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Abstract

Modeling Search Trends and Search Interests for Health
By Chen Lin

Tracking pollution exposure and infectious disease exposure is a significant public
health challenge. While online search trends o↵er valuable insights for monitoring
health-related issues, accurately capturing and predicting users’ health concerns re-
mains di�cult. This challenge is compounded by the fact that users’ search behavior
changes frequently and varies across di↵erent sessions. Integrating additional data
sources, such as geographical and environmental data, allows models to better ac-
count for external factors that compensate search data, providing a more compre-
hensive understanding of public health trends. Existing methods, although useful,
do not fully leverage advanced neural networks and integrate multifaceted data for
symptom prediction and intent categorization. To address this, my research develops
a fundamental approach that leverages multimodal data integration and contextual
learning across sequential, graph-based, and large language models, each tailored to
specific health-related forecasting and intent categorization tasks.

The primary research questions addressed here are as follows:
RQ1: How can multimodal data sources, including online search trends, be e↵ec-

tively leveraged to forecast health symptoms related to environmental factors (e.g.,
air pollution) and infectious diseases?

RQ2: To enhance understanding of search trends and deliver responsive health
information services, how can search intent for health-related queries be identified
and anticipated by analyzing user interaction data, such as user click logs?

These research questions are addressed by processing various data sources us-
ing multimodal sequential learning, leveraging online search trends and integrating
multi-modal data for enhanced forecasting models. Additionally, I employ unsuper-
vised learning with limited annotation data to identify health-related search intents
and apply supervised learning to anticipate health service seekers’ needs by modeling
queries with both consistent and varying intents across di↵erent sessions. To achieve
this, the dissertation introduces key contributions such as integrating semantic infor-
mation from search queries with search trends, utilizing cross-location information
for improved pandemic forecasting, and presenting a novel fine-tuning method for
adapting large language models to interpret health-related queries.

The proposed methods, validated on diverse real-world datasets, demonstrate sig-
nificant advancements in health search modeling. These innovations directly con-
tribute to better pollution exposure symptom monitoring, pandemic forecasting, and
the accurate interpretation of complex user search behaviors. As a result, this work
o↵ers practical solutions to real-world challenges in public health surveillance and
health information systems, ultimately paving the way for more responsive, data-
driven health search services that can better meet users’ evolving healthcare needs.
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Chapter 1

Introduction

With the rapid development of the Web, over half of the U.S. adults used the Internet

to look for health or medical information in the latter half of 2022 [15]. Therefore,

online search activity is a critical resource for researchers to understand the health-

seeking behavior of the public. Consequently, it is necessary to model user search

activity for understanding people’s health needs in a crowd perspective [92]. Tra-

ditionally, crowd-based online health models relies on the social media and search

engine logs to predict the health needs of the public or individuals, which could be

caused by infectious diseases, environmental hazards or other specific health needs.

However, those models are search pattern-based and ignore both the query semantic

information and users’ feedback, which may lead to a poor prediction performance.

Given the vast amount of e↵ort in understanding semantic information and users’

interaction data with artificial intelligence, search models that can serve the public

with more accurate health event and health need prediction are feasible and expected.

In this dissertation, I discuss the novel online search-based health models, which are

the search trend and search intent prediction models.
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1.1 Online Health Monitoring

Online health monitoring focuses on utilizing user-generated data, such as web searches,

social media posts, and global search data, to assess the public’s health needs. This

approach helps track emergent risks to public health, such as infectious disease out-

breaks. For instance, search terms like “cough” and “flu” have been used to track

disease outbreaks, demonstrating a correlation between search activity and the timing

of disease spread.

The relationship between search terms like “cough” and “flu” can illustrate how

these queries help in tracking disease outbreaks. Figure 1.1 illustrates the correlation

between search trends for “cough” and “flu” As shown in the figure, there is a notable

correlation between these search trends, suggesting that search trend signals can be

e↵ectively used for modeling health monitoring trends. By analyzing search trends,

we can accurately detect the timing and severity of flu outbreaks, which enables

proactive prevention measures. This demonstrates the utility of Google Trends data

in real-time health monitoring and supporting public health initiatives.

In addition to users’ search trends, other modalities of information can signifi-

cantly enhance the modeling of user search behavior for online health monitoring.

For example, geographic and mobility information are two critical modalities that

can provide valuable insights into user search patterns. People’s movement can sig-

nificantly influence the spread of infectious diseases. Understanding users’ geographic

locations can help analyze health trends across di↵erent regions. Certain diseases may

spread more prevalently in specific areas. Geographic data can reveal these patterns,

o↵ering valuable insights for public health monitoring. At the same time, studying

people’s movement behavior provides crucial clues about disease transmission. Infor-

mation such as the range, frequency, and routes of human mobility can help predict

and monitor the spread of diseases. For example, if a population frequently travels to

a known epidemic area, the risk of infection in their home region may increase. Inte-
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Figure 1.1: Correlation between search trends for “cough” and “flu” indicating po-
tential for real-time health monitoring

grating additional information modalities such as geographic and mobility data can

substantially enhance the modeling of user search behavior for online health mon-

itoring. A well-known example of this is the online monitoring of COVID-19. As

shown in Figure 1.2, the mobility and geoinformation graph is crucial for monitoring

the spread and impact of COVID-19. This graph tracks the movement patterns of

populations and correlates them with geographic information to provide insights into

the virus’s transmission dynamics.

By analyzing geographic locations and movement patterns, public health o�cials

can gain valuable insights into the spread of infectious diseases across di↵erent regions.

This data can reveal specific areas where certain diseases are more prevalent and help

predict and monitor the transmission of diseases based on human mobility patterns.

Thus, understanding and incorporating these modalities can significantly improve

public health monitoring and response strategies.

In addition to leveraging search trends and geographic data for monitoring public
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Figure 1.2: An example illustrating the importance of the mobility and geoinforma-
tion graph for COVID-19 monitoring [59]

health risks, it is equally important to enhance the understanding of individual health

search queries. Health-related search intent recognition is particularly challenging due

to the ambiguity of medical queries, where the same search term may have di↵erent

meanings depending on the context. For instance, users may search for symptoms,

treatments, or medical services with varied expectations, making it crucial for search

engines to accurately interpret these queries. Traditional methods often struggle with

this complexity, especially when queries are brief or vague. By incorporating query

representation learning and session context, health search intent recognition can be

significantly improved.

The connection between search trends and search intent modeling lies in their

combined ability to o↵er a comprehensive view of public health needs. Search trends

capture the “when” and “where” of health-related interests, revealing temporal and
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spatial patterns that can be used to forecast public health trends. In contrast, search

intent modeling delves into the “why” and “what” behind individual searches, uncov-

ering the underlying needs or motivations that drive search behaviors. By combining

trend analysis with intent recognition, this research enables a deeper understanding

of not only what health issues are emerging but also why people are seeking specific

health information at a given time. This integration allows for a robust methodology

that can not only track health symptoms but also dynamically adjust to users’ infor-

mational needs, thereby supporting proactive, responsive health monitoring systems.

1.2 Challenges in Health Search and Trend Mod-

eling

To apply multiple sources to improve online health monitoring, there are several

challenges and major steps involved.

1.2.1 Challenges in Modeling Search Trend for Health

Handling multi-modal data is crucial in health-related data (such as environmental

data and search data) processing, especially given the common occurrence of incom-

plete or missing data from sources such as geographical networks or health databases.

In many real-world scenarios, information and data are multi-modal, and features

from di↵erent modalities are often seamlessly used together for classification or re-

gression purposes. However, multi-modal sequential data is frequently incomplete

due to broken sensors, failed data transmission, or low sampling rates. This challenge

is exacerbated when trying to integrate multiple sources of data, requiring sophisti-

cated machine learning models that can mitigate the e↵ect of noise, inaccuracies, and

incomplete data.
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• There is the need to collect data from various sources like geographical location,

mobile networks, social media, and health databases. For specific health events,

the data collection process can be complex and time-consuming and multiple

sources of data need to be integrated.

• I need to deal with incomplete, inaccurate, or noisy data which can lead to

poor prediction performance. It is essential to employ advanced techniques to

mitigate and reduce the impact of noise and inaccuracies in the data to ensure

reliable and e↵ective predictions.

• I need to develop innovative and advanced machine learning models that can

e↵ectively integrate and analyze data from multiple sources. These models

should be able to handle the complexity and heterogeneity of the data and

provide accurate and reliable predictions.

• I need to integrate the knowledge and expertise of domain experts to have

a better understanding of the data and the health events being monitored.

Specifically, I need to have a deep understanding of online search activity at

individual online search activity and population levels to e↵ectively model and

predict health needs.

By addressing these challenges, I can improve the e↵ectiveness of online health

monitoring systems and provide more accurate predictions and insights into health

trends and events. The specific objective of this study is to develop better, more

sensitive measures of exposure and response to the myriad suite of atmospheric pol-

lutants via online surveillance, using the Web search interest data as a proxy for the

physical world experience.
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1.2.2 Challenges in Health Search Intent Recognition

Another major challenge is the complexity of understanding user intent in health-

related search queries. Search behavior related to health often spans multiple topics

and can be ambiguous, making it di�cult for models to capture the user’s exact health

needs, especially when considering session context or multi-label search classification.

Accurately recognizing user health-related search intent presents another challenge.

Queries often have ambiguous intent, and it is important to develop models capable

of understanding these complex searches.

Building on the complexity of understanding user intent in health-related search

queries, another significant challenge lies in the ambiguity and multi-dimensionality

of these queries. Health-related searches often contain a blend of technical medical

jargon and everyday language, making them di�cult to interpret without adequate

context. Additionally, these queries can span multiple intent categories, such as symp-

tom inquiries, treatment research, or healthcare provider searches, requiring more

sophisticated multi-label classification models to capture the full range of user needs.

The same query can also hold di↵erent meanings based on the user’s session history

or current context, which further complicates the recognition of search intent. For

example, a query like “online visit” may relate to scheduling a healthcare appoint-

ment in one instance, while in another, it could refer to seeking information about

telemedicine platforms. These challenges highlight the need for models that can not

only manage multi-label intent recognition but also incorporate session-based context

to improve prediction accuracy and better meet users’ health information needs.

1.3 Research Questions

Based on the above introductions, online search trends and search interest analysis

are important because they provide insights into the health information-seeking be-
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haviors of large populations. As the internet becomes the primary source for health

information, search data helps researchers understand people’s health interests and

questions. Online search trends and interests hold great promise for health-related

research purposes, as they can reveal patterns and preferences that may not be easily

accessible through traditional methods. By utilizing this abundant data, researchers

can more e↵ectively meet the needs of those seeking health services, create focused

interventions, and track the development of epidemics.

Understanding and modeling search trends and user behavior involves several

challenges in the process. The first step is collecting search data from search engines,

which includes the search query, time of the search, and user’s geographic location.

People search for di↵erent terms depending on the diseases being researched, with

the biggest challenge being the retrieval of an exhaustive list of search queries for the

disease of interest and the imputation of missing values. Data preprocessing is the

second step, involving converting search terms to semantic representations and nor-

malizing search trends for comparison across temporal and spatial resolutions. The

biggest challenge in this stage is handling the co-linearity in search queries and gener-

ating and preprocessing multi-modal data as a supplement to search data. Building

models on search trends and logs is the third step, where statistical methods, ma-

chine learning, and deep learning models are applied to identify trends and patterns

in the data. The main challenge during this stage is incorporating multi-modal data

to improve model performance and compensate for the disadvantages of online search

data.

In parallel with analyzing search trends data, analyzing search click logs data is

also crucial for understanding users’ health interests, but it also comes with consider-

able challenges. User click logs data includes search terms and corresponding clicked

URLs and documents. One challenge comes from the fact that search queries are

often short and varied, making it di�cult to interpret the semantic meaning behind
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them. Additionally, health-related search intents are fine-grained, and the challenge

exists in capturing the hierarchical structure of the intents from short search queries.

Another challenge arises from modeling the large amount of search queries, where

some queries have consistent search intents across di↵erent sessions, while others ex-

hibit varying intents in di↵erent sessions. During the modeling process, I need to

consider how to accurately interpret queries with consistent search intents as well as

those with varying intents. Given the total amount of search queries is large, it is

also essential to employ memory and computation-e�cient algorithms to achieve my

aims.

Based on the challenges as mentioned above, I propose two key research questions

in this dissertation.

• RQ1. How can multimodal data sources, including online search trends, be e↵ec-

tively leveraged to forecast health symptoms related to environmental factors

(e.g., air pollution) and infectious diseases?

• RQ1.1. How can I process the data sources with missing values for sequen-

tial activity modeling?

• RQ1.2. How can I leverage the online search trends and environmental

multi-modal data and validate their performance on the forecasting model?

• RQ1.3. How can I leverage the online search trends and infectious disease-

related multi-modal data and validate their performance on the forecasting

model?

• RQ2. To enhance understanding of search trends and deliver responsive health in-

formation services, how can search intent for health-related queries be identified

and anticipated by analyzing user interactions, such as user click logs?

• RQ2.1. How can I e↵ectively identify and understand the intents of health-

related search logs using unsupervised learning techniques when there is
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limited annotation data?

• RQ2.2. How can I apply supervised learning approaches to anticipate the

search needs of health service seekers and e↵ectively model queries with

both consistent and varying search intents across di↵erent sessions?

This dissertation addresses the aforementioned research questions by proposing

solutions to enhance models for search trend analysis and health-related query com-

prehension. First, I address RQ1.1 by utilizing information from di↵erent modalities

for multimodal seqenuential learning with missing values, as described in section 3.

Second, I address RQ1.2 by integrating semantic information from search queries

with search trends, enhancing prediction outcomes using a multimodal learning ap-

proach for data augmentation, as described in section 3. Third, I address RQ1.3

by incorporating cross-location information to improve prediction and enable timely

forecasting of infectious diseases, as described in section 4. Finally, I present a novel

fine-tuning method for adapting large language models (LLMs) to interpret health-

related queries. I also use clustering and classification models to identify search

intents and utilize session context to model queries with varying search intents across

di↵erent sessions, addressing RQ2.1 and RQ2.2 as described in section 5.

1.4 Contributions and Dissertation Structure

The dissertation is structured into six major sections. The first section reviews related

work, including existing studies of online health monitoring and recent advancements.

The second second section dives deeper into the background of search trend and in-

terest analysis, including the challenges and opportunities in the field. The next three

sections explore the application of my proposed solutions to the real-world research

questions, each containing an overview, methodology, experiments, and discussion.

The final section presents the conclusion and future work of the dissertation.
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This dissertation presents a comprehensive framework for improving health moni-

toring and intent recognition through advanced data-driven modeling techniques. At

its core, the fundamental approach involves leveraging multimodal data integration

and contextual learning, spanning across sequential, graph-based, and large language

models, each tailored to address specific health-related forecasting and intent catego-

rization tasks.

1.4.1 Cross-modal Memory Fusion Network for Multimodal

Sequential Learning with Missing Values

As I mentioned, leveraging complementary information from multiple modalities can

significantly enhance the imputation process. The first step is to e↵ectively model

the intra-modality and inter-modality dynamics. I decompose this challenge into two

sub-problems:

• 1. Modeling the recurrent dynamics within a single modality.

• 2. Leveraging cross-modal interactions to enhance the imputation process.

Existing methods primarily focus on the recurrent dynamics in one modality,

often neglecting the complementary properties of other modalities. To address this,

I propose a novel method called Cross-modal Memory Fusion Network (CMFN).

CMFN explicitly learns both modal-specific and cross-modal dynamics to impute

missing values in multimodal sequential learning tasks.

To validate the e↵ectiveness of the proposed method, I conduct experiments on

two benchmark datasets. Our results demonstrate that CMFN outperforms state-of-

the-art methods, showcasing its potential to better handle missing values in complex

multimodal datasets.

In this research, my contributions include:
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• I introduce an innovative approach to impute missing values by leveraging both

intra-modality and inter-modality dynamics.

• I demonstrate the superior performance of CMFN through comprehensive experi-

ments on benchmark datasets.

The details of these contributions are described in Chapter 3.

1.4.2 Detecting Elevated Air Pollution Levels from Web Search

Data

To address the challenge of RQ1.2, I propose an e↵ective model to “nowcast” observed

elevated pollution levels using search interest data, which is publicly available in near

real-time from major search engines. Unlike previous e↵orts that tracked infectious

diseases with search data, nowcasting air pollution presents distinct challenges due

to non-specific symptoms but also opportunities to combine crowd-based observation

data with physical measurements such as temperature and humidity.

The first step is to develop a composite model that e↵ectively integrates physical

measurements and search volume data. I decompose this challenge into two sub-

problems:

• 1. Designing a search term Dictionary Learner to e↵ectively capture relevant search

interest data.

• 2. Combining this data with physical measurements using a Long-Short Term

Memory (LSTM) model to nowcast pollution levels.

I propose a search-term Dictionary Learner-Long-Short TermMemory (DL-LSTM)

composite model to combine physical measurements and search volume data for

pollution-related terms. This model aims to provide real-time predictions (nowcast-

ing) on whether air pollution is elevated on a specific day.
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To validate the e↵ectiveness of my approach, I explore several sequence classi-

fication models and evaluate my method in predicting three common and harmful

pollutants: Ozone, Nitrogen Dioxide, and PM2.5, across 10 major metropolitan areas

in the USA. Our results demonstrate that incorporating search interest data using

the DL-LSTM model significantly improves prediction performance for all three pollu-

tants, suggesting promising novel applications for tracking global physical phenomena

using online search data.

In this research, my contributions include:

• I introduce a novel method to nowcast elevated pollution levels by integrating search

interest data with physical measurements.

• I demonstrate the superior performance of the DL-LSTM model through compre-

hensive experiments on multiple pollutants and metropolitan areas.

The details of these contributions are described in Chapter 3.

1.4.3 Modeling of Web Search Activity for Real-time Pan-

demic Forecasting using Graph Neural Network

To address the challenge of RQ 1.3, I leverage web search activity for pandemic fore-

casting. I propose a novel Self-supervised Message-Passing Neural Network (SMPNN)

framework for modeling local and cross-location dynamics in pandemic forecasting. I

decompose this challenge into two sub-problems:

• 1. Modeling local and cross-location dependencies using web search data.

• 2. Enhancing prediction accuracy through self-supervised learning and graph-

generated features.

In previous research, regularized linear models have been e↵ective in predicting the

spread of respiratory illnesses like COVID-19 but are limited to specific locations and
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do not incorporate neighboring areas’ data. Our SMPNN framework addresses these

issues by utilizing a Message-Passing Neural Network (MPNN) module to learn cross-

location dependencies through self-supervised learning, improving local predictions

with graph-generated features.

To validate the e↵ectiveness of my proposed method, I compare the SMPNN

framework with state-of-the-art statistical and deep learning models using COVID-

19 data from England and the US. The results demonstrate that the SMPNN model

outperforms other models, achieving up to a 6.9% improvement in prediction accuracy

and lower prediction errors during the early stages of disease outbreaks.

In this research, my contributions include:

• I introduce a novel SMPNN framework to model local and cross-location dynamics

for pandemic forecasting.

• I demonstrate the superior performance of the SMPNN model through comprehen-

sive experiments using COVID-19 data from multiple regions.

This approach represents a significant advancement in disease surveillance and

forecasting, providing a novel methodology, datasets, and insights that combine web

search data and spatial information. The proposed SMPNN framework o↵ers a

promising avenue for modeling the spread of pandemics, leveraging both local and

cross-location information, and has the potential to inform public health policy deci-

sions.

The details of these contributions are described in Chapter 4.

1.4.4 Enhancing Healthcare Search Intent Recognition with

Query Representation Learning and Session Context

To address the challenge of RQ 2.1 and 2.2, I propose novel methods to enhance query

representation learning and session-based intent classification.
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First of all, healthcare search queries often have multiple intents, resulting in

ambiguous or divergent click behavior. This complexity necessitates improved query

representation methods. I address this by aggregating similar queries via clustering

and introducing a novel loss function to capture the multifaceted nature of health

search queries. This scenario can be e↵ectively modeled by leveraging user interaction

data. However, di↵erent interactions and session contexts require distinct handling

methods. Therefore, the feedback forms must be carefully considered when improving

healthcare search intent recognition.

Generally, I need to consider two forms of data:

• 1. User interaction data, such as clicks from search logs.

• 2. Session context, to capture the intent within specific search sessions.

I propose a novel approach to quantify the ambiguity of health queries and the

misalignment between global search intents and those discerned from individual ses-

sions by introducing the concordance rate score. I also demonstrate a simple and

e↵ective method for incorporating my learned query representation into contextual,

session-based search intent classification.

To validate the e↵ectiveness of my approach, I conduct extensive experiments and

analysis on two real-world search log datasets: a Health Search (HS) dataset and the

publicly available TripClick dataset. Our results demonstrate that my method not

only improves the intrinsic clustering metrics for query representation learning but

also enhances accuracy for subsequent search intent classification tasks.

In this research, my contributions include:

• I introduce a novel approach to enhance query representation learning by aggre-

gating similar queries and capturing their multifaceted nature.
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• I demonstrate the superior performance of my method through comprehensive ex-

periments on real-world datasets, improving both clustering metrics and search

intent classification accuracy.

The details of these contributions are described in Chapter 5.
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Chapter 2

Related Work

This work of this dissertation focuses on building e�cient machine learning models

for health search data and I have three major goals:

• to e↵ectively impute the missing data in the search series data so that the

missing data can be used for training the model.

• to incorporate semantic and geographical information into search trend model-

ing.

• to predict individual search query intent based on the search sessions.

These goals rely on processing online search data, analyzing search trend models,

aggregating information from multiple sources, and understanding search queries. In

this chapter, I review related work on these previous research:

• Online health monitoring.

• Search trend modeling.

• Multi-modal data aggregation.

• Search query understanding.
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2.1 Online Health Monitoring

Online crowd surveillance has been recently used as a means of tracking emergent risks

to public health, as described in studies by [10, 40, 49]. This involves the collection of

online search queries to document changes in symptoms related to infectious diseases

such as influenza [9, 100], Ebola [41], Lyme disease [103], and dengue fever [16].

In recent years, there has been an increasing amount of literature on predicting the

concentration of air pollutants using machine learning models [19, 136, 76, 99]. The

highly non-linear relationship between air pollutants and corresponding influential

factors has been explored using Support Vector Machines [143], Artificial Neural Net-

works [133], and ensemble learning methods [8]. Most recently, Chen et al. and Zhao

et al. build models to forecast daily AQI (air quality index) based on recurrent neural

networks [136, 19]. Although these studies have successfully established frameworks

to predict and monitor air pollution based on historical pollutant concentrations, they

become infeasible when and where those data are unavailable. Online surveillance-

based approaches are promising ways to overcome this limitation since user-generated

content such as social media or online search behavior is publicly available in near

real-time. For many years, online surveillance models have been applied to various

syndromic surveillance researches [145, 120]. Over the past decade, most research

using online search behavior has emphasized the use of Google Trends [54, 14]. Al-

though previous studies have used online search data for various prediction purposes

[103, 16], there is limited work on using online search data for monitoring ambient

air pollution.

These methods have the potential to provide public health and medical profession-

als with benefits over traditional health surveillance and environmental epidemiology

in their ability to capture both personal exposures and response dynamics at more sen-

sitive spatial and temporal scales [40]. Despite the promise of these approaches, only

a limited number of studies have examined how crowd-surveillance approaches can be
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used to track exposure and, less frequently, response to non-infectious environmental-

mediated disease processes [30, 33, 104]. Recent e↵orts to quantify the global burden

of disease attributable to outdoor and indoor air pollution have increased public

awareness on the severity of this public health crisis worldwide [27].

Urban air pollution serves as a critical test case for evaluating online surveillance

methods for non-infectious environmental risks. Recent estimates attribute over 3

million excess premature deaths to ambient fine particulate matter (PM2.5) and ozone

(O3), collectively placing these pollutants among the most substantial environmental

contributors to global disease burden [27]. Traditional indicators of air pollution

exposures, namely concentrations measured at ambient monitoring sites, have been

widely used to assess health e↵ects associated with air pollution in epidemiological

studies. However, using ambient monitoring measurements as proxies for exposure

may significantly underestimate health responses and potential risks, particularly for

individuals who do not live near monitoring sites [130, 102, 70]. Moreover, ambient

monitoring is designed to provide data on outdoor povllutant concentrations, which

may not accurately reflect health-relevant exposures for individuals who spend most

of their time indoors or have preexisting biological susceptibility to air pollution.

Several recent studies have explored the use of smartphones in distributed air pollution

sensing networks, enabling users to record and upload local air pollution data to

create crowd-sourced, geospatially-refined pollution maps [30, 33, 104]. These studies

demonstrate the feasibility of crowd-generated participation in projects predicated on

urban air pollution awareness.

Linear models such as regularized regression have been successfully applied to var-

ious multivariate time series prediction tasks, including the estimation of disease rates

from social media or online search data [60, 63]. For online search data, search queries

can be semantically correlated and the co-linear predictors in the input space could

cause model consistency problems, which is common in text regression tasks [61, 62].
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Previous researches use elastic net [146] as the regression function and suggest that

`2-norm could address the model consistency problem [63, 145]. However, it is not

able to explore non-linear relationships across di↵erent time steps and explore the

semantic correlations across multiple search terms. Long short-term memory units

(LSTM) [50] are recurrent neural networks (RNNs) models designed for sequence

modeling, which could learn the non-linear relationship in time series data [37]. Al-

though LSTM models have achieved great success in many fields e.g. neural machine

translation [118] and speech recognition [44], there is limited work on exploring how to

incorporate semantic information of search queries with search volumes as the input

for multivariate time series prediction.

Multivariate sequential learning with missing values

Studies have explored multi-modal perception for face-to-face communication [126,

127], and many models have been developed to impute missing values in multivariate

sequential data using either local statistics or recurrent dynamics [18, 106, 12, 122].

While these methods have had success in single-modality datasets, they are not nat-

urally adaptable to multi-modal data where di↵erent modalities may have varying

missing rates. Previous research has explored multi-modal sequential learning ap-

proaches such as early fusion, late fusion, and models that learn both intra-modality

and inter-modality dynamics in an end-to-end manner [127, 128, 71]. However, the

challenge of imputing missing values across multiple modalities remains underex-

plored.

A variety of imputation methods such as statistical imputation (e.g., mean, me-

dian), EM-based imputation [86], K-nearest neighborhood [38] and tensor factoriza-

tion [20] have been applied to estimate missing values. However, these approaches

fail to model the sequential pattern of data and are independent of the training pro-

cess, which often leads to sub-optimal results. To tackle this issue, recent studies
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[12, 18, 106] propose end-to-end frameworks that jointly estimate missing values and

make the prediction. For example, Che et al. [18] introduced the GRU-D model to

impute missing values in a single modality using the linear combination of statistical

features, which is under strong assumptions that missing values could be learned by

assigning weights between the last observed value and statistical mean value.

Multi-modal sequential learning

Previous studies dealing with multi-modal sequential data have largely focused on

three major types of models as mentioned in section 1. The third category of models

[71, 128, 129] relies on collapsing the time dimension from sequences by learning a

temporal representation for each of the di↵erent modalities. Memory fusion network

(MFN) [128] is one of these models, which uses a special attention mechanism called

the Delta-memory Attention Network (DMAN) and a Multi-view Gated Memory

to identify the cross-modal interactions. Experiments show that these models [127,

128, 129] achieve remarkable success on a variety of tasks, including multi-modal

sentiment analysis and emotion recognition; however, none of them can handle input

with missing values in one or more modalities.

2.2 Health Search Trends Modeling

In this section, I describe related work using search trends for disease predictions

and emphasize the need for proposing advanced neural architectures for modeling

search trends for health. Given the context, the major baselines of the GFT model,

regularized autoregressive models, I emphasize why developing advanced neural archi-

tectures, i.e. Recurrent Neural Network (RNN) Models and Graph Neural Network

(GNN) Models for modeling search trends is necessary.

There has been increasing interest in using signals from online search activity
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to predict infectious diseases such as seasonal influenza, the H1N1 pandemic, and

COVID-19 [43, 137, 21, 108]. For example, Figure 4.1 shows the correlation between

COVID-19-related symptom search activity and daily confirmed cases during the early

stages of the pandemic.

Figure 2.1: Two time series from normalized google search volumes of “Rhinitis” and
normalized daily confirmed cases in Norfolk, UK for March to May 2020.

Studies have found that search terms related to symptoms like “fever” and “cough”

can be robust indicators of COVID-19 incidence [91, 123]. Traditional location-

specific regression models, like the Google Flu Trends method [43], have faced crit-

icism for their accuracy, especially in the presence of media-driven spikes in search

activity [28].

Recent advancements have proposed using autoregressive models with Elastic Net

regularization to analyze disease-relevant search queries [108, 144, 64]. Graph Neural

Networks (GNNs) have also been proposed to explore cross-location dependencies
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for predicting infectious diseases [32, 90, 139], highlighting the potential for further

improvement in disease forecasting using search data.

2.2.1 Google Flu Trends (GFT)

Google Trends is a widely used web-based epidemic signal for monitoring and pre-

dicting outbreaks of infectious diseases. It provides a simple and cost-e↵ective way

to track public interest in various topics and keywords related to infectious diseases,

thereby o↵ering a unique opportunity to monitor early warning signals of emerging

disease outbreaks. Over the past few decades, research on infectious disease pre-

diction using Google Trends has been validated and has shown promising results

[43, 13, 107, 84].

Google Flu Trends (GFT) was an early study utilizing Google Trends to predict

infectious diseases, showcasing the potential of search data for forecasting flu-like

illnesses. Ginsberg et al. introduced GFT in 2009, employing a linear model to

estimate the log-odds of Influenza-like illness (ILI) physician visits based on the log-

odds of ILI-related search queries [43]. The GFT model is given by:

logit(P ) = �0 + �1 logit(Q) + ✏

where P is the percentage of Influenza-like illness (ILI) physician visits, Q is the

ILI-related query fraction computed in previous steps, �0 is the intercept, �1 is the

coe�cient, ✏ is the error term. The study highlighted the accuracy of Google Trends

in tracking temporal and geographic patterns of flu-like illnesses by monitoring search

volumes for specific keywords like “flu” and “influenza.” The authors also discovered

that Google Trends data could predict the onset of flu-like illnesses one to two weeks

earlier than traditional surveillance systems, such as the FluView program of the US

Centers for Disease Control and Prevention.



24

Despite its initial success, GFT eventually faced issues with false positives and

over-reporting due to the disparity between search data and actual disease occurrence.

Consequently, Google Flu Trends was shut down in 2015. The primary cause of GFT’s

declining prediction accuracy was the increasing divergence between its algorithm

and model, and the actual flu outbreaks. GFT’s model used time-series data of

keyword searches related to flu, such as “flu symptoms” and “cold medicine” to

predict flu outbreaks. Initially, the algorithm and model were based on previous flu

trends. However, as people’s search behavior and habits evolved, the model’s data

bias increased, resulting in a weaker correlation with actual flu outbreaks [66].

The above discussion shows that the GFT model is powerful for describing tem-

poral and geographic patterns for search trends and selecting search queries for pre-

diction, but faces a detrimental performance drop because lack of semantic learning

of search terms and failure to capture the change when people’s search behavior and

habits evolved. Therefore, I propose to use a model capable of learning the semantic

correlation between the search terms and making timely forecasting when the search

pattern occurs. I propose to adopt the embeddings from pre-trained language models

and design specific RNN and GNN models for the forecasting tasks. But first, I need

to introduce why exploring the correlation between search terms is important and

introduce the RNN and GNN models for time series forecasting task.

2.2.2 Regularized Autoregressive Models

Learning from the limitations of the GFT model, subsequent research investigated

the use of regularized autoregressive linear models to select search queries by penal-

izing the model coe�cients [108, 144, 64]. Given that linear regression models can

exhibit large prediction errors, potentially due to correlations within the data, Lam-

pos et al. enhance the modeling approaches by examining the Elastic Net regression

solver, incorporating selected queries into a nonlinear Gaussian Process (GP) regres-
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sion method, and augmenting query-only predictions with an autoregressive model

to leverage prior knowledge about the disease [63]. The authors clustered queries,

learned a prediction function for each cluster, and summed these functions to obtain

the final prediction result to avoid the interference of abnormal queries on the results.

This study demonstrated that using the autoregressive Gaussian Process regression

model for time series can more accurately predict the development trend of influenza.

The Elastic Net regression objective function is given by:

�̂ElasticNet = argmin
�

nX

i=1

(yi �Xi�)
2 + �1

pX

j=1

|�j|+ �2

pX

j=1

�2
j ,

where where y is the target variable, X is the input feature matrix, � is the vector

of coe�cients, �1 and �2 are regularization parameters. Elastic Net combines the

advantages of feature selection and coe�cient shrinkage. The GP model is given by:

y =
mX

j=1

Xj�j + f(x) + ✏,

where m is the number of linear regressors, Xj is the input feature matrix for the j-th

regressor, �j is the vector of coe�cients for the j-th regressor, f(x) is a GP prior, and

✏ is the error term. The objective is to estimate the coe�cients, �j, and the latent

function, f(x), to minimize the residual sum of squares (RSS) while considering the

uncertainty in the function estimation.

Along with the development of regularized autoregressive models, the application

of Google Trends data has been extended to predict various diseases beyond influenza.

For instance, [4] explored the prediction of dengue fever outbreaks in Brazil by em-

ploying Ridge regression and Lasso regression models. These models utilized Google

search queries and meteorological data to forecast dengue cases. The Lasso regression

model outperformed the Ridge regression model, underlining the significance of fea-

ture selection in predicting dengue fever outbreaks. In another study, [134] examined
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the prediction of norovirus outbreaks in the United Kingdom using linear and regular-

ized linear models, such as linear regression, Ridge regression, Lasso regression, and

Elastic Net models. The results demonstrated that Elastic Net and Lasso regression

models o↵ered the best predictive performance, showcasing the benefits of combining

L1 and L2 penalties in this particular context.

The above discussion shows that understanding and minimizing the e↵ect of cor-

relation in search trends is crucial for improving forecasting performance, but current

studies are limited to machine learning models without considering semantic infor-

mation for search queries. Therefore, I propose to use a model aware of the semantic

embeddings of search terms to minimize the influence of correlation in the data.

Specifically, I introduce a matrix multiplication operation and propose to learn the

semantic representation from the training process.

2.2.3 Recurrent Neural Network (RNN) Models

Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) models are

RNN models that have been applied in various research domains, including disease

prediction. LSTMs, introduced by Hochreiter et al., address the vanishing gradient

problem faced by traditional RNNs by incorporating memory cells and gating mech-

anisms [50]. GRUs, proposed by Cho et al., are a simplified variant of LSTMs that

combine the input and forget gates into a single update gate [23]. Both LSTM and

GRU models have shown promise in handling sequential data, making them well-

suited for time series-based disease prediction tasks [24, 3]. For example, Cho et

al. applied GRU deep learning methods for predicting heart failure (HF) based on

sequential clinical records. They found that GRU models outperformed traditional

machine learning algorithms in predicting the risk of HF, emphasizing the advantages

of RNN models in medical prognosis tasks [24]. Aiken et al. applied a GRU model

for influenza prediction with the inclusion of real-time flu-related Internet search data
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and show that GRU leads to a lower prediction error in their experiments [3]. LSTM

models are composed of LSTM units. An LSTM unit consists of three gates, namely

the input gate (it), the forget gate (ft), and the output gate (ot), as well as a memory

cell (ct). The LSTM unit updates can be given as:

it = �(Wiixt + bii +Whiht�1 + bhi)

ft = �(Wifxt + bif +Whfht�1 + bhf )

ct = ft � ct�1 + it � tanh(Wicxt + bic +Whcht�1 + bhc)

ot = �(Wioxt + bio +Whoht�1 + bho)

ht = ot � tanh(ct)

where xt denotes the input at time t, ht represents the hidden state at time t, W

and b are the weight matrices and bias terms, � is the sigmoid activation function,

and � denotes element-wise multiplication. GRU models are a simplified variant of

LSTMs. They combine the input and forget gates into a single update gate (zt) and

use a reset gate (rt) to control the degree of influence from the previous hidden state.

The GRU unit updates can be given as:

zt = �(Wizxt + biz +Whzht�1 + bhz)

rt = �(Wirxt + bir +Whrht�1 + bhr)

nt = tanh(Winxt + bin + rt � (Whnht�1 + bhn))

ht = (1� zt)� nt + zt � ht1

where xt denotes the input at time t, ht represents the hidden state at time t, W and

b are the weight matrices and bias terms, � is the sigmoid activation function, and �

denotes element-wise multiplication.
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The above discussion emphasizes using RNNs for time series forecasting, but there

is a lack of studies building RNN models for search trends. Therefore, I propose to

use this neural network architecture for building a forecasting model using RNNs,

specifically, I propose several variants of standard RNNs to test their performance on

our specific tasks.

2.2.4 Graph Neural Network (GNN) Models

Graph neural networks (GNNs) have demonstrated great potential in various appli-

cations for disease prediction, particularly due to their ability to model the spatial

and temporal dependencies in disease transmission. Recent studies have showcased

the e↵ectiveness of GNNs in capturing complex relationships and improving epidemic

forecasting accuracy. For example, Deng et al. proposed using a cross-location atten-

tion module in the graph message passing models for long-term influenza-like illness

[32]. By modeling the spatial and temporal dependencies in disease transmission,

they were able to improve the accuracy of epidemic forecasting. Real-time data and

adaptive GNN models have also gained increasing attention in epidemic forecasting

due to their ability to quickly adapt to changing epidemiological conditions [42]. The

message-passing neural network (MPNN) framework, introduced by Panagopoulos et

al. [90], can quickly adapt to real-time disease data and make epidemic forecasting

with a limited amount of training data. In addition, Xie et al. proposed modeling

spatial transmission with graph neural networks for pandemic forecasting with local

and global encoding modules. By incorporating spatial information into their model,

they were able to improve the accuracy of their predictions [119]. An MPNN model

consists of two main components: (1) message passing, where each node receives mes-

sages from its neighbors and updates its hidden state based on the received messages

and (2) readout, where a readout function is applied to the hidden states of all nodes
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to produce a graph-level output, and the MPNN learning process can be given as:

m(t)v =
X

u 2 N(v)Mt(h
(t�1)
u , h(t�1)v, euv)

h(t)
v = Ut(h

(t�1)
v ,m(t)

v )

y = R(h(T )vv 2 V )

where h(t)
v is the hidden state of node v at iteration t, m(t)v is the aggregated message

for node v at iteration t, N(v) denotes the neighbors of node v, euv is the edge feature

between nodes u and v, Mt and Ut are the message function and update function at

iteration t, respectively, y is the output, h(T )
v is the hidden state of node v at the final

iteration T , and R is the readout function.

The above discussion emphasizes using GNNs for modeling graph information (ge-

ographical graph for search trends) for better representation learning and forecasting

with limited annotated data, but there is a lack of studies on applying GNNs to im-

prove the forecasting of search trends based on geographical information. Therefore,

I propose the develop GNN models on search trends data in di↵erent geographical

locations for timely forecasting task.

2.2.5 Time Series Forecasting with Noise and Missingness

Multivariate time series prediction task is crucial in various domains, including traf-

fic flow forecasting, air pollution forecasting and medical anlysis [36]. Real-world

time series data often come with di↵erent levels of noise and missingness, which can

adversely impact the performance of prediction models.

Previous research has applied two primary methodologies to handle noise and

missingness in multivariate time series forecasting: preprocessing data with imputa-

tion methods and jointly imputing data with forecasting tasks. For preprocessing data

with imputation methods, previous studies have applied statistical imputation (e.g.,
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mean, median), EM-based imputation [86], K-nearest neighborhood [38] and tensor

factorization [20] to handle noise and missingness in data. However, these approaches

often ignore the sequential pattern of data and the information in predicted labels,

which often leads to sub-optimal results. The second approach is to jointly impute

the data with forecasting tasks. Several studies have proposed end-to-end frameworks

that jointly estimate missing values and make the prediction [12, 18, 106]. However,

most of them rely on either strong statistical assumptions that missing values could be

learned by assigning weights between the last observed value or ignores the correlation

in multivariate data. Previous work on multi-modal sequential learning has proved

that jointly modeling the data from di↵erent modalities leads to better prediction

performance for the down-stream tasks, which benefits from learning the representa-

tion across di↵erent modalities [71, 128, 129]. Therefore, I propose to learn the joint

representation across di↵erent modalities and use the joint representation to handle

the noise and missingness in data in an end-to-end sequential learning framework.

2.2.6 Time Series Forecasting with Foundation Models

TimesFM[29], developed by Google, is a decoder-only foundation model designed for

large-scale time series forecasting. Pretrained on over 100 billion time points from di-

verse data sources, including Google Trends and Wikipedia pageviews, TimesFM

demonstrates robust zero-shot capabilities across various benchmarks. However,

health-related time series data, particularly for tasks like pollution monitoring and dis-

ease forecasting, often exhibit unique temporal patterns and seasonality that general-

purpose models may not capture e↵ectively. By training models from scratch, this

research tailors model architectures specifically to health-related data needs, ensuring

adaptability and precision in capturing domain-specific trends.
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2.3 Search Query Understanding

In this section, I first introduce the related studies on fine-tuning large language

models (LLMs) for identifying health-related queries, then I introduce the related

studies on clustering and classifying health-related intents using unsupervised and

supervised approaches.

Search engines in the health domain rely heavily on identifying user intent to de-

liver relevant results. However, medical search queries are often ambiguous, making

intent prediction challenging, especially without context [53, 115]. Prior studies have

shown that implicit user feedback (e.g., clicks) can be useful for learning query rep-

resentations [132], and co-click queries can serve as weak supervision for identifying

similar search intent.

Several approaches, such as contrastive learning, have been applied to co-click

query pairs to improve intent classification, but these methods may struggle when

faced with ambiguous or multi-label health queries [125]. It is essential to develop

more robust representation learning methods to handle these complex queries e↵ec-

tively.

2.3.1 Large Language Models for Health

Large language models, such as BERT and its variants, have demonstrated impres-

sive results in various NLP tasks, including understanding user intents behind health-

related search queries. These models have led to the development of domain-specific

information retrieval systems and improvements in clinical NLP tasks. BERT (Bidi-

rectional Encoder Representations from Transformers) is a transformer-based model

that has significantly improved the state-of-the-art across various natural language

processing (NLP) tasks by leveraging bidirectional context and pre-training on a large

corpus [34]. Since its introduction, several BERT variants and extensions have been
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proposed, such as RoBERTa [79], ALBERT [65], and ELECTRA [26], which have all

shown remarkable results in NLP tasks, including search query understanding.

In the health domain, there has been considerable research on understanding user

intents behind health-related search queries using LLMs. Domain-specific information

retrieval systems like PubMed [87] have played a crucial role in assisting researchers,

clinicians, and patients in finding relevant information. Several studies have explored

the application of large language models like BERT for this purpose. For example,

Lee et al. [67] introduced BioBERT, a BERT model pre-trained on a large biomedi-

cal corpus, which demonstrated significant improvements in various biomedical NLP

tasks compared to the original BERT. Similarly, Huang et al. [52] proposed Clini-

calBERT, pre-trained on clinical notes, to enhance the performance of clinical NLP

tasks.

In addition to BERT and its variants, there are also studies to propose LLMs

trained specifically for health text understanding. For example, Yang et al. [121]

developed GatorTron, a large clinical language model trained from scratch on over 90

billion words of text, including more than 82 billion words of de-identified clinical text.

They systematically evaluated GatorTron on five clinical NLP tasks, demonstrating

significant improvements in accuracy for tasks such as natural language inference and

medical question answering, which can be applied to medical AI systems to enhance

healthcare delivery.

The above discussion emphasizes the developing of LLMs for health-related text,

but there is a lack of studies evaluating those models for evaluating their performance

on short text (i.e. short web search phrases). Therefore, I propose to first directly

apply and evaluate the performance of di↵erent LLMs in health domains for health-

related search query clustering. I’ll talk about the clustering technique in the following

section in order to propose our method.
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2.3.2 Search Query Clustering and Classification

Search query clustering and classification have gained increasing attention in recent

years, with the application of pretrained language models like BERT and RoBERTa to

understand user search intent and enhance search engine performance. Pretrained lan-

guage models have significantly improved various natural language processing tasks.

They have been increasingly employed to cluster and classify search queries to better

comprehend user intent and optimize search engine performance [34, 79].

In the context of health-related search queries, several studies have demonstrated

the potential of LLMs in retrieving and understanding health-related search queries

and improving performance in clustering and classification tasks. Roberts et al. pro-

vided an overview of the TREC-COVID information retrieval shared task, which

aimed at retrieving relevant information for COVID-19-related questions using large-

scale language models [98]. The shared task demonstrated the potential of large lan-

guage models in retrieving and understanding health-related search queries. Reimers

et al. experimented with contextualized word embedding methods, ELMo and BERT,

to enhance open-domain argument search. They achieved impressive results in both

argument classification and clustering tasks, substantially improving the state-of-the-

art performance on multiple datasets [95]. Furthermore, MacAvaney et al. explored

the use of BERT and other large language models for classifying search queries con-

cerning search result diversification. They demonstrated that these models could

e↵ectively capture query intent, leading to improved search result diversification [82].

In addition to using LLMs embeddings, existing studies also attempt to fine-

tune these models with downstream clustering and classification tasks to achieve

better performance. Zhang et al. present Deep Aligned Clustering, an innovative

method for discovering new intents in dialogue systems by leveraging limited known

intent data. The approach uses pre-trained BERT model, k-means clustering, and an

alignment strategy to improve robustness and outperform state-of-the-art methods
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on two benchmark datasets [131]. Wang et al. introduce MEDIC, a few-shot learning

method for medical search query intent recognition, addressing the challenges posed

by short, noisy, and fine-grained medical queries. By leveraging co-click queries from

user search logs as weak supervision and designing a new query encoder that combines

semantic, syntactic, and generic knowledge, the method e↵ectively recognizes intents

in a real medical search query dataset [115]. In addition, Zhang et al. leverages

large-scale Bing search logs and user clicks to learn a distributed representation space

for user intent in search queries and demonstrate the e↵ectiveness of using search log

data as weak supervision to fine-tune the embeddings of search queries [132].

The above discussion emphasizes the usage of LLMs in the health domain and

fine-tuning them for clustering and classification, but there is a lack of studies on

fully exploring the user behavior and search logs for understanding search intents. In

order to introduce how to explore the massive search log data, we’ll first introduce

the general search intent prediction study in web search in the next section.

2.3.3 Search Intent Prediction in Web Search and Conversa-

tional Agents

Search intent understanding is a crucial task in web search and search personalization

[132, 46]. By understanding users’ search intent, search engines can provide more rel-

evant and personalized search results. Discovering new search intents and uncovering

sub-intents can provide users with potential queries and explore additional search

results for users, thereby improving the overall user experience [78, 131].

Prior research has applied three primary methodologies to understand search

queries: analyzing query phrases, examining metadata such as clickthrough data

and analyzing search contextual information. Analyzing query phrases requires the

researcher to build models on search terms, structure and sequences. Leveraging

the linguistic parsing structures from query phrases is one of the earliest method
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of analyzing search contextual information [77]. Previous studies applied di↵erent

machine learning and deep learning methods on learning from search query phrases

and achieved great success [58]. Most recently, given the rapid development of NLP

models, more and more studies start to use pertained LLMs for query phrase represen-

tation and achieve significant improvement on this task [105]. The biggest challenge

of using LLMs for search query understanding is because of their short length and

lack of context. Existing studies have explored retrieval augmentation techniques to

improve query understanding but this technique leads to increased latency of LMs

[105].

To accomplish propose to learn multiple representations for queries with multiple

intents and apply hierarchical K-means clustering methodology to better understand

the structure of search intents at di↵erent levels. Another approach to understanding

search query intent is through user behavior data. One of earliest approach is to

incorporate user click feedback to the ranking process to improve the performance

of real web search [1]. Techniques such as click models and learning to rank (LTR)

models have achieved great success in the past decades [25, 2]. For the purpose of

search query intent understanding, recent studies have been using co-click data weak

supervision to better understand users’ search intent and consider query logs and

user’s search history as contextual information to understand search intents [132, 78].

However, there is still lack of research to fully explore the contextual information in

the log data and di↵erent co-click supervision methods to generalize the search intent

representation learning.

In recent years, conversational agents, such as chatGPT [88], LLaMA [109] and

Gemini [31], have gained increasing popularity across a wide range of applications,

from customer support to healthcare, driving the demand for more sophisticated and

accurate systems. One critical component for improving these systems is fine-grained

intent prediction, which has become essential not only for enhancing user interaction
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but also for minimizing issues such as hallucinations and improving the automation

of workflows .

Fine-tuning conversational agents for intent recognition involves adapting models

to capture nuanced user intents within specific tasks, such as information retrieval

and dialogue systems. Techniques like Intent-based Prompt Calibration (IPC) have

been introduced to enhance prompt engineering by refining user intent during con-

versations [68]. IPC iteratively adjusts prompts based on user input, using synthetic

boundary cases to optimize prompts. This ensures the model better aligns with user

expectations, even when handling ambiguous queries or diverse conversational goals,

which is especially relevant in health or specialized search systems where user intent

can vary significantly across sessions (as seen in fine-tuning e↵orts using large LLMs)

Retrieval-augmented generation (RAG) is another approach that combines re-

trieval mechanisms with generative models to improve the conversational agent’s abil-

ity to respond to queries by fetching relevant external knowledge [97]. Additionally,

more generalized frameworks such as RichRAG refine RAG’s retrieval and ranking

mechanisms to address complex queries by exploring sub-aspects of a user’s intent

[114]. By breaking down a query into smaller intent-driven aspects, these systems

optimize retrieval and ranking models to better handle fine-grained intent predictions

. The multi-faceted retriever retrieves and ranks relevant documents based on the

various sub-intents, ensuring a comprehensive response generation process.

These developments highlight the growing need for RAG systems to enhance intent

prediction through fine-tuned models, which allows them to handle specialized or

complex domains more e↵ectively than generic LLMs. The use of retrieval systems

alongside language models ensures that the most contextually appropriate and fine-

grained information is retrieved and processed to better meet user needs.



37

Chapter 3

Modeling Search Trend for Air

Pollution Detection

This chapter presents my previous research on improving data processing in health

data and detecting elevated air pollution levels using multi-modal machine learning

approaches. I explore two key topics, based on my work published in [72, 74].

First, I detail the Cross-modal Memory Fusion Network (CMFN), a model de-

signed for multi-modal sequential learning with missing values, which I developed in

collaboration with my co-authors. This research was published in the 43rd Euro-

pean Conference on Information Retrieval (ECIR 2021) titled “Cross-modal Memory

Fusion Network for Multimodal Sequential Learning with Missing Values” [72]. In

section 3.1.1, I discuss the model architecture, which leverages intra-modality and

cross-modal dynamics to e↵ectively impute missing values in health data. The re-

maining sections focus on experiments conducted on benchmark datasets, including

air quality and sentiment analysis, demonstrating the model’s superiority in handling

missing data and improving prediction tasks.

Building upon the model I developed to handle missing values in multi-modal

data, I investigated the multi-modal learning model to a specific air pollution de-
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tection scenario. These models contribute significantly to time series forecasting and

can be adapted to di↵erent problem settings or integrated together to further enhance

performance. I introduce my research on leveraging web-based search data to detect

elevated air pollution levels, published in JMIR Formative Research [74]. In section

3.2.1, I present the development of novel machine learning models that combine phys-

ical sensor data with Google Trends search volume data to predict pollution events in

U.S. cities. This work, titled “Detecting Elevated Air Pollution Levels by Monitor-

ing Web Search Queries,” highlights the potential of search trends as an additional

predictive signal for real-time environmental monitoring.

These research collectively showcases my contributions to advancing machine

learning techniques for health and environmental data processing, o↵ering robust

solutions for missing data and pollution detection.

3.1 Cross-modal Memory Fusion Network for Multi-

modal Sequential Learning with Missing Val-

ues

In this sub-section, I introduce the Cross-modal Memory Fusion Network (CMFN),

a recurrent neural network architecture designed to address the challenge of multi-

modal sequential learning with missing data. This work, published in ECIR 2021,

focuses on handling health-related datasets that contain multiple modalities with

varying rates of missing information [73]. CMFN leverages both intra-modality and

cross-modal dynamics to robustly impute missing values, improving the model’s abil-

ity to make accurate predictions despite incomplete data. By incorporating cross-

modal interactions between di↵erent data streams, this model outperforms traditional

methods that handle missing values independently. The following sections will de-
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tail the problem setting, model design, and experimental results, highlighting the

advantages of CMFN over baseline methods.

3.1.1 Problem Statement

In many real-world scenarios, information and data are multi-modal (e.g. hetero-

geneous features collected from multi-typed sensors for air quality surveillance [11,

135, 69]; and multi-modal perception for face-to-face communication [126, 127]). In

these scenarios, features from di↵erent modalities are seamlessly used together for

classification/regression purposes. However, multi-modal sequential data is often in-

complete due to various reasons, such as broken sensors, failed data transmission or

low sampling rate. For example, Figure 3.1a shows two time series of air quality data

at Atlanta Fire Station #8, where two-thirds of fine particulate matter (PM2.5) data

is missing while relative humidity data is complete. Relative humidity data, as shown

in Figure 3.1a, is promising for improving daily PM2.5 surveillance because of its high

correlation and low missing rate. Many previous studies [18, 106, 12, 122] have been

developing models that could impute missing values in multivariate sequential data

by either constructing local statistics or utilizing local and global recurrent dynamics.

Although these methods have achieved remarkable success in multivariate sequential

data of one modality, they can not be naturally adapted to multi-modal sequential

data. Specifically, they are not designed to incorporate the information from modali-

ties with lower missing rates for imputing the missing values of modalities with higher

missing rates.

Previous studies [127, 128, 71] in multi-modal sequential learning have successfully

explored intra-modality and inter-modality dynamics, leading to more robust and ac-

curate predictions. Strategies for multi-modal sequential learning can be categorized

into three main approaches. The first approach is early fusion, where multi-modal

features are concatenated at the input level [85, 94]. This fusion strategy often fails
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Figure 3.1: Two time series from PM2.5 monitoring station at Atlanta Fire Station
#8

.
to e�ciently model intra-modality dynamics, as complex inter-modality dynamics

can dominate the learning process or cause overfitting. The second approach is late

fusion, which trains unimodal classifiers independently and performs decision voting

[126, 111]. This strategy could lead to ine�cient exploration of inter-modality dy-

namics by relying on the simple weighted averaging of multiple classifiers. The third

approach involves designing models that can learn both intra-modality and inter-

modality dynamics in an end-to-end manner [127, 128, 71]. It has been shown that

by exploring the consistency and complementary properties of di↵erent modalities, the

third strategy is a more e↵ective and promising way of multi-modal sequential learn-

ing. However, there is few studies examining the condition when there are missing

values in one or more modalities and how to leverage the intra-modality and inter-

modality dynamics for missing value imputation remains an under-explored problem.

To address the aforementioned problems, I propose a novel cross-modal mem-
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ory fusion network (CMFN) for multi-modal sequential learning with missing values.

CMFN extends the memory fusion network [128], where recurrent neural networks

(RNNs) are leveraged for learning intra-modality dynamics and attention-based mod-

ules are leveraged for learning inter-modality dynamics. Since the original RNN is

unable to handle incomplete input, I introduced a novel variant of gated recurrent

units (GRU) [22] called GRU-V to impute the missing values by leveraging modal-

specific and cross-modal dynamics. The main contributions of this research are:

• I study a new problem of multi-modal sequential learning with missing values

for online health data modeling.

• I propose a novel framework CMFN, with a GRU-V module to impute missing

values in multi-modal sequential learning.

• I conduct experiments on both real-world datasets and synthetic datasets to

validate the proposed approach.

In summary, multi-modal sequential learning can e↵ectively model the health

data with missing values by incorporating the information from di↵erent modalities,

resulting in the exploration of intra-modal and inter-modal dynamics. All those

challenges require practical and novel solutions.

3.1.2 Methodology

In this section, I first define the problem setting, and then I present the model archi-

tecture in detail.

Problem Definition

The input is multi-modal sequential data with N � 2 modalities. For those N

modalities, I order them from high missing rate to low missing rate as modality
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1, modality 2, ..., modality N. For each modality k, the input data is denoted as

Xk =
⇥
xt
k : t  T, xt

k 2 Rdxk
⇤
, where dxk

is the input dimensionality of modality k. I

also input the masking matrixMk = [mt
k : t  T,mt

k 2 {0, 1}] to denote missing status

(m = 0 means missing) and the time interval matrix Dk =
⇥
dtk : t  T, dtk 2 Rdxk

⇤
to

denote the number of time steps since last observation.

Model Design and Training

The Cross-modal Memory Fusion Network (CMFN) is a recurrent model for multi-

modal sequential learning with missing values, which consists of two main compo-

nents: 1) A system of RNNs consisting of multiple RNNs for learning intra-modality

dynamics. 2) DMAN and Multi-view Gated Memory [128] for learning inter-modality

dynamics. As shown in Figure 3.1b, RNNs such as GRU and long short-term mem-

ory (LSTM) [51] are applied for modalities without missing values, GRU-V is applied

for imputing the missing values with intra-modality and inter-modality dynamics for

modalities with missing values.

GRU-V is inspired by the structure of GRU-D proposed by Che et al. [18]. To ex-

plain the procedure of missing value imputation, I assume that the input for modality

1 is feature matrix X1, masking matrix M1 and time interval matrix D1. As shown

in Figure 3.1b, at time step t, for the N � 1 modalities with lower missing values, I

concatenate their hidden outputs {ht
2, h

t
3, . . . , h

t
N�1} as ht

N...2 to represent cross-modal

dynamics. For modality 1, I have the hidden output ht�1
1 at last time step to represent

modal-specific dynamics. I then concatenate the cross-modal and modal-specific dy-

namics, denoted as c[h
t�1
1 ,ht

N...2], and pass the concatenated tensor to a neural network

Dv : Rdc 7! Rdx1 to infer the variance of the missing values from its empirical mean

X̃1 in modality 1 as:

V t
X1

are softmax activated scores, which is then used to infer the missing values

as:
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X t
1 are the inferred values, and I rescale V t

X1
from [0, 1] to [�K,K] using rescale

parameter K. Because all the input values are normalized, I set K = 3 to represent

the variance of input values. Following GRU-D, I then use a weight decay function

�Dt
1
to assign weights between the last observed value X t0

1 and the inferred value X t
1

and get final imputed value X̂ t
1 as:

V t
X1

= Dv

⇣
c[h

t�1
1 ,ht

N...2]]
⌘

(3.1)

X t
1 = X̃1 + 2K · (V t

X1
� 0.5) (3.2)

�Dt
1
= exp

n
�max

⇣
�̃,W�D

t
1 + b�

⌘o
(3.3)

X̂ t
1 = �Dt

1
X t0

1 + (1� �Dt
1
) · X t

1 (3.4)

where W� and b� are model parameters that I train jointly with other parameters of

the GRU. �̃ is the default weight decay, which is set as a hyper-parameter in range

[0, 1].

3.1.3 Experimental Setting and Results

In this section, I describe experiments in four parts. First, I describe the datasets.

Second, I present the baseline models. Then I describe the experimental setup. Last,

I summarize experimental results comparing with state-of-the-art baselines.

Dataset

Air Quality Dataset Air Quality dataset is time series of daily measurement of

PM2.5 and meteorological data (i.e. relative humidity and temperature) in Atlanta

Fire Station #8 monitoring site from Jan 1, 2011 to Dec 31, 2018. This dataset

consists of two modalities and it facilitates a regression task of predicting PM2.5
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concentration based on data of the past 7 days.

CMU-MOSI Dataset Multimodal Opinion Sentiment Intensity (CMU-MOSI) dataset

[126] is a collection of 93 opinion videos from online sharing websites with three modal-

ities: language, vision, and acoustic. Each video consists of multiple opinion segments

and each segment is annotated with sentiment in the range [-3, 3]. This benchmark

dataset facilitates three prediction tasks: 1) Binary Sentiment classification 2) Seven-

Class sentiment classification 3) Sentiment regression in range [-3, 3]. This dataset

contains no missing values, so I synthetically introduce missing values by randomly

masking 50% percent of the values in acoustic modality. I construct the synthetic

datasets in two ways to test our model under di↵erent conditions. Synthetic Dataset

#1: For 5 features in acoustic modality, I randomly mask values separately, which

means this modality is partly masked when selected. Synthetic Dataset #2: I mask

values for all 5 features randomly, which means this modality is masked totally when

selected.

Experimental Setup

For the Air Quality dataset, I split the training (2011-2016), validation (2017) and

testing (2018) sets chronologically. For the CMU-MOSI dataset, there are 1284, 229,

and 686 samples in the training, validation, and testing sets respectively. I implement

our models using Pytorch1. For all the experiments, the batch size is set to be 32 and

all the parameters are tuned by the validation dataset.

Dataset Dates Modalities Prediction Task/Tasks
Air Quality 2011/01/01 -

2018/12/31
2 (PM2.5, meteo-
rological data)

PM2.5 (7-day regression)

CMU-MOSI N/A 3 (language, vi-
sion, acoustic)

Binary classification,
Seven-class classification,
Sentiment regression

Table 3.1: Overview of datasets used in the CMFN experiments.

1https://pytorch.org
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Baselines

Here, I use the following models for baselines and ablation studies.

- EFLSTM: LSTM model using early fusion strategy. The missing values are

simply imputed by the last observed values and all modalities are concatenated

into a single modality at the input level.

- MFN: State-of-the-art multi-modal learning model that learns the temporal

representation for each modality using an RNN. The missing values are simply

imputed by the last observed values.

- GRU-D: Baseline for multivariate sequential learning with missing values. All

modalities are concatenated into a single modality using early fusion method at

the input level.

- MFN-GRUD: This model is proposed for the ablation study and the RNNs in

MFN are replaced with the GRU-D. Thus, it is a multi-modal learning archi-

tecture that imputes the missing values based only on intra-modality dynamics.

Results

Here is the revised version of your table split into two separate tables to better fit

your column width:

Table 3.2: Comparison with state-of-the-art approaches for multi-modal sequential
learning with missing values: Air Quality and CMU-MOSI Dataset #1.

Task Air Quality CMU-MOSI Dataset #1
Metric MAE MSE BA F1 MA(7) MAE r
ELLSTM 3.19 15.5 0.726 0.725 0.325 1.051 0.584
MFN 3.17 15.35 0.739 0.735 0.322 1.012 0.618
GRUD 3.13 15.22 0.739 0.738 0.294 1.037 0.620
MFN-GRUD 3.07 14.8 0.736 0.729 0.321 0.996 0.621
CMFN 3.04 14.21 0.755 0.751 0.354 1.007 0.615
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Table 3.3: Comparison with state-of-the-art approaches for multi-modal sequential
learning with missing values: CMU-MOSI Dataset #2.

Task CMU-MOSI Dataset #2
Metric BA F1 MA(7) MAE r
ELLSTM 0.739 0.735 0.343 1.021 0.623
MFN 0.749 0.745 0.327 1.008 0.616
GRUD 0.755 0.750 0.331 0.957 0.652
MFN-GRUD 0.755 0.753 0.354 0.987 0.626
CMFN 0.767 0.759 0.353 0.958 0.660

Table 3.2 and Table 3.3 summarize the comparison between CMFN and proposed

baselines for all the multi-modal sequential learning tasks. For the regression tasks, I

report mean absolute error (MAE), mean squared error (MSE) and Pearson’s correla-

tion r. For binary classification, I report binary accuracy (BA) and binary F1 score.

For multiclass classification, I report multiclass accuracy MA(k) where k denotes the

number of classes. The results show that CMFN outperforms all the baseline methods

in 8/12 tasks. For the CMU-MOSI dataset, when the features in acoustic modality

are either partly missing (Dataset #1) or completely missing (Dataset #2), CMFN

can robustly impute the missing values and outperform the compared methods. For

the ablation study, the di↵erence between CMFN and MFN-GRUD is that the latter

only uses intra-modality dynamics for missing value imputation. The results show

that CMFN outperforms MFN-GRUD in 9/12 tasks, which suggests that cross-modal

dynamics can improve the missing value imputation performance.

3.1.4 Analysis & Discussion

In this study, I investigate a novel problem of exploring intra-modality and inter-

modality dynamics for multi-modal sequential learning with missing values. I propose

a new framework CMFN, which adopts modality-specific and cross-modal informa-

tion for imputing missing values. To validate the framework, I instantiated a setup

incorporating real-world data and synthetic data on benchmark multi-modal learning
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data. Our result outperforms existing state-of-the-arts models, with ablation studies

to show architectural advantages.

3.2 Detecting Elevated Air Pollution Using Web

Search Queries

In this sub-section, I propose novel machine learning–based models to detect elevated

air pollution levels at the US city level by using generally available meteorological data

and aggregate web-based search volume data derived from Google Trends. Real-time

air pollution monitoring is a valuable tool for public health and environmental surveil-

lance. In recent years, there has been a dramatic increase in air pollution forecasting

and monitoring research using artificial neural networks. Most prior works relied on

modeling pollutant concentrations collected from ground-based monitors and mete-

orological data for long-term forecasting of outdoor ozone (O3), oxides of nitrogen,

and fine particulate matter (PM2.5). Given that traditional, highly sophisticated

air quality monitors are expensive and not universally available, these models can-

not adequately serve those not living near pollutant monitoring sites. Furthermore,

because prior models were built based on physical measurement data collected from

sensors, they may not be suitable for predicting the public health e↵ects of pollution

exposure. Therefore, I propose to develop novel machine learning–based models using

state-of-the-art deep learning methods to detect elevated air pollution levels.

3.2.1 Problem Statement

3.2.2 Methodology

In this section, I formalize the task of detecting elevated air pollution as a classification

problem, and propose novel machine learning models for this task.
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t-7 t t+1t-1t-5
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Sensor	data	sequence

Search	data	sequence

Days

Figure 3.2: Input data sequences and prediction target illustrated on a timeline.

Problem Definition

Given sequences of physical sensor data P = [pt�T , ... pt�1] 2 RT⇥dp , and search

interest data S = [st�T+2, ... st+1] 2 RT⇥ds , the task is to classify day t as “polluted”

or not, where the positive class label indicates that the air pollution was above a

pre-defined threshold. T = 7 denotes sequence length, and dp = 15 and ds = 51

are the number of physical sensor features and the number of search-related terms,

respectively. Search interest data is provided to the model with a one-day lag. The

prediction setup is illustrated in Figure 3.2. Following Zhao et al., I set the sequence

length T to 7 days, to base our predictions on one-week of data [136].

Model Design and Training

I propose two neural network models for learning a predictive representation of both

P and S for pollution detection. Both models follow a two-branch composite archi-

tecture, as shown in Figure 3.3, where the left sub-network learns to extract features

from physical sensor data, and the right sub-network does the same for search interest

data. LSTM Composite Model (LSTM): I first describe an LSTM-based model where
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Day -7 Day -6 Day -5 Day -1

LSTM LSTM LSTM LSTM

128x64 Fully 
Connected

128x1 Fully 
Connected

Cross-entropy Loss

Day -5 Day -4 Day -3 Day 1

LSTM LSTM LSTM LSTM

128x64 Fully 
Connected

Sensor data (15 features) embedding branch Search interest data (51 features) embedding branch

Concat 
Embeddings

Figure 3.3: Architecture of the LSTM Composite Model

each sub-network consists of one sequence embedding layer and one fully-connected

layer. See Fig. 3.3.

• Sequence Embedding Layers: To learn an embedding of the input time series, I

use an LSTM cell (128 hidden units) with Rectified linear unit (ReLU) activa-

tion function and He initialization [47]. A 64-dimension fully-connected layer is

then applied to the output of the LSTM cell.

• Fully-connected Interaction Layer: A fully-connected layer is employed to com-

bine the features learned from the sensor data and search sequence data, in order

to capture the non-linear interactions between these sequences. This layer uses

a sigmoid activation function to produce a single probability of day t being

polluted ŷt.

• Objective Function and Optimizer: The model is trained with a binary cross
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entropy (CE) objective function and Adam optimizer [55].

CE(y, ŷ) = �(ylog(ŷ) + (1� y)log(1� ŷ)) (3.5)

where y are the binary class labels indicating whether each day is actually pol-

luted, and ŷ are the model’s predicted probability of each day belonging to

positive class (polluted day).

DL-LSTM Composite Model (DL-LSTM): This model di↵ers from the previous

model in the search interest embedding branch (See Figure 3.4). Instead of directly

using search interest, this model attempts to learn the interaction patterns between

search volume for each term, time lags, and the term-to-term correlations. Specifi-

cally, the the Dictionary Learning module transforms the original embedding vectors

by back-propagating the error from the overall network prediction, to identify most

predictive combinations of terms and time lags for each prediction task. To imple-

ment this idea, in addition to search interest data S, I first initialize a search term

embedding dictionary using their semantic embedding (GloVe 50-dimensional word

vectors trained on tweets [93]). This dictionary is represented as a ds by dg matrix

DG, where dg = 50 is the Glove embedding size. I transform DG via a dg by de ReLU-

activated fully-connected layer, where de = 150 is the size of the new embedding,

to create a new set of word embeddings that will be tuned for pollution detection.

The resulting new dictionary is represented as a ds by de matrix DE, the sequence of

search interest data S is multiplied by DE and then feed into the LSTM composite

model.
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Figure 3.4: Architecture of the DL-LSTM Composite Model
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3.2.3 Experimental Setting

Dataset

This section describes the source of the data used in this study, and details of the

data collection method. Specifically, I first describe the ground truth data, collected

through both general and specialized physical sensors. Then I describe and analyze

the Web search interest data collected from Google Trends API. Finally, I present

basic statistical properties of the data to provide intuition into the problem and to

motivate our approach.

Data Collection

I collected daily air pollutant concentration data as well as temperature and relative

humidity in ten largest U.S. metropolitan cities from Jan. 2007 to Dec. 2018. I focus

on three air pollutants: ozone (O3), nitrogen dioxide (NO2) and particulate matter

2.5 (PM2.5).

I collected the daily search frequency of pollution-related terms from Google

Trends for the same 12-year period and cities. I created a curated list of 152 pollution-

related terms based on our previous air pollution epidemiology studies and in review-

ing the environmental health literature and downloaded the reports of trending results

terms using PyTrends. For each PyTrends request, I downloaded the search history

of pollution-related terms over a six-month window with one overlapping month for

calibration. PyTrends provided us with search frequency scaled on a range of 0 to 100

based on a topic’s proportion to all searches on all topics. Because of the PyTrends re-

striction, I downloaded the reports of trending results multiple times and the search

frequencies are scaled, separately in each six-month window, which required us to

calibrate the search frequency for the 12-year period. I calibrateed the search fre-

quencies by joining the search logs on the overlapping periods (1 out of 6 months) for
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Pollutant Units Value Range EPA
Standard

Description

O3 ppm [0.001, 0.106] 0.070 Daily max 8-hour average

NO2 ppb [1, 77] 100 Daily max 1-hour average

PM2.5 ug/m3 [1, 44] 35 Daily average

Table 3.4: Air pollutants description and notation

inter-calibration.

Ground-based Sensor Data The ground-based sensor data including the in-situ

pollutant concentrations, maximum and mean temperature, relative humidity and

dew-point temperature was retrieved from the EPA Air Quality System (AQS) and

AirNow database. To come up with a single daily pollutant concentration value for

each city, I used the median of all available monitoring sites within each city to avoid

the impact of outliers. A description of pollutant levels in the collected dataset and

the National Ambient Air Quality Standards (NAAQS) set by U.S. Environmental

Protection Agency (EPA) for these pollutants are described in Table 3.4.

Web Search Interest Data By systematically reviewing the environmental health

literature[35, 110, 101], environmental health experts suggested 51 pollution-related

terms as seed search queries to identify known physiological responses to the selected

pollutants, and common experiences and observations. These are primarily related

to symptoms, observations and pollution source (e.g. cough, smoggy and wildfires).

Daily search frequency of these search terms were retrieved from Google Trends.

Google Trends API normalizes query frequency by geographic region and time span

to represent relative popularity2. The resulting search volumes are scaled to the range

of 0 to 100 to represent a topic’s popularity relative to searches on all topics.

Search Term Expansion (STE) Since the exhaustive list of user queries is not

available, reliance on the seed words may result in a poor prediction–due to the

high mismatch rate between the user queries and our expected search words. Query

2https://support.google.com/trends/answer/4365533?hl=en

https://support.google.com/trends/answer/4365533?hl=en
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Expansion is a common approach to resolve this discrepancy. A recent study [145]

showed that the initial set of seed words can be e↵ectively expanded through semantic

and temporal correlations. Thus, for each seed word I use Google Correlate3 to

retrieve the top 100 correlated query terms. Then I use the pre-trained word2vec

model [83] to retrieve the vector representation of each query–phrases are mapped to

the centroid of the constituent terms. A utility score is calculated for each candidate

query by measuring the maximum cosine similarity between the query and the seed

words. The queries with a high utility score are retained and the remaining queries

are eliminated–we empirically set the utility cut-o↵ to 0.55. This method expand the

set of search terms for the total of 152 search terms to track.

Missing Data Imputation and Normalization Following the standard practices in

environmental sensing, I fill in randomly missing data in historical pollutant concen-

tration, temperature and humidity, with a rolling mean of window size 3. To fill in

the missing data in infrequent search terms for which Google Trends does not return

a count, I use random numbers close to zero (e�10 ⇠ e�5 ). I normalize all the input

features to standard scores by subtracting their mean values and then dividing it by

the respective standard deviations.

Experimental Setup

Validation To tune model parameters and validate model performance, I split the

available data into training (from Jan. 2007 to Dec. 2014), validation (from Jan.

2015 to Dec. 2016), and testing (from Jan. 2017 to Dec. 2018) sets. This eight-

year training period provides a broad history to learn a relationship between input

predictors and output variables, and the predictive models are evaluated based on

their ability to make predictions for completely unseen periods. For evaluating our

model, I make predictions for each day form Jan. 2017 to Dec. 2018 in the test

3https://www.google.com/trends/correlate/

https://www.google.com/trends/correlate/
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dataset. The distribution of classes in train, validation, and test datasets is reported

in (Table 3.5). Note that positive and negative classes are heavily imbalanced, with

positive classes comprising, for instance, only 16% of training samples when PM2.5 is

the target pollutant.

Table 3.5: The distribution of classes in train, validation, and test sets.

Pollutant Negative Samples Positive Samples
train validation test train validation test

O3 24322 6269 6311 4896 1038 982
NO2 23926 6119 6332 5292 1188 961
PM2.5 24297 6745 6757 4921 562 536

Evaluation metrics

Because I defined this task as a classification problem, I used standard classification

evaluation metrics. I report the accuracy and F1 score of the positive class (the

harmonic mean of precision and recall) of predictions as evaluation metrics for all

models. While accuracy measures the total fraction of correct predictions and could

misrepresent model performance in presence of heavily imbalanced classes, the F1

score takes class imbalance into account and is, therefore, a more appropriate metric

for our problem.

Accuracy =
TP + TN

TP + TN + FP + FN
(3.6)

F1 =
2

1
recall +

1
precision

(3.7)

where TP , TN , FP , and FN are the number of true positive samples, true negative

samples, false positive samples, and false negative samples, respectively.
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Baselines

I compare our model with several state-of-the-art methods as listed below:

• LR: Logistic regression classifier with elastic net regularization.

• RF : Random forest classifier with the number of trees and

maximum depth tuned for prediction.

• LSTM : Baseline LSTM model as shown in Figure 1, which

combines physical sensor features, if available, with the search

interest volume data directly, providing a direct adaptation of

RNNs to this problem without any problem-specific extensions.

• LSTM-GloVe : LSTM semantic model, which is a variant of

LSTM model as described by Equation 1, I control the input of

search interest data (i.e., 51 seed search terms vs. 152 terms

after STE) in this model. I refer to the variants as LSTM-GloVe

and LSTM-GloVe w/ STE respectively.

Pollutant L.A. DC PHILA. DTX ATL BOS NY MIA CHI HOU

O3(ppb)
55 54 53 53 53 48 49 45 49 49

NO2(ppb)
43.7 38.1 36 25.2 27.8 30.7 45.3 25.5 43.7 27.7

PM2.5(ug/m3)
18.7 15.1 16.4 13.1 15.6 12.4 13.9 10.6 16.2 14.4

Table 3.6: Classification thresholds for three pollutants across 10 major MSAs in the
U.S.
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NO2O3 PM2.5

Figure 3.5: Distribution of pollution values for Atlanta, Los Angeles, Philadelphia,
and Miami, with city-specific elevated pollution level (dashed line) and the general
EPA-mandated standard (dotted line), for O3 (left column), NO2 (middle column),
and PM2.5(right column).

3.2.4 Results

In this section, we first present the findings of the data exploration. Then we present

the principal findings of this study.
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Figure 3.6: NO2 levels and search interest for term “cough” in Atlanta, October 2016.

Insights from Collected Data

In this section, we describe the thresholds of abnormal air pollutant concentrations

and then we present the lag between search anomalies and air pollution.

Thresholds of Abnormal Air pollutant Concentrations The major MSAs

chosen for study in this work, have di↵erent distributions of pollutant concentration

through time, almost always fall below the EPA standard 24-hour threshold (Fig-

ure 3.5). Despite this, multiple studies have shown that even at low concentrations,

chronic exposure to air pollution negatively a↵ects human health [41, 42]. Therefore,

calibrating a meaningful threshold for each city, especially ones with generally lower

levels of air pollution (e.g., Miami) may be critical for adequately protecting popu-

lation health. A natural way to do this may be to set the threshold as one standard

deviation above the mean daily pollutant concentration within each city, which is

adopted in this study. The input predictors are also normalized within each city to

reflect city-level dynamics. The resulting thresholds for the three pollutants and cities

under investigation are reported in Table 3.6.

Lag between Search Anomalies and Air Pollution As shown in Figure 3.6,

the normalized search frequency of the term “cough” is correlated with the concen-

tration of NO2 in Atlanta with a certain lag of time. To determine the lag between
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elevated pollution levels and consequent pollution-related searches, the mean absolute

Spearman’s correlation between pollutant concentrations and search interest data was

calculated, shifted forward in time for 0, 1, 2, and 3 days. As shown in Table 3.7, for

O3 and PM2.5, the mean absolute Spearman’s correlation increases with the increase

of the shifted days. Considering that the task aims to detect elevated pollution levels

as soon as possible, a lag of one day was applied to search data. In other words,

search interest data from the current day was used to estimate whether air pollution

was elevated on the previous day.

Evaluation Outcomes

In this section, we consider three conditions to evaluate the performance of using Web

search data to detect elevated pollution, i.e., using only search data, using search data

as an auxiliary data of meteorological data, and using search data as an auxiliary data

of meteorological data and historical pollutant concentration.

Using Only Search Data: For areas where ambient pollution monitoring is un-

available, investigating whether Web search data could be used as the only signal for

nowcasting elevated air pollution is a vital question. When relying on only search

data for air pollution prediction, both the proposed DL-LSTM architecture and search

term expansion contribute to the improvement of prediction accuracy. As shown in

the “Search” section of Table 3.8, the LSTM-based models exhibit superior accuracy

over the baseline LR and RF models for O3 and NO2. For PM2.5, the proposed models

do not perform better than the baseline LR or LSTM model because the validation

and test dataset are heavily imbalanced (as shown in Table 3.8). In more detail, the

proposed DL-LSTM w/ STE model achieves the highest F1 score (32.44% for O3,

27.70% for NO2) for detecting O3 and NO2 pollution.
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Using Search Data and Meteorological Data: When meteorological data is

available, we investigated the feasibility of using meteorological data with/without

search activity data to nowcast air pollution under this condition. As shown in the

“Met” and “Met +Search” sections of Table 3.8, the inclusion of Web search data

improves the nowcasting accuracy for all three pollutants. In addition, the LSTM-

GloVe w/ STE model achieves the highest F1 score (50.71% for O3, 41.49% for NO2)

for detecting O3 and NO2 pollution. The LSTM-GloVe w/o STE model achieves the

highest F1 score (26.99%) for detecting PM2.5 pollution.

Using Search Data, Meteorological Data and Historical Pollutant Concen-

tration: When historical pollution concentration is available, search activity data is

added as auxiliary data to both meteorological data and historical pollution data. As

shown in the “Met+Pol” and “Met+Pol+Search” sections of Table 3.8, the inclusion

of Web search data improves the nowcasting accuracy for O3 and PM2.5. However,

for NO2, the inclusion of Web search data does not improve the nowcasting accuracy,

which indicates increases in NO2 concentrations may not be directly noticeable by

people su�ciently to increase their search interest. This di↵erence in performance for

di↵erent pollutants and locales merits further investigation.

City-level Analysis of Ozone Pollution Prediction

We investigated the potential of using search interest and meteorological data to

replace ground-based ozone sensor data for ozone pollution prediction in individual

cities. As shown in Table 3.9, including search interest data (Met+Search) to aug-

ment purely meteorological data (Met) increases both accuracy and F1 metrics for

most cities. While these metrics are not reaching the performance when the ground-

level pollution sensors are available (Met+Pol), at least for two of the major MSAs

(Philadelphia and Houston), search volume data indeed provides a useable alternative
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to pollution monitors, with only 1.6% and 0.14% degradation in accuracy, respectively.

Besides, the di↵erences in model performance across di↵erent cities indicate that the

online search pattern could vary from city to city. As shown in Table 3.10, the top five

correlated terms di↵er across US cities in 10 years. The variation of search patterns

could lead to a degraded prediction performance for certain areas, leaving promising

directions for improvements.

Pollutant Lag = 0
Search Term
(Spearman’s
correlation)

Pa Lag=1
Search Term
(Spearman’s
correlation)

Pa Lag=2
Search Term
(Spearman’s
correlation)

Pa Lag=3
Search Term
(Spearman’s
correlation)

Pa

O3

cough(-0.34) ¡.001 cough(-0.38) ¡.001 cough(-0.41) ¡.001 cough(-0.41) ¡.001
bronchitis(-
0.31)

¡.001 bronchitis(-
0.32)

¡.001 bronchitis(-0.33) ¡.001 bronchitis(-
0.35)

¡.001

tra�c(0.26) ¡.001 tra�c(0.27) ¡.001 tra�c(0.26) ¡.001 smoke(0.24) ¡.001
smoke(0.23) ¡.001 chest pain(-

0.23)
¡.001 chest pain(-0.23) ¡.001 tra�c(0.23) ¡.001

snoring(0.22) ¡.001 snoring(0.22) ¡.001 smoke(0.22) ¡.001 chest pain(-
0.22)

¡.001

NO2

asthma(0.20) ¡.001 sulfate(0.20) ¡.001 sulfate(0.16) .002 cough(0.16) .002
sulfate(0.19) ¡.001 bronchitis(0.16) .002 bronchitis(0.15) .005 copd(-0.16) .003
cough(0.17) ¡.001 inhaler(0.15) .005 cough(0.14) .008 bronchitis(0.14) .008
bronchitis(0.17) .001 cough(0.14) .006 inhaler(0.11) .03 wheezing(-0.12) .02
inhaler(0.16) .002 di�culty

breathing
(-0.12)

.02 headache(-0.11) .03 headache(-0.10) .04

PM2.5

wildfires(0.14) .009 copd(-0.15) .005 air pollu-
tion(0.19)

¡.001 air pollu-
tion(0.18)

¡.001

copd(-0.11) .03 wildfires(0.14) .007 copd(-0.17) .001 copd(-0.18) ¡.001
snoring(0.11) .03 air pollu-

tion(0.14)
.008 wildfires(0.14) .009 wildfires(0.15) .004

inhaler(0.10) .06 asthma at-
tack(0.11)

.04 respiratory ill-
ness(0.10)

.05 sulfate(-0.11) .03

di�culty
breathing
(-0.09)

.08 respiratory ill-
ness (0.10)

.05 tra�c(0.10) .06 tra�c(0.11) .04

P a value, with n = 366

Table 3.7: Cross correlation of top five search terms with di↵erent lags for three
pollutants in the Atlanta metropolitan area in 2016.

3.2.5 Analysis & Discussion

Sensitivity Analysis of Air Pollution Thresholds Classification thresholds

play an essential role in our model. In this study, a standard deviation threshold



62

from the mean of corresponding pollutants was used as a “probability threshold” to

detect air pollution on a spatial-temporal resolution. However, the proposed method

is sensitive to the threshold. We further investigate the performance of the proposed

method on a variety of fixed classification thresholds. As shown in Figure 3.7, Figure

3.8 and Figure 3.9, we fixed the classification thresholds for all ten cities for detecting

Ozone, NO2 and PM2.5 pollutions. The result shows that the meteorological and

search data are complementary and combining search and meteorological data leads

to better prediction performance for all classification thresholds.

In summary, while Web search data cannot yet fully replace traditional ground-

based pollution monitors, it serves as a valuable supplementary signal, enhancing the

sensitivity and responsiveness of pollution detection models, particularly for capturing

unusual spikes in air quality events. The fluctuating correlation between search terms

and pollution concentration across di↵erent cities suggests a need for city-specific fine-

tuning to ensure the model’s e↵ectiveness. My findings indicate that no single search

term works optimally for predicting all pollutants; thus, search term selection and

model adaptation should be tailored to each pollutant type and location.

While metrics such as F1 scores show improvement in model performance, these

metrics alone may not capture the full utility of integrating search data into health

forecasting. For example, search trends o↵er unique insights into public awareness

and behavioral responses to pollution events, especially when evaluated under sce-

narios involving media coverage and shifts in public search interest. This capability

makes search data uniquely suited as a surveillance tool, as it reflects real-time public

engagement and awareness, which meteorological data alone cannot capture.
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Figure 3.7: Accuracy (left figure) and F1 score (right figure) for detecting Ozone pol-
lution on various classification thresholds, with Met (LSTM model) and Met+Search
(DL-LSTM w/ STE) as features.

Figure 3.8: Accuracy (left figure) and F1 score (right figure) for detecting NO2 pol-
lution on various classification thresholds, with Met (LSTM model) and Met+Search
(DL-LSTM w/ STE) as features.

Figure 3.9: Accuracy (left figure) and F1 score (right figure) for detecting PM2.5 pol-
lution on various classification thresholds, with Met (LSTM model) and Met+Search
(DL-LSTM w/ STE) as features.
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Features Model O3 NO2 PM2.5

Accuracy%
(F1%)

Accuracy%
(F1%)

Accuracy%
(F1%)

No Prior

Knowledge

All Positives 13.46 (23.73) 13.18 (23.28) 7.35 (13.69)
All Negatives 86.54 (0.0) 86.82 (0.0) 92.65 (0.0)
Random (Prob=0.5) 50.29 (20.63) 50.56 (20.68) 50.65 (12.67)

Search

LR 36.93 (17.77) 53.97 (24.17) 78.29 (10.72)
RF 33.53 (23.36) 55.22 (18.1) 92.654(0.0)

LSTM 46.73 (23.63) 69.68 (21.62) 89.96 (7.58)

LSTM-GloVe 53.23 (28.45) 63.44 (27.4) 90.09 (3.73)

LSTM-GloVe w/
STE

69.17 (28.04) 46.85 (26.51) 91.73 (1.31)

DL-LSTM 62.46 (30.4) 65.99 (26.19) 88.61 (7.97)

DL-LSTM w/ STE 69.61 (32.44) 56.84 (27.7) 87.59 (6.99)
Met

LR 62.57 (39.81) 63.64 (37.25) 58.58 (22)

RF 78.76 (50.59) 71.77 (39.88) 73.78 (24.67)

LSTM 76.54 (48.29) 72.52 (41.27) 67.89 (24.69)

Met+Search

LR 55.99 (36.56) 62 (36.25) 61.25 (21.5)

RF 81.39 (45.35) 73.77 (38.71) 87.96 (23.78)

LSTM 78.18 (47.65) 77.75 (40.31) 88.14 (21.29)

LSTM-GloVe 80.04 (49.37) 72.75 (40.35) 85.38 (26.99)

LSTM-GloVe w/
STE

81.85 (50.71) 74.21 (41.49) 85.42 (26.13)

DL-LSTM 77.97 (48.94) 74.81 (40.53) 84.94 (24.07)

DL-LSTM w/ STE 80.16 (49.32) 72.99 (40.34) 87.04 (21.32)

Met +Pol

LR 67.38 (44.61) 70.05 (44.09) 74.45 (32.82)

RF 82.81 (57.23) 80.35 (51.24) 86.45 (40.63)

LSTM 86.97 (63.01) 84.64 (55.59) 85.25 (43.19)

Met+Pol+Search

LR 66.91 (43.71) 69.13 (43.6) 74.45 (32.82)

RF 82.76 (55.91) 78.91 (47.72) 89.43 (37.57)

LSTM 87.11 (61.54) 84.71 (54.02) 90.74 (44.81)

LSTM-GloVe 87.94 (63.81) 82.98 (53.78) 88.19 (46.55)

LSTM-GloVe w/
STE

87.63 (63.83) 83.81 (54.59) 88.24 (46.51)

DL-LSTM 87.30 (63.02) 82.65 (53.65) 89.66 (47.35)

DL-LSTM w/ STE 87.60 (63.61) 83.40 (53.58) 89.25 (46.59)

Table 3.8: Accuracy and F1 score of the LR, RF, and LSTM models for detecting
elevated pollution across 10 major U.S. cities, for varying input feature combinations:
no prior knowledge, search data only (Search), meteorological data only (Met); me-
teorological data and search data (Met +Search), meteorological data and historical
pollutant concentration (Met +Pol) and all input features (Met +Pol+Search).
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Features L.A. DC PHILA DTX ATL BOS NY MIA CHI HOU

Accuracy %
Met 72.6 77.4 83.29 83.42 83.56 75.62 68.36 58.09 76.71 85.89
Met
+Search

76.71 80.68 87.4 79.86 83.84 78.63 74.93 69.29 80 90.14

Met
+Pol

85.89 86.99 89.04 89.04 88.22 84.66 86.85 82.02 86.85 90

F1 %
Met 51.69 48.28 53.79 53.28 48.72 46.06 44.07 32.52 56.19 57.26
Met
+Search

54.3 50.53 58.56 41.9 42.72 48 47.86 35.84 57.56 59.09

Met
+Pol

68.11 60.58 64.29 64.6 56.12 55.56 63.64 55.48 70.73 67.26

Table 3.9: City-level accuracy and F1 Score for detecting elevated O3 pollution in 10
U.S. cities, with Met (LSTM model), Met+Search (DL-LSTM w/ STE) and Met+Pol
(LSTM model) as features.

Search Term (Spearman’s correlation, lag = 1)
L.A. DC PHILA DTX ATL BOS NY MIA CHI HOU

cough

(-0.40)

bronchitis

(-0.25)

cough

(-0.33)

cough

(-0.25)

bronchitis

(-0.14)

smoke

(-0.11)

bronchitis

(-0.31)

bronchitis

(0.14)

wildfires

(0.18)

ozone

(0.12)

bronchitis

(-0.33)

cough

(-0.25)

tra�c

(0.27)

bronchitis

(-0.24)

cough

(-0.11)

haze

(-0.07)

tra�c

(0.29)

air
pollution

(0.13)

smoke

(0.08)

air
pollution

(0.12)

wildfires

(0.24)

coughing

(-0.19)

bronchitis

(-0.20)

ozone

(0.17)

chest pain

(-0.10)

code red

(-0.06)

cough

(-0.25)

cough

(0.13)

shortness
of breath

(0.04)

asthma

(0.06)

tra�c

(0.14)

headache

(-0.14)

organic
carbon

(-0.10)

wildfires

(0.15)

respiratory
infection

(-0.09)

coughing

(0.06)

wildfires

(0.19)

power
plants

(0.09)

heart
murmur

(0.04)

organic
carbon

(0.05)

respiratory
infection

(-0.12)

wildfires

(0.13)

respiratory
infection

(-0.09)

coughing

(-0.14)

wheezing

(-0.07)

smog

(0.05)

wheezing

(-0.15)

nitrogen
dioxide

(0.08)

tailpipe

(0.04)

wildfires

(0.05)

Table 3.10: Top five correlated search terms for O3 pollution in 10 U.S. cities: Jan.
1, 2010 to Dec 31, 2019.
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Chapter 4

Modeling Search Trend for

Infectious Disease Forecasting

In this section, I propose a novel self-supervised message-passing neural network

(SMPNN) framework for modeling local and cross-location dynamics in pandemic

forecasting, building on the foundation of recent advancements in graph neural net-

work (GNN) modeling of web search data. Our work and the methodology are pub-

lished in the paper titled “Graph Neural Network Modeling of Web Search Activity

for Real-time Pandemic Forecasting” presented at the 2023 IEEE International Con-

ference on Healthcare Informatics (ICHI) [75].

The utilization of web search activity for pandemic forecasting has significant

implications for managing disease spread and informing policy decisions. However,

web search records tend to be noisy and influenced by geographical location, making

it di�cult to develop large-scale models. While regularized linear models have been

e↵ective in predicting the spread of respiratory illnesses like COVID-19, they are

limited to specific locations. The lack of incorporation of neighboring areas’ data and

the inability to transfer models to new locations with limited data has impeded further

progress. To address these limitations, I propose the SMPNN framework utilizes an
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MPNN module to learn cross-location dependencies through self-supervised learning

and improve local predictions with graph-generated features.

4.1 Problem Statement

Over the past decade, there has been an increasing interest in using signals generated

from online search activity to predict infectious diseases, such as seasonal influenza

and the H1N1 pandemic [43, 137, 21, 108]. Similarly, since the outbreak of COVID-19,

several studies have investigated using online search activity to predict the increase

in COVID-19 cases based on the intuition that people with relevant symptoms will

search the Web for help [64, 91, 123]. For example, Fig. 4.1 shows two time series of

COVID-19 related symptom “Rhinitis” search activity and daily confirmed COVID-

19 cases in Norfolk, UK during March to May 2020. The peaks of these two curves

are highly synchronized and have a strong correlation. In addition, by analyzing the

Google search trends [80] and Twitter data, Panuganti et al. [91] calculated the rela-

tive correlation of online activity concerning di↵erent COVID-19 relevant symptoms

with the disease incidence and concluded that Google search and tweet frequency

regarding “fever” and “shortness of breath” are more robust indicators than “smell

loss” for COVID-19 incidence. Meanwhile, Yom-Tov et al. [123] analyzed searches

for COVID-19 relevant symptoms on Bing search queries from users in England and

found that queries for “fever” and “cough” symptoms were the most correlated queries

with future COVID-19 cases during the early stages of the pandemic. These studies

indicate the feasibility to build COVID-19 forecasting models based on the search

activity for COVID-19 relevant symptoms.

Location-specific regression models are the most widely-used method for pandemic

forecasting using web search activity. The well-known Google Flu Trends method

(the GFT method) applied a linear logit regression model on the aggregated search
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volume of influenza-relevant queries [43]. Although the GFT method is e↵ective

in selecting disease relevant queries, [28] reported that the GFT predictions could be

very inaccurate in practice. To overcome this limitation, several studies propose to use

linear autoregressive (AR) models with the Elastic Net regularization to learn a sparse

model directly on the time series of disease-relevant search queries [108, 144, 64].

For example, Lampos et al. [64] have built supervised AR models on COVID-19

relevant search time series and show that they could make predictions preceding the

reported confirmed cases and deaths several days ahead. They also show that linear

AR models could minimize the concerns that no su�cient data exists at the initial

stage of disease outbreaks. Although linear AR models have been built for several

respiratory diseases, they have been questioned for lacking the ability of making

stable and accurate predictions, mainly because location-specific models tend to be

impaired by the irregular change of search activity caused by short-term change in

news or media exposure [108].

Furthermore, it is imperative to note that linear logit regression-based methodolo-

gies pose challenges in detecting search novelty [140], user interactions [138, 141], and

broader geographical connections [142]. As a result, there is a pressing need for re-

search that surpasses location-specific limitations, provides more abundant structure,

and possesses the ability to predict and analyze disease tracking e↵ectively.

Graph neural network (GNN) models have been proposed for exploring cross-

location dependencies to make more robust prediction for several infectious diseases

[32, 90, 139]. Deng et al. [32] propose a graph message neural network with cross-

location attention for long-term seasonal influenza prediction with historical disease

incidence time series as input and show that the cross-location dependencies in the

data improves the model performance. Furthermore, Panagopoulos et al. [90] con-

sider the mass mobility data between multiple regions and propose a message passing

neural network (MPNN) model to predict the development of COVID-19 based on
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past disease incidence. In their study, mobility is used as an indicator of spatial con-

nectedness between locations. With MPNN, they update each vertex (region) based

on messages received from neighboring regions. According to their results, MPNN

has a superior ability to predict the development of diseases compared to multiple

baseline models. Although cross-location dependencies in past disease incidence have

been explored by prior studies for pandemic forecasting, there is limited work on

combining the web search data with geographical graphs for pandemic forecasting,

and it remains an open question whether GNNs could outperform location-specific

regression models on the web search data.

Additionally, current models based on past disease incidence and mobility data

are limited in exploring cross-location dependencies to make more robust predictions

for infectious diseases [39]. While Graph Neural Network (GNN) models have been

proposed to address this challenge and have shown promising results, there is limited

work on combining web search data with geographical graphs for pandemic forecasting

[113]. Furthermore, current models have limitations in accurately predicting the

development of diseases during the early stages of outbreaks, which is a critical time

for taking preventive measures. These limitations have hindered the advancements in

pandemic forecasting and surveillance, especially in the context of emerging infectious

diseases where timely and accurate predictions are crucial for controlling the spread

of the disease.

4.2 Methodology

In this section, I first formulate the problem. Then I present the proposed neural

network architecture and how it aggregates features for predicting the development

of COVID-19.
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Figure 4.1: Two time series from normalized google search volumes of “Rhinitis” and
normalized daily confirmed cases in Norfolk, UK for March to May 2020.

4.2.1 Problem Formulation

Input. I construct the daily snapshot of the search activity network as a (geograph-

ical) Graph G = (V,E), where n = |V | denotes the number of nodes and the weight

w(u, v) of the edge (u, v) represents spatial connectedness index between vertex u

and vertex v. Specifically, for a given country, the nodes represent its subregions, and

the edge weights are calculated by the mobility and social connectedness between the

nearby sub-regions.

Spatial Aggregation. Given that people in nearby regions could move and con-

tact with each other, the search activity in one region could be influenced by nearby

regions. Therefore, the spatial connectedness index between the regions u and v at

time t could be multiplied by the search activity s(t)u of region u at time t to generate

a relative value which represents the extent to which search activity in region v is in-
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fluenced by region u at time t. Specifically, let x(t)
u =

⇣
s(t�d)
u , . . . , s(t)u

⌘>
2 Rd⇤l, where

s(t)u 2 Rl is a vector of node features, which consists of the normalized search volume

of l search terms of the past d days in region u. I use the search volumes of multiple

days rather than considering only the previous day for prediction because search vol-

umes vary greatly between days. In summary, the spatial aggregation process could

compute a feature vector for each region with the following formula:

AX(t) =

2

66666664

w(t)
1,1 w(t)
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...
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3
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(4.1)

where A is the spatial connectedness matrix of G(t) and X(t) is a matrix whose rows

consists of the node features of each region. After spatial aggregation, zu 2 Rd⇤l is a

vector that aggregates the search activity within and towards region u.

Output. The goal of our work is to predict yt+k
u , which is the reported number

of COVID-19 cases for region u at k days after day t.

4.2.2 Model Designs

The main aim of our work is to model people’s web search activity in graph G

from real-time data, and measure the deviations from their search behavior to fa-

cilitate disease surveillance. To meet this goal, I design a two-stage framework: (1)

Self-supervised MPNN module to generate cross-location features and (2) Location-

specific regression module for disease prediction based on past search volumes and

graph-generated search features.
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Self-supervised MPNN module

MPNN framework represents a family of graph neural network models which use the

message, update and readout functions to learn representation from the nodes in the

graph [42]. I apply two neighborhood aggregation layers in the network and each

layer learns from the graph structure and the node representation from the previous

layer. I calculate the node representation for each layer using the following formula

[56]:

Hi+1 = f
⇣
ÃHiWi+1

⌘
, (4.2)

where Hi denotes the node representation matrix of the previous layer. H0 = X,

represents the initial feature matrix. Wi denotes the parameter matrix of layer i

and f is ReLU activation function. I train the parameter matrix using following loss

function:

L =
1

n

X

u2V

�
s(t+k)
u � ŝ(t+k)

u

�2
, (4.3)

where st+k
u denotes the search volume of the search terms for region u at day t + k

and ŝ(t+k)
u denotes the predicted search volume of the search terms at day t+ k.

Location-specific regression module

At the second stage, I apply location-specific regression models f(·) to predict disease

incidence based on past search volumes and graph-generated search features for L

symptoms. I predict the disease incidence according to the formula as shown below:

ŷu = f(Su, �u) + ✏u. (4.4)

When I use linear autoregressive model as the regression module, I optimize the model

according to the following formula:
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arg min
wu,bu

�
kyu � Suwu � buk22

�
, (4.5)

where yu 2 R is the reported cases in region u, and wu 2 R2⇤l⇤d, bu 2 R denote the

feature weights and regression intercept, respectively. Note that the time index of

Su is omitted for the simplicity of notation. In fact, for a specific search term out

of l search terms, I use the search volumes of past d days and the graph-generated

features from MPNN module of past d days.

End-to-end training pipeline

As mentioned above, I have two options for training the SMPNN model. The first way

is to train SMPNN algorithm in an end-to-end way, where I apply a regression layer

on top of the MPNN module. The pseudocode of the end-to-end SMPNN algorithm

is described in Algorithm 1. The second way is to train the self-supervised MPNN

module and location-specific regression module separately. Compared to end-to-end

training of SMPNN, the second option preserves more location-specific information

and has the flexibility to choose di↵erent regression models for location-specific re-

gression.

4.3 Experimental Setting

In this section, I describe the dataset used in the experiment. Then, I describe the

experimental setup and baselines in more detail.

4.3.1 Dataset

In this subsection, I introduce how I build our datasets from England and the US.

Specifically, I collect England data from an open benchmark dataset provided by

Panagopoulos et al. [90] and collect the US data from the Google COVID-19 open
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Algorithm 1: SMPNN algorithm

1 [1] Time series data {X, y} from multiple regions, spatial connectedness
matrix A Model parameters ⇥, prediction result y

2 for each epoch do

3 end
4 Randomly sample a mini-batch
5 for each region i do

6 end
7 Self-supervised process hi  Graph Message Passing (xi:, A)
ŝi  Output ([hi;xi:])

8 for each region i do

9 end
10 Location-specific regression ŷi  Linear Regression (xi:; ŝi)

11
�L(⇥) BackProp(L(⇥),y, ŷ,⇥)
⇥ ⇥� ⌘�L(⇥)

Table 4.1: Dataset statistics for England and USA.

COUNTRY TIME AVG CASE MAX CASE SD
ENGLAND 3/20-5/20 25.04 152.58 20.17

USA 9/20-12/21 279.56 10682.70 477.91

dataset [80]. Their data statistics are shown in Table 4.1. All disease cases are

normalized as cases per million people.

• England This dataset contains daily COVID-19 confirmed cases from 48 re-

gions in England, ranging from March 13, 2020 to May 12, 2020. I consider this

dataset as COVID-19 forecasting at very early stage. Locations are represented

as the NUTS3 regions. The spatial connectedness matrix is calculated based

on the mobility between regions, which is collected from the movement data of

meta Data For Good disease prevention maps [48].

• USA This dataset contains daily COVID-19 confirmed cases from 60 counties

in the US, ranging from September 1, 2020 to December 31, 2021. This dataset

contains the three most populated counties in the US (i.e. Kings county in

New York, Cook county in Chicago and Los Angeles county in Los Angeles)
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and their nearby counties, ranging from September 2020 to December 2021. I

consider this dataset for COVID-19 forecasting in a longer period. Locations

are represented as the GADM level 2 regions. The spatial connected matrix is

calculated from the social connectedness dataset of meta data for good project

[5].

I collected county-level search data from Google COVID-19 search trends symptoms

dataset [80]. Specifically, according to the existing publications, I consider several

symptoms, i.e. ‘fever’, ‘cough’, ‘hay fever’, ‘fatigue’, ‘diarrhea’, ‘rhinitis’ and ‘short-

ness of breath’. For England, I track five symptoms including ‘fever’, ‘cough’, ‘hay

fever’, ‘rhinitis’ and ‘shortness of breath’. For the US, I also track ‘fever’, ‘cough’,

‘hay fever’, ‘fatigue’ and ‘diarrhea’ because ‘rhinitis’ and ‘shortness of breath’ volumes

are missing for US counties. Search volumes of each symptom is normalized to 0-100

as the normalized popularity of a symptom.

4.3.2 Experimental Setup

I train the models using the data from day 1 to day T to predict disease incidence

at day T + k. [124] reports that certain search symptoms (e.g. ‘fever’) could reach

the highest prediction performance when k is equal or larger than 5. Therefore, I set

k from 1 to 7 days in this study. For England, I increase T one day at a time with

T initially set to 30 days and a validation set of last 10 days. For the US, I increase

T one month at a time with T initially set to 2 months and validation set of last

one month. With this experiment setup, I can predict disease incidence as early as

possible.

I evaluate the performance of the models using the mean absolute error (MAE)

since absolute changes in the disease cases are most widely-used metrics in pandemic
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forecasting task:

MAE =
1

n

X

u2V

��ŷ(t)u � y(t)u

�� (4.6)

Note that all reported cases are normalized with the population of that region through-

out the experiments (i.e. cases per million people).

4.3.3 Baselines

I compare our model with several state-of-the-art methods as listed below:

• Autoregressive Moving Average (ARMA) [57] represents the linear au-

toregressive model. ARMA contains the autoregressive terms and moving-

average terms together. The order of the moving average is set to 2 in im-

plementation.

• Random Forest (RF) [7] is a non-linear regression model, which is a meta

estimator that fits a number of regression decision trees on various sub-samples

of the dataset and uses averaging to improve the predictive accuracy and control

over-fitting.

• Support Vector Regression (SVR) [17] is a non-linear regression model,

which is a nonparametric technique which relies on kernel functions to make

predictions.

• MPNN [90] by design, could serve as an end-to-end model to predict the

disease incidence from the search activity graph. Comparing to the location-

specific regression models, I follow a similar design as described in section 4.2.2

while replacing the loss function as below:

L =
1

n

X

u2V

�
y(t+k)
u � ŷ(t+k)

u

�2
(4.7)
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where yt+k
u denotes the reported number of cases for region u at day t+ k and

ŷ(t+k)
u denotes the predicted number of cases.

Hyper-parameter Setting For all the models, I use the same validation set

to select the best model as decribed in section 4.3.2. Specifically, for RF model, I

explore the tree depth from 3 to 9 to control model complexity. For SVR model, I use

polynomial kernel and explore the regularization term C from 0.1 to 2. For all the

neural network models, I use two neighborhood aggregation layers with the number

of hidden units equals to 64 and store the model that achieves highest validation

accuracy. To control model complexity, I apply batch normalization and dropout

with ratio set to 0.5 to every neighborhood aggregation layer.

4.4 Results

Table 4.2: Mean absolute error for COVID-19 forecasting in number of cases per
million people per region.

Model England USA
Days ahead (k) 1 2 3 4 5 6 7 1 2 3 4 5 6 7

ARMA 17.45 16.81 17.17 17.46 17.60 16.55 15.77 233.1 235.2 237.2 237.5 235.2 228.8 226.8
RF 13.07 14.03 14.79 14.35 13.99 13.34 13.03 245.5 243.9 247.0 242.8 245.2 239.4 234.9
SVR 15.11 14.21 14.07 14.00 14.23 13.95 13.60 215.0 219.7 223.0 220.3 217.1 209.1 207.4

MPNN 18.19 17.52 18.07 18.71 18.35 18.03 18.96 221.7 221.3 221.6 215.8 226.0 217.8 222.2
end-to-end SMPNN 19.20 19.00 19.28 19.95 18.71 19.28 20.33 221.4 226.9 226.6 227.3 213.9 221.7 219.7

SMPNN
w/ ARMA 16.26 16.50 16.53 17.18 16.78 15.76 16.34 228.7 239.5 232.6 227.6 224.7 216.7 216.7
w/ RF 12.83 14.02 14.62 13.99 13.36⇤ 12.67⇤ 12.81 250.6 244.5 241.4 238.1 237.6 233.4 233.6
w/ SVR 14.40 13.85 14.25 14.13 14.07 13.57 13.45 212.1 228.7 216.4 207.0⇤ 202.2⇤ 198.4⇤ 197.2⇤

Relative Improvement "1.8% "1.3% #1.3% "0.1% "4.5% "5.0% "1.7% "1.4% #4.1% "2.4% "4.1% "6.9% "5.1% "4.9%
Notes: The numbers are computed as the average of 21 runs/days for the UK and 11 runs/months for the USA, where ⇤p < .05

Table 4.2 summarizes the comparison between SMPNN and baselines for the pan-

demic forecasting tasks on England and US datasets. We investigate the di↵erent

settings of predicting disease incidence one to seven days ahead (k = 1, 2, . . . , 7). For

the regression tasks, we report the mean absolute error (MAE) of disease cases for

two countries. For England, the models are trained and predict daily in a two-month

window. SMPNN outperforms all the baseline methods in 6/7 tasks, with MAE re-

duction up to 5.0% when k equals to 6. For the US, the models are trained the predict
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daily in a sixteen-month window. SMPNN outperforms all the baseline methods in

6/7 tasks, with MAE reduction up to 6.9% when k equals to 5. For England and

the US, the lowest MAE is achieved when k equals 6 and 7 respectively, which is

consistent with previous studies [64, 124].

4.5 Analysis & Discussion

Figure 4.2: Monthly predictions for the US.

The baseline ARMA, RF and SVR models rely on location-specific dynamics for

training, while end-to-end MPNN replies on cross-location dynamics with graph as

the input. By design, SMPNN learns from both location-specific and cross-location

dynamics, thus achieving lowest prediction errors as shown in in Table 4.2. We

further investigate how di↵erent models perform at di↵erent stages after disease out-

breaks. As shown in Fig. 4.2, the box plots show the distribution of monthly new
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Figure 4.3: Feature importance for SMPNN (k=7).

Figure 4.4: Intermediate training errors when training SMPNN model.

COVID-19 cases and the line plots represent the mean absolute error for SVR, MPNN

and SMPNN models. At the early stage of prediction (i.e. the earliest predictions
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Table 4.3: Pearson correlation of top ten search terms for UK and USA across all
regions.

Search Term in UK Correlation Search Term in USA Correlation
Rhinitis 0.446⇤⇤ Ageusia 0.640⇤⇤⇤

Hay fever 0.442⇤⇤ Anosmia 0.604⇤⇤⇤

Hair loss 0.390⇤ Low grade fever 0.548⇤⇤⇤

Allergy 0.366⇤ Fever 0.527⇤⇤⇤

Abdominal obesity 0.362⇤ Pneumonia 0.501⇤⇤⇤

Dermatitis 0.359⇤ Hypoxemia 0.468⇤⇤⇤

Itch 0.358⇤ Chills 0.466⇤⇤⇤

Sleep disorder 0.347⇤ Common cold 0.459⇤⇤⇤

Rosacea 0.305⇤ Shivering 0.416⇤⇤

Insomnia 0.297 Dysgeusia 0.409⇤⇤

Notes: ⇤p < .05, ⇤⇤p < .01, ⇤⇤⇤p < .001

Table 4.4: Pearson correlation of bottom ten search terms for UK and USA across all
regions.

Search Term in UK Correlation Search Term in USA Correlation
Pericarditis 0.003 Myalgia 0.172
Tumor 0.003 Xerostomia 0.166
Rheum 0.002 Infection 0.164
Bunion 0.002 Erectile dysfunction 0.151
Ataxia 0.002 Hypochondriasis 0.151
Anemia 0.002 Grandiosity 0.137
Petechia 0.001 Bradycardia 0.136
Blushing 0.0003 Periorbital pu�ness 0.136

Varicose veins 0.0001 Burning chest pain 0.130
Hypoglycemia 0.00006 Palpitations 0.127

Notes: ⇤p < .05, ⇤⇤p < .01, ⇤⇤⇤p < .001

in 11/2020, 12/2020 and 01/2021), SMPNN model outperforms all other models.

SMPNN and SVR achieve the lowest MAE in 03/2021 while MPNN achieves the low-

est MAE four months later in 07/2021. We also investigate how the location-specific

features and the graph-generated features contribute to SMPNN model by calcu-

lating their average weights. As shown in Fig. 4.3, “fever past” and “cough past”

(location-specific features) contribute most to SMPNNmodel, which is consistent with

previous studies where search relevant to “fever” and “cough” contributes most to

COVID-19 prediction [91, 124]. “fever graph”, “diarrhea graph” and “cough graph”

(graph-generated features) are ranked third to fifth out of ten features, which shows

cross-location dynamics is also important for COVID-19 forecasting.

Aside from the predictive capability of the model, we also explored the impact of

the search terms on the model’s performance during training stage. Two perspectives

have been taken into consideration when evaluating these terms. As a first step, we

proposed several term combinations which would be fed into the model and training

errors would then be measured. The dataset from the UK is used to measure training

errors in our analysis. For single term, we used the “rhinitis”, and “fever”, “cough”,
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Figure 4.5: Normalized search volume ratios for search terms across all sub-regions
in the UK (COVID-19 Search Trends symptom dataset [81]).

“hay fever”, “rhinitis” and “shortness of breath” five terms as multiple terms. Fur-

thermore, we also compared these di↵erent data representations (i.e., utilizing the

moving average in our case) at the same time. As shown in Fig. 4.4, it’s clear that

using only one of the terms (i.e., “rhinitis”) could introduce the most training er-

ror during the training phase. The training error decreases as the number of terms

increases, which could be interpreted as evidence that COVID-19 involves a wide va-

riety of symptoms. A moving average is more likely to provide a lower training error

when compared to a time series representation.

In addition, we compared the Pearson correlation between the top ten and lowest

ten search terms in the UK and the USA. From Table 4.3 and 4.4, it can be seen

that search terms vary between countries, which highlights the importance of location-

specific regression. It has been found that search terms with a high Pearson correlation
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Figure 4.6: Normalized search volume ratios for search terms across all sub-regions
in the USA (COVID-19 Search Trends symptom dataset [81]).

are relevant to the symptoms of COVID-19 within a country. In the future, we will

also explore the potential of these terms and leverage them as part of our work.

Furthermore, to validate our model, we also visualize the search term trends within

UK and USA in Fig. 4.5 and Fig. 4.6. This COVID-19 Search Trends Symptoms

dataset [81] provides aggregated, anonymous trends in the Google searches for over

400 health symptoms, signs, and conditions, such as cough, fever, di�culty breathing,

and other health conditions that are commonly searched for online. For each region,

the dataset gives a time series of the number of searches that have been conducted

for each of the symptoms over time. These charts about symptom searches in the

United Kingdom could display various types of data related to the frequency and

distribution of online searches for COVID-19 symptoms across di↵erent regions in

the country. We can observe that the conditions ’Rhinitis’, ’Hay fever’ for UK and

’Ageusia’, ’Anosmia’ for USA contribute a higher frequency with time, which aligns
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with our model’s use. We also observe ’Varicose veins’, ’Hyperglycemia’ for UK and

’Burning chest pains’, ’Palpitations’ for USA contribute lower frequency with time,

which aligns with our observations with their low Pearson correlation with COVID-19

cases. Fig. 4.5 and Fig. 4.6 show the search terms trend along with time. On these

charts, the peak indicates that there have been more searches related to the search

term. According to the search trends across all sub-regions, we observe that they

share a similar trend during the progress of COVID-19, which validates our design to

include geographical proximity information in our model design.

In conclusion, I introduced a novel approach to pandemic forecasting combining

web search activity data and location relationships in a graph. The proposed frame-

work, SMPNN, merges the best of existing message passing networks and location-

based regression models. The method was validated using two real-world COVID-19

datasets and was shown to outperform prior state-of-the-art models, particularly in

the early stages of outbreaks, by incorporating spatial graph features. This work

makes significant advancements in the field of disease surveillance and forecasting, of-

fering a new approach, methodology, datasets, and insights that integrate web search

data and spatial information.

While foundation models like TimesFM[29] o↵er substantial zero-shot performance

due to extensive pretraining on general datasets, their adaptability to highly special-

ized domains, such as health search trends and infectious disease forecasting, may be

limited. The models developed in this research focus on leveraging health-specific data

sources, allowing for a more granular and tailored approach to capturing disease trans-

mission patterns and environmental impact on health. This domain-specific training

addresses the unique temporal dependencies and seasonality inherent in health data,

providing a more e↵ective solution for pandemic forecasting and public health moni-

toring.
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Chapter 5

Search Intent Understanding

In this section, I propose a weakly-supervised method of user search query based on

user behavior data. User behavior data contains crucial information to understand

users’ search intents. Learning user behavior data can improve the semantic under-

standing of user search queries and enable the understanding of user search queries

in a contextual setting. However, current weakly-supervision methods model user

click behavior by extracting co-click information based on the URL level, which leads

to higher randomness and noise given that the randomness exists in user click be-

havior. Analyzing the annotations of user-clicked URLs, such as the document title,

document labels, and URL text provides a di↵erent view of user behavior but often

introduces new challenges of how to apply the weakly-supervised method to a di↵er-

ent level of user behavior annotations, i.e. weakly supervision of clicked document

types and clicked document topics. This research builds on my joint work with Dr.

Harshita Sahijwani, focusing on enhancing healthcare search intent recognition under

the title “Enhancing Healthcare Search Intent Recognition with Query Representa-

tion Learning and Session Context”, where Harshita contributed to the multi-label

classification part of this research.

In more detail, I propose to apply pre-trained LLMs and semi-supervised ap-
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proaches to achieve the learning of user search intents given di↵erent levels of user be-

havior annotations. Specifically, I propose a methodology to better grasp users’ intent

by weakly supervised learning from clicked documents topics/types and fully exploring

the query logs by modeling the user feedback types/topics of clicked URLs/documents.

Section 5.2 describes the methodology of weakly-supervised training at the user click

URL level and clicked document-type level and document-topic level. The user type

a query to the search engine and clicked on the given results as URL links. The

search engine and database store the URL links, the document titles and abstracts

of the URL, and the document labels. The click annotation information can help us

understand user search behavior at di↵erent levels.

5.1 Problem Statement

Search engines in the health domain are particularly reliant on their ability to discern

user intent to provide relevant results [53, 115]. Users often input a variety of search

queries such as symptoms, drugs, specific doctors or health insurance information,

expecting the search engine to comprehend these queries and accurately providing

user with documents or web pages matching their needs. The categorization of user

search intent (i.e., search intent classification) enables the search engines to provide

organized and relevant results, which further leads to higher user satisfaction.

Table 5.1: Examples of medical search queries with corresponding search intents.

Medical Search Query Search Intent

lice treatment Seeking drug and wellness info
bd nano 2nd gen pen needle 32 gauge x 5/32 Seeking drug information

hawaii advance directive form
Managing health accounts;
seeking wellness information

Detecting user search intent in general, and in particular in the health domain, is

a challenging problem and has been an active area of research for many years. The
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main reason for the di�culty in predicting user intent is that medical search queries

are inherently ambiguous due to conflation of specialized and colloquial terms, and

can be di�cult to interpret without context even by human annotators [116, 112], as

shown in Table 5.1.

To address this problem, I build upon and expand on the general approach of

representation learning. Specifically, I observe that the search logs in the search

engine contain substantial information in user search intents [1, 117, 6]. For example,

the co-click queries could be used as weak supervision for queries sharing similar

search intent and the clicked document or web page annotations could also indicate

users’ search needs.

Hence, a well established strategy for query intent modeling using search logs

is to harness implicit user feedback based on user click behavior for learning query

representations [132]. This approach usually involves constructing the query pairs

that lead to the same click (termed “co-click” queries) as indicative of similar user

intent. Prior studies applied contrastive learning for utilizing the co-click query pairs

as weak supervision, where they use a pairwise loss function that ensures that positive

(co-click) query pairs are closer to each other, while negative query pairs are farther

in their representation space. I review prior work in this area in Section 2.3.2.

However, the e↵ectiveness of this overall approach can degrade in the presence

of ambiguous queries (i.e., those for which multiple intents are possible), and for

situations like Health where a specialized health search engine may receive only a

fraction of the click volume of general-purpose search engines.

Furthermore, the approach of learning single query embeddings for single-label

intent recognition may not su�ce to represent the multifaceted nature of user queries

[125]. As shown in Table 5.1, in the case of a user searching “lice treatment”, the

intent might span multiple categories, such as seeking drug information (“drug info”)

and treatment methods (“health wellness”), underscoring the need for a more com-
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prehensive recognition strategy. Recognizing the limitations of single-label models

in capturing the full spectrum of user intents, I propose a shift to multi-label intent

recognition.

Therefore, a natural question is, can I make the representation learning more ro-

bust and e↵ective for the multi-faceted nature of Health queries, and the inherent

noise in click logs from small-scale search engines? Stated di↵erently, I aim to investi-

gate: RQ 1: How to improve multi-faceted query representation for Health

search, by learning from moderately sized click logs?

To address RQ1, I introduce a novel multiset loss function, specifically designed to

address the inherent ambiguity in user click logs for more accurate user intent learning.

Unlike traditional methods, the approach significantly enhances the learning process

by utilizing clicked document annotations as the weak supervision. By implementing

a clustering-based learning approach, I can e↵ectively harness the rich information

embedded in user click logs, thereby allowing for a clustering-driven representation of

search queries. This approach not only addresses the previously mentioned challenges

but also directly facilitates the downstream search intent classification tasks.

While it is possible to e↵ectively learn a global query intent representation, the

individual users may have a di↵erent intent for a query within a specific search session.

As shown in Table 5.2, there is a general disagreement between global intents from

search logs and session-specific individual intents for identical search queries. This

disparity underscores the complexity inherent in accurately understanding user intent

based on isolated queries as opposed to considering the entire session context [45,

89]. Such observations motivate the research into the refinement of search query

representation in the context of user’s search sessions. Therefore, I propose the second

research question: RQ2: How to enhance search query representation from

search context for session-based search intent?
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Table 5.2: Disparity between global and session-level search intents for the same
search queries

Query (Step 1) Query (Step 2) Query (Step 3) Global Intent

(Step 3)

Session Intent

(Step 3)

healing acupuncture chiropractor Scheduling medi-
cal appointments;
dealing with billing
and coverage

Seeking wellness in-
formation

online visit e visit zofran Seeking drug infor-
mation

Seeking communi-
cation information

5.2 Methodology

In this section, I first define the problem setting, and then describe the fine-tuning

and search intent prediction methodologies.

5.2.1 Problem Formulation

In this study, I introduce an advanced approach for recognizing healthcare search

query intent. The approach aims to fine-tune the search query embeddings using a

novel multi-set loss function to align the query embeddings with the clicked document

sets, cluster and classify the queries based on the learned embeddings, and further

classify the queries in the context of search sessions. Table 5.3 lists all the symbols

used in this study. This section is methodically structured into three distinct parts,

with two questions focusing on improving search query representation and one down-

stream task of search intent classification:

Query Representation Learning Let Q be the set of all user queries and

� : Q ! Rd be the function mapping queries to their d-dimensional vector repre-

sentations. The goal is to learn the function � such that for any pair of queries

(q, q0) 2 Q, the similarity in the embedding space reflects their semantic similarity.
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Table 5.3: List of symbols used in this study.

Symbol Description

q A healthcare search query.
E(q) The embedding of the search query q.
(q, q⇤) Pair of queries with same clicked documents

(Co-click queries).
(q, q�) Pair of queries with di↵erent clicked docu-

ments.
Ci Search queries in document set i with same

intent.
S Set of session context vectors.

si, ai, pi Search query, clicked document type, and
search page context at step i.

K Number of unique clicked document sets for
representation learning.

I Number of total downstream search intents.

This can be expressed as an optimization problem:

min
�

X

(q,q0)2Q

L (�(q),�(q0)) , (5.1)

where L is a loss function measuring the discrepancy between the embeddings of

queries q and q0, which should be small for semantically similar queries and large for

dissimilar ones. The choice of L depends on the application’s specific requirements.

Multi-label Search Intent Classification Let Q be the set of all user queries

and Y be the set of all potential intent labels, with I being the total number of

distinct intents, i.e., I = |Y|. For each query q 2 Q, the task is to predict a subset

of labels Yq ✓ Y that accurately reflects the intents of q. This is formulated as

a mapping function f : Q ! 2Y , where 2Y is the power set of Y . The query q

is represented by its embedding E(q), from which a probability distribution over

the intent labels in Y is derived. Labels are then selected based on a thresholding

mechanism to form the set Yq. The objective in training the model is to optimize

a loss function that evaluates the accuracy of predicted labels for each query. This

process typically involves techniques like Binary Cross-Entropy (BCE) applied across
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all I labels. Labels are then selected based on a thresholding mechanism to form the

set Yq.

5.2.2 Proposed Approach

Co-Query Set Extractor
BERT

Multiset Contrastive Loss
Multi-label intent classifier  

Pre-trained Query
Encoder

New Query 

Pre-trained Query
Embeddings

Low/High Concordance Search Sessions

...

Multi-label intents

Prev
Queries 

Prev
Clicks 

Search Page
Context ...

Multi-label intents

(a) Query Representation
Learning using Multiset

Contrastive Loss

(b) Downstream Multi-label
Search Intent Classification

(c) Enhanced Search Intent
Classification with Session

Context

Medical Query
Clicked Document/Url Annotation

clicks

clicks

DocType1

DocType2

...

Feed Forward

Multi Source Self Attention

Add & Norm

Add & Norm

Nx

Figure 5.1: A comprehensive approach for query representation learning and intent
classification: (a) illustrates the process of leveraging Multiset Contrastive Loss for
encoding medical queries using BERT, (b) depicts the application of the resulting
embeddings for multi-label intent classification, and (c) shows the enhancement of
intent classification by integrating multi-source session context into the model.

Enhancing Query Representation Learning As shown in Figure 5.1a, the

methodology utilizes the transformer-based query encoder (i.e. BERT [34]) as the ini-

tial query encoder. I enhance query representations through contrastive loss functions

Lcontrast, tailoring the encoder to the intents of health search queries. The contrastive

loss functions distinguish between pairs of queries clicked on the same document de-

noted as (q, q⇤) and those clicked on di↵erent documents denoted as (q, q�), ensuring

the encoder captures this distinction. The representation of each query, Eij for qij

in the document set Ci, is optimized to align closely with other queries in the doc-

ument set Ci and diverge from dissimilar queries in the document set Cj, with the

total number of document sets denoted as K. This process refines the model to dis-

cern the semantic di↵erence of search queries, informed by the user-clicked document
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annotations.

Enhancing Query Representation from Search Context In the previous

step, the query encoder is learned from the user behavior in aggregated search logs,

and the search intents are inferred from the global statistics. However, the search

intents could be di↵erent in di↵erent session contexts. To address this issue, I incor-

porate session context information during classification-stage fine-tuning to enhance

the accuracy of search intent classification. Let S = s1, s2, . . . , sn denote the set

of session context vectors, each vector si capturing the temporal and relational dy-

namics of user interactions within a session. The session context includes the search

queries sn, user clicked document annotation an and search page context pn at search

step n. The process involves analyzing these vectors to predict the categorization of

queries at step n. The representation of each query qi is optimized to align with the

corresponding session context si, thus enhancing the model’s ability to tailor search

results to individual user sessions. This methodology refines the query representation

to capture user intent more accurately in session context.

Downstream task: Multi-label Search Intent Classification. In the task

of multi-label search intent classification, I refine query embeddings and map them

to the predefined categories using the classification loss funtion Lclass. Given the pre-

trained query encoder from the previous step, the aim is to predict the probability

distribution of each query q across all predefined healthcare intent categories in Y .

To achieve this, I transform the encoder’s output into a probability vector, where

each element corresponds to the likelihood of q belonging to a specific category in Y .

This probabilistic approach allows for a comprehensive understanding of q’s alignment

with each potential intent category. The classification model, denoted asM, takes the

pre-trained query encoder and outputs a probability distribution over Y, predicting

the most likely category. This process is formalized as y = M(E(q)), optimizing the

mapping from query embeddings to category predictions.
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5.2.3 Pairwise Loss Function

In this study, I focus on fine-tuning the embeddings of search queries to gain deeper

insights into user intents. Following previous studies [115, 132], I first employ a

pairwise loss function that optimizes the embeddings of the search queries based on

their click patterns in a contrastive learning manner.

Formally, let (q, q⇤) represent a pair of co-click queries on the same document type,

and (q, q�) represent a pair of queries on di↵erent document types. The pairwise loss

function, denoted as lpairwise, is defined as follows:

lpairwise =
X

q

✓
1

1 + exp (cos (E(q), E(q⇤)))

� 1

1 + exp (cos (E(q), E(q�)))

◆ (5.2)

5.2.4 Multiset Loss Function

The multiset loss function is proposed to mitigate the impact of noise present in user

co-click log data. This noise primarily arises from randomly co-clicked query pairs,

which can obscure the true intent behind user searches. To address this, the multi-

set loss function employs a clustering-based approach, contrasting batches of search

queries within the same cluster against those in di↵erent clusters. This method allows

for a more meaningful grouping of queries based on user click patterns by utilizing the

clicked document annotations, enhancing the accuracy of the representation learning

process.

Central to the multiset loss function is the cosine similarity measure, which is

computed between individual query embeddings and the centroid of embeddings cor-

responding to queries that share the same clicked document type. This approach

combines intra-set and inter-set loss components to e↵ectively capture the similari-

ties and di↵erences in query embeddings within and across di↵erent document sets.
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Intra-Set Loss Function: This component measures the average similarity of

query embeddings within the same set. It is formulated as:

lintra =
KX

i=1

1

Ni

NiX

j=1

wij

1

1� exp
⇣

Eij ·Ci

kEij kkCik

⌘
/e+ ✏

(5.3)

where wij weights the contribution of each query embedding Eij in cluster i, and ✏ is

a small value added to prevent division by zero.

Inter-Set Loss Function: Conversely, the inter-set loss function is introduced to

maximize the distance between embeddings of queries from di↵erent sets. This aspect

is crucial for ensuring that queries from distinct sets are not mistakenly grouped

together during representation learning. The inter-set loss is defined as:

linter =
KX

i=1

KX

j=1
j 6=i

1

Ni

NiX

k=1

wik

1

1� exp
⇣

Eik
·Cj

kEik
kkCjk

⌘
/e+ ✏

(5.4)

where wik weights the contribution of each query embedding Eik in cluster i, and ✏ is

a small value added to prevent division by zero.

Multiset Loss Function: The multiset loss function lmultiset elegantly combines

these two components, encapsulating the dual objectives of enhancing intra-cluster

cohesion and inter-cluster separation:

lmultiset = � log

✓
lintra
linter

◆
(5.5)

The mathematical formulation of the multiset loss, denoted as lmultiset, is presented

in Equation 5.5. Here, K denotes the number of unique clicked document sets. For

each label i, Ni is the number of queries associated with that label, Eij represents the

embedding of the jth query in document set i, and Ci is the centroid of embeddings

for set i. The loss function computes the ratio of the average intra-cluster cosine
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similarity to the average inter-cluster cosine similarity, thus encouraging the model to

form tightly knit clusters of queries with shared intents while distancing those with

di↵ering intents.

The “sets” used in the multiset cosine similarity loss could be document types

or document topics. The loss is calculated as the negative log of the ratio of the

average cosine similarity of each set to the average cosine similarity of all sets. With

this design, when N is the average number of queries in each document set in the

dataset, the theoretical computational cost of multiset loss is O(K2 ⇤N). As opposed

to pairwise loss, which has a theoretical complexity of O(K ⇤ N2), multiset loss is

computationally more e�cient, given that K ⌧ N , in most conditions.

An essential factor in improving session-based intent recognition is preserving

the ordering information within sessions. When full session data is available during

pretraining, maintaining session order is crucial, as the sequence of user interactions

provides valuable context. In our experiments, the full session data is limited (due to

strict data processing and supervision by our collaborators). However, we emphasize

that pretraining the model with session-specific ordering, while preserving location

and context, would enable more accurate interpretation of session-based intent by

closely aligning with real-time user behavior patterns.

5.2.5 Multi-Label Search Intent Classification

In this study, I treat multi-label search intent classification as the major downstream

task after query representation learning. The objective of multi-label intent classifi-

cation is to assign a set of intent labels to a given input text.

Model Architecture The model architecture is based on the Transformer-based

BERT model. Given the pre-trained BERT model, I further fine-tune the model on

the downstream intent classification dataset using a custom loss function designed

for multi-label classification. I employ the pre-trained MSet-BERT to obtain dense
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vector representations for each search query. For the sequence of search query terms,

I get the final vector corresponding to the [CLS] token, which is designed to hold

the aggregate sequence representation, and is then passed through a series of fully

connected layers for each search intent.

Multi-Label Loss Function For training the model, I use the Binary Cross-

Entropy (BCE) loss, treating each label as an independent binary classification. The

BCE loss for a single instance (x, Y ) with the predicted output Ŷ is defined as:

BCE(Y, Ŷ ) = � 1

|C|
X

i2C

[yi log(ŷi) + (1� yi) log(1� ŷi)] (5.6)

where yi is the binary indicator (0 or 1) if label i is the correct classification for

x, and ŷi is the predicted probability of x having label i.

5.3 Experimental Setting

In this part, I have two major tasks. First, I want to validate the approach by

clustering the embeddings of search queries and identifying the search queries within

the same cluster as from the same search intent. Second, I want to demonstrate the

approach can be applied to real-world search scenarios by giving a search query, and

correctly classifying it to a search intent.

The metric of the first task is adjusted rand index (ADI) and normalized mutual

information (NMI) and the metric of the second task is accuracy and F1 score. ADI

and NMI can measure how the clusters of search queries match the distribution of

their intents. Accuracy and F1 score can measure the performance of classifying

intents of given search queries. I aim to evaluate the methods on two datasets, i.e.

KP dataset and the TripClick dataset. The detail of the dataset is discussed in the

following section.



96

5.3.1 Datasets

We experiment with two datasets: a private Health Search (HS) dataset and a public

TripClick dataset.

Health Search (HS) Dataset The HS dataset, collected from a health website

internal search engine, spans Jan 2022 to Sept 2023. It includes queries, clicked

documents, query-document pairs, and document attributes like titles, document

URLs, and document types. When I generate user-clicked data, I filter the click

logs by the click count greater than 2. For session-based search intent classification,

I specifically set aside the data from January 2022, which is not included in the

representation learning dataset. This exclusion is methodologically significant as

it allows for a focused comparison between global and session-level search intents

using a distinct and controlled dataset. January 2022 was chosen for this analysis to

provide a clear baseline for assessing how individual search intents align or diverge over

global search intent, thus o↵ering insights into the user search behavior in healthcare

contexts.

TripClick Dataset TripClick is a large-scale dataset of click logs in the health

domain from the Trip Database health web search engine[96]. The TripClick dataset

contains about 5.2 million user interactions collected between 2013 and 2020 and

contains the following information: the queries, the clicked documents, and document

attributes. The document attributes include the document title, the document URL,

and the document type. For this dataset, I filter the click logs by the click count

greater than 5, which leads to all unique queries for the query representation learning.

Similar to HS dataset, I specifically set aside the data from January 2018 and February

2018, which is not included in the representation learning dataset for session-based

search intent classification.
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Co-Query Set Extractor

The Co-Query Set Extractor groups queries into di↵erent sets based on their interac-

tions with clicked documents. It analyzes clicked document annotations to identify

patterns and similarities among queries. This approach clusters queries that exhibit

similar user engagement or seek related information. For instance, if multiple queries

lead users to click on the same set of documents (i.e. same document type or docu-

ment URL pattern), these queries are considered related and grouped together.

Intent Annotation

Understanding user intent is key to personalized healthcare experiences. It involves

a detailed methodology to accurately annotate healthcare queries with specific user

intents. I employ heuristic methods to systematically identify and label these intents.

For example, a query like ’symptoms of flu’ would be annotated with the intent of

seeking medical information based on the analysis of the web pages associated with

that query.

HS query intent annotation In the HS dataset, I aim to leverage intent classifica-

tion to categorize queries into some navigational intents (e.g., “Book Appointment”,

“Access Records”) and topical intents like “Drug Information”. Identifying these

intents allows us to proactively surface relevant components (“Find Doctors”, “Loca-

tions”) directly addressing their needs. A semi-automated approach based on search

logs is employed to generate the intent labels for such a classification. This method

utilizes specific patterns and keywords within clicked URLs to infer user intent. A set

of URL patterns is first curated for each query intent, guided by the site’s organized

document structure and expert knowledge. The query intent is identified based on

the user’s query and the matching pattern from the most frequently clicked URL.

This methodology considers all top-clicked URLs per query, assigning one or more
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labels based on their corresponding classes.

TripClick query intent annotation In the TripClick dataset, detailed document

annotations provide insights into search intent. I analyze the click patterns of queries

on di↵erent document types and use these interaction data to infer search intent. This

involves collecting statistical data on query clicks for each document type. These clicks

are then weighted to reflect their importance and associated with relevant document

types as intents in the test dataset.

5.3.2 Experimental Setup for Intent Classification

I create the train, validation, and test sets for intent classification using a variation

of stratified sampling in approximately 60:20:20 ratio. Since I perform multi-label

classification, I first group the queries by label combinations. I then divide the samples

from each group among the three sets.

For the HS dataset, all sets have the same proportion of class labels/class la-

bel combinations. Their sizes are in the ratio 60:20:20. All three sets have similar

distributions over class labels.

The TripClick dataset has a larger number of classes (document types) and some

combinations of labels are extremely infrequent. For simplicity, I first create the

train-validation-test split with labels that have at least 3 samples. I then add all the

queries with unique label combinations to the test set.

5.3.3 Experimental Setup for Session-based Intent Classifi-

cation

For session-based intent classification, I carefully curate search sessions based on

their sequence lengths, specifically ranging from 2 to 6 and session length of 4, as per

[89] suggested, was used for representing contextual search. This range is chosen to
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e↵ectively separate the datasets for training, validation, and testing, ensuring each

set represents varying complexities of user interactions. For the training set, I utilize

sessions from search step 1 to search step n-1, focusing on building the training

model. The validation and test sets comprise sessions from search step 2 to search

step n, aiming to determine the classification threshold and evaluate the model’s

performance. The specific criteria for session selection, rooted in sequence length, are

designed to represent real-world user search behavior, thus enhancing the relevance

and implication of the classification task.

5.3.4 Baseline Models

BERT BERT model [34] is a pre-trained language model trained on the large-scale

corpus. It can be fine-tuned on the downstream tasks via either the contrastive loss

functions or classification loss functions. The BERT base model (uncased) is used as

one of the baseline models and tailored to the study’s objectives.

PairWise-BERT The PairLoss-BERT model represents an advanced baseline [132,

115]. It undergoes pre-training with a contrastive learning approach using the pairwise

loss function. This model sets a state-of-the-art baseline for the approach, demon-

strating the e↵ectiveness of contrastive learning in query representation.

MSet-BERT (our method) with variants for ablation studies We report

performance of several variants of the MSet-BERT model to assess the impact of

di↵erent session contexts in session-based search intent classification:

• BERT w all context (Ablation): Enhances the baseline BERT model by

incorporating complete session context.

• PairWise-BERT w all context (Ablation): Builds upon the PairWise-

BERT model by integrating full session context.
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• MSet-BERT w/o context: Uses only the search queries as input, serving as

a baseline to understand the model’s performance without any session context.

• MSet-BERT w prev-query: Includes the previous query in the session as

part of the context.

• MSet-BERT w page-context: Incorporates the context of the web page the

user search happens.

5.3.5 Evaluation Metrics

The performance is measured using appropriate multi-label metrics, including Preci-

sion, and F1 score. In addition, I also order the probability of the intents and evaluate

the rank using metrics including Hit Rate@3 and NDCG@3 for multiple intents re-

trieval.

Perplexity measures the intent distribution of a given query, its intent distribution

can be represented as a series of probabilities P (label1), P (label2), ..., P (labeln), which

is calculated from query click weights in search logs. The calculation of Perplexity is

based on these probability values and is defined as:

Perplexity = 2�
Pn

i=1 P (labeli) log2 P (labeli) (5.7)

Precision measures the proportion of correctly predicted positive observations to the

total predicted positives for each query:

Precision =
TP

TP + FP
(5.8)

where TP is the number of true positives and FP is the number of false positives.

The F1 score is the harmonic mean of Precision and Recall, providing a balance

between them. It is particularly useful in scenarios where I have an uneven class
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distribution. The F1 score is given by:

F1 = 2⇥ Precision⇥Recall

Precision+Recall
(5.9)

Hit Rate@3, often used in ranking problems, measures the proportion of times the

correct label is within the top 3 predictions. It is a recall-based measure at the top

of the ranking list and is calculated as follows:

HitRate@3 =
1

N

NX

i=1

I(yi 2 top3(Ŷi)) (5.10)

where N is the number of samples, yi is the true label for the ith sample, Ŷi is the set

of top 3 predicted labels, and I is the indicator function.

Normalized Discounted Cumulative Gain at rank 3 (NDCG@3) evaluates ranking

quality, considering the position of the correct intent label in the predicted ranking

list. Higher ranks receive more weight. NDCG is calculated as:

NDCG@3 =
1

N

NX

i=1

DCG@3i
IDCG@3i

(5.11)

where DCG@3i is computed from the predicted probability vector yi against the true

label vector, representing a weighted vector of correct classification. IDCG@3i is the

ideal ranking gain, the highest possible DCG@3 given the set of intent labels. The

DCG computation considers the relevance score derived from ground truth yi and

the position of the label in the predicted vector ŷi.
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Table 5.4: Comparative clustering performance analysis of query representations from
BERT, PairWise-BERT, and MSet-BERT models on HS and TripClick test datasets
using adjusted rand index (ARI) and normalized mutual information (NMI). The best
performing values are highlighted in bold.

Dataset Models ARI NMI

HS
BERT 0.0540 0.0859

PairWise-BERT 0.0690 0.1161
MSet-BERT 0.0723 (+4.78%) 0.1181 (+1.72%)

TripClick
BERT 0.00189 0.0120

PairWise-BERT 0.00213 0.0113
MSet-BERT 0.00235 (+10.33%) 0.0122 (+1.67%)

Table 5.5: Evaluation of model performance on the HS and TripClick datasets across
multiple metrics: Precision, F1, Hit Rate@3, and NDCG@3. The highest performing
values are marked in bold, with asterisks denoting significant improvements over the
best baseline model. Statistical significance is determined by a t-test for N queries
in the test dataset, with p < 0.05.

Dataset Model Precision F1 Hit

Rate@3

NDCG@3

HS Dataset
BERT 0.937 0.932 0.976 0.937
PairWise-
BERT

0.943 0.936 0.988 0.940

MSet-

BERT

0.970*

(+2.86%)
0.969*

(+3.53%)
0.992*

(+0.40%)
0.975*

(+3.72%)

TripClick
Dataset

BERT 0.870 0.813 0.947 0.853
PairWise-
BERT

0.881 0.840 0.956 0.875

MSet-

BERT

0.895*

(+1.59%)
0.854*

(+1.67%)
0.965*

(+0.94%)
0.886*

(+1.26%)

5.4 Results

In this section, I describe the performance analysis of the MSet-BERT model, under-

scoring its advancements in multi-label search intent classification and session-based

search intent classification over baseline models.



103

Table 5.6: Comparative performance of MSet-BERT models in session-based intent
classification on the HS and TripClick datasets, highlighting the impact of di↵erent
context integration strategies (no context, previous query, page context, and all con-
texts). Performance metrics include Precision, F1, Hit Rate@3, and NDCG@3, with
the best scores highlighted in bold and marked with an asterisk (*) to indicate sig-
nificant improvement. Statistical significance is determined by a t-test for N queries
in the test dataset, with p < 0.05. Session length of 4, as per [89], was used for this
analysis.

Dataset

(Concor-

dance)

Model

(Ablation)

Precision F1 Hit

Rate@3

NDCG@3

HS (33%)

BERT w
all context
(Abl)

0.715 0.722 0.856 0.658

PairWise-
BERT w
all context
(Abl)

0.736 0.749 0.866 0.678

MSet-BERT
w/o context

0.707 0.708 0.864 0.653

MSet-BERT
w prev-
query

0.721 0.753 0.871 0.669

MSet-BERT
w page-
context

0.759 0.751 0.869 0.667

MSet-

BERT w

all context

0.776*

(+5.44%)
0.784*

(+4.67%)
0.880*

(+1.61%)
0.769*

(+13.42%)

TripClick
(88%)

BERT w
all context
(Abl)

0.829 0.814 0.931 0.765

PairWise-
BERT w
all context
(Abl)

0.846 0.820 0.936 0.772

MSet-BERT
w/o context

0.831 0.813 0.929 0.762

MSet-BERT
w prev-
query

0.844 0.824 0.941 0.778

MSet-

BERT w

all context

0.868*

(+2.60%)
0.840*

(+2.44%)
0.953*

(+1.81%)
0.826*

(+7.00%)
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a) F1 scores in HS Dataset

b) F1 scores in TripClick Dataset

Figure 5.2: Comparative analysis of F1 scores for di↵erent intent types within the HS
and TripClick dataset, providing insights into the model’s performance in accurately
classifying and retrieving relevant search intents.

5.4.1 Performance Comparison

In the study of the MSet-BERT model for multi-label search intent classification and

session-based search intent classification, I observed significant improvements over

baseline models. In the evaluation of query representation clustering, as detailed in
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Table 5.4, the MSet-BERT model consistently outperforms the BERT and PairWise-

BERT model on the ARI and NMI score for query representation clustering. Specifi-

cally, for the HS dataset, MSet-BERT achieves a 4.78% higher ARI and a 1.72% im-

provement in NMI compared to the best baseline. This trend is similarly observed in

the TripClick dataset, where MSet-BERT shows a substantial improvement of 10.33%

in ARI and 1.67% in NMI scores over the other models. These results underscore the

e�cacy of MSet-BERT in clustering query representations from search logs to match

users’ search intent. In the evaluation of the downstream intent classification task, the

MSet-BERT model also demonstrate significant improvement over the baseline mod-

els. Specifically, as in detailed Table 5.5 and Figure 5.2, MSet-BERT demonstrates

an improvement of 2.86% in precision, 3.53% in F1 score, 0.40% in Hit Rate@3, and

a notable 3.72% in NDCG@3 for HS dataset. Simlarly, for the TripClick dataset, the

model exhibits improvements of 1.59% in precision, 1.67% in F1 score, 0.94% in Hit

Rate@3, and 1.26% in NDCG@3 compared to the best performing baseline model.

These improvements underscore the e↵ectiveness of MSet-BERT in enhancing the

robustness and accuracy of search intent classification for health-related queries.

Session-based Intent Classification Performance

In session-based intent classification, predicting user user search intents is a more dif-

ficult task because it requires the model to handle the situations where the user search

behavior deviates or disagrees with the search-query-based intent. In the evaluation

of MSet-BERT in the session-based search intent classification task, as described in

Table 5.6, the MSet-BERT model demonstrate notable e↵ectiveness compared with

all baseline models. Specifically, the MSet-BERT model exhibits a marked improve-

ment in precision (up to 5.44% for HS and 2.60% for TripClick), F1 score (increased

by 4.67% for HS and 2.44% for TripClick), Hit Rate@3 (improved by 1.61% for HS

and 1.81% for TripClick), and NDCG@3 (a substantial gain of 13.42% for HS and
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7.00% for TripClick). The ablation studies without context or with only a part of

session contexts also underscore teh e↵ectiveness of the MSet-BERT in harnessing

context integration strategies for session-based intent classification.

5.5 Analysis & Discussion

In this section, I’ll analyze the performance of the proposed methodology in more

detail and discuss the limitations when adapting the methodology to general-purpose

intent recognition tasks.

Ambiguity and Di�culty in Session-based Intent Classification

Figure 5.3: Comparison of query perplexity for the global and session-specific intent
classification of 140 common queries in the HS dataset.
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Figure 5.4: Comparison of query perplexity and F1 scores for the global and session-
specific intent classification of 140 common queries in the HS dataset.

A core challenge in session-based intent classification is recognizing and addressing

the ambiguity of intent for the same queries across di↵erent sessions. As described

in Figure 5.3, the same queries when collected for global query intent (derived from

the number of global co-occurrence in multiple sessions) and for session-based search

intent (defined as the subsequent action in a single session) can exihigit di↵erent

query intent perplexity, where higher perpleixty means higher ambiguity. Further

analysis, as shown in Figure 5.4, indicates a notable inverse correlation betweeen the

query perplexity and F1 scores, suggesting greater di�culty in classification. This

implies that accurately identifying intents in session-based queries involves not only

considering global intents but also intricately analyzing the context of each session.

General-purpose intent recognition models must accommodate a wide range of

queries, which introduces noise and reduces the precision of intent categorization in

health-specific applications. By focusing on health-related user interactions, such as

click behaviors in search engines or conversational agents, this research achieves a

more refined approach to identifying user intent within a healthcare context. Ad-

ditionally, leveraging domain-specific data and tuning models accordingly o↵ers the



108

flexibility to address challenges such as ambiguous queries and session-based varia-

tions in intent, which are common in health-related searches.
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Chapter 6

Conclusion

This dissertation presents my work on modeling search trends and search interest for

health. The details of the contributions are listed as follows:

6.0.1 Modeling Search Trend for Air Pollution Detection

In Chapter 3, I incorporated the information from di↵erent modalities for multimodal

sequential learning with missing values. Theoretical analysis and experimental evalu-

ation in this dissertation demonstrate that the proposed method can e↵ectively model

the health data with missing values by exploring intra-modal and inter-modal dynam-

ics. Unlike previous state-of-the-art methods, this approach can e↵ectively utilize the

information from di↵erent modalities to improve the prediction performance. I inves-

tigated the novel problem of exploring intra-modality and inter-modality dynamics

for multi-modal sequential learning with missing values. I propose a new framework,

CMFN, which uses modality-specific and cross-modal information to impute missing

values. To validate the framework, I tested it using both real-world and synthetic

data on benchmark multi-modal learning datasets. Our results outperform existing

state-of-the-art models, and ablation studies highlight the architectural advantages.

The study on air pollution prediction is the first to demonstrate that online search
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interest data, although noisy, can complement ground sensor measurements to indi-

cate several urban air pollutants when combined properly. I achieved this by pre-

senting a traditional machine learning model (Random Forest) and a novel neural

network model (DL-LSTM) that incorporates search interest data with traditional

air pollution predictors (i.e., historical pollutant concentration, temperature, and

relative humidity). Our results show that the proposed model benefited from the

addition of search interest data, whereas traditional models often su↵ered from the

added noise and increased dimensionality.

6.0.2 Modeling Search Trend for Infectious Disease Forecast-

ing

In Chapter 4, a novel approach to pandemic forecasting is introduced, combining web

search activity data and location relationships in a graph. The proposed framework,

SMPNN, merges the best of existing message passing networks and location-based re-

gression models. The method was validated using two real-world COVID-19 datasets

and was shown to outperform prior state-of-the-art models, particularly in the early

stages of outbreaks, by incorporating spatial graph features. This work makes sig-

nificant advancements in the field of disease surveillance and forecasting, o↵ering a

new approach, methodology, datasets, and insights that integrate web search data

and spatial information.

6.0.3 Search Intent Understanding

In Chapter 5, I proposed a novel method for learning query representation, focusing

on the Health domain, resulting in an e↵ective query embedding model MSet-BERT.

The method proposed is general and makes use of a novel multiset loss function

designed to capture the inherent ambiguity of health search queries, which results
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in an enhanced search query representation. This MSet-BERT model demonstrated

its advantages over prior open state-of-the-art models of BERT and PairWise-BERT

models trained on search logs, for both intrinsic query clustering tasks, and for multi-

label intent classification tasks.

Furthermore, this study investigated the e↵ectiveness of di↵erent context repre-

sentations to improve session-based intent prediction, demonstrating that the MSet-

BERT model generalizes to the more challenging individual session-based intent pre-

diction task, even when the individual search intent disagrees with the most popular

intent for the query based on global statistics. The experiments show that adding

context information from previous queries and clicked documents can improve the

performance of the MSet-BERT model for the search session query intent recogni-

tion.

6.0.4 Limitations

Although the proposed methods e↵ectively address the key questions of the disser-

tation, there are several limitations that should be considered. CMFN method in

Chapter 3 is limited by the assumption that the missing values are missing at ran-

dom (MAR) and the information can be retrieved from the other modalities. This

assumption may not hold in real-world scenarios, where the missing values may be

missing not at random (MNAR) or the information may not be available in other

modalities. The proposed DL-LSTM model in Chapter 3 addresses the correlation

between the search queries by incorporating the semantic information, but the noise

in search trends in real-world scenarios may a↵ect the prediction performance. The

experiments for SMPNN model in Chapter 4 relies on the assumption that the cross-

location information can be used to improve the prediction performance. However,

the prediction performance may be a↵ected by the quality of the cross-location in-

formation and the availability of the data. The proposed search query representation
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learning and intent prediction method in Chapter 5 relies on the assumption that

the search queries can be represented by the user click results in the sessions and the

search intent can be predicted based on the session context. However, the prediction

performance may be a↵ected by the quality of the session context and the availability

of the data.

6.0.5 Future Work

This dissertation opens up several avenues for future research on modeling search

trends and search intent for online health monitoring. To extend the proposed meth-

ods, future work could focus on the following directions. For the CMFN model, the

intra-modality and inter-modality dynamics can be further explored by considering

the noise in the data. Future work could investigate the impact of the noise in the

data on the prediction performance and propose new methods to address the noise.

For the noise in the search trends data, future work should focus on the long-term

impact of the noise on the prediction performance and propose methods to improve

the prediction performance. For representation learning and intent prediction, future

work could focus on the amguious search queries and the multiple intents in di↵erent

sessions. Future work should explore scenarios where a single query may carry mul-

tiple distinct intents within a search session and develop new methods to e↵ectively

interpret and address these varying intents.

Building on these directions, another promising area for future research is lever-

aging user interaction data from conversational agents, such as ChatGPT or other

AI-powered chat platforms, to enhance health-related search intent modeling. As

chat agents become increasingly popular, they o↵er a rich source of data on user

behavior, particularly in health information-seeking contexts. This user interaction

data, if made accessible, could provide valuable insights into users’ evolving informa-

tional needs and engagement patterns, allowing for a more nuanced understanding
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of search intent. Additionally, these interactions often occur in multi-round con-

versations, where users reformulate or clarify queries over the course of the session.

This multi-round data could be treated as session-based interactions, closely aligning

with the session-based intent recognition models developed in this dissertation. By

incorporating conversational reformulations and session dynamics, the user-behavior

data-based models developed here could be adapted to capture intent more dynami-

cally, providing real-time responses and insights. This approach would enable health

monitoring systems to become more responsive and personalized, enhancing their

utility in supporting public health and individual health information needs in an era

of conversational AI.

Overall, this dissertation contributes to modeling search trends and search in-

terests for health by proposing new methods to address critical challenges in each

application scenarios.
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emerging market. Journal of Forecasting, 32(4):289–298, 2013.

[15] Centers for Disease Control and Prevention. Data brief 482. https://www.cdc.

gov/nchs/products/databriefs/db482.htm, 2024. Accessed: 2024-05-14.

[16] Emily H Chan, Vikram Sahai, Corrie Conrad, and John S Brownstein. Using

web search query data to monitor dengue epidemics: a new model for neglected

tropical disease surveillance. PLoS neglected tropical diseases, 5(5):e1206, 2011.

[17] Chih-Chung Chang and Chih-Jen Lin. Libsvm: a library for support vector

machines. ACM transactions on intelligent systems and technology (TIST), 2

(3):1–27, 2011.

[18] Zhengping Che, Sanjay Purushotham, Kyunghyun Cho, David Sontag, and

Yan Liu. Recurrent Neural Networks for Multivariate Time Series with Missing

Values. Scientific reports, 8(1):6085, 2018. doi: 10.1038/s41598-018-24271-9.

[19] Sheng Chen, Guangyuan Kan, Jiren Li, Ke Liang, and Yang Hong. Investigat-

ing china’s urban air quality using big data, information theory, and machine

learning. Polish Journal of Environmental Studies, 27(2), 2018.

[20] Xinyu Chen, Zhaocheng He, Yixian Chen, Yuhuan Lu, and Jiawei Wang. Miss-

ing tra�c data imputation and pattern discovery with a Bayesian augmented

tensor factorization model. Transportation Research Part C: Emerging Tech-

nologies, 104:66–77, 2019. ISSN 0968-090X. doi: 10.1016/j.trc.2019.03.003.

[21] Cynthia Chew and Gunther Eysenbach. Pandemics in the Age of Twitter:

https://www.cdc.gov/nchs/products/databriefs/db482.htm
https://www.cdc.gov/nchs/products/databriefs/db482.htm


117

Content Analysis of Tweets during the 2009 H1N1 Outbreak. PLoS ONE, 5

(11):e14118, 2010. doi: 10.1371/journal.pone.0014118.

[22] Kyunghyun Cho, Bart van Merrienboer, Dzmitry Bahdanau, and Yoshua Ben-

gio. On the Properties of Neural Machine Translation: Encoder-Decoder Ap-

proaches. arXiv, 2014.
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