

Distribution Agreement

In presenting this thesis as a partial fulfillment of the requirements for a degree from Emory
University, I hereby grant to Emory University and its agents the non-exclusive license to
archive, make accessible, and display my thesis in whole or in part in all forms of media, now or
hereafter now, including display on the World Wide Web. I understand that I may select some
access restrictions as part of the online submission of this thesis. I retain all ownership rights to
the copyright of the thesis. I also retain the right to use in future works (such as articles or books)
all or part of this thesis.

Yicong Li April 3, 2018

!
The Translation from SQL to Relation Algebra

by

Yicong Li

Shun Yan Cheung

Adviser

Department of Mathematics and Computer Science

Shun Yan Cheung

Adviser

Jinho Choi

Committee Member

Juliette Stapanian Apkarian

 Committee Member

2018

The Translation from SQL to Relation Algebra

By

Yicong Li

Shun Yan Cheung

Adviser

An abstract of
a thesis submitted to the Faculty of Emory College of Arts and Sciences

of Emory University in partial fulfillment
of the requirements of the degree of
Bachelor of Sciences with Honors

 Department of Mathematics and Computer Science

2018

Abstract

The Translation from SQL to Relation Algebra

Yicong Li

SQL (Structural Query Language) and Relational Algebra are two important languages to

manipulate relational database. SQL is an international standard language used to express queries

on data stored in a database. Relational Algebra is a Mathematical language with operations on

sets. SQL queries are first translated to an equivalent expression in Relational Algebra in query

processing. The thesis explores the translation from SQL to Relational Algebra to gain a deeper

understanding in database systems. The thesis begins with an introduction to the problem

(including motivation to working on the translation), the related background knowledge to

handle the translation, and follows with the project design. It then discusses the evaluation of the

result, reflects on my learning experience from the project, and makes suggestion about further

improvement.

The Translation from SQL to Relation Algebra

By

Yicong Li

Shun Yan Cheung

Adviser

An abstract of
a thesis submitted to the Faculty of Emory College of Arts and Sciences

of Emory University in partial fulfillment
of the requirements of the degree of
Bachelor of Sciences with Honors

 Department of Mathematics and Computer Science

2018

Table of Contents

CHAPTER PAGE

CHAPTER 1 – Introduction ..1
1.1 Motivation ...1
1.2 Problem Description ..2
1.3 Related Work ...3

CHAPTER 2 – Background ..5
2.1 Relational Database ...5
2.2 Relational Algebra ...6
2.3 SQL ..8
2.4 Parsing..10
 2.4.1 Lexical Analysis ..10
 2.4.2 Regular Expression ...11

CHAPTER 3 – Project Description ..14
3.1 Introduction ..14
3.2 The Lexical Analyzer of the Project ..14
3.3 Parsing the SELECT Clause ..16
3.4 Parsing the FROM Clause ...18
3.5 Checking and Filling the Attribute List ...20
3.6 Parsing the WHERE Clause ...20
3.7 Converting to Relational Algebra ..29

CHAPTER 4 – Test and Evaluation ..31
4.1 Sample Outputs ..31
4.2 Limitations ...36

CHAPTER 5 – Project Evaluation and Future Work ..37
5.1 Project Goal and Assessment ..37
5.2 Improvement ..38

List of Tables

Table 2.1 Relational Algebra Model ..6

Table 2.2 Relational Table 1 ..7

Table 2.3 Relational Table 2 ...7

Table 2.4 Relational Table 3 ..8

Table 2.5 Relational Table 4 ..8

Table 3.1 Lex Definitions ..15

Table 3.2 Token Codes ..15

Table 3.3 SQL Keywords ..16

Table 3.4 Parsing Attribute List ...18

Table 3.5 Parsing Relation List ..20

Table 3.6 Grammar of WHERE Clause ...21

List of Figures

Figure 1.1 Process of Query Compiler ..2

Figure 2.1 Finite Automaton Diagram 1 ..12

Figure 2.2 Finite Automaton Diagram 2 ..13

Figure 3.1 Structure of AttrType ...17

Figure 3.2 Structure of RelaType ...19

Figure 3.3 Parsing Tree 1 ...22

Figure 3.4 Structure of Node ...23

Figure 3.5 Parsing B-expression 1 ...24

Figure 3.6 Parsing B-expression 2 ...24

Figure 3.7 Parsing B-factor 1 ...26

Figure 3.8 Parsing B-factor 2 ...26

Figure 3.9 Parsing Expression ..27

Figure 3.10 Parsing Expression Example ..28

Figure 3.11 Relational Algebra Tree ...29

Figure 3.12 Structure of Relational Algebra Node ..30

Figure 4.1 Output 1 ..31

Figure 4.2 Relational Algebra Tree ...32

Figure 4.3 Output 2 ..32

Figure 4.4 Output 3 .. 33-34

Figure 4.5 Output 4 ..35

Figure 5.1 Query Object that Contains a Correlated Sub-query ..39

Figure 5.2 Relational Algebra Tree Manipulation 1 ..40

Figure 5.3 Relational Algebra Tree Manipulation 2 ..41

Figure 5.4 Query Object that Contains Attribute IN (Sub-query) ..42

Figure 5.5 Relational Algebra Auxiliary Tree Example ...42

Figure 5.6 Relational Algebra Tree Manipulation Example ...43

 1

Chapter 1

Introduction

1.1! Motivation

 The explosive growth of data has posed challenges as well as provided opportunities for

us. Structured information, such as personnel records, are commonly stored and managed by

relational database systems. Relational Database Systems store information as relations. A

relation is a table containing similar data items, such as employee records. As computer scientists,

it is important for us to increase our abilities to manipulate database systems and retrieve

information from them efficiently. At Emory University, the CS 377 and CS 554 computer

science courses expose students to comprehensive and systematic knowledge on database

systems. Students learn how to retrieve information from a database through SQL queries and

learn various ways to access the database server, such as through a web-based interface.

Query languages are used to manipulate and retrieve data from a database. There are

different languages to manipulate the information stored in relational databases, for example,

SQL and Relational Algebra. Structured Query Language (SQL) is a standard and well-known

programming language for manipulating relational databases. Relational Algebra is a

mathematical language that expresses operations on relational databases. While SQL is

application-oriented and allows the users to express “what information” they want to retrieve

with conditions, Relational Algebra is more procedural and express “how” the data is retrieved

using relational operations. Therefore, in order to process an SQL query, the first step is to

 2

translate the query into an equivalent Relational Algebra expression. Thus, Relational Algebra

serves as a medium that moves users from expressing what they want from the database to

executing a set of instructions/operations to obtain the data. In fact, the translation from SQL to

Relational Algebra is the initial step in the query execution process. The query execution plan

expressed in Relational Algebra can be further optimized. Therefore, I am inspired to study the

translation process in detail by constructing a program to perform the translation.

Figure 1.1: Process of Query Compiler

1.2! Problem Description

In this thesis, we study the process of translating SQL queries into Relational Algebra

expressions. SQL queries are in fact “sentences” in a specified language: the Structured Query

Language. The process to divide a language into small components that can be analyzed is called

parsing.

In order to translate SQL queries to Relation Algebra, we need to parse SQL queries. It

includes checking the SQL statement for syntactic and semantic validity and validating each

 3

language element of the statement according to the grammar rules of the language. In addition,

the SQL parser uses information about the database content to assign meaning to names used in

the SQL query. This information is called “metadata”. After validating the components of a

query with the metadata (data that describes the data stored in a database), the SQL parser uses

appropriate data structures to store the information obtained from parsing. We need to find out

which relations (tables of tuples that contain related attributes) in the database to access. We also

need to identify whether the relations or the data fields are renamed to avoid ambiguity. We must

also extract information about the qualification regarding the tuples in the relations. All the

information about the SQL query is then stored in a query object variable. Finally, the

information in the query object is transformed into a sequence of Relational Algebra operations.

The choice to work on relational database originates from the efficiency of using

relational models to manage data. A relational database represents data in tables and rows and

allows the information of different tables to link together (through the use of keys).

1.3 Related Work

The idea of constructing a program to translate from SQL into Relational Algebra has

been realized before. It refers to the paper of “Translating SQL into Relational Algebra:

Optimization, Semantics, and Equivalence of SQL Queries” by Stefano Ceri and Georg Gottlob

published on IEEE Transactions on Software Engineering in April 1985. The translator from a

subset of SQL into Relational Algebra presented in the thesis is aimed at facilitating the

understanding of database systems and practicing implementing parsing through program.

 4

This thesis presents an expository project in the design and implementation of a SQL

parser that translates a subset of the SQL language to Relational Algebra. The thesis is organized

as follows: In Chapter 2, we discuss the necessary knowledge background knowledge to

approach the problem. In Chapter 3, we describe the SQL to Relational Algebra translation

including the algorithms and the data structures used. Chapter 4 presents some sample outputs of

the parser/translator. Chapter 5 assesses the goal of the project and discusses further

improvement on the project.

 5

Chapter 2

 Background

2.1 Relational Database

A relational database is a database based on the relational model of data. The relational

model represents the database as collection of relations [1]. Every relation is a table of values in

which every row (also known as a tuple) is a collection of related data values. A tuple stores

information of some object in the real world. A relation schema consists of a relation name and a

list of attributes. An attribute is a property of an object. Attributes are the database fields in a

relation and are presented as a set of columns in a relation tables.

Figure 2.1 shows an example of two relations. The employee relation has seven attributes:

SSN, Name, sex, salary, dno (department number) and bdate (birth date). The department

relation contains four attributes: dnumber (department number), department name (dname),

manager ssn (mgrssn) and manager start date (mgrstartdate). The sample content of the relations

in Figure 2.1 shows how information of 8 employees and 3 departments are stored in the

database. Specifically, the employee ‘John Smith’ works in the department ‘Research’ because

this department has department number 5, which is the department number (dno) of ‘John Smith’.

Interpreting Relational Database Model

 6

Employee relation:

Department relation:

sample content of

employee relation:

sample content of

department relation:

Table 2.1: Relational Database Model

2.2 Relational Algebra

 Relational Algebra is a Mathematical Language that defines operations to manipulate

relations [1]. Each operator takes relations as input and yields instances of relations as output

through set manipulations. The operations of Relational Algebra can be divided into 3 categories:

set operators, relational database specific operators, and aggregate functions.

SSN name sex salary dno bdate

dnumber dname mgrssn mgrstartdate

SSN name sex salary dno bdate
123456789 John Smith M 30000 5 09-Jan-55
33445555 Frankl Wong M 40000 5 08-Dec-45
999887777 Alicia Zelaya F 25000 4 19-Jul-58
987654321 Jennifer Wallace F 43000 4 20-Jun-31
666884444 Ramesh Narayan M 38000 5 15-Sep-52
453453453 Joyce English F 25000 5 31-Jul-62
987987987 Ahmad Jabbar M 25000 4 29-Mar-59
888665555 James Borg M 55000 1 10-Nov-27

dname dnumber mgrssn mgrstartdate
Research 5 333445555 22-May-78
Administration 4 987654321 01-Jan-85
Headquarters 1 888665555 19-Jun-71

 7

The most commonly used Relational Algebra operators are:

•! !"#$%&'&#$()): retrieve tuples(records) in relation R that satisfies the given condition

•! +,-,,/…()): obtain only the attributes 12, 13 … of relation R

•!)-454)/: combine the relation 62 and463 into one relation

•!)- ⋈"#$%&'&#$)/: combine the tuples in 62 and463 that satisfy the given condition

 =4!"#$%&'&#$()-54)/)

For example, the following Relational Algebra expression will retrieve the name and salary

of all employees:

9:;<=,444>;?;@A4(BCDEFGBB)

Table 2.2: Relation Table 1

If you only want to retrieve name and salary of employee who earn more than $30,000�you

would use:

9:;<=,444>;?;@A4(H>;?;@AI4JK,KKK4(BCDEFGBB))

Table 2.3: Relation Table 2

name salary
John Smith 30000
Frankl Wong 40000
Alicia Zelaya 25000
Jennifer Wallace 43000
Ramesh Narayan 38000
Joyce English 25000
Ahmad Jabbar 25000
James Borg 55000

name salary
Frankl Wong 40000
Jennifer Wallace 43000
Ramesh Narayan 38000
James Borg 55000

 8

If you want to retrieve the name and salary of employee who works in the Research department,

you would use:

4444444449:;<=,444>;?;@A4(HL:;<=MNO=>=;@PQN4BCDEFGBB4 ⋈L:RML:S<T=@4 UBD1VWCBXW)

Table 2.4: Relation Table 3

If you want to retrieve the name of employees in the Administration department, you can use:

4444444444Y:;<=(HL:;<=MNZL<[:[>\@;\[R:N4^44L:RML:S<T=@4(BCDEFGBB4×4UBD1VWCBXW))

Table 2.5: Relation Table 4

2.3 SQL

SQL is an international standard and the most commonly used programming language for

manipulating and retrieving data stored in relational databases [1]. The SELECT command in

SQL is used to retrieve information from a database. The SELECT command contains clauses to

specify the source relations and conditions on the data retrieved. The FROM clause specifies the

name salary
John Smith 30000
Frankl Wong 40000
Ramesh Narayan 38000
Joyce English 25000

name
Alicia Zelaya
Jennifer Wallace
Ahmad Jabbar

 9

relations where the information is to be retrieved from and the WHERE clause provides the

condition.

For example:

 SELECT name, salary

 FROM employee

 WHERE salary > 30000

will return name and salary of employees who earn more than $30,000. The corresponding

Relational Algebra expression is449:;<=,444>;?;@A4(H>;?;@AI4JK,KKK4(BCDEFGBB)).

To find the name and salary of employee in the “Research” department, we use the following

SQL command:

 SELECT name, salary

 FROM employee, department

 WHERE dno = dnumber

 AND dname =’Research’

This is equivalent to the following Relational Algebra expression:

444444444449:;<=,444>;?;@A4(HL:;<=MNO=>=;@PQN4BCDEFGBB4 ⋈L:RML:S<T=@4 UBD1VWCBXW)

If we only want to find employees in the “Research” department that earn more than $30,000, we

would use:

 SELECT name

 FROM employee, department

 WHERE dno = dnumber

 10

 AND dname = ‘Research’

 AND salary > 30,000

which is equivalent to this Relational Algebra expression:

444444444444Y:;<=(HL:;<=MNO=>=;@PQN4^4>;?;@AIJKKKK4^4L:RML:S<T=@4BCDEFGBB4×4UBD1VWCBXW)

2.4 Parsing

Parsing is the analysis of an input string of the given language by dividing it into different

parts according to the rules of the grammar. Parsing consists of two parts: Lexical Analysis and

Syntax Analysis.

2.4.1 Lexical Analysis

Lexical analysis is the first stage of parsing. It is the process of taking an input string of

characters (such as the source code of a computer program) and converting it into a sequence of

tokens, which have specific meanings in the language. Example of tokens in the English

language are verbs, nouns, adjectives, etc. The Lexical Analyzer is a program that performs

lexical analysis. The input of a Lex Analyzer is some text, and the output is a stream of tokens.

For example, the following input string:

SELECT name FROM employee

will be divided into the following tokens

keyword identifier keyword identifier

 11

2.4.2 Regular Expression

The theoretical foundations for Lexical Analysis are Regular Expressions and Automata

Theory [3]. Regular Expressions are used to generate pattern of strings. Operators used in regular

expressions are:

•! Union(|) RegExpr1 | RegExpr2

•! Concatenation(•) RegExpr1•RegExpr2

•! Kleene Closure(*) RegExpr*

The expression (RegExpr*) represents zero (0) or more occurrence of the given regular

expression RegExpr.

Example: suppose LETTER = {a,b,c…,z,A,B,…, Z} and DIGIT = {0,1,2…,9}

The regular expression:

•! LETTER | DIGIT = any letter or digit

 such as a, b, A, B, 0,1….

•! LETTER•DIGIT = any letter followed by any digit

 such as a0, b1, c0….

•! LETTER* = zero or more letters

 such as ε(empty string), a, aa, aaa, aab…..

•! LETTER• (LETTER | DIGIT)* = any letter followed by zero or more letters or

 digits

 such as x, xyz, x123

 The last regular expression is used to define an identifier in some programming languages.

 12

A finite automaton (FA) is a simple machine used to recognize patterns where the input is a

string of characters from a given alphabet. A finite automaton consists of:

•! a finite of set S of N states

•! a special “start” state

•! a set of final (= accepting) states

•! a set of transitions from one state to another state (each transition is labeled with

characters of the alphabet)

When an input string allows the FA to go from the start state to a finite state, the input string

is “valid” or “accepted”. Otherwise, the input string is invalid. For example, the following FA

will accept input strings that consist of one letter:

(final state in a FA are denoted by double circles)

Figure 2.1: Finite Automaton Diagram 1

The FA in Figure 2.2 will accept input strings that starts with a letter followed by zero or more

letters or digits

letter

start

 13

(The symbol ε denotes the empty string)
Figure 2.2: Finite Automaton Diagram 2

letter

letter

start

digit

ε

 14

Chapter 3

Project Description

3.1 Introduction

The objective of the thesis project is to develop a parser for a subset of the SQL

programming language and translate input SQL SELECT commands into Relational Algebra

expressions. The SQL SELECT query that is implemented in the project consists of the

following form:

 SELECT attribute-list

 FROM relation-list

 WHERE condition

where the condition can be (1) a traditional Boolean condition similar to Boolean expressions in

procedural programming languages or (2) the SQL “attribute IN (sub-query)” clause.

The SQL parser/translator is implemented in the C-programming language. We used a

Lexical Analyzer generator program (Lex) to generate a simple Lexical Analyzer for the project.

The main focus of the project was to develop the SQL parser/translator in C. The parsing

procedure used in the project is the recursive descent algorithm [3].

3.2 The Lexical Analyzer of the project

 In the project, we used the Lex (Lexical Analyzer generator) to produce the Lexical

analyzer for the parser. The Lex Lexical Analyzer generator takes as input a file containing

 15

regular expressions (patterns) and generate a function (yylex()) that implement the finite state

automaton to recognize the patterns. For example, the regular expression “{digit}+” represents a

pattern that consists of one or more digits; this regular expression represents an integer in the

input. Each token is assigned a unique token code. For example, we assigned the token code 129

to represent an integer token. The regular expression {digit}*+\.{digit}+e+^+{digit}+ represents

a floating point number. Example of such a number is 12.5B2K. The Tables 3.1 and 3.2 contain

the definitions of the token classes and some of the token codes used in the program.

Table 3.1: Lex Definitions

Table 3.2: Token Codes

{letter}{alpha}*

128

identifier or keyword

{digit}+ 129 integer
{digit}*+\.{digit}+e+^+{digit}+ 130 floating number

{digit}+\.{digit}+ 130 fixed point number
\’+{alpha}*+\’ 131 string

“<=” 132 relation operator
“>=” 133 relation operator
“!=” 134 relation operator

digit [0-9]
letter [A-Za-z]
alpha ({digit}|{letter})

 16

When an identifier is found, we compare it against a table of keywords to check if the

identifier is a keyword of SQL. The list of SQL keywords is given in the Table 3.3. When the

identifier is equal to one of the keywords, we return the corresponding token code for the

keyword. Otherwise, the token code 128 (for identifier) is returned.

Table 3.3: SQL Keywords
(code values increments from 135)

3.3 Parsing the SELECT clause

The syntax of the first part of the SELECT command is:

 SELECT attribute-list

An attribute list is a list of attribute names that are separated by commas. For each attribute name

in the list, it can be renamed (i.e., aliased) and/or qualified with the name of a relation table.

Qualifying is prefixing an attribute name with its relation name. When different relations have an

attribute with the same name, qualifying is necessary to resolve the ambiguity. Therefore, an

attribute name in the SELECT list can be specified in 4 different ways:

"ALL", "AND", "ANY", "AS", "AVG",

"BETWEEN", "BY", "CHAR", "CHECK","CLOSE",
"COMMIT","COUNT","CREATE","DECIMAL","DELETE",
"DISTINCT","DOUBLE","DROP","EXISTS","FLOAT",

"FROM", "GO","GROUP","HAVING","IN",
"INSERT","INT","INTO","IS","LIKE",

"MAX","MIN","NOT","NULL0", "NUMERIC",
"OF","ON","OR","ORDER","PRIMARY",

"REAL","SCHEMA","SELECT","SET","SOME",
"SUM","TABLE","TO","UNION","UNIQUE",

"UPDATE","USER","VALUES","VIEW","WHERE",
"WITH"

 17

•! A: an unqualified attribute name (example: name)

•! R.A: attribute name that is qualified by its relation name (example: employee.name)

•! A L: attribute name that has been renamed (aliased) to L (example: name FirstName)

•! R.A L: qualified attribute that has been renamed (example: employee.name FirstName)

 (R represents the relation name, A represents attribute name and L stands for alias)

We store the parsed attribute names in an array of the type AttrType:

The structure AttrType constains 3 fields:

Figure 3.1: Structure of AttrType

The alias variable contains the alias of the attribute if specified, otherwise, its value is equal to

the attrName variable.

We use a simple while-loop to parse the list of attributes in the SELECT list. Inside the

while-loop, we first parse an identifier. This can the first unqualified attribute name or a relation

name in a qualified attribute name. If the next token is a “.” (period), then the identifier found is

a relation name and we need to parse the attribute name in the input. Otherwise, the identifier

found is an attribute name and we need to fill in its relation name later – when we process the

 18

FROM clause, because an unqualified attribute must belong to some relation in the FROM

relations list. Following the code to parse the attribute, we check if the next token is

(1)!, (a comma)- in this case, we repeat the loop to parse another attribute.

(2)!identifier – in this case, an attribute is renamed to the alias given by the identifier

(3)!default case: we proceed to parse the FROM clause of the SELECT command.

 We store the relation name, attribute name and alias in the SELECT list in the AttrType

array. For example, the information about the SELECT list in the following SELECT command:

 SELECT employee. ssn, sex, name L

 FROM ….

 is stored in the AttrType array as given in Table 3.4

Table 3.4: Parsing Attribute List

The relation name of the attributes sex and name are unknown and will be filled in later when the

FROM clause is processed.

3.4 Parsing the FROM clause

The syntax of the FROM clause in the SELECT command is:

 FROM relation-list

 Attribute 1 Attribute 2 Attribute 3
Attribute name SSN sex name
Alias SSN sex L
Relation name employee

 19

The grammar for relation list is a list of relation names that are separated by commas. We use an

array of structure RelaType to store the information in the FROM clause. Each relation name in

the relation list can be in one of the following two forms:

•! R: a relation name R (example: employee)

•! R B: a relation name R that has be renamed to B (example: employee E)

 (B is interpreted as the alias assigned to table R)

The structure RelaType is as follows:

Figure 3.2: Structure of RelaType

 We also use a simple while-loop to parse the list of relations in the FROM clause. The list

of relation names is stored in the RelaType array called relalist. Inside the while-loop, we first

parse an identifier and store it in the first relalist array element. Then the while loop will take

one of the following three steps based on the next token in the input:

(1)!, (a comma) - in this case, we repeat the while loop to parse another relation name

(2)!identifier – in this case, the identifier is an alias

(3)!default case: we proceed to parse the (optional) WHERE clause of the SELECT

command

For example, the information about the FROM clause in the following SELECT command:

 SELECT employee. SSN, sex, name L

 20

 FROM employee, department D

is stored in the RelaType array as given in Table 3.5

Table 3.5: Parsing Relation List

Notice that if no alias is given, the alias of the relation is equal to itself. In fact, the alias variable

will uniquely identify a relation.

3.5 Checking and filling the attribute list

After parsing the SELECT clause and FROM clause, we need to find the relation in the

relation list for each attribute in the attribute list whose relation name is empty. We do so by

searching the Meta Data. If exactly one relation in the FROM clause contains the attribute name,

the corresponding relation is filled in the attrlist field, otherwise, the parser will return an error.

However, if more than one relation in the FROM clause contains the attribute name, the name is

ambiguous and the parser will return an error.

3.6 Parsing the WHERE clause

 The SQL WHERE clause specifies the condition that tuples must satisfy to be selected. It

has many different formats:

(1)!Boolean -expression

(2)!attribute IN (SQL-query)

 Relation 1 Relation 2
Alias employee D
Relation Name employee department

 21

(3)!attribute rel-op ALL (SQL-query)

(4)!attribute rel-op ANY (SQL-query)

(5)! EXISTS (SQL -query)

(6)! IS NULL

(7)! attribute LIKE “pattern”

Format (6) and (7) are relatively easy to process and formats (2), (3), (4), and (5) are very similar.

Due to time constraints, we have restricted to parsing formats (1) and (2).

The grammar used in the project to define the tuple condition in the WHERE clause is given in

the Table 3.6.

Table 3.6: Grammar of WHERE Clause

The information of the WHERE clause is parsed and stored in a tree structure called a parse tree.

For example, the parse tree structure representing the condition

WHERE sex = ‘M’ and salary > 50000

<b-expression> ::= <b-term> [<OR> <b-term>]*

<b-term> ::= <not-factor> [AND <not-factor>]*

<not-factor> ::= [NOT] <b-factor>

<b-factor> ::= <b-variable> | <expression> <RELOP> <expression>

 | attribute IN (query)

<expression> ::= <term> [<ADD> <term>]*

<term> ::= < factor> [<MULTIPLY> <factor>]*

<factor> ::= <number> | <string constant> | <identifier> | (<b-expression>)

 |<ADD><factor>

 22

 is shown in Figure 3.3.

 Figure 3.3: Parsing Tree 1

Each node of the parse tree contains 2 fields:

 (1) type: contains an integer code that indicates the type of the node

 (e.g. 136 = AND, 172 = OR, 128 = ATTRIBUTE, 131 = STRING

 CONSTANT …., etc.)

 (2) value: contain the values used to represent information stored in the node

Depending of the value of the type variable, we must store different information in the

value variable. For instance, if type = INTEGER (constant), the variable value will contain an

integer. But if type = ATTRIBUTE, the variable value will contain a relation name and an

attribute name. The appropriate data type for the value variable is therefore a C union type. The

following is the definition of a node used in the project:

 23

Figure 3.4: Structure of Node

 We used the recursive descend technique to implement the parsing of the grammar in Table

3.6. The top level function is called BE() and parses a <b-expression>:

<b-expression> ::= <b-term> [OR<b-term>]*

A <b-expression> consists of a <b-term> (boolean term) followed by zero or more “OR <b-

term>” expressions. The function BE() returns the pointer to the root node of the parse tree. This

pointer is stored in a program variable called WHERE. If the query does not contain a WHERE

clause, the WHERE variable is set to NULL –which represents a “true” condition. Because “<b-

expression> ::= <b-term> [OR <b-term>]*”, the BE() function will first call the BT() function

that parses a <b-term> (Boolean term). The function BT() will also return a pointer to its parse

tree. BE() will save the return result of BT() in a help variable h1. Because in a <b-expression>

<b-term> can be followed by zero or more “OR<b-term>” expressions, the BE() function will

check if the next token in the input is equal to OR. If the next token is not equal to OR, BE()

will return the value in h1 and the <b-expression> has been parsed completely. Otherwise (i.e.,

 24

the next token is OR), the function BE() will call BT() again to obtain the second <b-term> (let

us call this b-term2) and constructs the following tree:

Figure 3.5: Parsing B-expression 1

The root of this tree is stored in the help variable h1. The BE() function will then repeat and

check if the next token in the input is equal to OR. If the token is not equal to OR, the BE()

function will return the parse tree in Figure 3.5. Otherwise, BE() will call BT() again (b-term3)

and constructs the following parse tree:

Figure 3.6: Parsing B-expression 2

And so on.

 25

The function BT() parses a <b-term> (boolean term) and has the same structure as BE(),

except that we check for the token AND to decide if we need to repeat because the grammar for

<b-term> is�

<b-term> ::= <not-factor> [AND <not-factor>]*

The <not-factor> element is handled by the NBF() function in the parser. The grammar rule

“<not-factor> ::= [NOT]<b-factor>” specifies the optional keyword NOT. This rule is processed

by reading a token and check against NOT. If the token is equal to NOT, we will call BF() to

parse a <b-factor> (Boolean factor). However, if the next token is not equal to NOT, then we

must return the token back into the input stream before we can call BF() (to parse the <b-factor>).

This is accomplished by using the yyless(0) function.

The next grammar rule that we must process is a Boolean factor which is processed by

the BF() function:

<b-factor> ::= <b-variable> | <expression> <relop> <expression>

 | attribute IN (query)

Since a <b-variable> and an attribute are identifiers, they can be considered as instances of

<expression>. In the parser, we implement the following modified rule for <b-factor> to simplify

the implementation:

<b-factor> ::= <expression> <relop> <expression> | attribute IN (query)

According to the modified rule, the BF() function will first parse an <expression> by calling the

function E(). We save the result from E() in a help variable h1. Then we check if the next token

is a <relop> (relational operator: <, <=, >, >=, = , !=) or the keyword IN. The processing

proceeds as follows:

 26

(1)!If next token is a <relop>, we call E() again and obtain the second <expression> and

return the following parse tree:

 Example !

Figure 3.7: Parsing B-factor 1

(2)!If next token is the keyword IN, we recursively invoke the SQL parser function

(SelectObject()) an return the following parse tree:

Figure 3.8: Parsing B-factor 2

(3)!Otherwise, we return the <expression> as a Boolean expression. This modified grammar

rule allows us to use the recursive descent method to process a Boolean factor. (In fact,

this rule is used in the C- programming language because an expression in C is also a

Boolean expression).

 27

The remaining grammar rules define the syntax of arithmetic expressions. The function

E() in the parser processes the grammar rule:

 <expression> ::= <term> [<ADD><term>]*

<ADD> represents the addition operation + or -.

 The function E() returns a tree representing arithmetic operations involving additions and

subtractions and its structure is similar to the BE() function. BE() first call the function T() that

parses a <term>. The function T() will return a pointer to its parse tree and E() will save the

return value in a help variable h1.

Because a <term> can be followed by one or more “<ADD><term>” expressions:

 <expr> ::= <term>[<ADD><term>]*

E() will check if the next token in the input is an <ADD> operator (+ or -). If the next token is

not equal to <ADD>, E() will return the value in variable h1 and its execution is completed.

Otherwise (i.e, the next token is an <ADD> operation), the function E() will call T() again and

obtain the second <term> (term2) and construct the following parse tree:

 Figure 3.9: Parsing Expression

Since “[<ADD><term>]” can repeat just like a <b-expression>, we handle the repetition in the

same way as in the BE() function.

 +/-

term term

 28

 The function T() processes the grammar rule “<term> ::=

<factor>[<MULTIPLY><factor>]*” and has the same structure as E(). The differences are: (1)

T() looks for multiplication (*) or a division operation (/) and (2) T() will call F() to process a

<factor>.

The function F() recognizes the grammar rule:

 <factor> ::= <number> | <string constant> | <identifier> | (<b-expression>)
 | <ADD> <factor>

F() handles the most basic elements of the parse tree. The first case is a number which is stored

as the value in a node. The second case is a string constant (e.g. ‘abc’). The third case is an

identifier that represents an attribute (e.g. salary, SSN, etc). When the next token is ‘(’, the

<factor> is a bracketed expression (e.g.:(a+b)) and we call the function E() to parse the

expression. Finally, if the next token is an <ADD> (i.e. ‘+’ or ‘-’), we create a unary operator

node for the <ADD> and repeat to parse <factor> as its operand. For example, the expression

“-a+-b” is represented as:

Figure 3.10: Parsing Expression Example

 29

3.7 Converting to Relational Algebra

After parsing a SQL query, we use the information in the parse tree to construct a

corresponding Relational Algebra expression tree. The Relation Algebra query has the following

structure:

44444444444444+,-,,/,,c(!d4 4462444X446344X446J44)

and can be viewed as a tree structure [2]:

Figure 3.11: Relational Algebra Tree

Figure 3.12: Structure of Relational Algebra Node

 30

We use a different node structure to represent a Relational Algebra tree. The structure of

a Relational Algebra node is given in Figure 3.11. The variable type indicates the type of a node,

which represents the Relational Algebra operation (e.g.: Projection +, selection ! or Cartesian

Product X). Depending on the value of the type variable, different variables in the variable value

will represent the operands for the Relational Algebra operation. The projection operation(+)

uses the left variable to store the input operand and the attrlist to store the list of projection

attributes. The selection operation (!) also uses the left variable to store its input relation but

uses the where variable to store the selection condition (a Boolean expression). This Boolean

expression is the same as the one returned by the SQL parser for the WHERE clause. The

Cartesian Product (X) has two input relations which are stored in the variables left and right.

 31

Chapter 4

Testing and Evaluation

4.1 Sample Outputs

In this Chapter, we present the results of a number of test inputs (queries) and their

resulting SQL parse tress and the corresponding Relational Algebra expression trees. The first

example is a SQL query without any Boolean condition:

Example (1):

 SELECT SSN, salary
 FROM employee

 query object Relational Algebra tree

Figure 4.1: Output 1

The query object contains the parse information. The content of the variables in the query object
is as follows:

 attribute list
 (array)

 relation list
 (array)

attr 1 Name Alias Relation
attr 2

rel 1 Name Alias
rel 2

 [SSN, SSN, employee]
 [salary, salary, employee]

 [employee, employee]

 where: NULL

PI[SSN][dname]

 SIGMA NULL

 employee

 32

 WHERE = NULL (root of the boolean expression)

The WHERE tree in this example is empty. The Relational Algebra tree in Figure 4.1 consists of

the node +(fg), !4(hgijk), and X and is printed from left to right (i.e.: rotated view). The

Relational Algebra tree shown in the figure is the following tree:

+ hhl [n,o,pq]

444σtuvv4
4
4
4
444employee4

Figure 4.2: Relational Algebra Tree

The second example shows the parse result of a SELECT query with a simple Boolean condition.

Example (2):

SELECT SSN ID, dname N
FROM department, employee
where dno = dnumber

 query object Relational Algebra tree

 Figure 4.3 Output 2

 [ssn, ID, employee]
 [dname, N, department]

 [department, department]
 [employee, employee]

 employee.dno
 where: =
 department.dnumber

 PI[SSN][dname]

 employee. dno
 SIGMA =
 department. dnumber

 department
 X
 employee

 33

The WHERE expression in the SQL parse-tree is also output from left to right and represent

the following boolean expression:

 =

employee. dno department. dnumber

In example 3, we show the parse result of a compound condition.

Example (3):

SELECT SSN ID, dname dpt
FROM department,employee
WHER dno = dnumber
 AND employee.sex = 'female'
 AND department !='Research'

query object

 [SSN, ID, employee]
 [dname, dpt, department]

 [department, department]
 [employee, employee]

 employee.dno
 =
 department.dnumber
 AND
 employee. Sex
 =
 ‘female’
 where: AND
 department.dname
 !=
 ‘Research’

 34

Relational Algebra tree

Figure 4.4: Output 3

Finally, example 4 shows the parse tree of a nested query output by the program.

Example (4):
SELECT SSN, dname
FROM department, employee
WHER dname = dno
 AND SSN IN (SELECT SSN
 FROM employee
 WHERE SSN > 729740169)

 PI[SSN][dname]

 employee.dno
 =
 department.dnumber
 AND
 employee. sex
 =
 ‘female’
 SIGMA = AND
 department.dname
 !=
 ‘Research’

 department
 X
 employee

 35

query object

 Figure 4.5: Output 4

The Relational Algebra tree for this example is not constructed because this part was not

implemented due to time constraints. We will discuss its implementation as part of the

improvements in Chapter 5.

 [SSN, SSN, employee]
 [dname, dname, department]

 [department, department]
 [employee, employee]

 department.dname
 =
 employee.dno
 where: AND
 employee.SSN

 IN
 inner query object
 [ssn , ssn , employee]

 [employee, employee]

 employee.SSN
 where: >
 728740169

 36

4.2 Limitations

I have tested the program of translating SQL queries using the instances that represent the

variation of the SQL query formats. The number of the instances that I input to test the program

was 25. I have used three relational databases. The maximum number of attributes in the relation

model is ten.

 The program handles the following errors: 1) The attribute and the relation are not found

in the relations. After getting the tokens from the SELECT command, the program then checks

the names of the relation and the attribute against the metadata. If the name is not found, then the

program will identify as an error and ask for the input of another query. Otherwise, it will

continue to parse the WHERE clause. 2) The Where clause is not construct logically. For

example, the AND operator requires two operands. The program will return NULL and no

Boolean expression is parsed.

The project only covers part of the expressive power of SQL. It handles SQL queries in

the format of “SELECT <attribute_list> FROM <relation_list> [WHERE <boolean_condition>

]” or “SELECT <attribute_list> FROM <relation_list>[WHERE attribute IN (SQL-query)]”.

The WHERE clause can also be in the formats mentioned in section 3.6. In addition, the SQL

query can add the clauses “GROUP BY <gb_attr> [HAVING <hav_condition>]”. GROUP BY

clause groups a set of rows by values of columns and HAVING clause restricts the groups to

satisfy certain conditions.

 37

Chapter 5

Project Evaluation and Future Work

5.1 Project Goal and Assessment

The goal of the thesis project was to gain deeper understanding in Database Systems. As

part of the honors requirement, I am taking the graduate Advanced Database Systems (CS 554)

course. However, the course does not discuss the query translation process in detail. The thesis

project aims to supplement this knowledge.

In this project, I have learned how “sentences” are represented by grammar rules and

built a parser to recognize a subset of the grammar rules of SQL. In the project, I became more

aware of the fact that solving problems effectively requires the choice of the appropriate data

structures to store the necessary information. For instance, I learned that a parse tree is the most

effective way to represent expressions.

Without having taken a prior course in Compilers, I have now discovered the importance

of parsing techniques while learning to develop the SQL parser to recognize a simplified context-

free SQL grammar subset. I have learned the recursive descent parsing technique that uses the

idea of a look-ahead token to decide what to do next. I have also learned how to take into

account the possible derivation rules.

I have improved my ability to take into account all the possible situations when trying to

solve a problem. For instance, when I designed a structure to represent a node in the parse tree, I

 38

learned to distinguish the situations when it is an identifier, a number, a string constant, and an

operation and how to store their corresponding value/operands.

5.2 Improvement

Due to time constraints, only a subset of the SQL grammar was implemented. The

formats of WHERE that were omitted are (mentioned in section 3.6):

(1)!attribute rel-op ALL (SQL-query)

(2)!attribute rel-op ANY (SQL-query)

(3)! EXISTS (SQL -query)

(4)! IS NULL

(5)! attribute LIKE “pattern”

All these clauses are Boolean factors and the code to process these clauses must be added in the

BF() function.

For clauses (1) and (2), the parsing algorithm is similar to the format “attribute IN (SQL-

query)”. To parse these formats, we should detect the token representing a relation operator

followed by the token ALL or ANY. Then, we parse the sub-query just like how we handle the

“IN(SQL-query)” clause. Clause (3) requires identifying the token EXISTS and parsing a sub-

query. Clause (4) and (5) are relatively easy: we only need to detect the tokens of IS and NULL

or an identifier (attribute name), the token LIKE and a string constant (pattern).

 Another improvement that we can make to the project is in the processing of the sub-query

parsing. Currently, we can only handle uncorrelated sub-queries, i.e.: attribute names used in the

 39

inner query must belong to relations in the inner query. In general, attribute in the sub-query can

belong to relations in the inner or the outer query. For example:

 SELECT name

 FROM employee E

 WHERE salary >= ALL (SELECT salary

 FROM employee

 WHERE dno = E.dno)

The attribute E.dno in the inner query belongs to the relation employee E in the outer query.

Furthermore, we have limited the query nesting to two levels. In general, SQL query can have

multiple nesting levels. Processing such a multi-level nested query will require each inner query

object to refer to its parent query object. For example, the query is stored as:

Figure 5.1: Query Object that Contains a Correlated Sub-query

To identify the relation for an attribute, we must traverse the query from inside out using

the parent pointers. For example, the attribute E.dno is not found in the inner query, so we will

use the parent pointer to locate the parent query object. When we search in the outer query object,

we will find the relation employee E where the attribute E.dno belongs.

 40

 In the project, we have implemented parsing of sub-query constructs in the form

“attribute IN (SQL-query)”. Due to time constraints, the translation to the Relational Algebra

tree was not implemented. The translation process is discussed in the CS554 (Advanced

Database System) course. We will first build a Relational Algebra tree in Figure 5.2 which uses

a <R-cond> expression.

 Figure 5.2: Relational Algebra Tree Manipulation 1

The <R-cond> is an auxiliary form to help us convert an SQL-parse tree into a Relational

Algebra tree. The tree in Figure 5.2 is then transformed (rewritten) into a valid Relational

Algebra tree using a tree transformation operation. Figure 5.4 illustrates the transformation to

obtain a valid Relational Algebra tree.

sub-query

 41

Figure 5.3: Relational Algebra Tree Manipulation 2

Considering the following simple SQL nested query:

 SELECT name

 FROM employee

 WHERE SSN IN (SELECT ESSN

 FROM dependent)

The SQL-parser of the project will construct the SQL parse tree in Figure 5.4

 42

Figure 5.4: Query Object that Contains attribute IN (sub-query)

We first construct the auxiliary Relational Algebra tree with an <R-cond> in Figure 5.5.

Figure 5.5: Relational Algebra Auxiliary Tree Example

 43

This auxiliary tree can be constructed from the SQL-parse tree in a straight forward manner.

After applying the tree transformation, we would obtain the Relational Algebra tree in Figure 5.6.

Figure 5.6: Relational Algebra Tree Manipulation Example

Bibliography

[1] Elmasri, Ramez, and Shamkant B. Navathe. "Chapter 3 The Relational Data

 Model and Relational Database Constraints." Fundamentals of Database

 Systems. Boston: Pearson, 2010. N. pag. Print.

[2] Garcia-Molina, Hector, Jeffrey D. Ullman, and Jennifer Widom. Database

 Systems: The Complete Book. Harlow, Essex: Pearson, 2008. Print.

[3] Appel, Andrew W., and Maia Ginsburg. Modern Compiler Implementation in

 C. Cambridge: Cambridge UP, 1998. Print.

