.968 1.004 0.1180 -0.0330 0.0376 0.3804 7.20E-04 1.43E-03 0.6124 0.2596 
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Supplementary Table 4.8. Results from analyzing 33 genes with pLi ≥ 0.90, using non-quadratic (no Bin2 term) and quadratic 
(includes Bin2 term) models, and applying various combinations of MAF, CADD, and region filters to the variants. In the model 
formulas, Y = 1 indicates presence of a rare regulatory allele, and Bin represents expression bin number (these analyses used 25 
expression bins, with 29 samples assigned to each bin). For the group of middle columns corresponding to the non-quadratic model, 
OR, CIs and P all correspond to Bin. For the quadratic model, ‘P: Joint’ is the p-value resulting from a joint test of b1 and b2. In the 
‘Gene Region’ column, ‘Any UTR’ means variants within the 5’UTR or 3’UTR were included. The column ‘Genes’ shows the number 
of genes analyzed, which is less than 33 when variant filters removed all variants of interest from a gene. ‘Rare sites’ and ‘Rare 
alleles’ are the total number of rare variant sites and rare alleles, respectively, remaining after variant filters. MAF = minor allele 
frequency; CADD = Combined Annotation Dependent Depletion; OR = odds ratio; L 95% CI = lower bound for the 95% confidence 
interval; U 95% CI = upper bound for the 95% confidence interval; P = p-value; SE = standard error. 

 

Dataset Model: 
!"#"$$%(' = )) = 	, + 	.) ∗ 012 

Model: 
!"#"$$%(' = )) = 	, + 	.) ∗ 012 + 	.3 ∗ 	0123 

MAF Gene Region CADD Genes 
Rare 
Sites 

Rare 
Alleles OR L 95% CI U 95% CI P .)  SE(.)) P: 012 .3  SE(.3) P: 

0123  
P: Joint 

< 0.01 Any UTR No filter 33 584 1,247 1.001 0.992 1.009 0.8946 0.0118 0.0187 0.5285 -4.30E-04 7.00E-04 0.5373 0.8188 

< 0.01 Any UTR ≥ 5 33 379 763 0.994 0.983 1.004 0.2434 -0.0176 0.0224 0.4331 4.30E-04 8.40E-04 0.6065 0.4437 

< 0.01 5'UTR only No filter 26 107 261 0.995 0.975 1.016 0.6484 -0.0315 0.0418 0.4521 1.04E-03 1.57E-03 0.5097 0.7259 

< 0.01 5'UTR only ≥ 5 26 100 249 0.996 0.975 1.017 0.6810 -0.0373 0.0440 0.3974 1.27E-03 1.65E-03 0.4428 0.6859 

< 0.01 3'UTR only No filter 31 477 986 1.002 0.991 1.012 0.7464 0.0136 0.0224 0.5425 -4.60E-04 8.30E-04 0.5835 0.8161 

< 0.01 3'UTR only ≥ 5 30 279 514 0.990 0.977 1.004 0.1671 -0.0255 0.0290 0.3783 6.10E-04 1.10E-03 0.5764 0.3292 

< 0.001 Any UTR No filter 33 447 536 0.997 0.984 1.010 0.6589 -0.0079 0.0274 0.7723 1.90E-04 1.03E-03 0.8507 0.8913 

< 0.001 Any UTR ≥ 5 33 303 355 0.992 0.976 1.007 0.2954 -0.0390 0.0327 0.2344 1.19E-03 1.24E-03 0.3370 0.3666 

< 0.001 5'UTR only No filter 24 78 94 0.997 0.968 1.027 0.8435 -0.0013 0.0630 0.9834 -7.00E-05 2.36E-03 0.9780 0.9803 

< 0.001 5'UTR only ≥ 5 24 72 88 1.000 0.969 1.031 0.9922 0.0012 0.0661 0.9854 -5.00E-05 2.47E-03 0.9830 0.9997 

< 0.001 3'UTR only No filter 31 369 442 0.997 0.983 1.012 0.6822 -0.0145 0.0306 0.6356 4.40E-04 1.15E-03 0.6997 0.8537 

< 0.001 3'UTR only ≥ 5 30 231 267 0.988 0.970 1.007 0.2109 -0.0601 0.0385 0.1186 1.88E-03 1.46E-03 0.1980 0.2012 
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Supplementary Table 4.9. Results from analyzing 7 genes with extreme tolerance to missense variants, using non-quadratic (no 
Bin2 term) and quadratic (includes Bin2 term) models, and applying various combinations of MAF, CADD, and region filters to the 
variants. In the model formulas, Y = 1 indicates presence of a rare regulatory allele, and Bin represents expression bin number 
(these analyses used 25 expression bins, with 29 samples assigned to each bin). For the group of middle columns corresponding to 
the non-quadratic model, OR, CIs and P all correspond to Bin. For the quadratic model, ‘P: Joint’ is the p-value resulting from a joint 
test of b1 and b2. In the ‘Gene Region’ column, ‘Any UTR’ means variants within the 5’UTR or 3’UTR were included. The column 
‘Genes’ shows the number of genes analyzed, which is less than 7 when variant filters removed all variants of interest from a gene. 
‘Rare sites’ and ‘Rare alleles’ are the total number of rare variant sites and rare alleles, respectively, remaining after variant filters. 
MAF = minor allele frequency; CADD = Combined Annotation Dependent Depletion; OR = odds ratio; L 95% CI = lower bound for the 
95% confidence interval; U 95% CI = upper bound for the 95% confidence interval; P = p-value; SE = standard error. 

 

Dataset Model: 
!"#"$$%(' = )) = 	, + 	.) ∗ 012 

Model: 
!"#"$$%(' = )) = 	, + 	.) ∗ 012 + 	.3 ∗ 	0123 

MAF Gene Region CADD Genes 
Rare 
Sites 

Rare 
Alleles OR L 95% CI U 95% CI P .)  SE(.)) P: 012 .3  SE(.3) P: 

0123  
P: Joint 

< 0.01 Any UTR No filter 7 99 208 0.964 0.941 0.988 0.0039 -0.0818 0.0476 0.0877 1.85E-03 1.86E-03 0.3232 0.0085 

< 0.01 Any UTR ≥ 5 7 65 134 0.955 0.925 0.986 0.0048 -0.0901 0.0618 0.1468 1.80E-03 2.45E-03 0.4637 0.0127 

< 0.01 5'UTR only No filter 6 22 62 0.968 0.927 1.011 0.1424 -0.1215 0.0826 0.1435 3.57E-03 3.21E-03 0.2667 0.1737 

< 0.01 5'UTR only ≥ 5 6 19 50 0.957 0.911 1.006 0.0874 -0.1885 0.0920 0.0422 5.89E-03 3.59E-03 0.1033 0.0574 

< 0.01 3'UTR only No filter 7 77 146 0.969 0.940 1.000 0.0496 -0.0557 0.0626 0.3749 9.80E-04 2.44E-03 0.6875 0.1330 

< 0.01 3'UTR only ≥ 5 7 46 84 0.957 0.921 0.994 0.0229 -0.0291 0.0758 0.7019 -6.30E-04 3.02E-03 0.8356 0.0682 

< 0.001 Any UTR No filter 7 73 91 0.977 0.944 1.012 0.2037 0.0183 0.0734 0.8038 -1.64E-03 2.84E-03 0.5648 0.3729 

< 0.001 Any UTR ≥ 5 7 51 69 0.974 0.938 1.012 0.1858 0.0807 0.0830 0.3319 -4.29E-03 3.24E-03 0.1871 0.1636 

< 0.001 5'UTR only No filter 4 16 22 0.997 0.941 1.055 0.9061 0.0697 0.1260 0.5814 -2.83E-03 4.73E-03 0.5509 0.8259 

< 0.001 5'UTR only ≥ 5 4 14 20 0.995 0.935 1.058 0.8657 0.0045 0.1320 0.9731 -3.80E-04 4.96E-03 0.9389 0.9829 

< 0.001 3'UTR only No filter 7 57 69 0.968 0.928 1.009 0.1244 0.0093 0.0857 0.9137 -1.70E-03 3.36E-03 0.6137 0.2629 

< 0.001 3'UTR only ≥ 5 7 37 49 0.962 0.919 1.008 0.1055 0.1343 0.1015 0.1874 -7.13E-03 4.09E-03 0.0834 0.0483 
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Supplementary Table 4.10. Results from analyzing 89 genes intolerant to missense variants, using non-quadratic (no Bin2 term) 
and quadratic (includes Bin2 term) models, and applying various combinations of MAF, CADD, and region filters to the variants. In 
the model formulas, Y = 1 indicates presence of a rare regulatory allele, and Bin represents expression bin number (these analyses 
used 25 expression bins, with 29 samples assigned to each bin). For the group of middle columns corresponding to the non-
quadratic model, OR, CIs and P all correspond to Bin. For the quadratic model, ‘P: Joint’ is the p-value resulting from a joint test of b1 
and b2. In the ‘Gene Region’ column, ‘Any UTR’ means variants within the 5’UTR or 3’UTR were included. The column ‘Genes’ shows 
the number of genes analyzed, which is less than 89 when variant filters removed all variants of interest from a gene. ‘Rare sites’ and 
‘Rare alleles’ are the total number of rare variant sites and rare alleles, respectively, remaining after variant filters. MAF = minor allele 
frequency; CADD = Combined Annotation Dependent Depletion; OR = odds ratio; L 95% CI = lower bound for the 95% confidence 
interval; U 95% CI = upper bound for the 95% confidence interval; P = p-value; SE = standard error. 

 

Dataset Model: 
!"#"$$%(' = )) = 	, + 	.) ∗ 012 

Model: 
!"#"$$%(' = )) = 	, + 	.) ∗ 012+ 	.3 ∗ 	0123 

MAF Gene Region CADD Genes Rare 
Sites 

Rare 
Alleles OR L 95% CI U 95% CI P .)  SE(.)) P: 012 .3  SE(.3) P: 

0123  
P: Joint 

< 0.01 Any UTR No filter 89 1,210 2,599 1.001 0.995 1.007 0.6899 0.0006 0.0131 0.9644 3.00E-05 4.90E-04 0.9581 0.9222 

< 0.01 Any UTR ≥ 5 88 780 1,639 0.996 0.989 1.004 0.3735 -0.0208 0.0163 0.2009 6.70E-04 6.10E-04 0.2736 0.3710 

< 0.01 5'UTR only No filter 70 263 637 1.000 0.987 1.013 0.9947 -0.0381 0.0276 0.1685 1.46E-03 1.03E-03 0.1568 0.3711 

< 0.01 5'UTR only ≥ 5 68 235 568 0.998 0.984 1.012 0.7676 -0.0541 0.0295 0.0670 2.00E-03 1.11E-03 0.0701 0.1902 

< 0.01 3'UTR only No filter 83 947 1,962 1.001 0.994 1.009 0.7389 0.0064 0.0158 0.6840 -2.00E-04 5.90E-04 0.7360 0.8936 

< 0.01 3'UTR only ≥ 5 76 545 1,071 0.995 0.985 1.005 0.2818 -0.0173 0.0210 0.4116 4.60E-04 7.90E-04 0.5644 0.4753 

< 0.001 Any UTR No filter 89 924 1,104 0.999 0.990 1.008 0.8240 -0.0261 0.0181 0.1491 9.70E-04 6.80E-04 0.1527 0.3536 

< 0.001 Any UTR ≥ 5 84 604 713 0.995 0.984 1.006 0.3792 -0.0571 0.0226 0.0117 2.02E-03 8.50E-04 0.0176 0.0424 

< 0.001 5'UTR only No filter 66 190 226 0.994 0.975 1.013 0.5280 -0.0547 0.0394 0.1647 1.88E-03 1.48E-03 0.2038 0.3698 

< 0.001 5'UTR only ≥ 5 61 170 203 0.994 0.974 1.014 0.5366 -0.0584 0.0418 0.1630 2.02E-03 1.58E-03 0.2006 0.3689 

< 0.001 3'UTR only No filter 81 734 878 1.000 0.991 1.010 0.9591 -0.0237 0.0206 0.2499 9.20E-04 7.70E-04 0.2310 0.4900 

< 0.001 3'UTR only ≥ 5 74 434 510 0.996 0.983 1.009 0.5402 -0.0630 0.0272 0.0204 2.28E-03 1.02E-03 0.0256 0.0716 
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Supplementary Table 4.11 (next page). Results from analyzing 64 genes with SZ-associated expression, using controls only. 
Results are presented for the quadratic models only, as these provided the best fit for the data in our main analyses (which analyzed 
all 725 samples and adjusted for case-control status). We applied the same combinations of MAF, CADD, and region filters to the 
variants as were used when analyzing the 64 SZ-associated expression genes in our main analyses. We also applied the same 
weights (based on number of rare variant sites for each gene) as used in our main analyses. Last four columns show correlations 
between quadratic model betas estimated from controls only (presented in this table) versus those from our main analyses 
(presented in Supplementary Table 4.1), and correlations between quadratic model betas estimated from controls only versus SZ 
cases only (presented in Supplementary Table 4.12). In the model formula, Y = 1 indicates presence of a rare regulatory allele, and 
Bin represents expression bin number (these analyses used 25 expression bins, with 14 samples assigned to each bin). For the 
quadratic model, ‘P: Joint’ is the p-value resulting from a joint test of b1 and b2. In the ‘Gene Region’ column, ‘Any reg’ means variants 
within the promoter, 5’UTR or 3’UTR were included; ‘Upstream reg’ means only variants within the promoter or 5’UTR were included; 
‘Any UTR’ means only variants within the 5’UTR or 3’UTR were included; ‘Prom only’ means only variants within the promoter region 
were included. The column ‘Genes’ shows the number of genes analyzed, which is less than 64 when variant filters removed all 
variants of interest from a gene. ‘Rare alleles’ are the total number of rare alleles remaining after variant filters. MAF = minor allele 
frequency; CADD = Combined Annotation Dependent Depletion; OR = odds ratio; L 95% CI = lower bound for the 95% confidence 
interval; U 95% CI = upper bound for the 95% confidence interval; P = p-value; SE = standard error. 
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Dataset Model: 
!"#"$$%(' = )) = 	, + 	.) ∗ 012 + 	.3 ∗ 	0123 

Correlation between 

MAF Gene Region CADD Genes 
Rare 

Alleles .)  SE(.)) P: 012 .3  SE(.3) P: 
0123  

P: Joint 

Controls 
only b1 

and main 
analysis b1 

Controls 
only b2 

and main 
analysis b2 

Controls 
only b1 

and 
cases 

only b1 

Controls 
only b2 

and 
cases 

only b2 

< 0.01 Any reg No filter 64 1,194 -0.0187 0.0207 0.3662 0.0008 0.0008 0.2885 0.4977 

0.85 0.84 0.58 0.60 

< 0.01 Any reg ≥ 5 62 748 -0.0310 0.0267 0.2447 0.0014 0.0010 0.1724 0.3180 

< 0.01 Upstream reg No filter 64 583 -0.0232 0.0305 0.4465 0.0011 0.0011 0.3260 0.4505 

< 0.01 Upstream reg ≥ 5 61 451 -0.0356 0.0333 0.2846 0.0015 0.0012 0.2122 0.3904 

< 0.01 Any UTR No filter 60 813 -0.0094 0.0246 0.7014 0.0004 0.0009 0.6815 0.9177 

< 0.01 Any UTR ≥ 5 55 470 -0.0342 0.0326 0.2942 0.0013 0.0012 0.2735 0.5514 

< 0.01 Prom only No filter 64 550 -0.0277 0.0310 0.3719 0.0013 0.0012 0.2579 0.3685 

< 0.01 Prom only ≥ 5 61 429 -0.0357 0.0346 0.3016 0.0017 0.0013 0.1958 0.2850 

< 0.01 5'UTR only No filter 45 202 -0.0607 0.0490 0.2164 0.0024 0.0018 0.1832 0.4072 

< 0.01 5'UTR only ≥ 5 43 173 -0.0910 0.0512 0.0754 0.0034 0.0019 0.0767 0.2101 

< 0.01 3'UTR only No filter 53 611 0.0014 0.0275 0.9604 -0.0001 0.0010 0.9606 0.9988 

< 0.01 3'UTR only ≥ 5 41 297 -0.0226 0.0388 0.5608 0.0009 0.0015 0.5413 0.8300 

< 0.001 Any reg No filter 64 569 -0.0324 0.0286 0.2584 0.0012 0.0011 0.2478 0.5159 

< 0.001 Any reg ≥ 5 62 356 -0.0375 0.0360 0.2981 0.0016 0.0013 0.2408 0.4663 

< 0.001 Upstream reg No filter 63 277 -0.0260 0.0417 0.5321 0.0013 0.0015 0.4163 0.5709 

< 0.001 Upstream reg ≥ 5 61 210 -0.0236 0.0462 0.6093 0.0014 0.0017 0.4228 0.3900 

< 0.001 Any UTR No filter 57 364 -0.0367 0.0333 0.2706 0.0013 0.0013 0.3176 0.5282 

< 0.001 Any UTR ≥ 5 51 210 -0.0606 0.0440 0.1687 0.0021 0.0017 0.1956 0.3898 

< 0.001 Prom only No filter 63 262 -0.0271 0.0424 0.5229 0.0014 0.0016 0.3835 0.4734 

< 0.001 Prom only ≥ 5 61 198 -0.0349 0.0483 0.4709 0.0018 0.0018 0.3143 0.3429 

< 0.001 5'UTR only No filter 39 72 -0.1008 0.0689 0.1438 0.0039 0.0026 0.1362 0.3374 

< 0.001 5'UTR only ≥ 5 37 64 -0.1241 0.0713 0.0819 0.0047 0.0027 0.0765 0.2161 

< 0.001 3'UTR only No filter 51 292 -0.0183 0.0374 0.6256 0.0005 0.0014 0.7159 0.8032 

< 0.001 3'UTR only ≥ 5 37 146 -0.0211 0.0541 0.6967 0.0006 0.0020 0.7536 0.8957 
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Supplementary Table 4.12 (next page). Results from analyzing 64 genes with SZ-associated expression, using SZ cases only. 
Results are presented for the quadratic models only, as these provided the best fit for the data in our main analyses (which analyzed 
all 725 samples and adjusted for case-control status). We applied the same combinations of MAF, CADD, and region filters to the 
variants as were used when analyzing the 64 SZ-associated expression genes in our main analyses. We also applied the same 
weights (based on number of rare variant sites for each gene) as used in our main analyses. Last four columns show correlations 
between quadratic model betas estimated from SZ cases only (presented in this table) versus those from our main analyses 
(presented in Supplementary Table 4.1), and correlations between quadratic model betas estimated from SZ cases only versus 
controls only (presented in Supplementary Table 4.11). In the model formula, Y = 1 indicates presence of a rare regulatory allele, 
and Bin represents expression bin number (these analyses used 25 expression bins, with 14 samples assigned to each bin). For the 
quadratic model, ‘P: Joint’ is the p-value resulting from a joint test of b1 and b2. In the ‘Gene Region’ column, ‘Any reg’ means variants 
within the promoter, 5’UTR or 3’UTR were included; ‘Upstream reg’ means only variants within the promoter or 5’UTR were included; 
‘Any UTR’ means only variants within the 5’UTR or 3’UTR were included; ‘Prom only’ means only variants within the promoter region 
were included. The column ‘Genes’ shows the number of genes analyzed, which is less than 64 when variant filters removed all 
variants of interest from a gene. ‘Rare alleles’ are the total number of rare alleles remaining after variant filters. MAF = minor allele 
frequency; CADD = Combined Annotation Dependent Depletion; OR = odds ratio; L 95% CI = lower bound for the 95% confidence 
interval; U 95% CI = upper bound for the 95% confidence interval; P = p-value; SE = standard error. 
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Dataset Model: 
!"#"$$%(' = )) = 	, + 	.) ∗ 012 + 	.3 ∗ 	0123 

Correlation between 

MAF Gene Region CADD Genes 
Rare 

Alleles .)  SE(.)) P: 012 .3  SE(.3) P: 
0123  

P: Joint 

Cases only 
b1 and 
main 
analysis b1 

Cases only 
b2 and 
main 
analysis b2 

Cases 
only b1 
and 
controls 
only b1 

Cases 
only b2 
and 
controls 
only b2 

< 0.01 Any reg No filter 64 1,215 -0.0209 0.0187 0.2626 5.90E-04 7.00E-04 0.4008 0.3220 

0.80 0.85 0.58 0.60 

< 0.01 Any reg ≥ 5 64 798 -0.0199 0.0244 0.4158 5.50E-04 9.20E-04 0.5518 0.5240 

< 0.01 Upstream reg No filter 63 587 -0.0085 0.0289 0.7696 1.20E-04 1.09E-03 0.9136 0.7367 

< 0.01 Upstream reg ≥ 5 62 471 -0.0271 0.0339 0.4238 9.80E-04 1.27E-03 0.4412 0.7282 

< 0.01 Any UTR No filter 62 872 -0.0335 0.0214 0.1174 1.12E-03 8.00E-04 0.1612 0.2654 

< 0.01 Any UTR ≥ 5 59 529 -0.0302 0.0291 0.2997 9.10E-04 1.10E-03 0.4050 0.4577 

< 0.01 Prom only No filter 63 570 -0.0123 0.0296 0.6776 2.80E-04 1.11E-03 0.7977 0.7637 

< 0.01 Prom only ≥ 5 61 461 -0.0308 0.0341 0.3667 1.14E-03 1.28E-03 0.3714 0.6663 

< 0.01 5'UTR only No filter 47 244 -0.0530 0.0438 0.2269 1.87E-03 1.65E-03 0.2574 0.4819 

< 0.01 5'UTR only ≥ 5 46 202 -0.0630 0.0515 0.2221 2.46E-03 1.92E-03 0.2014 0.4469 

< 0.01 3'UTR only No filter 54 628 -0.0302 0.0253 0.2323 9.50E-04 9.50E-04 0.3159 0.4039 

< 0.01 3'UTR only ≥ 5 46 327 -0.0460 0.0354 0.1942 1.50E-03 1.33E-03 0.2598 0.3783 

< 0.001 Any reg No filter 64 539 -0.0299 0.0277 0.2801 1.08E-03 1.04E-03 0.2964 0.5613 

< 0.001 Any reg ≥ 5 63 357 -0.0630 0.0346 0.0685 2.25E-03 1.30E-03 0.0842 0.1943 

< 0.001 Upstream reg No filter 60 269 -0.0659 0.0386 0.0880 2.38E-03 1.45E-03 0.1011 0.2400 

< 0.001 Upstream reg ≥ 5 57 213 -0.0750 0.0439 0.0879 2.65E-03 1.65E-03 0.1099 0.2351 

< 0.001 Any UTR No filter 59 371 -0.0183 0.0334 0.5849 6.60E-04 1.25E-03 0.5947 0.8622 

< 0.001 Any UTR ≥ 5 52 231 -0.0440 0.0433 0.3095 1.45E-03 1.63E-03 0.3735 0.5580 

< 0.001 Prom only No filter 60 259 -0.0701 0.0391 0.0734 2.60E-03 1.47E-03 0.0766 0.2059 

< 0.001 Prom only ≥ 5 56 205 -0.0799 0.0446 0.0733 2.94E-03 1.67E-03 0.0789 0.2078 

< 0.001 5'UTR only No filter 40 101 -0.0950 0.0604 0.1162 3.27E-03 2.29E-03 0.1533 0.2809 

< 0.001 5'UTR only ≥ 5 37 87 -0.0895 0.0668 0.1805 3.05E-03 2.53E-03 0.2286 0.3898 

< 0.001 3'UTR only No filter 48 270 -0.0199 0.0375 0.5953 6.60E-04 1.40E-03 0.6379 0.8548 

< 0.001 3'UTR only ≥ 5 41 144 -0.0615 0.0521 0.2381 2.26E-03 1.95E-03 0.2473 0.5044 
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Supplementary Table 4.13 (next page). Results from analyzing 64 genes with SZ-associated expression, using all 725 samples (SZ 
cases and controls combined) and not adjusting for case-control status. Results are presented for the quadratic models only, as 
these provided the best fit for the data in our main analyses (which analyzed all 725 samples and adjusted for case-control status). 
We applied the same combinations of MAF, CADD, and region filters to the variants as were used when analyzing the 64 SZ-
associated expression genes in our main analyses. We also applied the same weights (based on number of rare variant sites for 
each gene) as used in our main analyses. Last four columns show correlations between quadratic model betas estimated from all 
samples combined without adjustment for case-control status (presented in this table) versus those from our main analyses 
(presented in Supplementary Table 4.1), and correlations between quadratic model betas estimated from all samples combined 
without adjustment for case-control status versus controls only (presented in Supplementary Table 4.11). In the model formula, Y = 
1 indicates presence of a rare regulatory allele, and Bin represents expression bin number (these analyses used 25 expression bins, 
with 29 samples assigned to each bin). For the quadratic model, ‘P: Joint’ is the p-value resulting from a joint test of b1 and b2. In the 
‘Gene Region’ column, ‘Any reg’ means variants within the promoter, 5’UTR or 3’UTR were included; ‘Upstream reg’ means only 
variants within the promoter or 5’UTR were included; ‘Any UTR’ means only variants within the 5’UTR or 3’UTR were included; ‘Prom 
only’ means only variants within the promoter region were included. The column ‘Genes’ shows the number of genes analyzed, 
which is less than 64 when variant filters removed all variants of interest from a gene. ‘Rare alleles’ are the total number of rare 
alleles remaining after variant filters. MAF = minor allele frequency; CADD = Combined Annotation Dependent Depletion; OR = odds 
ratio; L 95% CI = lower bound for the 95% confidence interval; U 95% CI = upper bound for the 95% confidence interval; P = p-value; 
SE = standard error. 
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Dataset Model: 
!"#"$$%(' = )) = 	, + 	.) ∗ 012 + 	.3 ∗ 	0123 

Correlation between 

MAF Gene Region CADD Genes Rare 
Alleles .)  SE(.)) P: 012 .3  SE(.3) P: 

0123  
P: Joint 

Non-
adjusted 
b1 and 
main 

analysis b1 

Non-
adjusted 
b2 and 
main 

analysis b2 

Non-
adjusted 
b1 and 

controls 
only b1 

Non-
adjusted 
b2 and 

controls 
only b2 

< 0.01 Any reg No filter 64 2,494 -0.0191 0.0131 0.1434 7.30E-04 4.90E-04 0.1368 0.3317 

0.997 0.996 0.86 0.84 

< 0.01 Any reg ≥ 5 64 1,592 -0.0290 0.0169 0.0856 1.10E-03 6.30E-04 0.0815 0.2207 

< 0.01 Upstream reg No filter 64 1,210 -0.0166 0.0191 0.3862 6.90E-04 7.10E-04 0.3360 0.6068 

< 0.01 Upstream reg ≥ 5 63 951 -0.0330 0.0215 0.1259 1.39E-03 8.00E-04 0.0831 0.1855 

< 0.01 Any UTR No filter 62 1,744 -0.0233 0.0154 0.1290 8.60E-04 5.70E-04 0.1358 0.3178 

< 0.01 Any UTR ≥ 5 61 1,027 -0.0434 0.0210 0.0386 1.49E-03 7.90E-04 0.0583 0.1097 

< 0.01 Prom only No filter 64 1,160 -0.0178 0.0195 0.3606 7.70E-04 7.20E-04 0.2860 0.5000 

< 0.01 Prom only ≥ 5 63 919 -0.0318 0.0220 0.1481 1.41E-03 8.20E-04 0.0836 0.1424 

< 0.01 5'UTR only No filter 52 460 -0.0444 0.0312 0.1549 1.58E-03 1.17E-03 0.1789 0.3655 

< 0.01 5'UTR only ≥ 5 51 386 -0.0778 0.0337 0.0209 2.79E-03 1.27E-03 0.0278 0.0731 

< 0.01 3'UTR only No filter 59 1,284 -0.0207 0.0189 0.2743 7.80E-04 7.10E-04 0.2717 0.5455 

< 0.01 3'UTR only ≥ 5 51 641 -0.0470 0.0275 0.0872 1.62E-03 1.03E-03 0.1171 0.2213 

< 0.001 Any reg No filter 64 1,147 -0.0311 0.0183 0.0891 1.20E-03 6.80E-04 0.0781 0.2147 

< 0.001 Any reg ≥ 5 64 734 -0.0495 0.0230 0.0318 1.95E-03 8.60E-04 0.0236 0.0781 

< 0.001 Upstream reg No filter 64 568 -0.0464 0.0255 0.0692 1.85E-03 9.50E-04 0.0520 0.1488 

< 0.001 Upstream reg ≥ 5 63 440 -0.0499 0.0289 0.0837 2.11E-03 1.07E-03 0.0492 0.1125 

< 0.001 Any UTR No filter 61 760 -0.0312 0.0219 0.1534 1.10E-03 8.20E-04 0.1804 0.3587 

< 0.001 Any UTR ≥ 5 58 453 -0.0635 0.0290 0.0285 2.22E-03 1.09E-03 0.0417 0.0899 

< 0.001 Prom only No filter 64 543 -0.0436 0.0262 0.0964 1.81E-03 9.70E-04 0.0636 0.1552 

< 0.001 Prom only ≥ 5 63 420 -0.0461 0.0297 0.1212 2.05E-03 1.10E-03 0.0622 0.1000 

< 0.001 5'UTR only No filter 50 181 -0.0785 0.0424 0.0645 2.72E-03 1.60E-03 0.0901 0.1750 

< 0.001 5'UTR only ≥ 5 47 159 -0.0957 0.0452 0.0343 3.38E-03 1.71E-03 0.0476 0.1089 

< 0.001 3'UTR only No filter 57 579 -0.0211 0.0254 0.4059 7.40E-04 9.50E-04 0.4400 0.7028 

< 0.001 3'UTR only ≥ 5 49 294 -0.0519 0.0362 0.1517 1.79E-03 1.36E-03 0.1876 0.3492 
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Supplementary Table 4.14 (next page). Results from analyzing combined set of 149 genes using controls only. Genes had SZ-
associated expression or were located within or near a SZ-associated large CNV interval. Results are presented for the quadratic 
models only, as these provided the best fit for the data in our main analyses (which analyzed all 725 samples and adjusted for case-
control status). We applied the same combinations of MAF, CADD, and region filters to the variants as were used when analyzing the 
149 genes using all 725 samples in our main analyses. We also applied the same weights (based on number of rare variant sites for 
each gene) as used in the main analyses. Last four columns show correlations between quadratic model betas estimated from 
controls only (presented in this table) versus those from our main analyses (presented in Supplementary Table 4.4), and 
correlations between quadratic model betas estimated from controls only versus SZ cases only (presented in Supplementary Table 
4.15). In the model formula, Y = 1 indicates presence of a rare regulatory allele, and Bin represents expression bin number (these 
analyses used 25 expression bins, with 14 samples assigned to each bin). For the quadratic model, ‘P: Joint’ is the p-value resulting 
from a joint test of b1 and b2. In the ‘Gene Region’ column, ‘Any UTR’ means variants within the 5’UTR or 3’UTR were included. The 
column ‘Genes’ shows the number of genes analyzed, which is less than 149 when variant filters removed all variants of interest from 
a gene. ‘Rare alleles’ are the total number of rare alleles remaining after variant filters. MAF = minor allele frequency; CADD = 
Combined Annotation Dependent Depletion; OR = odds ratio; L 95% CI = lower bound for the 95% confidence interval; U 95% CI = 
upper bound for the 95% confidence interval; P = p-value; SE = standard error. 
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Dataset 
Model: 

!"#"$$%(' = )) = 	, + 	.) ∗ 012+ 	.3 ∗ 	0123 
Correlation between 

MAF Gene Region CADD Genes Rare 
Alleles .)  SE(.)) P: 012 .3  SE(.3) P: 0123 P: Joint 

Controls 
only b1 
and 
main 
analysis 
b1 

Controls 
only b2 
and 
main 
analysis 
b2 

Controls 
only b1 
and 
cases 
only b1 

Controls 
only b2 
and all 
cases 
only b2 

< 0.01 Any UTR No filter 144 1,844 -0.0110 0.0162 0.4958 3.90E-04 6.00E-04 0.5159 0.7929 

0.92 0.93 0.84 0.84 

< 0.01 Any UTR ≥ 5 136 1,144 -0.0298 0.0204 0.1449 1.04E-03 7.70E-04 0.1765 0.3383 

< 0.01 5'UTR only No filter 102 487 -0.0535 0.0322 0.0969 2.16E-03 1.20E-03 0.0716 0.1890 

< 0.01 5'UTR only ≥ 5 96 426 -0.0633 0.0341 0.0631 2.44E-03 1.27E-03 0.0549 0.1634 

< 0.01 3'UTR only No filter 127 1,357 0.0039 0.0188 0.8356 -1.80E-
04 

7.00E-04 0.7984 0.9543 

< 0.01 3'UTR only ≥ 5 107 718 -0.0142 0.0251 0.5722 2.20E-04 9.50E-04 0.8141 0.3744 

< 0.001 Any UTR No filter 140 819 -0.0383 0.0219 0.0804 1.42E-03 8.20E-04 0.0839 0.2192 

< 0.001 Any UTR ≥ 5 130 507 -0.0567 0.0280 0.0426 2.10E-03 1.05E-03 0.0457 0.1316 

< 0.001 5'UTR only No filter 85 169 -0.0942 0.0463 0.0420 3.73E-03 1.73E-03 0.0309 0.0989 

< 0.001 5'UTR only ≥ 5 79 149 -0.1050 0.0485 0.0307 4.12E-03 1.81E-03 0.0229 0.0781 

< 0.001 3'UTR only No filter 121 650 -0.0266 0.0248 0.2838 9.40E-04 9.30E-04 0.3139 0.5611 

< 0.001 3'UTR only ≥ 5 98 358 -0.0357 0.0331 0.2805 1.13E-03 1.25E-03 0.3630 0.4821 
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Supplementary Table 4.15 (next page). Results from analyzing combined set of 149 genes using SZ cases only. Genes had SZ-
associated expression or were located within or near a SZ-associated large CNV interval. Results are presented for the quadratic 
models only, as these provided the best fit for the data in our main analyses (which analyzed all 725 samples and adjusted for case-
control status). We applied the same combinations of MAF, CADD, and region filters to the variants as were used when analyzing the 
149 genes using all 725 samples in our main analyses. We also applied the same weights (based on number of rare variant sites for 
each gene) as used in the main analyses. Last four columns show correlations between quadratic model betas estimated from SZ 
cases only (presented in this table) versus those from our main analyses (presented in Supplementary Table 4.4), and correlations 
between quadratic model betas estimated from SZ cases only versus controls only (presented in Supplementary Table 4.14). In the 
model formula, Y = 1 indicates presence of a rare regulatory allele, and Bin represents expression bin number (these analyses used 
25 expression bins, with 14 samples assigned to each bin). For the quadratic model, ‘P: Joint’ is the p-value resulting from a joint test 
of b1 and b2. In the ‘Gene Region’ column, ‘Any UTR’ means variants within the 5’UTR or 3’UTR were included. The column ‘Genes’ 
shows the number of genes analyzed, which is less than 149 when variant filters removed all variants of interest from a gene. ‘Rare 
alleles’ are the total number of rare alleles remaining after variant filters. MAF = minor allele frequency; CADD = Combined 
Annotation Dependent Depletion; OR = odds ratio; L 95% CI = lower bound for the 95% confidence interval; U 95% CI = upper bound 
for the 95% confidence interval; P = p-value; SE = standard error. 
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Dataset Model: 
!"#"$$%(' = )) = 	, + 	.) ∗ 012 + 	.3 ∗ 	0123 

Correlation between 

MAF Gene Region CADD Genes Rare 
Alleles .)  SE(.)) P: 012 .3  SE(.3) P: 0123 P: Joint 

Cases 
only b1 
and 
main 
analysis 
b1 

Cases 
only b2 
and 
main 
analysis 
b2 

Cases 
only b1 
and 
controls 
only b1 

Cases 
only b2 
and all 
controls 
only b2 

< 0.01 Any UTR No filter 147 1,951 -0.0138 0.0154 0.3693 3.60E-04 5.80E-04 0.5380 0.3856 

0.93 0.93 0.84 0.84 

< 0.01 Any UTR ≥ 5 141 1,215 -0.0205 0.0198 0.2989 5.60E-04 7.40E-04 0.4494 0.3445 

< 0.01 5'UTR only No filter 108 511 -0.0725 0.0300 0.0158 2.51E-03 1.13E-03 0.0265 0.0516 

< 0.01 5'UTR only ≥ 5 105 441 -0.0647 0.0337 0.0552 2.37E-03 1.26E-03 0.0615 0.1649 

< 0.01 3'UTR only No filter 126 1,440 -0.0080 0.0184 0.6657 1.30E-04 6.90E-04 0.8517 0.5751 

< 0.01 3'UTR only ≥ 5 107 774 -0.0164 0.0243 0.5013 4.50E-04 9.10E-04 0.6219 0.6445 

< 0.001 Any UTR No filter 140 835 -0.0186 0.0225 0.4078 5.90E-04 8.40E-04 0.4859 0.6470 

< 0.001 Any UTR ≥ 5 125 545 -0.0274 0.0278 0.3243 8.00E-04 1.05E-03 0.4467 0.4504 

< 0.001 5'UTR only No filter 88 202 -0.1039 0.0422 0.0139 3.46E-03 1.61E-03 0.0316 0.0348 

< 0.001 5'UTR only ≥ 5 83 178 -0.0611 0.0459 0.1836 2.03E-03 1.73E-03 0.2413 0.3764 

< 0.001 3'UTR only No filter 117 633 -0.0109 0.0258 0.6740 3.70E-04 9.60E-04 0.7045 0.9092 

< 0.001 3'UTR only ≥ 5 97 367 -0.0323 0.0333 0.3328 1.13E-03 1.25E-03 0.3676 0.6213 
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Supplementary Table 4.16 (next page). Results from analyzing combined set of 149 genes, using all 725 samples (SZ cases and 
controls combined) and not adjusting for case-control status. Genes had SZ-associated expression or were located within or near a 
SZ-associated large CNV interval. Results are presented for the quadratic models only, as these provided the best fit for the data in 
our main analyses (which analyzed all 725 samples and adjusted for case-control status). We applied the same combinations of 
MAF, CADD, and region filters to the variants as were used when analyzing the 149 genes using all 725 samples in our main 
analyses. We also applied the same weights (based on number of rare variant sites for each gene) as used in the main analyses. 
Last four columns show correlations between quadratic model betas estimated from all samples combined without adjustment for 
case-control status (presented in this table) versus those from our main analyses (presented in Supplementary Table 4.4), and 
correlations between quadratic model betas estimated from all samples combined without adjustment for case-control status versus 
controls only (presented in Supplementary Table 4.14). In the model formula, Y = 1 indicates presence of a rare regulatory allele, 
and Bin represents expression bin number (these analyses used 25 expression bins, with 29 samples assigned to each bin). For the 
quadratic model, ‘P: Joint’ is the p-value resulting from a joint test of b1 and b2. In the ‘Gene Region’ column, ‘Any UTR’ means 
variants within the 5’UTR or 3’UTR were included. The column ‘Genes’ shows the number of genes analyzed, which is less than 149 
when variant filters removed all variants of interest from a gene. ‘Rare alleles’ are the total number of rare alleles remaining after 
variant filters. MAF = minor allele frequency; CADD = Combined Annotation Dependent Depletion; OR = odds ratio; L 95% CI = lower 
bound for the 95% confidence interval; U 95% CI = upper bound for the 95% confidence interval; P = p-value; SE = standard error. 

  



 
 

 

206 

 

Dataset 
Model: 

!"#"$$%(' = )) = 	, + 	.) ∗ 012 + 	.3 ∗ 	0123 
Correlation between 

MAF Gene Region CADD Genes 
Rare 

Alleles .)  SE(.)) P: 012 .3  SE(.3) P: 0123 P: Joint 

Non-
adjusted 
b1 and 
main 
analysis 
b1 

Non-
adjusted 
b2 and 
main 
analysis 
b2 

Non-
adjusted 
b1 and 
controls 
only b1 

Non-
adjusted 
b2 and 
all 
controls 
only b2 

< 0.01 Any UTR No filter 149 3,929 -0.0151 0.0107 0.1574 5.30E-04 4.00E-04 0.1897 0.3587 

0.999 0.999 0.93 0.94 

< 0.01 Any UTR ≥ 5 147 2,432 -0.0332 0.0138 0.0160 1.08E-03 5.20E-04 0.0365 0.0343 

< 0.01 5'UTR only No filter 117 1,028 -0.0616 0.0211 0.0036 2.19E-03 7.90E-04 0.0059 0.0151 

< 0.01 5'UTR only ≥ 5 113 893 -0.0704 0.0229 0.0021 2.51E-03 8.60E-04 0.0036 0.0096 

< 0.01 3'UTR only No filter 139 2,901 -0.0015 0.0130 0.9068 3.00E-05 4.90E-04 0.9533 0.9675 

< 0.01 3'UTR only ≥ 5 125 1,539 -0.0195 0.0178 0.2730 5.10E-04 6.70E-04 0.4484 0.2516 

< 0.001 Any UTR No filter 148 1,707 -0.0232 0.0149 0.1195 8.00E-04 5.60E-04 0.1490 0.2893 

< 0.001 Any UTR ≥ 5 142 1,081 -0.0447 0.0187 0.0168 1.54E-03 7.00E-04 0.0283 0.0528 

< 0.001 5'UTR only No filter 106 383 -0.0809 0.0298 0.0066 2.91E-03 1.12E-03 0.0094 0.0271 

< 0.001 5'UTR only ≥ 5 100 339 -0.0746 0.0319 0.0194 2.73E-03 1.20E-03 0.0229 0.0691 

< 0.001 3'UTR only No filter 135 1,324 -0.0097 0.0172 0.5710 3.10E-04 6.40E-04 0.6323 0.8159 

< 0.001 3'UTR only ≥ 5 97 367 -0.0323 0.0333 0.3328 1.13E-03 1.25E-03 0.3676 0.6213 
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Supplementary Figure 4.1. Comparison of results when performing burden analyses for all samples with adjustment for case-
control status (‘All samples - Adjusted’; main analyses), all samples without adjustment for case-control status (‘All samples - 
Unadjusted’), controls only, and cases only. Analyses were performed for up to 17 genes with low expression associated with SZ and 
up to 39 genes with high expression associated with SZ. These results are based on analyzing any regulatory variants (promoter, 
5’UTR or 3’UTR variants) with MAF < 0.001 and CADD ≥ 5. Points are ORs comparing each expression bin to bin 1, and vertical 
lines are corresponding 95% CIs. ORs and 95% CIs were calculated using estimates from the corresponding quadratic regression 
models. Patterns of estimated associations, including apparent differences for genes with low versus high expression associated with 
SZ, are quite similar across the various analyses. Note that the somewhat more convergent results observed in the ‘SZ - High 
express’ plot, as compared with the ‘SZ - Low express’ plot, correspond to a larger gene set (and more rare allele observations) for 
analysis. 
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Supplementary Figure 4.2. Comparison of results when performing burden analyses for all samples with adjustment for case-
control status (‘All samples - Adjusted’; main analyses), all samples without adjustment for case-control status (‘All samples - 
Unadjusted’), controls only, and cases only. Analyses were performed for up to 87 genes with pLi < 0.10 and up to 33 genes with pLi 
≥ 0.90. These results are based on analyzing any UTR variants (5’UTR or 3’UTR variants) with MAF < 0.01 and CADD ≥ 5. Points 
are ORs comparing each expression bin to bin 1, and vertical lines are corresponding 95% CIs. ORs and 95% CIs were calculated 
using estimates from the corresponding quadratic regression models. Patterns of estimated associations, including apparent 
differences for genes with pLi < 0.10 versus pLi ≥ 0.90, are quite similar across the various analyses. 

 

 

 

  

0.3

0.5

0.7

0.9

1.1

1.3

1.5

0.3

0.5

0.7

0.9

1.1

1.3

1.5

0 5 10 15 20 25 0 5 10 15 20 25
Expression bin 

(higher bin = higher expression)
Expression bin 

(higher bin = higher expression)

O
R

 fo
r r

ar
e 

al
le

le
 

(B
in

 1
 =

 re
fe

re
nc

e)

Analysis

All samples - Adjusted

All samples - Unadjusted

Controls only

Cases only

pLi < 0.10 pLi >= 0.90



 
 

 

209 

Supplementary Figure 4.3. Comparison of results when performing burden analyses for all samples with adjustment for case-
control status (‘All samples - Adjusted’; main analyses), all samples without adjustment for case-control status (‘All samples - 
Unadjusted’), controls only, and cases only. Analyses were performed for up to 7 genes extremely tolerant to missense variation and 
up to 89 genes intolerant to missense variation. These results are based on analyzing any UTR variants (5’UTR or 3’UTR variants) 
with MAF < 0.01 and CADD ≥ 5. Points are ORs comparing each expression bin to bin 1, and vertical lines are corresponding 95% 
CIs. ORs and 95% CIs were calculated using estimates from the corresponding quadratic regression models. Patterns of estimated 
associations, including apparent differences for genes extremely tolerant versus intolerant to missense variation, are quite similar 
across the various analyses. Note that the more convergent results observed in the ‘Intolerant’ plot, as compared with the ‘Tolerant’ 
plot, correspond to a larger gene set (and more rare allele observations) for analysis. 
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Chapter 5:  

Summary of Results, Future Research 
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 This dissertation had the overarching goal of investigating genetic associations with 

particular phenotypes of interest, specifically by employing recently developed and cutting-edge 

genetic epidemiology analytic approaches that enable increased power for detecting 

associations. Such approaches can facilitate the examination of genetic associations that have 

historically presented challenges for study, and can do so without the need for increased 

sample size. In Aim 1, we employed PRS methods to optimally investigate a potential role for 

common (MAF > 1%) genetic variants in DS-associated AVSD. In Aim 2, we used data 

simulations to test the power of a cutting-edge multivariate analysis approach called GAMuT for 

identifying common variant associations with multivariate questionnaire data, and then applied 

GAMuT to real data to more powerfully examine genetic associations with multivariate 

psychiatric phenotypes. In Aim 3, we employed a modified version of a recently developed 

burden analysis method to increase power for investigating associations of rare (MAF < 1%) 

regulatory variants with gene expression for a set of genes enriched for having SZ-associated 

expression levels. 

 The Aim 1 analyses were carried out to improve understanding of the potential 

contribution made by common variants to AVSD among those with DS. Prior investigations of 

the role of common variants in DS-associated AVSD have applied GWAS methods, examining 

associations of individual common variants across the genome with AVSD. These investigations 

have identified no robust signals of common variant associations; and given a maximum sample 

size of 210 DS-associated AVSD cases and 242 DS controls, they have been underpowered to 

identify all but the largest-effect common variants.4 We employed an alternative strategy that 

enables a more powerful examination of the role of common variation in DS-associated AVSD: 

the PRS method. As opposed to individually analyzing each common variant, PRS methodology 

can be used to examine the collective contribution made by common variants all across the 

genome, with an aggregated common variant effect more readily detected than many smaller 

individual effects. We applied PRS methods to a case-control sample of 487 participants, 
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including 245 AVSD cases and 242 controls with structurally normal hearts, all of whom had DS. 

PRS were constructed using weights based on SNP effect sizes estimated in the largest GWAS 

of congenital heart defects available (2,594 cases and 5,159 controls; all without Down 

syndrome). We analyzed these genome-wide PRS for association with AVSD status, and found 

PRS to be associated with AVSD with odds ratios ranging from 1.2 to 1.3 per standard deviation 

increase in PRS, and with PRS explaining an estimated 1% of variance in outcome on the 

liability scale. Secondary analyses indicated that any additional contribution by common variants 

on the trisomic chromosome 21, over and above that of common variants on the other 

autosomes, was negligible.  

While p-values for all PRS association estimates were > 0.05 following correction for 

multiple statistical tests, we interpret our PRS results as suggestive of at least a small role for 

common variants in DS-associated AVSD. Furthermore, considering the scientific literature on 

PRS as well as supplementary analyses that we performed, it is reasonable to expect that PRS 

constructed using weights from much larger and more phenotypically relevant GWAS may 

explain more of the variance in DS-associated AVSD, suggesting an even larger contribution by 

common variants. Thus, although our results are important in that they suggest common 

variants may indeed make some level of contribution to DS-associated AVSD, future studies are 

needed to quantify what the full extent of this contribution may be. Furthermore, confirmation of 

a common variation contribution through application of PRS methods would provide added 

motivation for continuing to grow DS-associated AVSD case-control sample sizes, with the goal 

of applying methods other than PRS which are able interrogate which particular common 

variants, proximal to which genes, seem to be making the greatest contributions (e.g., methods 

like the gene-based sequence kernel association test [SKAT]). Findings from such future 

studies of common variants, in combination with findings related to rare variant contributions to 

DS-associated AVSD, will help further our understanding of the biology underlying AVSD and 



 
 

 

213 

perhaps CHD more generally, with the possibility and hope of benefiting individuals both with 

and without DS. 

The Aim 2 analyses had the goals of 1) examining the power of GAMuT, a previously 

developed multivariate analysis method, specifically for identifying common variant associations 

with multivariate phenotype questionnaire data; and 2) applying GAMuT to identify common 

variant associations with multivariate psychiatric phenotypes assessed by the PSS and BDI 

questionnaires. This Aim 2 work was motivated by the recognition that psychiatric phenotypes 

are frequently analyzed by psychiatric genetics researchers in ways that may be suboptimal and 

lead to decreased ability to identify genetic associations. In particular, psychiatric disorders are 

syndromes involving the co-occurrence of multiple correlated yet discrete symptoms; yet this 

multivariate nature is hidden when the multivariate data are collapsed into a single univariate 

measure for analysis, as commonly occurs for the PSS and BDI. Such collapsing of the 

multivariate data into a single measure has the potential to greatly decrease power for 

identifying genetic associations, particularly in realistic circumstances in which a genetic variant 

may affect only a subset of the multivariate psychiatric questionnaire items. We examined the 

power of GAMuT to detect common variant associations under such realistic scenarios, in order 

to determine whether GAMuT provides a good alternative to the traditional approach of 

analyzing a univariate summary measure.  

We applied GAMuT to simulated datasets, which involved simulated common variant 

data for the gene LRFN5 (including 127 common variants), and multivariate BDI phenotypes 

that were simulated based on the common variant genotypes. Data were simulated under a 

variety of causal scenarios, including scenarios in which the causal variant affected 18/21, 

12/21, or 6/21 BDI items. Across all scenarios, GAMuT exhibited good power for detecting the 

common variant associations, and in all instances showed a tendency to outperform the 

univariate approaches of KMR and standard linear regression with respect to power. The power 

differential between GAMuT and the univariate approaches was particularly pronounced when 
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the causal variant affected only 12/21 or 6/21 BDI items. For instance, when the causal variant 

was set to affect 12 BDI items, both KMR and linear regression showed less than 20% power 

for detecting all 127 causal common variants (each common variant was set as causal, one at a 

time); whereas GAMuT had greater than 80% power to detect 55 of the causal common variants 

and greater than 50% power to detect 96 of the causal variants (with power defined as the 

proportion of p-values < 0.001). We also confirmed that GAMuT properly preserves Type I error.  

We then applied GAMuT to real data from the GTP, to examine associations of common 

variants with PSS and BDI phenotypes. GAMuT identified common variants within or near the 

SIRPA and ZHX2 genes to be significantly associated with the PSS (avoidance-numbing 

subscale) and BDI, respectively. In comparison, univariate KMR and linear regression detected 

no study-wise significant associations. Follow-up examination of the GAMuT-identified 

association between SIRPA and the PSS showed that common variants within SIRPA were only 

associated with a subset of the PSS avoidance-numbing subscale items, thus illustrating 

GAMuT’s ability to identify genetic associations for scenarios in which variants are associated 

with only a subset of multivariate phenotypes, while univariate analysis methods struggle to 

identify associations under such scenarios. 

Our Aim 2 analyses support the multivariate GAMuT method as a powerful and 

computationally efficient means of detecting common variant associations with multivariate 

phenotype data, which displays substantial power advantages over methods that analyze a 

univariate summary of the multivariate phenotype data, particularly in situations where genetic 

variants are associated with only a subset of the multivariate phenotype items. Such situations 

would be expected to occur commonly for psychiatric disorders, which are heterogeneous 

conditions consisting of multiple correlated yet discrete symptoms that may be differentially 

affected by a genetic variant. With this in mind, application of GAMuT in future psychiatric 

genetics studies has the potential to facilitate the identification of robust common variant 

associations with psychiatric phenotypes, which have often evaded detection by traditional 
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analytic approaches. In addition, the GAMuT framework can be employed to investigate rare 

variant associations, and is also amenable to analyses of other omics data types like 

methylation data. We hope that the application of GAMuT in future psychiatric studies will help 

to further understanding of the genetic architecture of these disorders, and contribute to 

identifying genes for which variation is strongly associated with psychiatric phenotypes, which 

may enable a better understanding of the biological processes that underlie various psychiatric 

disorders. 

Aim 3 had the goal of examining associations of rare regulatory variants with gene 

expression levels, for genes enriched for having SZ-associated expression levels. Numerous 

genes have been identified by previous studies to have expression levels that are associated 

with SZ.14-16 It is possible that rare variants in regulatory sequences play a particularly important 

role in regulating the expression of these genes, but this has not been sufficiently examined, 

due to a combination of technological and analytical limitations. We were able to investigate 

these associations in a sample of 725 individuals, including SZ cases and controls analyzed in 

prior case-control studies. All individuals had both targeted DNA sequence data and RNA 

sequencing data for 160 genes, including 64 genes with SZ-associated expression levels and 

96 genes located within or near SZ-associated large CNV intervals. We used a modified version 

of a recently developed burden approach specifically designed to increase power for examining 

rare variant associations with gene expression by considering gene sets rather than individual 

genes for analysis.27  

Our analyses consistently yielded U-shaped patterns of estimated association between 

rare regulatory allele burden and gene expression, whereby rare regulatory alleles were most 

likely to be observed at the extremes (low and high) of gene expression. This observation was 

consistent with relevant previous literature.27 We also observed a consistent tendency for the U-

shaped estimated associations to be more pronounced (i.e., deeper U) when limiting analyses 

to the rarest variants (MAF < 0.001), variants more likely to be deleterious (CADD ≥ 5), and 
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when only considering variants in the 5’UTR (as compared with including promoter and/or 

3’UTR variants). In addition, we found that estimated associations between rare regulatory 

variants and gene expression were comparatively weaker for genes intolerant to LoF or 

missense variation as compared with genes tolerant to these variant types, which, considering 

prior scientific literature,125 we interpreted as possibly reflecting selection against variants with 

strong influences on expression for the highly constrained genes.  

While none of our findings were statistically significant following correction for multiple 

testing, they may reflect genuine associations between rare regulatory variants and gene 

expression for genes with (or likely to have) SZ-associated expression, particularly considering 

consistencies between our findings and those of prior, non-SZ focused studies. Future studies 

that include larger sample sizes and/or analyze larger gene sets will have greater power for 

examining these associations. We note that we had planned to perform the same analyses in an 

independent set of 400 samples with microarray expression data, and then to meta-analyze the 

RNA sequencing sample and microarray sample results, which would have increased our 

power; but we ultimately excluded the microarray dataset due to concerns surrounding quality of 

the microarray expression data.  

Future studies can also more fully sequence putative regulatory regions for all genes 

analyzed, including promoter regions (less than half of the full 149 genes we analyzed had 

undergone DNA sequencing upstream of the TSS); as well as distal regulatory elements 

including enhancers, silencers, and insulators, which we did not consider and which are 

currently more challenging to localize than the regions we analyzed. Such studies are needed to 

help provide a more complete picture of how different classes of rare regulatory variation may 

impact gene expression.  

The burden approach which we employed for these analyses is informative with regard 

to the association between rare allele burden and gene expression, and can therefore provide 

suggestive evidence about whether rare regulatory alleles may be causing decreased and/or 
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increased gene expression. However, the approach is inherently limited with regard to providing 

information about the magnitude of expression change (e.g., number of standard deviations in 

expression shifted) that might be caused by a rare allele. Alternative analytic methods will be 

needed to examine this aspect of the association between rare regulatory variants and gene 

expression. Very large sample sizes should eventually enable successful application of eQTL 

analysis methods to rare variants, which would allow quantification of the amount to which 

expression levels are different for those with and without specific rare alleles. Future work might 

also include in vitro studies which examine the amount of change in gene expression 

corresponding with experimental manipulation of rare regulatory alleles.  

Additional analyses are needed to understand whether expression for the genes 

considered in our study (specifically, those identified to have SZ-associated expression levels) 

may in fact be mediators on potential causal pathways from rare regulatory variation to SZ.132,133 

These additional analyses would need to include an examination of associations between gene 

expression and SZ that control for the rare regulatory variants of interest, to rule out the 

possibility that an observed association between gene expression and SZ is simply due to 

confounding by these rare regulatory variants. These additional analyses were beyond the 

scope of this dissertation, but are worthy of being the focus of future research. Should such 

future research support a causal pathway from rare regulatory variation to aberrant gene 

expression to SZ for particular genes, it is possible that this knowledge could be leveraged to 

develop more effective treatment and prevention approaches for SZ. 

 

The three aims described in this dissertation involved the strategic application of 

particular genetic epidemiology analytic methods to increase power for investigating the genetic 

contributions to specific phenotypes. Prior examination of these genetic associations have 

tended to employ less-than-optimized analytic methods, limiting the ability to identify 
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associations that may exist. Our use of highly optimized approaches yielded results suggestive 

of genetic associations with the phenotypes we investigated, contributing new evidence of 

potential common and rare genetic variant effects on these phenotypes. Even with our power-

optimizing analytic methods, however, many of our analyses remained underpowered, and 

would benefit from larger sample sizes (in addition to certain other modifications to help 

minimize potential biases). Nonetheless, we have generated findings that we believe represent 

important contributions to the field of genetic epidemiology, while at the same time emphasizing 

the importance of selecting analytic methods that are optimized for the objectives of one’s 

research study.  
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