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Abstract

Numerical Solution of the k-Eigenvalue Problem
By Steven Paul Hamilton

Obtaining solutions to the k-eigenvalue form of the radiation transport equation is an
important topic in the design and analysis of nuclear reactors. Although this has been an
area of active interest in the nuclear engineering community for several decades, to date no
truly satisfactory solution strategies exist. In general, existing techniques are either slow
to converge for difficult problems or suffer from stability and robustness issues that can
cause solvers to diverge for some problems. This work provides a comparison between a
variety of methods and introduces a new strategy based on the Davidson method that has
been used in other fields for many years but never for this problem. The Davidson method
offers an alternative to the nested iteration structure inherent to standard approaches and
allows expensive linear solvers to be replaced by a potentially cheap preconditioner. To
fill the role of this preconditioner, a strategy based on a multigrid treatment of the energy
variable is developed. Numerical experiments using the 2-D NEWT transport package are
presented, demonstrating the effectiveness of the proposed strategy.
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Chapter 1

Introduction

The numerical solution of the movement of radiation through matter is a

topic of great interest in a number of fields. In the medical community

modeling radiation transport is used to design treatment plans for radiation

cancer therapy as well as assisting in imaging processes, in geophysics it is

used to reconstruct subterranean material compositions from sensor data for

applications such as natural gas and oil well logging, and in astrophysics it

is possible to simulate the events surrounding the explosion of supernovae.

However, in this study we will be interested in the use of radiation trans-

port as it pertains to the distribution of neutrons in the core of a nuclear

reactor. In particular we are interested in solving the k-eigenvalue problem.

The solution to this equation describes how far the system is from achiev-

ing criticality – the state where the absorption and escape of neutrons are

perfectly balanced by the production of new neutrons through fission events.

This task is cast mathematically as an eigenvalue problem in which the dom-

inant eigenvalue describes the amount of multiplication in the system and

the corresponding eigenvector provides the distribution of neutrons not only

according to their spatial location but also according to their energy and

direction of travel. Detailed knowledge of this distribution is necessary in
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order to design and operate reactors in a safe and efficient manner.

Although significant effort has been put into the solution of this problem

over the past several decades, the desire to continue to improve existing

designs has pushed current methods beyond their practical limits. A new

Department of Energy project, the Consortium for the Advanced Simula-

tion of Light Water Reactors (CASL) [85], has taken on the task of creating

a ‘virtual reactor,’ a computational toolkit with the aim of improving our

understanding of the interactions taking place within an operating nuclear

reactor with a level of detail that has never before been achievable. This

project has the potential to help in resolving key issues that have proven

to be limiting factors in achieving greater performance from commercial re-

actors. Increasing the understanding of such phenomena could lead to im-

provements in the form of increasing the power output of reactors, extending

the operating life of existing reactors, and increasing the level of fuel burnup

that is feasible, thereby reducing the amount of spent nuclear fuel that must

be stored. These techniques will also prove invaluable in the design of the

next generation of nuclear reactors.

There are two classes of methods available for the solution of problems

in radiation transport. In their simplest form, Monte Carlo methods deter-

mine desired quantities by modeling the paths of individual particles and

averaging the impact of very large numbers of such histories. The selection

of particular events within a given history is determined by sampling from

known probability distributions through the use of random number gener-

ators. Due to their ability to avoid discretizing the problem with respect

to problem variables (space, angle, energy), Monte Carlo methods avoid the

introduction of many errors and are thus frequently highly touted for their

accuracy. The downside of such methods, however, lies in the statistical

nature of the process, frequently requiring enormous numbers of particle his-

tories to obtain sufficiently accurate results. It is frequently advantageous to
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use Monte Carlo methods if only global quantities (such as a single eigen-

value) are required; when detailed local information is required the cost of

achieving acceptable statistical results tend to be prohibitive. Because ac-

cess to such local information is frequently desired, Monte Carlo methods are

less commonly used in large scale applications and we turn our attention to

deterministic methods, the topic of this dissertation. Deterministic methods

approach the problem by directly discretizing the problem with respect to

each element of the phase space to obtain a system of equations that are then

solved using some numerical algorithm.

In this study, the primary goals are to provide an overview of the meth-

ods frequently used in production-level radiation transport software for the

solution of the k-eigenvalue problem and offer potential alternatives to such

techniques with the aim of improving the quality of available solvers. It

should be noted that the task of improving solvers is not limited to merely

reducing the computational effort required to solve a problem (although this

is certainly a desirable feature), but also increasing the level of reliability

and robustness. Indeed, there are a number of methods available that ex-

hibit superb performance in certain problem regimes but display significant

degradation (or even fail) for other types of problems. Thus, methods that

are competitive with the best available solvers but maintain this performance

over a larger range of problems would be quite promising. Furthermore, the

development of solvers that require few, if any, problem-dependent parameter

selections would allow such methods to reach a broader user base, including

those that have a limited understanding of the underlying mechanics of a

particular solver. By bringing ideas and strategies from the mathematical

community that have been generally unknown to the transport community to

approach this problem, we hope to create a step in the direction of developing

such solution methods.

The remainder of this dissertation is organized as follows. In Chapter 2
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we introduce the radiation transport problem with particular focus on the k-

eigenvalue problem and discuss techniques for discretization as well as certain

numerical properties of the resulting linear systems. In Chapter 3 an overview

of eigensolvers amenable to finding particular eigenvalue/eigenvector pairs of

very large matrices is provided. Chapter 4 offers a glimpse into the state

of the art in computational radiation transport, including a discussion of

both linear and eigenvalue solvers. Chapter 5 provides the development of

a novel preconditioner for the transport equation that revolves around a

multigrid treatment of the energy variable. Numerical results for several

representative test problems are discussed in Chapter 6 with a particular

focus on describing the performance of the newly developed preconditioner

combined both with eigensolvers traditionally employed for transport as well

as some not previously explored. Concluding remarks and suggestions for

areas of continued development are offered in Chapter 7.
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Chapter 2

Neutron Transport Equation

2.1 Continuous

For a position r, direction vector Ω̂, and energy E, the source driven Boltz-

mann neutron transport equation in a multiplying medium can be written

as

Ω̂ · ∇ψ + σψ =

∫

∞

0

dE ′

∫

4π

dΩ̂′ σsψ + χ

∫

∞

0

dE ′

∫

4π

dΩ̂′ νσfψ + q (2.1)

where ψ = ψ(r, Ω̂, E) is the angular flux, σ = σ(r, E) is the total cross

section, σs = σs(r, Ω̂
′ → Ω̂, E ′ → E) is the scattering cross section, χ =

χ(r, E) is the energy distribution of fission neutrons, ν = ν(r, E) is the

average neutron production per fission, σf = σf (r, E) is the fission cross

section and q = q(r, Ω̂, E) is an external source term.

The left side of (2.1) describes neutrons being removed from the current

element of phase space through streaming and collision interactions. The

right side describes neutrons being introduced into the current element of

phase space through scattering from every energy and angle, fission events

occurring at all energies and angles, and through the external source.
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When operating a nuclear reactor, we would like to have the losses of neu-

trons through absorption and leakage be perfectly offset by the production

of new neutrons through fission events and thus no external source would be

necessary. However, it is very difficult to achieve an exact balance in prac-

tice. To enforce a numerical balance between the production and removal

of neutrons, we divide the fission term by a parameter k, resulting in the

k-eigenvalue problem

Ω̂ · ∇ψ + σψ =

∫

∞

0

dE ′

∫

4π

dΩ̂′ σsψ +
1

k
χ(E)

∫

∞

0

dE ′

∫

4π

dΩ̂′σfψ (2.2)

after removal of the source term. Thus, when k = 1 an exact balance is

attained and the system will maintain a steady state distribution. When

k < 1 the removal terms exceed production and the neutron population

will decrease in time and the system is termed subcritical. When k > 1

production exceeds removal and the neutron population will increase in time,

resulting in a supercritical system. Numerically, k is an eigenvalue and ψ is

its corresponding eigenvector. In particular, we are interested in estimating

the largest value of k (and the corresponding ψ) such that (2.2) is satisfied,

as this will indicate the behavior of the system after a long time.

2.1.1 Boundary Conditions

In order for (2.2) to be well-posed, it is necessary to place conditions on

the angular flux on the external boundary of the problem, denoted by Γ.

The simplest such condition is the vacuum boundary, which specifies that no

neutrons enter the problem domain from the outside, i.e.

ψ(r, Ω̂, E) = 0, r ∈ Γ, Ω̂ · n̂ < 0 (2.3)

where n̂ is the outward unit normal vector on Γ. Vacuum boundary con-

ditions are thus homogeneous Dirichlet conditions. Prescribed source (non-

homogeneous Dirichlet) conditions frequently appear in the solution of the
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source driven problem, but do not appear in the k-eigenvalue problem. Vac-

uum boundaries are typically used when the computational boundary repre-

sents the exterior of the physical system.

Another commonly used boundary condition is the reflecting boundary

ψ(r, Ω̂, E) = ψ(r, Ω̂′, E), r ∈ Γ, Ω̂ · n̂ < 0 (2.4)

where Ω̂′ = Ω̂ − 2(Ω̂ · n̂)n̂ is the angle of specular reflection. Reflecting

boundaries are frequently used to reduce a large problem to one of smaller size

by exploiting axes of symmetry in the problem. Furthermore, it is common to

impose reflecting boundaries on opposing sides to model an infinite array of

a particular object (e.g. a single fuel pin or fuel assembly). Other boundary

conditions such as white or periodic boundaries are occasionally used but

will not be described here since they are less common and do not present any

fundamental difficulty not seen in the vacuum or reflecting boundaries.

2.1.2 Scattering Integral

At this point in time a few comments about the scattering integral appearing

in (2.2) are in order. The scattering cross section σs = σs(r, Ω̂
′ → Ω̂, E ′ → E)

is a value that must be determined experimentally. Clearly it is not possible

to obtain the probability of a neutron scattering from every possible direction

on the unit sphere to every other direction, so some simplification must be

made. First we note that the scattering cross section does not depend on the

incident and exiting angles themselves, but merely on the change in angle

during a collision. We can thus write

σs(r, Ω̂
′ → Ω̂, E ′ → E) = σs(r, µ0, E

′ → E), (2.5)

where µ0 = Ω̂′ · Ω̂ is the cosine of the scattering angle. It is then stan-

dard practice to expand the angular dependence of this quantity in terms of
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Legendre polynomials so that

σs(r, µ0, E
′ → E) =

∞
∑

ℓ=0

σs,ℓ(r, E
′ → E)Pℓ(µ0), (2.6)

where Pℓ is the Legendre polynomial of degree ℓ and σs,ℓ is the ℓth angular

moment of the scattering cross section. These angular moments are typically

tabulated in large data libraries for use in computer codes. Obviously only

a finite number of moments can be used and it usually suffices to include

only a small number of terms (the commonly used ENDF data sets contain

scattering moments up to degree 5 [1]).

With the expression in (2.6), we can now write the scattering integral (sup-

pressing the dependence on the spatial location r) as
∫

∞

0

dE ′

∫

4π

dΩ̂′ σs(Ω̂
′ → Ω̂, E ′ → E)ψ(Ω̂′, E ′) (2.7)

=

∫

∞

0

dE ′

∫

4π

dΩ̂′

NM
∑

l=0

σs,ℓ(E
′ → E)Pℓ(Ω̂

′ · Ω̂)ψ(Ω̂′, E ′)

=

∫

∞

0

dE ′

NM
∑

l=0

σs,ℓ(E
′ → E)

∫

4π

dΩ̂′ Pℓ(Ω̂
′ · Ω̂)ψ(Ω̂′, E ′),

where NM is the order of the scattering expansion. The addition theorem

for Legendre polynomials states that

Pℓ(Ω̂
′ · Ω̂) =

1

2ℓ+ 1

ℓ
∑

m=−ℓ

Y ∗

ℓ,m(Ω̂
′)Yℓ,m(Ω̂), (2.8)

where Yℓ,m is the spherical harmonic of degree ℓ and order m (because the

quantities of interest are real–valued, it is standard to use the real spheri-

cal harmonics). Using the property Yℓ,−m(Ω̂) = (−1)mYℓ,m(Ω̂), this can be

rewritten as

Pℓ(Ω̂
′ · Ω̂) =

1

2ℓ+ 1

ℓ
∑

m=0

(2− δm,0)Y
∗

ℓ,m(Ω̂
′)Yℓ,m(Ω̂), (2.9)
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where δi,j is the Kronecker delta function. With this representation, the last

integral in (2.7) becomes

∫

4π

dΩ̂′ Pℓ(Ω̂
′ · Ω̂)ψ(Ω̂′, E ′) (2.10)

=

∫

4π

dΩ̂′
1

2ℓ+ 1

ℓ
∑

m=0

(2− δm,0)Y
∗

ℓ,m(Ω̂
′)Yℓ,m(Ω̂)ψ(Ω̂

′, E ′)

=
1

2ℓ+ 1

ℓ
∑

m=0

(2− δm,0)Yℓ,m(Ω̂)

∫

4π

dΩ̂′Y ∗

ℓ,m(Ω̂
′)ψ(Ω̂′, E ′)

=
1

2ℓ+ 1

ℓ
∑

m=0

(2− δm,0)Yℓ,m(Ω̂)φℓ,m(E
′),

where φℓ,m(E
′) ≡

∫

4π
dΩ̂′Y ∗

ℓ,m(Ω̂
′)ψ(Ω̂′, E ′) is the spherical harmonic coeffi-

cent of the angular flux (we will frequently refer to this as an angular flux

moment or simply a flux moment). Now (2.7) can be fully written as

∫

∞

0

dE ′

NM
∑

l=0

σs,ℓ(E
′ → E)

∫

4π

dΩ̂′ Pℓ(Ω̂
′ · Ω̂)ψ(Ω̂′, E ′) (2.11)

=

∫

∞

0

dE ′

NM
∑

l=0

σs,ℓ(E
′ → E)

2ℓ+ 1

ℓ
∑

m=0

(2− δm,0)Yℓ,m(Ω̂)φℓ,m(E
′).

2.2 Discretizations

The transport equation of (2.1) or (2.2) is a continuous function of space,

angle, and energy. In order to obtain a system of equations amenable to

solution on a computer, we must discretize this problem with respect to

each of these independent variables. Although there are a large variety of

techniques available in the literature for discretizing each of these quantities,

to simplify the subsequent discussion we will only introduce some of the more

commonly used methods here.
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2.2.1 Energy

By far the most prevalent discretization of the energy variable in the trans-

port equation is the multigroup method. Suppose that the highest energy

acheivable in a particular environment is given by Emax. Then we can di-

vide the interval [0, Emax] into G subintervals (or groups) [Eg, Eg−1), where

EG = 0 and E0 = Emax (it is common convention that the smallest indexed

groups represent the highest energies) and thus

Ω̂ · ∇ψ + σψ =
G
∑

g′=1

∫ Eg′−1

E′

g

dE ′

∫

4π

dΩ̂′ σsψ

+
1

k
χ(E)

G
∑

g′=1

∫ Eg′−1

E′

g

dE ′

∫

4π

dΩ̂′νσfψ. (2.12)

Instead of the continuous energy ψ, we are now interested in finding the group

averaged angular flux ψg =
∫ Eg−1

Eg
dE ψ(E) for each energy group. It would

be desirable to define group total cross sections σg such that the interaction

rate within each energy group for the multigroup quantities is the same as

the original continuous formulation, i.e.

σgψg =

∫ Eg−1

Eg

dE σ(E)ψ(E). (2.13)

This condition is trivially satisfied if we select

σg =

∫ Eg−1

Eg
dE σ(E)ψ(E)

ψg

, (2.14)

however since ψ is an unknown quantity it is common practice to replace ψ

in (2.14) with an approximate energy spectrum f(E), giving

σg =

∫ Eg−1

Eg
dE σ(E)f(E)

∫ Eg−1

Eg
dE f(E)

. (2.15)
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The weighting function f is usually selected by performing a 0-D or 1-D cal-

culation on a simplified geometry with a very fine energy structure (typically

greater than 10,000 energy points). A similar process aiming to preserve

reaction rates for scattering and fission events leads to the definition of the

multigroup scattering and fission cross sections as

σs,g′→g =

∫ Eg′−1

Eg′
dE ′

∫ Eg−1

Eg
dE σs(E

′ → E)f(E ′)
∫ Eg′−1

Eg′
dE f(E)

(2.16)

and (νσf )g =

∫ Eg−1

Eg
dE ν(E)σf (E)f(E)
∫ Eg−1

Eg
dE f(E)

, (2.17)

respectively (note that to preserve the fission production rate it is necessary

to include ν inside the integral and thus νσf is computed as a single quantity).

If we further define

χg =

∫ Eg−1

Eg

dE χ(E), (2.18)

then integration of (2.12) from Eg to Eg−1 and substituting the appropriate

multigroup quantities yields the multigroup transport equation

Ω̂ ·∇ψg +σgψg =
G
∑

g′=1

∫

4π

dΩ̂′ σs,g′→gψg′ +
1

k
χg

G
∑

g′=1

∫

4π

dΩ̂′ (νσf )g′ψg′ . (2.19)

2.2.2 Angle

One of the oldest and still most commonly used methods for discretizing the

angular variable in the transport equation is the discrete ordinates (or SN)

method [22]. Supporting the ubiquity of the discrete ordinates approach,

Lewis and Miller [72] dedicate two full chapters to its development while

providing only cursory treatment of other angular discretizations. The dis-

crete ordinates method is a collocation method: (2.1) or (2.2) is enforced

at only a finite number of discrete angles which we denote by {Ω̂n}
N
n=1 and
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we write ψn = ψ(Ω̂n). The discrete ordinates equations for the fixed source

problem can be written as

Ω̂n · ∇ψn + σψn = q̃n, 1 ≤ n ≤ N, (2.20)

where the right hand size contains both the original source term evaluated

at the discrete ordinate directions and the scattering contribution of (2.11):

q̃n =

∫

∞

0

dE ′

NM
∑

l=0

σs,ℓ(E
′ → E)

2ℓ+ 1

ℓ
∑

m=0

(2− δm,0)Yℓ,m(Ω̂n)φℓ,m(E
′) + qn, (2.21)

where the integral defining φℓ,m must now be approximated by a quadrature

formula, i.e.

φℓ,m =

∫

4π

dΩ̂Y ∗

ℓ,m(Ω̂)ψ(Ω̂) ≈
N
∑

n=1

wnY
∗

ℓ,m(Ω̂n)ψn. (2.22)

The selection of the discrete ordinates Ω̂n and the corresponding weights

wn (referred to as a quadrature set) has been the subject of much study. It is

usually desirable to have the set of quadrature angles be symmetric with re-

spect to reflections and rotations of 90◦ with respect to the coordinate planes

(in the case of hexagonal geometries, invariance with respect to 60◦ rotations

may be more appropriate). The use of these so-called level symmetric quadra-

tures is especially vital when employing the reflecting boundary conditions

described in Section 2.1.1, as it guarantees that the angle of reflection on a

Cartesian boundary will also be contained in the quadrature set. An even

number of angles is invariably used because this avoids issues in applying

boundary conditions for angles parallel to problem boundaries [113]. The

remaining degrees of freedom in the selection of the discrete ordinates and

their weights are typically used to maximize the accuracy of the quadrature

set (usually accomplished by having the set correctly integrate the maximum

number of spherical harmonics for a given order).
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2.2.3 Space

Unlike the energy and angular treatment where a single method has largely

proved to be the most common, a large variety of spatial discretizations have

been introduced to the transport literature. Because the discussions in the

remainder of this work are relatively independent of the spatial discretization

and so as not to place preference on a single method, we elect to only briefly

mention some of the more commonly used approaches and point the reader

to the relevant literature for more detailed treatment.

One of the earliest and still most prevalent is a finite difference approach

frequently referred to as the diamond difference approximation [72, 48]. The

limitation of the finite difference method to structured meshes and a de-

sire for increased accuracy has led to the popularity of finite element dis-

cretizations and in particular discontinuous Galerkin methods [96, 61, 123].

Transport solvers based on the method of characteristics [21] have also found

much favor for their ease in handling complicated geometries, particularly

with regards to nuclear reactor analysis [52, 58, 111]. In addition, the slice

balance approach (or short characteristics method), a variant of the subcell

balance methods [4], has gained significant attention in the nuclear reactor

community [39, 49, 30, 54]. Although we do not discuss them in this work,

formulations of the transport equation that are self-adjoint (at least for the

monoenergetic problem) are sometimes preferred [103, 25] and a description

of possible spatial discretizations for such formulations is given in [79].

It is also worth mentioning that many spatial discretizations suffer from a

failure to maintain positivity of the computed solution when the spatial mesh

is not sufficiently refined [69]. Instabilities in solution procedures (in partic-

ular nonlinear acceleration techniques) can arise from such negativities, so

strategies have been developed to reduce or eliminate them. Such techniques

typically result in nonlinear discretizations such as the nonlinear character-

istics [119], exponential discontinuous [120], or fixup based strategies [53].
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2.2.4 Alternate Discretizations

Although the multigroup, discrete-ordinates equations have been largely fa-

vored within the transport community, we find it necessary to briefly mention

a few of the alternatives. The leading competitor to the discrete-ordinates

angular discretization is the PN method, based on a spherical harmonics

expansion of the angular variable. This approach, however, has proved prob-

lematic in practice as high angular orders are often required for problems

with significant anisotropy and solutions tend to be plagued with Gibbs-type

oscillations in the vicinity of material discontinuities and problem boundaries

[72]. Where the PN approach has found favor, however, is in connection with

second order forms of the transport equations such as the even-parity equa-

tions [36] and the self-adjoint angular flux equations [81]. This approach has

been the basis for the EVENT [37] and PARAFISH [117] transport codes

(among others). Additional angular discretizations that have been proposed

include finite element approaches [32] and wavelet expansions [20]. Simul-

taneous treatment of both the spatial and angular discretization with finite

elements (known as phase-space finite elements [74, 78]) has also appeared

in the literature.

While every production-level deterministic transport solver of which we are

aware is based on the multigroup energy treatment, a few studies have inves-

tigated the use of basis functions other than the piecewise-constant approach

in the multigroup method. The use of wavelets as a basis was investigated

in [130] for the non-smooth resonance energy region. In [40], an orthogonal

polynomial expansion was presented as another viable alternative.
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2.3 Discrete Formulation

In this section we fix a notation for the matrices appearing in the discrete

transport equation. We try to remain as consistent as possible with estab-

lished convention in the transport literature. We represent the discretized

streaming and collision operator by L. The scattering integral of (2.11) is

represented with three matrices: D represents the computation of spherical

harmonic moments from an angular flux, S contains the scattering cross sec-

tion data, and M represents the calculation of a discrete angular flux from a

set of flux moments. The fission integral is treated in a manner identical to

scattering except the matrix of fission data F replaces S.

2.3.1 Linear System

Equation (2.1) can now be written as

Lψ =MSDψ +MFDψ + q, (2.23)

where ψ and q now represent discrete approximations to the appropriate

continuous quantities. This represents a linear system of equations (usually

referred to as a fixed-source problem) to be solved for the vector ψ. Fre-

quently in these problems the fission term will be dropped, either because

fission is not being accounted for or because the fission data is simply added

to the scattering data to produce effective scattering cross sections, allowing

the equation to be written in a more standard matrix form as

(L−MSD)ψ = q. (2.24)

Multiplying this equation through by DL−1 and defining φ = Dψ produces

the integral form of the transport equation

(I −DL−1MS)φ = DL−1q. (2.25)
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If the angular flux is desired, it can be recovered from the solution to (2.25)

by the relationship ψ = L−1MSφ+q. Because the combination of operators

DL−1M commonly appear together (and in fact this combination frequently

appears as a single computational routine in transport codes), some sources

(e.g. [41]) designate the combination by a single operator T so that (2.25)

becomes

(I − TS)φ = DL−1q. (2.26)

It is frequently convenient to write the fixed-source transport equation in

the equivalent block form

[

L MS

−D I

][

ψ

φ

]

=

[

q

0

]

. (2.27)

It is easy to see that (2.24) and (2.25) are simply the Schur complements of

this system in the (1, 1) and (2, 2) blocks, respectively. Clearly this formu-

lation of the problem would never be used for a numerical implementation

as it is even larger than the formulation involving the angular flux, but it is

nonetheless useful from a theoretical standpoint and may be useful in deriv-

ing algorithms and alternate formulations of the problem.

2.3.2 k-Eigenvalue Problem

Using the same notation, the discretized k-eigenvalue problem can be written

as

(L−MSD)ψ =
1

k
MFDψ. (2.28)

As with the linear system, multiplying by DL−1 results in the integral for-

mulation

(I −DL−1MS)φ =
1

k
DL−1MFφ (2.29)

or

(I − TS)φ =
1

k
TFφ. (2.30)
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It is also possible to write a blocked form of the k-problem as

[

L MS

−D I

][

ψ

φ

]

=
1

k

[

0 MF

0 0

][

ψ

φ

]

. (2.31)

While (2.30) has the form of a generalized eigenvalue problem, it may

sometimes be preferable to have it in the form of a standard eigenvalue

problem. This can be accomplished by noting that the matrix on the left

hand side is always nonsingular [43, 24], so that we can write

(I − TS)−1TFφ = kφ. (2.32)

To reduce the problem even further we make use of the fact that the fission

matrix F can be written as the product of rectangular matrices as F = χfT .

Here χ contains the multigroup fission spectrum given by (2.18) and fT

contains the multigroup fission data of (2.17). This separation is possible

due to the fact that the energy of a neutron resulting from a fission event

is independent of the energy of the neutron inducing the fission (in contrast

to standard scattering where the incident and exiting energies are strongly

connected). Multiplying (2.32) by fT and defining Γ = fTφ results in

fT (I − TS)−1
TχΓ = kΓ, (2.33)

which we refer to as the fission source formulation. Such a formulation may

be advantageous because the eigenvector has a much smaller size (it is a

function of space but not energy) although the performance of numerical

algorithms is expected to remain unchanged with this formulation because it

has the exact same non-zero eigenvalues as (2.30) and (2.32) (for any matrices

A and B such that the products AB and BA are defined and square, the

nonzero eigenvalues of AB and BA will be identical, including multiplicity

[59]).
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2.4 Structure

In this section we investigate the matrix structure of the fully discretized in-

tegral transport equation (2.30). We denote the number of spatial unknowns

by NS, the number of energy groups by NE, the number of angles by NA

and the number of spherical harmonic moments by NM (NM = (NL + 1)2,

where NL is the Legendre order used to expand the angular dependence of

the scattering cross section). Thus the length of the vector φ is given by

NS ·NE ·NM (independent of NA).

2.4.1 Solution Vector

The particular structure of the matrices appearing in the k-eigenvalue prob-

lem depend on how the elements of the solution vector are ordered. We will

briefly describe the ordering convention that we have adopted, which is quite

standard and very natural with respect to the solver structure in most trans-

port codes. For systems involving the angular flux ψ, we list all of the fluxes

for the first group together, then all fluxes for the second group and so forth,

producing

ψ =









ψ1

...

ψNE









, (2.34)

where the subscript indicates the energy group index. Within an energy

group, we elect to group all elements for a given angle together, i.e.

ψg =









ψ1
g

...

ψNA
g









, (2.35)

where the superscript indicates the angle index. Thus ψn
g contains the angular

flux at every spatial location for the gth energy group and the nth angle.
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For the scalar flux, the ordering is essentially the same except that in place

of an angular index we have the index of the spherical harmonic moment.

This gives

φ =









φ1

...

φNE









(2.36)

with

φg =









φ1
g

...

φNM
g









, (2.37)

where this superscript provides the index of the spherical harmonic moment

and each φℓ
g contains a value for each spatial position. Wherever possible, we

will continue to use the convention that subscripts will denote energy indices

and superscripts will denote either angle or moment indices (the distinction

should be clear from the context). Any deviations from this convention will

be specifically noted.

2.4.2 Transport Matrix

Although the s ize of the system in (2.30) does not depend on NA, the dimen-

sion of the transport matrix L is NS · NE · NA. Multiplying by the integral

transport matrices requires (effectively) inverting this matrix and because

this action typically dominates the overall computational effort, the cost of a

matrix-vector product tends to be proportional to NS ·NE ·NA (independent

of NM). Because the inversion of L dominates the overall cost, understand-

ing the structure of this matrix is extremely important to the development

of an efficient method.

Because L represents a discretization of the streaming and collision oper-

ators that contain no coupling between different energy groups, it can be
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written as a block diagonal matrix with NG diagonal blocks each of size

(NS ·NA)× (NS ·NA), i.e.

L =









L1

. . .

LNE









. (2.38)

Thus the problem of solving a linear system with L is reduced to the task of

solving NE smaller decoupled linear systems.

The structure of each Lg is dependent on the boundary conditions that

are enforced. If the vacuum boundary conditions of (2.3) are used then Lg

contains no coupling between different angles and is itself a block diagonal

matrix containing NA diagonal blocks each of size NS ×NS. If the reflecting

boundary conditions of (2.4) are used, however, the situation becomes more

complicated. Now we have a full matrix

Lg =









L1,1
g · · · L1,NA

g

...
. . .

...

LNA,1
g · · · LNA,NA

g









(2.39)

where the off-diagonal blocks are very sparse matrices that couple the outgo-

ing boundary angular flux for one direction to the incoming angular flux of

another direction. There will be no more than 2 nonzero off-diagonal blocks

in 2-D and no more than 3 in 3-D. If there are no pairs of opposite reflecting

boundaries (e.g. reflection on both the left and right boundaries) then there

will always be a permutation of (2.39) that is block lower triangular. If at

least one pair of opposite reflecting boundaries is present then no permutation

to block lower triangular form will exist.

The innermost level of structure involves the within-group, single angle

diagonal block matrices Li,i
g . For the vast majority of problems, these ma-

trices are ‘psychologically lower triangular,’ i.e. there is a permutation of
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the matrix that is lower triangular (for finite element discretizations with

multiple unknowns per spatial cell they will be block lower triangular with

the diagonal block size corresponding to the number of unknowns per cell).

For structured mesh transport problems, determining the ‘sweep order’ (the

permutation vector that produces a lower triangular ordering of the matrix)

is generally trivial. For unstructured meshes, the determination of the lower

triangular order is accomplished by viewing the mesh as a directed graph for

each angle of interest and performing a traversal of this graph. For arbitrary

2-D meshes with convex elements and 3-D structured meshes a lower trian-

gular ordering is guaranteed to exist. In 3-D, however, meshes consisting

only of convex elements (and indeed even those consisting only of simplices)

can potentially have cycles in their corresponding directed graph (see Figure

11 of [94] for an example of such a case). Under these circumstances, some

technique must typically be used to identify and attempt to break the cycle

(see [93] for a discussion of such cycle detection). For the purposes of this

work, we will assume that all meshes are acyclic and thus each Li,i
g is effec-

tively lower triangular. The process of solving a linear system with such a

lower triangular matrix is commonly referred to in the transport literature

as ‘transport sweeping.’

2.4.3 Scattering and Fission Matrices

Because the scattering and fission matrices only couple different energy groups

at a specific spatial location, their structure is much simpler to describe. The

scattering matrix takes the form

S =









S1,1 · · · S1,NE

...
. . .

...

SNE ,1 · · · SNE ,NE









, (2.40)
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where each Sg,g′ is simply a diagonal matrix containing the scattering cross

sections from energy group g′ to group g (including anisotropic scattering)

at each spatial location. If S is permuted so as to place all energy groups for

a single spatial unknown together, the result is a block diagonal matrix with

dense NE × NE blocks containing the full group-to-group scattering cross

sections at a particular spatial location (this is more in line with the way the

S would typically be stored).

The fission matrix F has the same structure as S except that the blocks

have additional structure. Fg,g′ is a diagonal matrix that contains the product

of the component of the fission spectrum in energy group g, χg, with the

component of the fission cross section in group g′, (νσf )g′ . This means that

if F is permuted to cluster energy groups together, the result is a block

diagonal matrix where the diagonal blocks are NE ×NE rank-1 matrices (at

spatial locations where no fissionable material is present there will be zero

blocks). Furthermore, because fission events are isotropic in angle, locations

corresponding to higher order Legendre moments will be zero. Thus the rank

of F is given by the number of spatial locations where fissionable material

is present and is much smaller than the total number of unknowns in the

problem.

2.4.4 Transfer Matrices

Next we turn our focus to the angular transfer matrices D and M . The

angular restriction matrix D is an (NS ·NE ·NM)×(NS ·NE ·NA) matrix that

converts an angular flux vector to a vector of flux moments. At the outermost

level it is a block diagonal matrix consisting of NE identical blocks, i.e.

D =









D̃
. . .

D̃









, (2.41)
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where D̃ is an (NS ·NM)× (NS ·NA) matrix of the form

D̃ =









D̃1,1 · · · D̃1,NA

...
. . .

...

D̃NM ,1 · · · D̃NM ,NA









. (2.42)

Each matrix D̃i,j is a multiple of the identity matrix of dimension NS, with

the multiple being the spherical harmonic coefficient corresponding to the ith

moment and jth angle (including the appropriate quadrature weights).

The angular prolongation matrix M can likewise be represented as

M =









M̃
. . .

M̃









, (2.43)

where NE identical matrices appear along the main diagonal, each of the

form

M̃ =









M̃1,1 · · · M̃1,NM

...
. . .

...

M̃NA,1 · · · M̃NA,NM









. (2.44)

As with D̃, these matrices are multiples of the NS×NS identity matrix with

the multiple now determined by evaluating the jth spherical harmonic at the

ith angle.
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2.4.5 Implementation Considerations

It is now possible to write (2.28) in the form








(L1 − M̃S1,1D̃) · · · −M̃S1,NE
D̃

...
. . .

...

−M̃SNE ,1D̃ · · · (LNE
− M̃SNE ,NE

D̃)

















ψ1

...

ψNE









= (2.45)

1

k









M̃F1,1D̃ · · · M̃F1,NE
D̃

...
. . .

...

M̃FNE ,1D̃ · · · M̃FNE ,NE
D̃

















ψ1

...

ψNE









.

Correspondingly, (2.30) can be written as








I − D̃L−1
1 M̃S1,1 · · · −D̃L−1

1 M̃S1,NE

...
. . .

...

−D̃L−1
NE
M̃SNE ,1 · · · I − D̃L−1

NE
M̃SNE ,NE

















φ1

...

φNE









= (2.46)

1

k









D̃L−1
1 M̃F1,1 · · · D̃L−1

1 M̃F1,NE

...
. . .

...

D̃L−1
NE
M̃FNE ,1 · · · D̃L−1

NE
M̃FNE ,NE

















φ1

...

φNE









.

Frequently we may want to compute the action y = Ax, where A is the

matrix on the left hand side of (2.46). This can be accomplished by breaking

x and y into NE vectors of length NS ·NM and carrying out the multiplication

separately for each energy group (this process can in fact be completely

parallelized with respect to energy). To compute the ith component of the

result vector, the process appears as

yi = xi − D̃L
−1
i M̃

(

NE
∑

j=1

Si,jxj

)

. (2.47)

This implies that each Li must be exactly inverted in order to perform such a

matrix-vector product. As noted previously, when reflecting boundary con-

ditions are present in the problem there will generally be no permutation of
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these Li matrices that is lower triangular. Solving linear systems with these

matrices must therefore be done iteratively, introducing a nested iteration

to simply perform a matrix-vector multiplication. As an alternative, it is

possible to eliminate this inner iteration at a cost of storing a few additional

elements to the solution vector. To illustrate this, let us for a moment con-

sider a monoenergetic form of (2.28). We can rewrite this in a form analogous

to (2.31) as








LD −MS −LO

−D I 0

−R 0 I

















ψ

φ

ψb









=
1

k









0 MF 0

0 0 0

0 0 0

















ψ

φ

ψb









, (2.48)

where LD and LO contain the diagonal and off-diagonal blocks of L, re-

spectively, ψb contains the entries of the angular flux vector on the problem

boundary, and R is a restriction matrix that selects elements on this bound-

ary. Now we can eliminate the angular fluxes on the interior of the domain

but retain the terms on the boundary, producing
[

I −DL−1
D MS −DL−1

D LO

−RL−1
D MS I −RL−1

D LO

][

φ

ψb

]

= (2.49)

1

k

[

DL−1
D MF 0

RL−1
D MF 0

][

φ

ψb

]

.

Now observe that performing a matrix-vector product with the matrices ap-

pearing in this equation involves solving linear systems with only the di-

agonal blocks of L (which are lower triangular) and thus requires no inner

convergence iteration. This alternate integral formulation of the k-eigenvalue

problem may offer significant computational savings when only matrix-vector

products are necessarily at the small price of storing the angular flux along

reflecting boundaries. It is expected that certain numerical properties of

these matrices will be affected by this formulation, but the savings in com-

putational effort will likely outweigh any deficiencies. This process is easily
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extended to the multigroup problem by performing the same process for each

energy group. The same process can also be applied to the fixed point prob-

lem of (2.24).

2.5 Spectral Properties

In order to design an efficient k-eigenvalue solver, it is necessary to have

some understanding of the behavior of the eigenvalues. Because most solvers

rely on solving linear systems with the matrices appearing in the transport

equation, it is important to study the behavior the eigenvalue distribution of

these matrices as well as the distribution of eigenvalues of the k-eigenvalue

problem itself.

2.5.1 Transport Operators

Relatively little information has appeared in the transport literature concern-

ing the behavior of the eigenvalues of the operators appearing in the transport

equation. While this may seem strange considering the large body of liter-

ature pertaining to the transport equation, the complete spectrum has not

been important until recently. Historically, fixed point iterations have been

used to solve the transport equation and the convergence of such methods

does not depend on the complete distribution of eigenvalues but rather only

on a small number of very select values. As subspace methods become more

common for use on the transport problem, the eigenvalue distribution will

be more important as the convergence of these methods typically depends

on the entire distribution of eigenvalues.

For the case of monoenergetic 1–D transport with isotropic scattering, it

was shown in [43] that the continuous integral transport operator is self–

adjoint, positive, and a compact perturbation to the identity and thus its
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eigenvalues are discrete and lie within a bounded component of the positive

real line. Similar observations were made in [102] for multidimensional trans-

port, again only for the monoenergetic equation with isotropic scattering. In

[25], Chang demonstrated that the transport equation discretized with dis-

continuous Galerkin finite elements could be slightly modified so as to retain

the previously mentioned properties of the continuous operator, but again

these findings were limited to the energy independent, isotropic scenario.

Because the extension of such results to the more complicated (and realistic)

situations of the multigroup equations with anisotropic scattering is likely to

be intractable, we choose to simply compute the entire spectrum for a small

sample problem in order to make a few observations. We consider a small

2–D problem containing a 5 × 5 array of fuel pins surrounded by a small

water reflector containing 296 spatial cells as shown in Figure 2.1. Figure 2.2

shows the complete spectrum of the matrix (I −DL−1MS) for this problem

with 12 angles (an S4 level symmetric quadrature), and 4 energy groups

with isotropic or anisotropic scattering. The spatial discretization is the step

characteristics method available through the NEWT [38] transport solver.

When only isotropic scattering is included, the spectrum is entirely real and

contained in the interval (0, 1], consistent with the previously mentioned

results. However, the inclusion of anisotropic scattering breaks this property,

causing eigenvalues to appear with nonzero imaginary part. The real part of

all eigenvalues is still contained within the same interval (0, 1].

Figure 2.3 shows the spectrum for the same problem except that the matrix

is now modified so that only the diagonal blocks of the matrix L are inverted

and angular fluxes on reflecting boundaries are now stored in the solution

vector. Now even with only isotropic scattering, the spectrum extends into

the complex plane and furthermore the real component of the eigenvalues is

no longer bounded above by 1. The addition of anisotropic scattering further

adds to the eigenvalues appearing off of the real line and increases the largest
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Figure 2.1: Geometry for spectrum computation.

eigenvalue to approximately 1.3. This behavior could be very important when

subspace type methods are used to solve linear systems with these matrices.

2.5.2 k-Eigenvalue Problem

Analogous to the situation with the spectrum of the transport operators, the

transport community has never been interested in the behavior of the entire

spectrum of the k-eigenvalue problem because the convergence of the stan-

dard eigensolver, power iteration, does not depend on the entire spectrum.

As subspace solvers gain popularity, the spectrum as a whole becomes a more

important factor. To begin with, we can say a few things about the number

of nonzero eigenvalues by looking at the form of the problem given in (2.32).

Clearly the number of nonzero eigenvalues of the overall operator cannot be

greater than the rank of the matrix F . As was noted in 2.4.3, the fission

matrix can be permuted to create a block diagonal matrix with NS ·NM di-

agonal blocks that are each NE ×NE rank-1 matrices (or all zero matrices).
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Figure 2.2: Eigenvalue spectrum of transport matrix A with L fully inverted.
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Figure 2.3: Eigenvalue spectrum of transport matrix A with only diagonal

blocks of L inverted.
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Additionally, the blocks corresponding to spatial locations with no fissionable

material will be entirely zero, as will blocks corresponding to higher order

anisotropic moments since fission is modeled is a purely isotropic occurrence.

This places an upper bound on the number of nonzero eigenvalues as the

number of spatial locations in the problem that contain fissionable material.

The number of nonzero k-eigenvalues will therefore be considerably smaller

than the size of the matrices.

Figure 2.4 shows the full k-eigenvalue spectrum at two different levels of

zoom for the same problem from the previous section. This spectrum is fun-

damentally identical regardless of whether isotropic or anisotropic scattering

is used. Due to the small size of this problem it is expected that the distribu-

tion may deviate significantly from problems of actual interest (for instance

it is known that in many problems the second largest eigenvalue is very close

to the largest), however certain properties are expected to carry over. First,

note that all of the eigenvalues lie along the non-negative portion of the real

line. This is somewhat unexpected considering the eigenvalues of the trans-

port matrix are generally complex. Previous studies have concluded that the

dominant eigenvalue is real, positive, and simple [75, 17], though we are not

aware of any such guarantees for the remaining portion of the spectrum. Also

of note in the spectrum is the fact that there are 100 nonzero eigenvalues,

which is exactly the number of spatial cells containing fissionable materials

(25 fuel pins with 4 cells per pin). This observation is consistent with the

preceding discussion on the expected number of nonzero eigenvalues.
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Figure 2.4: Spectrum of k-eigenvalues.
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Chapter 3

Eigensolvers

In this chapter, we discuss a variety of techniques that may be suitable for

solution of the k-eigenvalue problem. In particular, we are interested in those

methods that only require access to the relevant operators via matrix-vector

products due to the fact that matrix entries will typically not be accessible in

radiation transport solvers. We consider both solvers that search for solution

to the standard eigenvalue problem

Ax = kx (3.1)

and to the generalized eigenvalue problem

Ax = λBx. (3.2)

Solvers directed at the generalized eigenvalue problem will be directly appli-

cable to (2.30), where we are interested in finding the smallest λ ≡ 1
k
and its

corresponding eigenvector. For solvers that are applicable only to the stan-

dard eigenvalue problem, it is be necessary to use the standard eigenvalue

formulation of (2.32) where we are interested in the largest k-eigenvalue.
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3.1 Fixed Point Methods

The first class of eigensolvers to be considered are fixed point iterations, that

is iterations in which the next iterate is entirely determined based on the

single previous iterate. Thus, such iterations can be written in the form

(

λk+1,xk+1
)

= f
(

λk,xk
)

. (3.3)

3.1.1 Power Iteration

Let us consider (3.1) and assume that the matrix A is diagonalizable and

that there exists a unique eigenvalue of maximum modulus. Thus we can

define a basis for CN consisting of the eigenvectors vi of A, i.e. {vi}
N
i=1 is a

basis for CN and Avi = kivi for each i and the ki have been ordered such

that |k1| > |k2| ≥ ... ≥ |kN |. Then any vector x0 ∈ C
N can be written as

x0 =
N
∑

i=1

civi (3.4)

where the ci are scalars. Applying the matrix A to this vector yields

Ax0 = A
N
∑

i=1

civi =
N
∑

i=1

ciAvi =
N
∑

i=1

cikivi (3.5)

and repeating this m times gives

Amx0 =
N
∑

i=1

cik
m
i vi. (3.6)

Separating the first term and dividing by km1 , we see that

1

km1
Amx0 = c1v1 +

N
∑

i=2

ci

(

ki

k1

)m

vi. (3.7)

Because |k1| > |ki| for each i, every term in the summation on the right hand

side tends to zeros as m tends to infinity and in this limit we obtain

1

λm1
Amx0 → c1v1. (3.8)



35

Thus for any initial guess, repeatedly multiplying by the matrix A produces

a sequence of vectors that lie increasingly along the direction of the dominant

eigenvector. The rate of convergence of this sequence of vectors depends on

how rapidly the terms in the summation on the right hand side of (3.7) tend

to zero. Since
∣

∣

∣

k2
k1

∣

∣

∣
>
∣

∣

∣

ki
k1

∣

∣

∣
for any i > 2, this convergence will asymptotically

behave as
∣

∣

∣

k2
k1

∣

∣

∣

m

. When |k2| ≪ |k1|, we expect that convergence will be

obtained quickly. However, for difficult problems it may happen that k2 ≈ k1

and therefore the convergence will be quite slow. We refer to this ratio

ρ(A) ≡
∣

∣

∣

k2
k1

∣

∣

∣
as the dominance ratio of the matrix A and will occasionally use

this as a rough estimate of the difficulty of an eigenvalue problem.

3.1.2 Shifted Power Iteration

If a reasonable approximation to the desired eigenvalue is available, it may

be possible to use that information to improve the standard power method.

Suppose that it is known that µ ≈ λ1, then we can rewrite the original

generalized eigenproblem as

Ax− µBx = λBx− µBx (3.9)

or equivalently

(A− µB)x = (λ− µ)Bx. (3.10)

Assuming that µ is not an exact eigenvalue of the original problem, the

matrix on the left side of this equation is invertible and thus we can write

(A− µB)−1Bx = τx, (3.11)

where τ ≡ 1
λ−µ

. Thus we have created a standard eigenvalue problem from

a generalized eigenvalue problem, but we have shifted the system before

applying the inverse. Applying the standard power method now to this
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problem leads to convergence to the largest eigenvalue τ1 at the rate

ρ
(

(A− µB)−1B
)

=

∣

∣

∣

∣

τ2

τ1

∣

∣

∣

∣

=

∣

∣

∣

∣

λ1 − µ

λ2 − µ

∣

∣

∣

∣

. (3.12)

If the shift parameter µ is much closer to the desired eigenvalue than to any

other eigenvalue then the convergence rate will be significantly improved.

However, care must be taken since a poor selection of µ will result in conver-

gence to the wrong eigenvalue. Because it is frequently difficult to identify

a sufficiently accurate approximation to the desired eigenvalue a priori com-

bined with the fact that the matrix (A − µB) may be nearly singular and

thus potentially difficult to invert, this shifted power iteration is not always

a practical option.

3.1.3 Rayleigh Quotient Iteration

A natural extension to the shifted power iteration is to allow the shift pa-

rameter to vary at each iteration, usually by setting it equal to the current

eigenvalue estimate. Thus the eigenvector update takes the form

x(k+1) = (A− λ(k)B)−1Bx(k). (3.13)

If the eigenvalue is then updated according to the generalized Rayleigh quo-

tient

λ(k+1) =
x∗Bx

x∗Ax
(3.14)

then the result is called (generalized) Rayleigh quotient iteration. It can

be shown that this process results in convergence to an eigenpair quadrati-

cally for nonsymmetric matrices (and even cubically for symmetric matrices).

There are two potential drawbacks to the use of Rayleigh quotient iteration.

First, the linear system that must be solved at each iteration approaches a

singular system as the iteration progresses, a fact that may pose a significant

problem for some linear solvers. The other difficulty lies in the fact that
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convergence to any specific eigenvalue cannot be guaranteed, and thus one

may end up with a different solution than the one that is desired. These

difficulties notwithstanding, a great deal of effort has been spent in studying

the convergence behavior of Rayleigh quotient iteration [105, 83, 132].

3.1.4 Newton’s Method

One way to approach the solution of an eigenvalue problem is to simply view

it as an arbitrary nonlinear equation to be solved (the nonlinearity is due

to the product of the eigenvalue and eigenvector, both unknowns). We can

rephrase the solution of an eigenvalue problem as finding a solution to the

nonlinear equation

f(x, λ) =

{

(A− λB)x
1
2
− 1

2
x∗x

= 0, (3.15)

where the second condition forces the eigenvector to have unit norm. From

this formulation it seems natural to consider the use of Newton’s method.

The Jacobian matrix for this function can be written as

J(x, λ) =

[

(A− λB) −Bx

−x∗ 0

]

. (3.16)

It was demonstrated in [92] (albeit for the standard eigenvalue problem)

that this Jacobian is nonsingular even when λ and x are an eigenpair. Thus,

Newton’s method can be expected to converge quadratically [60]. The task

of solving a linear system with the Jacobian closely resembles solving the

linear system that appears in Rayleigh quotient iteration and thus the same

difficulties should be expected, namely that the difficulty of solving such

linear systems will increase in difficulty as the iteration progresses.

One possible issue with the use of Newton’s method as an eigensolver arises

from the fact that any eigenpair of the original problem will solve (3.15) and
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thus there is no way to guarantee that the algorithm will converge to the

specific eigenvalue of interest. Generally it will be necessary to perform a

few iterations of a more robust iteration (such as power iteration) to provide

an initial guess that is sufficiently close to the desired eigenpair, however this

process may interfere with the overall efficiency of the solver.

3.2 Subspace Methods

For some problems it may be beneficial to use more than one vector in order

to determine the next estimate for the desired iterate. One commonly used

strategy is to construct a vector subspace of increasing dimension from which

the next iterate will be selected. Suppose that V ⊂ CN is a subspace of dimen-

sion m≪ N and we wish to extract an estimate for the desired eigenvector

from this subspace and that W ⊂ CN is another subspace, also of dimension

m. Now suppose that we want the eigenvalue relationship Av = kv (or

Av = λBv for the generalized eigenvalue problem) to be satisfied for some

vector v ∈ V and scalar k ∈ C (or λ) in a weak sense when ‘tested’ against

vectors w ∈ W , i.e.

(Av,w) = (kv,w) (3.17)

or (Av,w) = (λBv,w) (3.18)

for the standard or generalized eigenvalue problem, respectively. Equiva-

lently, the goal is to find a vector v ∈ V and a k ∈ C such that the eigenvalue

residual is orthogonal toW . IfW = V then this is a Ritz-Galerkin procedure;

if W 6= V then it is a Petrov-Galerkin procedure. If V is an orthogonal basis

for V , then any vector v ∈ V can be written as v = V u for some u ∈ Cm.

If W is similarly an orthogonal basis for W then the solutions to (3.17) and
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(3.18) satisfy

W ∗AV u = kW ∗V u (3.19)

or W ∗AV u = λW ∗BV u. (3.20)

We will refer to (3.19) and (3.20) as the projected eigenproblems. For the

standard eigenvalue problem it is natural to take the spaces V and W to be

biorthogonal, i.e. W ∗V = I so that (3.19) becomes the standard eigenvalue

problem W ∗AV u = ku. Furthermore, when A is Hermitian the selection

W = V leads to certain optimality conditions being satisfied [98, Ch. IV]. For

the generalized eigenvalue problem, there is generally no explicit motivation

to select the subspaces to be orthogonal or even biorthogonal (although it

may result in a smaller storage requirement).

Since the matrices appearing in (3.19) and (3.20) are of size m×m, these

low-dimensional eigenproblems can typically be solved quickly using (for in-

stance) the QR or QZ methods [47]. Assuming that the subspaces V and

W are chosen appropriately, the eigenvalues that satisfy the projected eigen-

problems are typically good approximations to extremal eigenvalues of the

original problem and the vectors v = V u are approximations to the cor-

responding eigenvectors [98]. These approximations are commonly referred

to as Ritz values and Ritz vectors, respectively (occasionally Petrov val-

ues/vectors when W 6= V). The primary differences between the subspace

methods to be described in this section lie in the methods for selecting the

subspaces V and W (though the implementations may be significantly dif-

ferent in order to exploit special structure of the particular method). Thus

we can describe a general subspace eigenvalue solver with the very simple

algorithm given by Algorithm 1.
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Algorithm 1 General Subspace Eigenvalue Algorithm

while Not converged do

Expand V

Expand W

Solve projected eigenproblem (3.19) or (3.20)

Select desired Ritz/Petrov pairs

end while

3.2.1 Arnoldi’s Method

One of the best known and widely used subspace eigenvalue algorithms is

Arnoldi’s method [9]. For the standard eigenvalue problem (3.1), Arnoldi’s

method selects both subspaces V and W to be the Krylov subspace

K = span{v0,Av0,A
2v0, . . .} (3.21)

for some initial vector v0. This subspace selection gives the problem a spe-

cial structure that can be exploited to reduce the computational costs of the

method. In particular, the projection matrix V ∗AV will be an upper Hes-

senberg matrix when V is an orthogonal basis for the Krylov subspace. This

means that updating the projection matrix after expanding the subspace re-

quires fewer operations and also solving the projected eigenvalue problem

will be less costly (the QR algorithm that is typically used to solve the pro-

jected problem usually begins by reducing the matrix to upper Hessenberg

form [47]). If the cost of a matrix-vector product is small and the dimension

of the subspace is allowed to become large, the reduction in computational

effort by exploiting the structure may be significant. For problems where

the operator action is costly and the subspace size relatively small, however,

these savings will likely be inconsequential.

The exploitation of the Krylov structure comes at an additional price when

the matrix is not known exactly. In order to maintain the stability and accu-
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racy of the iteration (largely due to the fact that the residual is approximated

as a byproduct of the structure), it is generally necessary for matrix-vector

products to be computed to a high level of accuracy or the final computed

eigenvalues and eigenvectors may not be sufficiently accurate. Because the

operator in the k-eigenvalue problem involves the inverse of a matrix that

cannot be computed directly, each Arnoldi iteration will therefore require

solving a linear system to a high level of accuracy. Some relief from these

strict requirements is available by appealing to so-called inexact or relaxed

Krylov subspace approaches. It was observed in [18] that it is possible to

reduce the accuracy of the matrix-vector products as the iteration progresses

while still maintaining the overall accuracy of the method. A theoretical

justification of this phenomenon as well as rigorous bounds for the allow-

able error in intermediate matrix-vector products were provided in [106] and

approaches for projection-type eigenvalue problems were addressed in [104].

The essential idea is that the error in the inner matrix-vector product may

increase proportionally to the inverse of the current outer residual norm.

The particular bounds, however, involve matrix norms that are unlikely to

be available in practice and must therefore be conservatively approximated.

3.2.2 Generalized Davidson Method

An alternative to the Krylov subspace structure of Arnoldi’s method was

given by Davidson for the solution of eigenvalue problems in computational

chemistry [34]. The crux of the Davidson method is that given an approxi-

mate eigenpair (µ,v), we should search for a correction t to the eigenvector

estimate so that the eigenvalue relationship is (approximately) satisfied at

the next iteration, i.e.

A(v + t) = µ(v + t). (3.22)
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Rearranging this relationship gives the correction equation

(A− µI)t = −r (3.23)

where r = (A − µI)v is the eigenvalue residual at the current iterate. It

was then proposed to approximate the matrix (A−µI) on the left hand side

of (3.23) with a preconditioner M . In the original paper this preconditioner

was taken to be the diagonal of A; non-diagonal preconditioners lead to what

are commonly known as generalized Davidson methods [82, 55, 33]. Later

generalizations have applied a Davidson-type idea to nonsymmetric matrices

[101] as well as to the generalized eigenvalue problem, where the correction

equation becomes

Mt = −r (3.24)

where the residual is now given by r = (A−µB)v andM ≈ (A−µB). Some-

what confusingly, the term ‘generalized Davidson method’ or simply ‘David-

son method’ has also been used to describe any of these situations. For the

remainder of this dissertation, we use the term ‘Davidson method’ for brevity

to imply a generalized Davidson method in the broadest sense (nonsymmet-

ric generalized eigenvalue problem with arbitrary preconditioner) and will

specialize as necessary.

3.2.3 Davidson Preconditioners

We find it appropriate at this point to make a few observations about specific

selections for the preconditioner with a Davidson method. We will see that

several well known methods can be viewed as specializations of Davidson’s

method.

Arnoldi’s Method

Applying Davidson’s method to the generalized eigenvalue problem, it is

necessary to approximately solve (3.24). One possibility is to make the
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selection M = A. Observe that this implies t = −M−1r = −A−1r =

−A−1(A − λB)v = λA−1Bv − v. Since this vector will be made orthog-

onal to a subspace that contains the vector v and then normalized, this is

equivalent to the selection t = A−1Bv. If this choice is made at every iter-

ation, the result is that the basis vectors span the Krylov subspace for the

matrix A−1B. Thus, in exact arithmetic the iterates are identical to those

obtained with the Arnoldi method. Some authors have referred to such a

method as an ‘inefficient’ implementation of Arnoldi’s method (or Lanczos

in the symmetric case) due to the fact that it does not exploit the Krylov

structure and thus the projected problems (3.19) or (3.20) will be unstruc-

tured rather than having the upper Hessenberg or tridiagonal structure of

the Arnoldi and Lanczos processes, respectively. We would like to offer a

slightly different interpretation of the situation: the Davidson method is not

confined to the rigid structure of the Krylov subspace methods. Because

the Davidson method does not rely on any particular structure (the residual

is computed explicitly at each iteration), we are free to solve the necessary

linear system to a very relaxed tolerance without adversely affecting the ac-

curacy of computed values. In this respect, we suggest that such a Davidson

method can be viewed as an inexact Arnoldi method. For very sparse prob-

lems where orthogonalization and other costs associated with the projected

problem are not small compared to the cost of a matrix-vector product, this

approach may not be advantageous. However, when the operator action is

very expensive and orthogonalization negligible in comparison, the ability to

apply the matrix inexactly may pay off.

Olsen’s Method

It has occasionally been observed that the (generalized) Davidson method

may stagnate, particularly if the preconditioner too closely approximates

(A − µB). This can easily be seen by considering the limiting case, where
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M = (A−µB). Here the correction equationMt = −r becomes (A−µB)t =

−r = −(A − µB)v, the solution of which is clearly given by t = −v. Thus

we are attempting to expand the subspace by a vector that already lies in

the subspace and no progress can be made.

A remedy for the stagnation issue was proposed by Olsen for the solution

of full configuration-interaction problems in computational chemistry [88].

This approach was to force the subspace expansion to be orthogonal to the

current iterate by introducing the correction equation

(I − vv∗)Mt = −r (3.25)

(note that by the Galerkin process that produced the iterate v, the residual r

is necessarily orthogonal to v, thus the problem is well-posed). The solution

to this equation is given by t = εM−1v −M−1r, where ε = v
∗M−1

r

v
∗M−1

v
is chosen

so that v∗t = 0. Although presumably more stable, a downside to Olsen’s

method is that two applications of the preconditioner must be performed at

each iteration, rather than just one for the generalized Davidson method. If

the preconditioner is very simple (e.g. the diagonal preconditioner used in the

original Davidson method) then this presents a minor increase in computa-

tional cost, however it may be a significant consideration for more expensive

preconditioners. Thus the gain in stability (that for many problems may be

negligible) must be weighed against the additional computational cost of an

extra preconditioner application.

Jacobi-Davidson Method

One subspace method that has attracted much attention in the recent mathe-

matical literature is the Jacobi-Davidson method [109]. Like Olsen’s method

(and in fact it has been noted that Olsen’s method is a particular case of

Jacobi-Davidson), the Jacobi-Davidson algorithm was developed to allevi-

ate issues related to stagnation of Davidson’s method. The idea is to take
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M = (A − µB) in (3.24), but restrict the operator to a subspace orthogo-

nal to the current eigenvector estimate. This produces the Jacobi-Davidson

correction equation

(I − vv∗)(A− µB)(I − vv∗)t = −r (3.26)

(the original Jacobi-Davidson method was suggested for the standard eigen-

value problem, though subsequent studies [107] also considered the general-

ized eigenvalue problem, producing the correction equation shown here). The

Jacobi-Davidson method has been viewed alternatively as an inexact New-

ton method [108] or as an inexact Rayleigh quotient iteration [132]. Consis-

tent with these interpretations, Jacobi-Davidson typically exhibits quadratic

convergence. Particular implementations of Jacobi-Davidson have been de-

scribed [44], and alternative approaches for expanding the subspaces have

also been studied in depth [110].

Because the projections cause the operator in (3.26) to be dense even if A

and B are sparse, the use of iterative methods (and Krylov methods in par-

ticular) is vital. Some techniques for preconditioning the correction equation

have been suggested [110], although the task of developing effective precon-

ditioners remains an area of continued activity.

Accelerated Rayleigh Quotient Iteration

Although it does not exactly fit into the Davidson framework, another option

for subspace expansion uses the generalized Rayleigh quotient direction, i.e.

t = (A− µB)−1Bv (3.27)

This subspace expansion strategy has been referred to as Rayleigh quotient

iteration with subspace acceleration [108]. However, due to the already rapid

convergence properties of Rayleigh quotient iteration on its own, acceleration
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hardly seems necessary. Instead, we prefer to think of this as Rayleigh quo-

tient iteration with subspace stabilization. The incorporation of the Rayleigh

quotient direction should ensure rapid convergence, while the subspace na-

ture of the process should help guarantee that this convergence is directed

towards the particular eigenvalue of interest. Because of the relationship

between the Jacobi-Davidson method and Rayleigh quotient iteration, it is

expected that the behavior will be similar for many problems.

3.2.4 Reduced Memory Subspace Methods

A potential difficulty in the use of subspace type methods for large-scale

eigenvalue problems lies in the significant amount of storage that is generally

necessary to carry out the iteration. In general, one has to explicitly form the

projected matrices appearing in (3.19) or (3.20). If w and v are the newest

additions to their respective subspaces, in the (Jacobi-)Davidson method the

projected matrices in the generalized problem is typically updated as

W ∗AV =

[

W̃ ∗AṼ W̃ ∗Av

w∗AṼ w∗Av

]

(3.28)

and

W ∗BV =

[

W̃ ∗BṼ W̃ ∗Bv

w∗BṼ w∗Bv

]

, (3.29)

where W = [W̃w] and V = [Ṽ v]. Note that the (1, 1) blocks of each matrix

here should be stored from the previous iteration and requires no additional

computation so that only the final row and column of each matrix needs to

be computed at each iteration (this is a difference between a Davidson solver

and an Arnoldi approach because in the Arnoldi method the Krylov structure

ensures that the dot products in the bottom row are zero). The (2, 1) block

of each of these matrices indicates the need to compute the products of A

and B with each of the vectors in Ṽ (for the standard eigenvalue problem
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only a product with A is required). Since these vectors have been computed

at previous iterations, it is standard to store not only the basis vectors V and

W but also VA and VB, the vectors of V multiplied by the matrices A and B,

respectively. However, this approach requires storing as many as four sets of

basis vectors for the generalized eigenproblem which may be prohibitive for

very large problems. Furthermore, because the eigenvalues and eigenvectors

of the projected eigenproblems may have nonzero imaginary part even if the

original matrices are real-valued (and in fact this may occur even in the case

where the original eigenproblem has an entirely real-valued spectrum), the

stored basis vectors must be complex-valued. The number of real-valued

floating point numbers that must be stored is therefore on the order of 8Nk,

where N is the size of the original matrices and k is the maximum allowed

dimension of a subspace.

One simple choice to reduce the required memory is to take the test sub-

space W equal to the search subspace V . This brings the necessary storage

down to 6Nk real values. Furthermore, there are strategies [118] that allow

only real arithmetic to be used by appealing to the real Schur or generalized

real Schur forms [47]. One such strategy is outlined in Section 3.2.5. The use

of real arithmetic in storing the basis vectors reduces the required storage by

a factor of two, bringing the total down to only 3Nk values. For problems

where this requirement is still a burden, it may be possible to reduce the

storage requirement even further at the cost of a few extra matrix-vector

products, provided that it is possible to perform multiplications with the

matrix adjoint. To see this, observe that the (2, 1) block of (3.28) can be

written as

w∗AṼ =
(

(w∗AṼ )∗
)

∗

(3.30)

=
(

Ṽ ∗A∗w
)

∗

= (A∗w)∗Ṽ .
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Thus the need to store the basis vectors VA has been replaced by a single

adjoint matrix-vector product at each iteration. The same argument holds

for eliminating the storage of VB in favor of multiplying by B∗ once per it-

eration. If all of the preceding modifications are made then only a single set

of real basis vectors must be stored in order to implement a subspace eigen-

value method (an eight-fold reduction relative to the general case). Further

reduction in memory requirements (in addition to or instead of any of these

modifications) can be achieved by periodically restarting the method, as will

be described in 3.2.6.

3.2.5 Schur Forms

In describing the general form of a subspace eigenvalue algorithm, we have so

far merely stated that the projected eigenvalue problem should be solved and

the Ritz pair most closely satisfying the selection criteria should be chosen.

In practice, care should be taken that this problem is solved in a numerically

stable way. In [44] a detailed algorithm is proposed that utilizes a Schur form

(or generalized Schur form for the generalized eigenvalue problem) for the

solution of the projected problem. The orthogonal transformations used in

such Schur decompositions are preferred not only for the numerical stability

but also because they facilitate restarting techniques such as those to be

described in 3.2.6.

Another consideration arises due to the potential appearance of complex

eigenvalues due to nonsymmetric matrices. Indeed, it is possible for such

complex eigenvalues to appear in the projected problem even if the original

eigenproblem consists entirely of real eigenvalues. For problems where it is

known a priori that the eigenvalue or eigenvalues of interest are real valued,

it is usually highly desirable to avoid the use of complex arithmetic as this

essentially doubles the number of floating point operations that must be
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performed (as well as doubling the storage requirements). It is possible to

avoid such complex arithmetic by making use of a real Schur form [47] rather

than the standard Schur form. The real Schur form (and generalized real

Schur form) is very closely related to the standard Schur form except rather

than a unitary reduction to a triangular form where the eigenvalues appear

on the main diagonal of the triangular matrix, the real Schur form involves

an orthogonal reduction to a block triangular form in which the diagonal

blocks are either 1× 1 or 2× 2. The 1× 1 blocks contain the real eigenvalues

and the 2 × 2 blocks represent complex conjugate pairs of eigenvalues. The

real Schur form thus allows complex arithmetic to be entirely avoided (unless

the complex eigenvalues need to be determined) and because it involves only

orthogonal transformations the stability properties of the standard Schur

form are retained. A Jacobi-Davidson implementation that uses the real

Schur form can be found in [118]; the Davidson solver that is used to obtain

numerical results later in this work uses an analogous implementation.

3.2.6 Restarting Subspace Methods

For large problems, the amount of memory required for a subspace eigenvalue

solver may be prohibitively large, even if the simplifications described in 3.2.4

are utilized. It is therefore often necessary in practice to set a maximum

allowable size for the subspaces and restart the algorithm when this maximum

size is reached. Restarting generally consists of determining one or more

vectors from the current subspace that retain as much valuable information

about the approximate solution while de-emphasizing unwanted vectors.

One of the most well known restarting procedures is the implicit restarting

process [112, 71], originally suggested for the Arnoldi method but subse-

quently used for other subspace eigensolvers. If m is the maximum allowable

subspace dimension and j is the number of eigenvalues that are sought, im-
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plicit restarting appliesm−j iterations of the implicitly shifted QR algorithm

[47] with the unwanted Ritz values as shifts. This in effect minimizes the pres-

ence of the unwanted Ritz vectors. It has been observed that it is occasionally

beneficial to retain more vectors after a restart than simply the number of

desired eigenvalues. To take this into account, thick restarting procedures

have been proposed that allow for a specified number of vectors to be kept

[114]. Explicit restarting strategies have also been used that simply retain

the portion of the current subspace that appears to be most relevant rather

than removing the unwanted portion as with implicit restarting techniques.

Considerations for the generalized eigenvalue problem are generally slightly

different than in the standard case. The method described in [44] is a natural

use of the generalized Schur decomposition that is used to solve the projected

eigenproblem. For the projected eigenproblem 3.20, the generalized Schur

decomposition computes upper triangular matrices S and T (these will be

block upper triangular if the real Schur form is used) and unitary matrices

Q and Z such that

W ∗AV = QSZ∗ (3.31)

and W ∗BV = QTZ∗ .

This decomposition can be ordered so that the Ritz values most closely

matching the selection criteria appear at the upper left portion of S and

T (an algorithm for performing such a reordering can be found in [47]). Now

we can rearrange (3.31) to form

S = Q∗W ∗AV Z = (WQ)∗A(V Z) (3.32)

and T = Q∗W ∗BV Z = (WQ)∗B(V Z) .

The columns of V Z and WQ now contain the ordered right and left Ritz

vectors, respectively. The natural selection to restart is to set V andW equal

to the first j columns of their respective matrices so that V ← V Z(1 : j)
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and W ← WQ(1 : j). The parameter j can be chosen to retain the desired

number of vectors. With this selection, the leading j×j submatrices of S and

T can be stored asW ∗AV andW ∗BV , respectively. This allows the structure

of (3.28) and (3.29) to be maintained and thus the projected matrices do not

need to be recomputed upon restarting.

If, however, a Ritz Galerkin procedure has been used (for instance, to

reduce memory costs as described in 3.2.4), an additional complication arises.

Observe that in this case the equivalent of (3.32) becomes

S = Q∗V ∗AV Z = (V Q)∗A(V Z) (3.33)

and T = Q∗V ∗BV Z = (V Q)∗B(V Z) .

To continue with a Ritz Galerkin process, we would like to proceed with the

first j columns of V Z as the new set of basis vectors. But if this is done

then the leading j × j submatrices of S and T are no longer equal to V ∗AV

and V ∗BV . In order to proceed, it becomes necessary to explicitly compute

the projected matrices before continuing. This requires computing each of

the j2 entries of each projected matrix, where each entry requires performing

a dot product with two vectors of length N . The use of a Ritz Galerkin

method on the generalized eigenvalue problem therefore incurs an additional

computational cost at each restart which may be very large, especially if the

matrices A and B are very sparse or a large restart dimension is desired. This

computational burden must be weighed against the benefit associated with

the reduced memory costs of the Ritz Galerkin process when determining

the best option for a given application.



52

Chapter 4

Transport Solvers

In this chapter we describe the techniques that are most commonly used for

solving various forms of the discretized radiation transport equation. First

we describe methods for solving linear systems (fixed source problems) in-

volving the transport equation. These techniques are of significant interest

on their own as these linear systems appear in radiation shielding applica-

tions, medical imaging, cancer therapy and oil well logging in addition to

many other applications, but are especially relevant to the current discus-

sion of k-eigenvalue solvers since the solution of a linear system is nearly

always a requisite component. We also provide a description of methods

that have been used for solving the k-eigenvalue problem. A brief discussion

of techniques used to parallelize transport computations is also included, as

parallelization can significantly impact algorithm selection.

4.1 Monoenergetic Solvers

A large portion of the radiation transport literature has been focused on the

monoenergetic transport equation. The reason for this is largely because

most multigroup solvers are based around a block Gauss-Seidel iteration,
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as will be discussed in the next section, and thus the multigroup problem

is reduced to the task of solving a sequence of monoenergetic equations.

Although in the current study our aim is to reduce the dependence on such

nested iterations, we nonetheless find it important to discuss some of the

standard strategies employed for these problems.

4.1.1 Richardson Iteration

Perhaps the simplest technique, and one that is very natural for the transport

equation, is to use a Richardson iteration of the form

φm+1 = DL−1(MSφm + q) (4.1)

(note that the right hand side could be written as DL−1MSφm + b, where

b = DL−1q, but the form shown above more closely reflects a standard

implementation). This strategy is typically known as source iteration (or

iteration on the scattering source) in the transport community [48]. Source

iteration has the physical interpretation that the iterate obtained after m

iterations is the exact distribution of all neutrons that have undergone at

most (m − 1) collisions. This interpretation, however, points directly to

the fundamental drawback of source iteration: for a system in which the

probability of a particle scattering is much higher than its probability of

being absorbed it may require a large number of iterations to produce a

sufficiently converged solution. Numerically, it can be shown that the rate of

convergence is dictated by the scattering ratio c = σs

σ
. In particular, c is an

upper bound for the spectral radius of the iteration matrix DL−1MS [48].

4.1.2 Diffusion Synthetic Acceleration

Due to the tendency for source iteration to converge slowly for many prob-

lems, a number of methods have been developed to accelerate the convergence
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of the solution process. By far the most studied of these methods is diffusion

synthetic acceleration (DSA). DSA has its roots in the synthetic method of

Kopp [64] and has been the subject of almost continual development in the

nearly five decades since.

The essential idea behind DSA is to approximate the monoenergetic trans-

port equation with a low order angular approximation, namely diffusion.

This can be rigorously justified by first expanding the angular component

of the angular flux of the continuous angle transport equation in spherical

harmonics as

ψ(r, Ω̂) =

NM
∑

ℓ=0

(2ℓ+ 1)
ℓ
∑

m=−ℓ

φℓ,m(r)Yℓ,m(Ω̂). (4.2)

Inserting this into the transport equation, multiplying in turn by each Y ∗

ℓ,m

and integrating over the unit sphere gives an infinite set of coupled equations

known as the PN equations. Introducing the closure condition φ2,m = 0

(strictly speaking it is only necessary to set the gradient of the second degree

moments to zero) results in the P1 equations

∇ · J(r) + (σ − σs,0)φ0,0(r) = q0 (4.3)

1

3
∇φ0,0 + (σ − σs,1)J(r) = q1 (4.4)

where J(r) is the current vector given by

Jk(r) =

∫

4π

dΩ̂ (n̂k · Ω̂)ψ(r, Ω̂), k = x, y, z (4.5)

(n̂k is the unit vector in the k direction) and qi is the ith moment of the

external source term. Setting q1 = 0, (4.4) can be rewritten in the form of a

Fick’s law as

J(r) = −
1

3(σ − σs,1)
∇φ0,0. (4.6)

Finally, substituting this expression back into (4.3) yields the diffusion equa-

tion

−∇ ·D∇φ0,0 + (σ − σs,0)φ0,0 = q0, (4.7)
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where the diffusion coefficient is defined as D = 1
3(σ−σs,1)

.

It has been shown that in the limit as the scattering ratio approaches unity

and the total cross section tends to infinity (a limit known as the asymp-

totic diffusion limit and precisely the regime where source iteration exhibits

the worst performance), the solution to this diffusion equation satisfies the

scalar flux for the original transport equation [10]. While extremely effective

for certain problems, it was observed that such diffusion acceleration had a

tendency to lose its effectiveness or even diverge for other problems, partic-

ularly those with coarse spatial meshes [95]. This led to the discovery that

if the diffusion equation is discretized in a manner consistent with the spa-

tial discretization of the transport equation then it is possible to obtain an

acceleration scheme that is unconditionally effective [6, 7]. This observation

sparked a long line of research concerning the development of unconditionally

effective DSA strategies including the development of a four step procedure

to obtain a consistent diffusion equation from the discretized transport equa-

tion [67, 68, 66]. Subsequent analyses have solidified the understanding of

DSA by placing it within a rigorous linear algebra framework as a precon-

ditioned Richardson iteration [43, 10] and demonstrating through Fourier

analysis that the spectral radius of the preconditioned DSA iteration matrix

is bounded by ρDSA ≈ 0.2247c [5], a reduction of more than a factor of four

relative to the unaccelerated iteration!

Although very promising in theory, in practice it can be difficult to formu-

late consistent DSA methods for many discretizations, especially in 2-D or

3-D. The resulting equations are frequently themselves so difficult to solve

that several studies have focused exclusively on finding methods for solving

the diffusion equations [124]. An alternative to the fully consistent formula-

tions has been the class of partially-consistent DSA techniques such as those

found in [121] and later improved in [122]. The development of efficient

diffusion acceleration methods remains an area of active research.
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4.1.3 Other Linear Preconditioners

The primary idea behind DSA is the use of a low angular order approximation

(namely diffusion) to accelerate the convergence of the high order transport

calculation. An alternative approach to DSA is to use a low order angular

approximation that is itself a transport problem. Examples of this include

S2 Synthetic Acceleration (S2SA) and the more general Transport Synthetic

Acceleration (TSA) [5], both of which employ lower order discrete ordinates

discretizations to approximate the original problem. The advantage of this

approach is that it is no longer necessary to carefully construct a low order

discretization because the low order problem is the same as the high order

problem except with fewer angles. This also simplifies the creation of the

preconditioner as many of the routines from the high order problem can be

reused. Other preconditioners include the adjacent cell preconditioner [12]

and the cell-wise block-Jacobi [97], both of which rely on the inversion of

small portions of a larger transport problem.

4.1.4 Nonlinear Acceleration

Another commonly used class of acceleration methods consist of a low-order

approximation to the transport equation that is formulated in a nonlinear

manner based on the current approximation to the solution vector. In coarse

mesh rebalance (CMR), coarse spatial regions are defined with the goal of

improving the current iterate with a new flux estimate that satisfies a bal-

ance of particles within each coarse region [72]. To this end, coarse region

multiplicative correction factors are defined such that the accelerated solu-

tion vector is the product of the unaccelerated estimate and the correction

factor, that is

ψk+1(r) = ψk(r)gi, 1 ≤ i ≤ NC , (4.8)
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where i is the index of the coarse mesh region to which r belongs and NC is

the number of coarse regions. The correction factors are then determined by

substituting (4.8) into the transport equation and integrating over angle and

each coarse region to obtain a system ofNC equations. Because this system of

equations is sparse and (potentially) much smaller than the original problem,

it can generally be solved using direct linear algebra techniques. An analysis

of the convergence behavior of CMR can be found in [23].

Related to CMR is the coarse mesh finite difference (CMFD) method.

Rather than enforcing a particle balance, CMFD imposes that the accel-

erated solution vector should satisfy a finite difference diffusion equation in

which the diffusion coefficients are computed based on the current solution

estimate. Unlike CMR, in which the coarse mesh regions can take an arbi-

trary shape, CMFD generally requires that the coarse regions are structured

to allow convenient formulation of the finite difference equations. A con-

vergence analysis for CMFD can be found in [70]. A comparison of CMR

and CMFD can be found in [29] and a generalized coarse mesh rebalance

technique is developed in [129] that unifies the two methods into a single

framework. It is of interest to note that CMR and CMFD fall into the

framework of aggregation/disaggregation methods that have been used in

the mathematical community for many years, particularly for problems in-

volving Markov chains [76, 27]. A discussion of convergence properties of

aggregation/disaggregation methods for such problems can be found in [73].

It has been demonstrated that both CMR and CMFD can be quite effec-

tive under certain situations and both techniques have been implemented in

production transport codes [31, 131]. Although the ideal convergence be-

havior may be very good, the actual performance generally depends quite

strongly on the selection of the size of the coarse mesh regions; selecting the

regions to be either too large or too small can lead to significant degradation

in performance and even divergence.
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Not too unlike the CMFD approach is the quasi-diffusion (QD) approach

first formulated by Gol’din [46], in which a diffusion-like equation (in 2-D and

3-D the equation is similar to a tensor diffusion equation) is obtained by ma-

nipulating the first and second angular moments of the transport equation.

The nonlinearity of QD is introduced through the so-called Eddington factor

(or Eddington tensor) that plays a role analogous to a diffusion coefficient.

As with DSA, the quasi-diffusion equation must be discretized in a manner

that is consistent with the transport spatial discretization in order for the

effectiveness of the scheme to be retained, a task that may be quite challeng-

ing for some discretizations and especially so on unstructured meshes. The

development of efficient QD methods remains an area of continued research

[128].

4.1.5 Krylov Methods

The conjugate gradient (CG) method [57] has been proposed as an alternative

to standard solvers for the transport equation as far back as 1988, when Faber

and Manteuffel observed that it can lead to much faster convergence than

source iteration [43]. A downside to CG for the transport equation is that

it requires the matrix to be symmetric, a property not typically possessed

by the discrete transport matrices. However, symmetrization strategies have

been proposed (i.e. [25]) to remedy this issue and thus allow for the use of

CG. Such symmetrization strategies are generally not valid for problems with

anisotropic scattering and thus have found little favor in the wider transport

community.

Nonsymmetric Krylov solvers such as GMRES [100], on the other hand,

have started to gain significant attention in recent years [51, 90, 87]. The

ability to apply such methods directly to any (linear) spatial discretization

without the need for symmetrization is a very attractive property. The addi-
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tional computational effort of GMRES versus CG due to orthogonalization

is likely to be minimal because of the already large computational cost of

performing matrix–vector products. The extra storage requirements might

be more significant, although the rapid rate of convergence tends to keep the

necessary subspace size small.

One particularly appealing feature of Krylov methods involves their be-

havior when preconditioned with DSA. As noted previously, DSA methods

must be formulated very carefully to retain their efficiency. It was observed

in [125] that an inconsistent DSA typically retains its efficiency when used

as a preconditioner to a Krylov method even in situations when it would

normally be rendered ineffective.

4.2 Multigroup Solvers

In many physical systems, it is generally only possible for particles to lose

energy in the course of a scattering event (this is called downscattering). In

this case the scattering matrix S (and thus the entire transport matrix) will

be block lower triangular. Solving a linear system with such a matrix can

be accomplished by simply performing a block elimination procedure that

involves solving a monoenergetic transport equation in each energy group.

These solves can be performed using the strategies described in the previous

section. However, when the thermal energy of the background material is

comparable to the energy of the radiation particles it becomes possible for a

particle to gain energy in a collision, a process known as upscattering. This

upscattering causes the transport matrix to have nonzero blocks above the

main diagonal. When the behavior of particles at low energies is important to

the overall behavior of the system, upscattering can be a serious impediment

to the solution of multigroup problems. For the remainder of this work we

will assume that upscattering is significant and must be treated, a property
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that is true for many nuclear reactor designs.

4.2.1 Block Gauss-Seidel

If upscattering is only weakly present, the block lower triangular portion of

the transport matrix will be dominant. Thus the use of a block Gauss-Seidel

iteration will lead to rapid convergence in many instances. The diagonal

blocks form a series of monoenergetic transport equations of the form

(I − D̃L−1
g M̃Sgg)φ

m+1
g = q̃g, (4.9)

where

q̃g = D̃L−1
g M̃

(

∑

g′<g

Sg′gφ
m+1
g′ +

∑

g′>g

Sg′gφ
m
g′ + qg

)

(4.10)

and qg is the component of the original right hand side in group g. These

monoenergetic equations can be solved using the techniques outlined in the

previous section. Occasionally it may be desirable to perform a backward

Gauss-Seidel iteration after the forward Gauss-Seidel sweep (forming a sym-

metric Gauss-Seidel iteration), though the performance gain from such an

approach is likely to be fairly small.

4.2.2 Upscatter Acceleration

For systems in which the behavior of neutrons at low energies is important,

a significant amount of upscattering will occur. Numerically, this indicates

that the Gauss-Seidel iteration is failing to capture a significant portion of the

physics in the problem. In fact, the spectral radius of the Gauss-Seidel itera-

tion matrix can approach unity for problems with highly scattering materials

(in [3] it was observed that the Gauss-Seidel spectral radius was 0.9984 for

graphite and 0.9998 for heavy water with a particular 69 group cross section

library). Similar to the use of Richardson iteration for the monoenergetic
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equations, such an approach can require an exorbitant number of iterations

to fully converge.

One of the few methods developed to accelerate Gauss-Seidel iterations is

the two-grid method proposed by Morel in 1993 [3]. The method is mo-

tivated by a Fourier analysis that indicates that the slow convergence of

Gauss-Seidel is caused by a single error mode that is nearly isotropic in an-

gle and has a nearly constant energy distribution. The two-grid method seeks

to annihilate this single error mode by collapsing the multigroup transport

problem to a monoenergetic diffusion equation. The diffusion discretization

is obtained through the standard techniques available in the DSA literature.

The collapse to a monoenergetic problem is achieved by using a material-

dependent restriction operator that consists of the eigenvector corresponding

to the dominant eigenvalue of the Gauss-Seidel iteration matrix. This vector

approaches a Maxwellian energy distribution as the Gauss-Seidel spectral

radius approaches unity (a Maxwellian distribution can be viewed as the

steady-state energy distribution of particles scattering in an infinite, purely

scattering medium). In the ideal case, the two-grid method completely re-

moves the error component corresponding to the dominant error mode and

the convergence rate is then dictated by the magnitude of the second largest

Gauss-Seidel eigenvalue, which is generally much smaller than the dominant

eigenvalue. A similar method was proposed nearly simultaneously in [11],

differing primarily in the choice of the restriction and prolongation opera-

tors.

The behavior of the two-grid method largely parallels that of DSA tech-

niques for the monoenergetic problem. Most notably, it relies on the avail-

ability of a diffusion discretization that is consistent with the underlying

transport discretization and its performance tends to significantly degrade

(or diverge) in the presence of large material discontinuities. In order to ad-

dress these drawbacks, a modified approach termed the transport two-grid
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(TTG) was developed in [41] that uses the same transport discretization as

the original problem. Even this approach, however, still suffers from conver-

gence issues and has the potential to diverge for problems where the energy

spectrum is not well represented by its infinite medium equivalent.

4.2.3 Krylov Methods

Historically, Krylov methods have not been used in the solution of the multi-

group equations and little discussion of such an approach appears in the

transport literature. This is presumably due to the belief that for large prob-

lems the memory requirements of a subspace approach will be prohibitive.

However, such an approach has recently been employed in the Denovo [42]

transport solver. Typically a Krylov method would only be used to solve the

portion of the multigroup problem that contains upscatter (the ‘upscatter

block’) and a block elimination procedure would be used for the block lower

triangular part of the matrix, although early results indicate that it may be

more efficient (albeit more memory intensive) to solve the entire multigroup

problem with the Krylov method [35].

Due to the low cost of performing a matrix multiplication with the multi-

group matrix relative to a Gauss-Seidel iteration, it is possible that the use

of a Krylov method with no preconditioner could lead to an efficient solver.

However, the memory requirement alone could render this impractical and

present the need for preconditioning. Due to the density of the coefficient

matrices, many standard methods for the iterative solution of sparse linear

systems are not available [16] and either block approximations to the problem

or physics-based approximations will be necessary. One possibility for pre-

conditioning is to use the block lower triangular portion of the multigroup ma-

trix as a preconditioner (‘block Gauss-Seidel preconditioning’), which would

cause the matrix-vector product to replicate the structure of a Gauss-Seidel
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iteration that may be appealing from the standpoint of leveraging existing

code when implementing a new solver. However, such an approach would

typically require the use of a flexible Krylov solver (such as FGMRES [99])

because the preconditioner is computed iteratively and thus changes from

one iteration to the next. Another disadvantage of the use of block Gauss-

Seidel as a preconditioner to a Krylov method versus the use of iterative block

Gauss-Seidel is due to the fact that the block Gauss-Seidel iteration operates

on the current estimate of the solution vector, which is converging as the

outer iteration progresses. Thus the right hand sides for the monoenergetic

problems become very similar from one iteration to the next, indicating that

the solution estimate from the previous iteration will provide an excellent

initial guess for the current iteration. The result is that the cost of perform-

ing a Gauss-Seidel iteration will decrease by a significant amount over the

course of the solution process, leading to an apparent acceleration of the it-

erations and potentially a large reduction in computational cost. When used

as a preconditioner, the right hand sides for the monoenergetic equations are

formed by direction vectors that are independent from one iteration to the

next so that no good initial guess is available and thus the cost of an iteration

remains constant throughout the process.

Other potential options for multigroup preconditioners are the two-grid and

transport two-grid methods described in the previous section. The downside

to these methods as preconditioners is that they must be used in conjunction

with a block Gauss-Seidel preconditioner, increasing the computational cost

of each iteration. Additionally, these methods have been designed specifically

for use with an iterative method where convergence is entirely dictated by the

spectral radius of the iteration matrix. The convergence of Krylov methods,

however, is not so straightforward and generally depends on the behavior of

the entire spectrum. Thus it is not immediately obvious that a method that

seeks to reduce the spectral radius of the iteration matrix will necessarily
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function well as a preconditioner.

4.3 Eigensolvers

We now turn our attention to the solution of the k-eigenvalue problem (2.30).

While descriptions of many eigensolvers were provided in Chapter 3, we will

focus on aspects of eigensolvers as they have typically been applied in the

transport community.

4.3.1 Power Iteration

Because the k-eigenvalue problem can be converted into the standard eigen-

value problem (2.32) in which we are interested in only the dominant eigen-

value (and its corresponding eigenvector), the use of power iteration is a

natural choice. All that is needed is to repeatedly multiply a starting vector

by the matrix

A = (I − TS)−1
TF (4.11)

until convergence is reached. However, this means that each iteration requires

solving a linear system with the multigroup transport equation. As described

in the previous section, this is frequently accomplished using a block Gauss-

Seidel iteration and in fact it is common to use only a single Gauss-Seidel

iteration per outer iteration, resulting in the iteration

(I − TSL)φ
m+1 = T

(

SU +
1

k(m)
F

)

φm (4.12)

where k(m) is the current eigenvalue estimate and SL and SU are the lower

and strictly upper triangular portions of the scattering matrix, respectively.

Although this approach may result in slightly slower convergence in terms of

the number of outer (power) iterations, it is usually more than compensated

by the elimination of an entire level of the iteration structure.
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4.3.2 Shifted Iterations

In order to address issues related to slow convergence that generally plague

the power method, some authors have been led to consider the use of the

shifted power method (or inverse iteration) for the k-eigenvalue problem [8].

As was shown in Chapter 3, this approach results in a more rapidly conver-

gent method. However, each iteration has been made more difficult because

the linear system that must be solved now includes fission as well as scatter-

ing. Because elements of the fission matrix tend to be large above the main

diagonal, a block Gauss-Seidel iteration on this linear system will converge

much more slowly (if at all). This difficulty, combined with the fact that

it may be quite difficult to arrive at a sufficiently accurate eigenvalue ap-

proximation to the true eigenvalue, has traditionally kept the shifted power

iteration from being widely adopted.

A natural extension to the shifted power iteration is to dynamically update

the shift parameter by setting it equal to the current eigenvalue estimate,

resulting in a generalized Rayleigh quotient iteration. Now not only is the

linear system that must be solved more difficult than in the original power

method, but the difficulty increases with each outer iteration. Block Gauss-

Seidel cannot be expected to converge for this problem and more advanced

techniques will be necessary. Although not widely used in the transport

community (likely due to the focus on block Gauss-Seidel for solving linear

systems), this strategy is beginning to attract some attention [102].

4.3.3 Nonlinear Acceleration

Just as with the solution of linear systems involving the transport equation,

convergence for basic solvers for the k-eigenvalue problem tends to be very

slow for many problems of interest. With the power method, this tends to

happen when a problem contains multiple large, loosely coupled regions [5].
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The same techniques that are typically used to accelerate the convergence

of linear solvers have also been employed for the solution of the k-eigenvalue

problem. Thus there are adaptations of CMR and CMFD in which the

low order problem is an eigenvalue problem rather than a linear system [29,

38]. The aggregation/disaggregation class to which these methods belong

have also been used for the solution of other eigenvalue problems [28]. In

particular, they have been used with a great deal of success for the problem of

determining the stationary distribution of Markov chains [56, 115]. Similarly,

there exists a variant of the quasi-diffusion method that can be used to

accelerate the solution of the k-eigenvalue problem [128].

4.3.4 Krylov Methods

In recent years the Arnoldi method [9], and in particular the Implicitly

Restarted Arnoldi Method [71] has started to draw attention for the solution

of the k-eigenvalue problem. It was observed in [126] that IRAM is a pow-

erful alternative to power iteration for problems with only downscattering

(i.e. where the matrix S is lower triangular) but experiences some difficulties

for the more general case with upscattering included. This is because each

Arnoldi iteration requires applying the matrix

A = (I − TS)−1
TF (4.13)

to a given vector and in order to maintain the structure of the Arnoldi method

(and thus the accuracy of the computed eigenvalue) it is necessary to apply

this matrix to a very high level of accuracy. Because block Gauss-Seidel

was being used to solve the necessary linear system, the result was a high

cost per iteration. This is in contrast with the power method where very

inexact applications of the matrix are generally permissible (for an extreme

example of this see the flattened power iteration described in [45], where no

within-group iterations are performed at all). More recent implementations
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of the Arnoldi method (such as that in [42]) suggest that the use of a Krylov

method to solve the linear system may greatly increase the performance of

IRAM. We note in passing that other applications of Krylov methods to the

k-eigenvalue problem using the Orthomin(1) algorithm have been described

in [50] and [77].

4.3.5 Newton’s Method

Another recently proposed solver for the k-eigenvalue problem is Newton’s

method. In terms of the transport operators, the function to be solved can

be written as

f(φ;λ) =

{

[I − T (S + λF )]φ
1
2
− 1

2
φTφ

= 0. (4.14)

The Jacobian of this system is given by

J(φ;λ) =

[

I − T (S + λF ) −TFφ

−φT 0

]

. (4.15)

Because the Jacobian cannot actually be formed explicitly but matrix-vector

products can be performed (somewhat) inexpensively, this situation is very

suitable for Newton-Krylov [19] methods. This approach (along with a look

at the related Jacobian-Free Newton Krylov or JFNK method [63]) was stud-

ied in depth in [45]. The JFNK approach was also considered in [89] for the

related diffusion k-eigenvalue problem. Although favorable results have been

reported for many problems, a significant drawback exists in that convergence

to the desired eigenpair is not guaranteed. Clearly any eigenvalue/eigenvector

pair will satisfy (4.14) and thus there is generally no reason to expect con-

vergence to the dominant pair. Indeed, studies have shown that convergence

to higher order harmonics is observed in practice. The only remedy for this

situation is to improve the quality of the initial guess, usually by performing

several iterations of the power method before beginning the Newton itera-

tions. Even with improved starting vectors, the results in [45] illustrate the
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complex nature of the convergence of Newton’s method. This difficulty has

generally prevented Newton’s method from achieving widespread acceptance.

4.4 Parallelization

Due to the large dimensionality of the radiation transport equation, perform-

ing computations in parallel is an absolute necessity for large (and frequently

even for moderately sized) problems. This is especially true in 3-D, but even

in 2-D many transport solvers rely on the ability to parallelize the problem.

Although shared memory parallelism has been used, large scale parallelism

always comes in the form of distributed memory architectures and will be the

focus of this discussion. Parallel strategies can be devised to decompose the

problem with respect to any element of phase space: space, angle, or energy.

Decomposition in angle or energy requires duplicating the entire spatial mesh

on each processor, presenting a hefty burden on memory resources. Instead,

decomposing the problem in space is nearly always relied upon.

4.4.1 Domain Decomposition

The simplest and perhaps most commonly used parallel strategy is frequently

referred to as spatial domain decomposition or parallel block Jacobi [84].

In this strategy, the spatial domain is broken up into a number of smaller

sections and each processor is assigned one such section. Each processor

proceeds by solving the transport equation on its own domain, with commu-

nication between processors taking place in the form of exchanging boundary

angular flux data. The primary advantages of spatial domain decomposition

are its ease of implementation and its ability to handle complex processor

boundaries naturally. There are, however, some significant drawbacks to this

approach. First of all, the rate of convergence is dependent on the number
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of spatial domains used. As the number of domains is increased, each do-

main becomes smaller and thus more sensitive to the boundary data being

exchanged. This results in a degradation in the overall convergence behavior

as the number of processors is increased. Thus, domain decomposition is

generally only a viable option for small parallel systems (significant degra-

dation is usually already noticeable at fewer than 100 processors) [94]. An

additional difficulty with the parallel block Jacobi approach is the issue of

load balancing. Because each processor is attempting to solve the solve a

full transport problem on its portion of the problem, some processors may

have a more difficult region of the problem and thus require more work to

complete their tasks. The amount of work is not necessarily proportional to

the number of computational cells that makes it very difficult to evenly split

up the task. Imbalances in the computational load will lead to some pro-

cessors sitting idle for some portion of the execution time, wasting valuable

resources.

4.4.2 KBA

One parallel strategy that has been very successful for structured (i.e. Carte-

sian) mesh problems is the method of Koch, Baker and Alcouffe [14, 15]. The

KBA algorithm creates a 2-D decomposition of the problem (in 3-D each do-

main consists of a column spanning the entire height of the problem) and

actually parallelizes the sweeping process involved in inverting the (pycholog-

ically) lower triangular matrix L described in 2.4.2. To solve this system for

a given direction, the work of each processor depends on each processor that

is upwind of it. Thus the KBA algorithm starts with the domain that has

no upwind neighbors (located in a corner) and performs a transport sweep

across its domain. That processor then passes its boundary information to

neighboring processors that can then perform a sweep on their domain. Each
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processor does not start work until it has received all of its boundary data

from upwind neighbors. Once a processor has completed its sweep for one

angle, it can then begin the same sweeping process for another angle in the

same octant. Because the sweep ordering will be the same for each angle in

a given octant, each angle can be processed with exactly the same strategy.

If the number of angles is very large then it is possible for a pipeline to build

up so that all (or at least a large percentage) of the processors are able to

be sweeping some angle at the same time. This means that the efficiency

of KBA may be quite low for a low angular order but will increase as the

angular order is increased. It is also possible to start the sweeping process for

different octants at the same time by starting at each corner of the problem.

In this case, collisions will occur when a processor is able to begin work on

more than one direction at the same time. An analysis of different strategies

for optimally handling such collisions can be found in [13] and an algorithm

with a provable worst-case scenario in [65]. Because L is being directly in-

verted with the KBA algorithm, the outer iteration counts will not depend

on the number of processors used for a given problem.

In practice, KBA has been used effectively for large-scale transport prob-

lems and is the basis for the Denovo transport code [42]. Parallel efficiencies

exceeding 70% have been observed for up to 3600 processors, significantly

better than can be achieved with domain decomposition strategies.

4.4.3 Unstructured Sweeps

For transport solvers using an unstructured mesh, the task of parallelizing

the sweeping process is more difficult. In particular, the sweep ordering

can be completely different for different angles, even those in the same oc-

tant. Additionally, when the boundaries between processor domains are not

structured, it is possible to have cycles in the sweep ordering across spatial
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domains and thus some processors may have to send and receive informa-

tion multiple times to complete the sweep for a single angle. These factors

tend to significantly degrade the performance of unstructured mesh algo-

rithms, however some work has been done to achieve scalable algorithms

[91, 93, 94]. These strategies typically revolve around a KBA-like decom-

position, although spatial domains will contain ‘ragged’ edges due to the

unstructured mesh. Geometric and/or graph partitioning heuristics are then

used to prioritize the work order of each processor in an attempt to minimize

the overall idle time of processors. Though unable to match the performance

of KBA, these techniques have demonstrated reasonable scaling performance

(> 50% efficiency) on upwards of 1000 processors.
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Chapter 5

Multigrid-in-Energy

A vital part of any k-eigenvalue solution strategy is the ability to efficiently

approximate the solutions to linear systems of the form

(I −DL−1MS)φ = q. (5.1)

This is obviously true for methods such as the Power Method or Arnoldi’s

method that are based upon a direct conversion of the problem to the stan-

dard eigenvalue formulation as in (2.32) but is also true for the Davidson

method, in which case it may be possible to make use of a very rough ap-

proximation as a preconditioner for use in the subspace expansion of (3.24).

Virtually all current transport solvers employ some form of nested iteration

procedure as described in Chapter 4. This complicated structure typically

comes at a significant computational overhead, reducing the overall efficiency

(and potentially also the accuracy) of the method. Thus it is our goal to

develop a strategy for solving multigroup transport problems that minimizes

the need for such nested iterations.

As a starting point for this new method we take the two-grid acceleration

methods [3, 41] described previously, as they are essentially the only methods

targeted at the multigroup equations for problems with significant upscat-
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tering. Perhaps the most noticeable drawback to these methods are their

dependence on a block Gauss-Seidel iteration that can endure a hefty com-

putational cost on its own. However, if a less expensive iteration (such as

Richardson iteration) is used then numerous error modes will persist and the

two-grid acceleration will be ineffective because it is only capable of damping

a single mode. Rather than using a single course energy grid, the approach

we propose is to use a hierarchy of energy group structures so that a range of

error modes can be addressed. To minimize the cost of this strategy, rather

than fully solving a problem on a given energy grid we propose to merely

relax, or smooth, the error. Thus the iteration takes the form of a multigrid

method [116]. To further accelerate the convergence of this approach and to

alleviate any issues with consistency, we propose that this approach be used

as a preconditioner to a Krylov subspace method. While previous studies

have applied multigrid methods to the spatial [26] and angular [80] variables

in the transport equation, to our knowledge no published work has investi-

gated the use of a multigrid approach for the energy component. We refer

to this method as a multigrid-in-energy (MGE) preconditioner.

5.1 Basic Structure

A wide variety of different multigrid cycles have been proposed. The sim-

plest of these is the standard V-cycle that starts at the finest grid level and

progressively moves towards the coarsest grid through the use of restriction

operators with smoothing iterations taking place at each level. Once the

coarsest level is reached, the V-cycle returns to the original fine grid through

the use of prolongation operators, again applying a smoother at each in-

termediate level. In a ‘textbook’ multigrid implementation, an exact solve

would be performed on the coarsest level. More complicated schemes such

as W-cycles and F-cycles involve visiting coarser levels more often than the
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finer grids, performing extra work on the computationally inexpensive coarse

grids. In our method, we elect to use only the basic V-cycle due to its sim-

plicity and smaller computational cost per cycle.

For the energy treatment of the transport equation, each ‘grid’ corresponds

to an energy group structure. If the finest grid (the original problem) has NE

energy groups, then the second grid will have approximately NE

2
groups, the

third approximately NE

4
and so forth. When an odd number of groups are

present at a given level, two options are available: one can choose three of the

fine grid groups to combine into a single coarse group or alternatively choose

one fine grid group to remain unchanged on the coarse grid. We (somewhat

arbitrarily) elect to use the latter approach in our method. The coarsest grid

will generally have only a single energy group, but because this monoener-

getic equation still has the full spatial resolution of the original problem a

direct solve is not feasible here. We elect instead to simply perform the same

smoothing operation that is performed on the intermediate grids. Such a

strategy is feasible because MGE is being designed as a preconditioner and

not an iterative solver. A multigrid iterative solver would require that an

exact (or at least high accuracy) linear solve be performed on the coarsest

level. In order to fully define the method, we must specify the two com-

ponents that largely define any multigrid method: how to transfer errors

between grids and how to damp (smooth) errors on a particular grid.

5.2 Grid Transfer

In the previously mentioned two-grid methods, transfer between the multi-

group and monoenergetic problems is achieved through a material-dependent

energy spectrum that for most problems provides a good approximation to

the shape of the dominant block Gauss-Seidel error mode. At first glance it

seems that a similar approach might be possible for MGE, to use a function
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that in some respect represents the ‘worst’ error mode. However, we would

like to stress that such an approach is not appropriate in this context since

any approach that targets a single mode is unlikely to be effective on other

modes. In order to operate effectively on all error modes, the appropriate

transfer operations are simply an even weighting procedure. Thus the prob-

lem on a coarse grid is defined in terms of the collapsed cross sections given

by

σC
g =

1

2
(σF

2g−1 + σF
2g) (5.2)

and

σC
s,g′→g =

1

2
(σF

s,(2g−1)→(2g−1)+σ
F
s,(2g−1)→(2g)+σ

F
s,(2g)→(2g−1)+σ

F
s,(2g)→(2g)) (5.3)

where the superscripts C and F indicate the coarse and fine grid levels,

respectively, and the notation of (2.15) and (2.16) has been used. It should be

noted that while standard multigrid methods generally use higher order grid

transfer operators [116], this is not necessary in the MGE approach because

no derivatives with respect to energy appear in the transport equation.

5.3 Smoothing Iterations

The smoothing iterations in a multigrid method frequently consist of a few

iterations of an inexpensive fixed point iteration [127] such as a Jacobi or

Gauss-Seidel iteration. Because the transport matrices are dense and indi-

vidual matrix entries are not accessible, such approaches are not practical for

use in the MGE method. However, blocked versions of these methods are a

possibility. If we split the scattering matrix into its strictly lower triangular,

diagonal, and strictly upper components (SL, SD, and SU , respectively) then

the block Jacobi iteration can be written as

(I − TSD)φ
k+1 = T (SL + SU)φ

k + b (5.4)
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and block Gauss-Seidel as

[I − T (SD + SL)]φ
k+1 = TSUφ

k + b. (5.5)

Due to the fact that the diagonal portion of the scattering matrix appears on

the left hand side of these equations, each iteration of one of these methods

requires solving a monoenergetic transport problem for each energy group.

This is likely to introduce a significant computational burden. Alternatively,

it is possible to simply perform a Richardson iteration on the full multigroup

transport problem, which can be written as

φk+1 = TSφk + b. (5.6)

In this strategy, no within-group problems need to be solved and thus each

iteration will require only a very small computational cost, although it should

be expected to be somewhat less effective. It is also possible to slightly modify

the Richardson iteration to include the strictly lower triangular portion of

the scattering on the left hand side while keeping all other terms on the right

hand side, giving

(I − TSL)φ
k+1 = T (SD + SU)φ

k + b. (5.7)

This has the same computational cost as the Richardson iteration while still

allowing some portion of the scattering to be treated implicitly. We refer to

this approach as a modified Gauss-Seidel iteration and adopt this strategy

for use with MGE. With any of the above procedures, it is possible to add a

damping operation of the form

φ̃k+1 = ωφk+1 + (1− ω)φk, (5.8)

where φ̃k+1 is a refinement of φk+1 and ω is a relaxation parameter typically

taken in the interval (0, 2). Such relaxations are common in multigrid meth-

ods [127] and potentially offer a significant improvement if the parameter can

be chosen appropriately.
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5.4 Coarse Angle Approximation

It frequently occurs in the convergence of iterative methods for the transport

equation that the dominant error modes are only weakly dependent on an-

gle (this can happen even if the solution vector itself is highly anisotropic).

Thus it may be possible to represent the error using a much smaller number

of angles than is required to represent the solution itself. We propose to

substitute a low angular order problem (say S2) for the original SN problem

when performing the multigrid cycle. Although this may result in some loss

of effectiveness with respect to the error reduction per multigrid cycle, we feel

that this will be more than offset by the significant improvement in the com-

putational cost per iteration. Because the cost of performing a matrix-vector

product (and also of performing any of the proposed smoothing iterations) is

directly proportional to the number of angles in the problem, significant sav-

ings may be possible. If the S2 equations are used for the low order problem

then the reduction in computational effort per iteration is given by 8
N(N+2)

in either 2-D or 3-D, so the savings becomes even more noticeable as the

angular order is increased. We note that the use of a coarse angular problem

to approximate a high angular order is certainly not new. In fact almost

all of the techniques described in Chapter 4 are based upon this approach,

including the DSA and TSA strategies. The transport two-grid method in-

troduced in [41] also mentions the possibility of using an S2 or S4 problem

during the acceleration step.

One potential issue related to the use of a coarse angular problem in the

multigrid cycle arises in problems with reflecting boundaries. As discussed

in 2.4.2, it is often advantageous to add reflecting boundary angular fluxes

to the solution vector to avoid having to perform an additional iteration in

order to multiply by the transport matrix. If this is done, however, then the

residual upon which the multigrid cycle operates necessarily contains angular
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information on the problem boundary. In order to apply a multigrid cycle

with a coarse angular discretization, it is necessary to first convert the high

order angular fluxes to the low angular order and at the end of the cycle the

reverse must occur. We propose that this angular transfer is performed using

spherical harmonic moments as an intermediate. We feel this is a natural

selection because the coefficients are already available due to their use in the

computation of the scattering term. For the restriction from SN to S2, this

process appears as

ψS2
= M2DNψSN

(5.9)

and the prolongation from S2 to SN is given by

ψSN
= MND2ψS2

(5.10)

where DN andMN are the angular restriction and prolongation operators for

the SN quadrature set and D2 and M2 for the S2 set. In problems where the

boundary conditions tend to dominate the convergence behavior (typically

problems modeling small regions with reflecting boundary conditions on all

sides), this approach may not be sufficient to ensure rapid convergence. In

such circumstances we recommend that a small number of inexpensive itera-

tions (e.g. Richardson or modified Gauss-Seidel) be performed using the full

angular order problem after the conclusion of the multigrid cycle. Because

this addition may significantly increase the cost of the overall iteration, it

is recommended that this only be done for problems where it is expected to

really be necessary. Alternatively, an increased angular order (say S4 or S6)

could be used in the multigrid cycle.

5.5 Parameter Selection

For the MGE approach to truly be a viable method, we must describe how

the various parameters should be selected. First the relaxation parameter,
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ω, for the smoothing iteration must be determined. We first consider the

behavior of the smoother itself and then look at its performance within a

multigrid framework. For the case of a damped Richardson iteration applied

to an arbitrary matrix A, the iteration matrix is given by (I − ωA) [48]. If

λi are the eigenvalues of the matrix A, then the eigenvalues of the iteration

matrix are given by (1−ωλi). The optimal convergence rate will be attained

by selecting ω so that the spectral radius of the iteration matrix is minimized,

i.e.

ωopt = argmin
ω

(

max
i
|1− ωλi|

)

. (5.11)

If all of the eigenvalues λi are real and positive then the spectral radius

is provided by max (|1− ωλmin|, |1− ωλmax|). Convergence will occur when

both |1 − ωλmin| and |1 − ωλmax| are less than unity and the minimum will

occur when |1− ωλmin| = |1− ωλmax|, which leads to

ωopt =
2

λmin + λmax

. (5.12)

In general all eigenvalues of the transport equation will not be real, but the

same result will hold provided that the complex components are relatively

small. From Figures 2.2 and 2.3 we see that λmin ≈ 0 and λmax ≈ 1 when

boundary angular fluxes are not included in the solution vector and λmax ≈

1.3 when they are included. These values indicate that the optimal relaxation

parameter should be ω ≈ 2 without the inclusion of boundary fluxes and

ω ≈ 1.5 with their inclusion. In both cases the predicted optimal value is

quite close to the cutoff where the iteration fails to be convergent, so it seems

reasonable to make a selection slightly smaller to guarantee convergence.

In the simplified scenario of an infinite medium problem, we can directly

look at the effect that MGE has on the spectrum of the transport operator.

In this case, the transport equation is independent of both space and angle,

reducing the size of the problem to only the number of energy unknowns. The

same infinite medium strategy was used in [3] to look at the convergence of
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the two-grid method. Rather than computing the entire multigrid operator,

we simply apply a two-level operator where an exact solve is used on the

coarse level. Analyzing a two grid method rather than the multigrid opera-

tor is consistent with observations in [127] concerning the determination of

multigrid convergence factors. We use a V-cycle with three pre-smoothing

and three post-smoothing Richardson iterations (combined with a relaxation

parameter) to analyze the performance. The problem consists of water (with

a natural isotopic distribution) with 238 group cross sections provided by the

SCALE [2] package. Figure 5.1 shows the spectral radius, ρ, of the iteration

matrix (i.e. I −M−1A, where M−1 is the two grid operator) as a function

of the relaxation parameter ω. The curve has a distinct convex shape with

a minimum at around ω = 1.3. This is an interesting result because it dif-

fers dramatically from the optimum value of the Richardson iteration alone.

The spectral radius at this minimum is less than 0.1, indicating that the

multigrid method does an excellent job of smoothing all error modes (also

in contrast to the standalone Richardson iteration which would have a spec-

tral radius quite close to 1 even with an optimal selection of the relaxation

parameter). Although minimizing the spectral radius of the iteration matrix

does not necessarily guarantee optimal performance when using MGE as a

preconditioner, it is expected that such a choice will still lead to very good

performance because the small value of the spectral radius indicates a strong

clustering of the entire spectrum.

Figure 5.2 displays the full spectrum of the original coefficient matrix for

this infinite medium problem as well as the impact of preconditioning with

either the lower triangular portion of the matrix or with MGE. The MGE

plot was computed using the value ω = 1.3 as suggested by the previous

discussion. The original matrix has eigenvalues distributed along the real line

between 0 and 1 with no strong clustering evident. Preconditioning with the

lower triangular portion of the matrix tends to cluster the spectrum around
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Figure 5.1: Dependence of MGE error reduction on parameter ω.

1 although the clustering is not very tight and several eigenvalues remain

outside of the cluster, including one very close to the origin. This eigenvalue

near the origin indicates that a preconditioned Richardson iteration with this

preconditioner (i.e. a Gauss-Seidel iteration) would be very slow to converge.

It is precisely this error mode that is targeted by the two-grid approaches

discussed in the previous chapter. The spectrum of the matrix preconditioned

by MGE with optimal relaxation parameter is quite remarkable; all of the

eigenvalues are clustered very closely around 1. This spectrum indicates that

a Krylov method utilizing this preconditioner would converge very rapidly.

Although the clustering is unlikely to be so dramatic outside of an infinite

medium calculation, these results nonetheless indicate the potential of the

MGE approach.

Figure 5.3 shows the iteration counts required for convergence of a David-

son eigensolver with MGE as the preconditioner for a variety of different

problems. The C5G7 and HTTR problems will be described in Chapter 6

and the PWR Assembly and Fuel Pin problems are just smaller portions of
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Figure 5.2: Preconditioned infinite medium spectra for different precondi-

tioners.
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the C5G7 problem modeled with reflecting boundary conditions on all sides.

The Slab problem is a 5 cm thick region of boron (a strong neutron absorber)

surrounded by 1 cm thick regions of water and highly enriched uranium. It

is 7 cm in height and contains vacuum boundaries on all sides. The iteration

counts shown are those required to reduce the eigenvalue residual to 10−6.

Despite the varying nature of these problems (and the varying boundary

condition treatments), they display very similar trends. With the exception

of the Fuel Pin problem, all of the curves display a minimum at ω ≈ 1.3,

completely consistent with the infinite medium prediction. The shape of

these convergence curves appears to be quite similar to the infinite medium

behavior of Figure 5.1, although the convergence actually appears to be less

sensitive to the selection of the relaxation parameter. For the C5G7, PWR

Assembly, and HTTR problems, the rapid deterioration at around ω = 1.5

results from the smoothing iteration becoming divergent, exactly as would be

expected according to the Richardson convergence analysis (angular fluxes

on the problem boundary are included in the solution vector for these prob-

lems). Because the slab problem has vacuum boundaries on all sides, no

such deterioration is seen and the convergence behavior remains very favor-

able across a wide range of ω values. The dramatically different behavior for

the Fuel Pin problem is that due to the very small physical size of the domain

(the problem is only 1.26 cm across), the effects of the boundary conditions

become far more significant. It is very likely that the largest eigenvalue of

the multigroup transport matrix for this problem is much larger than the

value of 1.3 from Figure 2.3, leading to a smaller convergence region for

the Richardson iteration. Based on these results combined with the infinite

medium analysis, we propose that a value of ω = 1.3 be used as the default

value with the understanding that a different selection will be necessary for

very small spatial domains. It should be noted that the problems of the most

interest in the transport community are generally at least the size of a fuel
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Figure 5.3: Davidson/MGE iteration counts with varying relaxation param-

eter ω.

assembly and potentially much larger, so that the boundary condition issues

in the Fuel Pin problem are unlikely to be of much importance.

The next task is to determine the best selections for the number of pre-

and post-smoothing steps to apply during the multigrid cycle. Tables 5.1

and 5.2 show the computational times (and iteration counts) to achieve a

residual norm of 10−6 for various parameter selections for the HTTR and

C5G7 problems, respectively. Because the computational time per itera-

tion varies with the number of smoothing steps, it is the timing information

that should be considered (although for an equivalent computational time, a

smaller iteration count is generally preferable since it offers a smaller memory

requirement). As a general trend, it is evident that post-smoothing steps are

more effective at reducing iteration counts than pre-smoothing steps and, in

fact, performing more than 1 or 2 pre-smoothing steps generally offers no

additional reduction in iterations. As long as at least 2-3 post-smoothing it-



85

Table 5.1: Davidson/MGE timings in seconds (iteration counts) with varying

pre- and post-smoothing steps, HTTR problem.

ν1

ν2 0 1 2 3 4

1 85.6(29) 85.3(28) 85.6(27) 85.8(26) 88.2(26)

2 59.8(19) 61.9(19) 63.9(19) 62.6(18) 64.5(18)

3 50.7(15) 52.3(15) 54.0(15) 52.2(14) 53.7(14)

4 47.2(13) 48.6(13) 50.0(13) 51.3(13) 48.7(12)

5 46.3(12) 47.6(12) 48.9(12) 50.2(12) 51.5(12)

6 45.1(11) 46.3(11) 47.5(11) 48.7(11) 49.9(11)

erations are performed, the required time is actually quite insensitive to the

particular cycle selection with most combinations resulting in no more than

a 10−15% increase relative to the optimal combination. We propose using 1

pre-smoothing and 4 post-smoothing iterations, as this combination appears

to result in very close to optimal performance for the cases considered. Due

to the insensitivity of the performance with respect to these values, no fur-

ther attempt will be made to optimize these values on a problem-by-problem

basis.

Tables 5.4 and 5.3 show the effect of using a coarse angular approximation

(here an S2 angular quadrature) for the smoothing iterations rather than

using the full SN equations for the Davidson method applied to the two

problems described in Chapter 6. As would be expected, the coarse angle

smoothing is slightly less effective in terms of the outer iteration counts,

although the coarse angle approximation still results in rapid convergence.

However, due to the significantly lower computational cost of the precondi-

tioner it actually requires much less time to reach convergence for the coarse
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Table 5.2: Davidson/MGE timings in seconds (iteration counts) with varying

pre- and post-smoothing steps, C5G7 problem.

ν1

ν2 0 1 2 3 4

1 292.1(34) 321.0(36) 372.1(40) 354.0(37) 453.9(45)

2 211.0(23) 199.1(21) 196.2(20) 213.0(21) 219.5(21)

3 177.2(18) 172.6(17) 178.2(17) 184.0(17) 189.4(17)

4 178.8(17) 173.6(16) 167.6(15) 172.6(15) 177.6(15)

5 177.6(16) 182.7(16) 176.1(15) 181.0(15) 173.6(14)

6 176.8(15) 181.7(15) 186.6(15) 178.8(14) 183.4(14)

angle approach. The speed up becomes more significant as the angular order

of the problem is increased, resulting in a reduction in computational cost of

nearly a factor of 4 for an S16 quadrature.

It is actually rather fortunate that the convergence behavior of the MGE

method is so insensitive to problem parameters. It makes it much easier

to achieve fast and reliable performance for a wide range of problems and

minimizes the amount of knowledge that the code user must have concerning

the internal workings of the solver, potentially broadening the prospective

user base for such a method.
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Table 5.3: Davidson/MGE performance with and without coarse angle

smoothing, HTTR problem.

SN Smoothing S2 Smoothing

SN Order Angles Iters Time Iters Time

4 12 9 129.4 14 84.5

8 40 9 421.6 14 156.9

12 84 9 904.2 13 262.4

16 144 9 1682.8 13 440.8

Table 5.4: Davidson/MGE performance with and without coarse angle

smoothing, C5G7 problem.

SN Smoothing S2 Smoothing

SN Order Angles Iters Time Iters Time

4 12 13 248.1 16 127.4

8 40 13 805.1 16 235.7

12 84 13 1700.3 16 408.6

16 144 13 2886.9 16 640.8
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Chapter 6

Numerical Results

In order to study the behavior of different eigensolvers for the k-eigenvalue

problem, we now consider their performance in a realistic environment. The

radiation transport solver NEWT [38] has been selected as the test bed for

these numerical experiments. NEWT is a 2-D solver readily available within

the SCALE [2] package developed at Oak Ridge National Laboratory. It is

based on the extended step characteristics method, a member of the class of

slice balance methods that were mentioned in 2.2.3. The version of NEWT

that has been used is that distributed with SCALE version 6.0, the latest

available version at the time of this work.

A variety of eigensolvers have been implemented to identify their relative

strengths and weaknesses. In the distributed copy of the code, the only avail-

able eigensolver is the power method. Coarse mesh finite difference (CMFD)

acceleration of the power method iterates is available. These methods have

been left unchanged and are executed with default parameters except as oth-

erwise specified. Three additional solvers have been implemented in NEWT,

namely the Arnoldi method, Rayleigh quotient iteration, and a Davidson

solver. The Arnoldi and Davidson solvers require solution of a linear sys-

tem at each iteration that is performed using a full GMRES solver with the
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MGE method as a preconditioner. The Davidson solver directly uses the

MGE preconditioner for expansion of subspaces. All numerical experiments

were performed on a laptop computer with a 2.6 GHz Core 2 Duo processor

(although only single-threaded execution was performed) with 4 GB of RAM.

6.1 Test Problems

In order to test the effectiveness of the various eigensolvers, two sample

problems are proposed. The first test problem consists of a single block from

the high temperature test reactor (HTTR), a Japanese research reactor. The

HTTR block has a hexagonal outer geometry containing 37 fuel pins placed

in a hexagonal array, as shown in Figure 6.1. The fuel pins consist of 6.3%

enriched uranium oxide rods surrounded by a graphite sleeve, helium coolant,

and a matrix of graphite. Three burnable poison rods are placed at three of

the vertices of the array. The use of white boundary conditions on all sides

simulates an infinite array of such assemblies. The base configuration for the

numerical model was selected to have a 108× 96 spatial grid, 16 group cross

sections, an S8 angular quadrature and P1 scattering.

The dominant eigenvalue for this base case is 1.019063 with a dominance

ratio of approximately 0.94. The dominant eigenvector for several energy

groups is illustrated in Figure 6.1. Because the CMFD implementation

available in NEWT with SCALE 6.0 allows only for rectangular problem

boundaries, it was not possible to apply the CMFD acceleration technique

directly to the standard HTTR geometry (it is worth noting that the version

of NEWT to be distributed with SCALE 6.1 does allow hexagonal external

boundaries [62]). Instead, an equivalent geometry was created that contains

the same domain rearranged to form a rectangular outer boundary, as shown

in Figure 6.1. This formulation exactly preserves the volume of the original

geometry; mesh parameters were selected to produce a problem size that
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Figure 6.1: HTTR base configuration.

matched the original problem as closely as possible.

The second test problem is based on the well-known C5G7 MOX 2-D bench-

mark problem [86], though with select modifications. The geometry, shown

in Figure 6.1, consists of a 2 × 2 array of fuel assemblies, each of which

contains a 17 × 17 array of fuel pins. A 21.42 cm water reflector surrounds

the fuel assemblies on the bottom and left sides. The fuel pins each have

a diameter of 0.54 cm and a center-to-center spacing of 1.26 cm. The fuel

pins in the bottom left and upper right assemblies contain a standard 4.0%

enriched uranium oxide fuel (shown in green); the upper left and lower right

assemblies have a mixed oxide fuel (shown in blue). The moderator is nat-

ural water. No cladding is explicitly modeled, rather a volume weighting of

stainless steel is included in the fuel mixture, consistent with the benchmark

specification. The geometry is modeled with vacuum boundaries on the bot-

tom and left sides and reflecting boundaries on the top and right, providing

the equivalent of a 4×4 arrangement of fuel assemblies with a water reflector

on all sides.
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Figure 6.2: HTTR CMFD equivalent configuration.

Although the original specification provided 7-group cross sections for all

materials, it was decided that using cross sections generated through the

SCALE package would more closely replicate standard reactor physics cal-

culations and also allow for the energy group structure to be varied. For the

base configuration, each fuel pin cell is split into computational cells using a

2× 2 Cartesian grid, creating 8 cells per pin and a 102× 102 Cartesian mesh

(∆x = ∆y = 0.62 cm) is used to determine the computational cells in the

outer moderator region for a total of 15028 spatial cells in the geometry. A

16 group cross section set is used, along with an S8 level symmetric angular

quadrature (containing 40 angles) and P1 scattering in all materials. Studies

on the effects of varying each of these parameters can be found in Section

6.2.

The dominant eigenvalue for this configuration is 1.140080 with a domi-

nance ratio of approximately 0.97. The spatial distribution of the eigenvec-

tor corresponding to the dominant eigenvalue is displayed in Figure 6.1 for
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Figure 6.3: Dominant eigenvector in selected energy groups for the HTTR

problem.
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Figure 6.4: C5G7 base configuration.

several energy groups.

The performance of several eigensolvers for the two test problems is shown

in Table 6.1. Particularly in the C5G7 problem, the difficulties associated

with the power method are clearly evident. CMFD provides a very large

improvement for both problems, although we note that the coarse mesh pa-

rameter has been selected to provide optimal results and such a value would

generally not be known a priori. The Arnoldi method offers a fairly sig-

nificant improvement relative to the power method, although it is unable

to compete with the rapid convergence of CMFD. Rayleigh Quotient Iter-

ation displays remarkable performance with respect to the outer iteration

counts, converging in only 2 iterations for the HTTR problem, due to its

quadratic convergence. The large computational cost per iteration reduces

the overall performance although it is still fairly competitive with CMFD.

The top performer for both problems is the Davidson method with MGE
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(c) Group 12 (d) Group 16

Figure 6.5: Dominant eigenvector in selected energy groups for the C5G7

problem.
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Table 6.1: Eigensolver convergence and timings (seconds) for base cases.

HTTR C5G7

Solver Iters Time (s) Iters Time (s)

Power 103 1752 320 4494

CMFD 14 184 11 248

Arnoldi 5 640 10 1375

RQI 2 244 4 675

Dav/MGE 14 157 16 236

preconditioning, edging out CMFD in both cases. This achievement is par-

ticularly impressive considering that the Davidson approach does not rely on

any problem-dependent parameters to achieve its peak performance. Such

favorable performance suggests that this method deserves much more con-

sideration as a candidate for large-scale k-eigenvalue problems.

6.2 Parametric Studies

In order to determine the viability of each of the eigensolvers for use on

large scale problems, we now investigate the effect of refining the problem

with respect to each of the fundamental problem parameters: space, angle,

energy, and scattering order. Ideally, the number of iterations required for

convergence should be insensitive to changes in these parameters. A robust

method will display a linear variation in computational time with respect

to changes in the number of space, angle, and energy unknowns and exhibit

only slow growth with respect to increasing the scattering order. Results

for each of the methods will be presented with the exception of the power

method. This is due to the exceedingly long run times for the power method
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Table 6.2: Problem size for spatial refinement.

HTTR C5G7

Mesh Cells DOF Cells DOF

1 3909 187632 10693 622064

2 11169 536112 15028 851904

3 22217 1066416 32657 1763376

4 37827 1815696 50864 2702592

and the fact that it is unlikely to be competitive for any problem.

6.2.1 Spatial Refinement

We begin by considering the effect of refining the spatial resolution of the

problem. For each problem we consider four different levels of mesh refine-

ment to illustrate the convergence behavior. With the HTTR problem, grids

range from 54 × 48 for the coarsest level to 216 × 192 for the finest. For

the C5G7 problem, the base Cartesian mesh consists of a 51 × 51 grid for

the coarsest mesh up to a 204 × 204 grid at the finest level. The number

of spatial cells and total degrees of freedom for each problem are shown in

Table 6.2 and the behavior of the computed eigenvalue in Table 6.3.

The iteration counts and timings for each method are given in Tables 6.5

and 6.4. For both problems, all of the methods display a complete insensi-

tivity in the number of iterations required for convergence with respect to

spatial refinement. The timings follow the results of the base configuration

cases, with CMFD and the Davidson method showing the smallest times to

solution and the Arnoldi method displaying the poorest performance in all

cases. The scaling for all of the methods is approximately linear with the
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Table 6.3: Eigenvalue convergence for spatial refinement.

Mesh HTTR C5G7

1 1.019473 1.139948

2 1.019063 1.140080

3 1.018913 1.141882

4 1.018797 1.142127

number of spatial unknowns and the scaling between the two finest levels is

nearly exactly so. It should again be noted that CMFD is used here with

the optimal selection of the coarse mesh parameter that would not be known

beforehand (except through the experience and intuition of the user). To

reveal a bit more about the true nature of CMFD, Tables 6.7 and 6.6 show

the performance at each spatial level for a number of different coarse mesh

parameters, (CMFD(k) indicates that a coarse mesh cell is k times as large

as the base mesh in each coordinate direction). These tables display the dif-

ficulty with using CMFD in practice: poor selection of the mesh parameter

leads to poor convergence or even divergence. For the HTTR problem, on

the finest grids we see that selecting the coarse mesh to be too fine leads to

divergence. For the C5G7 problem the reverse is true in that selecting the

coarse mesh too coarse leads to divergence. Also selecting the coarse mesh

parameter too fine results in an increased computational time due to the

amount of time spent solving the diffusion problem at each iteration. Such

difficulties are the reason that many production radiation transport codes do

not offer CMFD (or other nonlinear acceleration techniques that generally

suffer from similar difficulties), and those that do generally do not provide it

as the default solver.
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Table 6.4: Performance for spatial refinement, HTTR.

CMFD Arnoldi RQI Dav/MGE

Grid Iters Time Iters Time Iters Time Iters Time

54× 48 14 61 5 206 2 79 13 49

108× 96 14 184 5 640 2 244 14 157

162× 144 14 419 5 1376 2 523 14 337

216× 192 14 764 5 2432 2 910 14 583

Table 6.5: Performance for spatial refinement, C5G7.

CMFD Arnoldi RQI Dav/MGE

Grid Iters Time Iters Time Iters Time Iters Time

1 14 227 10 966 4 480 16 171

2 11 248 10 1375 4 675 16 236

3 11 568 10 3314 4 1566 16 553

4 11 900 10 5058 4 2398 16 843

Table 6.6: CMFD performance for spatial refinement, HTTR.

CMFD1 CMFD2 CMFD3 CMFD4

Grid Iters Time Iters Time Iters Time Iters Time

54× 48 14 69 14 62 14 61 14 61

108× 96 14 537 14 195 14 186 14 184

162× 144 – – 14 481 14 419 14 433

216× 192 – – 14 1068 14 791 15 764
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Table 6.7: CMFD performance for spatial refinement, C5G7.

CMFD(1) CMFD(2) CMFD(3) CMFD(4)

Grid Iters Time Iters Time Iters Time Iters Time

1 14 227 – – – – – –

2 11 472 11 248 – – – –

3 11 1416 11 656 11 568 11 576

4 11 2928 11 1122 11 955 11 900

6.2.2 Angular Refinement

Next we look at the effect of altering the order of the angular quadrature.

The impact of such refinement on the dominant eigenvalue is displayed in Ta-

ble 6.8 and the impact on the performance in Tables 6.9 and 6.10. As with

spatial refinement, the iteration counts are not affected by changes in the

quadrature order. It is interesting to observe in these results, however, that

the time required to converge scales approximately linearly with the number

of angles for CMFD but actually scales slower than linear for the other meth-

ods. This behavior occurs due to the coarse angular smoothing in the MGE

preconditioner that is used in these solvers, so the cost of the preconditioner

is independent of the angular order. Because part of the computational cost

(the matrix vector products) is scaling linearly with the number of angles

and part of the cost is remaining constant, the net result is something less

than linear. Of course if the number of angles became large enough then

the cost of the preconditioner would become very small compared to the ma-

trix vector products and the behavior would appear linear from that point

forward. This favorable scaling with respect to angular refinement is a very

valuable feature for a transport solver, as most problems of interest in the
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Table 6.8: Eigenvalue convergence for angular refinement.

SN Order Angles HTTR C5G7

4 12 1.019515 1.139674

8 40 1.019063 1.140080

12 84 1.019258 1.140111

16 144 1.019310 1.140119

Table 6.9: Performance for angle refinement, HTTR.

CMFD Arnoldi RQI Dav/MGE

SN Order Iters Time Iters Time Iters Time Iters Time

4 15 60 5 418 2 168 14 85

8 14 184 5 640 2 244 14 157

12 14 384 5 1018 2 694 13 262

16 14 661 5 1602 3 1121 13 441

field require very high angular orders to appropriately resolve the physics.

6.2.3 Energy Refinement

The effect of varying the number of energy groups in the problems is shown

in Table 6.11 and the resulting performance for the eigensolvers in Tables

6.12 and 6.13. As with space and angle refinement, the convergence behavior

with respect to increasing the number of energy groups is quite robust for

all of the methods. Interestingly, there is a slight reduction in the outer

iteration count in the Davidson method for the C5G7 problem and a slight

increase for the HTTR problem, although the differences in both cases are
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Table 6.10: Performance for angle refinement, C5G7.

CMFD Arnoldi RQI Dav/MGE

SN Order Iters Time Iters Time Iters Time Iters Time

4 11 967 10 897 4 427 16 127

8 11 248 10 1375 4 675 16 236

12 11 495 10 2142 4 1068 16 409

16 11 818 10 3215 4 1620 16 641

Table 6.11: Convergence for energy refinement.

Groups HTTR C5G7

16 1.019063 1.140080

32 1.017169 1.138705

64 1.017979 1.139998

128 1.019108 1.140836

fairly small. The asterisks on the finest energy group structures indicate that

the maximum amount of memory was reached and the program had to resort

to virtual memory (Linux swap space) and thus the computational times are

possibly slightly higher than might otherwise be observed. Except for this

memory issue, the Davidson method continues to outperform all of the other

methods, including CMFD.

6.2.4 Scattering Order Refinement

Given all of the previous observations, it should come as no surprise that

scattering order refinement has little to no impact on the convergence be-
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Table 6.12: Performance for energy refinement, HTTR.

CMFD Arnoldi RQI Dav/MGE

Groups Iters Time Iters Time Iters Time Iters Time

16 14 184 5 640 2 244 14 157

32 15 381 5 1331 2 528 14 328

64 15 769 5 2939 2 1016 13 650

128 15 1632 5 7476* 3 5190* 15 1771*

Table 6.13: Performance for energy refinement, C5G7.

CMFD Arnoldi RQI Dav/MGE

Groups Iters Time Iters Time Iters Time Iters Time

16 11 248 10 1375 4 675 16 236

32 11 497 10 2758 4 1422 16 488

64 11 999 10 5527 4 2754 15 967

128 13 2166 10 10828 4 5900 14 1737
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Table 6.14: Convergence for PN order refinement.

PN Order HTTR C5G7

0 1.020627 1.179741

1 1.019063 1.140080

2 1.019428 1.140691

3 1.019322 1.140613

havior of the eigensolvers, as we see in Tables 6.15 and 6.16. However, this

study displays a slightly different behavior than the others in that CMFD

seems to exhibit better scaling in terms of the timings than the other meth-

ods and appears to be slightly more efficient than the Davidson method at

higher scattering orders for the C5G7 problem. The reason for this behavior

is that CMFD performs very few operations on the spherical harmonic mo-

ment vectors and thus displays only a very small growth in run time with

increasing scattering order. The other methods, however, perform a larger

portion of their work on vectors containing the spherical harmonic moments

(since operations such as orthogonalization and projections involve vectors

containing these moments) and thus the timings show more of an impact.

6.2.5 Subspace Dimensions

As is evidenced by the energy refinement study, the large memory require-

ments can be a significant drawback to the use of subspace type methods and

the Davidson method in particular. To illustrate that this does not present

a true limitation of the method, we now look at the effect of changing the

maximum allowable subspace size and thus forcing the Davidson method to

periodically restart. The restarting technique that we use is equivalent to the

thick restarting process of Stathopoulos that is described in Section 3.2.6. We
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Table 6.15: Performance for PN order refinement, HTTR.

CMFD Arnoldi RQI Dav/MGE

PN Order Iters Time Iters Time Iters Time Iters Time

0 14 190 5 611 2 225 13 135

1 14 184 5 640 2 244 14 157

2 15 204 5 722 2 284 14 175

3 15 214 5 828 2 321 15 210

Table 6.16: Performance for PN order refinement, C5G7.

CMFD Arnoldi RQI Dav/MGE

PN Order Iters Time Iters Time Iters Time Iters Time

0 12 227 12 1472 4 633 18 243

1 11 248 10 1375 4 675 16 236

2 11 261 10 1610 4 777 17 283

3 11 275 10 1934 4 891 16 320
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Table 6.17: Davidson performance for subspace size variation, HTTR.

Restart Dimension

Max Dim. 1 2 4 6 8 10

2 25 – – – – –

4 20 16 – – – –

6 16 16 15 – – –

8 15 16 16 16 – –

10 15 15 15 15 15 –

12 14 14 14 14 14 14

also vary the number of vectors that are retained after a restart. Increasing

the restart dimension will increase the amount of ‘good’ information that is

retained in the new subspace but if too many vectors are retained then the

method may have to restart too many times, hindering convergence.

Tables 6.17 and 6.18 demonstrate that it is not necessary to have a very

large subspace to achieve a rate of convergence nearly the same as that of the

unrestarted method (recall the unrestarted approach required 14 iterations

for convergence on the HTTR problem and 16 for the C5G7). Although a

maximum subspace size of 2 results in significant degradation, even allowing

only 4 basis vectors still results in very favorable performance and with 6

basis vectors the iteration counts are almost the same as their unrestarted

counterparts. Although there seems to be some benefit in retaining additional

vectors upon restarting, the impact of this selection remains fairly small.

These results would seem to alleviate one of the primary concerns associated

with the use of the Davidson method, namely that the memory requirements

are simply too steep for a practical method. While having to store 3 sets of

basis vectors that each contain 20 vectors may be a prohibitive memory cost
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Table 6.18: Davidson performance for subspace size variation, C5G7.

Restart Dimension

Max Dim. 1 2 4 6 8 10

2 42 – – – – –

4 23 21 – – – –

6 18 18 18 – – –

8 18 18 17 17 – –

10 18 17 17 16 17 –

12 18 17 17 17 16 16

for large problems (at least for certain computer architectures), reducing the

size of the bases to 6 or 8 vectors each may certainly be feasible.
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6.3 Linear Solvers

Although the primary goal of this work is the solution of the k-eigenvalue

problem, because many eigensolvers require solving a linear system with the

transport equation at each iteration we feel it is relevant to briefly discuss the

strategies for solving such linear systems. Table 6.19 shows the performance

of three solvers applied to the same problems used for the eigenvalue studies.

Here the right hand side is taken to be x = Be, where e is a vector of all

ones, approximating the type of right hand side that would be present within

an outer eigenproblem. The block Gauss-Seidel implementation is intended

to be representative of the standard linear solver that is typically available

in transport solvers. The diagonal blocks of the multigroup problem are

solved using GMRES with no preconditioning and a maximum of 4 iterations

per group. The other methods shown are GMRES applied directly to the

multigroup problem with no preconditioning and GMRES with MGE as a

preconditioner. This last method is the technique that was used to solve the

linear systems in the Arnoldi and RQI methods for the eigensolver results.

We also note that an attempt was made to use the transport two-grid method

to accelerate the block Gauss-Seidel iterations but it proved to be unstable

for these problems.

The block Gauss-Seidel method behaves quite differently for the two prob-

lems, with convergence occurring quite rapidly for the HTTR problem and

much slower for the C5G7. However, even on the HTTR problem the time

required for convergence is much larger for block Gauss-Seidel than for ei-

ther of the GMRES approaches. This happens because each block Gauss-

Seidel iteration requires performing a number of inner iterations, making

each Gauss-Seidel iteration much more expensive than a GMRES step. The

impact of preconditioning is evident in both problems, reducing the iteration

count by approximately a factor of 4 and the total computational effort by
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Table 6.19: Comparison of linear solver performance for base cases.

HTTR C5G7

Solver Iters Time (s) Iters Time (s)

Block G-S 13 479 69 1963

GMRES 59 221 60 298

GMRES/MGE 18 141 15 155

roughly a factor of 2. Detailed parametric studies comparable to those found

for the eigensolvers can be found in Appendix A.

As discussed previously, the memory costs associated with subspace meth-

ods may become unacceptably large under some circumstances and it is there-

fore important to consider the impact of restarting such methods. Tables 6.20

and 6.21 demonstrate this behavior for GMRES(m) with a range of restart

lengths with and without preconditioning. We consider the solution of linear

systems involving both the unshifted matrix A as well as the shifted matrix

A− µB. The former is representative of an inner iteration with the Arnoldi

method and the latter roughly approximates the inner linear solve at an

intermediate stage of Rayleigh quotient iteration. We display here only the

iteration counts, illustrating the scaling of each problem with respect to these

parameters. As would generally be expected, the performance of GMRES

tends to degrade as the maximum subspace dimension is reduced. For the

unshifted C5G7 problem this degradation is quite significant, especially at

the smallest restart lengths. The HTTR behavior is slightly more favorable,

although it is still evident that better performance is achieved when the sub-

space can be made large. Preconditioning significantly reduces the impact

of restarting and for both problems robust performance is observed for a

subspace as small as 5.
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Table 6.20: Linear solver performance for (A − µB) for subspace variation,

HTTR. Dashes indicate stagnation of the method.

GMRES(m) GMRES(m)/MGE

m µ = 0 µ = 0.99λmin µ = 0 µ = 0.99λmin

5 77 – 20 –

10 83 – 20 60

25 81 – 18 21

50 62 350 18 21

The effect of shifting the linear system reinforces the importance of precon-

ditioning when a restarted GMRES is used. The unpreconditioned GMRES is

unable to converge if the maximum subspace size is smaller than 50, whereas

the preconditioned approach is able to reach a solution (albeit with signifi-

cantly degraded performance) for a subspace size of only 10.

The reason for the stagnation of the unpreconditioned GMRES can be

demonstrated by observing the convergence behavior as the shift parameter

is increased. The result, shown in Figure 6.6 for the C5G7 problem, reveals

the difficulty. When no shift is applied, the convergence is very consistent

for the entire iteration. As the shift parameter becomes close to the true

eigenvalue of the problem, however, the convergence curves develop a plateau

region where little reduction in the residual norm occurs. The length of this

plateau increases as the shift parameter is increased, although the ultimate

rate of convergence is largely unaffected. The difficulty therefore occurs when

the method is restarted before the end of the plateau is reached. Upon

restarting, the convergence curve immediately enters another plateau and is

never able to overcome this obstacle and make meaningful progress towards

a solution. Preconditioning dramatically increases the rate of convergence,
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Table 6.21: Linear solver performance for (A − µB) for subspace variation,

C5G7. Dashes indicate stagnation of the method.

GMRES(m) GMRES(m)/MGE

m µ = 0 µ = 0.99λmin µ = 0 µ = 0.99λmin

5 108 – 15 –

10 84 – 16 70

25 69 – 15 24

50 65 387 15 24

largely circumventing the issues related to the convergence plateaus. For

very large problems where a subspace size of several hundred vectors is not

feasible, the MGE preconditioner may not only speed up computations but

also allow some problems to be solved that would not be possible with other

strategies.
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Figure 6.6: GMRES convergence with fission contribution.
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Chapter 7

Conclusion

Although numerical solution of the k-eigenvalue problem has been the subject

of significant research over the past several decades, there exist no methods

that are truly satisfactory for use with difficult problems of interest in the

nuclear engineering community. Standard techniques are based upon a nested

iteration structure that hampers their effectiveness and generally exhibit poor

convergence behavior for difficult problems. Approaches to accelerate this

slow convergence can be extremely effective for certain problems but suffer

from a general lack of stability, with performance frequently depending quite

heavily on problem parameters.

In this work, we have investigated the performance of a variety of numeri-

cal solvers applied to the k-eigenvalue formulation of the neutron transport

equation. In particular, the application of a generalized Davidson technique

has been studied in detail. Although the Davidson method has been used

in fields such as computational chemistry, to our knowledge this is the first

instance of its application to this problem. The primary advantage of the

Davidson framework is that it allows the problem to be treated directly as

a generalized eigenvalue problem rather than first converting it to a stan-

dard eigenvalue problem as most commonly used methods require. Such a
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conversion requires inverting (in practice, solving linear systems with) a full

multigroup transport matrix, introducing a nested iteration structure that

plagues nearly all current solvers. This process can be very computationally

expensive and ultimately limit the efficiency that can be achieved with a

given method. The Davidson method, on the other hand, simply requires

the action of a preconditioner that may be an inexpensive approximation to

a matrix inversion and in this respect can be viewed as an inexact Arnoldi

method. However, unlike the situation with a true Arnoldi method, the inex-

actness of this preconditioner has no impact on the accuracy of any computed

eigenvalues or eigenvectors.

We have also developed a preconditioner that is intended to be used with

the Davidson method for the solution of the k-eigenvalue problem or as a

preconditioner to a Krylov method for solving linear systems involving the

transport matrices. Because one of the most problematic aspects of solving

problems in nuclear reactor analysis is the presence of energy upscattering,

we have developed a strategy with the goal of efficiently handling such prob-

lems. Based upon two level upscatter acceleration methods in the transport

literature, the MGE approach extends these ideas to a true multigrid method

with respect to the energy variable. This new method has the advantage that

it is able to effectively damp all error modes present in a problem, unlike the

two-grid methods that are only effective on a single mode. This feature al-

lows MGE to be used without the need for a block Gauss-Seidel iteration,

thus eliminating a full level of iteration that must be present in other solvers.

Additionally, combining the MGE approach with either the Davidson eigen-

value solver or a Krylov method circumvents the stability issues associated

with the two-grid (and other) methods.

The approach that we have selected for the MGE preconditioner is a stan-

dard multigrid V-cycle with a small number (3-4) of smoothing iterations at

each level. Several possible smoothers have been proposed, with the lead-
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ing candidates being damped Richardson or modified Gauss-Seidel methods.

Infinite medium analysis and numerical experiments guide the selection of

the relaxation parameter with the fortuitous observation that the optimal

selection is largely independent of the particular problem under consider-

ation and completely independent of discretization parameters. A sizable

reduction in the computational effort per iteration can be achieved by using

a coarse angular approximation to the original transport operator with only

a small increase in the number of outer iterations required for convergence.

The methods described have been implemented and numerical tests per-

formed both for the solution of the k-eigenvalue problem as well as the linear

(fixed point) problem within NEWT, a 2-D neutron transport code devel-

oped at Oak Ridge National Laboratory. The linear solver tests indicate

that MGE can be a very effective preconditioner when used with a Krylov

subspace method (in our case, GMRES). The impact of the preconditioning

is particularly evident when restarted GMRES is used or when the transport

problem is shifted to include a component of the fission matrix in addition

to standard scattering. In fact, MGE-preconditioned GMRES appears to be

the only available method that is capable of solving such shifted problems

when limitations are placed on the maximum allowable subspace dimension.

The use of MGE in combination with the Davidson eigensolver also proves

to be a very effective strategy, consistently outperforming the standard power

method, Arnoldi’s method and Rayleigh quotient iteration across a variety

of problems. The method is even competitive with (and usually superior to)

the nonlinear coarse mesh finite difference acceleration available in NEWT.

Although the gains relative to CMFD are minor for some problems, it is

important to recall some of the issues pertaining to such nonlinear methods.

In particular, CMFD is hindered by a lack of robustness that leads to poor

convergence or even divergence if the size of the coarse mesh is not chosen

appropriately. The optimal mesh parameter is problem dependent and usu-
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ally must be selected based on the experience and intuition of the user. This

issue is significant enough that CMFD is frequently excluded from radiation

transport codes and in fact is not used as the default eigensolver in NEWT for

precisely this reason. As an additional difficulty, CMFD relies on an underly-

ing Cartesian grid structure in order to obtain its coarse spatial mesh. Such

a Cartesian structure will typically not be available in unstructured mesh

solvers and may not even be an option in structured mesh methods if the

spatial mesh varies in size across different regions of the problem. Although

we feel that more testing (and likely a 3-D implementation) is necessary be-

fore the method could be widely adopted, the favorable properties shown

in this work provide a very strong indication that the Davidson/MGE ap-

proach will compete for a place among the best eigensolvers available to the

transport community.
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Appendix A

Linear Solver Parametric

Studies
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Table A.1: Linear solver performance for angle refinement, C5G7.

GMRES GMRES/MGE

SN Order Iters Time (s) Iters Time (s)

4 60 101 15 101

8 60 298 15 155

12 60 617 15 240

16 60 1035 16 377

Table A.2: Linear solver performance for angle refinement, HTTR.

GMRES GMRES/MGE

SN Order Iters Time (s) Iters Time (s)

4 58 73 18 92

8 59 221 18 141

12 59 464 18 220

16 59 874 18 345

Table A.3: Linear solver performance for energy refinement, C5G7.

GMRES GMRES/MGE

Groups Iters Time (s) Iters Time (s)

16 60 298 15 155

32 63 631 14 305

64 66 1415* 12 573

128 – – 11 1235
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Table A.4: Linear solver performance for energy refinement, HTTR.

GMRES GMRES/MGE

Groups Iters Time (s) Iters Time (s)

16 59 221 18 141

32 71 544 17 283

64 87 1387 17 619

128 – – 19 1679

Table A.5: Linear solver performance for spatial refinement, C5G7.

GMRES GMRES/MGE

Grid Iters Time (s) Iters Time (s)

1 57 201 14 107

2 60 298 15 155

3 61 709 16 387

4 63 1144 16 582

Table A.6: Linear solver performance for spatial refinement, HTTR.

GMRES GMRES/MGE

Grid Iters Time (s) Iters Time (s)

1 56 70 18 46

2 59 221 18 141

3 60 484 18 300

4 61 854 18 520
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Table A.7: Linear solver performance for PN order refinement, C5G7.

GMRES GMRES/MGE

PN Order Iters Time (s) Iters Time (s)

0 56 255 16 149

1 60 298 15 155

2 59 327 16 185

3 59 360 17 225

Table A.8: Linear solver performance for PN order refinement, HTTR.

GMRES GMRES/MGE

PN Order Iters Time (s) Iters Time (s)

0 59 206 18 127

1 59 221 18 141

2 58 243 18 160

3 59 267 19 191
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