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Abstract

Data-driven Performance Modeling in Complex Networked Systems
By Yazhuo Zhang

Complex networked systems are a ubiquitous presence in our daily lives, but
these systems require active maintenance and management. Their reliability and
efficiency hinge on operators being able to reason about capacity planning, bottleneck
identification, and making informed decisions about scaling, load balancing, and system
optimization. However, it is challenging to perform performance modeling for complex
networked systems because of a multitude of challenges, including the complexity of
the components themselves, the intricate dependencies that exist between them, and
a gigantic configuration space that must be navigated.

This dissertation focuses on how to conduct data-driven performance modeling in
complex networked systems, guided by two main principles. The first principle is to
decompose the entire system into key components that have interpretable interactions.
The second principle is to leverage empirical system data to inform the modeling
process and to guide the decision making.

Using these two key principles, we conduct data-driven performance modeling in
three distinct types of general complex systems: microservice-based applications, large-
scale web cache systems, and content delivery networks (CDNs). We present LatenSeer,
a data-driven modeling framework for estimating end-to-end latency distributions in
microservice-based web applications. By leveraging distributed tracing data, LatenSeer
models the latency experienced by end users at scale, in an effective, accurate, and
robust manner. Next, we discuss Sieve, an cache eviction primitive, inspired by
real-world web cache workloads and informed by data on cache item access patterns.
Sieve is simpler than LRU and provides better efficiency and scalability than state-of-
the-art algorithms. Finally, we introduce Theodon, a framework for modeling CDN
architectures via modular simulations, enabling fast discovery of efficient architectures
and parameters configurations that balance performance and cost.
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Chapter 1

Introduction

Complex networked systems pervade our daily lives, ranging from social media plat-

forms like Twitter to e-commerce giants such as Amazon, and cloud service providers

like Microsoft Azure, where distributed systems form the core of large-scale applica-

tions. Performance modeling for these systems is a vital task for system operators,

encompassing the simulation and analysis of how these systems behave under various

conditions. This involves understanding and predicting factors like latency, throughput,

and resource utilization across different components. Crucial for capacity planning,

identifying potential bottlenecks, and making informed decisions about scaling, load

balancing, and system optimization, performance modeling is key to maintaining

system reliability and efficiency [53, 105]. However, performance modeling is becoming

more challenging as these systems grow more complex and face increasingly variable

traffic patterns.

Performance modeling in complex networked systems is difficult for several reasons.

First, these systems typically are composed of numerous interconnected components

with intricate dependencies, leading to a cascading effect on performance. For instance,

microservice-based applications such as Twitter or Uber consist of hundreds of interde-

pendent microservices, making performance estimation a significant challenge [57, 90].

1
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Additionally, the components within these large-scale systems are becoming increas-

ingly complicated. Take, for example, cache systems, which are vital components in

these environments. They are evolving with the integration of advanced, ML-based

cache eviction algorithms, leading to increased unpredictability, system overhead, and

not always optimal performance [33, 170, 202]. Moreover, large-scale systems often

have an inherently vast configuration space. Content Delivery Networks (CDNs),

for example, involve configurations that include the number of machines, the type

of hardware used, the capacity of each machine, and more [2, 13, 169]. Even minor

changes in these parameters can dramatically impact overall system performance [214].

Traditional performance modeling methods, such as queuing theory models and

analytical model [117], are foundational yet often inadequate for complex networked

systems. They tend to be static, relying on fixed parameters and assumptions. However,

networked systems like microservices or CDNs are dynamic, with continually changing

workloads and configurations. Traditional models typically fail to capture the nuanced

complexities of modern networked systems and usually concentrate on individual

system components, resulting in a limited scope for making informed, system-wide

performance improvement decisions.

Fortunately, there are promising opportunities for more effectively modeling the

performance of these complicated networked environments. The availability of detailed

data paves the way for more dynamic and accurate modeling approaches. For example,

distributed tracing systems in microservice or serverless architectures offer extensive

insights into service interactions and latencies, allowing for the development of more

precise models that reflect the intricate and evolving nature of these systems [102, 151,

178, 244]. Similarly, in large-scale storage systems, analyzing workloads and access

patterns can lead to more effective resource allocation and caching strategies [222, 227].

However, we must identify the most suitable system abstraction that capitalizes on

the available data for modeling performance. Hence, the overarching goal is to find
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a balance that provides a comprehensive system overview while enabling informed

decision-making.

To better model the complex networked systems, we have two main requirements.

First, we need an appropriate abstraction of the entire system under study. Rather

than delving into every minute detail, we would like to focus on key components that

accurately epitomize the system’s overall functioning. This level of abstraction needs

to encapsulate the fundamental aspects of the system’s functionality and interactions,

thereby simplifying the analysis and yielding more insightful results. Second, the

abstraction should facilitate effective performance analysis. The use of empirical data

is necessary to inform the modeling process and to guide the decision making.

1.1 Contributions

The key question this dissertation explores is how should we model performance in

complex networked systems? We address this question using two main principles. The

first principle is to decompose the entire system into key components with interpretable

interactions. The major challenge is enabling enabling a holistic understanding

of the system while managing the complexity of individual components and their

interdependencies. The second principle is to leverage empirical system data to inform

modeling process and to guide the decision making. We explore to use data-driven

approaches for making informed decisions to enhance system efficiency, whether in

terms of latency or resource utilization.

Using these two key principles, we conduct data-driven performance modeling

across three representative systems: microservice-based application, large-scale web

caching systems, and CDNs. Below, we provide a brief overview of each research

project.
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LatenSeer: Causal Modeling of End-to-End Latency Distributions by Har-

nessing Distributed Tracing

End-to-end latency estimation in web applications is crucial for system operators to

foresee the effects of potential changes, helping ensure system stability, optimize cost,

and improve user experience. However, estimating latency in microservices-based

architectures is challenging due to the complicated interactions between hundreds

or thousands of loosely coupled microservices [231]. Current approaches either track

only latency-critical paths or require laborious bespoke instrumentation, which is

unrealistic for end-to-end latency estimation in microservices-based systems.

We present LatenSeer, a data-driven modeling framework for estimating end-to-

end latency distributions in microservice-based web applications. LatenSeer proposes

novel data structures to accurately represent causal relationships between services,

overcoming the drawbacks of simple dependency representations that fail to capture the

complexity of microservices. LatenSeer leverages distributed tracing data to practically

and accurately model end-to-end latency at scale. It enables developers to explore

what-if scenarios to debug and improve the performance of their applications. Our

evaluation shows that LatenSeer predicts latency within a 5.35% error, outperforming

the state-of-the-art that has an error rate of more than 9.5%.

LatenSeer is highly adoptable as it requires no changes to the existing applications

with pure usage of distributed tracing data. The development and validation of

LatenSeer are grounded in real-world application, utilizing production services and

tracing data from Twitter. Additionally, the system is accessible as an open-source

platform.

Sieve: an Efficient Turn-Key Eviction Algorithm for Web Caches

Web caching systems are essential components of modern Internet infrastructure,

including microservice-based applications. Cache is a component that uses fast but
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expensive medium to store data, so future request for that data can be served faster.

Because the high cost of this storage medium, cache usually has very limited space.

Therefore, deciding what data to be stored in the cache is very important. The core

for the cache performance is eviction algorithm, which decides which object to evict

when the cache is full. The primary focus of an eviction algorithm is to maximize

efficiency by minimizing cache misses. However, despite the development of numerous

eviction algorithms in recent decades, these tend to become increasingly complicated,

often yielding only minor improvements [232]. We apply the second principle about

data-driven modeling. This involves analyzing real-world web cache workloads and

leveraging insights from cache item access patterns. Such an approach simplifies the

eviction process and boosts efficiency, moving beyond traditional methods to optimize

this crucial component within caching infrastructure.

We present Sieve, a cache primitive that is simpler than LRU and provides better

than state-of-the-art efficiency and scalability for web cache workloads. Sieve’s

development and refinement are informed by real production web cache workloads,

leveraging data on access patterns – specifically, the frequency of cache item visits –

to guide strategic decision-making. We implemented Sieve in five production cache

libraries, requiring fewer than 20 lines of code changes on average. Our evaluation

on 1559 cache traces from 7 sources shows that Sieve achieves up to 63.2% lower

miss ratio than ARC. Moreover, Sieve has a lower miss ratio than 9 state-of-the-art

algorithms on more than 45% of the 1559 traces, while the next best algorithm only

has a lower miss ratio on 15%. Sieve’s simplicity comes with superior scalability

as cache hits require no locking. Our prototype achieves twice the throughput of an

optimized 16-thread LRU implementation. Sieve is more than an eviction algorithm;

it can be used as a cache primitive to build advanced eviction algorithms just like

FIFO and LRU.

Sieve is both simple and efficient to be adopted in production, and is already
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having impact. Several popular caching libraries have integrated Sieve, such as

golang-fifo [12] and Ristretto [14]. Sieve is also adopted in multiple production

system, such as DragonFly [16], SikftOS [17], and Pelikan [7]. Notably, with the

integration of Sieve, Ristretto got a 33x reduction in cache misses and 16% CPU

savings.

Theodon: A Modular Framework for CDN Optimization

A CDN is a large, globally distributed system comprising hundreds of thousands of

servers, playing a vital role in various internet services. However, the complexity

of CDN operations presents substantial challenges. Despite their widespread use,

pinpointing an optimal configuration that effectively balances key objectives like

latency, throughput, and cost is a complicated endeavor.

Our system, Theodon, recommends configurations that balance the trade-off

between performance and cost. It achieves this through modular simulation of

CDN topologies, coupled with the learning of near-optimal configurations via multi-

objective Bayesian Optimization. Theodon breaks down a CDN topology into

interconnected components, each symbolizing a core aspect of the CDN infrastructure.

By processing real CDN workloads, Theodon identifies configurations that adeptly

balance performance with cost efficiency in CDN contexts.

Through simulating two real-world CDN systems, WikimediaCDN and Cloudflare,

Theodon uncovers up to 10% and 23% reduction in terms of byte miss ratio, respec-

tively. Furthermore, Theodon demonstrates the capability to discover configurations

that substantially reduce costs – by approximately 2.4× – in Cloudflare, all while

maintaining performance levels comparable to the default settings.



7

1.2 Thesis Organization

The rest of this thesis is organized as follows. Chapter 2 provides relevant background

and motivation. Chapter 3 describes LatenSeer, a data-driven modeling framework

for estimating end-to-end latency distributions in microservice-based web applications.

In Chapter 4, we describe Sieve, an algorithm that is simpler than LRU and provides

better than state-of-the-art efficiency and scalability for web cache workloads. In

Chapter 5, we present Theodon, a framework that models CDN architectures

through modular simulations, aiming to recommend configurations that adeptly

balance performance with cost. We conclude with a summary of our main contributions

and a discussion of future work directions in Chapter 6.



Chapter 2

Background

This chapter introduces three representative complex distributed systems involved

in this thesis: microservice-based applications, large-scale web cache systems, and

CDNs. We discuss the inherent complexities and the need for performance modeling in

these systems. Additionally, we explore the opportunities and challenges of leveraging

empirical data for performance modeling.

2.1 Microservice-based Applications

2.1.1 Complicated Dependencies and Interactions

The microservice architectural style involves developing a single application as a suite

of small, independently functioning services. Each of these services operates in its own

process and communicates using lightweight mechanisms, often through an HTTP

resource API. Many large-scale applications comprise hundreds of geo-distributed,

loosely coupled microservices that exhibit complex inter-dependencies [90]. Such an

architecture has many benefits, including rapid microservice evolution, and the ability

to use flexible microservice placement to trade off performance and cost. On the other

hand, the proliferation of microservices adds complexity: each microservice may con-

8
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tact any number of other microservices on behalf of the user-facing request being

served, with intermediate microservices potentially creating a cascade of serial or

parallel calls to other components.

2.1.2 The Need for Modeling Latency

Software systems are constantly evolving; these changes often have implications on

latency. Tech giants such as Amazon, Google, and Netflix implement thousands of

daily deployments and production changes across hundreds of services that comprise

their production environments [84, 118, 173]. Estimating the impact of these frequent

production changes ahead of time is crucial, especially for managing risk, ensuring

system stability, and maintaining Service Level Objectives (SLOs).

Latency estimation is the task of predicting the impact of hypothetical service

changes on end-to-end latency—the entire execution latency of requests to some

top-level API endpoint across all the services involved in its execution. The opera-

tors of large-scale services are accountable for balancing the service response times

with features, resource utilization, policy constraints, and costs. When evaluating

potential changes to a service, the operators face the conundrum of assessing how the

modifications might impact the response time—a critical factor in end-user experience.

To further elucidate, we highlight the importance of latency estimation by consid-

ering several “high-stakes” service changes.

Adding a new microservice. When a new feature is introduced into the application,

one or more new microservices may be added to the system. While the new service

may enhance the customer experience, it might lengthen response times as requests to

the platform must now pass through the additional microservice.

Scaling strategies. An operator of a video streaming service might consider scaling

up their infrastructure to handle more concurrent users. While this might increase

the ability to handle high traffic, it could also introduce additional latency due to the
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complexity of interactions among servers or data replication across multiple locations.

Policy changes. In some cases, deployment changes may be required due to policy

constraints. For instance, new regulations might require user data to be stored only in

certain geographical locations. This could potentially extend the end-to-end latency

due to increased data transfer times. Latency estimation could help the operator

understand the impact of these changes and plan mitigation accordingly.

Latency estimation questions are interventionist : they concern hypothesizing how

a running system will behave after it is changed. Conventional statistical and machine

learning tools, relying on observational data, fall short in answering these queries

due to their associative nature [160] and susceptibility to confounding variables [159].

Moreover, while randomized controlled trials offer more precise results, they are

resource-heavy and inflexible [85, 186].

2.1.3 The Proliferation of Distributed Tracing

Distributed tracing confers a great opportunity for piggybacking latency estimation

on existing data, providing end-to-end visibility, and revealing service dependencies.

Distributed tracing systems have been used in microservices or serverless applications

to track the performance. Many production systems deploy distributed tracing

frameworks, such as OpenTracing [152], Zipkin [244], and Jaeger [102], to track

request traces and aggregated metrics, which is useful to examine hand-off between

system components [32, 156, 177], and to troubleshoot practical system problems

such as slow responses and errors [26, 77, 83, 87, 108, 124, 131, 151, 197]. The

primary use cases of distributed end-to-end tracing systems concern active system

monitoring [32, 156, 177], anomaly detection [26, 52, 87, 115, 130, 167, 174, 178], and

root-cause analysis [153, 213].

In our context, trace aggregation can be used to delineate the interdependencies

among all services within a microservices system—allowing for data that is routinely
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Figure 2.1: An example trace from Jaeger. The left diagram shows the trace in a timeline
view, and the right diagram shows the service dependency graph generated by Jaeger.

collected to be useful for latency estimation (G1). The left side of Fig. 2.1 shows a

visual example of a trace constructed by Jaeger [102], a state-of-the-art open source

tracing framework, for a compose post request to a benchmark of social network

application [86]. An end-to-end trace represents an execution path through the system,

whereas a span represents a logical operation from a function. A span maintains

not only the causal relationship by keeping a reference to a parent span but also the

runtime execution details, such as start and end timestamps to represent the duration

of the operation. A trace can be considered as a directed acyclic graph (DAG) of

spans, where each edge represents the causal relationships, such as RPC calls, between

two spans [177]. Besides tracking causal relationships, a trace also captures temporal

order between a group of child spans that are concurrently called by the same span.

We show an illustration of a service dependency graph, created from 20 traces of

compose-post requests, in the right-hand-side diagram of Fig. 2.1. The completion

of service compose-post is contingent on even other services, such as service media

and service text. Below, we refer to the services that are invoked by the same “parent”

service in a service dependency graph as sibling nodes.

2.1.4 Challenges of Using Distributed Traces to Estimate

Latency

Distributed tracing data cannot provide end-to-end latency estimation out of the box

due to multiple challenges.
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(1) Raw traces fail to capture interdependencies. The perspective offered by

each individual trace is too insular to fully encapsulate the complexity of the entire

system. Yet aggregation techniques to produce service dependency graphs exhibit

significant blind spots. Chief among them is the problem that sibling nodes may

themselves have complex interdependencies that, when uncaptured, can result in

an incomplete portrayal of the performance dynamics and intricacies, particularly

in hypothetical scenarios, thereby undermining the accuracy of latency estimation.

Nevertheless, a cautious and careful approach can overcome these limitations, as shown

in §3.2, allowing distributed tracing to be valuable resource for latency estimation.

(2) Small inaccuracies can snowball. The inevitability of clock skew is a major

issue for nuanced processing of distributed tracing data. In a distributed tracing

deployment, spans are timestamped using the local machine’s clock upon start and

finish. However, the clocks on different machines in a distributed system invariably drift

apart, even with periodic synchronization using the Network Time Protocol (NTP) [112,

122, 141, 149, 175]. This well-understood problem in distributed computer stems

from various factors, such as clock hardware differences, environmental conditions,

network latency, and the resolution of the system clock. Consequently, this can lead

to misinterpretations in system performance analysis and incorrect event ordering [53,

235], with minor errors potentially amplifying to significantly impact conclusions on

performance behavior.

(3) The problem of scale. A single trace is not representative of the full service—

any interventional questions must account for the diversity of traces that execute in a

production environment. At Twitter, for instance, a request involves 12,000 spans on

average, with some traces encompassing as many as 25,000 (Fig. 2.2a). The call graphs

for one endpoint comprise between 1 and 25,000 spans at tree depths between 2 to 22

(Fig. 2.2b) and encompass widths between 1–5,000. Uber, similarly, operates nearly

4,000 microservices, and a single request trace can have up to more than 11,000 spans
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Figure 2.2: Twitter trace characteristics.

nested 40 levels deep [235]. Existing tracing tools focus on providing the operator

with a single, specific trace [98, 131], such as to identify an edge-case in Jaeger [230],

or analyzing the path of a single request [131]. How to properly aggregate thousands,

or even millions, of distributed traces to gather insights is a nascent and understudied

area [235].

In Chapter 3, we introduce LatenSeer, a framework that models the complex

relationships between services by leveraging distributed traces. It practically and

accurately models end-to-end latency at scale.

2.2 Web Caching Systems

Web caches are essential components of modern Internet infrastructure, playing a

crucial role in reducing data access latency and network bandwidth. Key-value caches,

e.g., Memcached [5], Pelikan [7] and Cachelib [63], are widely used in modern web

services such as Twitter [225] and Meta [38] to reduce service latency. CDN caches

are deployed close to users to reduce data access latency and high WAN bandwidth

cost [28, 216, 223, 234].
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2.2.1 Increasing Complexity in Cache Eviction Policies

The cache eviction algorithm, which decides which objects to store in the limited

cache space, governs the performance and efficiency of a cache. The field of cache

eviction algorithms has a rich literature [25, 34–36, 41, 48, 55, 59, 62, 65, 69, 72, 73,

78, 96, 103, 119, 120, 155, 168, 181, 192, 205, 211, 215, 237].

Increasing complexity. Most works on cache eviction algorithms focused on

improving efficiency, such as LRU-k [150], TwoQ [106], SLRU [110], GDSF [48],

EELRU [180], LRFU [65], LIRS [104], ARC [139], MQ [242], CAR [30], CLOCK-

pro [103], TinyLFU [70, 71], LHD [33], LeCaR [202], LRB [182], CACHEUS [170],

GLCache [219], and HALP [183]. Over the years, new cache eviction algorithms have

gradually convoluted. Algorithms from the 1990s use two or more static LRU queues

or use different recency metrics; algorithms from the 2000s employ size-adaptive LRU

queues or use more complicated recency/frequency metrics, and algorithms from the

2010s and 2020s start to use machine learning to select eviction candidates. Each

decade brought greater complexity to cache eviction algorithms. Nevertheless, as we

show in §4.3, while the new algorithms excel on a few specific traces, they do not show

a significant improvement (and some are even worse) compared to the traditional ones

on a large number of workloads. The combination of limited improvement and high

complexity explains why these algorithms have not been used in production systems.

The trouble with complexity. Multiple problems come with increasing complexity.

First, complex cache eviction algorithms are difficult to debug due to their intricate

logic. For example, we find two open-source cache simulators used in previous works

have two different bugs in the LIRS [104] implementation. Second, complexity may

affect efficiency in surprising ways. For example, previous work reports that both

LIRS and ARC exhibit Belady’s anomaly [91, 203]: miss ratio increases with the cache

size for some workloads. It’s worth noting that FIFO, although simple, also suffers

from this anomaly. Third, complexity often negatively correlates with throughput
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performance. A more intricate algorithm performs more computation with potentially

longer critical sections, reducing both throughput and scalability. Furthermore, many

of these algorithms need to store more per-object metadata, which reduces the effective

cache size that can be used for caching data. For example, the per-object metadata

required by CACHEUS is 3.3× larger than that of LRU. Fourth, complex algorithms

often have parameters that can be difficult to tune. For example, all the machine-

learning-based algorithms include many parameters about learning. Although some

algorithms do not have explicit parameters, e.g., LIRS, previous work shows that the

implicit ghost queue size can impact the efficiency [203].

Simple eviction algorithms. Besides works focusing on improving cache efficiency,

several other works have improved cache throughput and scalability. For example,

MemC3 [79] uses Cuckoo hashing and CLOCK eviction to improve Memcached’s

throughput and scalability; MICA [125] uses log-structured storage, data partitioning,

and a lossy hash table to improve key-value cache throughput and scalability. Seg-

cache [226] uses segment-structured storage with a FIFO-based eviction algorithm

and leverages macro management to improve scalability. Frozenhot [162] improves

cache scalability by freezing hot objects in the cache to avoid locking. However, these

works often use weaker eviction algorithms such as CLOCK1 and FIFO.

2.2.2 Open-sourced Cache Workloads

Historically, evaluations of caching systems were often constrained, typically relying

on just one or two traces for analysis. While this approach yielded some insights,

it was notably limited. A significant advancement has been the open-sourcing of a

diverse range of caching workloads. This development includes a collection of web

cache and block traces sourced from real-world production environments, providing a

much broader and more informative basis for evaluating caching systems:

1CLOCK was recently shown to be more efficient than LRU [220].
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• Web cache traces: examples include Twitter cache cluster workloads [225],

Wikimedia CDN traces [208], Meta key-value/CDN traces [9], and Tencent

photo traces[239, 240].

• Block traces: these include workloads from MSR [142, 143], FIU [113], Cloud-

physics [204], and Alibaba [1, 121, 206].

Web cache workloads typically follow Power-law (generalized Zipfian) distribu-

tions [38, 45, 46, 58, 89, 94, 99, 187, 191, 225], where a small subset of objects account

for a large proportion of requests. In detail, the ith popular object has a relative

frequency of 1/iα, where α is a parameter that decides the skewness of the workload.

Previous works find different α values from 0.6 to 0.8 [45], 0.56 [89], 0.71–0.76 [93],

0.55–0.9 [38], and 0.6–1.5 [225]. The reasons for the large range of α include (1) the

different types of workloads, such as web proxy and in-memory key-value cache work-

loads; (2) the layer of the cache, noting that many proxy/CDN caches are secondary

or tertiary cache layers [99]; and (3) the popularity of the service, such as the most

popular objects receiving greater volume of requests in more popular (widely-used)

web applications. Moreover, web caches often serve constantly growing datasets —

new content and objects are created every second.

In contrast, the backend of enterprise storage caches or single-node caches, such as

the page cache, often has a fixed size, not regularly observing new objects. Further,

many storage cache workloads often have scan and loop patterns [170], in which a

range of block addresses are sequentially requested in a short time. Such patterns

are rare in web cache workloads according to our observation on 1559 traces from 7

datasets.
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2.2.3 Opportunity: Lazy Promotion and Quick Demotion

Promotion and demotion are two cache internal operations used to maintain the logical

ordering between objects2. Recent work [220] shows that “lazy promotion” and “quick

demotion” are two important properties of efficient cache eviction algorithms.

Lazy promotion refers to the strategy of promoting cached objects only at eviction

time. It aims to retain popular objects with minimal effort. An example of lazy

promotion is adding reinsertion to FIFO. In contrast, FIFO has no promotion, and

LRU performs eager promotion – moving objects to the head of the queue on every

cache hit. Lazy promotion can improve (1) throughput due to less computation and

(2) efficiency due to more information about an object at eviction.

Quick demotion removes most objects quickly after they are inserted. Many

previous works have discussed this idea in the context of evicting pages from a

scan [33, 106, 139, 150, 170, 180]. Recent work also shows that not only storage

workloads but web cache workloads also benefit from quick demotion [220] because

object popularity follows a power-law distribution, and many objects are unpopular.

Given these insights, especially in the context of web cache workloads, the concepts

of lazy promotion and quick demotion inspire a reevaluation of cache eviction algo-

rithms. In Chapter 4, we present Sieve, a simpler eviction algorithm that achieves

better than state-of-the-art efficiency and scalability for web cache workloads.

2.3 Content Delivery Networks

A Content Delivery Network (CDN) is a network of cache servers distributed geo-

graphically, designed to deliver web content and services to users more rapidly and

efficiently [132, 245]. For example, a CDN may reduce the latency of content delivery

2Note that the terms “promotion” and “demotion” are also commonly used in the context of
cache hierarchy. In this case, promotion refers to the process of moving data to a faster device, while
demotion involves moving the data to a slower device [136, 210].
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from 30 milliseconds to 150 milliseconds [99, 137, 148, 241].

A typical CDN consists of a hierarchical arrangement of servers: back-end servers

manage internal content distribution within the CDN, while front-end servers at the

network edges handle user interactions. CDN providers use complex algorithms to

route user requests to the most appropriate server [132]. The journey of a request

typically starts from the end-user, proceeding to the chosen front-end server. If this

server already has the requested content, it is immediately delivered to the user.

Otherwise, the server forwards the request up the CDN hierarchy until it finds the

content, which might sometimes involve retrieving it from the content provider’s

original server.

2.3.1 CDN Architectures

Content providers select CDN strategies based on their scale and needs, creating a

convoluted landscape of CDN use. Smaller providers with limited budgets often use

cost-effective options like centralized hosting or free CDNs. Larger commercial entities

prefer customized services from major CDNs like Akamai [148] for competitive delivery

performance. The biggest providers, such as Netflix [18] and Youtube [185], develop

their own specialized CDNs due to their extensive requirements. This diversity of

requirements has led to the CDN ecosystem becoming increasingly complex, featuring

a wide variety of CDN architectures. In the following, we outline some representative

examples of these architectures.

• Datacenter-based CDNs: Some CDN operators concentrate large numbers of

servers in a relatively small number of geographic locations. such as fastly [209]

and Cloudflare [15].

• Highly Distributed CDNs: Akamai is the leading CDN provider with a

highly distributed server network. By strategically placing edge servers in closer
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proximity to end-users – in terms of both network and geographical distance

– and utilizing optimized protocols, Akamai’s distributed CDN architecture

achieves significant performance enhancements [132].

• Specialized CDNs: Several large content providers, which previously de-

pended on third-party CDN services, have shifted towards developing their

own application-specific CDN platforms, such as WikimediaCDN [169] and

Youtube [185].

The complexity in the CDN ecosystem is not just confined to the variety of

architectures but also extends to the intricate design decisions involved in content

storage and retention. Factors such as which servers will store specific content, the

length of time for content retention, load balancing, caching eviction algorithms, and

admission control, are all critical in determining a CDN’s operational efficiency and

performance.

2.3.2 Cost of CDN

The primary business model of CDNs revolves around generating profits by balancing

the revenue received from users against their operational costs. Typical costs for a

CDN include expenses for bandwidth used in packet transit, acquiring and maintaining

servers (which also encompasses the energy required to power and cool these servers),

and the costs associated with CDN personnel. When CDNs first emerged in the late

1990s, bandwidth prices were relatively high, constituting a significant portion of

the total content delivery costs. In recent times, despite the general global trend of

decreasing unit prices for bandwidth, substantial regional price variations remain [190].

For instance, bandwidth costs in Asia and the Pacific can be up to three times higher

than those in Europe and North America [189]. Consequently, minimizing bandwidth

costs has been a key focus for most CDN providers. Additionally, there has been a
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shift towards using more SSDs in CDN operations due to their lower costs compared

to DRAM [38, 99, 185].

2.3.3 The Need for Performance and Cost Modeling

Considering the previous discussion, CDNs possess inherent complexities in their

architecture and costs, which align with the evolving requirements of the market. A

comprehensive approach is required to determine the most effective strategy. The

performance of a CDN hinges not only on its architectural design but also on various

factors such as the nature of the content (static vs. dynamic) and network conditions.

To navigate these complexities, empirical data is essential for guiding decisions like

where to establish new data centers, determining the required capacity and hardware

types for cache servers, and more.

Due to the expansive scope of CDN architectures, this thesis primarily focuses on

the architectural design of data centers. Future work will delve into the placement

and hierarchical design between data centers. We take into account the cost of servers,

and the bandwidth cost is inferred from the byte miss ratio at a Point of Presence

(PoP), which indicates the amount of traffic offloaded to the origin. In Chapter

5, we present Theodon, a framework designed to model CDN architectures using

modular simulations. Theodon’s objective is to identify near-optimal configurations

that effectively balance performance with cost considerations, providing a strategic

approach to CDN management and optimization.



Chapter 3

LatenSeer: Causal Modeling of

End-to-End Latency Distributions

by Harnessing Distributed Tracing

3.1 Introduction

Latency estimation enables operators managing large-scale web applications [53, 105,

123, 134] to anticipate the impacts of potential changes before scaling their services,

optimizing costs, adding features or adapting to changes in hardware configuration

or cloud computing deployments [105, 126, 130, 213]. For instance, the operators

may wish to assess how introducing a novel machine learning pipeline or migrating

some subset of services to a different data center would affect customer-perceived

latency. Such estimation is crucial to prevent performance regression and to protect

the end-user experience: Google, Amazon, and Akamai have all noted significant drops

in traffic or revenue following a modest (100+ ms) increase in latency [19, 81, 114, 195].

To be pragmatic, operators of web applications desire a latency estimation frame-

work that meets the following goals.

21
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(G1) Easy deployment. The system integrates with existing data collection systems,

eschewing invasive and labor-intensive custom instrumentation.

(G2) Flexible scenarios. The system estimates end-to-end latency given hypo-

thetical latency changes in any of its constituent services, informing advanced

decision-making.

(G3) Realistic forecasts. The system should express confidence in its results—

sound decisions require sound data and models.

In large-scale systems, however, these goals are challenging to fulfill. At scale,

modern applications often comprise hundreds or thousands of loosely coupled microser-

vices [57, 90, 128, 176, 196, 238], where a single user request may touch thousands of

instances before generating a response [154, 176, 235]. In microservices architectures,

a single service often interacts with many others, forming a complex web of serial

or parallel calls to fulfill a user request. Modifications in one can thus affect others,

leading to varied impacts on the end-to-end latency of different requests.

State-of-the-art solutions fall short of meeting all three objectives. Several

works [105, 165, 166] require explicit instrumentation that makes them difficult and

expensive to deploy in different environments (G1). Other methods, which use

purely data-driven techniques, either do not target microservice-based web appli-

cations [95, 134, 193, 201], or are restricted to making predictions for a subset of

services [68, 235] (G2). Finally, the trend of leveraging deep machine learning models

for latency estimation would attempt to draw causal conclusions through black-box

methods that fundamentally can derive only associations [158, 159], and are thus set

up to fail goal (G3) [172].

We present LatenSeer, a framework for estimating the end-to-end latency distri-

bution for large-scale microservices applications, that is explicitly designed to fulfill

goals (G1)—(G3). As shown in the upper left of Fig. 3.1, LatenSeer piggybacks

on the proliferation of distributed end-to-end tracing in large-scale systems, such as
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Figure 3.1: Overview of LatenSeer. Operators can pose hypothetical scenarios into a
trace-driven causal model and predict how end-user latency would change relative to baseline.

Jaeger [102] or OpenTelemetry [151], rather than demanding custom instrumenta-

tion (G1). LatenSeer allows an operator (bottom left) to answer the question: How

will the end-users be impacted by some hypothetical changes to the latencies of the

underlying microservices (G2)? LatenSeer accepts hypothetical latency changes to

services as inputs, and outputs the changed end-to-end latency distribution. We apply

LatenSeer on two use cases of latency estimation: service placement (UC1)—reasoning

about the end user latency impact of resource provisioning or service migration, and

slack analysis (UC2)—determining the latency budget available to alter a microservice

without impacting the overall response times of requests. We validate LatenSeer via

null prediction 1 on distributed traces from two production sources to show that the

underlying model is sound, and conduct controlled experiments using a social network

microservices-based benchmark to evaluate the accuracy of latency estimation (G3).

Inside LatenSeer, we cast the latency estimation problem as a causal model 2 of

latency components through a simple principle: a complex service decomposes into

the causal interactions between its constituent microservices. The end-to-end latency

distribution for the entire application is thus the combination of each component’s

1Null prediction refers to the experiments where LatenSeer derives the predicted latency distribu-
tion under conditions of zero injected delay.

2In distributed tracing, ”causality” usually refers to the order of events or operations as they
happened in relation to each other
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latency distributions.

LatenSeer overcomes multiple technical challenges that arise when forecasting

latency in large-scale systems. First, distributed traces, which record the requests

within distributed applications, often exhibit diverse execution paths. Moreover, a

single service might be involved in multiple top-level APIs. As a result, aggregating

the distributed traces requires a data structure that is simultaneously succinct while

maintaining sufficient diversity of requests to ensure accurate latency estimation [116].

A key idea in LatenSeer is the use of set nodes to efficiently cluster traces that exhibit

similar execution paths.

Second, the latency of a parent service is a composite of its child services’ latencies,

underscoring the importance of discerning all causal relationships. Identifying causal

dependencies from single requests is straightforward but aggregating them is complex

due to clock skews and path-dependent executions. To address this, LatenSeer

introduces the succession time alongside set nodes to aid in deducing the causal

dependencies in child RPCs demonstrating similar execution execution paths

Finally, to improve the accuracy of latency estimation, LatenSeer profiles the joint

distribution of child service latency, departing from the convenient but misleading

assumption of mutual independence upon which most traditional approaches have

relied. Joint latency profiling accounts for scenarios where the latency of different

child services may be interrelated, thus making latency estimates more accurate than

what previous models could achieve.

We implemented LatenSeer as a Python package, and use it in a social network

prototype built from the DeathStarBench microservices benchmark (DSB) [86]. We

evaluate LatenSeer’s ability to make accurate latency predictions through two real

world scenarios, service placement (UC1) and slack analysis (UC2). Our results

show that LatenSeer predicts end-to-end latency distributions within a 5.35% error

(D-statistic) with a mean of 2.7%. In contrast, the state-of-the-art gives a minimum
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error surpassing 9.5% with a mean of 14.5%. Finally, we evaluate LatenSeer using two

production traces (Alibaba [128] and Twitter). We verify the soundness of latency

prediction through null prediction experiments and demonstrate the scalability of

LatenSeer on massive production workloads.

In summary, this chapter makes the following contributions.

• We propose trace-driven causal modeling as a methodology for answering inter-

ventional latency estimation questions in large microservices architectures.

• We detail the design of the LatenSeer framework for extracting causal inter-

service dependencies from traces generated by off-the-shelf distributed tracing

systems to generate causal models of end-to-end latency.

• We demonstrate LatenSeer’s utility by accurately answering hypothetical ques-

tions on realistic scenarios with an estimation error within 5.35% (D-statistic),

outperforming the state-of-the-art.

• We show LatenSeer’s scalability through experiments on real-world traces from

large-scale, complex production systems.
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3.2 Design and Implementation

LatenSeer is an offline tool for conducting latency estimation from distributed traces.

This tool permits the system operators to infer how end-to-end latency would be

affected when the latencies of specific services are changed. In this section, we describe

how LatenSeer overcomes the aforementioned challenges to derive a causal model of

steady-state latency from historic distributed trace data of the system.

Interface. Fig. 3.2 shows LatenSeer in action, estimating end-user latency distri-

butions under the assumption that load-balancing services have been migrated to a

distant data center (UC1). The operator first obtains a baseline model of latencies

based on trace data. As input, the operator poses an interventional query to the

model by defining a subset of services to move (e.g., ‘LBS’), and the delay incurred (or

reduced) from the movement (e.g., a normal distribution centered on 30 ms) triggering

the latency propagation via model.apply which returns a latency-modified model,

obtaining a predicted latency distribution as output (via scenario.predict). Sepa-

rately, the operator also determines the available latency budget for the LBS service

through a model.slack call, which returns CDFs of latency slacks for all services

(UC2). The latency distributions in LatenSeer can be further stratified by arbitrary

groups (e.g., to assess latency impacts on customers in certain regions)—we focus on

a single group for the clarity of presentation.

Key properties. To estimate end-to-end latency under potential alterations in any

component services, LatenSeer constructs a model that fulfills the following properties:

(1) it delineates the causal dependencies between microservices. (2) it recognizes the

range of request routes within the system, accounting for the different paths a request

might take and the specific services it might encounter. (3) it maintains the latency

distributions of interactions (e.g., RPC or REST) between each pair of communicating

services.
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# Load distributed trace data

model = LatenSeer(data="s3://trace_bucket")

# UC1:Add hypothetical 30ms delay to service 'LBS'

scenario = model.apply('LBS'=lambda x:x+30)

# Get the changed end-to-end latency distribution

E2E = scenario.predict()

# UC2:Determine slack of 'LBS' service

LBSslack = model.slack('LBS')

Figure 3.2: LatenSeer Example. Estimate latency distribution if load balancing services
are migrated to another data center with 30ms extra delay.
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Figure 3.3: Child service latency may affect parent service.

3.2.1 Modeling Latency with Invocation Graph

We begin by elucidating the principles behind latency calculation using a single trace

as an illustrative example.

The underlying concept is simple: the latency of a parent service can be deduced

from the latencies of its child services. For example, Fig. 3.3 illustrates a trace

consisting of a parent service A and six child services (B-G), where B, E, and G

are on the latency-critical path. We define the following functions on a particular

trace: L(x) the latency of service x, and L(N ) which accounts for the network latency

or other processing time on the latency-critical path. For instance, it includes the

duration between B’s finish time and E’s start time. Consequently, the latency of the

span A can be expressed as L(A) = L(B) + L(E) + L(G) + L(N ).

Now we discuss how latency changes on different child services impact the latency

of the parent service. Since services B, E, and G are on the latency-critical path, any

delay in these services will increase the latency of A. However, the latency of A can

also be affected by other services that are off the latency-critical path, such as C, D,
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and F in this example. We summarize four scenarios of latency change on a service

and their impacts3:

1. An increase in the latency of a child on the latency-critical path invariably leads to

an increase in the parent latency

2. A decrease in the latency of a child on the latency-critical path can result in

unchanged or reduced parent latency, potentially altering the latency-critical path

itself.

3. When a child off the latency-critical path experiences increased latency, the parent

latency might remain the same or increase, contingent upon changes to the latency-

critical path.

4. A decrease in the latency of a child off the latency-critical path leaves the parent

latency unaffected.

Fig. 3.3 provides two examples demonstrating cases (1) and (3) respectively.

As previously discussed, the latency-critical path exhibits dynamism due to latency

changes in different services. To assess the impact of these changes on the latency of a

parent service, we construct an invocation graph for the child services. This graph

captures the sequential execution order of the child services within a specific trace.

In the invocation graph, an edge E(x, y) represents service y finishes before service

x happens. Node start, end, and sync are virtual nodes that denote the starting,

finishing, and synchronization points, respectively. For example, node G will not

start until both nodes E and F have finished. Fig. 3.4 shows a comparison between

a standard service dependency tree and an invocation graph derived from the same

trace (Fig. 3.3). Invocation graphs represents child relationships with finer granularity,

a detail not captured by service dependency trees. Moreover, each node is endowed

with a latency value corresponding to its service. The latency of the parent service

3We can effectively calculate the latency changes on multiple services. For ease of presentation,
we only show latency change on one service.
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Figure 3.4: From service dependency tree to invocation graph.

can be expressed as L(A) = max(L(B),L(C) + L(D)) + max(L(E),L(F )) + L(G).

Given this formulation, any alterations in a child service’s latency allow for a direct

computation of the resulting impact on the parent service’s latency.

We now describe how the conventional service dependency tree can be converted to

an invocation graph. We use serial and parallel to describe the relationship between

any two spans. Consider, for example, spans B and E depicted in Fig. 3.3, we define

the succession time as the difference between the starting time of E and the finishing

time of B. Given that B starts before E from the vantage point of the parent observer,

we say that B happens before E. If the succession time is positive, we declare the two

spans to be serial. Conversely, a negative succession time, such as the overlapping

time frames of E and F , indicates a parallel relationship between two spans.

The initial step involves identifying sync points, which serve to demarcate nodes

into chronological groups. Each group is characterized such that services from a

preceding group must complete their execution before the services in the succeeding

group initiate. To establish these groups, we construct a graph Gp comprising child

nodes and connect nodes that are in parallel relationships. Subsequently, we identify

the connected components in the graph. Illustrating with the child nodes (B-G) in

Fig. 3.4, we can construct a graph Gp consisting of nodes B, C, D, E, F , and G,

interconnected through edges B-C, B-D, and E-F . Consequently, the connected

components are {B, C, D}, {E, F}, and {G}. To complete this step, we arrange

these groups chronologically based on the earliest start time among the nodes within

each group.

The next step is to identify the causal orders among nodes within each group.
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Within each group, we establish connection between pairs of child nodes that are

in serial relationship, forming a graph denoted as Gs. In this graph, the maximal

cliques, or independent sets in graph theory parlance [88] are the nodes with serial

relationships. And the nodes within each maximal clique are then ordered by their

starting timestamps. For example, in the first group {B, C, D}, maximal cliques are

{B} and {C, D}.

Drawing upon the aforementioned two steps, we can determine the invocation

order of the child nodes. When a latency change occurs in any given service, we can

identify the slowest path within the invocation graph, thus determining the overall

latency of the parent service.

3.2.2 Aggregating Traces with L-tree

We have presented the foundational principles of latency modeling. In this section, we

detail the construction of a latency-endowed service dependency tree, referred to as

the L-tree, which aims to refine aggregate-level latency calculations.

The construction of the L-tree is a top-down process by two main steps. Firstly,

we iterate through traces to establish set nodes between parent spans and their

direct children, merging identical spans where necessary. This forms an initial L-tree

structured by set nodes, albeit without invocation graphs. Secondly, we traverse this

preliminary tree to construct invocation graphs at each set node, drawing upon stored

latency profiles. This produces a detailed L-tree. The subsequent parts of this section

will delve deeper into each stage of this construction process.

Set node. The set node functions to effectively cluster together traces that exhibit

similar invocation graphs. Each regular node in the L-tree therefore denotes a span

in the original traces. When multiple traces include the same span, the corresponding

node in the L-tree represents aggregate information of that particular span across

the traces of the same call path. Each regular node records how many traces had the
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Figure 3.5: Aggregate traces to L-tree.

span to which it corresponds. A set node connects a regular node with a collection

of regular child nodes and indicates an identical set of child nodes—the same set of

spans4. We iteratively input traces, and merge the new input trace into L-tree; if

a new set of child spans occur, we create a new set node. Moreover, each set node

remains a record of the number of traces it encompasses, thereby providing insights

into the different branch ratios present in the L-tree. For instance, Trace 1 and

Trace 2 in Fig. 3.5 have same parent span A, but different sets of child spans {B,

C} and {B, D}. The right diagram in Fig. 3.5 shows a L-tree for these two traces,

where two set nodes are created to connect the parent node A and two different sets

of child nodes.

Set nodes can cluster traces that exhibit similar invocation graphs, which effec-

tively retain the diverse characteristics of calling relationships, thereby enhancing the

modeling of latency distribution. In constructing the tree from the top down, traces

sharing the same set of child RPC calls from a single parent call are clustered at each

level. This approach strikes a balance between coarse aggregation (grouping all spans

without differentiation) and fine-grained aggregation (grouping traces only if they

share identical invocation graphs).

Joint latency profiling. Traditional service dependency modeling methods only

store latency for each node independently [105, 134], which misses the finer-granular

causalities between child services. L-tree maintains latency profiles differently, by

4A set node effectively represents a hyperedge in a tree-based hypergraph.
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(a) Known serial siblings. (b) Known parallel siblings.

Figure 3.6: Succession time CDF for production services at Twitter over a 24-hour period.

jointly considering the latencies of sibling nodes. When forming a tree from a single

trace and extending it to multiple traces, the latency data associated with each node

is profiled as a distribution, rather than a single value. The set node manages the

latency profiles of its child nodes. Besides maintaining the latency distribution for

each child node, we also profile the succession time distribution between pairwise

sibling nodes, which is crucial to construct an invocation graph for the sibling nodes.

Constructing invocation graphs in L-tree. Finally, we describe the construction

of invocation graph in L-tree. This process resembles the one described in §3.2.1, but

with a key modification: we use the median of the succession time distribution between

two sibling nodes as a threshold to determine their serial and parallel relationships.

We hypothesize that service invocations that occur in series should consistently have

positive succession time between them, whereas parallel spans may show negative

succession time in some traces. Unfortunately, in production settings, the measure-

ments are not always clear-cut, as shown in Fig. 3.6, due to clock skew and other

instrumentation artifacts. The adoption of the median value as the classification

threshold serves to mitigate these challenges, promoting a more accurate delineation

of serial and parallel relationships.

This concludes our construction of L-tree, where each regular node links to one or

more set nodes indicating different call paths. Each set node maintains an invocation
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graph between the child nodes of the set node’s parent node. Consequently, L-tree

not only maintains similar call paths across different tree branches but also captures

the sequential execution order of child services.

3.2.3 End-to-end Latency Estimation

LatenSeer estimates the end-to-end request time by combining the latency distributions

in L-tree, propagating them bottom-up from leaves to the root. If an operator thus

modifies the latency of specific nodes within the L-tree that corresponding to the

services they tend to change, LatenSeer will infer the latency impact from these

changes through the modified latency distribution of the root node. For example,

service B is delayed by ∆B in Fig. 3.5, LatenSeer propagates the increased latency

∆B, calculates the changed latency ∆A for service A, and outputs A’s new latency

distribution L(A)′.

With the collection of traces, LatenSeer models node latency as probability dis-

tributions. Formally, for serial nodes with latency distributions represented as

random variables X1,... Xk, we define Add operator to estimate their combined

distribution as: P(Z = z) =
∑

P(X1 = x1, ..., Xk = xk), where z =
∑k

i=1 xi.

On the other hand, we define Max operator to estimate their combined latency:

P(Z ≤ z) = P(X1 ≤ z, ..., Xk ≤ z).

Node latency estimation. We estimate the latency distribution of node v through

its set nodes and corresponding invocations graphs of their child nodes. Suppose

that a set node s connects an invocation graph G containing m sync points. Assume

there are pj paths between two sync points and nj nodes on j-th path. We use P i
j to

denote the set of nodes on j-th path between (i− 1)th and ith sync points. Then the

combined latency ℓi of nodes between (i− 1)th and ith sync points can be calculated
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Algorithm 1 Latency Estimation

Require: L-tree G; a “what-if” scenario S
Ensure: Estimated end-to-end latency distribution
1: function Predict(G, S)
2: r ← root node of G
3: A← Apply(r, S)
4: d← greatest depth among nodes in A
5: while d > 0 do
6: Nodes← A[d]
7: for each regular parent p of a node in Nodes do
8: ℓ, affected ← LatencyPropagation(p, A)
9: if affected then
10: update distribution of p with ℓ
11: A[p.depth].insert(p)

12: d← d− 1

13: return updated distribution of root node r

as:

ℓi = Max(Add(P i
1), ...,Add(P i

p1
))

Finally, the latency of set node s is calculated as:

L(s) = Add(ℓ1, ..., ℓm)

Suppose the latency distribution of the node v depends on k set nodes, denoted

as si. The latency L(v) can be expressed as a weighted sum of the latencies of these

set nodes, represented as
∑k

i=1wiL(si), where wi ∈ [0, 1] denotes relative weights

with
∑k

i=1wi = 1. The relative weight is determined based on the number of traces

recorded by each set node.

End-to-end latency estimation. LatenSeer combines the estimated latency distri-

butions of all nodes in the L-tree to produce one estimated distribution of end-to-end

latency. We first inject the changed latency (∆ ∈ R) to the target nodes that corre-

spond to the services for which the operator wants to intervene. (In causal modeling,

this change emulates a do-operator [159, 160]). The algorithm works bottom-up, taking
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as input the L-tree, and the set of hypothetical services to be altered with their

corresponding latency (Alg. 1). The changes trigger bottom-up latency propagation

within the L-tree from the affected nodes toward the root. If a node displays variable

latency, we recalibrate its parent node’s latency using the Add and Max operators,

following the structure of the invocation graph. Importantly, any modification in

the latency of a parent node prompts a subsequent recalculation of its own parent,

continuing this chain recursively up to the root node.

3.2.4 Making LatenSeer Practical for Production Workloads

LatenSeer’s design aims to solve latency estimation for real-world usages at scale.

We discuss some design choices and optimizations that make LatenSeer practical,

especially from our experiences when dealing with massive trace data at Twitter.

(1) Handling clock skew and miss data. To derive the serial and parallel rela-

tionships between nodes, we must compare the timestamps on two spans. These spans

often represent RPCs that are likely emanating from different machines, which poses

a potential issue as the clocks across these machines are not perfectly synchronized,

thus could introduce inaccuracies in our comparisons. We mitigate this issue by using

client-side timestamps, which record the times on the same machine where the RPC

calls are invoked. In other words, the start and finish times of child spans that we

use are the timestamps recorded from a machine where the parent span locates. In

this manner, the duration of a child span consists of both its processing time and

network latency. Handling missing or erroneous data in tracing systems is an open

problem. We tackle this by truncating traces at the initial missing span connection.

Comparisons on Alibaba traces revealed minimal latency differences between complete

and truncated traces.

(2) Set nodes for clustering traces. As mentioned in §3.2.2, we introduce the

concept of set node to cluster together traces that exhibit similar invocation. We now
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Figure 3.7: Set node justification via Twitter traces.

provide a more detailed explanation behind this design decision. Given the diverse call

patterns in large-scale systems, clustering traces based on identical dependency graphs

is often impractical. For instance, a service invoking four cache-get operations and

a service executing five cache-get operations would fall into separate clusters when

using an identical clustering approach. Fig. 3.7a illustrates the frequency of identical

dependency graphs and set nodes of a root node (a front-end service) in Twitter,

derived from examining 190,087 traces with the same front-end API. The rank in

Fig. 3.7a refers to the ranking of identical dependency graphs or set nodes based

on their frequency. In this context, we focus exclusively on the first depth of the

full graph: the root node and its immediate child nodes. Recall that the identical

dependency graphs are those where child nodes exhibit precisely the same sequence

of invocations, and the set node groups the traces which have the same set of child

nodes. Fig. 3.7a reveals that the number of different identical dependency graphs is

twice that of set nodes. This set node concept, therefore, offers a more practical and

effective way of grouping traces for latency modeling in complex systems.

The adoption of set nodes is substantiated by their ability to identify similar

call patterns in traces sharing the same set of child RPC calls. Conversely, different

set nodes usually correspond to varying latency distributions, a consequence of the

unique call paths each trace navigates, as exemplified in Fig. 3.7b. Further supporting
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this approach, we’ve observed that the top two ranks of identical service dependency

graphs exhibit the same latency distributions and belong to the same set node (the

finding is not shown in the paper due to space constraints.). This consistency lends

further credibility to the concept of the set node, underscoring its practicality and

relevance in understanding and modeling system latencies.

(3) Pre-merging parallel spans. The traces in large-scale applications tend to be

complex, with a typical request touching tens to thousands of individual microservices,

producing service dependency trees that are up to 20 levels deep. To reduce the

complexity of computation, we presume some sibling spans are parallel and coalesce

these spans into the same (regular) node. According to observations of a large number

of Twitter traces, we found most simultaneous RPCs to cache and storage are parallel.

For example, hundreds of cache-get happening simultaneously often have a parallel

relationship. Pre-merging such spans significantly reduce the L-tree complexity.

(4) Building LatenSeer trees in parallel. LatenSeer must be efficient enough

to process an enormous volume of traces for large-scale applications. To facilitate

this, we parallelize the tree-building process. The traces are initially partitioned based

on their top-level API endpoint, as identical API calls tend to exhibit similar calling

patterns. Subsequently, traces within the same API endpoint are evenly distributed

into the same bucket, and a subtree is constructed for each batch of traces. Finally,

subtrees for traces with the same top-level API endpoint are merged. This merging

process commences from the top and progresses downwards. When nodes are identical,

they are merged along with their latency profiles. If nodes are distinct, the unique

node is simply incorporated. This methodology ensures that the final tree accurately

represents the diverse and complex calling patterns inherent in the large volume

of trace data. We implemented L-Tree using a distributed data-parallel processing

framework in Twitter. The framework can produce the results daily or weekly based

on requirements.
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3.3 Evaluation

In this section, we evaluate LatenSeer to answer the following questions.

• Can LatenSeer provide accurate end-to-end latency estimation results?

• How well is LatenSeer estimating the end-to-end latency with real-world use cases?

• How is LatenSeer compared with the state-of-the-art?

• How effectively can LatenSeer handle large-scale traces?

3.3.1 Experimental Setup

Prototype system. We implement LatenSeer5 in ≈ 3,000 lines of Python3 code and

test it with DeathStarBench microservice benchmark (DSB) [86] on Social Network

application, which consists of 31 unique microservices. We leverage DSB’s default

workload generator to produce client requests. Furthermore, we fulfill all the missing

function-level instrumentation in DSB.

We set up experiments on CloudLab [67] under two deployment topologies using

three different physical sites, as shown in Fig. 3.8. We deploy the benchmark on 6

machines at the Utah site, 6 machines at the Wisconsin site, and 1 machine at the

Clemson site. In both scenarios, we run the workload generator at the Clemson site

on a node type ”c6320” (Haswell 28-core with 256 GB RAM and 10 Gbps network).

Microservices in Utah and Wisconsin ran on node types ”xl170” (Broadwell 10-core

with 64 GB RAM and 25 Gbps network) and ”c220g5” (Skylake 20-core with 192

GB RAM and 10 Gbps network), respectively. RPC latencies within a single site are

< 1 ms, while latencies between Utah and Wisconsin are in the range 38–42 ms.

Methods. Both the traces and our measurements report the end-to-end request

processing latency at the API gateway. We call the latency distribution that LatenSeer

5LatenSeer is open-sourced at https://github.com/yazhuo/LatenSeer, and the Twitter
traces will be released upon legal approval.

https://github.com/yazhuo/LatenSeer
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Figure 3.8: Prototype experiment setup using three Cloudlab sites. The left shows the
single-site deployment where all microservices run in the Utah cluster; the right shows
multi-site deployment where some microservices run in the Wisconsin cluster.

outputs for a specific service change scenario the prediction. We term a measured

latency distribution for a given scenario ground truth and use it to quantify the

accuracy of the corresponding prediction. When we exercise LatenSeer to make a

prediction without perturbing the model latencies (typically to validate the model

itself), we call the output latency distribution the null prediction.

Except for the sensitivity experiment that varies the request mix, the workload

generator sends requests to three endpoints using the default read-dominated ratio of

1:3:6, with one compose-post request for every three calls to read-user-timeline

and six read-home-timeline requests. We use the same request rate of 500 RPS in

all cases.

Each experiment proceeds as follows. We first run our workload for 10 minutes in

the baseline configuration to collect the traces for building the model in LatenSeer.

Next, we inject an estimated latency delta (specifically, the average value from a ping

test) into the model at the appropriate microservices and invoked scenario.predict

to generate a latency prediction. We then run the workload again on the changed

deployment for 10 minutes in order to measure the ground truth latency distribution.

We compare prediction results with the ground truth. All traces are collected using

Jaeger at a 10% sampling rate.

Metrics. For a prediction latency CDF Fpred, and a ground truth latency CDF Ftrue,
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we report prediction accuracy using two metrics:

1. The D-statistic in the K-S (Kolmogorov-Smirnov) test, which is the difference

between two CDF curves at the point of maximum divergence. It is defined as

D = maxx |Fpred(x)− Ftrue(x)| ∈ [0, 1].

2. The maximum and average of the relative latency error at each percentile. It is

defined as E =
(
(F−1

pred(y)− F−1
true(y)

)
/F−1

true(y) ∈ R, where y ∈ [0, 1]. A negative value implies that the prediction is lower

than the ground truth; a positive value means that the prediction is higher latency

than the ground truth. We focus on the mean and max relative error, denoted as

Eavg and Emax.

The K-S statistic is a standard metric for comparing two CDFs, but because it

captures only the most extreme point of misprediction, it can be large even when the

two CDFs are mostly similar. In practice, it is also useful to know how well LatenSeer

predicted latency across the entire distribution relative to the absolute values of the

ground truth. Therefore we also report the relative error metric.

Traces. To evaluate scalability of LatenSeer in handling production-scale traces, we

use two production traces from Twitter and Alibaba. The Twitter traces consist of

up to 25,000 spans, with a depth spanning from 2 to 18 hops. The Alibaba traces

possess up to 6,625 spans with 1 to 14 hops.

For latency estimation experiments, we operate our prototype system and gather

traces using Jaeger [102] as part of the DSB deployment. The collected DSB trace

set encompasses a variable number of spans, fluctuating between 5 and 33, with the

maximum depth ranging from 2 to 6 RPC hops.

Baseline. We compare LatenSeer with WebPerf [105], the state-of-the-art latency

estimation work. We reimplement WebPerf’s model because it’s not open-sourced, and

tame WebPerf’s model to fit our scenarios. WebPerf is based on customized low-level
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Figure 3.9: LatenSeer compared with state-of-the-art.

instrumentation for the extraction of causal dependency graphs, which we find not

practical in today’s tracing framework usages in most production environments. We

resort to examining the DSB codebase to discern these dependencies and construct

the corresponding graph to meet WebPerf’s requirements.

3.3.2 Estimation Accuracy

Through code reading for DSB benchmark, we derive an true causal dependency graph.

This graph is then compared with the L-tree generated by LatenSeer. Our analysis

shows that LatenSeer accurately replicated the same dependency relationships present

in the true graph. Fig. 3.9a presents a section of the L-tree at its highest complexity,

which also aligns with the trace depicted in Fig. 2.1.

We then conduct a null prediction experiment to validate the soundness of our

model. In this setup, we inject a ”null” latency into the leaf nodes, triggering the

latency propagation procedure to traverse all the nodes in the tree. We expect that

the prediction aligns closely with the ground truth. As shown in Fig. 3.9b, LatenSeer

precisely calculates the end-to-end latency distribution, while WebPerf generates larger

errors with D = 15%, Emax = 8.8% and Eavg = −2.0%. The superior accuracy of

LatenSeer over WebPerf can be attributed to the assumptions made by each tool

regarding latency. WebPerf operates under the assumption that latencies on different



42

100 101 102 103
0.0

0.2

0.4

0.6

0.8

1.0

C
D
F

Groundtruth 
Prediction

End-to-End latency (ms)

(a) Alibaba

0 1000 2000 3000 4000 5000
End-to-End latency (ms)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Groundtruth 
Prediction

(b) Twitter

Figure 3.10: Null prediction on production traces.

components are independent of one another, while LatenSeer takes a more holistic

approach by profiling the latencies jointly for sibling nodes.

Since the ground truth of causal dependency graphs for the production traces is

not available, we limit our examination to whether the model accurately predicts the

latency distribution of the input traces through null prediction experiments on two

production traces. The results in Fig. 3.10 show that predictions align closely with

the ground truth for both Alibaba traces (Fig. 3.10a) and Twitter traces (Fig. 3.10b),

confirming that the internal service relationships are modeled faithfully.

3.3.3 Case Studies

We evaluate how well LatenSeer models end-to-end request latency in a microservices

environment using DSB. To examine the key properties, we focus on the two use cases:

service placement (UC1) and latency slack (UC2).

Service placement (UC1)

We study the accuracy of latency predictions under real, albeit controlled, conditions by

comparing the predicted and measured latency distribution following wide-area service

migration. In order to experimentally exercise as much of LatenSeer’s model as pos-

sible, we use three API endpoints: read-home-timeline, read-user-timeline,
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and compose-post, and select three microservices for migration: user-timeline-

service, user-service, and media-service.

• The read-home-timeline endpoint does not interact with any of the chosen

services, hence unaffected by their migration.

• The read-user-timeline endpoint only interacts with user-timeline-service.

• The compose-post endpoint interacts with all three services, and invokes them both

in parallel (user-service and media-service) and serially (user-service and

user-timeline-service).

In the following experiments, we explore how accurately LatenSeer predicts end-to-end

latency when selected microservices are migrated over the wide area network from one

CloudLab site to another. We set up the experiments as described in §3.3.1, generating

the model from the single-site deployment, measuring ground truth in the multi-site

deployment, and using the average ping time measurement of 38.7 ms between the

Wisconsin and Utah sites as the injected latency delta.

Migration that increases latency. Fig. 3.11 shows the prediction vs ground truth

CDFs for experiments with two different pairs of services, each graph showing the

top-level request latency distribution measured at the single-site (dotted line), the

ground truth measured with the multi-site deployment (solid line), the prediction

from WebPerf (dash-dot line), and the prediction from LatenSeer (dashed line). For

the left-hand graph, Fig. 3.11a, the user-service and media-service were moved

from Utah to the Wisconsin site. Only one endpoint, compose-post, should be

affected by this migration. This endpoint comprises 10% of the default workload

mix, and the two microservices have a parallel relationship within requests for that

endpoint.

Fig. 3.11b shows the prediction when user-timeline-service and user-service

were migrated. These microservices affect not only compose-post, with a serial rela-
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Figure 3.11: Prediction accuracy for migrating from local to remote.

tionship therein, but also impact read-user-timeline, which is called 30% of the

time. Note that in both cases, latency is extended by different amounts depending on

the number of cross-site calls introduced by the service migration.

LatenSeer shows highly accurate predictions for both scenarios, as summarized in

Table 3.1. Even though the K-S D statistic for LatenSeer for the right-hand graph

is almost 5%, the average relative error is extremely low at -0.11%. In comparison,

WebPerf shows much lower accuracy with 19% and -1.22% for D statistic and average

relative error, respectively. Note how the shape of the CDF changes when some

services are placed remotely: the jumps reflect the workload mix and how the three

request types are affected (or not) by the migration. Thus Fig. 3.11a has just one

jump at around the 90th percentile (because 10% of requests are compose-post),

while Fig. 3.11b shows two jumps for read-user-timeline and compose-post,

both of which touch the migrated services. The change in the shape of the latency

distribution highlights that one cannot simply estimate the latency impact of service

migration by offsetting the baseline distribution with a constant value and emphasizes

the importance of LatenSeer’s modeling techniques.

Migration that decreases latency. This experiment inverts the previous: we

build the model from traces collected using the multi-site deployment and predict

the single-site end-to-end latency distribution by injecting the negative delay value
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Figure 3.12: Prediction accuracy for migrating from remote to local.

Table 3.1: Results of service placement experiments.

Experiments Model D(%) Emax(%) Eavg(%)
Parallel services LatenSeer 1.31 2.30 -0.21
→ remote (Fig. 3.11a) WebPerf 18.60 27.00 9.30
Serial services LatenSeer 4.68 11.50 -0.11
→ remote (Fig. 3.11b) WebPerf 19.04 28.00 -1.20
Parallel services LatenSeer 1.45 1.10 0.22
→ local (Fig. 3.12a) WebPerf 10.50 10.70 0.60
Serial services LatenSeer 5.35 8.00 1.50
→ local (Fig. 3.12b) WebPerf 9.50 8.90 -0.80

(-38.7ms) to the target nodes. Fig. 3.12 shows the results; the left-side plot delineates

the effects on moving the parallel services (user-service and media-service),

while the right-side plot shows the results of moving serial services (user-service

and user-timeline-service). Once again, the prediction accuracy is very good,

with average relative errors for both experiments below 2% and D-statistic less than

5.35%. As a comparison, WebPerf shows errors of more than 9.5%.

Slack Analysis (UC2)

LatenSeer can be used to infer the latency budget of specific microservices: it traverses

the L-tree top-down, from the root node to all leaves, to compute the available

latency slack for services. Fig. 3.13a shows four services with latency slack under our

experimental workload: unique-id-service, user-service, and media-service



46

0.5 1.0 1.5 2.0 2.5
0.0

0.2

0.4

0.6

0.8

1.0 user_service 
media_service 
unique_id_service 
user_mention_service

C
D

F

Slack Latency (ms)

(a) Latency slack distributions output from
LatenSeer

Off-CP (groundtruth) 
Off-CP (prediction)

10 15 20 25 30

95%

50%

95%

50%

95%

50% Changing-CP (groundtruth) 
Changing-CP (prediction)

On-CP (groundtruth)
On-CP (prediction)

35
End-to-End Latency (ms)

C
D

F

(b) Latency prediction from perturbation
guided by latency slack

Figure 3.13: Latency slack analysis.

have similar latency slack distributions — three of the services exhibited at least 2.3

ms slack, while the latency slack for user-mention-service is much smaller. Other

services, not shown, had zero latency slack, meaning they were on the latency-critical

path, and any increase in latency of these services would affect end-to-end latency.

We evaluate the accuracy of the latency slack identified by LatenSeer at individual

services, using the slack to systematically perturb the latency distributions of services

on and off the latency-critical path. For these experiments, we use the single-site

deployment configuration and perturb latency in a controlled fashion by using the

tc utility to induce delay at the network level of the Docker container of the target

service. The same delay value is injected into the target service in LatenSeer’s model,

which then updates the latency slack at each node in a top-down fashion.

We evaluate the accuracy of slack estimates in each of the three ways that injected

latency can perturb the L-tree: (i) when the injected latency is off the latency-

critical path; (ii) when the injected latency extends or reduces the duration of the

latency-critical path; and (iii) when the injected latency changes the latency-critical

path itself.

Off-CP: For the first prediction experiment, we inject 2 ms of latency – well within

the slack time – at user-service that is off the latency-critical path. Fig. 3.13b

“Off CP” indeed confirms this, with the prediction almost unchanged from ground
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Table 3.2: Results of sensitivity analysis on the injected latency for the experiment shown
in Fig. 3.11a.

Diff from ping time(%) D(%) Emax(%) Eavg(%)

-10 9.5 2.3 -0.96
-5 7.8 2.3 -0.58
-2 3.5 2.3 -0.36
-1 1.8 2.3 -0.29
+1 2.5 2.3 -0.01
+2 4.6 2.3 -0.06
+5 8.0 4.4 0.16
+10 9.6 8.6 5.40

truth (D = 4.26%, Emax = −1.0%, Eavg = −0.65%).

On-CP: We then inject 5 ms of latency to user-timeline service that is inferred

to be on the latency-critical path (zero latency slack). The new dominating latency

distribution bubbles up through the levels of the L-tree to the root node. Fig. 3.13b

“On CP” shows the results with D = 2.01%, Emax = 0.7%, Eavg = −0.11%.

Changing-CP: For the third injection experiment, we change the critical path by

again adding latency to user-service. In this case, however, the injected latency

of 5 ms exceeds the available slack, causing the change in end-to-end latency. We

show the results in Fig. 3.13b “Changing CP”. Note that this experiment injects

the same magnitude of latency change as the previous one (albeit into different

microservices), but the resulting distribution is markedly different, and moreover,

LatenSeer successfully predicts this difference (D = 0.02%, Emax = 0.3%, Eavg =

0.1%).

3.3.4 Sensitivity Analysis

We conduct a sensitivity analysis on injected latency and on changes to the workload

request mix, showing how the metrics degrade as the model diverges further from

conditions experienced in the prediction environment.

Injected latency. In the service migration experiments, we use the average ping



48

End-to-End 

single-site (50:50)

-to-End Latency (ms)95%
50%

50%
95%

50%

95%

C
D
F multi-site (90:10) 

predict (90:10)

End-to-End Latency (ms)

predict (20:80) 
multi-site (20:80) 

200150100500

Figure 3.14: Latency prediction. Sensitivity to different workload distributions.

time between two sites to approximate the additional latency introduced by the new

placement. This is obviously a low-fidelity value – single packet timings at the network

layer are not the same as timings of RPC over TCP, across a WAN link, with varying

payload size. However, we also claim that this is a realistic starting point in an

industry setting, offering a simple-to-obtain, ”good enough” value for many real-world

scenarios that require only an approximate answer to a what-if question.

To better characterize the impact of such inaccuracy, we repeat the first service

placement experiment with various latency injections as fractions of the ping value.

Table 3.2 shows the results: the K-S statistic, D, in particular, reports increasingly

large divergences between prediction and ground truth, although overall relative error

does not vary much from the baseline we use in the experiments reported above.

Workload mix. LatenSeer predicts latency using the historical data. In the real

world, it is not unusual for the mix of request types to change over time, and so we look

here at how varying the relative request proportions affects the quality of the prediction.

In this experiment, we first collect traces in the single-site scenario, which comprises

a 50:50 mixture of request types read-home-timeline and read-user-timeline.

Then, we migrate user-timeline-service to the multi-site scenario and collect
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ground truth using 90:10 and 20:80 mixtures.

Fig. 3.14 shows the model’s accurate predictions up to approximately the 90th

percentile, but results degrade at the tail. This decline is attributed to a higher cache

hit ratio during skewed workloads, a detail not covered by LatenSeer’s modeling, hence

the anticipated inaccuracy.

Threshold for succession time distribution. As discussed in §3.2.2, we choose the

median value from the succession time CDF as our classification for all experiments.

Here we repeat the first service placement experiment, adjusting the classification

threshold between 1% and 99% to extract causal dependencies. Our results indicate

same values for D, Emax, and Eavg across all classification thresholds. This consistency

can be attributed to the relatively low level of noise present within the benchmark

environment. However, it’s important to recognize that this threshold may not

be universally applicable. It is recommended that the threshold be evaluated and

potentially adjusted to suit the unique conditions of different production environments.

Varying trace sampling rate. As tracing systems only capture a subset of requests,

we evaluate the accuracy of prediction with different sampling rates over 4 sets of

migration experiments. We randomly sample the traces that are used to build the
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model in the previous experiments as sample traces, then we use the sample traces

to build the model and conduct prediction. Unless otherwise stated, we repeat this

experiment 20 times for each sampling rate.

The box plots in Fig. 3.15 show the error metrics (D, Emax, and Eavg) between

prediction from sample traces and ground truth for different sample rates. Overall,

the D statistic is small, even for low sampling rates. Sampling with R = 0.001 results

in E2E latency prediction with D statistic of between 0.05 and 0.14. Emax and Eavg

show more over-prediction when the sampling rate is too low.

3.3.5 LatenSeer Performance

Building the LatenSeer model, or L-tree, is dependent on the internal structure of

the aggregated trace tree. In controlled experiments, we have found that constructing

the LatenSeer from 30,000 DSB traces took approximately 11 minutes. The number

of spans in our DSB trace set ranged from 5-33, and the depth extended from 2-6

RPC hops. However, this timing can significantly vary in real-world settings, owing

to the complexity of the traces involved.

For instance, the number of spans in our DSB trace set ranged from 5-33, and the

depth extended from 2-6 RPC hops. This complexity is dwarfed when we consider

Alibaba and Twitter traces. Alibaba traces can contain up to 6,625 spans with depths

between 1-14 hops. In contrast, Twitter traces can encompass up to 25,000 spans

and depths ranging from 2-18 hops. Given these complexities, the time to build the

L-tree in real-world scenarios can be considerably longer. For 71,055 Alibaba traces,

the model-building process requires approximately 66 minutes. Similarly, for 2,618

traces from Twitter, the construction process takes about an hour.
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3.4 Discussion

End-to-end latency estimation is important to engineering planning, performance

analysis and optimization, however, the traditional approaches are deficient. To

explain, we examine the main strategies deployed in practice.

Canarying releases. The canary release strategy, widely utilized in production,

facilitates risk reduction by incrementally introducing software updates to a limited

user group before broader deployment [207]. With scarce engineering resources,

operators wish to conduct latency estimation before expensive engineering efforts are

spent on the project. Such a feasibility review should precede any live traffic analysis

or A/B experimentation—canarying—on the resulting component [199] to minimize

cost and customer impact of potentially poor design decisions.

Service dependency graphs. A common technique for understanding the causal

dependencies between services is to chart service dependencies, a method widely

adopted in production [108, 128, 129, 178, 200]. Large-scale applications requests

are represented as call paths through service dependency graphs, which capture

communication-based dependencies between microservice instances. The call paths

show how requests flow among microservices by following parent-child relationship

chains. As such, service dependency graphs serve an important tools in discerning the

complex interplay of services and optimizing application performance.

Many distributed tracing visualization tools [102, 108, 178, 244] aggregate traces

to construct service dependency graphs at various detail levels. Yet, none, to our

knowledge, have integrated latency distribution into the service dependency graphs.

Introducing latency estimation to a microservice-based dependency graph faces hurdles.

Alibaba [128] shows that the latency of a service is stable among call graphs of similar

topologies but varies significantly across different topologies, and the latency of a

service is stable when the call rate varies. Some works [129, 200] use dependency
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graphs to guide auto-scaling and service migration. Tprof [98] aggregated traces in a

fine-grained manner of sub-span analysis for performance debugging.

While a service dependency graph outlines relationships between services, it fails

to detail the micro-level dynamics of execution order, including the nature of sibling

relationships, whether parallel or sequential. For instance, the service dependency

graph in Fig. 2.1 illustrates service compose-post must await the responses from all

seven child services to complete its task. Yet, if we aim to comprehend how changes

in the media service affect compose-post, the service dependency graph falls short.

This limitation impedes accurate latency estimation, posing a risk of relying on models

grounded in potentially incorrect assumptions about the interrelationships of child

services.

Latency-critical paths. In microservice dependency graphs, the latency-critical

path represents the slowest sequence of dependent tasks [217]. While its analysis

facilitates the identification of optimization prospects and bottlenecks in distributed

systems [31, 43, 53, 68, 80, 108, 161, 235], it can inadvertently obscure potential issues

in off-path services. Hence, incorporating slack time analysis for off-path services

is advocated, aiding in refined capacity planning and mitigating risks arising from

shared-resource contention [68].

CRISP [235] uses critical path analysis on Uber traces to help developers understand

and optimize important services. However, services off the latency-critical path are

easily trimmed from the results. For example, service media in Fig. 2.1 are not shown

in the final results of CRISP. A singular focus on the latency-critical paths paints an

incomplete and misleading picture for end-to-end latency estimation, emphasizing the

need for a more holistic approach that incorporates the dynamic roles of all services

in the system.
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3.5 Related Work

Gleaning causal dependencies in existing large-scale systems, such as building causal

models of latency, has been explored in the past decade. Researchers from Google, for

example, built theoretical frameworks to understand the latency profile of arbitrary

black box services [114, 153], which, like more recent work over microservices [126], is

focused around anomaly detection. More recent white-box approaches to performance

modeling have also been proposed [20, 163].

Facebook’s Mystery machine [53] shares the motivation of constructing a causal

model using pre-existing data, predating modern tracing infrastructure, that works

by initially hypothesizing all possible pairwise relationships and gradually rejecting

the causality of each dependency through counterexamples. Regrettably, the ensuing

predictions are brittle owing to incomplete methods for producing causal diagrams [107]

and cannot handle various issues in tracing data, such as clock skew and missing

span. CRISP [235] shares a similar motivation (G1) but lacks a causal treatise of

latency estimation. Similarly, Orion [134] also uses latency propagation technique to

calculate end-to-end latency. However, it focuses on known service DAGs and fails to

address the causality in service dependencies. The study most closely aligned with our

objectives is WebPerf [105], which crafts techniques surrounding service dependencies

and latency propagation. However, WebPerf is specifically tailored to Microsoft’s

Azure environment and relies on Azure-specific hints to work. WebPerf employs

domain-specific binary instrumentation, presenting a solution that isn’t universally

adaptable. In contrast, LatenSeer advances this approach by adopting a data-driven

strategy, relying on trace data that are commonly available in today’s production

systems.

Latency prediction is a well-trodden field with substantial research in areas such as

service selection [76, 229], service composition [21, 22, 24, 49, 233], and business process

modeling [61, 171]. Notably, with the rising popularity of serverless workflows in many
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Table 3.3: LatenSeer compared to state-of-the-art systems.

LatenSeer ORION CRISP WebPerf MysteryMachine
G1 ✓ ✓ ✓
G2 ✓ ✓ ✓ ✓
G3 ✓ ✓ ✓

applications, there has been a surge in research efforts aimed at latency prediction

for these workflows. These efforts predominantly focus on resource optimization and

reducing communication latency in serverless workflows [74, 75, 135]. Distinctively,

LatenSeer, not constrained by predefined workflows, offers a flexible solution to latency

predictions in microservice-based applications.
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3.6 Conclusion

We present LatenSeer, a data-driven modeling framework for estimating end-to-end

latency distributions in microservice-based web applications. LatenSeer can accurately

predict interventional end-to-end latency by leveraging distributed tracing data. We

evaluated LatenSeer in two realistic scenarios: service placement and latency slack

analysis. Our evaluation shows that LatenSeer achieves high precision accuracy with an

estimation error less than 5.35% (D-statistic), outperforming the start-of-the-art that

has more than 9.5% estimation error. Moreover, our results on real-world production

traces show that LatenSeer is practical and scalable enough to support complexities

in production environments.



Chapter 4

SIEVE: an Efficient Turn-Key

Eviction Algorithm for Web Caches

4.1 Introduction

Web caches, such as Content Delivery Networks (CDNs) and key-values caches, are

widely deployed in today’s digital landscape to reduce user request latency [28, 39, 40,

56, 147, 164, 179, 228], network bandwidth [97, 99, 182, 223], repeated computation [47,

212, 225, 226]. As a critical component of modern infrastructure, these caches often

have a large footprint. For example, Netflix used 18,000 servers for caching over 14 PB

of application data in 2021 [140]; while Twitter reportedly had 100s of clusters using

100s TB of DRAM and 100,000s of CPU cores for in-memory caching in 2020 [224].

At the heart of a cache is the eviction algorithm, which plays a crucial role in

managing limited cache space. Such algorithms are efficient when they can retain more

valuable objects in the cache to achieve a lower miss ratio—the fraction of requested

objects that must be fetched from the backend. The quest for high efficiency has

spurred a long repertoire of clever algorithms, but most, if not all, trade off simplicity

in exchange for efficiency gains. For example, ARC [139], SLRU [99], 2Q [106],

56
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Figure 4.1: Sieve is simple and efficient. The code snippet shows how FIFO-Reinsertion
and Sieve find eviction candidates. Minor code changes convert FIFO-Reinsertion to Sieve,
unleashing lower miss ratios than state-of-the-art algorithms.

and MQ [243] manage multiple least-recently-used (LRU) queues to achieve better

efficiency. LHD [33], CACHEUS [170], LRB [182], and GL-Cache [219] use machine

learning techniques that further increase system and lookup complexity. Furthermore,

many of these algorithms require explicit or implicit parameter tuning to achieve good

efficiency on a target workload.

The conventional wisdom among systems operators is that simple is beautiful :

simplicity is a key appealing feature for an algorithm to be deployed in production

since it commonly correlates with effectiveness, maintainability, scalability, and low

overhead. To illustrate, note that most caching systems or libraries in use today, such

as ATS [23], Varnish [198], Nginx [146], Redis [8], groupcache [44], use only FIFO and

LRU policies.

Inspired by recent observations that cache items slated for one-time use often remain

too long in LRU or FIFO-style caches [221], we discovered Sieve, a simple algorithm

that achieves high efficiency across a wide range of web cache workloads. Fig. 4.1

shows Sieve’s simplicty compared to a decades-old algorithm, FIFO-Reinsertion.

Instead of moving the to-be-evicted object that has been accessed to the head of

queue, we retain it in its original location. We implemented Sieve in five production
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cache libraries, which required fewer than 20 lines of change on average, underscoring

the ease of real-world deployment.

Despite a simple design, Sieve can quickly remove unpopular objects from the

cache, achieving comparatively high efficiency compared to the state-of-the-art algo-

rithms. By experimentally evaluating Sieve on 1559 traces from five public and two

proprietary datasets, we show that Sieve achieves similar or higher efficiency than 9

state-of-the-art algorithms across traces. Compared to ARC [139], Sieve reduces miss

ratio by up to 63.2% with a mean of 1.5% 1. As a comparison, ARC reduces LRU’s

miss ratio by up to 33.7% with a mean of 6.7%. Moreover, compared to the best of all

algorithms, Sieve has lower miss ratio on over 45% of the 1559 traces. In comparison,

the runner-up algorithm only outperforms other algorithms on 15% of the traces.

Sieve’s design eliminates the need for locking during cache hits, resulting in a boost

in multi-threaded throughput. Our prototype implementation in Cachelib [63] demon-

strates that Sieve achieves twice the throughput of an optimized LRU implementation

when operating with 16 threads.

Through empirical evidence and analysis, we illustrate that Sieve’s efficiency stems

from sifting out unpopular objects over time. Sieve transcends a single standalone

algorithm — it can also be embedded within other cache policies to design more

advanced algorithms. We demonstrate the idea by replacing the LRU components in

ARC, TwoQ, and LeCaR with Sieve. The Sieve-supported algorithms significantly

outperform the original LRU-based algorithms. For example, ARC-Sieve reduces

ARC’s miss ratio by up to 62.5% with a mean of 3.7% across the 1559 traces.

Our work makes the following contributions.

• We present the design for Sieve: an easy, fast, and surprisingly efficient cache

eviction algorithm for web caches.

• We demonstrate Sieve’s simplicity by implementing it in five production cache

1Due to a large number of traces, the mean miss ratio looks small.
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libraries by changing less than 20 lines of code on average.

• Using 1559 traces from 7 datasets, we show that Sieve outperforms all state-of-

the-art eviction algorithms on more than 45% of the traces.

• We illustrate Sieve’s scalability using our Cachelib-based implementation, which

achieves 17% and 125% higher throughput than optimized LRU at 1 and 16

threads.

• We show how Sieve, as a turn-key cache primitive, opens new opportunities for

designing advanced eviction algorithms, e.g., replacing the LRU in ARC, TwoQ,

and LeCaR with Sieve.
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4.2 Design and Implementation

4.2.1 Sieve Design

In this section, we introduce Sieve, a cache eviction algorithm that achieves both

simplicity and efficiency.

Data structure. Sieve requires only one FIFO queue and one pointer called “hand”.

The queue maintains the insertion order between objects. Each object in the queue

uses one bit to track the visited/non-visited status. The hand points to the next

eviction candidate in the cache and moves from the tail to the head. Note that, unlike

existing algorithms, e.g., LRU, FIFO, and CLOCK, in which the eviction candidate is

always the tail object, the eviction candidate in Sieve is an object somewhere in the

queue.

Sieve operations. A cache hit in Sieve changes the visited bit of the accessed

object to 1. For a popular object whose visited bit is already 1, Sieve does not need

to perform any operation. During a cache miss, Sieve examines the object pointed

by the hand. If it has been visited, the visited bit is reset, and the hand moves to

the next position (the retained object stays in the original position of the queue). It

continues this process until it encounters an object with the visited bit being 0, and

it evicts the object. After the eviction, the hand points to the next position (the

previous object in the queue). While an evicted object is in the middle of the queue

most of the time, a new object is always inserted into the head of the queue. In other

words, the new objects and the retained objects are not mixed together.

We detail the algorithm in Alg. 2, and we show a running example at https:

//sievecache.com. Line 1 checks whether there is a hit, and if so, then line 2 sets

the visited bit to one. In the case of a cache miss (Line 3), Lines 5-12 identify the

object to be evicted.

https://sievecache.com
https://sievecache.com
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FIFO-Reinsertion
EvictReinsert

Evict
SIEVE

FIFO-Reinsertion Snapshot

SIEVE Snapshot

"survived" obj newly inserted objHand: identify victim 

Figure 4.2: An illustration of Sieve. Note that FIFO-Reinsertion and CLOCK are different
implementations of the same algorithm. We use FIFO-Reinsertion in the illustration but
will use CLOCK in the rest of the text because it is more commonly used and is shorter.

Algorithm 2 Sieve

Require: The request x, doubly-linked queue T , cache size C, hand p
1: if x is in T then
2: x.visited ← 1
3: else
4: if |T | = C then
5: o ← p
6: if o is NULL then
7: o ← tail of T
8: while o.visited = 1 do
9: o.visited ← 0
10: o ← o.prev
11: if o is NULL then
12: o ← tail of T
13: p ← o.prev
14: Discard o in T
15: Insert x in the head of T .
16: x.visited ← 0

At first glance, Sieve is similar to CLOCK/Second Chance/FIFO-Reinsertion 2.

Both maintain a single queue in which each object is associated with a visited bit to

track its access status. Visited objects are retained (also called ”survived”) during

an eviction. However, the hand in Sieve moves from the tail to the head over time,

whereas the hand in FIFO-Reinsertion stays at the tail. The key difference is where a

retained object is kept. Sieve keeps it in the old position, while FIFO-Reinsertion

inserts it at the head, together with new objects. We illustrated this in Fig. 4.2.

2Note that Second Chance, CLOCK, and FIFO-Reinsertion are different implementations of the
same eviction algorithm.
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Lazy promotion and quick demotion. Despite a simple design, Sieve effectively

incorporates both lazy promotion and quick demotion. As described in §2.2.3, an

object is only promoted at the eviction time in lazy promotion. Sieve operates in a

similar manner. However, rather than promoting the object to the head of the queue,

Sieve keeps the object at its original location. The ”survived” objects are generally

more popular than the evicted ones, thus, they are likely to be accessed again in the

future. By gathering the ”survived” objects, the hand in Sieve can quickly move from

the tail to the area near the head, where most objects are newly inserted. These newly

inserted objects are quickly examined by the hand of Sieve after they are admitted

into the cache, thus achieving quick demotion. This eviction mechanism makes Sieve

achieve both lazy promotion and quick demotion without adding too much overhead.

The key ingredient of Sieve is the moving hand, which functions like an adaptive

filter that removes unpopular objects from the cache. This mechanism enables Sieve

to strike a balance between finding new popular objects and keeping old popular

objects. We discuss more in §4.4.

4.2.2 Implementation

Simulation. We built a cache simulator for comparing different eviction algorithms,

and we have cross-compared it with libCacheSim [218]. Besides Sieve, our simula-

tor implements ARC [139], LIRS [104], CACHEUS [170], LeCaR [202], TwoQ [106],

LHD [33], Hyperbolic [42], FIFO-Reinsertion/CLOCK [59], B-LRU (Bloom Filter

LRU), LRU, LFU, and FIFO. For all state-of-the-art algorithms, we used the configu-

rations from the original papers.

Prototype. Because of Sieve’s simplicity, it can be implemented on top of a

FIFO, LRU, or CLOCK cache in just a few lines by adding, initializing, and tracking

the “hand” pointer. The object pointed to by the hand is either evicted or retained,

depending on whether it has been accessed.
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We implemented Sieve caching in five different open-source cache libraries: Cache-

lib [38], groupcache [44], mnemonist [6], lru-dict [3], and lru-rs [4]. These represent the

most popular cache libraries of five different programming languages: C++, Golang,

JavaScript, Python, and Rust. All five of these production cache libraries implement

LRU as the eviction algorithm of choice. Aside from mnemonist, which uses arrays,

they all use doubly-linked-list-based implementations of LRU. Adapting these LRU

implementations to use Sieve was a low effort, as mentioned earlier.

The code and data used in this work are open-sourced at https://github.

com/yazhuo/NSDI24-SIEVE. This includes the simulator and the prototypes.

https://github.com/yazhuo/NSDI24-SIEVE
https://github.com/yazhuo/NSDI24-SIEVE
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4.3 Evaluation

In this section, we evaluate Sieve to answer the following questions.

• Does Sieve have higher efficiency than state-of-the-art cache eviction algorithms?

• Can Sieve improve a cache’s throughput and scalability?

• Is Sieve simpler than other algorithms?

4.3.1 Experimental Setup

Workloads. Our experiments use open-source traces from Twitter [225], Meta [9],

Wikimedia [208], TencentPhoto [239, 240], and two proprietary CDN datasets. We

list the dataset information in Table 4.1. It consists of 1559 traces, 247,017 million

requests to 14,852 million objects. Notably, our research is centered around web traces.

We replayed the traces in the simulator and the prototypes as a closed system with

instant on-demand fill.

Metrics. Miss ratio serves as a key performance indicator when evaluating the

efficiency of a cache system. However, when analyzing different traces (even within

the same dataset), the miss ratios can vary significantly, making direct comparisons

and visualizations infeasible, as shown in Fig. 4.3. Therefore, we calculate the miss

ratio reduction relative to a baseline method (FIFO in this work):
mrFIFO−mralgo

mrFIFO
where

mr stands for miss ratio. If an algorithm’s miss ratio is higher than FIFO, we use

mrFIFO−mralgo
mralgo

. This metric has a range between -1 and 1.

We measure throughput in millions of operations per second (Mops) to quantify

a cache’s performance. To evaluate scalability, we vary the number of trace replay

threads from 1 to 16 and measure the throughput.

Testbed. We conducted all evaluations on Cloudlab [66]. We implemented Sieve

and the state-of-the-art eviction algorithms in libCacheSim [218]. The simulations
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Table 4.1: Datasets used in this work. CDN 1 and 2 are proprietary, and all others are
publicly available.

trace
collections

approx
time

# traces
cache
type

# request
(million)

# object
(million)

CDN 1 2021 1273 object 37,460 2,652
CDN 2 2018 219 object 3,728 298
Tencent Photo [239] 2018 2 object 5,650 1,038
Wiki CDN [208] 2019 3 object 2,863 56
Twitter KV [225] 2020 54 KV 195,441 10,650
Meta KV [9] 2022 5 KV 1,644 82
Meta CDN [9] 2023 3 object 231 76

were executed on various types of nodes from the Clemson or Utah site, with the

specific node types being dependent on their availability at the time of evaluation. Our

prototype testbed used the c6420 node from the Clemson site, which has a dual-socket

Intel Gold 6142 at 2.6 GHz with 384 GB DDR4 DRAM. We turned off turbo boost and

pinned threads to CPU cores in one NUMA node in our evaluations. To demonstrate

the accuracy our simulation, we compared the results of simulator and prototype

on selected traces from various sources3. Despite observed differences in miss ratios,

the general performance trends between the simulator and prototype were consistent.

Notably, Sieve consistently outperformed LRU in both setups, and its performance was

similar to TinyLFU, especially with larger cache sizes. This consistency underscores

the simulator’s credibility in accurately mirroring the prototype’s behavior.

4.3.2 Efficiency Results

In this section, we compare the efficiency of different eviction algorithms. Because

many caches today use slab-based space management, in which evictions happen on

objects of similar sizes, we do not consider object size in this section. The cache sizes

are determined as a percentage of the number of objects in a trace. We evaluate eight

3Since running the prototype can be quite expensive, we opted to test only a random subset of
the traces, rather than all of them.
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cache, 54 traces
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(d) CDN1 workloads, small
cache, 1273 traces
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(e) CDN2 workloads, small
cache, 219 traces
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Figure 4.3: The box shows the miss ratio reduction from FIFO over all traces in the
dataset. The box shows P25 and P75, the whiskers show P10 and P90, and the triangle
shows the mean. The large cache uses 10% of the trace footprint, and the small cache uses
0.1% of the trace footprint. Sieve achieves similar or better miss ratio reduction compared
to state-of-the-art algorithms.

cache sizes using 1559 traces from the 7 datasets and present two representative sizes

at 0.1% and 10% of the trace footprint (the number of unique objects in the trace).

Three large datasets CDN1, CDN2 and Twitter. Fig. 4.3 shows the miss

ratio reduction (from FIFO) of different algorithms across traces. The whiskers on

the boxplots are defined using p10 and p90, allowing us to disregard extreme data

and concentrate on the typical cases. At the large cache size, Sieve demonstrates

the most significant reductions across nearly all percentiles. For example, Sieve

reduces FIFO’s miss ratio by more than 42% on 10% of the traces (top whisker) with

a mean of 21% on the CDN1 dataset using the large cache size (Fig. 4.3a). As a

comparison, all other algorithms have smaller reductions on this dataset. For example,

CLOCK/FIFO-Reinsertion, which is conceptually similar to Sieve, can only reduce

FIFO’s miss ratio by 15% on average. Compared to advanced algorithms, e.g., ARC,

Sieve reduces ARC miss ratio by up to 63.2% with a mean of 1.5%. We remark that
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Figure 4.4: Miss ratio reduction on Meta (KV + CDN), Wiki CDN, and Tencent Photo
CDN datasets. The different opacity of the same color indicates multiple traces from the
dataset.

a 1.5% mean miss ratio reduction on the huge number of traces is significant. For

example, ARC only reduces LRU’s miss ratio by 6.3% on average (not shown). A

similar observation can be made on the CDN2 dataset. Although LHD is the best

algorithm on the Twitter dataset, Sieve scores second and outperforms most other

state-of-the-art algorithms.

When the cache is very small, TwoQ and LHD sometimes outperform Sieve. This

is because TwoQ and LHD can quickly remove newly-inserted low-value objects similar

to Sieve. The primary reason for Sieve’s relatively poor performance is that new

objects cannot demonstrate their popularity before being evicted when the cache size

is very small. A similar problem also happens with ARC and LIRS. ARC’s adaptive

algorithm sometimes shrinks the recency queue to very small and yields a high miss

ratio. LIRS, which uses a 1% queue for new objects, suffers the most when the cache

size is small, as we see its miss ratio on some traces higher than FIFO. In contrast,

TwoQ does not suffer from the small cache sizes, because it reserves a fixed 25% of

the cache space for new objects, preventing overly aggressive demotion. However, we

remark that the production miss ratios reported in previous works [27, 99, 225, 226]

are close to the miss ratios we observe at the large cache size.
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Figure 4.5: Best-performing algorithms on each dataset. Table 4.1 shows the number of
traces per dataset.

The secret behind Sieve’s efficiency is the ability to quickly remove newly-inserted

unpopular objects (quick demotion), the ability to sift out old unpopular objects, and

the balance between new and old objects. We discuss more in §4.4.

Four small datasets: Meta KV, Meta CDN, Wiki, and TencentPhoto.

Because each dataset contains fewer than ten traces, we use scatter plots to compare

the algorithms. Fig. 4.4 demonstrates that Sieve outperforms all other algorithms on

all four datasets at the large cache size. When the cache size is small, the observation

is similar to that made in Fig. 4.3. Sieve is the best algorithm on the Wiki dataset.

TwoQ and LHD are the best on Meta and TencentPhoto datasets. Although not the

best, Sieve remains highly competitive.

Best-performing algorithm per dataset. We have demonstrated that Sieve

provides larger miss ratio reductions across traces than state-of-the-art algorithms. For

a more quantitative comparison, Fig. 4.5 shows the fraction of traces each algorithm

performs the best.

With a large cache size, Sieve outperforms all other algorithms on the Tencent

Photo, Wiki, and Meta KV datasets. On the CDN1 and CDN2 datasets, Sieve is the

best algorithm on 48% and 38% of the 1273 and 219 traces. On the Twitter dataset,

although Sieve is the best on only 30% of the traces, it is important to note that no

other algorithms are the best on more than 18% of the traces. When using the small
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Figure 4.6: Throughput scaling with CPU cores on two KV-cache workloads.

cache size, Sieve, TwoQ is the best algorithm winning on the two Meta datasets. On

the other datasets, Sieve and LHD have similar shares being the best-performing

algorithms. The reason for the observation is similar to that previously explained.

4.3.3 Throughput Performance

Besides efficiency, throughput is the other important metric for caching systems.

Although we have implemented Sieve in five different libraries, we focus on Cachelib’s

results. Because all other libraries implement strict LRU and do not consider object

sizes, evaluations yield the same miss ratio as our simulation. Moreover, strict LRU is

not scalable, as we show next.

Fig. 4.6 shows how throughput grows with the number of trace replay threads

using two production traces from Meta and Twitter. To better emulate real-world

deployments in which the working set size (dataset size) grows with the hardware specs

(#cores and DRAM sizes), we scale the cache size and working set size together with

the number of threads. To scale the working set size, each thread plays the same trace

with the object id transformed into a new space. For example, the benchmark sends

4× more requests to 4× larger cache size at 4 threads compared to the single-thread

experiment. We set the cache size to be 4× nthread GB for both traces, which gives

miss ratios of 7% (Meta) and 2% (Twitter). We remark that the miss ratio is close to
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Table 4.2: Lines of code requires modification and required engineering time to add Sieve
to a production cache library.

Cache library Language Lines
groupcache [44] Golang 21

mnemonist [6] Javascript 12
lru-rs [4] Rust 16

lru-dict [3] Python + C 21

previous reports [27, 226].

The LRU and TwoQ in Cachelib use extensive optimizations to improve the

scalability. For example, objects that were promoted to the head of the queue in

the last 60 seconds are not promoted again, which reduces lock contention without

compromising the miss ratio. Cachelib further adds a lock combining technique to

elide expensive coherence and synchronization operations to boost throughput [64].

As a result of the optimizations, both LRU and TwoQ show impressive scalability

results compared to the unoptimized LRU: the throughput is 6× higher at 16 threads

than using a single thread on the Twitter trace. As a comparison, unoptimized LRU’s

throughput plateaus at 4 threads.

Compared to these LRU-based algorithms, Sieve does not require “promotion” at

each cache hit. Therefore, it is faster and more scalable. At a single thread, Sieve is

16% (17%) faster than the optimized LRU (TwoQ) and on both traces. At 16 threads,

Sieve shows more than 2× higher throughput than the optimized LRU and TwoQ

on the Meta trace.

4.3.4 Simplicity

Prototype implementations. Sieve not only achieves better efficiency, higher

throughput, and better scalability, but it is also very simple. We chose the most

popular cache libraries/systems from five different languages: C++, Go, JavaScript,

Python, and Rust, and replaced the LRU with Sieve.
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Table 4.3: Lines of code (excluding comments and empty lines) and per-object metadata
size required to implement each algorithm in our simulator. We assume that frequency
counter and timestamps use 4 bytes and pointers use 8 bytes.

Algorithm cache hit eviction insertion metadata size
FIFO 1 4 3 16B
LRU 5 4 3 16B
ARC 64 108 20 17B
LIRS 96 120 64 17B
LHD 192 81 64 13B

LeCaR 72 76 20 40B
CACHEUS 168 140 150 54B

TwoQ 28 16 8 17B
Hyberbolic 4 20 4 16B

CLOCK 4 9 3 17B
Sieve 4 9 3 17B

Although different libraries/systems have different implementations of LRU, e.g.,

most use doubly-linked-list, and some use arrays, we find that implementing Sieve is

very easy. Table 4.2 shows the number of lines (not including the tests) needed to

replace LRU — all implementations require no more than 21 lines of code changes. Due

to many locks and optimizations in Cachelib are no longer needed for Sieve, quantifying

the code modifications is impossible. Therefore, the Cachelib implementation is not

included in Table 2.

Advanced algorithms in simulator. Because most of the complex algorithms we

evaluated in §4.3.2 are not implemented in production systems. Therefore, we compare

the lines of code needed to implement cache hit, insert, and evict in our simulator.

Although we implemented a linked list and hash table in our simulator in C, we do

not include the lines related to list and hash table operations, i.e., appending to the

list head or inserting to the hash table requires one line.

Table 4.3 shows that FIFO requires the fewest number of lines to implement. On

top of FIFO, implementing LRU adds a few lines to promote an object upon cache

hits. CLOCK and Sieve require close to 10 lines to implement the eviction function

because both need to find the first object that has not been visited. However, we
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remark that Sieve is simpler than LRU and CLOCK because Sieve does not require

moving objects to the head of the queue in either hit or miss (evict). Besides these,

all other algorithms require one to two orders more lines of code to implement the

three functions.

Per-object metadata. In addition to the implementation complexity, we also

quantified the per-object metadata needed to implement each algorithm. FIFO

does not require any metadata when implemented using a ring buffer. However,

such an implementation does not support overwrite or delete. So common FIFO

implementation also uses a doubly-linked list with 16 bytes of per-object metadata

similar to LRU. CLOCK and Sieve are similar, both requiring 1-bit to track object

access status. When implemented using a doubly linked list, they use 17 bytes

per-object metadata. Compared to Sieve, advanced algorithms often require more

per-object metadata. Many key-value cache workloads have objects as small as 10s of

bytes [138, 225], and a large metadata wastes the precious cache space.

ZERO parameter. Besides being easy to implement and having less metadata, Sieve

also has no parameters. Except for FIFO, LRU, CLOCK, and Hyperbolic, all other

algorithms have explicit or implicit parameters, e.g., the sizes of queues in LIRS,

the learning rate in LeCaR and CACHEUS, the decay rate and age granularity in

LHD. Note that although ARC has no explicit parameters, its adaptive algorithm

uses implicit parameters in deciding when and how much space to move between the

queues. As a comparison, Sieve has no parameter and requires no tuning.
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4.4 Distilling SIEVE’s Effectiveness

Our empirical evaluation shows that Sieve is simultaneously simple, fast, scalable, and

efficient. In a well-trodden field like cache eviction, Sieve’s competitive performance

was a genuine surprise to us as well. We next report our analysis that seeks to

understand the secrets behind its efficiency.

4.4.1 Visualizing the Sifting Process

The workhorse of Sieve is the “hand” that functions as a sieve: it sifts through the

cache to filter out unpopular objects and retain the popular ones. We illustrate this

process in Fig. 4.7a, where each column (queue) represents a snapshot of the cached

objects over time from left to right. As the hand moves from the tail (the oldest

object) to the head (the newest object), objects that have not been visited are evicted

– the same sweeping mechanism that underlies CLOCK [50, 59]. For example, after

the first round of sifting, objects at least as popular as A remain in the cache while

others are evicted. The newly admitted objects are placed at the head of the queue

— much like the CLOCK policy, but a departure from CLOCK, which does in-place

replacements to emulate LRU. During the subsequent rounds of sifting, if objects

that survived previous rounds remain popular, they will stay in the cache. In such

a case, since most old objects are not evicted, the eviction hand quickly moves past

the old popular objects to the queue positions close to the head. This allows newly

inserted objects to be quickly assessed and evicted, putting greater eviction pressure

on unpopular items (such as “one-hit wonders”) than LRU and its variations [139].

As previous work has shown [33, 99, 220], quick demotion is crucial for achieving high

cache efficiency.

Fig. 4.7b and Fig. 4.7c show the cumulative miss ratio over time of different

algorithms on two representative production traces. After the cache is warmed up,
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Figure 4.7: Left: illustration of the sifting process. Right: Miss ratio over time for two
traces. The gaps between Sieve’s miss ratio and others enlarge over time.

the miss ratio gaps between Sieve and other algorithms widen over time, supporting

the interpretation that Sieve indeed sifts out unpopular objects and retains popular

ones. A similar observation can be seen in Fig. 4.10a.

4.4.2 Analyzing the Sifting Process

We now analyze the popularity retention mechanism in Sieve. To clarify the exposition,

suppose the Sieve cache can fit C equally sized objects. Since Sieve always inserts

new objects at the head, and objects that are retained remain in their original

positions within the queue, the algorithm implicitly partitions the cache between

new and old objects. This partition is dynamic, allowing Sieve to strike a balance

between exploration (finding new popular objects) and exploitation (enjoying hits on

old popular objects).

Sieve performs sifting by moving the hand from the tail to the head, evicting

unpopular objects along the way, which we call one round of sifting. We use r to

denote the number of rounds. We first enumerate the queue positions p from the

tail (p = 0) to the head (p = C − 1). We then further denote that an object at

position p in round r is examined (during eviction) or inserted at time T r
p . Note that
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T effectively defines a logical timer for the examined objects: whenever an object is

examined, T increases by 1, regardless of whether the examined object is evicted or

retained. In addition, T changes once each round for an old object (retained from

previous rounds).

For an old object x at position p, we define the “inter-examination time” Ie(p
r) =

T r
p − T r−1

p′ where p′ was the position of x in round r − 1. Clearly, p′ ≥ p. For a

new object inserted in the current round, the inter-examination time is defined as

the time between its examination and insertion. We further define an old object

x’s “inter-arrival time” Ia(x
r) as the time, measured again in the number of objects

examined, between the first request to the x in round r and the last request to x in

round r − 1. For a new object, the inter-arrival time is the time between its insertion

and the second request. If an old object is not requested in the last round or a new

object does not have a second request, its inter-arrival time is infinite.

In round r, consider two consecutive retained objects x1 and x2 at position

p1 and p2 = p1 + 1. The inter-examination times are Ie(p
r
1) = T r

p1
− T r−1

p′1
and

Ie(p
r
2) = T r

p2
− T r−1

p′2
, respectively. The transition yields two invariants:

T r
p2
− T r

p1
= 1

T r−1
p′2
− T r−1

p′1
≥ 1

The first equation follows from x1 and x2 being consecutively retained objects; the

second inequality expresses that other evictions may have taken place between x1

and x2 in the previous round. Together, these imply that Ie(p
r
1) ≥ Ie(p

r
2). The result

generalizes further: for any two retained old objects in the queue, the object closer to

the head has a smaller inter-examination time.

Moreover, if an object is retained, its inter-arrival time must be no greater than

its inter-examination time. Therefore, for any retained object x at position px, its
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inter-arrival time Ia(xr) must be smaller than the tail object’s inter-examination time:

Ia(x
r) ≤ Ie(p

r
x) ≤ Ie(p

r
0) (4.1)

Using the commonly assumed independent reference model [51, 82, 100, 101] with

a Poisson arrival, we can expect any retained object to be more popular than some

dynamic threshold set by the tail object’s inter-examination time Ie(p
r
0). Since evicting

an object keeps the hand pointer at its original position (relative to the tail), the more

objects are evicted during a round, the longer the inter-examination time. As a result,

Sieve effectively adapts the popularity threshold so that more objects are retained in

the next round.

Following our sifting process metaphor, the mesh size in Sieve is determined by

the tail object’s inter-examination time Ie(p
r
0), which is dynamically adjusted based

on object popularity change. If too few objects are retained in one round (mesh size

too small), then we will have an increased tail inter-examination time Ie(p
r
0) (a larger

mesh size) in the next round.

4.4.3 Deeper Study with Synthetic Workloads

Production trace workloads are often too complex and dynamic to analyze. One

consistent finding from past workload characterization work, however, is that object

popularity in web cache workloads invariably follows a heavy-tailed power-law (gen-

eralized Zipfian) distribution [46, 225]. Therefore, we employed synthetic power-law

workloads for our study. They replicate these real-world patterns in a controlled

manner, allowing for more focused and repeatable experimentation. Using these, we

further scrutinize SIEVE’s effectiveness.

Miss ratio over size. Fig. 4.8a displays the miss ratio of LRU, LFU, ARC, and

Sieve at different cache sizes. Notably, LFU, ARC, and Sieve all exhibit lower miss
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Figure 4.8: Miss ratio and ideal object ratio on a Zipfian dataset (α = 1.0).

ratios than LRU, demonstrating their efficiency. Despite being considered optimal

for synthetic power-law workloads, LFU performs similarly to ARC and is visibly

worse than Sieve. This is because objects with medium popularity, such as objects

with ranks around the cache size C, are only requested once before their eviction.

LFU cannot distinguish the true popularity of these objects and misses out on an

opportunity for better performance. As a comparison, both ARC and Sieve can

quickly remove new and potentially unpopular objects, which allows cached objects

to enjoy more time in the cache to demonstrate their popularity. Between the two

algorithms, Sieve further extends the tenure of these objects in the cache because

when the hand sweeps through the newly inserted objects, the objects closer to the

head must have strictly shorter inter-arrival times (expected to be more popular) to

survive.

Ideal object ratio over size. To capture how different algorithms manage popular

objects, we define a metric called “ideal object ratio”. Under the assumption of a

static and known popularity distribution, the optimal caching policy retains the most

popular content within the cache at all times. Given a cache size C and a workload

following a power-law distribution, the ideal objects are the C most frequent objects

in the workload, denoted by H. The ideal ratio of objects in the cache at time t is

calculated by It = |H∩At|
C

where At denotes the cache contents at time t.
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Figure 4.9: Left two: miss ratio and ideal object ratio on Zipfian workloads with different
α. Right: hand position in the cache over time in Zipfian workloads.

Fig. 4.8b shows the ideal object ratio at different cache sizes. LRU evicts objects

based on recency, which only weakly correlates with popularity. In this scenario, LRU

stores the least number of popular objects. LFU stores slightly more “ideal objects”

than ARC. Sieve, however, successfully filters out unpopular objects from the cache.

Varying the popularity skew. Fig. 4.8 shows a distribution with Zipfian skewness

α = 1. We further studied how different concentration of popularity affects Sieve’s

effectiveness. Due to space restrictions, we focus on results with large cache sizes for

the remainder of this subsection. Results using the small cache size are either similar

or do not reveal interesting patterns.

Fig. 4.9a and Fig. 4.9b the impact of varying skew on miss and ideal object ratios.

As skew increases, making popular objects more prominent, it becomes easier to

identify and cache the ideal objects, increasing the ideal object ratio and reducing

the miss ratio for all tested algorithms. Among ARC, LFU, and Sieve, we observe

that Sieve always shows a higher ideal ratio with a lower miss ratio across skewness,

indicating the efficiency of Sieve is not limited to very skewed workloads.

Fig. 4.9c illustrates the hand position in the Sieve cache over time, advancing

towards the head with each retained object and pausing during evictions. Therefore,

the more objects are retained, the faster the movement. We observe that the hand

moves more slowly in the first round than in the later rounds because that is when

many unpopular objects are evicted. In subsequent rounds, the hand lingers at

positions close to the head for most of the time because Sieve keeps a new object



79

0.0 0.5 1.0
Logical Time

0.15

0.20

0.25

0.30

M
iss

 R
at

io

ARC
SIEVE

LRU
LFU

(a) Interval miss ratio

0 0.5 1
Logical Time

0.0

0.2

0.4

0.6

0.8

Id
ea

l O
bj

ec
ts

 R
at

io
 

SIEVE
LFU
ARC
LRU

(b) Ideal object ratio over time

Figure 4.10: Interval miss ratio and ideal object ratio over time on a workload constructed
by connecting two different Zipfian workloads (α = 1).

at position p only if it is more popular (shorter inter-arrival time) than the object at

position p− 1. In other words, Sieve performs quick demotion [210].

In more skewed workloads, the hand moves quickly due to early arrival and higher

request volumes for popular objects, allowing Sieve to cache most ideal objects by the

end of the first round. Consequently, the hand rapidly transitions from tail to head

with fewer evictions and spends less time near the head, as new objects are more likely

to be retained, hastening its progress. Nevertheless, the time of each round varies

depending on the frequency of encountering potentially popular objects, highlighting

Sieve’s adaptability to workload shifts. When new popular objects appear, the hand

accelerates, replacing existing cached objects with the newcomers by giving less time

to set their visited bit.

Sieve is adaptive. To visualize Sieve’s adaptivity via the sifting process, we created

a new workload by joining two Zipfian (α = 1.0) workloads that request different

populations of objects. Fig. 4.10 shows the interval miss ratio (per 100,000 requests)

over time on this conjoined workload. The changeover happens at the 50% midway

time mark. We observe that the interval miss ratio of LFU skyrockets to nearly 100%

(beyond figure bounds) since new objects cannot replace the old objects. Relative to

LRU and ARC, Sieve’s miss ratio spike is larger because it takes time for the hand to
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move back to the tail before it can evict old objects. However, Sieve’s spike is invisible

when the cache size is small (not shown). With respect to the interval miss ratio

spike, we observe the ideal object ratio of all algorithms (the curves overlap) dropping

to 0 when the workload changes at the midway point. Whereas LFU never recovers

from the drop, the ideal miss ratios in all other algorithms quickly recover to large

proportions. Finally, the figures corroborate our interpretation of the sifting process:

Sieve’s miss ratio drops over time, while the fraction of ideal objects increases over

time.
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4.5 SIEVE as a Turn-key Cache Primitive

4.5.1 Eviction Algorithm Designs

Beyond being a cache eviction algorithm, Sieve can serve as a cache primitive for

designing more advanced eviction policies. To study the range of such policies, we

categorize existing cache eviction algorithm designs into four main approaches. (1) We

can design simple and easy-to-understand eviction algorithms, such as FIFO queues,

LRU queues, LFU queues, and Random eviction. We call these simple algorithms

cache primitives. Sieve falls under this category. (2) We can improve the cache

primitives. For example, FIFO-Reinsertion is designed by adding reinsertion to FIFO;

LRU-K [150] is designed by changing the recency metric in LRU. (3) We can compose

multiple cache primitives with objects moved between them. For example, ARC,

SLRU, and MQ use multiple LRU queues. (4) We can run multiple cache primitives

and craft a decision-maker to select eviction candidates suggested by the primitives.

For example, LeCaR [202] uses reinforcement learning to choose between the eviction

candidates from LRU and LFU; HALP [183] uses machine learning (MLP) to choose

one object from the eight objects at the LRU tail.

Having an efficient cache primitive not only provides an effective and simple eviction

algorithm but also enables other approaches to design more efficient algorithms.

4.5.2 Efficient Cache Primitives

The ideal cache primitive is simultaneously (1) simple, (2) efficient, and (3) fast — in

terms of high throughput. For example, FIFO and LRU meet these requirements and

are frequently used to construct more advanced algorithms. However, they are less

efficient than complex algorithms.

Recent work shows that lazy promotion and quick demotion of cache objects are

key to effective cache eviction processes [220]. Unlike existing cache primitives, which
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Figure 4.11: Average number of instructions per request when running LRU, FIFO, and
Sieve caches. The top number denotes the miss ratio.

do not support both properties, Sieve is the first cache primitive that supports both

lazy promotion and quick demotion. This serves as the foundation for Sieve’s high

efficiency and high performance.

While we have shown that Sieve is simple, efficient, and fast in §4.3, to further

understand Sieve as a cache primitive, we compare the number of instructions needed

to run FIFO, LRU, and Sieve caches. We remark that the number of instructions

may not necessarily correlate with latency or throughput but rather a rough metric of

CPU resource usage. We used perf stat to measure the number of instructions for

serving power-law workloads (100 million requests, 1 million objects) in our simulator.

We then deduct the simulator overhead by measuring a no-op cache, which performs

nothing on cache hits and misses.

Fig. 4.11 shows that Sieve generally executes fewer instructions per request than

FIFO and LRU, a difference accentuated in skewed workloads and larger cache sizes.

Compared to LRU, Sieve requires fewer instructions since Sieve needs only to check

and possibly update a Boolean field on cache hits, which is much simpler than moving

an object to the head of the queue. Besides LRU, Sieve also requires fewer instructions

than FIFO because of the difference in miss ratios. Because Sieve has a lower miss

ratio than FIFO, fewer objects need to be inserted due to cache misses, leading to

fewer instructions per request on average. The only exception is when Sieve and
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Figure 4.12: Impact of replacing LRU with Sieve in advanced algorithms (a,b). The
potential of FIFO, LRU, and Sieve when endowed with foresight (c).

FIFO have similar miss ratios, in which case, FIFO executes fewer instructions than

Sieve. Overall, Sieve requires up to 40% and 24% fewer instructions than LRU and

FIFO, respectively.

4.5.3 Turn-key Cache Eviction with Sieve

As a cache primitive, Sieve can facilitates the design of more advanced eviction

algorithms. To understand the benefits of using a better cache primitive, we replaced

the LRU in LeCaR, TwoQ, and ARC with Sieve. Note that for ARC, we only replace

the LRU for frequent objects.

We evaluate these algorithms on the 1559 traces4 and show the miss ratio re-

duction(from FIFO) in Fig. 4.12a and Fig. 4.12b. Compared to Sieve, LeCaR has

much lower efficiency; however, when replacing the LRU in LeCaR with Sieve, it

significantly reduces LeCaR’s miss ratio by 4.5% on average. TwoQ and ARC achieve

efficiency close to Sieve; however, when replacing the LRU with Sieve, the efficiency

of both algorithms gets boosted. For example, ARC-Sieve achieves the best efficiency

among all compared algorithms at both small and large cache sizes. Specifically,

it reduces ARC’s miss ratio by 3.7% on average and up to 62.5% on the large size

(recall that ARC reduces LRU’s miss ratio by 6.3% on average). Compared to Sieve,

ARC-Sieve reduces miss ratio by 2.4% on average and up to 40.6%.

4We do not show each dataset separately to save space
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To understand the potential in suggesting eviction candidates, we evaluated the

efficiency of FIFO, LRU, and Sieve, granting them access to future request data.

Each eviction candidate is either evicted or reinserted, depending on whether the

object will be requested soon. We assume that an object will be requested soon if

the logical time (number of requests) till the object’s next access is no more than C
mr

,

where C is the cache size and mr is the miss ratio. This mimics the case that we

have a perfect decision-maker choosing between the eviction candidates suggested by

multiple simple eviction algorithms. Fig. 4.12c shows that when supplied with this

additional information, Sieve achieves the lowest miss ratio on 97% and 94% of the

1559 traces at the large and small cache size, respectively.

These results highlight the potential of Sieve as a powerful cache primitive for

designing advanced cache eviction algorithms. Leveraging lazy promotion and quick

demotion, Sieve not only performs well on its own but also bolsters the performance

of more complex algorithms.
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4.6 Discussion

4.6.1 Byte Miss Ratio

To gauge SIEVE’s efficiency in reducing network bandwidth usage in CDNs, we

analyzed its byte miss ratio by considering object sizes. We chose the cache size at

10% and 0.1% of the trace footprint in bytes. Fig. 4.13a and Fig. 4.13b show that Sieve

presents larger byte miss ratio reductions at ALL percentiles than state-of-the-art

algorithms at both cache sizes, showcasing its high efficiency in CDN caches.

We further compared Sieve with LRB [182], the state-of-the-art machine-learning-

based cache eviction algorithm optimized for byte miss ratio. Due to LRB’s long run

time, we only evaluated LRB on the two open-source Wiki traces provided by the

authors. Fig. 4.14a and Fig. 4.14b show that LRB performs better at small cache

sizes (1% and 2%), while Sieve excels at larger cache sizes. We conjecture that at a

small cache size, the ideal objects to cache are popular objects with many requests,

which LRB can more easily identify because they have more features (most of LRB’s

features are about the time between accesses to an object). When the cache size

is large, most objects in the cache have few requests. Without enough features, a

learned model can provide little benefits [220, 227]. In summary, compared to complex

machine-learning-based algorithms, Sieve still has competitive efficiency.

4.6.2 Sieve is Not Scan-resistant

Besides web cache workloads, we evaluated Sieve on some block cache workloads.

However, we find that Sieve sometimes shows a miss ratio higher than LRU. The

primary reason for this discrepancy is that SIEVE is not scan-resistant. In block

cache workloads, which frequently feature scans, popular objects often intermingle

with objects from scans. Consequently, both types of objects are rapidly evicted after

insertion. Since Sieve does not use a ghost cache, it cannot recognize the popular
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Figure 4.13: Byte miss ratio across all CDN traces.
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Figure 4.14: Byte miss ratios at different cache sizes on two Wiki CDN traces used in
LRB evaluation.

objects when they are requested again. This problem is less severe on the large cache

size, but when the cache size is small, we observe that having a ghost is critical to

be scan-resistant. We conjecture that not being scan-resistant is probably the reason

why Sieve remained undiscovered over the decades of caching research, which has

been mostly focused on page and block accesses.

4.6.3 TTL-friendliness

Time-to-live (TTL) is a common feature in web caching [225, 226]. It specifies the

duration during which an object can be used. After the TTL has elapsed, the object

expires and can no longer be served to the user, even if it may still be cached. Most
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existing eviction algorithms today do not consider object expiration and require a

separate procedure, e.g., scanning the cache, to remove expired objects. Similar

to FIFO, Sieve maintains objects in insertion order, which allows objects in TTL-

partitioned caches, e.g., Segcache [226], to be sorted by expiration time. This provides

a convenient method for discovering and removing expired objects.
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4.7 Conclusion

We design Sieve, a simple, efficient, fast, and scalable cache eviction algorithm for web

caches that leverages “lazy promotion” and “quick demotio”. The high efficiency in

SIEVE comes from gradually sifting out the unpopular objects. SIEVE is the first and

the simplest cache primitive that supports both lazy promotion and quick demotion.

This serves as the foundation for SIEVE’s high efficiency and high performance.

Evaluated on 1559 traces from 7 datasets, we show that SIEVE outperforms complex

state-of-the-art algorithms on over 45% of the traces. We implemented SIEVE in five

open-source production libraries using less than 20 lines on average.



Chapter 5

Theodon: A Modular Framework

for CDN Optimization

In this chapter, we introduce Theodon, a framework designed to efficiently identify

CDN configurations that optimize both performance and cost. Theodon employs

modular components to simulate complex CDN topologies, enabling efficient discovery

of configurations that achieve an effective balance between performance and cost.

Additionally, this chapter explores the application of Theodon in enhancing real

CDN systems like Cloudflare and WikimediaCDN, demonstrating its practical utility

in optimizing network performance.

5.1 Introduction

A Content Delivery Network (CDN) is a large, globally distributed system comprising

hundreds of thousands of servers. CDNs are crucial for a variety of internet services,

from streaming and social media to extensive web applications, playing a vital role

in delivering a smooth and efficient user experience. For example, CDN caching

handles 70% of web requests for companies like Meta [99]. To minimize latency,

CDNs strategically position edge servers in multiple locations, bringing content closer

89
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to end-users. This can significantly reduce latency, for instance, from 150 milliseconds

to 30 milliseconds [99, 137, 148, 241].

However, the complexity of CDN operations presents substantial challenges. De-

spite their extensive deployment, finding the optimal configuration that balances

objectives like latency, throughput, and cost remains elusive. This is often due to

reliance on empirical methods, short-term evaluations, or anecdotal evidence when

deciding on crucial operational parameters, such as cache sizes, data center locations,

and CDN tiering. These methods fall short in providing a systematic, long-term

perspective on factors impacting CDN performance.

To address this, we introduce Theodon, a framework that models CDN archi-

tectures through modular simulations. It aims to learn near-optimal configurations

that balance performance and cost objectives. Theodon views a CDN as a compos-

able system, constructed from predefined components like Points of Presence (PoPs),

DRAMs, SSDs, load balancers, eviction algorithms, and etc. Each component features

adjustable parameters; for instance, a PoP can be configured by its size, machine

count, and geographic location. A configuration, therefore, is the amalgamation of all

component parameters, defining a specific CDN system setup. Theodon employs

multiple objective Bayesian Optimization to explore this parameter space, seeking

near-optimal configurations that strike an optimal balance between performance and

cost.

In our study, we simulate the real-world WikimediaCDN and Cloudflare networks,

evaluating Theodon using traces from WikimediaCDN. Our results demonstrate that

Theodon is effective in identifying configurations that enhance performance by up

to 10% and 23% compared to the default settings of WikimediaCDN and Cloudflare,

respectively. Additionally, we assess Theodon’s ability to balance the trade-off

between performance and cost. Notably, while maintaining a byte miss ratio similar

to Cloudflare’s default setting, Theodon can efficiently pinpoint a configuration that
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significantly reduces costs, achieving approximately 2.4 times lower expenses.
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5.2 Motivation

Content Delivery Networks (CDNs) are instrumental in managing a significant portion

of global internet traffic. These vast networks, composed of hundreds of PoPs world-

wide, are essential yet complex systems. Despite their importance, CDN optimization

often relies on heuristic methods developed over many years. This reliance poses

challenges due to the nonlinear and unpredictable nature of CDNs, essentially large-

scale cache systems. A systematic approach to evaluate the trade-offs in topology,

parameter settings, and resource allocation is currently lacking.

5.2.1 CDN Examples.

This subsection delves into the intricacies of Content Delivery Networks (CDNs), using

two examples - the Wikimedia CDN and Cloudflare. By examining these real-world

applications, we aim to illustrate the diverse strategies and configurations deployed in

CDNs, highlighting their implications for performance and cost-efficiency.

The Wikimedia Foundation, a top global web entity, operates its own CDN to

handle a vast majority of its web traffic. The foundation’s CDN architecture primarily

relies on two main data centers and four cache-only Points of Presence (PoPs) [169].

A recent PoP, set up in 2022, consists of 16 dedicated servers, with equal distribution

for processing text and image web requests. These servers are each equipped with

384GB of RAM and 1.6TB of NVMe SSD storage [2, 11]. The request flow within a

PoP is depicted in Fig. 5.1: upon receiving a request, the load balancer uses consistent

hashing on the client’s IP to select a cache server. If there’s a cache hit in the DRAM

cache, the response is sent directly back to the user. In the case of a cache miss, the

DRAM cache uses consistent hashing on the request URL to redirect the request to

the SSD cache within the same PoP, and if necessary, to the next PoP or the origin

server.
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Figure 5.1: A general topology of a CDN PoP.

Cloudflare represents another exemplary CDN, known for handling millions of cache

hits per second globally. Similar to Wikimedia, Cloudflare’s CDN topology involves

multiple servers with DRAMs and SSDs, utilizing consistent hashing for efficient

request routing. However, Cloudflare distinguishes itself with its deployment scale and

its innovative approach to caching. Cloudflare’s infrastructure is also known for its

resilience and security features, making it a preferred choice for many organizations

seeking robust content delivery solutions. However, this aspect falls beyond the scope

of our current study.

Both CDNs employ a similar infrastructure of servers with DRAMs and SSDs,

along with consistent hashing for request routing. However, they differ in their caching

approaches. Wikimedia CDN uses an LRU (Least Recently Used) algorithm for its

in-memory cache and FIFO (First In, First Out) for on-disk cache, whereas Cloudflare

applies LRU for both in-memory and SSD caches. Furthermore, Wikimedia CDN

prioritizes keeping popular objects in DRAM, contrasting with Cloudflare’s strategy

of placing less popular objects in DRAM to minimize disk writes and extend SSD

lifespans. These differences underscore the versatility in CDN configurations and

the importance of tailoring strategies to specific operational requirements and traffic

patterns.
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5.2.2 Challenges

Complex configuration space. As discussed in §2.3, CDN is a complicated system,

influenced by numerous factors. Central to these is hardware configuration, which

lays the groundwork for the CDN’s operational capacity. Equally crucial are the

request routing strategies, determining the efficacy and speed of content delivery

to end-users. Tiering, involving the structuring of the CDN for optimized resource

allocation and response times, is another key aspect. The capacity planning at

various Points of Presence (PoPs) also plays a significant role, encompassing decisions

about server numbers and the distribution of DRAM and SSD resources to manage

diverse loads and data types. Additionally, data movement strategies are critical,

covering both the eviction algorithms for data storage management and approaches

for handling frequently demanded hot objects. Lastly, the overall network conditions,

such as bandwidth capacity, are vital components that can significantly influence CDN

performance. The interaction of these factors underscores the complexity of managing

and optimizing CDN systems effectively.

Each of the category has massive of parameters to tune. In this work, our focus is

primarily on the analysis at the PoP level. We do not delve into the aspects of the

placement of different PoPs or the intricacies of network configurations. Table 5.1

shows a detailed overview of the parameters we’re examining.

Performance-cost trade-off. While configurations with larger capacity and the

fastest storage generally provide better performance, optimizing for running cost

is much more difficult. Fig. 5.2 illustrates this dilemma, showcasing the trade-off

between byte miss ratio and cost. This is demonstrated through a simulation of about

30,000 different configurations run on a Cloudflare-like topology, under a consistent

workload (further details of the simulation will be discussed in section §5.3.1). Unless

otherwise specified, we refer to cost as the normalized cost of configured DRAMs

and SSDs within a PoP. An interesting observation from our study is the emergence
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Figure 5.2: Trade-off curve and sub-optimal configurations for tuning CDNs.

of an optimal Pareto curve delineating the performance-cost trade-off. Beyond this

curve, improvements in byte miss ratio or cost reductions invariably compromise the

other metric. Given the diverse objectives of system operators regarding performance

and cost, pinpointing the ideal configuration that satisfies specific requirements is

challenging.
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5.3 Design

We introduce Theodon, a data-driven framework that leverages modular simulation

and Bayesian Optimization to build performance models for CDNs. Theodon

identifies best configurations to provide high performance while minimizing cost.

Theodon addresses the challenges outlined in §5.2.2 by applying the following

approaches:

1. Modular architecture: Theodon conceptualizes the CDN as a series of

interlinked components, including Tier, PoP, DRAM, SSD, various eviction

algorithms, and etc. This modular setup facilitates the assembly of diverse CDN

topologies, simulating real-world CDNs as detailed in §5.3.1.

2. Multi-objective Bayesian Optimization: Employing qNEHVI [60], a novel

multi-objective bayesian optimization approach, Theodon effectively identifies

the optimal balance between performance and cost, as described in §5.3.2.

5.3.1 Modular Simulation

Theodon’s architecture is built around a set of interlinked components, each rep-

resenting a fundamental element of CDN infrastructure. This design allows for the

assembly of diverse CDN topologies, offering flexibility and precision in simulating

different operational scenarios.

Components

Theodon’s structure decomposes the complexity of CDNs into manageable com-

ponents, each representing fundamental element of CDN functionality, as detailed

in Table 5.1. The components identified for modular simulation within Theodon

have been synthesized from an extensive analysis of several leading commercial CDNs,
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Table 5.1: Theodon simulator’s components and parameters.

Component Parameters Description

Tier
number of tiers Represents different levels of caching

hierarchy in the CDN.capacity per tier

PoP
number of PoPs

Geographical locations where servers
are placed for content delivery.

capacity per PoP
number of servers per PoP

Server
number of DRAM/SSD/HDD Backbone of the CDN, where content is

stored and served.size of DRAM/SSD/HDD

Eviction Algorithm

LRU Determines how cached content is
replaced, impact cache hit rates and
efficiency, especially the offload to
origin.

FIFO
CLOCK
SIEVE

Load Balancer
Random Determines network traffic across

serversURL Hash

Dataflow Controller
storage rules for hot objects Manages content storage based on

popularityhit requires for promotion

encompassing MetaPhoto CDN [99], TencentPhoto CDN [241], YouTube CDN [184],

Akamai [133, 148], Cloudflare [13], and Wikimedia CDN [169].

• Tier: The tier structure reflects the layered hierarchy seen in these CDNs,

where each tier can consist of PoPs. Commonly, a cache miss at a lower tier

triggers a retrieval from an upper tier, involving a more distant PoP. While this

tiered system reduces the frequency of requests reverting to the origin server

for identical content—thus enhancing content delivery efficiency—it also entails

higher operational costs for the CDN provider.

• PoP: Within each tier, there can be several PoPs. These are strategically placed

data centers that facilitate content delivery, essential for ensuring content is

served to end-users with minimal delay.

• Server: Each PoP houses a collection of servers, which are the backbone of

a CDN. These servers are equipped with a varied number of DRAM and SSD

units to store and serve content.

• DRAM/SSD: Nested within servers, these storage components are critical for

data access speed and volume. Each server may contain a varying number of
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DRAM and SSD units.

• Eviction algorithm: This is an adaptable component associated with both

DRAM and SSD storage within servers. It dictates the protocol for content

replacement, significantly impacting cache efficiency and CDN performance.

• Load balancer: Operating as the interconnector within the CDN, the load

balancer is the mechanism that routes traffic among servers or between different

PoPs, crucial for maintaining optimal load distribution and network performance.

• Dataflow Controller: This component oversees the strategic movement of

hot objects – frequently requested content – between DRAM and SSD storage

mediums, ensuring that popular content is stored and served efficiently according

to user demand.

The modularity of the simulator provides flexibility in constructing tailored CDN

configurations that accurately simulate real-world setups.

Interface

Theodon exposes the components configurations with a configuration file, which can

be used to specify the setup and the behavior of the simulated CDN environment. We

describe these configurations and how they map to Theodon’s simulator components.

System-wide configurations: The system_wide configurations establishes

the fundamental environment for the simulation. For example, Theodon simulator

enables user to run simulations in parallel (using the parallel_jobs parameter),

optimizing runtime efficiency.

Workload configurations: Parameters such as max_iter and time_unit de-

fines the duration and granularity of input traces. Additional settings like warmup_

epoch, epoch_type, and epoch_unit provide dynamic and realistic workload mod-

eling.
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CDN cache configurations: These configurations can be classified into two

categories:

1. hierarchical CDN structure: The configuration of tiers (tier) and Points of Pres-

ence (pops) includes detailed settings for load balancers (e.g., tier_lb, pop_

lb), serialization (tier_serializer, pop_serializer), and data movers

(data_mover with an enabled switch).

2. Server configurations: Detailed settings for L1 and L2 servers, including the

number of servers (value under l1_servers, l2_servers), storage media,

capacity, and cache management strategies (e.g., eviction_types offering

choices like FIFO, SIEVE, CLOCK, LRU) provide extensive control over server

behavior and performance.

Origin server configurations: The origin_config section defines the charac-

teristics of the origin server, such as its name and the simulated delay (delay set to

100 milliseconds) in retrieving content.

5.3.2 Searching Engine

This section delves into Theodon’s second core module: the searching engine. It’s

designed to find near-optimal configurations balancing performance and cost in CDN

environments.

Problem Formulation

Our focus is on a static CDN topology with a flexible configuration that encompasses

variables such as the number of caches, cache size, and eviction algorithms, among

others. Our objective is to leverage advanced optimization techniques to identify the

most efficient configuration that meets our goals while adhering to specified constraints.

Our goal is to optimize a list of M objective functions (f (1)(x), ..., f (M)(x)) over a
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bounded search space x ⊂ χ, where χ is the set of possible configuration spaces for a

given CDN topology.

Solution with Multi-Objective Bayesian Optimization

Multi-Objective Bayesian Optimization (MOBO) [37, 111] is a framework to solve

optimization problem when multiple conflicting objectives must be balanced. This

method, unlike traditional single-objective approaches, provides a spectrum of Pareto-

optimal solutions. In multi-objective optimization, our goal shifts from finding a single

solution to identifying a Pareto set. This set allows for informed decisions, effectively

balancing varying objectives. MOBO’s implementation in Theodon is particularly

adept at navigating the complex interplay between performance and cost.

Approaches within MOBO

In multi-objective bayesian optimization, methods can broadly be categoried into

two main types based on their approach to handling multiple objectives: pareto-

based methods and scalarization-based methods [92]. Pareto-based strategies focus

on uncovering a range of non-dominated solutions, embodying trade-offs between

objectives. Scalarization-based methods, conversely, simplify the multi-objective

problem into a single-objective format using scalarization functions. We explored

qEHVI and NParEGO, , representatives of these respective categories. Our evaluation

demonstrates that qEHVI has higher effectiveness than NParEGO in the context of

CDN.

Design Considerations and Decisions:

To leverage MOBO to find a good CDN configuration, we need to make several design

decisions based on system constraints and requirements.
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• Starting points: we randomly sample a few points (e.g., five) from the sample

space using a quasi-random sequence.

• Encoding configurations: We encode all parameters from Table 5.1 into x⃗ to

represent a CDN configuration. These parameters fall into two types: numerical

and categorical. For categorical parameters, like eviction algorithms and load

balancing strategies, we employ one-hot encoding. In this method, each category

is represented by a binary vector. This approach enables the Gaussian Process

(GP) to treat these inputs as continuous variables while still maintaining their

distinct categorical characteristics.

• Stopping conditions: We define the stopping condition as follows: the search

will stop once either the expected performance target is achieved and at least N

(e.g. N=10) configurations have been observed. If neither performance target

is met, the search process will be stopped after evaluating M (e.g. M=25)

configurations.
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Figure 5.3: Architecture of Theodon’s implementation.

5.4 Implementation

In this section, we discuss the implementation details of Theodon as shown in Fig. 5.3.

It has four modules.

1. Controller: The controller orchestrates the entire CDN configuration selection

process. To use Theodon, users supply a representative workload, the objective (e.g.

minimizing byte miss ratio or cost), and the constraints (e.g. cost budget, preferred

CDN topology parameter ranges, etc.). Based on these inputs, the controller obtains

a list of candidate configurations and passes it to the MOBO engine. At the same

time, controller triggers the modular simulator to construct the CDN that matches the

user’s requirements. Controller also monitor the current status and decides whether to

finish the searching according to the stopping condition. The controller is implemented

in Python.

2. Modular Simulator: The modular simulator in our framework constructs a

CDN based on provided parameters and gathers performance statistics. For consis-

tent and reliable results, Theodon adopts Lingua Franca [127], a reactor-oriented

coordination language. This choice ensures deterministic concurrency, crucial for

guaranteeing that simulation outcomes are reproducible, particularly in intricate and

concurrent scenarios. We have implemented Theodon simulator in ≈17KLOC in

Lingua Franca for core implementations and ≈1KLOC in YMAL for configuring

parameters. Moreover, we integrate MQSim [194] for SSD simulation.

3. MOBO Engine: MOBO Engine is built on top of BoTorch [29] which is

a modern programming framework for Bayesian optimization. We coordinate the
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BoTorch framework with Theodon simulator in ≈1KLOC in Python.

4. Perf Analyzer: In Perf Analyzer, implemented in ≈3KLOC in Python, we

collect and process performance statistics. This module is designed to analyze these

stats and generate insightful plots and figures, aiding in the thorough examination

and understanding of performance data.
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5.5 Evaluation

In this study, our focus is on a single Point of Presence (PoP). We first study

WikimediaCDN and Cloudflare, revealing that their byte miss ratios can be improved

by 10% and 23%, respectively, compared to their default configurations. Then, we

evaluate effectiveness of Theodon in identifying near-optimal configurations. This

evaluation aims to achieve a balance between a low byte miss ratio and reduced costs.

5.5.1 Experimental Setup

Workloads. Our experiments use open-source traces from WikimediaCDN [208],

comprising cache data for image and HTML pageview requests from two servers. These

traces encompass 2,863 million requests involving 56 million objects. We replayed the

traces in the simulator as a closed system with on-demand fill.

Objectives. We define two objectives for this study. The first objective is to

minimize the byte miss ratio at a PoP, which reflects the traffic offloaded to the origin.

The second objective is to minimize the hardware costs in a PoP. These costs are

calculated based on the capacities of DRAM and SSDs used in the PoP. Recognizing

the variability in actual pricing and the different internal prices offered by companies,

we approximate the costs by assuming that the price of DRAM is 15 times that of

SSD per GB.

Alternate algorithms. To demonstrate the efficacy of Theodon ’s search engine,

we evaluate it against the following algorithms:

• Random Search: This approach involves sampling configurations randomly within

the parameter space. For this purpose, we utilized SOBOL, a quasi-random

search algorithm implemented in BoTorch [29].

• Scalarization-based Search: We use qNParEGO, an efficient implementation

based on random scalarization implemented in BoTorch.
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Figure 5.4: Comparing optimization process of random search (Sobol), scalarization-based
search (qNParEGO), and pareto-based search (qNEHVI).

5.5.2 Effectiveness

To assess the performance of Theodon’s search engine, we tested Sobol, qNParEGO,

and qNEHVI for the Cloudflare-like topology outlined in §5.2. Among the 33,792

configurations evaluated, a Pareto frontier was identified for byte miss ratio and

hardware cost, as shown in Fig. 5.2. Our targets were set at a byte miss ratio of 0.8

and a hardware cost of 400. This search process is depicted in Fig. 5.4, where each

point’s color represents the Bayesian Optimization (BO) iteration at which it was

identified.

The qNEHVI algorithm demonstrated a rapid ability to identify the Pareto frontier,

with most of its evaluations clustering close to this frontier. This indicates its

effectiveness in honing in on optimal solutions. On the other hand, qNParEGO,

while also having many observations near the Pareto frontier, relies on optimizing

random scalarizations. This approach is less structured in optimizing the Pareto

front compared to aNEHVI, which explicitly and efficiently focuses on enhancing the

frontier. In contrast, the Sobol algorithm, generating random points, resulted in fewer

points in proximity to the Pareto front, reflecting its less targeted approach in this

optimization task.

To gain deeper insights into the optimization process, we analyzed the two ob-

jectives—byte miss ratio and cost over iterations, as shown in Fig. 5.5. The results
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Figure 5.5: Performance comparison of optimization algorithms over iterations.

show 25 iterations, with the first 5 iterations involving all three algorithms engaging

in random search. Fig. 5.5a shows how the byte miss ratio evolves as the optimization

progresses through 25 iterations. The Sobol algorithm exhibits fluctuations throughout

the iterations, while both qNEHVI and qNParEGO show greater stability after the

initial 10 iterations. Notably, qNEHVI maintains a consistently lower byte miss ratio

compared to the other algorithms. In Fig. 5.5b, we observe a similar trend but with a

notable difference in cost outcomes. qNParEGO achieves a lower cost than qNEHVI.

This difference can be attributed to the more relaxed cost constraints we set in our

optimization parameters.

5.5.3 Case Study

Next, we explore how Theodon can enhance real-world CDN performance by experi-

menting with different configurations. We initiate this exploration by simulating the

WikimediaCDN and Cloudflare topologies, thoroughly examining an extensive array

of configurations for each. Our analysis reveals promising opportunities for optimiza-

tion in both CDN networks, suggesting that their performance could be significantly

improved beyond the limitations of their existing default configurations. Following

this, Theodon is employed to pinpoint configurations that optimally balance the

trade-off between performance and cost.
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WikimediaCDN. In WikimediaCDN’s default configuration, the load balancing

process operates at two levels. At the first level, traffic distribution is based on

consistent hashing of the client IP. However, for the purpose of this discussion, we

will assume the traffic is randomly distributed to a server. The second level of load

balancing employs hashing based on the request URL. Regarding caching mechanisms,

WikimediaCDN employs a two-tiered system. DRAM is utilized as the first level cache

for its high-speed access, while SSDs serve as the second level cache, employing LRU

and FIFO policies respectively. The specific configuration of a DRAM to SSD ratio of

0.2 is reflective of Wikimedia’s public CDN hardware specifications [2].

In our analysis of WikimediaCDN configurations, we embark on a detailed explo-

ration of the parameter space. This entails systematically combining various settings

across different parameters. Specially, our configuration parameters include:

• DRAM/SSD Ratios: We consider eight distinct ratios, ranging from 0.001 to

0.5. The options tested were 0.001, 0.005, 0.01, 0.1, 0.2, 0.3, 0.4, and 0.5.

• Number of L1 Caches: There are eleven possible configurations for L1 caches,

varying from 1 to 10 and including an extended option of 30.

• Number of L2 Caches: This parameter mirror the L1 cache options, with eleven

configurations also ranging from 1 to 30.

• L1 Eviction Policies: Four eviction strategies we evaluate for L1 caches, including

CLOCK, FIFO, LRU, and SIEVE.

• L2 Eviction Policies: Identical to the L1 options.

• L1 load balancing: We explore two methods, random distribution and URL-based

hashing (’random’, ’url hash’).

Additionally, we tailor the PoP capacity in relation to the working set (total bytes)

of the input trace. The PoP capacity is set as a fraction of the working set, specifically
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Figure 5.6: The box shows the byte miss ratio across 92,928 configurations for Wikimedia
and 33,792 configurations for Cloudflare.

at 0.001, 0.01, and 0.05, to understand how varying levels of resource allocation affect

the system’s functionality.

The total number of simulated scenarios is determined by the product of the

options across each category, leading to 92,928 unique configurations. As shown in

Fig. 5.6a, we can observe up to a 10% improvement in terms of byte miss ratio for the

same PoP capacity.

Cloudflare. Then, we conduct the similar experiments for Cloudflare topology. In

alignment with WikimediaCDN’s approach, Cloudflare also employs a two-level load

balancing strategy. For the first level, we implement random distribution, while the

second level utilizes hashing based on the request URL. Despite similarities in using

a two-tier caching system comprising DRAM and SSD, Cloudflare adopts a distinct

caching strategy. Instead of caching popular objects in DRAM, Cloudflare stores these

objects in SSD. The system tracks the number of hits an object receives in DRAM,

promoting it to SSD after a single hit. This default promotion threshold is set at one.

Additionally, Cloudflare employs the LRU eviction policy for both DRAM and SSD

caches. Since we lack specific information about the ratio between DRAM and SSD

used in Cloudflare, we adopt the same ratio as in WikimediaCDN’s setting, which is

0.2.

In our analysis of Cloudflare configurations, we use a set of parameters that are
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Figure 5.7: Byte miss ratio and cost comparison for WikimediaCDN and Cloudflare with
different optimizing schemes. “Min BMR” and “Min Cost” focus on optimizing either byte
miss ratio or cost, respectively, while Theodon optimizes both. The dotted lines are the
results of default setting for WikimediaCDN and Cloudflare.

largely consistent with those used for Wikimedia configurations. However, there are a

few key differences in the parameters specific to Cloudflare, which are as follows:

• Number of L1 and L2 Caches: This parameter has the same range varying

from 1 to 10 and including an extended option of 30, but the number of L1 is

maintained same as the number of L2 because of the promotion strategy.

• Number of hits for promotion: We consider four distinct values, ranging from 1

to 4.

Consequently, the total number of simulated experiments is therefore 33,792. As

shown in Fig. 5.6b, we can observe up to a 23% improvement in terms of byte miss

ratio.

Trade-off between performance and cost.

To explore the trade-off between performance and cost in CDN configurations, we

use three optimization schemes. Min BMR focuses on minimizing byte miss ratio,

Min Cost targets cost reduction, and Theodon seeks a balanced outcome between

the two.

Fig. 5.7 presents the results for both WikimediaCDN and Cloudflare, illustrating

the capabilities of each scheme. Remarkably, Theodon achieves a balance between
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the objectives in just 25 iterations of simulations. For WikimediaCDN, both Min BMR

and Theodon manage to substantially lower the byte miss ratio – by up to 30% –

albeit at a cost increase of approximately 1.3× the default setting. In contrast, for

Cloudflare, Theodon displays a more pronounced improvement in cost efficiency,

given our constraint of maintaining costs below 200. While Theodon maintains a

byte miss ratio comparable to the default setting, it also achieves a significant cost

reduction, lowering expenses by about 2.4×.
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5.6 Discussion

Network layer simulation. We recognize a notable limitation in our current

simulation framework: the omission of the network layer, a crucial component of any

CDN. The influence of the network layer on latency and data delivery is profound,

with significant implications for the efficacy of caching strategies and the overall user

experience. To address this gap, we plan to incorporate Mahimahi, a framework

capable of accurately simulating network conditions, including variables such as

bandwidth, latency, and packet loss [145]. The integration of Mahimahi will enable

us to evaluate our caching strategies in an environment that closely replicates the

complexities and variabilities of real-world internet traffic, providing a more robust

assessment of performance.

Cost model. The cost metric used in our current evaluation is based solely on the

cost of DRAM and SSDs within a PoP, offering a somewhat limited perspective on

the comprehensive cost structure of a CDN. To develop a more inclusive cost model,

we intend to include additional factors that significantly influence the total operating

costs of a CDN. These factors encompass the electricity costs, which vary widely based

on geographical location and scale, as well as the costs related to bandwidth, which

are subject to fluctuations based on data transfer volumes and network agreements.

Furthermore, we aim to consider the expenses tied to maintenance and the amortization

of infrastructure over time.
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5.7 Related Work

System parameter tuning. Many prior works have explored the configuration

tuning for large-scale complex systems. There are two categories of optimizing

approaches those work commonly use: Multi-Armed Bandit approach and Bayesian

Optimization. For the first category, Dremel [236] adaptively and quickly configures

RocksDB with strategies of feature fusion and online tuning with multi-armed bandit

models to achieves igh performance while adapting to specific workload and hardware

conditions. Configanator [144] aims to learn the optimal configuration parameters for

web server configurations to improve CDN performance. Its learning algorithm consists

of a contextual multi-armed bandit with three arms, gaussian process, epsilon-bandit,

and decision tree, to avoid sub-optimal tuning. For the second category, CherryPick [20]

leverages Bayesian Optimization to unearth the best cloud configurations for big

data analytics. CLITE [157] also uses Bayesian Optimization based multi-resource

partitioning technique to satisfy QoS requirements and maximize the performances.

CDN simulators. Researchers commonly employ simulation tools to assess the

performance of a CDN, and some even conduct experiments on real platforms like

PlanetLab [54]. There is an array of network simulators [10] available that can be

utilized to simulate a CDN’s performance. Additionally, specialized CDN simulation

systems [109, 188] offer a more realistic approach, beneficial to both the research

community and CDN developers, for evaluating CDN performance and testing various

CDN policies. However, these simulators tend to focus more on network conditions

and less on the fundamental configuration space at the architectural level. They also

lack the flexibility required to investigate the trade-offs between performance and cost,

which is a critical aspect in the optimization of CDNs.
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5.8 Conclusion

We present Theodon, a framework that models CDN architectures through modular

simulations. Leveraging empirical CDN workloads,Theodon enables us to find

configurations that strike a balance between performance and cost. We evaluate

Theodon in two real-world cases: WikimediaCDN and Cloudflare with public traces

from WikimediaCDN. Our findings indicate that Theodon effectively identifies

configurations that can improve performance by up to 10% and 23% compared to the

default settings of WikimediaCDN and Cloudflare, respectively. A significant highlight

is Theodon’s ability to maintain a byte miss ratio akin to Cloudflare’s default while

efficiently identifying configurations that considerably cut costs, reducing expenses by

about 2.4×.



Chapter 6

Conclusion

This dissertation demonstrates the approach to data-driven performance modeling

in complex networked systems, anchored in two main principles. The first principle

emphasizes the decomposition of the entire system into key components with clearly

interpretable interactions. The second principle involves utilizing empirical system

data to shape the modeling process and inform decision-making. Applying these two

key principles,we have carried out data-driven performance modeling across three

diverse and broadly complicated systems: microservice-based applications, large-scale

web cache systems and CDNs, which we summarize below.

LatenSeer is a data-driven modeling framework for estimating end-to- end latency

distributions in microservice-based web applications. It captures the complex rela-

tionships between services, representing these in a novel abstraction — invocation

graph. This tool enables developers to explore various what-if scenarios, facilitating

debugging and performance enhancement in their applications. LatenSeer predicts

latency within a 5.35% error, outperforming the state-of-the-art that has an error rate

of more than 9.5%.

Sieve is a cache primitive that is simpler than LRU and provides better than state-

of-the-art efficiency and scalability for web cache workloads — a critical component

114
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of CDN architecture. The development of Sieve is closely informed by real-world

production web cache workloads, utilizing data on access patterns, such as the frequency

of cache item visits, to make strategic decisions. Implemented in five production cache

libraries, Sieve is notable for its ease of integration, requiring less than 20 lines of

code modification on average. Our evaluation on 1559 cache traces from 7 sources

shows that Sieve achieves up to 63.2% lower miss ratio than ARC. Moreover, Sieve

has a lower miss ratio than 9 state-of-the-art algorithms on more than 45% of the

1559 traces, while the next best algorithm only has a lower miss ratio on 15%.

Theodon is a framework that models CDN architectures through modular sim-

ulations, effectively dissecting a CDN’s topology into interconnected components

that each represent a fundamental element of the CDN infrastructure. Leveraging

real-world CDN workloads, Theodon identifies configurations that adeptly balance

performance with cost. In practical applications, by simulating two real-world CDN

systems —WikimediaCDN and Cloudflare — Theodon has revealed substantial im-

provements, achieving reductions in byte miss ratio of up to 10% and 23%, respectively.

Moreover, Theodon has proven its ability to significantly cut costs, reducing expenses

by about 2.4× in the case of Cloudflare, while still matching the performance levels of

the default settings.

The contributions of this dissertation — data-driven performance modeling in com-

plex networked systems — is vital in understanding and enhancing system reliability

and efficiency. This dissertation showcases the application of two principles across

three distinct complex systems microservice-based applications, large-scale web cache

systems, and CDNs. With the emergence of new complex networked systems like

serverless computing, the insights derived from the design of LatenSeer, Sieve, and

Theodon are valuable in enabling performance analysis in these evolving systems.
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6.1 Future Directions

Our work also opens several interesting avenues for future research. This thesis has

discussed the data-driven performance modeling in three networked systems, resulting

tools and algorithm. However, there are many opportunities in each work to explore

to further facilitate improving the system reliability and efficiency.

Data-driven scheduling For microservice-based applications, our current work

has focused on estimating the end-to-end latency and identifying latency slack of

microservices. LatenSeer achieves these by capturing the causal dependencies between

the services. With these abstraction, LatenSeer can further aim to reduce communi-

cation costs associated with expensive Remote Procedure Calls (RPCs). Currently,

service instances are often placed on machines somewhat randomly, which can lead

to inefficiencies in communication, especially among services frequently involved in

RPC calls. LatenSeer could be expanded to pinpoint service pairs that frequently

engage in RPC calls and are thus prime candidates for co-location either on the same

machine or within the same rack. Such strategic placement has the potential to

lower communication overhead and improve end-to-end latency. There are many open

questions to explore, including strategies to minimize communication overhead within

the same machine and how to schedule RPC calls in response to fluctuating traffic.

Heterogeneity-aware considerations As datacenter hardware becomes more het-

erogeneous, there are many opportunities arise to leverage this diversity more effectively.

Theodon currently offers a limited parameter space for hardware configurations, pri-

marily focusing on basic distinctions between DRAM and SSD. To optimize utilization

further, we could expand this parameter space to include detailed listings of specific

hardware types. Rather than adhering to the traditional method of traffic distribution

across servers, a more nuanced approach could be adopted. This approach would

consider the status of the hardware, adjusting traffic distribution based on traffic
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patterns to make the most of the deployed hardware’s capabilities. Another direction

worth exploring is the clustering of hardware into high-end and low-end categories,

each with different performance levels and resource consumption profiles. Traffic could

be dynamically distributed across these clusters of machines, aiming to fulfill user

requirements more efficiently while simultaneously reducing costs.

Workload benchmark. Sieve has been evaluated through an extensive study

involving various workloads and has demonstrated its efficiency in web workloads,

particularly those following a Zipfian distribution. However, comprehensively under-

standing the characteristics of all cache workloads is crucial to facilitate the design of

future eviction algorithms that can adequately meet evolving demands. The diverse

workloads encountered by distributed caching systems today pose a distinctive chal-

lenge, necessitating careful analysis and classification due to their variety. Building

upon Sieve’s initial research on web cache workloads, it’s important to expand this

scope to include both storage workloads and CPU cache workloads. By incorporating

a broader set of representative traces, we can enhance our evaluation of future cache

eviction designs, ensuring they are well-tuned to the dynamic needs of contemporary

computing environments.
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[194] Arash Tavakkol, Juan Gómez-Luna, Mohammad Sadrosadati, Saugata Ghose,

and Onur Mutlu. {MQSim}: A framework for enabling realistic studies of

modern {Multi-Queue}{SSD} devices. In 16th USENIX Conference on File and

Storage Technologies (FAST 18), pages 49–66, 2018.

[195] Parth Thakkar, Rohan Saxena, and Venkata N Padmanabhan. AutoSens:

inferring latency sensitivity of user activity through natural experiments. In

Proceedings of the 21st ACM Internet Measurement Conference (IMC’21), pages

15–21, New York, NY, USA, 2021. Association for Computing Machinery.

[196] Sudhir Tonse. Scalable microservices at netflix. challenges and tools of the trade.

https://www.infoq.com/presentations/netflix-ipc/, 2015. Ac-

cessed: 2023-05-21.

https://www.infoq.com/presentations/netflix-ipc/


146

[197] Mert Toslali, Emre Ates, Alex Ellis, Zhaoqi Zhang, Darby Huye, Lan Liu,

Samantha Puterman, Ayse K. Coskun, and Raja R. Sambasivan. Automating

instrumentation choices for performance problems in distributed applications

with VAIF. In SoCC ’21: Proceedings of the Twelfth Symposium on Cloud

Computing, 2021.

[198] Varnish. Varnish cache. https://varnish-cache.org/. Accessed: 2023-

02-06.

[199] Kaushik Veeraraghavan, Justin Meza, David Chou, Wonho Kim, Sonia Margulis,

Scott Michelson, Rajesh Nishtala, Daniel Obenshain, Dmitri Perelman, and

Yee Jiun Song. Kraken: Leveraging live traffic tests to identify and resolve

resource utilization bottlenecks in large scale web services. In 12th USENIX

Symposium on Operating Systems Design and Implementation (OSDI 16), pages

635–651, USA, 2016. USENIX Association.

[200] Kaushik Veeraraghavan, Justin Meza, Scott Michelson, Sankaralingam Panneer-

selvam, Alex Gyori, David Chou, Sonia Margulis, Daniel Obenshain, Shruti

Padmanabha, Ashish Shah, et al. Maelstrom: Mitigating datacenter-level disas-

ters by draining interdependent traffic safely and efficiently. In 13th {USENIX}

Symposium on Operating Systems Design and Implementation ({OSDI} 18),

pages 373–389, USA, 2018. USENIX association.

[201] Shivaram Venkataraman, Zongheng Yang, Michael Franklin, Benjamin Recht,

and Ion Stoica. Ernest: Efficient performance prediction for large-scale advanced

analytics. In 13th {USENIX} symposium on networked systems design and

implementation ({NSDI} 16), pages 363–378, USA, 2016. USENIX Association.

[202] Giuseppe Vietri, Liana V. Rodriguez, Wendy A. Martinez, Steven Lyons, Jason

Liu, Raju Rangaswami, Ming Zhao, and Giri Narasimhan. Driving cache

https://varnish-cache.org/


147

replacement with ML-based LeCaR. In 10th USENIX workshop on hot topics

in storage and file systems, hotStorage’18, Boston, MA, July 2018. USENIX

Association.

[203] Carl Waldspurger, Trausti Saemundsson, Irfan Ahmad, and Nohhyun Park.

Cache modeling and optimization using miniature simulations. In 2017 USENIX

annual technical conference, ATC’17, pages 487–498, Santa Clara, CA, July

2017. USENIX Association.

[204] Carl A. Waldspurger, Nohhyun Park, Alexander Garthwaite, and Irfan Ahmad.

Efficient MRC construction with SHARDS. In 13th USENIX conference on file

and storage technologies, FAST’15, pages 95–110, Santa Clara, CA, February

2015. USENIX Association.

[205] Hua Wang, Xinbo Yi, Ping Huang, Bin Cheng, and Ke Zhou. Efficient SSD

Caching by Avoiding Unnecessary Writes using Machine Learning. In Proceedings

of the 47th International Conference on Parallel Processing, ICPP’18, pages

1–10, Eugene OR USA, August 2018. ACM.

[206] Qiuping Wang, Jinhong Li, Tao Ouyang, Chao Shi, and Lilong Huang. Separating

data via block invalidation time inference for write amplification reduction in

{Log-Structured} storage. In 20th USENIX Conference on File and Storage

Technologies (FAST 22), pages 429–444, 2022.
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