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Abstract
Charge Separation Dynamics between Semiconductor Nanoparticles and Molecular Adsorbates
By Jier Huang
The understanding of the interfacial charge transfer dynamics between semiconductor nanoparticles and molecular adsorbates is essential to their potential applications in solar cells. In this dissertation, we investigated two types of semiconductor nanoparticle – molecular adsorbate systems: (1) quantum dots (QD)-adsorbate complexes and (2) dye sensitized semiconductor films, by using transient absorption spectroscopy and time resolved fluorescence spectroscopy. 

For the first system, we conducted a series of studies on exciton dissociation dynamics in QDs through charge transfer to the adsorbed molecules. We investigated single exciton dissociation dynamics in CdSe QDs through electron transfer (ET) to a Re-bipyridyl complex, methylene blue (MB+) molecules, and Flavin mononucleotide by monitoring the spectral features of both the QDs and molecular adsorbates. It was found that the ET rate depends on the number of adsorbatess per QD as well as the QD particle size. The fastest observed ET rates were on the sub-ps time scale, which is much faster than the exciton-exciton annihilation process, indicating the possibility to dissociate multiple excitons through ET from QDs to molecular adsorbates. Additionally, we have investigated exciton dissociation dynamics in CdSe QDs through hole transfer to phenothiazine molecules (PTZ). It was shown that the hole transfer time was ～ 2.5 ns in 1:1 CdSe-PTZ complexes and reached ～ 300 ps in samples with an average of ～ 6 PTZ per QD. Furthermore, we demonstrated the capability to dissociate multiple excitons in CdSe-MB+ complex. It was shown that ～ 3 excitons in CdSe QDs can be dissociated through ET to MB+.

 For the second system, we examined the ET dynamics from Rhodamine (Rh) dyes to different semiconductor films. Electron injection kinetics from RhB to In2O3, SnO2, and ZnO films were compared to examine the effect of the semiconductor nature on the ET dynamics. It was found that ET rate follows the order of In2O3 ≈ SnO2 > ZnO. Additionally, we also explored the impact of dye energetics on ET dynamics by comparing the injection kinetics from RhB, Rh101, and Rh6G to the same semiconductor. The results showed that the ET rate decreases with a decrease in the excited state oxidation potential. 
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